

MARK SCHEME for the October/November 2008 question paper

9231 FURTHER MATHEMATICS

9231/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			www.m. m
Page 2	Mark Scheme	Syllabus	Papting
	GCE A LEVEL – October/November 2008	9231	02 4ths

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

			mm m
Page 3	Mark Scheme	Syllabus	Pap May Asing
	GCE A LEVEL – October/November 2008	9231	02 Alle is
The followin	g abbreviations may be used in a mark scheme or use	ed on the scripts	02 ^{11/1} 5Cloud, con
AEF A	ny Equivalent Form (of answer is equally acceptable)		

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- Benefit of Doubt (allowed when the validity of a solution may not be absolutely BOD clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Pap
	GCE A LEVEL – October/November 2008	9231	02

	Page	<u>م</u>	Mark S	Scheme	Syllabus	Pa	.ny	14
	Fay	54		ober/November 2008	9231	<mark>ь га</mark> (02 731	5
								-Clou
1	Mark Scher	me Details					Part Mark	Tota
l	Find MI a	about A o	f AB, AC (M1 for either):	$I_{AB} = (6m/24)(\frac{1}{3}3^2 + 3^2)a^2 =$	$3ma^2$	M1		
				$I_{AC} = (10m/24)(\frac{1}{3}5^2 + 5^2)a^2$				
				= (125/9)) ma^2	A1		
	Find MI a	about A o	f <i>BC</i> :	$I_{BC} = (8m/24)(\frac{1}{3}4^2 + 6^2 + 4^2)$	a^2			
				= (172/9))ma ²	M1 A1		
	Sum to fi	nd MI ab	out A of wire:	$I = (324/9)ma^2 = 36ma^2$		A1	5	[5]
	Find spee	eds from a	cons. of energy (M1 for eithe	er): $\frac{1}{2}mv_1^2 = mga(1 - e^{-1})$	cos <i>θ</i>)	M1 A1		
				$\frac{1}{2}mv_2^2 = mga(1 + 1)$	$\cos \theta$	A1		
	Find R_1 , R_2	R_2 by radi	al resolution (M1 for either)	$: R_1 = mg\cos\theta - m$	nv_1^2/a	M1 A1		
				$R_2 = mg\cos\theta + m$	nv_2^2/a	A1		
	EITHER:	Substit	ute in R_1 , R_2 and combine:	$R_1 = 3mg\cos\theta -$	2mg			
				$R_2 = 3mg\cos\theta +$	2mg			
				$R_2 - R_1 = 4mg \mathbf{A}$	G.	M1 A1		
	OR:	Combi	ne R_1 , R_2 and substitute:	$R_2 - R_1 = m(v_2^2 + v_2^2)$	$(v_1^2)/a$			
				= 4mg A	G.	(M1 A1)	8	[8]
	EITHER:	Relate an	ngular acceln. to tension for b	plock: $2ma d^2 \theta / dt^2 = 2mg -$	T - mg/10	M1 A1		
		Relate an	ngular acceln. to tension for c	disc: $I d^2 \theta / dt^2 = aT$, $I =$	$\frac{1}{2} ma^2$	M1 A1		
		Eliminat	e tension <i>T</i> :	$(\frac{1}{2}+2)ma^2 d^2\theta/dt^2 =$	(2 - 0.1)mga	M1		
		Find $d^2\theta$	$\sqrt[4]{dt^2}$:	19g/25a or 0.76g/a	or 7.6/a	A1		
		Use (d θ	$(\sqrt{dt})^2 = 2 d^2 \theta / dt^2 2\pi (\sqrt{on d^2})$	$\theta/\mathrm{d}t^2$): $(\mathrm{d}\theta/\mathrm{d}t)^2 = 76\pi g/25a$	A.E.F.	M1 A1 $$		
		Find $d\theta$	dt (A.E.F.):	$\mathrm{d}\theta/\mathrm{d}t = 3.09\sqrt{(g/a)} dt$	or 9.77/√a	A1	9	
	OR:	Use cons	servation of energy for syster	m: $\frac{1}{2}I(d\theta/dt)^2 + \frac{1}{2}2m(d\theta/dt)^2$	$(a \mathrm{d}\theta/\mathrm{d}t)^2$	(M1 A1)		
				$= 2mga\theta - 0.1 mg$	ga heta	(M1 A1)		
		Put $\theta = 2$	2π and find $d\theta/dt$ (A.E.F.):	$\mathrm{d}\theta/\mathrm{d}t = 3.09\sqrt{(g/a)} \ d$	or 9.77/√a	(M1 A1)		
		Differen	tiate energy eqn w.r.t. t:	$(5ma^2/4) 2 d^2\theta/dt^2 =$	1.9 <i>mga</i>	(M1 A1)		
		Find $d^2\theta$	$\sqrt[4]{dt^2}$:	19g/25a or 0.76g/a	or 7.6/a	(A1)	(9)	[9]

		Page 5	Mark	Scheme	Syllabus	Pa	1 JA	4
				ctober/November 2008	9231		02	The second
u D	Mark	Scheme Details					Part Mark	1040
	(i)	Use conser	vation of momentum:	$0.1v_A + mv_B = 0.1 \times 5 -$	$m \times 2$ M	[1		
		Find <i>m</i> :		$m = (0.5 - 0.1 v_A) / (2 + v_B)$) A	.1		
		Use $v_A > 0$	to find lower bound on <i>m</i> :	$v_B > 0, \ m < 0.5/2 = 0.25$	A.G. M	[1 A1	4	
	(ii)	Use Newto	on's law of restitution:	$v_B - v_A = \frac{1}{2}(2+5) = \frac{7}{2}$	М	[1 A1		
		Put $m = 0.2$	2 and find one of v_A , v_B :	$2 v_B + v_A = 1, v_A = -2 \text{ or } v_B$	= 1.5 M	[1 A1		
		Find magn	itude of impulse [N s]:	$0.1 (5 - v_A) \text{ or } 0.2 (1.5 + 2)$	= 0.7 M	[1 A1	6	[10]
	Find	l equation of	motion at general point:	$m d^2 x/dt^2 = mg ((a-x)/a)^{\frac{1}{2}}$				
S				$-mg((a+x)/a)^{-1/4}$	М	[1		
	Exp	and terms and	l approximate:	$\approx mg\left((1-x/2a) - (1-x/2a)\right)$	<i>x</i> /4 <i>a</i>)) M	[1 A1		
	Sim	plify to give S	SHM eqn:	$\mathrm{d}^2 x/\mathrm{d}t^2 = -gx/4a$	А	.1	4	
	Use	SHM eqn to	find speed when $x = 0$:	$v_{max}^2 = (g/4a) (0.04a)^2$	М	[1 A1		
	Sim	plify (A.E.F.):	$v_{max} = 0.02 \sqrt{(ag)} \text{ or } 0.063$	32 √ <i>a</i> A	.1		
	Use	SHM eqn to	find time when $v = \frac{1}{2}v_{max}$:	$\frac{1}{2}a\omega = a\omega\sin\omega t$ (A.E.F.	.) M	[1 A1		
	Subs	stitute $\omega = \sqrt{2}$	g/4a) and simplify:	$t = \sqrt{(4a/g) \sin^{-1} \frac{1}{2}}$	М	[1		
				$= (\pi/3) \sqrt{(a/g)}$ (A.E.F.	.) A	1	7	[11]
	Use	standard form	nula for pooled estimate, e.g	g.: $((128 - 15^2/5) + (980 - 36^2))$	2/10))/13 M	[1		
	Awa	ard A1 for one	e term in numerator, e.g.:	$5 \times 16.6 \text{ or } 10 \times 85.04 \text{ or } 83$	<i>3 or</i> 850·4			
				or 4×20.75 or 9×9	4·5 A	1		
	Calc	culate value of	f pooled estimate:	71.8	А	1	3	[3]
	(i)	Find sample	mean:	$\overline{x} = \frac{1}{2}(61.21 + 64.39) = 62.8$	8 M	[1 A1		
		Use confider	nce interval formula:	$\overline{x} \pm ts/\sqrt{n}$ for any t	М	[1		
		Use correct	tabular <i>t</i> :	$t_{24,099} = 2.492$	А	.1		
		Calculate sta	andard deviation:	$s = 1.59 \times 5 / 2.492 = 3.19$	А	1	5	
	(ii)	State assum	ption (A.E.F.):	Population has normal distribut	tion B	1	1	
	(iii)	State valid r	eason (A.E.F.):	72 exceeds upper limit of interv	val *I	B1		
		State conclu	sion (A.E.F., dep *B1):	Yes, it does reduce pulse rate	В	1	2	[8]

	Page 6	Mark	Scheme	Syllabus	s Pa	1JB	43
		GCE A LEVEL – Oc	tober/November 2008	9231	(02 9	The character of the second
u o	Mark Scheme Details					Part Mark	1.00
	(i) Formulate tw	o eqns for means:	\overline{y} + 0.425 \overline{x} = 1.28 an	d			
			\overline{x} + 0.516 \overline{y} = 1.05		M1		
	Solve for me	ans:	$\overline{x} = 0.499, \ \overline{y} = 1.068 \ c$	or 1.07	M1 A1	3	
	(ii) Find correlat	ion coefficient for sample:	$r^2 = 0.425 \times 0.516; r = 1$	- 0.468	M1; *A1	2	
	(iii) State hypothe	eses:	$H_0: \rho = 0, H_1: \rho \neq 0$		B1		
	Valid method	d for reaching conclusion:	$\rho \neq 0$ if $ r >$ tabular value	2	M1		
	Use of correc	et tabular value:	$\rho_{25,2\cdot5\%} = 0.396$		*B1		
	Correct conc	lusion (A.E.F., dep *A1, *B	1): Coefficient does differ from	m zero	A1	4	[9]
	Integrate $f(t)$ to give	ve $F(t)$:	$\mathbf{F}(t) = -9/8t^2$		M1		
	Apply limits:		$F(2.5) - F(2) = -(9/8) (2.5^{-2})$	$(2^{2}-2^{-2})$	A1		
	Evaluate and mult	iply by 100:	10·125 A.G.		A1	3	
	State hypotheses	(A.E.F.):	H ₀ : $f(t)$ fits data, H ₁ : does	sn't fit	B1		
	Find χ^2 (A1 if at 1	least 3 terms correct):	$\chi^2 = 1.5^2/62.5 + 4.875^2/21$				
			$+5.875^{2}/10.125+2.5^{2}/5.00$		M1 A1		
	Evaluate χ^2 :		= 0.036 + 1.086 + 3.409 +	1.136			
			$= 5.67 [\pm 0.01]$		*A1		
	-	sistent tab. value (to 2 dp): $4.605, \chi_{1, 0.9}^2 = 2.706)$	$\chi_{3,0.9}^2 = 6.251$		*B1√		
	Consistent conclus	sion (A1 dep *A1, *B1):	Distribution fits data (A.E.	F.)	M1√A1	7	[10]
0	Replace 2^x by e^{kx} t	to find <i>k</i> :	$f(x) = ae^{-kx}; k = \ln 2$		M1; A1		
	Show $a = k$ by e.g	$\int_0^\infty \mathbf{f}(x) = 1:$	$[-(a/k) e^{-kx}]_0^\infty = 1, \ a = k a$	or ln 2	M1 A1	4	
	State value of $E(X$):	1 / ln 2 or 1.44		B1	1	
	Find distribution f	în G of <i>Y</i> :	$\mathbf{G}(y) = \mathbf{P}(Y \le y) = \mathbf{P}(X \le k^{-1})$	$\ln y$	M1 A1		
			= $F(k^{-1}\ln y) = (a/k)(1 - e^{-1})$	$-\ln y$)	M1 A1		
			= 1 - 1/y (CAO))	A1		
	Find probability d	ensity function g of Y:	$g(y) = 1/y^2$ (CAO)		M1 A1		
	State interval for e	either G or g:	$y \ge 1$		B1	8	[13]

L,	Page 7	Mark Sche	me	Syllab	us Pa	1JB.	43
[×	GCE A LEVEL – October		9231	(02 2	They
	Mark Scheme Details					Part Mark	1
	EITHER: Observ	e or deduce when R_B is maximised	d: $R_{B, max}$ occurs when do	g at B	M1		
	Momer	nts for ladder about A:	$6a R_{B, max} = 4aW + 3$	$8a \times \frac{1}{4}W$	M1		
	OR: Momer	nts when dog is x hor. from wall:	$6a R_B = 4aW + (8a$	$(-x) \frac{1}{4}W$	(M1)		
	Deduce	e limit on R_B :	$R_{B, max}$ occurs when do	g at <i>B</i>	(M1)		
	Find max. value of	R_B :	$R_{B, max} = W$		A1		
	Resolve horizontally for ladder AB:		$F_A = R_B$		B1		
	Resolve vertically	for ladder AB:	$R_A = W + \frac{1}{4}W = 5$	W/4]	B1		
	Find bound on μ f	from $F_A \leq \mu R_A$:	$\mu \geq F_A / R_A \geq R_{B, max}$	/ (5 <i>W</i> /4)	M1		
			$\mu \geq 4/5$ A.G.		A1	7	
	Find friction F_{cube} a	along <i>DE</i> by hor. resolution:	$F_{cube} = F_A \text{ or } R_B$		B1		
	Find reaction R_{cube}	from floor by vert. resolution:	$R_{cube} = W + \frac{1}{4}W + \frac{1}{$	kW	B1		
	Show that $F_{cube} \leq$	μR_{cube} :	$\mu R_{cube} \geq W + 4kW/5$	$\geq W$			
			$= R_{B, max} \geq F_{cub}$	ре	M1 A1	4	
	Find moments abo	ut D opposing effect of R_{cube} :	2akW + a5W/4 - 4a	F_A	M1		
	Find smallest value of k for which moments ≥ 0 : $(4W - 5W/4) / 2W = 11/8$					2	
	Find smallest value	z of k for which moments ≥ 0 : (2)	W = 5W/4 / 2W = 11/8		M1 A1	3	[14
	State hypotheses ($\frac{4W - 5W/4}{H_0: \mu_2 = \mu_1, H_1: \mu_2 > 0}$	μ_1	B1	3	[14
	State hypotheses (-	μ_1		3	[14
-	State hypotheses (A.E.F.):) ² (M1 for either)	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 >$			3	[14
	State hypotheses (Calculate $\Sigma (x_i - \overline{x}_i)$ <i>or</i> estimate variance	A.E.F.):) ² (M1 for either)	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 > 8.24$, 4.62[4]	r 0.0771	B1	3	
	State hypotheses (Calculate $\Sigma (x_i - \overline{x}_i)$ <i>or</i> estimate variance	A.E.F.): (M1 for either) tees:	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 > 8.24$, 4.62[4] 0.168 or 0.165, 0.0784 or	r 0.0771	B1	3	
	State hypotheses (Calculate $\Sigma (x_i - \overline{x}_i)$ <i>or</i> estimate variance	A.E.F.): (M1 for either) tees:	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 > 8.24$, 4.62[4] 0.168 or 0.165, 0.0784 or $s^2 = 0.168/50 + 0.0784/60$	r 0.0771	B1	3	
	State hypotheses (Calculate $\Sigma (x_i - \overline{x}_i)$ <i>or</i> estimate variance	A.E.F.): (M1 for either) ces: onsistent denominators used):	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 > 8.24$, 4.62[4] 0.168 or 0.165, 0.0784 or $s^2 = 0.168/50 + 0.0784/60$ or 0.165/49 + 0.0771/59	r 0.0771 50	B1 M1 A1 A1	3	
	State hypotheses (Calculate $\Sigma (x_i - \overline{x} + \overline{x})$ <i>or</i> estimate variance Find s^2 (M0 if income	A.E.F.): (M1 for either) ces: onsistent denominators used):	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 > 8.24$, 4.62[4] 0.168 or 0.165, 0.0784 or $s^2 = 0.168/50 + 0.0784/60$ or 0.165/49 + 0.0771/59 [= 0.00467]	r 0.0771 50 ′50) / s	B1 M1 A1 A1 *M1	3	
_	State hypotheses (Calculate $\Sigma (x_i - \overline{x} + \overline{x})$ <i>or</i> estimate variance Find s^2 (M0 if incompared on the compared on t	A.E.F.): (M1 for either) ces: onsistent denominators used):	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 > 8.24$, 4.62[4] 0.168 or 0.165, 0.0784 or $s^2 = 0.168/50 + 0.0784/60$ or 0.165/49 + 0.0771/59 [= 0.00467] z = (1803.6/60 - 1492.0/20)	$r \ 0.0771$ 50 (50) / s 3 = 3.22	B1 M1 A1 A1 *M1 M1	3	
	State hypotheses (Calculate $\Sigma (x_i - \overline{x} + \overline{x})$ <i>or</i> estimate variance Find s^2 (M0 if incompared on the compared on t	A.E.F.): (M1 for either) ces: onsistent denominators used): ep *M1):	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 > 8.24$, 4.62[4] 0.168 or 0.165, 0.0784 or $s^2 = 0.168/50 + 0.0784/60$ or 0.165/49 + 0.0771/59 [= 0.00467] z = (1803.6/60 - 1492.0/2) = (30.06 - 29.84)/0.068	$r \ 0.0771$ 50 (50) / s 3 = 3.22 0.119	B1 M1 A1 A1 *M1 M1 *A1	3	
	State hypotheses (Calculate $\Sigma (x_i - \overline{x} + \overline{x})$ <i>or</i> estimate variance Find s^2 (M0 if incompared on the compared on t	A.E.F.): (M1 for either) ees: onsistent denominators used): ep *M1): pooled estimate of variance:	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 > 8.24$, 4.62[4] 0.168 or 0.165, 0.0784 or $s^2 = 0.168/50 + 0.0784/60$ or 0.165/49 + 0.0771/59 [= 0.00467] z = (1803.6/60 - 1492.0/20) = (30.06 - 29.84)/0.068 $s^2 = (8.24 + 4.62)/108 = 100$	$r \ 0.0771$ 50 (50) / s 3 = 3.22 0.119	B1 M1 A1 A1 *M1 M1 *A1 (M0)	3	
	State hypotheses (Calculate $\Sigma (x_i - \overline{x} + \overline{x} + \overline{x})$ or estimate variance Find s^2 (M0 if income Find value of z (d S.R. Using Find tabular. value	A.E.F.): (M1 for either) ees: onsistent denominators used): ep *M1): pooled estimate of variance:	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 > 8.24$, $4.62[4]$ $0.168 \text{ or } 0.165$, $0.0784 \text{ or } s^2 = 0.168/50 + 0.0784/60$ or $0.165/49 + 0.0771/59$ [= 0.00467] z = (1803.6/60 - 1492.0)/2000 = (30.06 - 29.84)/0.068) $s^2 = (8.24 + 4.62)/108 = 2.05[4]$	$r \ 0.0771$ 50 $\frac{50}{50} / s$ 3 = 3.22 = 0.119 0) = 3.33	B1 M1 A1 A1 *M1 M1 *A1 (M0) (B1)	3	
	State hypotheses (Calculate $\Sigma (x_i - \overline{x} + \overline{x} + \overline{x})$ or estimate variance Find s^2 (M0 if income Find value of z (d S.R. Using Find tabular. value	A.E.F.): (M1 for either) (M1 for either) (Des: possistent denominators used): ep *M1): pooled estimate of variance: (to 2 dp): r conclusion (A1 dep *A1, *B1):	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 > 8.24$, $4.62[4]$ $0.168 \text{ or } 0.165$, $0.0784 \text{ or } s^2 = 0.168/50 + 0.0784/60$ or $0.165/49 + 0.0771/59$ [= 0.00467] z = (1803.6/60 - 1492.0)/2000 = (30.06 - 29.84)/0.068) $s^2 = (8.24 + 4.62)/108 = 2.05[4]$	$r \ 0.0771$ 50 (50) / s 3 = 3.22 $s \ 0.119$ 0) = 3.33 values)	B1 M1 A1 A1 *M1 M1 *A1 (M0) (B1) *B1		[14
	State hypotheses (Calculate $\Sigma (x_i - \overline{x} + \overline{x} + \overline{x})$ or estimate variance Find s^2 (M0 if income Find value of z (d S.R. Using Find tabular. value Compare values for Find limiting value	A.E.F.): (M1 for either) (M1 for either) (Des: possistent denominators used): ep *M1): pooled estimate of variance: (to 2 dp): r conclusion (A1 dep *A1, *B1):	H ₀ : $\mu_2 = \mu_1$, H ₁ : $\mu_2 >$ 8·24, 4·62[4] 0·168 or 0·165, 0·0784 or $s^2 = 0.168/50 + 0.0784/6$ or 0·165/49 + 0.0771/59 [= 0·00467] z = (1803.6/60 - 1492.0/2) = (30.06 - 29.84)/0.068 $s^2 = (8.24 + 4.62)/108 =$ $z = 0.22 / s\sqrt{(1/50 + 1/60)}$ $\Phi^{-1}(0.98) = 2.05[4]$ $\mu_2 > \mu_1$ (A.E.F., M1 $$ on	$r \ 0.0771$ 50 (50) / s 3 = 3.22 $s \ 0.119$ 0) = 3.33 values) 56	B1 M1 A1 A1 *M1 M1 *A1 (M0) (B1) *B1 M1√ A1		