## MARK SCHEME for the May/June 2015 series

## 9709 MATHEMATICS

9709/12
Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

| Page 2 | Mark Scheme | Syllabus | $P_{2} \frac{2}{3} / 2$ |
| :---: | :---: | :---: | :---: |
|  | Cambridge International ASS/A Level - May/June 2015 | 9709 | 12 |

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\wedge}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded ( $1 \mathrm{~d} . \mathrm{p}$. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR -1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| 1 | $\begin{aligned} & \mathrm{f}^{\prime}(x)=5-2 x^{2} \text { and }(3,5) \\ & \mathrm{f}(x)=5 x-\frac{2 x^{3}}{3}(+c) \\ & \operatorname{Uses}(3,5) \\ & \rightarrow c=8 \end{aligned}$ | B1 <br> M1 <br> A1 <br> [3] | For integral <br> Uses the point in an integral co |
| :---: | :---: | :---: | :---: |
| 2 | Radius of semicircle $=\frac{1}{2} A B=r \sin \theta$ <br> Area of semicircle $=\frac{1}{2} \pi r^{2} \sin ^{2} \theta=A_{1}$ <br> Shaded area $=$ semicircle - segment $=A_{1}-\frac{1}{2} r^{2} 2 \theta+\frac{1}{2} r^{2} \sin 2 \theta$ | B1 <br> B1 ${ }^{\wedge}$ <br> B1B1 <br> [4] | aef <br> Uses $\frac{1}{2} \pi r^{2}$ with $r=\mathrm{f}(\theta)$ <br> B1 (-sector ), B1 for + (triangle) |
| $3 \text { (i) }$ <br> (ii) | $(2-x)^{6}$ <br> Coeff of $x^{2}$ is 240 <br> Coeff of $x^{3}$ is $-20 \times 8=-160$ $(3 x+1)(2-x)^{6}$ <br> Product needs exactly 2 terms $\rightarrow 720-160=560$ | B1 <br> B2,1 <br> [3] <br> M1 <br> A1V <br> [2] | co <br> B1 for +160 <br> $3 \times$ their $240+$ their -160 <br> $\checkmark$ for candidate's answers. |
| 4 | $\begin{aligned} & u=2 x(y-x) \text { and } x+3 y=12, \\ & u=2 x\left(\frac{12-x}{3}-x\right) \\ & =8 x-\frac{8 x^{2}}{3} \\ & \frac{\mathrm{~d} u}{\mathrm{~d} x}=8-\frac{16 x}{3} \\ & =0 \text { when } x=1 \frac{1}{2} \\ & \rightarrow\left(y=3 \frac{1}{2}\right) \\ & \rightarrow u=6 \end{aligned}$ | M1 <br> A1 <br> A1 [5] | Expresses $u$ in terms of $x$ <br> Differentiate candidate's quadratic, sets to $0+$ attempt to find $x$, or other valid method <br> Complete method that leads to $u$ Co |
| 5 (i) <br> (ii) | $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$ <br> Divides top and bottom by $\cos \theta$ $\begin{aligned} & \rightarrow \quad \frac{t-1}{t+1} \\ & \frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{1}{6} \tan \theta \\ & \rightarrow \frac{t-1}{t+1}=\frac{t}{6} \\ & \rightarrow t^{2}-5 t+6=0 \\ & \rightarrow t=2 \text { or } t=3 \\ & \rightarrow \theta=63.4^{\circ} \text { or } 71.6^{\circ} \end{aligned}$ | B1 <br> [1] <br> B1 <br> M1 <br> A1 A1 <br> [4] | Answer given. <br> Using the identity. <br> Forms a 3 term quadratic with terms all on same side. co co |


| Page 5 | Mark Scheme | Syllabus | $P_{2} / 3 / 2$ |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - May/June 2015 | 9709 | 12 |


| 6 <br> (i) <br> (ii) <br> (iii) | $\begin{aligned} & h=60(1-\cos k t) \\ & \text { Max } h \text { when } \cos =-1 \rightarrow 120 \\ & h=0 \text { and } t=30 \text {, or } h=120 \text { and } t=15 \\ & \rightarrow \cos 30 k=1 \text { or } \cos 15 k=-1 \\ & \rightarrow 30 k=2 \pi \text { or } 15 k=\pi \\ & \rightarrow k=\frac{2 \pi}{30}=\frac{\pi}{15} \\ & 90=60(1-\cos k t) \\ & \rightarrow \cos k t=\frac{-30}{60}=-0.5 \\ & \rightarrow k t=\frac{2 \pi}{3} \text { or } \rightarrow k t=\frac{4 \pi}{3} \\ & \rightarrow \text { Either } t=10 \text { or } 20 \text { or both } \\ & \rightarrow t=10 \text { minutes } \end{aligned}$ | A1 <br> [2] <br> B1 <br> B1 <br> B1 <br> [3] | Co <br> Substituting a correct pair of values into the equation. <br> co ag <br> co - but there must be evidence of correct subtraction. |
| :---: | :---: | :---: | :---: |
| (i) <br> (ii) | $\begin{aligned} & A(4,6), B(10,2) . \\ & M=(7,4) \\ & m \text { of } A B=-\frac{2}{3} \\ & m \text { of perpendicular }=\frac{3}{2} \\ & \rightarrow y-4=\frac{3}{2}(x-7) \end{aligned}$ <br> Eqn of line parallel to $A B$ through $(3,11)$ $\rightarrow y-11=-\frac{2}{3}(x-3)$ $\text { Sim eqns } \rightarrow C(9,7)$ | B1 <br> B1 <br> M1 A1 <br> [4] <br> M1 <br> DM1A1 <br> [3] | co <br> co <br> Use of $m_{1} m_{2}=-1 \&$ their midpoint in the equation of a line. co <br> Needs to use $m$ of $A B$ <br> Must be using their correct lines. Co |
| 8 (a) <br> (b) | 1 st, 2 nd, $n$th are 56,53 and -22 $\begin{aligned} & a=56, d=-3 \\ & -22=56+(n-1)(-3) \\ & \rightarrow n=27 \\ & S_{27}=\frac{27}{2}(112+26(-3)) \\ & \rightarrow 459 \end{aligned}$ $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }} \text { are } 2 k+6,2 k \text { and } k+2$ <br> Either $\frac{2 k}{2 k+6}=\frac{k+2}{2 k}$ or uses $a, r$ and eliminates $\rightarrow 2 k^{2}-10 k-12=0$ $\rightarrow k=6$ | M1 <br> A1 <br> M1 <br> A1 <br> [4] <br> M1 <br> DM1 <br> A1 <br> [3] | Uses correct $u_{n}$ formula. <br> co <br> Needs positive integer $n$ <br> Co <br> Correct method for equation in $k$. <br> Forms quad. or cubic equation with no brackets or fractions. <br> Co |


| (ii) | $\begin{aligned} & S_{\infty}=\frac{a}{1-r} \text { with } r=\frac{2 k}{2 k+6} \text { or } \frac{k+2}{2 k}\left(=\frac{2}{3}\right) \\ & \rightarrow 54 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Needs attempt at $a$ and $r$ and $S_{\infty}$ Co |
| :---: | :---: | :---: | :---: |
| 9 | $\overrightarrow{O A}=2 \mathbf{i}+4 \mathbf{j}+4 \mathbf{k}$ and $\overrightarrow{O B}=3 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$ |  |  |
| (i) | $\overrightarrow{O A} \cdot \overrightarrow{O B}=6+4+16=26$ | M1 | Must be numerical at some stage |
|  | $\|\overrightarrow{O A}\|=\sqrt{36},\|\overrightarrow{O B}\|=\sqrt{26}$ | M1 | Product of 2 moduli |
|  | $\operatorname{Cos} A O B=\frac{26}{6 \sqrt{26}}$ | M1 | All linked correctly |
|  | $\rightarrow 31.8^{\circ}$ | A1 [4] | co |
| (ii) | $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}=\left(\begin{array}{c} 1 \\ -3 \\ 0 \end{array}\right)$ | B1 |  |
|  | $\overrightarrow{O C}=\binom{4}{4}+2 \overrightarrow{A B} \text { or }\binom{1}{4}+\overrightarrow{A B}$ | M1 | Correct link |
|  | $\overrightarrow{O C}=\left(\begin{array}{c} 4 \\ -2 \\ 4 \end{array}\right)$ |  |  |
|  | $\text { Unit vector } \div \text { modulus } \rightarrow \frac{1}{6}\left(\begin{array}{c} 4 \\ -2 \\ 4 \end{array}\right)$ | M1 A1 [4] | $\div$ by modulus. co |
| (iii) | $\|\overrightarrow{O C}\|=6,\|\overrightarrow{O A}\|=6$ | B1 <br> [1] | co |


| 10 <br> (i) <br> (ii) | $\begin{aligned} & y=\frac{4}{2 x-1} \\ & \int \frac{16}{(2 x-1)^{2}} \mathrm{~d} x=\frac{-16}{2 x-1} \div 2 \\ & \text { Vol }=\pi\left[\frac{-8}{2 x-1}\right] \text { with limits } 1 \text { and } 2 \\ & \rightarrow \frac{16 \pi}{3} \\ & m=\frac{1}{2} m \text { of tangent }=-2 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-4}{(2 x-1)^{2}} \times 2 \end{aligned}$ <br> Equating their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to -2 $\begin{aligned} & \rightarrow \quad x=\frac{3}{2} \text { or }-\frac{1}{2} \\ & (y=2 \text { or }-2) \\ & \rightarrow c=\frac{5}{2} \quad \text { or }-\frac{7}{2} \end{aligned}$ | B1 <br> B1 <br> M1 <br> A1 <br> [4] <br> M1 <br> B1 <br> B1 <br> DM1 <br> A1 <br> A1 <br> [6] | Correct without the $\div 2$ <br> For the $\div 2$ even if first B 1 is lost <br> Use of limits in a changed expression. <br> co <br> Use of $m_{1} m_{2}=-1$ <br> Correct without the $\times 2$ <br> For the $\times 2$ even if first B1 is lost <br> co <br> co |
| :---: | :---: | :---: | :---: |
| 11 <br> (i) | $\mathrm{f}: x \mapsto 2 x^{2}-6 x+5$ <br> $2 x^{2}-6 x+5-p=0$ has no real roots <br> Uses $b^{2}-4 a c \rightarrow 36-8(5-p)$ <br> Sets to $0 \rightarrow p<\frac{1}{2}$ | M1 <br> DM1 <br> A1 [3] | Sets to 0 with $p$ on LHS. <br> Uses discriminant. $\text { co - must be "<", not " } \leqslant \text { ". }$ |
| (ii) | $2 x^{2}-6 x+5=2\left(x-\frac{3}{2}\right)^{2}+\frac{1}{2}$ | $\begin{gathered} 3 \times \mathrm{B} 1 \\ {[3]} \end{gathered}$ | co |
| (iii) | Range of $\mathrm{g} \quad \frac{1}{2} \leqslant \mathrm{~g}(x) \leqslant 13$ <br> h: $x \mapsto 2 x^{2}-6 x+5$ for $k \leqslant x \leqslant 4$ | B1 \& B1 <br> [2] | $\uparrow$ on (ii) co from sub of $x=4$ |
| (iv) | Smallest $k=\frac{3}{2}$ | $\mathrm{B} 1 \sqrt{\wedge}_{[1]}$ | $\checkmark$ on (ii) |
| (v) | $\mathrm{h}(x)=2\left(x-\frac{3}{2}\right)^{2}+\frac{1}{2}$ <br> Order of operations $\pm \frac{1}{2}, \div 2, \sqrt{ }, \pm \frac{3}{2}$ $\rightarrow \text { Inverse }=\frac{3}{2}+\sqrt{\left(\frac{x}{2}-\frac{1}{4}\right)}$ | M1 <br> DM1 <br> A1 <br> [3] | Using comp square form to try and get $x$ as subject or $y$ if transposed. <br> Order must be correct <br> co (without $\pm$ ) |

