

Cambridge International Examinations Cambridge International Advanced Level

NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/32
Paper 3 Pure Mathe	ematics 3 (P3)		February/March 2017
			1 hour 45 minutes
Candidates answer	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

1

	Solve the inequality $ x-4 < 2 3x + 1 $.	[4
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
•		

(ii)	Verify by calculation that the negative root lies between -1 and -1.5 .	[2]

Give the result of each iteration to 4 decimal places.	

(i)	Express $8\cos\theta - 15\sin\theta$ in the form $R\cos(\theta + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$, stating the exact value of R and giving the value of α correct to 2 decimal places. [3]

(ii) Hence solve the equation

$8\cos 2x - 15\sin 2x = 4$

for $0^{\circ} < x < 180^{\circ}$.	[4]
	•••••
	••••••
	•••••
	•••••
	•••••
	•••••
	•••••

The curve with equation $y = e$ $0 < x < \frac{1}{2}\pi$ at which the tange	$\tan x$, where a is a positive of the x -axis. First	constant, has only one point in the d the value of a and state the expression a .	ne interva. (7)
of the x -coordinate of this point	int.		[7]
			•••••
			•••••
••••••			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
•••••			••••••
			•••••
			•••••
			•••••

•••••
 •••••
•••••
•••••
 •••••
•••••
 •••••
•••••

	10	nn. M	Inamains Cloud.
the line l has equation $\mathbf{r} =$	$\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + \mathbf{k})$. The plan	ne p has equation $3x + y - 5z = 20$	150/01
(i) Show that the line l lie			[3]
(-) 2	roman primary		[-]
			•••••
••••••			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			

second plane is parallel to l , perpend $-\mathbf{j} + 2\mathbf{k}$. Find the equation of this plan	dicular to p and contains the point with posine, giving your answer in the form $ax + by +$	www.mymaths sition vecto. $cz = d$. [5]
		,

A water tank has vertical sides and a horizontal rectangular base, as shown in the diagram. The area of the base is 2 m^2 . At time t = 0 the tank is empty and water begins to flow into it at a rate of 1 m^3 per hour. At the same time water begins to flow out from the base at a rate of $0.2\sqrt{h}$ m³ per hour, where h m is the depth of water in the tank at time t hours.

(i) Form a differential equation satisfied by h and t, and show that the time T hours taken for the depth of water to reach 4 m is given by

$$T = \int_0^4 \frac{10}{5 - \sqrt{h}} \, \mathrm{d}h.$$
 [3]

	hu,	
	Using the substitution $u = 5 - \sqrt{h}$, find the value of T .	Myati Mot
(ii)	Using the substitution $u = 5 - \sqrt{h}$, find the value of T .	o's Cloth
		•••
		•••
		·••
		•
		•••
		.
		· • •
		·••
		· • •
		· • •
		•••
		·••
		,••
		•••

WWW. MY WAILS COUNT COM

8 Throughout this question the use of a calculator is not permitted.

The polynomial $z^4 + 3z^2 + 6z + 10$ is denoted by p(z). The complex number -1 + i is denoted by u. (i) Showing all your working, verify that u is a root of the equation p(z) = 0. [3] (ii) Find the other three roots of the equation p(z) = 0. [7]

15 Mannarins	Walls Coloud
	COLD

Pan.
ins Id.com
Che.
14
.cow

9	Let $f(x) =$	x(6-x)
7	Let $I(x)$ –	$(2+x)(4+x^2)$

•	••••••		•	•••••	•
•••••	 •••••	•••••			
•••••	 				
	 •••••				
	 •••••				
	 •••••				•••••
••••••	 •••••	•••••		•••••	
	 •••••				
	 •••••				
	 				•••••••••••••••••••••••••••••••••••••••

	17	mn Myn	4 4
(ii)	Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and inclu	ding the term in x [5]	SSCIOUD.
			••
			••
			••
			••
			••
			••
			••
			••
			••
			••
			· ·
			· •
			· •
			••
			••
			· •
			••

The diagram shows the curve $y = (\ln x)^2$. The *x*-coordinate of the point *P* is equal to e, and the normal to the curve at *P* meets the *x*-axis at *Q*.

(i)	Find the x -coordinate of Q .	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(ii)	Show that $\int \ln x dx = x \ln x - x + c$, where c is a constant.	[1]
		•••••

	19	.Www.
Using integration by parts, or otherwine tween the curve, the <i>x</i> -axis and the n	se, find the exact value of the cormal PQ .	the area of the shaded region [

20

BLANK PAGE

MMN. MY MARIS COUNT. COM

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.