

Cambridge Assessment International Education Cambridge Pre-U Certificate

#### FURTHER MATHEMATICS

9795/01 May/June 2018

www.nymathscloud.com

Paper 1 Further Pure Mathematics MARK SCHEME Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE<sup>™</sup> is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

This document consists of **19** printed pages.

Cambridge Assessment

#### **Generic Marking Principles**

May/Jun mymathscioud.com These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a guestion. Each guestion paper and mark scheme will also comply with these marking principles.

**GENERIC MARKING PRINCIPLE 1:** 

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question •
- the specific skills defined in the mark scheme or in the generic level descriptors for the question •
- the standard of response required by a candidate as exemplified by the standardisation scripts. .

**GENERIC MARKING PRINCIPLE 2:** 

Marks awarded are always whole marks (not half marks, or other fractions).

**GENERIC MARKING PRINCIPLE 3:** 

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the • scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do .
- marks are not deducted for errors •
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the . guestion as indicated by the mark scheme. The meaning, however, should be unambiguous.

**GENERIC MARKING PRINCIPLE 4:** 

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

#### **GENERIC MARKING PRINCIPLE 5:**

May/Jun mymathscioud.com Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

#### **GENERIC MARKING PRINCIPLE 6:**

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

#### Cambridge Pre-U – Mark Scheme PUBLISHED

May/Jun nyn.

|          | PUBLISHED                                                                                                                                                            |       | -nat 19                                                                                                                                                     | 275 D  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Question | Answer                                                                                                                                                               | Marks | Guidance                                                                                                                                                    | J.     |
| 1(i)     | $\frac{3}{(3r-1)(3r+2)} = \frac{1}{3r-1} - \frac{1}{3r+2}$                                                                                                           | M1    | Guidance Guidance Guidance                                                                                                                                  | UN.COM |
|          |                                                                                                                                                                      | A1    |                                                                                                                                                             |        |
| 1(ii)    | $\sum_{r=1}^{n} \frac{3}{(3r-1)(3r+2)} = \sum_{r=1}^{n} \frac{1}{3r-1} - \sum_{r=1}^{n} \frac{1}{3r+2}$                                                              | M1    | M1 for splitting into the difference of two series<br>or a series of paired differences                                                                     |        |
|          | $= \left(\frac{1}{2} + \frac{1}{5} + \frac{1}{8} + \dots + \frac{1}{3n-1}\right) - \left(\frac{1}{5} + \frac{1}{8} + \dots + \frac{1}{3n-1} + \frac{1}{3n+2}\right)$ |       |                                                                                                                                                             |        |
|          | $=\frac{1}{2}-\frac{1}{3n+2}$                                                                                                                                        | A1    | Given Answer must come from fully correct working fully shown                                                                                               |        |
| 1(iii)   | As $n \to \infty$ , $\frac{1}{3n+2} \to 0$ so $S_{\infty} = \frac{1}{6}$                                                                                             | B1    | CAO (Limiting argument not required)                                                                                                                        |        |
| 2(i)     | VA $x = -1$                                                                                                                                                          | B1    |                                                                                                                                                             |        |
|          | $y = \frac{x(x+1) - (x+1) + 4}{x+1} = x - 1 + \frac{4}{x+1}$                                                                                                         | M1    | For attempt at long-division (or equivalent)                                                                                                                |        |
|          | so OA is $y = x - 1$                                                                                                                                                 | A1    | Ignore errors with the remainder term<br>Condone $y \rightarrow x - 1$ but not $y \neq x - 1$<br>Withhold this A1 if any extra asymptotes (e.g. a HA) given |        |
|          | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x+1).2x - (x^2+3).1}{(x+1)^2} = \frac{x^2 + 2x - 3}{(x+1)^2}$                                                              | M1    | For differentiating. $\mathbf{ALT} \frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \frac{4}{(x+1)^2}$                                                                 |        |
|          | Setting $\frac{dy}{dx} = 0$ and solving $\Rightarrow x = 1 \text{ or } -3$                                                                                           | M1 A1 |                                                                                                                                                             |        |
|          | y = 2  or  -6                                                                                                                                                        | A1    | Give one A1 for a correct $(x, y)$ pair                                                                                                                     |        |

| 9795/01  | Cambridge Pre-U – Ma<br><b>PUBLISHED</b>                                      | rk Scheme | May/Jun May/Ju | 112 1350  |
|----------|-------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Question | Answer                                                                        | Marks     | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATTASCIO, |
| 2(ii)    | Two asymptotes (one VA and one OA)                                            | B1        | <b>FT</b> (The OA must actually be an asymptote)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - UU.COM  |
|          | Two branches in correct "quadrants"                                           | B1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|          | TPs in approx. correct places and $(0, 3)$ noted somewhere                    | B1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|          |                                                                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 3(i)     | $\left \frac{z_1}{z_2}\right  = \sqrt{2}$                                     | B1        | Modulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|          | $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) = \frac{17\pi}{24}$ | M1 A1     | Argument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |

9795/01

| 9795/01  | Cambridge Pre-U – Ma<br><b>PUBLISHE</b>                                                                                                                                                                          |       | May/Jun Mynainsinscioud                                                               |       |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|-------|
| Question | Answer                                                                                                                                                                                                           | Marks | Guidance                                                                              | 5     |
| 3(ii)    | $\arg(z_3) = \frac{17n\pi}{24}$                                                                                                                                                                                  | B1    | FT                                                                                    | Y.COM |
|          | Require $\frac{17n\pi}{24}$ to be an even multiple of $\pi \implies n_{\min} = 48$                                                                                                                               | M1 A1 | FT unless trivial                                                                     |       |
|          | so that $z_3 = 2^{24}$ or 16 777 216                                                                                                                                                                             | A1    | САО                                                                                   |       |
| 4(i)     | $r = \frac{3}{10} e^{\frac{3}{4}\theta} \implies \frac{dr}{d\theta} = \frac{9}{40} e^{\frac{3}{4}\theta}$                                                                                                        | M1    | Derivative of <i>r</i> found and attempt at $r^2 + \left(\frac{dr}{d\theta}\right)^2$ |       |
|          | $r^{2} + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^{2} = \frac{144}{1600} \mathrm{e}^{\frac{3}{2}\theta} + \frac{81}{1600} \mathrm{e}^{\frac{3}{2}\theta} = \frac{9}{64} \mathrm{e}^{\frac{3}{2}\theta}$ | A1    | Accept any equivalent fractions                                                       |       |
|          | $L(\alpha) = \int \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta = \int \frac{3}{8} \mathrm{e}^{\frac{3}{4}\theta} \mathrm{d}\theta$                                          | M1    | Attempted use of appropriate arc-length formula<br>(ignore limits for now)            |       |
|          | $=\left[\frac{1}{2}e^{\frac{3}{4}\theta}\right]$                                                                                                                                                                 | A1    | Correct integration of $ae^{k\theta}$ term                                            |       |
|          | $=\frac{1}{2}\left(e^{\frac{3}{4}\alpha}-1\right)$                                                                                                                                                               | A1    | Given Answer correctly established                                                    |       |

# Cambridge Pre-U – Mark Scheme PUBLISHED

| 9795/01  | Cambridge Pre-U – Mar<br><b>PUBLISHED</b>                                                                                                        | rk Scheme   | May/Jun. May | 111 1300  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Question | Answer                                                                                                                                           | Marks       | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | this clou |
| 4(ii)    | $\frac{3}{10}e^{\frac{3}{4}\beta} = \frac{1}{2}e^{\frac{3}{4}\beta} - \frac{1}{2} \implies \frac{1}{5}e^{\frac{3}{4}\beta} = \frac{1}{2}$        | M1          | Solving this equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ud.com    |
|          | $\Rightarrow \beta = \frac{4}{3} \ln\left(\frac{5}{2}\right)$                                                                                    | A1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 5        | $\exp\left\{\int \tanh x  dx\right\} = \exp\left\{\int \frac{\sin x}{\cosh x} dx\right\} = \exp\left\{\ln\left(\cosh x\right)\right\} = \cosh x$ | M1 A1       | Attempt at Integrating Factor; correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|          | DE becomes $\cosh x \frac{\mathrm{d}y}{\mathrm{d}x} + y \sinh x = 2\cosh^2 x$                                                                    | B1          | FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|          | $\Rightarrow y \cosh x = \int (1 + \cosh 2x) dx = x + \frac{1}{2} \sinh 2x \ (+C)$                                                               | B1<br>M1 A1 | Integrating both sides: LHS RHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|          | Use of $x = \ln 2$ , $y = \frac{3}{4}$ to evaluate <i>C</i> (= - ln 2)                                                                           | M1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|          | $y = \frac{x - \ln 2}{\cosh x} + \sinh x$                                                                                                        | A1          | In any correct $y = \dots$ form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 6(i)     | $1 + R_1 = \frac{r_1 + r_2 + r_3}{r_1} = \frac{3}{r_1} \text{ since } \sum r_1 = \frac{12}{4} = 3$                                               | B1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|          | Also, $1 + R_2 = \frac{3}{r_2}$ and $1 + R_3 = \frac{3}{r_3}$                                                                                    | B1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |

9795/01

| 9795/01  | Cambridge Pre-U – Mar<br><b>PUBLISHED</b>                                                                                                                                      | k Scheme         | May/Jun Mynainser<br>Guidance                                  | 143 H         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------|---------------|
| Question | Answer                                                                                                                                                                         | Marks            | Guidance                                                       | 20 <b>1</b> 0 |
| 6(ii)    | $1 + y = \frac{3}{x}$ the required substitution                                                                                                                                | B1               | Any arrangement                                                | Ud.Com        |
|          | $x = \frac{3}{y+1}$ substituted into $4x^3 - 12x^2 + 9x - 16 = 0$                                                                                                              | M1               |                                                                |               |
|          | $\frac{4 \times 27}{(y+1)^3} - \frac{12 \times 9}{(y+1)^2} + \frac{9 \times 3}{(y+1)} - 16 = 0$                                                                                | A1               | Correct unsimplified                                           |               |
|          | $\Rightarrow 108 - 108(y+1) + 27(y+1)^2 - 16(y+1)^3 = 0$                                                                                                                       | M1               | Multiplying by $(y + 1)^3$                                     |               |
|          | $\Rightarrow 108 - 108y - 108 + 27y^2 + 54y + 27 - 16y^3 - 48y^2 - 48y - 16 = 0$                                                                                               | M1               | Expanding brackets and collecting up terms                     |               |
|          | $\Rightarrow 16y^3 + 21y^2 + 102y - 11 = 0$                                                                                                                                    | A1               | Must have integer coefficients (multiples accepted)            |               |
|          | ALT. I $\sum R_i = \frac{\sum r_i^2 r_j}{r_1 r_2 r_3} = \frac{(\sum r_i)(\sum r_i r_j) - 3r_1 r_2 r_3}{r_1 r_2 r_3} = \frac{(3)(\frac{9}{4}) - 3 \times 4}{4} =$               | $=\frac{21}{16}$ | M1 (complete attempt) A1                                       |               |
|          | $\sum R_i R_j = \frac{\sum r_i^2 r_j + \sum r_i^3 + 3r_i r_2 r_3}{r_1 r_2 r_3} = \frac{-\frac{21}{4} + \frac{75}{4} + 3 \times 4}{4} = \frac{102}{16}$                         |                  | M1 (complete attempt) A1                                       |               |
|          | $\prod R_i = \frac{\sum r_i^2 r_j + 2r_1 r_2 r_3}{r_1 r_2 r_3} = \frac{-\frac{21}{4} + 8}{4} = \frac{11}{16}$ M1 (complete attention integer coefficients (multiples accepted) | empt) A1 a       | Il coeffts. correct and final statement of equation; must have |               |

9795/01

| 9795/01  | Cambridge Pre-U – M<br><b>PUBLISHE</b>                                                                                                                                                                           |                | May/Jun<br>Guidance                              | 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|----------------------------------------|--|
| Question | Answer Marks Guidance                                                                                                                                                                                            |                |                                                  |                                        |  |
|          | ALT. II From calculator, $r_1 = 2.714\ 014\ 591$ , $r_{2,3} = 0.142\ 992\ 704$                                                                                                                                   | 4 4 ± 1.205 56 | 53 982 i                                         | B1 49.                                 |  |
|          | Using $R = \frac{3}{r} - 1$ , $R_1 = 0.105\ 373\ 570\ 8$ , $R_{2,3} = -0.708\ 9$                                                                                                                                 | 36 785 4 ∓ 2.4 | 453 938 678 i                                    | M1                                     |  |
|          | Then $R_1 + R_2 + R_3 = -1.3125 = -\frac{21}{16}$ , $R_1 R_2 + R_2 R_3 + R_3 R_1 = 6.375 = \frac{102}{16}$ , $R_1 R_2 R_3 = \frac{11}{16}$ M1 A1 A1 A1 A1<br>NB Calc. gives $6.673812802 \approx \frac{107}{16}$ |                |                                                  |                                        |  |
|          | $\Rightarrow 16y^3 + 21y^2 + 102y - 11 = 0$ Final A1 can only be given for correct final statement of eqn. with integer coeffts. (multiples accepted)                                                            |                |                                                  |                                        |  |
| 7(i)(a)  | $\left[\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right]_1 = 0$                                                                                                                                                        | B1             |                                                  |                                        |  |
| 7(i)(b)  | Diffg. $\frac{d^2 y}{dx^2} + x^2 y = x$ implicitly                                                                                                                                                               | M1             | Including correct use of the <i>Product Rule</i> |                                        |  |
|          | $\Rightarrow \frac{d^3 y}{dx^3} + \left(x^2 \frac{dy}{dx} + 2xy\right) = 1 \Rightarrow \frac{d^3 y}{dx^3}\Big _1 = -2$                                                                                           | A1             |                                                  |                                        |  |
| 7(ii)    | $y(x) = y(1) + \frac{y'(1)}{1!}(x-1) + \frac{y''(1)}{2!}(x-1)^2 + \frac{y'''(1)}{3!}(x-1)^3 + \dots$                                                                                                             | M1             | Attempt at Taylor Series, correct in principle   |                                        |  |
|          | $= 1 + (x - 1) - \frac{1}{3} (x - 1)^3 \dots$                                                                                                                                                                    | A1             | <b>FT</b> provided cubic term is non-zero        |                                        |  |
|          | y(1.1) = 1.0997 to 4 d.p.                                                                                                                                                                                        | B1             | CSO (actual value is 1.0996 to 4 d.p.)           |                                        |  |

9795/01

| 9795/01  | Cambridge Pre-U – Ma<br><b>PUBLISHEI</b>                                                                                                                                                                                                     |       | May/Jun May/Jun May/Jun May/Jun Mains                                                                                                | L Mary |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------|--------|
| Question | Answer                                                                                                                                                                                                                                       | Marks | Guidance                                                                                                                             | SC/O,  |
| 8(i)     | a = 6, b = 4                                                                                                                                                                                                                                 | B1    |                                                                                                                                      | - CQ   |
| 8(ii)    | For $n = 1$ , LHS = $1^5 = 1$ and RHS = $\frac{1}{6} \cdot 2^3 - \frac{1}{12} \cdot 2^2 = \frac{4}{3} - \frac{1}{3} = 1$<br>so that the result is true for $n = 1$                                                                           | B1    | Both sides must be established                                                                                                       |        |
|          | Assume that $\sum_{r=1}^{k} r^{5} = \frac{1}{6} k^{3} (k+1)^{3} - \frac{1}{12} k^{2} (k+1)^{2}$                                                                                                                                              | M1    | Induction hypothesis clearly stated somewhere                                                                                        |        |
|          | Then $\sum_{r=1}^{k+1} r^5 = \frac{1}{6}k^3(k+1)^3 - \frac{1}{12}k^2(k+1)^2 + (k+1)^5$                                                                                                                                                       | M1    | Attempt at $S_{k+1}$ with $S_k$ used                                                                                                 |        |
|          | $= \frac{1}{6}k^{3}(k+1)^{3} - \frac{1}{12}k^{2}(k+1)^{2}$                                                                                                                                                                                   | M1    | Use of (i)'s result with $m = k + 1$ for the $(k + 1)^5$ term                                                                        |        |
|          | $+\frac{1}{6}(k+1)^{3}\left[6(k+1)^{2}+2\right]-\frac{1}{12}(k+1)^{2}\left[4(k+1)\right]$                                                                                                                                                    |       |                                                                                                                                      |        |
|          | $=\frac{1}{6}(k+1)^{3}\left[k^{3}+6(k^{2}+2k+1)+2\right]-\frac{1}{12}(k+1)^{2}\left[k^{2}+4(k+1)\right]$                                                                                                                                     | M1    | Terms collected appropriately                                                                                                        |        |
|          | $=\frac{1}{6}(k+1)^{3}(k+2)^{3}-\frac{1}{12}(k+1)^{2}(k+2)^{2}$                                                                                                                                                                              | A1    | Legitimately shown so                                                                                                                |        |
|          | Hence result true for $n = k \Rightarrow$ result true for $n = k + 1$ .<br>Since result true for $n = 1$ , it follows that it is true for $n = 2$ , $n = 3$ , etc.<br>and the result is true for all positive integers <i>n</i> by induction | E1    | Induction process clearly explained: minimum requirement is $(P_1 \checkmark)$ and $(P_k \checkmark \Rightarrow P_{k+1} \checkmark)$ |        |

9795/01

| 9795/01  | Cambridge Pre-U – Mar<br><b>PUBLISHED</b>                                                                                                                                                                                                    |       | May/Jun May/Ju | Matter State |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Question | Answer                                                                                                                                                                                                                                       | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -10,         |
| 8(ii)    | Alt. I For $n = 1$ , LHS = $1^5 = 1$ and RHS = $\frac{1}{6} \cdot 2^3 - \frac{1}{12} \cdot 2^2 = \frac{4}{3} - \frac{1}{3} = 1$<br>so that the result is true for $n = 1$                                                                    | B1    | Both sides must be established                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JUd.Con      |
|          | Assume that $\sum_{r=1}^{k} r^{5} = \frac{1}{6} k^{3} (k+1)^{3} - \frac{1}{12} k^{2} (k+1)^{2}$                                                                                                                                              | M1    | Induction hypothesis clearly stated somewhere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|          | Then $\sum_{r=1}^{k+1} r^5 = \frac{1}{6}k^3(k+1)^3 - \frac{1}{12}k^2(k+1)^2 + (k+1)^5$                                                                                                                                                       | M1    | Attempt at $S_{k+1}$ with $S_k$ used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|          | $= \frac{1}{12} (k+1)^2 (2k^4 + 14k^3 + 35k^2 + 36k + 12)$                                                                                                                                                                                   | M1    | Factorising out the $(k+1)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|          | $= \frac{1}{12} (k+1)^2 (k^2 + 4k + 4) (2k^2 + 6k + 3)$                                                                                                                                                                                      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|          | $= \frac{1}{12} (k+1)^2 (k+2)^2 (2(k+1)(k+2)-1)$                                                                                                                                                                                             | M1    | Factorising and splitting the final factor suitably                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|          | $=\frac{1}{6}(k+1)^{3}(k+2)^{3}-\frac{1}{12}(k+1)^{2}(k+2)^{2}$                                                                                                                                                                              | A1    | Legitimately shown so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|          | Hence result true for $n = k \Rightarrow$ result true for $n = k + 1$ .<br>Since result true for $n = 1$ , it follows that it is true for $n = 2$ , $n = 3$ , etc.<br>and the result is true for all positive integers <i>n</i> by induction | E1    | Induction process clearly explained: minimum requirement is $(P_1 \checkmark)$ and $(P_k \checkmark \Rightarrow P_{k+1} \checkmark)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |

9795/01

| 9795/01  | Cambridge Pre-U – Mai<br><b>PUBLISHED</b>                                                                                                                                                                                                    |       | May/Jun May/Ju | 111 1335 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Question | Answer                                                                                                                                                                                                                                       | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASC/O    |
| 8(ii)    | Alt. II For $n = 1$ , LHS = $1^5 = 1$ and RHS = $\frac{1}{6} \cdot 2^3 - \frac{1}{12} \cdot 2^2 = \frac{4}{3} - \frac{1}{3} = 1$<br>so that the result is true for $n = 1$                                                                   | B1    | Both sides must be established                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SUU.COM  |
|          | Assume that $\sum_{r=1}^{k} r^{5} = \frac{1}{6} k^{3} (k+1)^{3} - \frac{1}{12} k^{2} (k+1)^{2}$                                                                                                                                              | M1    | Induction hypothesis clearly stated somewhere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|          | Then $\sum_{r=1}^{k+1} r^5 = \frac{1}{6} k^3 (k+1)^3 - \frac{1}{12} k^2 (k+1)^2 + (k+1)^5$                                                                                                                                                   | M1    | Attempt at $S_{k+1}$ with $S_k$ used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|          | $= \frac{1}{6}k^{6} + \frac{3}{2}k^{5} + \frac{65}{12}k^{4} + 10k^{3} + \frac{119}{12}k^{2} + 5k + 1$                                                                                                                                        | M1    | Multiplying it all out and collecting up terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|          | RHS = $\sum_{r=1}^{k+1} r^5 = \frac{1}{6} (k+1)^3 (k+2)^3 - \frac{1}{12} (k+1)^2 (k+2)^2$                                                                                                                                                    | M1    | Full attempt to multiply out the expected $S_{k+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|          | $= \frac{1}{6}k^{6} + \frac{3}{2}k^{5} + \frac{65}{12}k^{4} + 10k^{3} + \frac{119}{12}k^{2} + 5k + 1$                                                                                                                                        | A1    | Convincingly shown so, both sides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|          | Hence result true for $n = k \Rightarrow$ result true for $n = k + 1$ .<br>Since result true for $n = 1$ , it follows that it is true for $n = 2$ , $n = 3$ , etc.<br>and the result is true for all positive integers <i>n</i> by induction | E1    | Induction process clearly explained: minimum requirement is $(P_1 \checkmark)$ and $(P_k \checkmark \Rightarrow P_{k+1} \checkmark)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 9(i)     | $\cos 3\theta = \operatorname{Re}(\cos 3\theta + i \sin 3\theta) = \operatorname{Re}(c + i s)^3$                                                                                                                                             | M1    | Use of <i>De Moivre's Theorem</i> (with $n = 3$ ) at some stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|          | $= \operatorname{Re}\left(c^{3} + 3c^{2}.is + 3c.i^{2}s^{2} + i^{3}s^{3}\right)$                                                                                                                                                             | M1    | Binomial expansion (only real terms need be seen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|          | $= c^3 - 3c(1 - c^2) = 4c^3 - 3c$                                                                                                                                                                                                            | A1    | Given Answer legitimately obtained, fully supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |

#### Cambridge Pre-U – Mark Scheme PUBLISHED

May/Jun myn

|            | PUBLISHED                                                                                                                                              |                |                                                                                                                                                  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Question   | Answer                                                                                                                                                 | Marks          | Guidance                                                                                                                                         |  |
| 9(ii)      | $\cos 3\theta = \frac{1}{2}\sqrt{3} \implies 3\theta = \frac{\pi}{6}, \frac{11\pi}{6}, \frac{13\pi}{6}, \dots$                                         | M1             | Guidance         At least 2 of these 3 angles considered (accept degrees here)         Ignore any alternatives outside $(0, \pi)$                |  |
|            | $\Rightarrow \theta = \frac{\pi}{18}, \frac{11\pi}{18}, \frac{13\pi}{18}, \dots$                                                                       | A1             |                                                                                                                                                  |  |
| 9(iii)     | $2\cos 3\theta - \sqrt{3} = 0 \implies 8c^3 - 6c - \sqrt{3} = 0$                                                                                       | B1             |                                                                                                                                                  |  |
|            | Setting $x = 2 \cos \theta$                                                                                                                            | M1             |                                                                                                                                                  |  |
|            | $\Rightarrow x = 2\cos\left(\frac{\pi}{18}\right), \ 2\cos\left(\frac{11\pi}{18}\right), \ 2\cos\left(\frac{13\pi}{18}\right)$                         | A1             | Exactly these three answers (and no extras)                                                                                                      |  |
| 10(i)      | $o(g_i) = 1, 2, 5 \text{ or } 10$ since $o(g_i)   o(G)$ (by Lagrange's Theorem)                                                                        | B1 B1          |                                                                                                                                                  |  |
| 10(ii)     | $g^0$ or $g^{10}$ = the identity (has order 1); $g^5$ has order 2;<br>$g^2, g^4, g^6, g^8$ have order 5; $g, g^3, g^7, g^9$ have order 10              | B1 B1<br>B1 B1 | For sets of elements with correct orders. Give B1 for all ten elements listed with no orders $\checkmark$ ; + B1 for $\ge$ 5 orders $\checkmark$ |  |
| 10(iii)(a) | (0, 0) has order 1<br>(1, 0) has order 2<br>(0, 1), (0, 2), (0, 3), (0, 4) have order 5<br>(1, 1), (1, 2), (1, 3), (1, 4) have order 10                | B1             | For all ten elements (and no extras)                                                                                                             |  |
|            |                                                                                                                                                        | M1             | For at least five correct orders                                                                                                                 |  |
|            |                                                                                                                                                        | A1             | All ten orders ✓                                                                                                                                 |  |
| 10(iii)(b) | $G_1 \cong G_2$ since<br>elements can be matched by orders (valid for groups of small order)<br>both groups are cyclic (having an element of order 10) | E1             | Correct answer with valid reason                                                                                                                 |  |

| Cambridge Pre-U – Mark Scheme |
|-------------------------------|
| PUBLISHED                     |

| 9795/01   | Cambridge Pre-U – Marl<br><b>PUBLISHED</b>                                                                                                                                                                                                                                                                  | k Scheme                                                                      | May/Jun May/Ju |          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Question  | Answer                                                                                                                                                                                                                                                                                                      | Marks                                                                         | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>.</b> |
| 11(a)(i)  | $27\mathbf{A} = \begin{pmatrix} 459 & 324 \\ 324 & 270 \end{pmatrix}$ and $\mathbf{A}^2 = \begin{pmatrix} 433 & 324 \\ 324 & 244 \end{pmatrix} \Rightarrow n = 26$                                                                                                                                          | M1 A1                                                                         | For reasonable attempts at both; correct <i>n</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UD.COM   |
| 11(a)(ii) | $27\mathbf{A} - \mathbf{A}^2 = 26\mathbf{I}$ pre- or post-multiplied by $\mathbf{A}^{-1}$                                                                                                                                                                                                                   | M1                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|           | $\Rightarrow 27\mathbf{I} - \mathbf{A} = 26\mathbf{A}^{-1} \text{ and so } \mathbf{A}^{-1} = \frac{27}{26}\mathbf{I} - \frac{1}{26}\mathbf{A}$                                                                                                                                                              | A1                                                                            | <b>FT</b> <i>n</i> if appropriate<br><b>SC B1</b> for $A^{-1}$ found otherwise but still in correct form<br><b>M1 A0</b> for e.g. $A(27 - A) =$ and correct answer<br><b>M0</b> for e.g. dividing by a matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 11(b)(i)  | $k = \det(\mathbf{A}) = 170 - 144 = 26$                                                                                                                                                                                                                                                                     | M1 A1                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 11(b)(ii) | $ \begin{pmatrix} 17 & 12 \\ 12 & 10 \end{pmatrix} \begin{pmatrix} x \\ mx \end{pmatrix} = \begin{pmatrix} (17+12m)x \\ (12+10m)x \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix} $                                                                                                                  | B1                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|           | Require $y' = mx'$ also; i.e. $12 + 10m = 17m + 12m^2$                                                                                                                                                                                                                                                      | M1                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|           | Solving a three-term quadratic: $0 = 12m^2 + 7m - 12 = (4m - 3)(3m + 4)$                                                                                                                                                                                                                                    | M1                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|           | Since $m > 0$ , $m = \frac{3}{4}$                                                                                                                                                                                                                                                                           | A1                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|           | ALT. (i) $\binom{17 \ 12}{12 \ 10} \binom{0 \ 1 \ 1 \ 0}{0 \ 0 \ 1 \ 1} = \binom{0 \ 17 \ 29 \ 12}{0 \ 12 \ 22 \ 10}$<br>Transforming the unit square<br>k = area of image  //gm. = 26                                                                                                                      | 12, 10)                                                                       | (29, 22)<br>(17, 12) M1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|           | (ii) Then $\begin{pmatrix} 17 & 12 \\ 12 & 10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 26 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 26 & 0 \\ 0 & 26 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ <b>B1</b> $\Rightarrow \begin{pmatrix} -9 & 12 \\ 12 & -16 \end{pmatrix}$ | $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ | $\Rightarrow -3x + 4y = 0$ (twice); so $y = \frac{3}{4}x$ and $m = \frac{3}{4}$ M1 M1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |

| 9795/01  | Cambridge Pre-U – Mar<br><b>PUBLISHED</b>                                                                                      | Cambridge Pre-U – Mark Scheme May/Ju<br>PUBLISHED |                                                        |         |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|---------|--|--|
| Question | Answer                                                                                                                         | Marks                                             | Guidance                                               | SSCIO,  |  |  |
| 12(i)    | $y = \frac{1}{4}x^2 - \frac{1}{2}\ln x \implies \frac{dy}{dx} = \frac{x}{2} - \frac{1}{2x}$                                    | B1                                                | May/Jun Mymain<br>Guidance                             | -ud.com |  |  |
|          | $1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \left(\frac{x}{2} - \frac{1}{2x}\right)^2$                               | M1                                                | Attempted                                              |         |  |  |
|          |                                                                                                                                | A1                                                | Must be in the form of a perfect square; here or later |         |  |  |
|          | $L = \int_{2}^{8} \left(\frac{1}{2}x + \frac{1}{2}x^{-1}\right) dx = \left[\frac{1}{4}x^{2} + \frac{1}{2}\ln x\right]_{2}^{8}$ | M1                                                | Use of arc-length formula and attempt to integrate     |         |  |  |
|          | $= 15 + \ln 2$                                                                                                                 | A1                                                | Or exact equivalent                                    |         |  |  |

9795/01

| 9795/01  | Cambridge Pre-U – Mark Scheme M<br>PUBLISHED                                                                                               |       |                                                                                       |  |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Question | Answer                                                                                                                                     | Marks | Guidance                                                                              |  |  |  |  |  |  |  |
| 12(ii)   | $S = 2\pi \int_{2}^{8} \left(\frac{1}{4}x^{2} - \frac{1}{2}\ln x\right) \left(\frac{1}{2}x + \frac{1}{2}x^{-1}\right) dx$                  | M1    | May/Jun Mynainse<br>Guidance                                                          |  |  |  |  |  |  |  |
|          | $= \frac{1}{4}\pi \int_{2}^{8} \left(x^{2} - 2\ln x\right) \left(x + \frac{1}{x}\right) dx$                                                | A1    | All correct, unsimplified (ignore limits here)                                        |  |  |  |  |  |  |  |
|          | $= \frac{1}{4}\pi \int_{2}^{8} \left(x^{3} + x - 2x\ln x - 2\frac{1}{x}\ln x\right) dx$                                                    | A1    | In a form ready to integrate, term-by-term (ignore incorrect overall multiples)       |  |  |  |  |  |  |  |
|          | $\int (\ln x) x  dx = \frac{1}{2} x^2 \ln x - \int \frac{1}{2} x^2 \cdot \frac{1}{x}  dx$                                                  | M1    | Integration by parts (parts in correct order)                                         |  |  |  |  |  |  |  |
|          | $= \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$                                                                                                  | A1 A1 | ✓ intermediate; ✓ final                                                               |  |  |  |  |  |  |  |
|          | $\int (\ln x) \cdot \frac{1}{x}  \mathrm{d}x = \frac{1}{2} (\ln x)^2$                                                                      | M1 A1 | Integration by parts (looped) or "recognition" or by substitution (e.g. $u = \ln x$ ) |  |  |  |  |  |  |  |
|          | $S = \frac{1}{4}\pi \left[\frac{1}{4}x^4 + x^2 - x^2\ln x - (\ln x)^2\right]_2^8$                                                          | M1    | Altogether, with limits (2, 8) substituted                                            |  |  |  |  |  |  |  |
|          | $= \frac{1}{4}\pi \Big[ 1024 + 64 - 64\ln 8 - (\ln 8)^2 - 4 - 4 + 4\ln 2 + (\ln 2)^2 \Big]$ $= \pi \Big( 270 - 47\ln 2 - 2(\ln 2)^2 \Big)$ | A1    | <b>Given Answer</b> legitimately shown from use of $\ln 8 = 3 \ln 2$ .                |  |  |  |  |  |  |  |

# Cambridge Pre-U – Mark Scheme PUBLISHED

| 9795/01   | Cambridge Pre-U – Mar<br>PUBLISHED                                                                                                                                                                                                                                      |             | May/Jun May/J |         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Question  | Answer                                                                                                                                                                                                                                                                  | Marks       | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6       |
| 13(i)     | $\Pi_{1} \text{ has } d = \begin{pmatrix} 0 \\ -9 \\ 13 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = 44 \text{ and } \Pi_{2} \text{ has } d = \begin{pmatrix} 8 \\ 7 \\ -3 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = 28$ | M1 A1<br>A1 | i.e. $\Pi_1$ is $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = -44$ and $\Pi_2$ is $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = -28$<br>Okay if <i>d</i> 's are the negatives of these since on LHS of eqn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YO, COM |
|           | $\overrightarrow{AB} = \begin{pmatrix} 8\\16\\-16 \end{pmatrix} = 8\mathbf{n}  \text{(and hence } AB \text{ is // to } \mathbf{n}\text{)}$                                                                                                                              | B1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 13(ii)    | Distance betn. planes is $\frac{1}{ \mathbf{n} }(2844) = 24$ since $ \mathbf{n}  = 3$                                                                                                                                                                                   | M1 A1       | $\mathbf{Or} \ DBP = \left  \overrightarrow{AB} \right  = \sqrt{8^2 + 16^2 + 16^2} = 24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| 13(iii)   | Any two vectors perpr. to <b>n</b> e.g. $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$ , $\begin{pmatrix} 2\\0\\1 \end{pmatrix}$ , $\begin{pmatrix} 2\\-1\\0 \end{pmatrix}$ , $\begin{pmatrix} 2\\1\\2 \end{pmatrix}$ , etc.                                                   | B1 B1       | No 2nd B1 if one vector is a multiple of the other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
|           | Plane $\Pi_3$ is $\mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 5 \end{pmatrix} + \lambda \mathbf{v} + \mu \mathbf{w}$                                                                                                                                                        | M1 A1       | Preferably involving $U =$ midpoint <i>AB</i> but check for other<br>possible points in $\Pi_3$ ; but <b>v</b> , <b>w</b> must be their chosen perpr.<br>vectors to <b>n</b><br>Give <b>A0</b> if no <b>r</b> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 13(iv)(a) | Locus is a circle                                                                                                                                                                                                                                                       | M1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|           | in the plane $\Pi_3$                                                                                                                                                                                                                                                    | A1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|           | centre u                                                                                                                                                                                                                                                                | A1          | FT their u (can be described)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
|           | radius 12                                                                                                                                                                                                                                                               | A1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |

| 9795/01  | Cambridge Pre-U – Mark<br><b>PUBLISHED</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | May/Jun mym                                                                                                                                                                                            |                                                                                                                                                |                                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks                                                                                                                                                                                                  | Guidance                                                                                                                                       | 41                                |
| 13(b)    | For $\Pi_3$ of the form $\mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ (e.g.) $\overrightarrow{UP} = \begin{pmatrix} 2\mu \\ \lambda \\ \lambda + \mu \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1                                                                                                                                                                                                     |                                                                                                                                                | May/Jun mymat                     |
|          | Require $4\mu^2 + \lambda^2 + \lambda^2 + 2\lambda\mu + \mu^2 = 144$ i.e. $5\mu^2 + 2\lambda^2 + 2\lambda\mu = 144$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1                                                                                                                                                                                                     |                                                                                                                                                |                                   |
|          | Setting $\lambda = \mu \implies 9\mu^2 = 144$ and $\lambda = \mu = \pm 4$ , giving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1                                                                                                                                                                                                     |                                                                                                                                                |                                   |
|          | $P = (12, 3, 13)$ from $\lambda = \mu = -4$ or $P = (-4, -5, -3)$ from $\lambda = \mu = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1                                                                                                                                                                                                     |                                                                                                                                                |                                   |
|          | For <i>rational</i> solutions, its discriminant $\Delta = 4\mu^2 - 8(5\mu^2 - 144) = 3$ .<br>This only happens for integer $\mu$ when $\mu = \pm 4$ ; each value of $\mu$ gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • •                                                                                                                                                                                                    | / <b>1</b>                                                                                                                                     | M1                                |
|          | $\mu = 4 \Rightarrow \lambda = 4 \text{ or } -8 \text{ giving } (12, 3, 13) \text{ or } (12, -9, 1) \text{ or } \mu = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                | M1<br>A1<br>(any one)             |
|          | $\mu = 4 \Rightarrow \lambda = 4 \text{ or } -8 \text{ giving } (12, 3, 13) \text{ or } (12, -9, 1) \text{ or } \mu = -4$ <b>ALT. II</b> For $\Pi_3$ of the form $\mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 5 \end{pmatrix} + \lambda \mathbf{v} + \mu \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ we already know that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-4 \Rightarrow \lambda = 8$                                                                                                                                                                           | or -4 giving (-4, 7, 9) or (-4, -5, -3)<br>nagnitude 3                                                                                         | A1                                |
|          | $\mu = 4 \Rightarrow \lambda = 4 \text{ or } -8 \text{ giving } (12, 3, 13) \text{ or } (12, -9, 1) \text{ or } \mu = -4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-4 \Rightarrow \lambda = 8$                                                                                                                                                                           | or -4 giving (-4, 7, 9) or (-4, -5, -3)<br>nagnitude 3                                                                                         | A1 (any one)                      |
|          | $\mu = 4 \Rightarrow \lambda = 4 \text{ or } -8 \text{ giving } (12, 3, 13) \text{ or } (12, -9, 1) \text{ or } \mu = -4$ <b>ALT. II</b> For $\Pi_3$ of the form $\mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 5 \end{pmatrix} + \lambda \mathbf{v} + \mu \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ we already know that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-4 \Rightarrow \lambda = 8$ $\frac{2}{1} + 1 + 1 + 1 = 1$ $\frac{2}{1} + 1 + 1 = 1$ $\frac{2}{1} + 1 + 1 = 1$ $\frac{2}{1} + 1 = 1$ | or -4 giving (-4, 7, 9) or (-4, -5, -3)<br>nagnitude 3                                                                                         | A1<br>(any one)<br>B1             |
|          | $\mu = 4 \Rightarrow \lambda = 4 \text{ or } -8 \text{ giving } (12, 3, 13) \text{ or } (12, -9, 1) \text{ or } \mu = -4$ <b>ALT. II</b> For $\Pi_3$ of the form $\mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 5 \end{pmatrix} + \lambda \mathbf{v} + \mu \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ we already know that<br>So take $\lambda = 0$ and $\mu = 4$ or $-4$ to get $\mathbf{p} = \begin{pmatrix} 4 \\ -1 \\ 5 \end{pmatrix} + 4 \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 3 \\ 13 \end{pmatrix}$ or<br><b>ALT. III</b> For $\Pi_3$ of the form $\mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ (e.g.) $\mathbf{p} = \begin{pmatrix} 4 + 2 \\ -1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ (e.g.) $\mathbf{p} = \begin{pmatrix} 4 + 2 \\ -1 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ | $-4 \Rightarrow \lambda = 8$ $\frac{2}{1} \text{ has m}$ $\mathbf{r}  \mathbf{p} = \begin{pmatrix} 4 \\ -1 \\ 5 \end{pmatrix}$ $\frac{2\mu}{+\lambda} + \mu$ $= 144 \text{ (again)}$                   | or -4 giving (-4, 7, 9) or (-4, -5, -3)<br>magnitude 3<br>$+4\begin{pmatrix} 2\\1\\2 \end{pmatrix} = \begin{pmatrix} -4\\-5\\-3 \end{pmatrix}$ | A1<br>(any one)<br>B1<br>M1 M1 A1 |

# Cambridge Pre-U – Mark Scheme PUBLISHED

| 9795/01  | Cambridge Pre-U – Mark Scheme<br><b>PUBLISHED</b> |              |           |         |             |                         |                                                                                                                                                                                                                                          |     |          |     |                          |                   | Jun Myn Myn |
|----------|---------------------------------------------------|--------------|-----------|---------|-------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|-----|--------------------------|-------------------|-------------|
| Question | Answer                                            |              |           |         |             |                         |                                                                                                                                                                                                                                          | ks  | Guidance |     |                          |                   | 4thscio     |
| 13(b)    | Then $AP^2 = 28$                                  | $(a-2b)^2 +$ | $(b+5)^2$ | +(a-13) | $)^2 = 288$ | $\Leftrightarrow 5(a -$ | osition vector $p = \begin{pmatrix} 2a-2b\\b-4\\a \end{pmatrix}$ so that $\overrightarrow{AP} = \begin{pmatrix} 2a-2b\\b+5\\a-13 \end{pmatrix}$<br>> $5(a-5)^2 + 5(b-3)^2 - 8(a-5)(b-3) = 144$<br>of 5, and RHS a multiple of 8, we have |     |          |     |                          | May/Jun mymathson |             |
|          | 144 + 8xy =                                       | 40           | 8         | 120     | 160         | 200                     | $\frac{10013, u}{240}$                                                                                                                                                                                                                   | 280 | 320      | 360 | 400                      | 440               | 480         |
|          | when $xy =$                                       | -13          | -8        | -3      | 2           | 7                       | 12                                                                                                                                                                                                                                       | 17  | 22       | 27  | 32                       | 37                | 42          |
|          | and $x^2 + y^2 =$                                 | 8            | 16        | 24      | 32          | 40                      | 48                                                                                                                                                                                                                                       | 56  | 64       | 72  | 80                       | 88                | 96          |
|          | (x, y) =                                          | ×            | ×         | ×       | ×           | ×                       | ×                                                                                                                                                                                                                                        | ×   | ×        | ×   | $(\pm 4, \pm 8)$ or v.v. | ×                 | ×           |