Moments 4A

1 a

Moment = $3 \times 2 = 6$ Nm clockwise

b

Moment = $7 \times 1.5 = 10.5$ Nm clockwise

c

Moment = $2 \times 6.5 = 13$ Nm anticlockwise

d

The line of action of the force acts through P, so moment = 0 Nm

2 a

First, draw in the right-angled triangle. Perpendicular distance = $5 \times \sin 30^{\circ}$

 $Moment = 4 \times 5 \sin 30^{\circ}$

=10 Nm anticlockwise

b

Distance = $7.2 \times \sin 45^{\circ}$

 $Moment = 6 \times 7.2 \sin 45^{\circ}$

= 30.5 Nm anticlockwise

c

Distance = $2.8 \times \cos 60^{\circ}$

 $Moment = 9.5 \times 2.8 \cos 60^{\circ}$

=13.3 Nm clockwise

d

First, draw in the right-angled triangle.

Angle inside the triangle = $180^{\circ} - 137^{\circ} = 43^{\circ}$

12N

 $3 \, \mathrm{m}$

D

 $5 \, \mathrm{m}$

2 d

Distance = $6.2 \times \sin 43^{\circ}$

 $Moment = 8 \times 6.2 \sin 43^{\circ}$

= 33.8 Nm anticlockwise

3 a i Moment = magnitude of force \times perpendicular distance Moment about $P = 4g \times 8$

$$=4\times9.8\times8$$

$$=313.6$$

The moment about *P* is 313.6 Nm clockwise.

ii Moment = magnitude of force \times perpendicular distance Moment about $Q = 4g \times (12-8)$

$$=4\times9.8\times4$$

$$=156.8$$

The moment about Q is 156.8 Nm anticlockwise.

b In these calculations, we have assumed that the sign is a particle – i.e. all the weight of the sign acts at its centre of mass.

 \boldsymbol{A}

C

4 a Moment = magnitude of force \times perpendicular distance Moment about $A = 12 \times 0$

$$=0 \text{ Nm}$$

b Moment = magnitude of force \times perpendicular distance Moment about $B = 12 \times 0$

$$=0 \text{ Nm}$$

= 36 Nm anticlockwise

$$F = \frac{15}{12\sin 30^{\circ}}$$
$$= 2.5 \text{ Nm}$$

