Moments 4A

1 a

Moment $=3 \times 2=6 \mathrm{Nm}$ clockwise
b

Moment $=7 \times 1.5=10.5$ Nm clockwise
c

Moment $=2 \times 6.5=13 \mathrm{Nm}$ anticlockwise
d

The line of action of the force acts through P, so moment $=0 \mathrm{Nm}$

2 a

First, draw in the right-angled triangle.
Perpendicular distance $=5 \times \sin 30^{\circ}$
Moment $=4 \times 5 \sin 30^{\circ}$
$=10 \mathrm{Nm}$ anticlockwise
b

Distance $=7.2 \times \sin 45^{\circ}$
Moment $=6 \times 7.2 \sin 45^{\circ}$
$=30.5 \mathrm{Nm}$ anticlockwise
c

Distance $=2.8 \times \cos 60^{\circ}$
Moment $=9.5 \times 2.8 \cos 60^{\circ}$
$=13.3 \mathrm{Nm}$ clockwise
d

First, draw in the right-angled triangle.
Angle inside the triangle $=180^{\circ}-137^{\circ}=43^{\circ}$

2 d
Distance $=6.2 \times \sin 43^{\circ}$
Moment $=8 \times 6.2 \sin 43^{\circ}$
$=33.8 \mathrm{Nm}$ anticlockwise

3 a i Moment $=$ magnitude of force \times perpendicular distance
Moment about $P=4 g \times 8$

$$
\begin{aligned}
& =4 \times 9.8 \times 8 \\
& =313.6
\end{aligned}
$$

The moment about P is 313.6 Nm clockwise.
ii Moment $=$ magnitude of force \times perpendicular distance
Moment about $Q=4 g \times(12-8)$

$$
\begin{aligned}
& =4 \times 9.8 \times 4 \\
& =156.8
\end{aligned}
$$

The moment about Q is 156.8 Nm anticlockwise.
b In these calculations, we have assumed that the sign is a particle - i.e. all the weight of the sign acts at its centre of mass.

4 a Moment $=$ magnitude of force \times perpendicular distance Moment about $A=12 \times 0$

$$
=0 \mathrm{Nm}
$$

b Moment $=$ magnitude of force \times perpendicular distance Moment about $B=12 \times 0$

$$
=0 \mathrm{Nm}
$$

c Moment $=$ magnitude of force \times perpendicular distance
Moment about $C=12 \times 3$

$$
=36 \mathrm{Nm} \text { anticlockwise }
$$

d Moment $=$ magnitude of force \times perpendicular distance
Moment about $D=12 \times 3$
$=36 \mathrm{Nm}$ anticlockwise
5 Moment $=$ magnitude of force \times perpendicular distance

$$
\begin{aligned}
15 & =F \times 12 \sin 30^{\circ} \\
F & =\frac{15}{12 \sin 30^{\circ}} \\
& =2.5 \mathrm{Nm}
\end{aligned}
$$

