Functions and graphs 2F

1 a $y=3 \mathrm{f}(x)$
 Vertical stretch, scale factor 3.

$y=3 \mathrm{f}(x)+2$. Vertical translation of +2.
b $y=\mathrm{f}(x-2)$.
Horizontal translation of +2 .

$y=\mathrm{f}(x-2)-5$.
Vertical translation of -5 .

1 c $y=\mathrm{f}(x+1)$
Horizontal translation of -1 .

$y=\frac{1}{2} \mathrm{f}(x+1)$
Vertical stretch, scale factor $\frac{1}{2}$

d $y=\mathrm{f}(2 x)$
Horizontal stretch, scale factor $\frac{1}{2}$

$y=-\mathrm{f}(2 x)$
Reflection in the x-axis.
(or Vertical stretch, scale factor -1).

e $y=|\mathrm{f}(x)|$. Reflect, in the x-axis, the parts of the graph that lie below the x-axis.

1 f $y=\mathrm{f}(-x)$. Reflection in the y-axis.
$y=|\mathrm{f}(-x)|$.
Reflect, in the x-axis, the parts of the graph that lie below the x-axis.

2 a $y=\mathrm{f}(x-2)$
Horizontal translation of +2

b $y=\mathrm{f}\left(\frac{1}{2} x\right)$
Horizontal stretch, scale factor 2.

$y=3 \mathrm{f}(x-2)$
Vertical stretch, scale factor 3.

2 b (continued)
$y=\frac{1}{2} \mathrm{f}\left(\frac{1}{2} x\right)$
Vertical stretch, scale factor $\frac{1}{2}$

c $\quad y=-\mathrm{f}(x)$
Reflection in the x-axis.
(Or vertical stretch, scale factor -1).

$y=-\mathrm{f}(x)+4$
Vertical translation of +4 .

d $y=\mathrm{f}(x+1)$
Horizontal translation of 1 .

$y=-2 \mathrm{f}(x+1)$
Reflection in the x-axis, and vertical stretch, scale factor 2 .

2 e $y=\mathrm{f}(|x|)$ can be written

$$
y=\left\{\begin{array}{c}
\mathrm{f}(x), x \geq 0 \\
\mathrm{f}(-x), x<0
\end{array}\right.
$$

$y=\mathrm{f}(-x)$ is a reflection of $y=\mathrm{f}(x)$ in the y-axis.
Hence, $y=\mathrm{f}(|x|)$ is the following:
$y=2 \mathrm{f}(|x|)$
Vertical stretch, scale factor 2.

Asymptotes: $x=2, y=1$
A: $(0,2)$

3 a $y=3 \mathrm{f}(x)$
Vertical stretch, scale factor 3.

$y=3 \mathrm{f}(x)-1$
Vertical translation of -1 .

3 b $y=\mathrm{f}(x+2)$
Horizontal translation of 2.

$y=\mathrm{f}(x+2)+4$
Vertical translation of +4 .

Asymptotes: $x=0, y=4$
A: $(-2,5)$
c $y=\mathrm{f}(2 x)$
Horizontal stretch, scale factor $\frac{1}{2}$

$y=-\mathrm{f}(2 x)$. Reflection in the x-axis.

Asymptotes: $x=1, y=0$
A: $(0,-1)$

3 d $y=\mathrm{f}(|x|)$ can be written

$$
y=\left\{\begin{array}{c}
\mathrm{f}(x), x \geq 0 \\
\mathrm{f}(-x), x<0
\end{array}\right.
$$

$y=\mathrm{f}(-x)$ is a reflection of $y=\mathrm{f}(x)$ in the y-axis.
Hence, $y=\mathrm{f}(|x|)$ is the following:

Asymptotes are $x=-2, x=2$ and $y=0$.
$A:(0,1)$

4 a

b i $(2+4,-9 \times 2)=(6,-18)$
c $y=\mathrm{g}(|x|)$ can be written

$$
y=\left\{\begin{array}{c}
g(x)=(x-2)^{2}-9, x \geq 0 \\
g(-x)=(x+2)^{2}-9, x<0
\end{array}\right.
$$

$y=\mathrm{g}(-x)$ is a reflection of
$y=\mathrm{g}(x)$ in the y-axis.
Hence, $y=\mathrm{g}(|x|)$ is the following:

5 a $y=2 \sin x$ is a vertical stretch of $y=\sin x$ by a scale factor 2 .

b minimum $A\left(-90^{\circ},-2\right)$ and maximum $B\left(90^{\circ}, 2\right)$
ii $\left(2 \times \frac{1}{2},-9\right)=(1,-9)$
iii $(2,-9 \times-1)=(2,9)$

5 c i $\mathrm{h}(x-90)$ is a horizontal translation of $+90^{\circ}$ $\mathrm{h}(x-90)+1$ is a vertical translation of +1 .

ii $\mathrm{h}\left(\frac{1}{2} x\right)$ is a horizontal stretch scale factor 2 $\frac{1}{4} \mathrm{~h}\left(\frac{1}{2} x\right)$ is a vertical stretch scale factor $\frac{1}{4}$

iii $h(-x)$ is a reflection in the y-axis
$|\mathrm{h}(-x)|$ causes the part of the graph below the x-axis to be reflected in the x-axis.
$\frac{1}{2}|\mathrm{~h}(-x)|$ is a vertical stretch scale factor $\frac{1}{2}$

