Sequences and series 3 E

1 a i $r=0.1$ so the series is convergent
as $|r|<1$.
ii $\quad S_{\infty}=\frac{1}{1-0.1}=\frac{10}{9}$
b $r=2$ so the series is not convergent as $|r| \geqslant 1$.
c i $r=-0.5$ so the series is convergent as $|r|<1$.
ii $S_{\infty}=\frac{10}{1+0.5}=\frac{20}{3}=6 \frac{2}{3}$
d This is an arithmetic series and so does not converge.
e $\quad r=1$ so the series is not convergent as $|r| \geqslant 1$.
f i $\quad r=\frac{1}{3}$ so the series is convergent as $|r|<1$.
ii $S_{\infty}=\frac{3}{1-\frac{1}{3}}=\frac{9}{2}=4 \frac{1}{2}$
g This is an arithmetic series and so does not converge.
h i $\quad r=0.9$ so the series is convergent as $|r|<1$.
ii $\quad S_{\infty}=\frac{9}{1-0.9}=90$
$2 a=10, S_{\infty}=30$
$\frac{10}{1-r}=30$
$10=30(1-r)$
$30 r=20$
$r=\frac{2}{3}$
$3 a=-5, S_{\infty}=-3$
$\frac{-5}{1-r}=-3$
$-5=-3(1-r)$
$3 r=-2$
$r=-\frac{2}{3}$
$4 S_{\infty}=60, r=\frac{2}{3}$
$\frac{a}{1-\frac{2}{3}}=60$
$\frac{\frac{a}{\frac{1}{3}}}{}=60$
$a=20$
$5 S_{\infty}=10, r=-\frac{1}{3}$
$\frac{a}{1+\frac{1}{3}}=10$
$\frac{a}{\frac{4}{3}}=10$
$a=\frac{40}{3}=13 \frac{1}{3}$
$6 \quad 0 . \dot{2} \dot{3} \ldots=\frac{23}{100}+\frac{23}{10000}+\frac{23}{1000000}+\ldots$
b $\quad S_{\infty}=\frac{1}{1+2 x}$
$\underset{\times \frac{1}{100}}{\rightarrow} \quad \underset{\times \frac{1}{100}}{\rightarrow}$

This is an infinite geometric series:

$$
9 \text { a } a=2, S_{\infty}=16 \times S_{3}
$$

$a=\frac{23}{100}$ and $r=\frac{1}{100}$.
Use $S_{\infty}=\frac{a}{1-r}$.

$$
\begin{aligned}
& S_{3}=\frac{2\left(1-r^{3}\right)}{1-r} \\
& 16 \times \frac{2\left(1-r^{3}\right)}{1-r}=\frac{2}{1-r}
\end{aligned}
$$

$$
32\left(1-r^{3}\right)=2
$$

$$
\begin{aligned}
0.2 \dot{3} \ldots & =\frac{\frac{23}{100}}{1-\frac{1}{100}}=\frac{\frac{23}{100}}{\frac{99}{100}} \\
& =\frac{23}{100} \times \frac{100}{99}=\frac{23}{99}
\end{aligned}
$$

$$
r^{3}=\frac{15}{16}
$$

$$
r=0.9787
$$

b $u_{4}=a r^{3}=2 \times 0.9787^{3}=1.875$
$7 S_{3}=9, S_{\infty}=8$

$$
\begin{align*}
& S_{3}=\frac{a\left(1-r^{3}\right)}{1-r}=9 \tag{1}\\
& S_{\infty}=\frac{a}{1-r}=8 \tag{2}
\end{align*}
$$

$$
8\left(1-r^{3}\right)=9(\text { substituting }(\mathbf{2}) \text { into }(\mathbf{1}))
$$

$1-r^{3}=\frac{9}{8}$
$r^{3}=-\frac{1}{8}$
$r=-\frac{1}{2}$
$a=8\left(1+\frac{1}{2}\right)($ from (2))
$a=12$
8 a $a=1, r=-2 x$
As the series is convergent, $|-2 x|<1$
If $x<0$ then $2 x<1$, so $x<\frac{1}{2}$;
if $x>0$ then $-2 \mathrm{x}<1$, so $x>-\frac{1}{2}$
Hence, $-\frac{1}{2}<x<\frac{1}{2}$.
b $u_{4}-u_{5}=a r^{3}-a r^{4}$
10a $a=30, S_{\infty}=240$

$$
\begin{aligned}
& \frac{30}{1-r}=240 \\
& \frac{1}{8}=1-r \\
& r=\frac{7}{8}
\end{aligned}
$$

$=30\left(\frac{7}{8}\right)^{3}-30\left(\frac{7}{8}\right)^{4}$

$$
=2.51
$$

c $S_{4}=\frac{30\left(1-\left(\frac{7}{8}\right)^{4}\right)}{1-\frac{7}{8}}$
$=99.3$

10 d If $S_{n}=\frac{30\left(1-\left(\frac{7}{8}\right)^{n}\right)}{1-\frac{7}{8}}=180$
$\frac{30\left(1-\left(\frac{7}{8}\right)^{n}\right)}{\frac{1}{8}}=180$
$1-\left(\frac{7}{8}\right)^{n}=0.75$
$0.875^{n}=0.25$
$n=\frac{\log 0.25}{\log 0.875}$
$n=10.38$
$n=11$

11 a $a r=\frac{15}{8}, S_{\infty}=8$

$$
\begin{aligned}
& \frac{a}{1-r}=8 \\
& a=8(1-r) \\
& a=\frac{15}{8 r} \\
& \frac{15}{8 r}=8(1-r) \\
& 15=64 r-64 r^{2} \\
& 64 r^{2}-64 r+15=0
\end{aligned}
$$

b $(8 r-3)(8 r-5)=0$

$$
r=\frac{3}{8} \text { or } r=\frac{5}{8}
$$

c When $r=\frac{3}{8}$
$a=8\left(1-\frac{3}{8}\right)=5$
When $r=\frac{5}{8}$
$a=8\left(1-\frac{5}{8}\right)=3$
d $r=\frac{3}{8}$

$$
\begin{aligned}
& \text { If } S_{n}=\frac{5\left(1-\left(\frac{3}{8}\right)^{n}\right)}{1-\frac{3}{8}}=7.99 \\
& \frac{5\left(1-\left(\frac{3}{8}\right)^{n}\right)}{\frac{5}{8}}=7.99 \\
& 1-0.375^{n}=0.99875 \\
& 0.375^{n}=0.00125 \\
& n=\frac{\log 0.00125}{\log 0.375} \\
& n=6.815 \\
& n=7
\end{aligned}
$$

Challenge

a First series: $a+a r+a r^{2}+a r^{3}+\ldots$
Second series: $a^{2}+a^{2} r^{2}+a^{2} r^{4}+\ldots$
Second series has first term a^{2} and common ratio r^{2} so is a geometric series.
b For the first series: $S_{\infty}=7$

$$
\begin{aligned}
& \frac{a}{1-r}=7 \\
& a=7(1-r)
\end{aligned}
$$

For the second series: $S_{\infty}=35$

$$
\begin{aligned}
& \frac{a^{2}}{1-r^{2}}=35 \\
& \frac{a^{2}}{(1-r)(1+r)}=35 \\
& \frac{49(1-r)^{2}}{(1-r)(1+r)}=35 \\
& 49-49 r=35+35 r \\
& 14=84 r, \text { so } r=\frac{1}{6}
\end{aligned}
$$

