Sequences and series 3E

1 a i r = 0.1 so the series is convergent as |r| < 1.

ii
$$S_{\infty} = \frac{1}{1 - 0.1} = \frac{10}{9}$$

- **b** r = 2 so the series is not convergent as $|r| \ge 1$.
- **c** i r = -0.5 so the series is convergent as |r| < 1.
 - **ii** $S_{\infty} = \frac{10}{1+0.5} = \frac{20}{3} = 6\frac{2}{3}$
- **d** This is an arithmetic series and so does not converge.
- e r=1 so the series is not convergent as $|r| \ge 1$.
- **f** i $r = \frac{1}{3}$ so the series is convergent as |r| < 1.

ii
$$S_{\infty} = \frac{3}{1 - \frac{1}{3}} = \frac{9}{2} = 4\frac{1}{2}$$

- **g** This is an arithmetic series and so does not converge.
- **h** i r = 0.9 so the series is convergent as |r| < 1.

ii
$$S_{\infty} = \frac{9}{1 - 0.9} = 90$$

2
$$a = 10, S_{\infty} = 30$$

 $\frac{10}{1-r} = 30$
 $10 = 30(1-r)$
 $30r = 20$
 $r = \frac{2}{3}$

3
$$a = -5$$
, $S_{\infty} = -3$
 $\frac{-5}{1-r} = -3$
 $-5 = -3(1-r)$
 $3r = -2$
 $r = -\frac{2}{3}$

4
$$S_{\infty} = 60, r = \frac{2}{3}$$

 $\frac{a}{1 - \frac{2}{3}} = 60$
 $\frac{a}{\frac{1}{3}} = 60$

$$a = 20$$

5 $S_{\infty} = 10, r = -\frac{1}{3}$ $\frac{a}{1 + \frac{1}{3}} = 10$ $\frac{a}{\frac{4}{3}} = 10$ $a = \frac{40}{3} = 13\frac{1}{3}$

This is an infinite geometric series:

$$a = \frac{23}{100}$$
 and $r = \frac{1}{100}$.

Use
$$S_{\infty} = \frac{a}{1-r}$$
.
 $0.\dot{2}\dot{3}... = \frac{\frac{23}{100}}{1-\frac{1}{100}} = \frac{\frac{23}{100}}{\frac{99}{100}}$
 $= \frac{23}{100} \times \frac{100}{99} = \frac{23}{99}$

7
$$S_3 = 9, S_\infty = 8$$

 $S_3 = \frac{a(1-r^3)}{1-r} = 9$ (1)
 $S_\infty = \frac{a}{1-r} = 8$ (2)
 $8(1-r^3) = 9$ (substituting (2) into (1))
 $1-r^3 = \frac{9}{8}$
 $r^3 = -\frac{1}{8}$
 $r = -\frac{1}{2}$
 $a = 8\left(1+\frac{1}{2}\right)$ (from (2))
 $a = 12$

8 **a** a = 1, r = -2xAs the series is convergent, |-2x| < 1If x < 0 then 2x < 1, so $x < \frac{1}{2}$; if x > 0 then -2x < 1, so $x > -\frac{1}{2}$ Hence, $-\frac{1}{2} < x < \frac{1}{2}$.

b
$$S_{\infty} = \frac{1}{1+2x}$$

9

a
$$a = 2, S_{\infty} = 16 \times S_{3}$$

 $S_{3} = \frac{2(1-r^{3})}{1-r}$
 $16 \times \frac{2(1-r^{3})}{1-r} = \frac{2}{1-r}$
 $32(1-r^{3}) = 2$
 $r^{3} = \frac{15}{16}$
 $r = 0.9787$

b
$$u_4 = ar^3 = 2 \times 0.9787^3 = 1.875$$

10 a
$$a = 30, S_{\infty} = 240$$

 $\frac{30}{1-r} = 240$
 $\frac{1}{8} = 1-r$
 $r = \frac{7}{8}$

b
$$u_4 - u_5 = ar^3 - ar^4$$

= $30\left(\frac{7}{8}\right)^3 - 30\left(\frac{7}{8}\right)^4$
= 2.51

$$\mathbf{c} \quad S_4 = \frac{30\left(1 - \left(\frac{7}{8}\right)\right)}{1 - \frac{7}{8}}$$
$$= 99.3$$

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free.

10 d If
$$S_n = \frac{30\left(1 - \left(\frac{7}{8}\right)^n\right)}{1 - \frac{7}{8}} = 180$$

$$\frac{30\left(1 - \left(\frac{7}{8}\right)^n\right)}{\frac{1}{8}} = 180$$
$$1 - \left(\frac{7}{8}\right)^n = 0.75$$
$$0.875^n = 0.25$$
$$n = \frac{\log 0.25}{\log 0.875}$$
$$n = 10.38$$
$$n = 11$$

11 a
$$ar = \frac{15}{8}, S_{\infty} = 8$$

 $\frac{a}{1-r} = 8$
 $a = 8(1-r)$
 $a = \frac{15}{8r}$
 $\frac{15}{8r} = 8(1-r)$
 $15 = 64r - 64r^2$
 $64r^2 - 64r + 15 = 0$

b (8r-3)(8r-5) = 0 $r = \frac{3}{8}$ or $r = \frac{5}{8}$

c When
$$r = \frac{3}{8}$$

 $a = 8\left(1 - \frac{3}{8}\right) = 5$
When $r = \frac{5}{8}$
 $a = 8\left(1 - \frac{5}{8}\right) = 3$

$$d \quad r = \frac{3}{8}$$

If $S_n = \frac{5\left(1 - \left(\frac{3}{8}\right)^n\right)}{1 - \frac{3}{8}} = 7.99$
$$\frac{5\left(1 - \left(\frac{3}{8}\right)^n\right)}{\frac{5}{8}} = 7.99$$
$$1 - 0.375^n = 0.99875$$
$$0.375^n = 0.00125$$
$$n = \frac{\log 0.00125}{\log 0.375}$$
$$n = 6.815$$
$$n = 7$$

Challenge

- **a** First series: $a + ar + ar^2 + ar^3 + ...$ Second series: $a^2 + a^2r^2 + a^2r^4 + ...$ Second series has first term a^2 and common ratio r^2 so is a geometric series.
- **b** For the first series: $S_{\infty} = 7$

$$\frac{a}{1-r} = 7$$

 $a = 7(1-r)$
For the second series: $S_{\infty} = 35$

$$\frac{a^2}{1-r^2} = 35$$

$$\frac{a^2}{(1-r)(1+r)} = 35$$

$$\frac{49(1-r)^2}{(1-r)(1+r)} = 35$$

$$49-49r = 35+35r$$

$$14 = 84r, \text{ so } r = \frac{1}{6}$$

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free.