Sequences and series $\mathbf{3 H}$

a i The sequence is increasing.
b i The sequence is decreasing.
c i The sequence is increasing.
d i The sequence is periodic.
ii Order 2

2 a i $u_{n}=20-3 n$

$$
\begin{aligned}
& u_{1}=20-3(1)=17 \\
& u_{2}=20-3(2)=14 \\
& u_{3}=20-3(3)=11 \\
& u_{4}=20-3(4)=8 \\
& u_{5}=20-3(5)=5
\end{aligned}
$$

ii The sequence is decreasing.
b i $\quad u_{n}=2^{n-1}$

$$
\begin{aligned}
& u_{1}=2^{1-1}=1 \\
& u_{2}=2^{2-1}=2 \\
& u_{3}=2^{3-1}=4 \\
& u_{4}=2^{4-1}=8 \\
& u_{5}=2^{5-1}=16
\end{aligned}
$$

ii The sequence is increasing.
c i $u_{n}=\cos \left(180 n^{\circ}\right)$

$$
\begin{aligned}
& u_{1}=\cos \left(180(1)^{\circ}\right)=-1 \\
& u_{2}=\cos \left(180(2)^{\circ}\right)=1 \\
& u_{3}=\cos \left(180(3)^{\circ}\right)=-1 \\
& u_{4}=\cos \left(180(4)^{\circ}\right)=1 \\
& u_{5}=\cos \left(180(5)^{\circ}\right)=-1
\end{aligned}
$$

ii The sequence is periodic.
iii Order 2
iii Order 2
d i $\quad u_{n}=(-1)^{n}$
$u_{1}=(-1)^{1}=-1$
$u_{2}=(-1)^{2}=1$
$u_{3}=(-1)^{3}=-1$
$u_{4}=(-1)^{4}=1$
$u_{5}=(-1)^{5}=-1$
ii The sequence is periodic.
e i $\quad u_{n+1}=u_{n}-5$
$u_{1}=20$
$u_{2}=20-5=15$
$u_{3}=15-5=10$
$u_{4}=10-5=5$
$u_{5}=5-5=0$
ii The sequence is decreasing.

$$
\begin{aligned}
\text { f } \mathbf{i} & u_{n+1}=5-u_{n} \\
& u_{1}=20 \\
& u_{2}=5-20=-15 \\
& u_{3}=5+15=20 \\
& u_{4}=5-20=-15 \\
& u_{5}=5-5=20
\end{aligned}
$$

ii The sequence is periodic.
iii Order 2
$\begin{aligned} \text { g i } & u_{n+1}=\frac{2}{3} u_{n} \\ & u_{1}=k \\ & u_{2}=\frac{2 k}{3}\end{aligned}$
$u_{3}=\frac{2}{3}\left(\frac{2 k}{3}\right)=\frac{4 k}{9}$
$u_{4}=\frac{2}{3}\left(\frac{4 k}{9}\right)=\frac{8 k}{27}$
$u_{5}=\frac{2}{3}\left(\frac{8 k}{27}\right)=\frac{16 k}{81}$
$2 \mathbf{g} \mathbf{i i}$ The sequence is dependent on the value of k.
$3 u_{n+1}=k u_{n}$

$$
u_{1}=5
$$

$u_{2}=5 k$
$u_{3}=5 k^{2}$
If $k \geqslant 1$ the sequence is increasing.
If $k \leqslant 0$ the sequence is periodic.
If $0<k<1$ the sequence is decreasing.
$4 u_{n+1}=p u_{n}+10$
$u_{1}=5$
$u_{2}=5 p+10$
$u_{3}=p(5 p+10)+10$
As the sequence is periodic with order 2 ,

$$
p(5 p+10)+10=5
$$

$5 p^{2}+10 p+5=0$
$p^{2}+2 p+1=0$
$(p+1)^{2}=0$
$p=-1$
5 a $a_{n}=\cos \left(90 n^{\circ}\right)$
$a_{1}=\cos \left(90(1)^{\circ}\right)=0$
$a_{2}=\cos \left(90(2)^{\circ}\right)=-1$
$a_{3}=\cos \left(90(3)^{\circ}\right)=0$
$a_{4}=\cos \left(90(4)^{\circ}\right)=1$
$a_{5}=\cos \left(90(5)^{\circ}\right)=0$
$a_{6}=\cos \left(90(6)^{\circ}\right)=-1$
Order 4
b $\sum_{r=1}^{444} a_{r}=111(0-1+0+1)=0$

Challenge

$$
u_{n+2}=\frac{1+u_{n+1}}{u_{n}}
$$

$u_{1}=a$
$u_{2}=b$
$u_{3}=\frac{1+b}{a}$
$u_{4}=\frac{1+\frac{1+b}{a}}{b}=\frac{a+b+1}{a b}$
$u_{5}=\frac{1+\frac{a+b+1}{a b}}{\frac{1+b}{a}}=\frac{a b+a+b+1}{b(1+b)}$
$=\frac{a(b+1)+b+1}{b(1+b)}=\frac{a+1}{b}$
$u_{6}=\frac{1+\frac{a+1}{b}}{\frac{a+b+1}{a b}}=\frac{a+b+1}{b} \times \frac{a b}{a+b+1}=a$
$u_{7}=\frac{1+a}{\frac{a+1}{b}}=(1+a) \times \frac{b}{a+1}=b$
Therefore, the sequence is periodic and order 5

