Modelling in mechanics 8A

1 a i $x=0$ gives $h=0.36 \times 0-0.003 \times(0)^{2}=0$
Height $=0 \mathrm{~m}$
ii $x=100 \mathrm{~m}$ gives $h=0.36 \times 100-0.003 \times(100)^{2}=36-30$
Height $=6 \mathrm{~m}$
b $x=200 \mathrm{~m}$ gives $h=0.36 \times 200-0.003 \times(200)^{2}=72-120$
Height $=-48 \mathrm{~m}$
c The model is not valid for this distance as it predicts the ball would be 48 m below ground level: the ball has already hit the ground at this point.

2 a 90 m (as this is the height when $t=0$)
b i $t=3$ gives $h=-5 \times(3)^{2}+15 \times 3+90=-45+45+90$
Height above sea level $=90 \mathrm{~m}$
ii $t=5$ gives $h=-5 \times(5)^{2}+15 \times 5+90=-125+75+90$
Height above sea level $=40 \mathrm{~m}$
c $t=20$ gives $h=-5 \times(20)^{2}+15 \times 20+90=-2000+300+90=-1610$
Height $=1610 \mathrm{~m}$ below sea level
d The prediction is incorrect because this height is below sea level, where the model is probably no longer valid, because forces acting on the ball will be different.

3 a When $h=4$,
$4=2+1.1 x-0.1 x^{2}$ or rearranging, $0=-0.1 x^{2}+1.1 x-2$, so using the quadratic formula,

$$
\begin{aligned}
x & =\frac{-(1.1) \pm \sqrt{(1.1)^{2}-4 \times(-0.1) \times(-2)}}{2 \times(-0.1)} \\
& =\frac{-1.1 \pm \sqrt{0.41}}{-0.2} \\
& \approx \frac{-1.1 \pm 0.6403}{-0.2}
\end{aligned}
$$

So $x=2.30$ or 8.70 (to 3 s.f.)
The ball is 4 m above the ground after it has travelled both 2.30 m and 8.70 m horizontally.

3 b When $h=3$,
$3=2+1.1 x-0.1 x^{2}$ or rearranging, $0=-0.1 x^{2}+1.1 x-1$, and dividing by -0.1,
$0=x^{2}-11 x+10=(x-1)(x-10)$
So $x=1$ or 10 , and the ball is at height 3 m after it has travelled both 1 m and 10 m horizontally.
At the shorter distance, the ball will be travelling upward (see diagram), so $k=10$.

c If $x>10 \mathrm{~m}$ the equation is no longer valid as the ball will have gone through (or past) the net, and there would possibly be new forces acting on the ball.

4 a When $t=1, d=13.2$

So, substituting, $d=k t^{2}$ becomes $13.2=k \times 1^{2}$ and therefore $k=13.2$.
Our completed equation is $d=13.2 t^{2}$. When $t=10$,
$d=13.2 \times 10^{2}=1320$

The distance travelled is 1320 m .
b Clearly, the model is valid for positive values of t only. We are also unsure of what happens after $t=10$, and we therefore can't use this model past that point. The model is valid for $0 \leq t \leq 10$.
$5 \quad h \geq 0$ means that $0.36 x-0.003 x^{2}=x(0.36-0.003 x) \geq 0$
We are assuming that $x \geq 0$ after the ball is struck, so we need the bracket to be non-negative:
$0.36 \geq 0.003 x$
$x \leq \frac{0.36}{0.003}=120$

So the model is valid for $0 \leq x \leq 120$.
6 When the stone enters the sea, $h=0$
$0=-5 t^{2}+15 t+90$, or, dividing by $-5,0=t^{2}-3 t-18=(t-6)(t+3)$
So, $t=-3$ or 6 and the stone hits the sea 6 seconds after it is thrown, since the model is valid only for the time after the stone is thrown at $t=0$.

Therefore the model is valid for $0 \leq t \leq 6$.

