Modelling in mechanics 8C

1 a $65 \mathrm{~km} \mathrm{~h}^{-1}=\frac{65 \times 1000}{60 \times 60} \mathrm{~m} \mathrm{~s}^{-1}=18.1 \mathrm{~m} \mathrm{~s}^{-1}$ (to 3 s.f.)
b $15 \mathrm{~g} \mathrm{~cm}^{-2}=\frac{15 \div 1000}{1 \div(100 \times 100)} \mathrm{kg} \mathrm{m}^{-2}=150 \mathrm{~kg} \mathrm{~m}^{-2}$
c 30 cm per minute $=\frac{30 \div 100}{60} \mathrm{~m} \mathrm{~s}^{-1}=5 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}$
d $24 \mathrm{~g} \mathrm{~m}^{-3}=\frac{24}{1000} \mathrm{~kg} \mathrm{~m}^{-3}=2.4 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{-3}$
e $4.5 \times 10^{-2} \mathrm{~g} \mathrm{~cm}^{-3}=\frac{4.5 \times 10^{-2} \div 1000}{1 \div(100 \times 100 \times 100)} \mathrm{kg} \mathrm{m}^{-3}=45 \mathrm{~kg} \mathrm{~m}^{-3}$
f $6.3 \times 10^{-3} \mathrm{~kg} \mathrm{~cm}^{-2}=\frac{6.3 \times 10^{-3}}{1 \div(100 \times 100)} \mathrm{kg} \mathrm{m}^{-2}=63 \mathrm{~kg} \mathrm{~m}^{-2}$
2 a A: normal reaction, B: forward thrust, C: weight, D: friction
b A: buoyancy, B: forward thrust, C: weight, D: drag/water resistance
c A: normal reaction, B: friction, C: weight, D: tension
d A: normal reaction, B : weight, C : friction

