Constant acceleration, Mixed Exercise 9

1 a $45 \mathrm{~km} \mathrm{~h}^{-1}=\frac{45 \times 1000}{3600} \mathrm{~m} \mathrm{~s}^{-1}$

$$
=12.5 \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
3 \mathrm{~min}=180 \mathrm{~s}
$$

b $s=\frac{1}{2}(a+b) h$

$$
=\frac{1}{2}(160+180) \times 12.5=2125
$$

The distance from A to B is 2125 m .
2 a

b $s=\frac{1}{2}(a+b) h$

$$
\begin{aligned}
570 & =\frac{1}{2}(32+32+T) \times 15 \\
\frac{15}{2}(T+64) & =570 \\
T+64 & =\frac{570 \times 2}{15}=76 \\
T & =76-64=12
\end{aligned}
$$

c At $t=32, s=32 \times 15=480$
At $t=44, s=480+$ area of the triangle

$$
=480+\frac{1}{2} \times 12 \times 15=570
$$

2 c

3 a i Gradient of line $=\frac{v-u}{t}$
$a=\frac{v-u}{t}$
Rearranging: $v=u+a t$
ii Shaded area is a trapezium

$$
\begin{aligned}
& \text { area }=\left(\frac{u+v}{2}\right) t \\
& s=\left(\frac{u+v}{2}\right) t
\end{aligned}
$$

b i Rearrange $v=u+a t$
$t=\frac{v-u}{a}$
Substitute into $s=\left(\frac{u+v}{2}\right) t$
$s=\left(\frac{u+v}{2}\right)\left(\frac{v-u}{a}\right)$
$2 a s=v^{2}-u^{2}$
$v^{2}=u^{2}+2 a s$
ii Substitute $v=u+a t$ into $s=\left(\frac{u+v}{2}\right) t$

$$
\begin{aligned}
& s=\left(\frac{u+u+a t}{2}\right) t \\
& s=\left(\frac{2 u}{2}+\frac{a t}{2}\right) t \\
& s=u t+\frac{1}{2} a t^{2}
\end{aligned}
$$

3 b iii Substitute $u=v$-at into $s=u t+\frac{1}{2} a t^{2}$

$$
\begin{aligned}
& s=(v-a t) t+\frac{1}{2} a t^{2} \\
& s=v t-\frac{1}{2} a t^{2}
\end{aligned}
$$

$4 \quad s=\frac{1}{2}(a+b) h$

$$
\begin{aligned}
152 & =\frac{1}{2}(15+23) u=19 u \\
u & =\frac{152}{19}=8
\end{aligned}
$$

$5 \quad 40 \mathrm{~km} \mathrm{~h}^{-1}=\frac{40 \times 1000}{3600} \mathrm{~m} \mathrm{~s}^{-1}=\frac{100}{9} \mathrm{~m} \mathrm{~s}^{-1}$

$$
24 \mathrm{~km} \mathrm{~h}^{-1}=\frac{24 \times 1000}{3600} \mathrm{~m} \mathrm{~s}^{-1}=\frac{20}{3} \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
u=\frac{100}{9}, \quad v=\frac{20}{3}, \quad s=240, \quad a=?
$$

$$
v^{2}=u^{2}+2 a s
$$

$$
\left(\frac{20}{3}\right)^{2}=\left(\frac{100}{9}\right)^{2}+2 \times a \times 240
$$

$$
a=\frac{\left(\frac{20}{3}\right)^{2}-\left(\frac{100}{9}\right)^{2}}{2 \times 240}=-0.165 \text { (to } 2 \text { s.f.) }
$$

The deceleration of the car is $0.165 \mathrm{~m} \mathrm{~s}^{-2}$.

6 a $a=-2.5, u=20, t=12, s=$?

$$
\begin{aligned}
s & =u t+\frac{1}{2} a t^{2} \\
& =20 \times 12-\frac{1}{2} \times 2.5 \times 12^{2} \\
& =240-180=60
\end{aligned}
$$

$O A=60 \mathrm{~m}$
b The particle will turn round when $v=0$

$$
a=-2.5, u=20, v=0, s=?
$$

$$
\begin{aligned}
& v^{2}=u^{2}+2 a s \\
& 0^{2}=20^{2}-5 s \Rightarrow s=80
\end{aligned}
$$

$7 \quad u=6, v=25, a=9.8, t=$?

$$
\begin{aligned}
v & =u+a t \\
25 & =6+9.8 t \\
t & =\frac{25-6}{9.8}=1.9 \text { (to } 2 \text { s.f.) }
\end{aligned}
$$

The ball takes 1.9 s to move from the top of the tower to the ground.
8 Take downwards as the positive direction.
a $u=0, s=82, a=9.8, t=$?

$$
\begin{aligned}
s & =u t+\frac{1}{2} a t^{2} \\
82 & =0+4.9 t^{2} \\
t & =\sqrt{\frac{82}{4.9}}=4.1 \text { (to } 2 \text { s.f.) }
\end{aligned}
$$

The time taken for the ball to reach the sea is 4.1 s .
b $u=0, s=82, a=9.8, v=$?

$$
\begin{aligned}
v^{2} & =u^{2}+2 a s \\
& =0+2 \times 9.8 \times 82=1607.2 \\
v & =\sqrt{1607.2}=40 \text { (to } 2 \text { s.f.) }
\end{aligned}
$$

The speed at which the ball hits the sea is $40 \mathrm{~m} \mathrm{~s}^{-1}$.
c Air resistance/wind/turbulence
9 a distance = area of triangle + area of rectangle + area of trapezium

$$
\begin{aligned}
451 & =\frac{1}{2} \times 8 \times 2 u+12 \times 2 u+\frac{1}{2} \times(u+2 u) \times 6 \\
& =8 u+24 u+9 u=41 u \\
u & =\frac{451}{41}=11
\end{aligned}
$$

b The particle is moving with speed less than $u \mathrm{~m} \mathrm{~s}^{-1}$ for the first 4 s
$s=\frac{1}{2} \times 4 \times 11=22$
The distance moved with speed less than $u \mathrm{~m} \mathrm{~s}^{-1}$ is 22 m .

10 a From O to $P, u=18, t=12, v=24, a=$?

$$
\begin{aligned}
& u=18, t=12, v=24, a=? \\
& v=u+a t
\end{aligned}
$$

$$
24=18+12 a
$$

10 a $\quad a=\frac{24-18}{12}=\frac{1}{2}$
From O to $Q, u=18, t=20, a=\frac{1}{2}, v=$?

$$
\begin{aligned}
v & =u+a t \\
& =18+\frac{1}{2} \times 20=28
\end{aligned}
$$

The speed of the train at Q is $28 \mathrm{~m} \mathrm{~s}^{-1}$.
b From P to Q

$$
\begin{aligned}
& u=24, v=28, t=8, s=? \\
& s=\left(\frac{u+v}{2}\right) t=\left(\frac{24+28}{2}\right) \times 8=208
\end{aligned}
$$

The distance from P to Q is 208 m .
11 a $s=104, t=8, v=18, u=$?

$$
\begin{aligned}
s & =\left(\frac{u+v}{2}\right) t \\
104 & =\left(\frac{u+18}{2}\right) \times 8=(u+18) \times 4=4 u+72 \\
u & =\frac{104-72}{4}=8
\end{aligned}
$$

The speed of the particle at X is $8 \mathrm{~m} \mathrm{~s}^{-1}$
b $s=104, t=8, v=18, a=$?

$$
\begin{aligned}
s & =v t-\frac{1}{2} a t^{2} \\
104 & =18 \times 8-\frac{1}{2} a \times 8^{2}=144-32 a \\
a & =\frac{144-104}{32}=1.25
\end{aligned}
$$

The acceleration of the particle is $1.25 \mathrm{~m} \mathrm{~s}^{-2}$.
c From X to $Z, u=8, v=24, a=1.25, s=$?

$$
\begin{aligned}
v^{2} & =u^{2}+2 a s \\
24^{2} & =8^{2}+2 \times 1.25 \times s \\
s & =\frac{24^{2}-8^{2}}{2.5}=204.8
\end{aligned}
$$

$$
X Z=204.8 \mathrm{~m}
$$

12a Take upwards as the positive direction.
$u=21, s=-32, a=-9.8, v=$?

$$
\begin{aligned}
v^{2} & =u^{2}+2 a s \\
& =21^{2}+2 \times(-9.8) \times(-32)=441+627.2=1068.2 \\
v & =\sqrt{1068.2}= \pm 33 \text { (to } 2 \text { s.f.) }
\end{aligned}
$$

The velocity with which the pebble strikes the ground is $-33 \mathrm{~m} \mathrm{~s}^{-1}$.
The speed is $33 \mathrm{~m} \mathrm{~s}^{-1}$.
b 40 m above the ground is 8 m above the point of projection.
$u=21, s=8, a=-9.8, t=$?
$s=u t+\frac{1}{2} a t^{2}$
$8=21 t-4.9 t^{2}$
$0=4.9 t^{2}-21 t+8$, so using the quadratic formula,
$t=\frac{21 \pm \sqrt{21^{2}-4 \times 4.9 \times 8}}{9.8}=\frac{21 \pm \sqrt{284.2}}{9.8}=3.86,0.423$ (to 3 s.f.)
The pebble is above 40 m between these times: $3.863 \ldots-0.423 \ldots=3.44$ (to 3 s.f.)
The pebble is more than 40 m above the ground for 3.44 s .
c Take upwards as the positive direction.
$u=21, a=-9.8$
$v=u+a t=21-9.8 t \Rightarrow t=\frac{21-v}{9.8}$
From part a, the pebble hits the ground when $v=-33$.
$t=\frac{21-v}{9.8}=\frac{21-(-33)}{9.8}=\frac{54}{9.8}=5.5$ (to 2 s.f.)
This is shown on the graph at point $(5.5,-33)$
The graph crosses the t-axis when $v=0$.
$t=\frac{21-v}{9.8}=\frac{21-0}{9.8}=\frac{21}{9.8}=2.1$ (to 2 s.f.)

So the graph passes through point $(2.1,0)$

12 c

13a $u=12, v=32, s=1100, t=$?
$s=\left(\frac{u+v}{2}\right) t$
$1100=\left(\frac{12+32}{2}\right) t=22 t \Rightarrow t=\frac{1100}{22}=50$
The time taken by the car to move from A to C is 50 s .
b Find a first.
From A to $C, u=12, v=32, t=50, a=$?

$$
\begin{aligned}
v & =u+a t \\
32 & =12+a \times 50 \\
a & =\frac{32-12}{50}=0.4
\end{aligned}
$$

From A to $B, u=12, s=550, a=0.4, v=$?

$$
\begin{aligned}
v^{2} & =u^{2}+2 a s \\
& =12^{2}+2 \times 0.4 \times 550=584 \Rightarrow v=24.2 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

The car passes B with speed $24.2 \mathrm{~m} \mathrm{~s}^{-1}$.
14 Take upwards as the positive direction.
At the top:
$u=30, v=0, a=-9.8, t=$?
$v=u+a t$
$0=30-9.8 t \Rightarrow t=\frac{30}{9.8}$

14 The ball spends 2.4 seconds above h, thus (by symmetry) 1.2 seconds rising between h and the top. So it passes $h 1.2$ seconds earlier, at $t=\frac{30}{9.8}-1.2=1.86$ (to 3 s.f.)

At $h, u=30, a=-9.8, t \approx 1.86, s=$?

$$
\begin{aligned}
s & =u t+\frac{1}{2} a t^{2} \\
& =30 \times 1.86+\frac{1}{2}(-9.8) \times 1.86^{2}=39 \text { (to } 2 \text { s.f.) }
\end{aligned}
$$

15a $u=20, a=4, s=78, v=$?

$$
\begin{aligned}
v^{2} & =u^{2}+2 a s \\
& =20^{2}+2 \times 4 \times 78=1024 \\
v & =\sqrt{1024}=32
\end{aligned}
$$

The speed of B when it has travelled 78 m is $32 \mathrm{~m} \mathrm{~s}^{-1}$.
b Find time for B to reach the point 78 m from O.

$$
v=32, u=20, a=4, t=?
$$

$v=u+a t$
$32=20+4 t \Rightarrow t=\frac{32-20}{4}=3$

For A, distance $=$ speed \times time
$s=30 \times 3=90$

The distance from O of A when B is 78 m from O is 90 m .
c At time t seconds, for $A, s=30 t$
for $B, s=u t+\frac{1}{2} a t^{2}=20 t+2 t^{2}$
On overtaking the distances are the same.

$$
\begin{aligned}
20 t+2 t^{2} & =30 t \\
t^{2}-5 t & =t(t-5)=0 \\
t=5 \text { (at } t & =0, A \text { overtakes } B \text {) }
\end{aligned}
$$

B overtakes $A 5 \mathrm{~s}$ after passing O.

16 a To find time decelerating:

$$
u=34, v=22, a=-3, t=?
$$

$$
\begin{aligned}
v & =u+a t \\
22 & =34-3 t \Rightarrow t=\frac{34-22}{3}=4
\end{aligned}
$$

b distance $=$ rectangle + trapezium

$$
\begin{aligned}
s & =34 \times 2+\frac{1}{2}(22+34) \times 4 \\
& =68+112=180
\end{aligned}
$$

Distance required is 180 m .
17 a

b Acceleration is the gradient of a line.
For the first part of the journey, $3 x=\frac{30}{t_{1}} \Rightarrow t_{1}=\frac{30}{3 x}=\frac{10}{x}$

For the last part of the journey, $-x=-\frac{30}{t_{2}} \Rightarrow t_{2}=\frac{30}{x}$
$t_{1}+T+t_{2}=300$
$\frac{10}{x}+T+\frac{30}{x}=300 \Rightarrow \frac{40}{x}+T=300$, as required
c $s=\frac{1}{2}(a+b) h$
$6000=\frac{1}{2}(T+300) \times 30=15 T+4500$

17 c $\quad T=\frac{6000-4500}{15}=100$
Substitute into the result in part \mathbf{b} :

$$
\begin{aligned}
\frac{40}{x}+100 & =300 \Rightarrow \frac{40}{x}=200 \\
x & =\frac{40}{200}=0.2
\end{aligned}
$$

d From part $\mathbf{c}, T=100$
At constant velocity, distance $=$ velocity \times time $=30 \times 100=3000(\mathrm{~m})$
The distance travelled at a constant speed is 3 km .
e From part b, $t_{1}=\frac{10}{x}=\frac{10}{0.2}=50$
Total distance travelled $=6 \mathrm{~km}$ (given) so halfway $=3 \mathrm{~km}=3000 \mathrm{~m}$
While accelerating, distance travelled is $\left(\frac{1}{2} \times 50 \times 30\right) \mathrm{m}=750 \mathrm{~m}$.

At constant velocity, the train must travel a further 2250 m .

At constant velocity, time $=\frac{\text { distance }}{\text { velocity }}=\frac{2250}{30} \mathrm{~s}=75 \mathrm{~s}$

Time for train to reach halfway is $(50+75) \mathrm{s}=125 \mathrm{~s}$

Challenge

Find the time taken by the first ball to reach 25 m below its point of projection (25 m above the ground). Take upwards as the positive direction.
$u=10, s=-25, a=-9.8, t=$?

$$
\begin{aligned}
s & =u t+\frac{1}{2} a t^{2} \\
-25 & =10 t-4.9 t^{2} \\
0 & =4.9 t^{2}-10 t-25 \\
t & =10 \pm \frac{\sqrt{102+4 \times 4.9 \times 25}}{9.8} \\
& =3.5 \text { (to } 2 \text { s.f.) }
\end{aligned}
$$

As we discard the negative solution. Find the time taken by the second ball to reach 25 m below its point of projection. Take downwards as the positive direction.

$$
\begin{aligned}
u & =0, s=25, a=9.8, t=? \\
s & =u t+\frac{1}{2} a t^{2} \\
25 & =4.9 t^{2} \\
t & =2.3 \text { (to } 2 \text { s.f.) }
\end{aligned}
$$

Combining the two results:

$$
T=3.4989 \ldots-2.2587 \ldots=1.2 \text { (to } 2 \text { s.f. using exact figures) }
$$

