Representations of data 3D

1 a Class widths are all 5.

Frequency densities are: 0.8, 2.4, 4.6, 1.6, 0.6

- 2 a Time is a continuous variable.
 - **b** Area of 60 to 70 seconds bar is $10 \times 6 = 60$ square units.

1 square unit =
$$\frac{90}{60}$$
 = 1.5 students

The area of the 40 to 60 seconds bar is $20 \times 5 = 100$ square units.

So there were $100 \times 1.5 = 150$ students who took between 40 and 60 seconds.

c Area for 80 seconds or less = $20 \times 5 + 10 \times 6 + 10 \times 8.6 = 246$ square units.

So there were $246 \times 1.5 = 369$ students who took 80 seconds or less.

d Total Area = $246+5\times14+5\times12+30\times3=466$ square units.

So there are $466 \times 1.5 = 699$ employees in total.

- 3 a Distance is a continuous variable.
 - **b** Area for less than $20 \,\mathrm{mis}\ 20 \times 2 = 40 \,\mathrm{square}$ units.

1 square unit
$$=\frac{80}{40} = 2$$
 people

Total Area = $20 \times 2 + 15 \times 5 + 10 \times 10 + 15 \times 6 + 5 \times 1 = 310$ square units.

So $310 \times 2 = 620$ people entered the competition.

c Area for 30 to 40 m is $5 \times 5 + 5 \times 10 = 75$ square units.

So $75 \times 2 = 150$ people threw between 30 and 40 metres.

3 d Area for 45 to $65 \,\mathrm{m}$ is $15 \times 6 + 5 \times 1 = 95$ square units.

So $95 \times 2 = 190$ people threw between 45 and 65 metres.

e Area for less than $25 \,\mathrm{m}$ is $10 \times 2 + 10 \times 2 + 5 \times 5 = 65$ square units.

So $65 \times 2 = 130$ people threw less than 25 metres.

4 a The bar for $28 \le m < 32$ has an area of $10 \times 10 = 100$ squares.

If 100 squares represents 32 pigs then

$$\frac{100}{4}$$
 squares represents $\frac{32}{4}$ pigs.

i.e. 25 squares represents 8 pigs.

- **b** The class $24 \le m < 26$ contains $5 \times 20 = 100$ squares. As above, this represents 32 pigs.
- **c** The class $20 \le m < 24$ contains $10 \times 10 = 100$ squares which represents 32 pigs.

The class $24 \le m < 26$ contains $5 \times 20 = 100$ squares which represents 32 pigs.

The class $26 \le m < 28$ contains $5 \times 40 = 200$ squares which represents 64 pigs.

The class $28 \le m < 32$ contains $10 \times 10 = 100$ squares which represents 32 pigs.

The class $32 \le m < 34$ contains $5 \times 5 = 25$ squares which represents 8 pigs.

So in total we have 32 + 32 + 64 + 32 + 8 = 168 pigs.

d Class $25 \le m < 26$ is approximately $\frac{1}{2}$ of class $24 \le m < 26$ which equates to 16 pigs.

Class $26 \le m < 28$ represents 64 pigs.

Class $28 \le m < 29$ is approximately $\frac{1}{4}$ of class $28 \le m < 32$ which equates to 8 pigs.

So in total we have 16 + 64 + 8 = 88 pigs.

5 a i Use extra columns to help, using the frequency densities given in the histogram:

Time, t (min)	Frequency	Class width	Frequency density
$0 \leqslant t < 20$	4	20	0.2
$20 \leqslant t < 30$	$10 \times 1 = 10$	10	1
$30 \leqslant t < 35$	15	5	3
$35 \leqslant t < 40$	25	5	5
$40 \leqslant t < 50$	$10 \times 0.7 = 7$	10	0.7
$50 \leqslant t < 70$	$20 \times 0.3 = 6$	20	0.3

5 a ii

b
$$\left(\frac{5}{10} \times 10\right) + 15 + \left(\frac{3}{5} \times 25\right) = 35$$
 passengers.

- 6 a 12.5 and 14.5 are the class boundaries, as we are dealing with continuous data.
 - **b** i The class boundaries for the 15–17 class are 14.5 and 17.5. This width is 1.5 times the width of the 13–14 class, since $17.5 14.5 = 3 = 1.5 \times 2$. So the width of the class is $1.5 \times 4 = 6$ cm.
 - ii The frequency density for the 13–14 class is $\frac{24}{2}$ = 12. The frequency density of this class is 6, which is 0.5 times the frequency density above: 12. So the height of the class is 0.5 x 6 = 3 cm.
- 7 a Width is half of the $8 \le t < 10$ class, which is 0.5 cm. Height is double the frequency density, so must be $\frac{7}{1} \times 2 = 14$ cm.
 - **b** Mean = $\frac{\sum fx}{\sum f} = \frac{322.5}{31} = 10.4$ °C (to 1 d.p.) where x is taken as the midpoint of each class.

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} = \sqrt{\frac{3530.75}{31} - \left(\frac{322.5}{31}\right)^2} = 2.4 \text{ (to 1 d.p.)}$$

c Q_1 is the $\frac{1\times31}{4} = 7.75^{th}$ piece of data.

$$\frac{Q_1 - 8}{10 - 8} = \frac{7.75 - 4}{12 - 4}$$
 using linear interpolation on the $8 \le t < 10$ class.

$$Q_1 = 8.9^{\circ}C$$
 (to 1 d.p.)

d Mean + standard deviation = 12.8°C (to 1 d.p.)

$$\frac{12.8 - 12}{15 - 12} = \frac{d - 25}{30 - 25}$$

$$d = 26.33$$

$$31 - d = 4.67$$
, so 5 days.