Representations of data 3D

1 a Class widths are all 5.
Frequency densities are: $0.8,2.4,4.6,1.6,0.6$

2 a Time is a continuous variable.
b Area of 60 to 70 seconds bar is $10 \times 6=60$ square units.
1 square unit $=\frac{90}{60}=1.5$ students
The area of the 40 to 60 seconds bar is $20 \times 5=100$ square units.
So there were $100 \times 1.5=150$ students who took between 40 and 60 seconds.
c Area for 80 seconds or less $=20 \times 5+10 \times 6+10 \times 8.6=246$ square units.
So there were $246 \times 1.5=369$ students who took 80 seconds or less.
d Total Area $=246+5 \times 14+5 \times 12+30 \times 3=466$ square units.

So there are $466 \times 1.5=699$ employees in total.
3 a Distance is a continuous variable.
b Area for less than 20 m is $20 \times 2=40$ square units.
1 square unit $=\frac{80}{40}=2$ people
Total Area $=20 \times 2+15 \times 5+10 \times 10+15 \times 6+5 \times 1=310$ square units.
So $310 \times 2=620$ people entered the competition.
c Area for 30 to 40 m is $5 \times 5+5 \times 10=75$ square units.
So $75 \times 2=150$ people threw between 30 and 40 metres.

3 d Area for 45 to 65 m is $15 \times 6+5 \times 1=95$ square units.
So $95 \times 2=190$ people threw between 45 and 65 metres.
e Area for less than 25 m is $10 \times 2+10 \times 2+5 \times 5=65$ square units.
So $65 \times 2=130$ people threw less than 25 metres.
4 a The bar for $28 \leqslant m<32$ has an area of $10 \times 10=100$ squares. If 100 squares represents 32 pigs then $\frac{100}{4}$ squares represents $\frac{32}{4}$ pigs.
i.e. 25 squares represents 8 pigs.
b The class $24 \leqslant m<26$ contains $5 \times 20=100$ squares.
As above, this represents 32 pigs.
c The class $20 \leqslant m<24$ contains $10 \times 10=100$ squares which represents 32 pigs.
The class $24 \leqslant m<26$ contains $5 \times 20=100$ squares which represents 32 pigs.
The class $26 \leqslant m<28$ contains $5 \times 40=200$ squares which represents 64 pigs.
The class $28 \leqslant m<32$ contains $10 \times 10=100$ squares which represents 32 pigs.
The class $32 \leqslant m<34$ contains $5 \times 5=25$ squares which represents 8 pigs.
So in total we have $32+32+64+32+8=168$ pigs.
d Class $25 \leqslant m<26$ is approximately $\frac{1}{2}$ of class $24 \leqslant m<26$ which equates to 16 pigs.
Class $26 \leqslant m<28$ represents 64 pigs.
Class $28 \leqslant m<29$ is approximately $\frac{1}{4}$ of class $28 \leqslant m<32$ which equates to 8 pigs.
So in total we have $16+64+8=88$ pigs.
5 a i Use extra columns to help, using the frequency densities given in the histogram:

Time, t (min)	Frequency	Class width	Frequency density
$0 \leqslant t<20$	4	20	0.2
$20 \leqslant t<30$	$10 \times 1=10$	10	1
$30 \leqslant t<35$	15	5	3
$35 \leqslant t<40$	25	5	5
$40 \leqslant t<50$	$10 \times 0.7=7$	10	0.7
$50 \leqslant t<70$	$20 \times 0.3=6$	20	0.3

5 a ii

b $\left(\frac{5}{10} \times 10\right)+15+\left(\frac{3}{5} \times 25\right)=35$ passengers.

6 a 12.5 and 14.5 are the class boundaries, as we are dealing with continuous data.
b i The class boundaries for the $15-17$ class are 14.5 and 17.5.
This width is 1.5 times the width of the $13-14$ class, since $17.5-14.5=3=1.5 \times 2$.
So the width of the class is $1.5 \times 4=6 \mathrm{~cm}$.
ii The frequency density for the $13-14$ class is $\frac{24}{2}=12$.
The frequency density of this class is 6 , which is 0.5 times the frequency density above: 12 .
So the height of the class is $0.5 \times 6=3 \mathrm{~cm}$.
7 a Width is half of the $8 \leqslant t<10$ class, which is 0.5 cm .
Height is double the frequency density, so must be $\frac{7}{1} \times 2=14 \mathrm{~cm}$.
b Mean $=\frac{\sum f x}{\sum f}=\frac{322.5}{31}=10.4^{\circ} \mathrm{C}$ (to $1 \mathrm{~d} . p$.) where x is taken as the midpoint of each class.
Standard deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}=\sqrt{\frac{3530.75}{31}-\left(\frac{322.5}{31}\right)^{2}}=2.4$ (to 1 d.p.)
c Q_{1} is the $\frac{1 \times 31}{4}=7.75^{\text {th }}$ piece of data.
$\frac{\mathrm{Q}_{1}-8}{10-8}=\frac{7.75-4}{12-4}$ using linear interpolation on the $8 \leq t<10$ class.
$\mathrm{Q}_{1}=8.9^{\circ} \mathrm{C}$ (to $\left.1 \mathrm{~d} . \mathrm{p}.\right)$
d Mean + standard deviation $=12.8^{\circ} \mathrm{C}$ (to $\left.1 \mathrm{~d} . \mathrm{p}.\right)$

$$
\frac{12.8-12}{15-12}=\frac{d-25}{30-25}
$$

$d=26.33$
$31-d=4.67$, so 5 days.

