Statistical distributions 6C

$1 \quad X \sim \mathrm{~B}(9,0.2)$
a $\mathrm{P}(X \leq 4)=0.9804$ (tables)
b $\mathrm{P}(X<3)=\mathrm{P}(X \leq 2)=0.7382$ (tables)
c $\mathrm{P}(X \geq 2)=1-\mathrm{P}(X \leq 1)=1-0.4362=0.5638$ (tables)
d $\mathrm{P}(X=1)=\mathrm{P}(X \leq 1)-\mathrm{P}(X=0)=0.4362-0.1342=0.3020$ (tables)
$2 \quad X \sim \mathrm{~B}(20,0.35)$
a $\mathrm{P}(X \leq 10)=0.9468$ (tables)
b $\mathrm{P}(X>6)=1-\mathrm{P}(X \leq 6)=1-0.4166=0.5834$ (tables)
c $\mathrm{P}(X=5)=\mathrm{P}(X \leq 5)-\mathrm{P}(X \leq 4)=0.2454-0.1182=0.1272$ (tables)
d $\mathrm{P}(2 \leq X \leq 7)=\mathrm{P}(X \leq 7)-(X \leq 1)=0.6010-0.0021=0.5989$ (tables)

3 a Using the binomial cumulative function on a calculator where $x=19, n=40$ and $p=0.47$, $\mathrm{P}(X<20)=\mathrm{P}(X \leq 19)=0.5888$
b Using the binomial cumulative function on a calculator where $x=16, n=40$ and $p=0.47$, $\mathrm{P}(X>16)=1-\mathrm{P}(X \leq 16)=0.7662$
c Using the binomial cumulative function on a calculator where $x=10$ and $15, n=40$ and $p=0.47$, $\mathrm{P}(11 \leq X \leq 15)=\mathrm{P}(X \leq 15)-\mathrm{P}(X \leq 10)=0.1478-0.0036=0.1442$
d Using the binomial cumulative function on a calculator where $x=10$ and $16, n=40$ and $p=0.47$, $\mathrm{P}(10<X<17)=\mathrm{P}(X \leq 16)-\mathrm{P}(X \leq 10)=0.2338-0.0036=0.2302$

4 a Using the binomial cumulative function on a calculator where $x=20, n=37$ and $p=0.65$, $\mathrm{P}(X>20)=1-\mathrm{P}(X \leq 20)=0.8882$
b Using the binomial cumulative function on a calculator where $x=26, n=37$ and $p=0.65$, $\mathrm{P}(X \leq 26)=0.7992$
c Using the binomial cumulative function on a calculator where $x=19$ and $14, n=37$ and $p=0.65$, $\mathrm{P}(15 \leq X<20)=\mathrm{P}(X \leq 19)-\mathrm{P}(X \leqslant 14)=0.06061-0.00068=0.05993$

4 d Using the binomial cumulative function on a calculator where $x=23$ and $22, n=37$ and $p=0.65$, $\mathrm{P}(X=23)=\mathrm{P}(X \leq 23)-\mathrm{P}(X \leq 22)=0.4184-0.2926=0.1258$
$5 \quad X=$ 'number of heads'
$X \sim \mathrm{~B}(8,0.5) \quad$ (coins are fair so $p=0.5$)
a $\mathrm{P}(X=0)=(0.5)^{8}=0.0039$ (tables)
b $\mathrm{P}(X \geq 2)=1-\mathrm{P}(X \leq 1)=1-0.0352=0.9648$ (tables)
c $\mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4)=1-0.6367=0.3633$ (tables)
$6 \quad X=$ 'number of plants with blue flowers on tray of 15'
a $\mathrm{P}(X=4)=\mathrm{P}(X \leq 4)-\mathrm{P}(X \leq 3)=0.6865-0.4613=0.2252$ (tables)
b $\mathrm{P}(X \leq 3)=0.4613$ (tables)
c $\mathrm{P}(3 \leq X \leq 6)=\mathrm{P}(X \leq 6)-\mathrm{P}(X \leq 2)=0.9434-0.2361=0.7073$ (tables)
$7 \quad X \sim \mathrm{~B}(50,0.40)$
a $\mathrm{P}(X \leq 13)=0.0280$
$\mathrm{P}(X \leq 14)=0.0540$ (tables)

$$
\therefore k=13
$$

b $\mathrm{P}(X \leq 27)=0.9840$
$\Rightarrow \mathrm{P}(X>27)=0.0160>0.01$
$\mathrm{P}(X \leq 28)=0.9924$
$\Rightarrow \mathrm{P}(X>28)=0.0076<0.01$

$$
\therefore r=28
$$

$8 \quad X \sim B(40,0.10)$
a $\mathrm{P}(X=0)=0.0148<0.02$
$\mathrm{P}(X \leq 1)=0.0805>0.02$ (tables)
$\mathrm{P}(X<1)=0.0148<0.02$
$\therefore k=1$

8 b $\mathrm{P}(X \leq 8)=0.9845$ (tables)
$\Rightarrow \mathrm{P}(X>8)=0.0155>0.01$
$\mathrm{P}(X \leq 9)=0.9949$
$\Rightarrow \mathrm{P}(X>9)=0.0051<0.01$
$r=9$
c $\mathrm{P}(k \leq X \leq r)=\mathrm{P}(X \leq r)-\mathrm{P}(X \leq k-1)$

$$
\begin{aligned}
& =\mathrm{P}(X \leq 9)-\mathrm{P}(X=0) \\
& =0.9949-0.0148 \\
& =0.9801
\end{aligned}
$$

9 a A suitable distribution is $X \sim B(10,0.30)$. Assumptions: There are two possible outcomes of each trial listen or don't listen. There is a fixed number of trials, 10, and fixed probability of success: 0.3 . Each member in the sample is assumed to listen independently.
b $\mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4)=1-0.8497=0.1503$ (tables)
c $\mathrm{P}(X \leq 6)=0.9894$ so $\mathrm{P}(X \geq 7)=1-0.9894=0.0106>0.01$
$\mathrm{P}(X \leq 7)=0.9984$ so $\mathrm{P}(X \geq 8)=1-0.9984=0.0016<0.01$ (tables)
Therefore $s=8$ is the smallest such value.
$10 \quad X=$ number of defects in 50 components
$X \sim \mathrm{~B}(50,0.05)$
a $\mathrm{P}(X<2)=\mathrm{P}(X \leq 1)=0.2794$ (tables)
b $\mathrm{P}(X>5)=1-\mathrm{P}(X \leq 5)=1-0.9622=0.0378$ (tables)
c Seek smallest d such that $\mathrm{P}(X>d)<0.05$
$\mathrm{P}(X \leq 4)=0.8964$ so $\mathrm{P}(X>4)=0.1036>0.05$
$\mathrm{P}(X \leq 5)=0.9622$ so $\mathrm{P}(X>5)=0.0378<0.05$
$\therefore d=5$

