Algorithms on graphs 3C

a Arcs in order
AF (9)
FB (14)
AC (20)
AE (25)
DE (26)

$$
\begin{aligned}
\text { weight } & =9+14+20+25+26 \\
& =94
\end{aligned}
$$

		$\downarrow 1$	$\downarrow 3$	$\downarrow 4$	$\downarrow 6$	$\downarrow 5$
	A	B	C	D	E	F
A	-	15	20	34	25	9
B	15	-	36	38	28	14
C	20	36	-	43	38	22
D	34	38	43	-	26	40
E	25	28	38	26	-	31
F	9	14	22	40	31	-

b Arcs in order
RS (28)
ST (16)
SU (19)
UV (37)

$$
\begin{aligned}
\text { weight } & =28+16+19+37 \\
& =100
\end{aligned}
$$

	$\downarrow 1$	$\downarrow 2$	$\downarrow 3$	$\downarrow 4$	$\downarrow 5$
	R	S	T	U	V
R	-	28	30	31	41
S	28	-	16	19	43
T	30	16	-	22	41
U	31	19	22	-	37
V	41	43	41	37	-

2 Arcs in order
BS (49)
SM (44)
SN (56)
NL (37)
weight $=186$

3 a Arcs in order
DA (35)
AH (42)
AF (47)
HE (48)
HG (52)
AC (53)
FB (61)

$$
\begin{aligned}
\text { weight } & =338 \\
\therefore \text { cost } & =3 \times 338 \\
& =€ 1014
\end{aligned}
$$

3 b

c it is cheaper to translate from \mathbf{E} to \mathbf{H} then from \mathbf{H} to \mathbf{G} at a cost of $48+52=100$ euro rather than 159 euro per 1000 words.
ii A direct translation is likely to be more accurate than a translation via another language.
4 a Starting from X, we pick the lowest value down the X column, which is 26 at vertex E.
We now seek the lowest value along the X and E columns. We thus add $E G 18$ to the network. Next, we inspect the values along X, E and G columns to find the next vertex. It turns out to be EH 23. The lowest value along the new set of columns, X, E, G and H is HA 25. Thus we now inspect columns $\mathrm{X}, \mathrm{A}, \mathrm{E}, \mathrm{G}$ and H to find the next lowest value. It is AF 20. Searching the columns X , A, $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H we find that the next lowest value is BF 16 . Next step involves looking at columns $\mathrm{X}, \mathrm{A}, \mathrm{B}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H - we discover that the lowest value now is AD 22 . The only remaining vertices now are C and I . We find that the next smallest value is FC 24 , which leaves the last connection to be CI 26. The total weight of this spanning tree is 200 .

b 9 oil rigs and 1 depot make 10 nodes.
24 oil rigs and 1 depot make 25 nodes.
Estimated time $=0.7 \times\left(\frac{25}{10}\right)^{3}=10.9$ seconds
c i Any distance less than 26 miles will change the minimum connector as I will link directly to X.
ii Any distance of 26 miles or more will not change the minimum connector as the shortest way to connect I to the rest of the tree will be to connect to C.

