Elastic strings and springs 3B

1 a

$(\leftarrow) T=4 a$

$$
\begin{aligned}
T & =\frac{40 \times 0.3}{0.5} \\
& =24 \mathrm{~N}
\end{aligned}
$$

$\therefore 24=4 a$
$6=a$
Initial acceleration is $6 \mathrm{~m} \mathrm{~s}^{-2}$.

$(\rightarrow) S=4 a$
$S=\frac{40 \times 0.1}{0.5}$
$=8 \mathrm{~N}$
$\therefore 8=4 a$
$2=a$
Initial acceleration is $2 \mathrm{~m} \mathrm{~s}^{-2}$.

2

After further extension,
(\uparrow) $T-0.4 g=0.4 a$

$$
\begin{aligned}
T & =\frac{20(x+0.2)}{0.8} \\
& =25 x+5
\end{aligned}
$$

So, $\quad 25 x+5-0.4 g=0.4 a$ $\left(25 \times \frac{2 g}{125}\right)+5-0.4 g=0.4 a$ $a=\frac{5}{0.4}$

$$
=12.5
$$

Initial acceleration is $12.5 \mathrm{~m} \mathrm{~s}^{-2}$.

3

(个) $2 T \cos \theta-2 g=2 a$

$$
\frac{4 T}{5}-g=a
$$

Using Hooke's law:

$$
\begin{aligned}
& T=\frac{20 \times(1.0-0.4)}{0.4}=30 \\
& \therefore \quad \frac{4}{5} \times 30-9.8=a
\end{aligned}
$$

$$
14.2=a
$$

Initial acceleration is $14.2 \mathrm{~m} \mathrm{~s}^{-2}$ upwards.

4

$$
\begin{aligned}
T & =\frac{40 \times 0.5}{1.5} \\
& =\frac{40}{3}
\end{aligned}
$$

(\uparrow) $T-2 g=2 a$
So, $\frac{40}{3}-19.6=2 a$

$$
a=-3.13 \ldots
$$

Magnitude of initial acceleration is $3.13 \mathrm{~m} \mathrm{~s}^{-2}$ (3 s.f.) and the direction is downwards.

5 a

$\tan \alpha=\frac{5}{12}$, so from the right-angled triangle:

$\sin \alpha=\frac{5}{13}$ and $\cos \alpha=\frac{12}{13}$
By Hooke's law:
$T=\frac{21.5 \times 0.4}{1.6}=5.375 \mathrm{~N}$
($\mathbb{)} R=\lg \cos \alpha=9.8 \times \frac{12}{13}=\frac{117.6}{13}$
so, $F=0.5 \times \frac{117.6}{13}=\frac{58.8}{13}$
$(\swarrow) \quad 1 g \sin \alpha+T-F=1 a$
$\left(9.8 \times \frac{5}{13}\right)+5.375-\frac{58.8}{13}=a$
$4.621 \ldots=a$
Initial acceleration is $4.62 \mathrm{~m} \mathrm{~s}^{-2}$ (2 s.f.).
b Resultant force down the plane is $T+g \sin \alpha-\mu R=m a$, so if μ increases, the acceleration a would decrease.

Challenge

We make use of the following diagram:

a Use Newton's Second Law for forces acting vertically at the point P.
Take upwards as the positive direction:

$$
\begin{aligned}
& 2 T \cos 45^{\circ}-3 g=-3 \times \frac{g}{2} \\
& \Rightarrow 2 T \cos 45^{\circ}=\frac{3}{2} g \\
& \Rightarrow 2 T \cdot \frac{\sqrt{2}}{2}=\frac{3 g}{2} \\
& \Rightarrow T=\frac{3 g}{2 \sqrt{2}} \mathrm{~N}=\frac{3 \sqrt{2} g}{4} \mathrm{~N}
\end{aligned}
$$

b Now use $T=k x=\frac{\lambda x}{l}$ where $x=\frac{l}{4}$:
$\Rightarrow T=\frac{\lambda}{l} \times \frac{l}{4}=\frac{\lambda}{4} \mathrm{~N}$
Equating this with the expression found in a, we see that:
$\frac{\lambda}{4}=\frac{3 \sqrt{2} g}{4} \Rightarrow \lambda=3 \sqrt{2} g$

