Elastic collisions in one dimension 4C

1 a

Using conservation of linear momentum for the system (\rightarrow) :
$0.6 \times 6=0.6 \times 1+0.5 v$
$3.6-0.6=0.5 v$
$\Rightarrow v=6$
The speed of A after the collision is $6 \mathrm{~ms}^{-1}$.
b Total kinetic energy before collision $=\frac{1}{2} \times 0.6 \times 6^{2}=10.8 \mathrm{~J}$
Total kinetic energy after collision $=\frac{1}{2} \times 0.6 \times 1^{2}+\frac{1}{2} \times 0.5 \times v^{2}=0.3+9=9.3 \mathrm{~J}$
The loss of kinetic energy $=(10.8-9.3) \mathrm{J}=1.5 \mathrm{~J}$

Before collision

$A(m)$

$B(2 m)$

After collision

$A(m)$

$B(2 m)$

Using conservation of linear momentum for the system (\rightarrow) :
$m u+2 m(-2 u)=m v_{1}+2 m v_{2}$
$u-4 u=v_{1}+2 v_{2}$
$-3 u=v_{1}+2 v_{2}$
Using Newton's law of restitution:
$\frac{2}{3}=\frac{v_{2}-v_{1}}{u-(-2 u)}=\frac{v_{2}-v_{1}}{3 u}$
$\Rightarrow v_{2}-v_{1}=2 u$
Adding equations (1) and (2) gives
$-u=3 v_{2}$
So $v_{2}=-\frac{u}{3} \mathrm{~ms}^{-1}$

Substituting into equation (2) gives:
$-\frac{u}{3}-v_{1}=2 u$
$v_{1}=-\frac{7 u}{3} \mathrm{~ms}^{-1}$
The direction of travel of particle A is reserved after the collision, while particle B continues to move in the same direction.

Loss of kinetic energy $=$ initial kinetic energy - final kinetic energy

$$
\begin{aligned}
& =\frac{1}{2} m u^{2}+\frac{1}{2} 2 m(-2 u)^{2}-\frac{1}{2} m\left(-\frac{7 u}{3}\right)^{2}-\frac{1}{2} 2 m\left(-\frac{u}{3}\right)^{2} \\
& =\frac{1}{2} m u^{2}+4 m u^{2}-\frac{49}{18} m u^{2}-\frac{1}{9} m u^{2} \\
& =\frac{9}{18} m u^{2}+\frac{72}{18} m u^{2}-\frac{49}{18} m u^{2}-\frac{2}{18} m u^{2} \\
& =\frac{30}{18} m u^{2}=\frac{5 m u^{2}}{3} \mathrm{~J}
\end{aligned}
$$

3
Before collision

After collision
\xrightarrow{v}

Using conservation of linear momentum for the system (\rightarrow) :
$3 \times 6+5 \times(-2)=8 v$
$8 v=18-10=8$
$\Rightarrow v=1 \mathrm{~ms}^{-1}$

Loss of kinetic energy $=$ initial kinetic energy - final kinetic energy

$$
\begin{aligned}
& =\frac{1}{2} 3(6)^{2}+\frac{1}{2} 5(-2)^{2}-\frac{1}{2} 8(1)^{2} \\
& =54+10-4=60 \mathrm{~J}
\end{aligned}
$$

4

Before collision

Ball (0.2 kg)

After collision

Ball (0.2 kg)

After impact with the cushion the velocity of the billiard ball is $v \mathrm{~ms}^{-1}$, using Newton's law of restitution:
$\frac{4}{5}=\frac{v}{2.5}$
$\Rightarrow v=2$
\therefore The loss in kinetic energy is:
Loss of kinetic energy $=\frac{1}{2} \times 0.2 \times 2.5^{2}-\frac{1}{2} \times 0.2 \times 2^{2}$

$$
=0.625-0.4=0.225 \mathrm{~J}
$$

5 a

Using conservation of linear momentum for the system (\rightarrow) :
$0.15 \times 402=30.15 v$
$\Rightarrow v=\frac{60.3}{30.15}=2 \mathrm{~m} \mathrm{~s}^{-1}$
b Total kinetic energy before impact $=\frac{1}{2} \times 0.15 \times 402^{2}=12120.3 \mathrm{~J}$
Total kinetic energy after impact $=\frac{1}{2} \times 30.15 \times 2^{2}=60.3 \mathrm{~J}$
The loss of kinetic energy $=12060 \mathrm{~J}=12.06 \mathrm{~kJ}$

6 a

Before firing

At rest At rest

Rifle $(4.8 \mathrm{~kg}) \quad$ Bullet $(0.02 \mathrm{~kg}) \quad$ Rifle $(4.8 \mathrm{~kg}) \quad$ Bullet $(0.02 \mathrm{~kg})$

Using conservation of linear momentum for the system (\rightarrow) :
$0=4.8 v+0.2 \times 400$
$\Rightarrow v=-\frac{8}{4.8}=-\frac{5}{3}=-1.67 \mathrm{~m} \mathrm{~s}^{-1}(3$ s.f. $)$

The rifle recoils with an initial speed of $\frac{5}{3}$ or $1.67 \mathrm{~ms}^{-1}$.
b Total kinetic energy before firing $=0$
Total kinetic energy after firing $=\frac{1}{2} \times 0.02 \times 400^{2}+\frac{1}{2} \times 4.8 \times\left(\frac{5}{3}\right)^{2}$

$$
=1600+6.67=1606.67 \mathrm{~J}(2 \text { d.p. })
$$

7 a Let N be the number of stationary carriages, A be the approaching train and B be the stationary carriages.

After impact

Using conservation of linear momentum for the system (\rightarrow) :
$30000 \mathrm{~V}=(30000+6000 \mathrm{~N}) 0.625 \mathrm{~V}$
$48=30+6 \mathrm{~N}$
(dividing both sides by 625 V)
$\Rightarrow 6 \mathrm{~N}=18$
$\Rightarrow N=3$
b fraction of kinetic energy lost $=\frac{\text { initial kinetic energy }- \text { final kinetic energy }}{\text { initial kinetic energy }}$

$$
\begin{aligned}
& =\frac{\frac{1}{2} 30000 V^{2}-\frac{1}{2} 48000\left(\frac{5 V}{8}\right)^{2}}{\frac{1}{2} 30000 V^{2}} \\
& =\frac{15 \times 64-24 \times 25}{15 \times 64}=\frac{960-600}{960}=\frac{360}{960}=\frac{6}{16}=\frac{3}{8}
\end{aligned}
$$

So the fraction of kinetic energy lost is $\frac{3}{8}$
8 a

After impact

Using conservation of linear momentum for the system (\rightarrow) :
$5000 \times 2.5=5000 v+10000 \times 0.6$
$\Rightarrow 50 v=75-60=15$
$\Rightarrow v=\frac{15}{50}=0.3 \mathrm{~m} \mathrm{~s}^{-1}$
b Using Newton's law of restitution:
$e=\frac{0.6-0.3}{1.5}=\frac{0.3}{1.5}=\frac{1}{5}=0.2$

8 c Loss of kinetic energy $=$ initial kinetic energy - final kinetic energy

$$
\begin{aligned}
& =\frac{1}{2} \times 5000 \times 1.5^{2}-\left(\frac{1}{2} \times 5000 \times 0.3^{2}+\frac{1}{2} \times 10000 \times 0.6^{2}\right) \\
& =3600 \mathrm{~J}
\end{aligned}
$$

9

Before explosion

A (m)

After explosion

Using conservation of linear momentum for the system (\rightarrow) :
$m v=\frac{m v_{1}}{3}+\frac{2 m v_{2}}{3}$
$\Rightarrow v_{1}=3 v-2 v_{2}$
Increase in kinetic energy $=$ final kinetic energy - initial kinetic energy $=\frac{1}{4} m u^{2}$
$\frac{1}{2}\left(\frac{m}{3}\right) v_{1}{ }^{2}+\frac{1}{2}\left(\frac{2 m}{3}\right) v_{2}{ }^{2}-\frac{1}{2} m v^{2}=\frac{1}{4} m u^{2}$
$\frac{v_{1}{ }^{2}}{3}+\frac{2 v_{2}{ }^{2}}{3}-v^{2}=\frac{u^{2}}{2}$
$2 v_{1}^{2}+4 v_{2}^{2}-6 v^{2}=3 u^{2}$
Substituting equation (1) into equation (2):
$2\left(3 v-2 v_{2}\right)^{2}+4 v_{2}{ }^{2}-6 v^{2}=3 u^{2}$
$2\left(9 v^{2}-12 v v_{2}+4 v_{2}{ }^{2}\right)+4 v_{2}{ }^{2}-6 v^{2}=3 u^{2}$
$12 v_{2}{ }^{2}-24 v v_{2}+12 v^{2}-3 u^{2}=0$
$4 v_{2}{ }^{2}-8 v v_{2}+\left(4 v^{2}-u^{2}\right)=0$

Using the quadratic formula to solve for v_{2}
$v_{2}=\frac{8 v \pm \sqrt{(-8 v)^{2}-16\left(4 v^{2}-u^{2}\right)}}{8}=\frac{8 v \pm \sqrt{64 v^{2}-64 v^{2}+16 u^{2}}}{8}=\frac{8 v \pm \sqrt{16 u^{2}}}{8}$
u is a positive constant so
$v_{2}=\frac{8 v+4 u}{8}=v+\frac{u}{2}$
v_{1} can be found by substituting for v_{2} in equation (1):
$v_{2}=v+\frac{u}{2} \Rightarrow v_{1}=3 v-2 v-u=v-u$

10 a

Before collision

After collision

A (2 kg)

$B(3 \mathrm{~kg})$

Using conservation of linear momentum for the system (\rightarrow) :
$2 \times 4+3 \times 1=2 u+3 v$
$\Rightarrow 11=2 u+3 v$
Loss of kinetic energy $=$ initial kinetic energy - final kinetic energy

$$
\begin{aligned}
& =\frac{1}{2} 2(4)^{2}+\frac{1}{2} 3(1)^{2}-\frac{1}{2} 2 u^{2}-\frac{1}{2} 3 v^{2} \\
& =\frac{35}{2}-u^{2}-\frac{3 v^{2}}{2}
\end{aligned}
$$

So as the loss of kinetic energy due to the collision is 3 J

$$
\begin{align*}
& \frac{35}{2}-u^{2}-\frac{3 v^{2}}{2}=3 \\
& \frac{29}{2}=\frac{3 v^{2}}{2}+u^{2} \\
& 58=6 v^{2}+4 u^{2} \tag{2}
\end{align*}
$$

From equation (1), $2 u=11-3 v$
So $(2 u)^{2}=(11-3 v)^{2}$
$4 u^{2}=(11-3 v)^{2}$
Substituting into equation (2):
$58=6 v^{2}+(11-3 v)^{2}$
$58=6 v^{2}+121-66 v+9 v^{2}$
$15 v^{2}-66 v+63=0$
$5 v^{2}-22 v+21=0$
b Using the quadratic formula to solve for v
$v=\frac{22 \pm \sqrt{22^{2}-4 \times 5 \times 21}}{10}=\frac{22 \pm \sqrt{22^{2}-4 \times 5 \times 21}}{10}=\frac{22 \pm \sqrt{64}}{10}$
$v=\frac{22 \pm 8}{10}=3$ or 1.4
Substituting into equation (1):
$v=1.4 \Rightarrow 2 u=11-(3 \times 1.4)=6.8 \Rightarrow u=3.4$
After the collision B must be moving faster than A as sphere A cannot pass through sphere B, so reject this solution since $v<u$
$v=3 \Rightarrow 2 u=11-(3 \times 3)=9 \Rightarrow u=1$
This is a valid solution since $v>u$, so $v=3 \mathrm{~ms}^{-1}$ and $u=1 \mathrm{~ms}^{-1}$.

11 a Let the common speed of the particles following the jerk be $v \mathrm{~ms}^{-1}$.

Before the jerk

After the jerk

B (5 kg)

A (2kg)

Using conservation of linear momentum for the system (\rightarrow) :

$$
\begin{aligned}
& 2 \times 7=2 v+5 v \\
& 14=7 v \\
& \Rightarrow v=2 \mathrm{~ms}^{-1}
\end{aligned}
$$

b Loss of kinetic energy $=$ initial kinetic energy - final kinetic energy

$$
=\frac{1}{2} \times 2 \times 7^{2}-\frac{1}{2} \times 2 \times 2^{2}-\frac{1}{2} \times 5 \times 2^{2}=49-4-10=35
$$

So the loss of total kinetic energy is 35 J .

Before the jerk

A (m)

After the jerk

$B(M)$

$A(m)$

Using conservation of linear momentum for the system (\rightarrow) :
$m u=M v+m v$
$\Rightarrow v=\frac{m u}{M+m}$

Kinetic energy lost = initial kinetic energy - final kinetic energy

$$
\begin{aligned}
& =\frac{1}{2} m u^{2}-\frac{1}{2}(M+m) v^{2} \\
& =\frac{1}{2} m u^{2}-\frac{1}{2}(M+m) \frac{(m u)}{(M+n} \\
& =\frac{m u^{2}(M+m)}{2(M+m)}-\frac{m^{2} u^{2}}{2(M+m)} \\
& =\frac{m M u^{2}+m^{2} u^{2}-m^{2} u^{2}}{2(M+m)} \\
& =\frac{m M u^{2}}{2(M+m)}=\frac{m M u^{2}}{2(m+M)}
\end{aligned}
$$

$$
=\frac{1}{2} m u^{2}-\frac{1}{2}(M+m) \frac{(m u)^{2}}{(M+m)^{2}} \quad \text { Substituting for } v \text { from equation (1) }
$$

13 a Let the common speed of the particles following the jerk be $v \mathrm{~ms}^{-1}$.

Before the jerk

After the jerk

B (5 kg)

$A(3 \mathrm{~kg})$

Using conservation of linear momentum for the system (\rightarrow) :

$$
3 \times 20=5 v+3 v
$$

$60=8 v$
$\Rightarrow v=7.5 \mathrm{~m} \mathrm{~s}^{-1}$
b Initial kinetic energy $=\frac{1}{2} \times 3 \times 20^{2}=600 \mathrm{~J}$
Final kinetic energy $=\frac{1}{2} \times 3 \times 7.5^{2}+\frac{1}{2} \times 5 \times 7.5^{2}=225 \mathrm{~J}$
So the difference between the kinetic energies is $600-225=375 \mathrm{~J}$

14 a Let the common speed of the 40 g and 60 g masses following the first jerk be $v \mathrm{~ms}^{-1}$.

Before the first jerk

$\overbrace{C(0.02 \mathrm{~kg})}^{\text {At rest }}$
At rest

B (0.04 kg)

A (0.06 kg)
At rest

$C(0.02 \mathrm{~kg})$

After the first jerk

$B(0.04 \mathrm{~kg})$
$A(0.06 \mathrm{~kg})$

Using conservation of linear momentum for the system (\rightarrow) :

$$
\begin{aligned}
& 0.06 \times 5=0.04 v+0.06 v \\
& \Rightarrow v=3 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Let the common speed of all masses following the second jerk be $w \mathrm{~ms}^{-1}$.

Before the second jerk

After the second jerk

Using conservation of linear momentum for the system (\rightarrow) :

$$
\begin{aligned}
& (0.04+0.06) \times 3=(0.02+0.04+0.06) w \\
& 1.2 w=3 \\
& \Rightarrow w=2.5 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Until the first jerk, the 60 g sphere moves with speed $5 \mathrm{~ms}^{-1}$ through 0.6 m .
So the time taken is $\frac{0.6}{5}=0.12 \mathrm{~s}$
From the first jerk until the second jerk, the 60 g and 40 g spheres moves with speed $3 \mathrm{~ms}^{-1}$ through 0.6 m .
So the time taken is $\frac{0.6}{3}=0.2 \mathrm{~s}$
Therefore the time which elapses before the 20 g sphere begins to move is $0.12+0.2=0.32 \mathrm{~s}$
b The loss of kinetic energy = initial kinetic energy - final kinetic energy

$$
\begin{aligned}
& =\frac{1}{2} \times 0.06 \times 5^{2}-\frac{1}{2} \times(0.06+0.04+0.02) \times 2.5^{2} \\
& =0.75-0.375=0.375 \mathrm{~J}
\end{aligned}
$$

Challenge

Using conservation of linear momentum for the system (\rightarrow) :
$4 \times 2+1 \times(-3)=4 v_{1}+v_{2}$
$\Rightarrow 5=4 v_{1}+v_{2}$

Using Newton's law of restitution gives:
$0.8=\frac{v_{2}-v_{1}}{2+3}=\frac{v_{2}-v_{1}}{5}$
$\Rightarrow 4=v_{2}-v_{1}$
Solving equations (1) and (2) simultaneously gives:
$v_{1}=\frac{1}{5}$ and $v_{2}=\frac{21}{5}$

After strings taut

$A(4 \mathrm{~kg})$

$B(1 \mathrm{~kg})$

Using conservation of linear momentum for the system (\rightarrow) :
$4 \times \frac{1}{5}+1 \times \frac{21}{5}=4 w+w$
$5 w=\frac{25}{5}=5$
$\Rightarrow w=1 \mathrm{~ms}^{-1}$

Kinetic energy of the system $=\frac{1}{2} \times 4 \times 1^{2}+\frac{1}{2} \times 1 \times 1^{2}=2.5 \mathrm{~J}$

