A level Exam-style practice

1 a $e=0$
b

Before collision
$\xrightarrow{2.5 \mathrm{~m} \mathrm{~s}^{-1}} \xrightarrow{0 \mathrm{~m} \mathrm{~s}^{-1}}$

After collision

$P \& Q(10 \mathrm{~kg})$

Using conservation of momentum for the system (\rightarrow) :
$6 \times 2.5+4 \times 0=10 v$ $15=10 v$
$v=\frac{15}{10}=\frac{3}{2}$
$v=1.5 \mathrm{~m} \mathrm{~s}^{-1}$
c Kinetic energy lost = initial kinetic energy - final kinetic energy
$=\frac{1}{2} \times 6 \times 2.5^{2}-\frac{1}{2} \times 10 \times 1.5^{2}$
$=7.5 \mathrm{~J}$
d

Work done by friction $=$ loss of kinetic energy
$F \times 2=\frac{1}{2} \times 10 \times 1.5^{2}$
$F=5.625 \mathrm{~N}$
Friction: $\quad F=\mu R$
$(\uparrow) \quad \mathrm{R}=10 \mathrm{~g}$
So $F=10 g \mu$ (2)

From equations (1) and (2):
$10 g \mu=5.625$
So $\mu=\frac{5.625}{10 g}=\frac{5.625}{10 \times 9.8}=0.057$

2 a

Power $=20 \mathrm{~kW}=20000 \mathrm{~W}$
Power $=T v$
So $T=\frac{20000}{v}$
Using $F=m a(\rightarrow)$
$T-\left(120+2 v^{2}\right)=1400 a$
$\frac{20000}{v}-\left(120+2 v^{2}\right)=1400 a$
When $v=16$:

$$
\begin{aligned}
& \frac{20000}{16}-\left(120+2 \times 16^{2}\right)=1400 a \\
& 618=1400 a \\
& \text { So } a=\frac{618}{1400}=0.44 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$

b

Power $=20000 \mathrm{~W}$
Power $=T v=T \times 20$
So $20000=20 T$
and $T=1000 \mathrm{~N}$
The total force down the plane is:
$T+1400 g \sin 6^{\circ}$
$=1000+1400 \times 9.8 \times \sin 6^{\circ}$
$=2434 \mathrm{~N}$
The resistance to the car's motion is:
$120+2 v^{2}=120+2 \times 20^{2}=920 \mathrm{~N}$

The total force down the plane is greater than the resistive force, so there is a net force down the plane.
Therefore the driver will need to brake to maintain his or her original speed.

2 c The driver places the car in neutral, so $T=0$
The maximum speed of the car will occur when its acceleration is $0 \mathrm{~m} \mathrm{~s}^{-2}$
i.e. when the resultant force parallel to the plane is zero.

Therefore $120+2 v^{2}=1400 g \sin 6^{\circ}$
So $v=\sqrt{\frac{1400 g \sin 6^{\circ}-120}{2}}$ and $v=25.6 \mathrm{~m} \mathrm{~s}^{-1}$

3

Since $\tan \theta=\frac{3}{4}$, you have that $\sin \theta=\frac{3}{5}$ and $\cos \theta=\frac{4}{5}$ from the right-angled triangle:

Suppose the ball hits the plane with speed $u \mathrm{~m} \mathrm{~s}^{-1}$ and rebounds with speed $v \mathrm{~m} \mathrm{~s}^{-1}$
Then down the plane (\searrow) :

$$
\begin{equation*}
u \sin \theta=v \sin \alpha \tag{1}
\end{equation*}
$$

Newton's law of restitution parallel to the plane (\nearrow): v $\quad v \cos \alpha=e u \cos \theta$

Squaring equation (1) gives

$$
\begin{aligned}
u^{2} \sin ^{2} \theta & =v^{2} \sin ^{2} \alpha \\
v^{2} \cos ^{2} \operatorname{s} \alpha & =e^{2} u^{2} \cos ^{2} \theta
\end{aligned}
$$

Squaring equation (2) gives
Adding these equations gives:

$$
\begin{align*}
& v^{2} \sin ^{2} \alpha+v^{2} \cos ^{2} \alpha=u^{2} \sin ^{2} \theta+e^{2} u^{2} \cos ^{2} \theta \\
& v^{2}\left(\sin ^{2} \alpha+\operatorname{co}^{2} s \alpha\right)=u^{2} \sin ^{2} \theta+e^{2} u^{2} \cos ^{2} \theta \\
& v^{2}=u^{2} \sin ^{2} \theta+e^{2} u^{2} \cos ^{2} \theta \\
& v^{2}=\left(\frac{3}{5}\right)^{2} u^{2}+\left(\frac{4}{5}\right)^{2} e^{2} u^{2} \\
& v^{2}=\frac{9 u^{2}}{25}+\frac{16 e^{2} u^{2}}{25} \tag{3}
\end{align*}
$$

Since the ball loses half its kinetic energy upon impact, you have
$\frac{1}{2} m v^{2}=\frac{1}{2}\left(\frac{1}{2} m u^{2}\right)=\frac{1}{4} m u^{2}$
So $v^{2}=\frac{u^{2}}{2}$

3 continued

Solving equations (3) and (4) simultaneously, you obtain:
$\frac{u^{2}}{2}=\frac{9 u^{2}}{25}+\frac{16 e^{2} u^{2}}{25}$
$\frac{1}{2}=\frac{9}{25}+\frac{16 e^{2}}{25}$
$\frac{1}{2}-\frac{9}{25}=\frac{16 e^{2}}{25}$
$\frac{7}{50}=\frac{16 e^{2}}{25}$
So $e^{2}=\frac{7}{32}$
and $e=\sqrt{\frac{7}{32}}=0.468$
4 a Impulse on the football $=$ change in momentum of the football

$$
\begin{aligned}
& \mathbf{P}=m \mathbf{v}-m \mathbf{u} \\
& \mathbf{P}=0.2\binom{8}{4}-0.2\binom{5}{-2} \\
& =\binom{\frac{8}{5}}{\frac{4}{5}}-\binom{1}{\frac{-2}{5}}=\binom{\frac{3}{5}}{\frac{6}{5}} \\
& |\mathbf{P}|=\sqrt{\left(\frac{3}{5}\right)^{2}+\left(\frac{6}{5}\right)^{2}}=\sqrt{\frac{45}{25}}=\frac{3 \sqrt{5}}{5}=1.34 \mathrm{~N} \mathrm{~s}
\end{aligned}
$$

b Let α be the angle between \mathbf{P} and \mathbf{i}

$\tan \alpha=\left(\frac{1.2}{0.6}\right)$
So $\alpha=63.4^{\circ}$

5 a

Consider the ball hanging in vertical equilibrium.
$(\uparrow) T=m g$
Hooke's Law gives $T=\frac{\lambda e}{l}$
So $m g=\frac{\lambda e}{l}$
So $e=\frac{m g l}{\lambda}=\frac{0.25 \times 9.8 \times 1.2}{15}=0.196 \mathrm{~m}$
So $P Q=l+e=1.2+0.196=1.4 \mathrm{~m}$
b When the string has length 1.9 m , its extension is $1.9-1.2=0.7 \mathrm{~m}$
So its elastic potential energy is $\frac{15 \times 0.7^{2}}{2 \times 1.2}=3.0625 \mathrm{~J}$
When the string is in equilibrium, its extension is 0.196 m
So its elastic potential energy is $\frac{15 \times 0.196^{2}}{2 \times 1.2}=0.2401 \mathrm{~J}$
Therefore the work done in stretching the string to a length of 1.9 m is $3.0625-0.2401=2.8 \mathrm{~J}$

5 c

$P X=1.9$, so $Q X=P X-P Q=1.9-(1.2+0.196)=0.504 \mathrm{~m}$
Let v be the velocity of the ball as it passes through Q.
Using the conservation of energy:
$\mathrm{EPE}+\mathrm{PE}+\mathrm{KE}$ at $Q=\mathrm{EPE}$ at X
$\frac{15 \times 0.196^{2}}{2 \times 1.2}+0.25 \times 9.8 \times 0.504+\frac{1}{2} \times 0.25 \times v^{2}=\frac{15 \times 0.7^{2}}{2 \times 1.2}$
$0.2401+1.2348+0.125 v^{2}=3.0625$
$0.125 v^{2}=1.5876$
So $v=\sqrt{\frac{1.5876}{0.125}}=3.6 \mathrm{~m} \mathrm{~s}^{-1}$
d Let h be the distance travelled by the ball above point X
After travelling through a distance h, the string will be slack and its velocity will be zero.
Using the work-energy principle:
Potential energy gained $=$ elastic potential energy lost
$0.25 \times 9.8 \times h=\frac{15 \times 0.7^{2}}{2 \times 1.2}$
$2.45 h=3.0625$
So $h=\frac{3.0625}{2.45}=1.25$
This is a distance of $1.9-1.25=0.65 \mathrm{~m}$ from the ceiling.
Hence, the ball will not hit the ceiling.

6 a i

Before collision

Using conservation of momentum for the system (\rightarrow) :
$3 \times 3=3 v_{1}+1 v_{2}$
$9=3 v_{1}+1 v_{2}$
Consider the final kinetic energy of Q :

$$
\begin{align*}
& \frac{1}{2} \times 1 \times v_{2}^{2}=3.645 \tag{1}\\
& v_{2}{ }^{2}=7.29 \\
& v_{2}=\sqrt{7.29}=2.7 \mathrm{~m} \mathrm{~s}^{-1}
\end{align*}
$$

Substituting v_{2} into equation (1) gives

$$
\begin{aligned}
& 9=3 v_{1}+2.7 \\
& v_{1}=\frac{9-2.7}{3}=2.1 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

ii Newton's law of restitution:
$e=\frac{\text { separation speed }}{\text { approach speed }}=\frac{2.7-2.1}{3-0}=0.2$

6 b Consider the collision between Q and R :
Before collision
After collision

Using conservation of momentum for the system (\rightarrow) :

$$
\begin{equation*}
2.7=w_{1}+2 w_{2} \tag{2}
\end{equation*}
$$

Newton's law of restitution:
$0.2=\frac{w_{2}-w_{1}}{2.7}$
$0.54=w_{2}-w_{1}$

Adding equations (2) and (3) gives:
$3.24=3 w_{2}$
So $w_{2}=1.08 \mathrm{~m} \mathrm{~s}^{-1}$

Substituting w_{2} into equation (3) gives:
$0.54=1.08-w_{1}$
So $w_{1}=1.08-0.54=0.54 \mathrm{~m} \mathrm{~s}^{-1}$

So the kinetic energy lost in this collision is given by
$\frac{1}{2} \times 1 \times 2.7^{2}-\left(\frac{1}{2} \times 1 \times 0.54^{2}+\frac{1}{2} \times 2 \times 1.08^{2}\right)$
$=2.33 \mathrm{~J}$
c P moves with speed $2.1 \mathrm{~m} \mathrm{~s}^{-1}$ and Q moves with speed $0.54 \mathrm{~m} \mathrm{~s}^{-1}$
Since P and Q are moving in the same direction, they will collide again.

7 a

i $(\rightarrow) u \cos 60^{\circ}=\frac{15 u}{16} \cos \alpha$
$\cos \alpha=\frac{15 \cos 60}{15}=\frac{8}{15}$
$\alpha=57.8^{\circ}$
ii Newton's law of restitution
gives: $e=\frac{\text { final speed (vertically) }}{\text { approach speed (vertically) }}=\frac{\frac{15 u}{16} \sin \alpha}{u \sin 60^{\circ}}=\frac{15}{16}\left(\frac{\sin 57.8^{\circ}}{\sin 60^{\circ}}\right)=0.916$

7 b

Conservation of momentum parallel to the line of centres:
$m \frac{15 u}{16} \cos \alpha=m v+m w$
$\frac{15 u \cos \alpha}{16}=v+w$

Newton's law of restitution:
$\frac{3}{4}=\frac{w-v}{\frac{15 u}{16} \cos \alpha}$
$\frac{45}{64} u \cos \alpha=w-v$

Adding equations (1) and (2) gives:
$\frac{15}{16} u \cos \alpha+\frac{45}{64} u \cos \alpha=2 w$
$\frac{105}{64} u \cos \alpha=2 w$
Substituting $\cos \alpha=\frac{8}{15}$ leads to
$\frac{105}{64} u\left(\frac{8}{15}\right)=2 w$
$w=\frac{7 u}{16}=0.4375 u$
Substitute $w=\frac{7 u}{16}$ in equation (1):
$\frac{15 u}{16} \cos \alpha=v+\frac{7 u}{16}$
$v=\frac{15 u}{16}\left(\frac{8}{15}\right)-\frac{7 u}{16}$
$v=\frac{u}{16}=0.0625 u$

7 b continued

So the speed of S is given by $\sqrt{\left(\frac{15 u}{16} \sin 57.769^{\circ}\right)^{2}+\left(\frac{u}{16}\right)^{2}}=0.795 u$
$\tan \theta=\frac{\frac{15 u}{16} \sin 57.769^{\circ}}{v}=\frac{\frac{15 u}{16} \sin 57.769^{\circ}}{0.0625 u}=\frac{\frac{15}{16} \sin 57.769^{\circ}}{0.0625}$
So $\theta=85.5^{\circ}$
Therefore S has velocity $0.795 u \mathrm{~m} \mathrm{~s}^{-1}$ at 85.5° to the line of centres.
T has velocity $0.4375 u \mathrm{~m} \mathrm{~s}^{-1}$ along the line of centres.

