Conic Sections 1 Mixed Exercise 2

a A general parabola with equation $y^{2}=4 a x$ has focus $(a, 0)$
Here $y^{2}=12 x \Rightarrow 4 a=12 \Rightarrow a=\frac{12}{4}=3$
So the focus S, has coordinates $(3,0)$
b Line $l: y=3 x$
(1)

Parabola $C: y^{2}=12 x$
Substituting (1) into (2) gives

$$
\begin{aligned}
(3 x)^{2} & =12 x \\
9 x^{2} & =12 x \\
9 x^{2}-12 x & =0 \\
3 x(3 x-4) & =0 \\
x & =0 \text { or } \frac{4}{3}
\end{aligned}
$$

Substituting these values of x back into equation (1):
$x=0 \Rightarrow y=3(0)=0 \Rightarrow(0,0)$
$x=\frac{4}{3} \Rightarrow y=3\left(\frac{4}{3}\right)=4 \Rightarrow\left(\frac{4}{3}, 4\right)$
As $y>0$ at P, the coordinates of P are $\left(\frac{4}{3}, 4\right)$

1 c

Area $\triangle O P S=\frac{1}{2}(3)(4)$

$$
=\frac{1}{2}(12)
$$

$$
=6
$$

Therefore, Area $\triangle O P S=6$
2 a $(k, 6)$ lies on $y^{2}=24 x$ gives

$$
6^{2}=24 k \Rightarrow 36=24 k \Rightarrow \frac{36}{24}=k \Rightarrow k=\frac{3}{2}
$$

b A general parabola with equation $y^{2}=4 a x$ has focus $(a, 0)$
Here $y^{2}=24 x \Rightarrow 4 a=24 \Rightarrow a=\frac{24}{4}=6$
So the focus S has coordinates $(6,0)$
c The points P and S have coordinates
$P\left(\frac{3}{2}, 6\right)$ and $S(6,0)$
$m_{l}=m_{P S}=\frac{0-6}{6-\frac{3}{2}}=\frac{-6}{\frac{9}{2}}=-\frac{12}{9}=-\frac{4}{3}$
l is the line

$$
\begin{aligned}
y-0 & =-\frac{4}{3}(x-6) \\
3 y & =-4(x-6) \\
3 y & =-4 x+24 \\
4 x+3 y-24 & =0
\end{aligned}
$$

Therefore an equation for l is

$$
4 x+3 y-24=0
$$

2 d From part \mathbf{b}, as $a=6$, an equation for the directrix is $x+6=0$ or $x=-6$

Substituting $x=-6$ into l gives:

$$
\begin{aligned}
4(-6)+3 y-24 & =0 \\
3 y & =24+24 \\
3 y & =48 \\
y & =16
\end{aligned}
$$

Hence the coordinates of D are $(-6,16)$

Using the sketch and the regions as labelled you can find the area required.
Let Area $\triangle O P D=\operatorname{Area}(R)$

Method 1

$$
\begin{aligned}
\operatorname{Area}(R) & =\operatorname{Area}(R+S+T)-\operatorname{Area}(S)-\operatorname{Area}(T) \\
& =\frac{1}{2}(16+6)\left(\frac{15}{2}\right)-\frac{1}{2}(6)(16)-\frac{1}{2}\left(\frac{3}{2}\right)(6) \\
& =\frac{1}{2}(22)\left(\frac{15}{2}\right)-3(16)-\left(\frac{3}{2}\right)(3) \\
& =\left(\frac{165}{2}\right)-48-\left(\frac{9}{2}\right) \\
& =30
\end{aligned}
$$

Therefore, Area $\triangle O P D=30$

Method 2

$$
\begin{aligned}
\operatorname{Area}(R)= & \operatorname{Area}(R+S+T+U)-\operatorname{Area}(S) \\
& -\operatorname{Area}(T U) \\
= & \frac{1}{2}(12)(16)-\frac{1}{2}(6)(16)-\frac{1}{2}(6)(6) \\
= & 96-48-18 \\
= & 30
\end{aligned}
$$

3 a $y=24 t$
So $t=\frac{y}{24}$
$x=12 t^{2}$

Substitute (1) into (2):
$x=12\left(\frac{y}{24}\right)^{2}$
So $x=\frac{12 y^{2}}{576}$ simplifies to $x=\frac{y^{2}}{48}$
Hence, the Cartesian equation of C is $y^{2}=48 x$
b A general parabola with equation $y^{2}=4 a x$ has directrix $x+a=0$
Here $y^{2}=48 x \Rightarrow 4 a=48$,
giving $a=\frac{48}{4}=12$
Therefore and equation of the directrix of C is $x+12=0$ or $x=-12$
$3 \mathbf{c}$ By part \mathbf{b}, since $a=12$, the coordinates of S, the focus of C, are $(12,0)$

Hence, drawing a sketch gives,

The (shortest) distance of P to the line $x=-16$ is the distance $X P$.

The distance $S P=28$
The focus directrix property implies that $S P=X P=28$

The directrix has equation $x=-12$
Therefore the x-coordinate of P is $x=28-12=16$

When $x=16, y^{2}=48(16) \Rightarrow y^{2}=3(16)^{2}$
As $y>0$ then $y=\sqrt{3(16)^{2}}=16 \sqrt{3}$
Hence the exact coordinates of P are $(16,16 \sqrt{3})$

3 d

Let Area $\triangle O S P=\operatorname{Area}(A)$

$$
\begin{aligned}
\operatorname{Area}(A) & =\operatorname{Area}(A+B)-\operatorname{Area}(B) \\
& =\frac{1}{2}(16)(16 \sqrt{3})-\frac{1}{2}(4)(16 \sqrt{3}) \\
& =128 \sqrt{3}-32 \sqrt{3} \\
& =96 \sqrt{3}
\end{aligned}
$$

Area $\triangle O S P=96 \sqrt{3}$ and $k=96$
4 a Line: $4 x-9 y+32=0$

Parabola C: $y^{2}=16 x$
Multiplying (1) by 4 gives
$16 x-36 y+128=0$
Substituting (2) into (3) gives
$y^{2}-36 y+128=0$
$(y-4)(y-32)=0$
$y=4,32$
When $y=4$,
$4^{2}=16 x \Rightarrow x=\frac{16}{16}=1$
$\Rightarrow(1,4)$.
When $y=32$,
$32^{2}=16 x \Rightarrow x=\frac{1024}{16}=64$
$\Rightarrow(64,32)$

The coordinates of P and Q are $(1,4)$ and $(64,32)$

4 b $y^{2}=16 x$
$2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=16$ so $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{y}$
At $\left(4 t^{2}, 8 t\right), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{8 t}=\frac{1}{t}$
Gradient of tangent at $\left(4 t^{2}, 8 t\right)$ is $m_{T}=\frac{1}{t}$
So gradient of normal at

$$
\left(4 t^{2}, 8 t\right) \text { is } m_{N}=\frac{-1}{\left(\frac{1}{t}\right)}=-t
$$

Normal is the line
$y-8 t=-t\left(x-4 t^{2}\right)$
$y-8 t=-t x+4 t^{3}$
$x t+y=4 t^{3}+8 t$

The equation of the normal to C at $\left(4 t^{2}, 8 t\right)$ is $x t+y=4 t^{3}+8 t$
c From part a
P has coordinates $(1,4)$ when $t=\frac{1}{2}$ and Q has coordinates $(64,32)$ when $t=4$

Using equation for the normal found in part \mathbf{c} (with $t=\frac{1}{2}$), normal at P is

$$
\begin{aligned}
x\left(\frac{1}{2}\right)+y & =4\left(\frac{1}{2}\right)^{3}+8\left(\frac{1}{2}\right) \\
\frac{1}{2} x+y & =\frac{1}{2}+4 \\
x+2 y & =1+8 \\
x+2 y-9 & =0
\end{aligned}
$$

Using equation for the normal found in part \mathbf{c} (with $t=4$), normal at Q is

$$
\begin{aligned}
x(4)+y & =4(4)^{3}+8(4) \\
4 x+y & =256+32 \\
4 x+y-288 & =0
\end{aligned}
$$

4 d The normals to C at P and Q are
$x+2 y-9=0$ and $4 x+y-288=0$
$\mathrm{N}_{1}: x+2 y-9=0$
$\mathrm{N}_{2}: 4 x+y-288=0$

Multiplying (2) by 2 gives
$2 \times(2): 8 x+2 y-576=0$
(3) $-(1): 7 x-567=0$
$7 x=567$
$x=\frac{567}{7}=81$
(2) $\Rightarrow y=288-4(81)=288-324=-36$

The coordinates of R are $(81,-36)$
The equation of C is $y^{2}=16 x$

When $y=-36$, LHS $=y^{2}=(-36)^{2}=1296$

When $x=81$, RHS $=16 x=16(81)=1296$

As LHS $=$ RHS, R lies on C
e The coordinates of O and R are $(0,0)$ and $(81,-36)$ respectively.

$$
\begin{aligned}
O R & =\sqrt{(81-0)^{2}+(-36-0)^{2}} \\
& =\sqrt{81^{2}+36^{2}} \\
& =\sqrt{7857} \\
& =\sqrt{(81)(97)} \\
& =\sqrt{81} \sqrt{97} \\
& =9 \sqrt{97}
\end{aligned}
$$

Hence the exact distance $O R$ is
$9 \sqrt{97}$ and $k=9$

5 The focus and directrix of a parabola with equation $y^{2}=4 a x$, are $(a, 0)$ and $x+a=0$ respectively.
a Hence the coordinates of the focus of C are $(a, 0)$

As Q lies on the x-axis then $y=0$, and since Q lies on directrix then $x=-a$ so Q has coordinates $(-a, 0)$

5 b $y^{2}=4 a x$
$2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a$ so $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{y}$
At $P\left(a t^{2}, 2 a t\right), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a t}=\frac{1}{t}$
Tangent is:

$$
\begin{aligned}
y-2 a t & =\frac{1}{t}\left(x-a t^{2}\right) \\
t y-2 a t^{2} & =x-a t^{2} \\
t y & =x-a t^{2}+2 a t^{2} \\
t y & =x+a t^{2}
\end{aligned}
$$

The equation of the tangent to C at P is $t y=x+a t^{2}$ and passes through Q
Sub coordinates of Q into the equation for the tangent:

$$
\begin{aligned}
t(0) & =-a+a t^{2} \\
0 & =-a+a t^{2} \\
0 & =-1+t^{2} \\
t^{2}-1 & =0 \\
(t-1)(t+1) & =0 \\
t & =1,-1
\end{aligned}
$$

When $t=1, \quad x=a(1)^{2}=a, y=2 a(1)=2 a$

$$
\Rightarrow(a, 2 a)
$$

When $t=-1$,

$$
\begin{aligned}
& x=a(-1)^{2}=a, y=2 a(-1)=-2 a \\
& \Rightarrow(a,-2 a)
\end{aligned}
$$

The possible coordinates of P are ($a, 2 a$) or ($a,-2 a$)

6 a $H: x y=c^{2} \Rightarrow y=c^{2} x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-c^{2} x^{-2}=-\frac{c^{2}}{x^{2}}$
At $P\left(c t, \frac{c}{t}\right), \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{c^{2}}{(c t)^{2}}=-\frac{c^{2}}{c^{2} t^{2}}=-\frac{1}{t^{2}}$
Gradient of tangent at
$P\left(c t, \frac{c}{t}\right)$ is $m_{T}=-\frac{1}{t^{2}}$
So gradient of normal at
$P\left(c t, \frac{c}{t}\right)$ is $m_{T}=\frac{-1}{\left(-\frac{1}{t^{2}}\right)}=t^{2}$
Normal is the line:

$$
\begin{aligned}
y-\frac{c}{t} & =t^{2}(x-c t) \\
t y-c & =t^{3}(x-c t) \\
t y-c & =t^{3} x-c t^{4} \\
c t^{4}-c & =t^{3} x-t y \\
t^{3} x-t y & =c t^{4}-c \\
t^{3} x-t y & =c\left(t^{4}-1\right)
\end{aligned}
$$

The equation of the normal to H at
P is $t^{3} x-t y=c\left(t^{4}-1\right)$
b Comparing $x y=36$ with $x y=c^{2}$ gives
$c=6$ and comparing the point $(12,3)$ with
$\left(c t, \frac{c}{t}\right)$ gives
$c t=12 \Rightarrow(6) t=12 \Rightarrow t=2$.
So n is the line

$$
\begin{aligned}
(2)^{3} x-(2) y & =6\left((-2)^{4}-1\right) \\
8 x-2 y & =6(15) \\
8 x-2 y & =90 \\
4 x-y & =45
\end{aligned}
$$

An equation for n is $4 x-y=45$

6 c Normal $n: 4 x-y=45$ (1)
Hyperbola $J: x y=36$
Rearranging (2) gives

$$
y=\frac{36}{x}
$$

Substituting this equation into (1) gives

$$
\begin{aligned}
4 x-\left(\frac{36}{x}\right) & =45 \\
4 x^{2}-36 & =45 x \\
4 x^{2}-45 x-36 & =0 \\
(x-12)(4 x+3) & =0 \\
x & =12,-\frac{3}{4}
\end{aligned}
$$

You already known that n passes through the point where $x=12$

$$
\text { Soat } Q, x=-\frac{3}{4}
$$

Substituting $x=-\frac{3}{4}$ into $y=\frac{36}{x}$ gives

$$
y=\frac{36}{\left(-\frac{3}{4}\right)}=-36\left(\frac{4}{3}\right)=-48
$$

Hence the coordinates of Q are $\left(-\frac{3}{4},-48\right)$
$7 H: x y=9 \Rightarrow y=9 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-9 x^{-2}=-\frac{9}{x^{2}}$
Gradients of tangent lines l_{1} and l_{2} are both $-\frac{1}{4}$ implies

$$
\begin{aligned}
& -\frac{9}{x^{2}}=-\frac{1}{4} \\
& \Rightarrow x^{2}=36 \\
& \Rightarrow x= \pm \sqrt{36} \\
& \Rightarrow x= \pm 6
\end{aligned}
$$

When $x=6, \quad 6 y=9 \Rightarrow y=\frac{9}{6}=\frac{3}{2}$
Let l_{1} be the tangent to C at $\left(6, \frac{3}{2}\right)$
When $x=-6, \quad-6 y=9 \Rightarrow y=\frac{9}{-6}=-\frac{3}{2}$
Let l_{2} be the tangent to C at $\left(-6,-\frac{3}{2}\right)$
At $\left(6, \frac{3}{2}\right), m_{T}=-\frac{1}{4}$ and l_{1} is the line

$$
y-\frac{3}{2}=-\frac{1}{4}(x-6)
$$

$$
4 y-6=-1(x-6)
$$

$$
4 y-6=-x+6
$$

$$
x+4 y-12=0
$$

At $\left(-6,-\frac{3}{2}\right), m_{T}=-\frac{1}{4}$ and l_{2} is the line
$y+\frac{3}{2}=-\frac{1}{4}(x+6)$
$4 y+6=-1(x+6)$
$4 y+6=-x-6$
$x+4 y+12=0$
The equation for l_{1} and l_{2} are
$x+4 y-12=0$ and
$x+4 y+12=0$

8 a $H: x y=c^{2} \Rightarrow y=c^{2} x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-c^{2} x^{-2}=-\frac{c^{2}}{x^{2}}$

At $P\left(c t, \frac{c}{t}\right), \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{c^{2}}{\left(c t^{2}\right)}=-\frac{c^{2}}{c^{2} t^{2}}=-\frac{1}{t^{2}}$
So tangent at P has equation:

$$
\begin{aligned}
y-\frac{c}{t} & =-\frac{1}{t^{2}}(x-c t) \\
t^{2} y-c t & =-(x-c t) \\
t^{2} y-c t & =-x+c t \\
x+t^{2} y & =2 c t
\end{aligned}
$$

Tangent cuts x-axis
$\Rightarrow y=0 \Rightarrow x+t^{2}(0)=2 c t \Rightarrow x=2 c t$

Tangent cuts y-axis
$\Rightarrow x=0 \Rightarrow 0+t^{2} y=2 c t \Rightarrow y=\frac{2 c t}{t^{2}}=\frac{2 c}{t}$

So the coordinates are
$X(2 c t, 0)$ and $Y\left(0, \frac{2 c}{t}\right)$
b

Using the sketch,
Area $\triangle O X Y=\frac{1}{2}(2 c t)\left(\frac{2 c}{t}\right)=\frac{4 c^{2} t}{2 t}=2 c^{2}$
Now $\triangle O X Y=144$
so $2 c^{2}=144 \Rightarrow c^{2}=72$
As $c>0, c=\sqrt{72}=\sqrt{36} \sqrt{2}=6 \sqrt{2}$

Hence the exact value of c is $6 \sqrt{2}$

9 a $y^{2}=4 a x$
$2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a$ so $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{y}$
At $P\left(4 a t^{2}, 4 a t\right), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{4 a t}=\frac{1}{2 t}$
Tangent is:

$$
\begin{aligned}
y-4 a t & =\frac{1}{2 t}\left(x-4 a t^{2}\right) \\
2 t y-8 a t^{2} & =x-4 a t^{2} \\
2 t y & =x-4 a t^{2}+8 a t^{2} \\
2 t y & =x+4 a t^{2}
\end{aligned}
$$

The equation of the tangent to C at
$P\left(4 a t^{2}, 4 a t\right)$ is $2 t y=x+4 a t^{2}$
b P has mapped onto Q by replacing t by $2 t$, i.e. $t \rightarrow 2 t$

So, $P\left(4 a t^{2}, 4 a t\right) \rightarrow$

$$
Q\left(16 a t^{2}, 8 a t\right)=Q\left(4 a(2 t)^{2}, 4 a(2 t)\right)
$$

At Q, tangent becomes

$$
\begin{aligned}
2(2 t) y & =x+4 a(2 t)^{2} \\
4 t y & =x+4 a\left(4 t^{2}\right) \\
4 t y & =x+16 a t^{2}
\end{aligned}
$$

The equation of the tangent to C at $Q\left(16 a t^{2}, 8 a t\right)$ is $4 t y=x+16 a t^{2}$

$$
\begin{align*}
& \mathrm{T}_{P}: 2 t y \tag{1}\\
& =x+4 a t^{2} \tag{2}\\
\mathrm{~T}_{Q}: 4 t y & =x+16 a t^{2}
\end{align*}
$$

(2) - (1) gives $2 t y=12 a t^{2}$

Hence, $y=\frac{12 a t^{2}}{2 t}=6 a t$
Substituting this into (1) gives,

$$
\begin{aligned}
2 t(6 a t) & =x+4 a t^{2} \\
12 a t^{2} & =x+4 a t^{2} \\
12 a t^{2}-4 a t^{2} & =x
\end{aligned}
$$

$$
\text { Hence, } x=8 a t^{2}
$$

The coordinates of R are $\left(8 a t^{2}, 6 a t\right)$.

10a $H: x y=c^{2} \Rightarrow y=c^{2} x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-c^{2} x^{-2}=-\frac{c^{2}}{x^{2}}$
$\operatorname{At}\left(c t, \frac{c}{t}\right), \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{c^{2}}{(c t)^{2}}=-\frac{c^{2}}{c^{2} t^{2}}=-\frac{1}{t^{2}}$
Tangent is the line:

$$
\begin{aligned}
y-\frac{c}{t} & =-\frac{1}{t^{2}}(x-c t) \\
t^{2} y-c t & =-(x-c t) \\
t^{2} y-c t & =-x+c t \\
x+t^{2} y & =2 c t
\end{aligned}
$$

An equation a tangent to H at

$$
\left(c t, \frac{c}{t}\right), \text { is } x+t^{2} y=2 c t
$$

b Let T be the tangent to H at P.
T passes through $X(2 a, 0)$, so substitute $x=2 a, y=0$ into equation of a general tangent (found in part a) to find the value of t for T :

$$
\begin{aligned}
(2 a)+t^{2}(0) & =2 c t \\
\frac{2 a}{2 c} & =t \\
t & =\frac{a}{c}
\end{aligned}
$$

Now P lies on H, so its coordinates are of the form $\left(c t, \frac{c}{t}\right)$ where $t=\frac{a}{c}$
Substituting $t=\frac{a}{c}$ into $\left(c t, \frac{c}{t}\right)$ gives

$$
P\left(c\left(\frac{a}{c}\right), \frac{c}{\left(\frac{a}{c}\right)}\right)=P\left(a, \frac{c^{2}}{a}\right)
$$

Hence P has coordinates $P\left(a, \frac{c^{2}}{a}\right)$

10 c Substituting $x=2 a$ into the curve H gives
$(2 a) y=c^{2} \Rightarrow y=\frac{c^{2}}{2 a}$
The y-coordinate of Q is $y=\frac{c^{2}}{2 a}$
d The coordinates of O and Q are
$(0,0)$ and $\left(2 a, \frac{c^{2}}{2 a}\right)$
$m_{O Q}=\frac{\frac{c^{2}}{2 a}-0}{2 a-0}=\frac{c^{2}}{2 a(2 a)}=\frac{c^{2}}{4 a^{2}}$
$O Q: y-0=\frac{c^{2}}{4 a^{2}}(x-0)$
$O Q: y=\frac{c^{2} x}{4 a^{2}}$
The equation of $O Q$ is $y=\frac{c^{2} x}{4 a^{2}}$
10 e The coordinates of X and P are
$(2 a, 0)$ and $\left(a, \frac{c^{2}}{a}\right)$
$m_{X P}=\frac{\frac{c^{2}}{a}-0}{a-2 a}=\frac{\frac{c^{2}}{a}}{-a}=-\frac{c^{2}}{a^{2}}$
$X P: y-0=-\frac{c^{2}}{a^{2}}(x-2 a)$
$X P: y=-\frac{c^{2}}{a^{2}}(x-2 a)$
Equating (1) and (2) gives

$$
\begin{aligned}
\frac{c^{2} x}{4 a^{2}} & =-\frac{c^{2}}{a^{2}}(x-2 a) \\
\frac{x}{4} & =-(x-2 a) \\
\frac{x}{4} & =-x+2 a \\
\frac{5 x}{4} & =2 a \\
x & =\frac{4(2 a)}{5}=\frac{8 a}{5}
\end{aligned}
$$

The x-coordinate of R is $\frac{8 a}{5}$

10 f From part $\mathbf{d}, m_{O Q}=\frac{c^{2}}{4 a^{2}}$ and
from part $\mathbf{e}, \quad m_{X P}=-\frac{c^{2}}{a^{2}}$
$O Q$ is perpendicular to $X P$, so

$$
\begin{aligned}
-1 & =m_{O Q} \times m_{X P} \\
-1 & =\left(\frac{c^{2}}{4 a^{2}}\right)\left(-\frac{c^{2}}{a^{2}}\right) \\
-1 & =\frac{-c^{4}}{4 a^{4}} \\
-4 a^{4} & =-c^{4} \\
c^{4} & =4 a^{4} \\
\left(c^{2}\right)^{2} & =4 a^{4} \\
c^{2} & =\sqrt{4 a^{4}}=\sqrt{4} \sqrt{a^{4}}=2 a^{2}
\end{aligned}
$$

Hence, $c^{2}=2 a^{2}$, as required.
g From part e, At $R, x=\frac{8 a}{5}$
Substituting
$x=\frac{8 a}{5}$ into $y=\frac{c^{2} x}{4 a^{2}}$ gives,
$y=\frac{c^{2}}{4 a^{2}}\left(\frac{8 a}{5}\right)=\frac{8 a c^{2}}{20 a^{2}}$
and using the $c^{2}=2 a^{2}$ from \mathbf{f} gives,

$$
y=\frac{8 a\left(2 a^{2}\right)}{20 a^{2}}=\frac{16 a^{3}}{20 a^{2}}=\frac{4 a}{5}
$$

The y-coordinate of R is $\frac{4 a}{5}$

11a $2 x-y-12=0$, so $y=2 x-12$
Solving $y=2 x-12$ and $y^{2}=12 x$
simultaneously gives:

$$
\begin{aligned}
(2 x-12)^{2} & =12 x \\
4 x^{2}-48 x+144 & =12 x \\
4 x^{2}-60 x+144 & =0 \\
x^{2}-15 x+36 & =0 \\
(x-3)(x-12) & =0
\end{aligned}
$$

So $x=3 \Rightarrow y^{2}=36 \Rightarrow y=-6($ point $P)$
and $x=12 \Rightarrow y^{2}=144 \Rightarrow y=12$
(point Q)
Therefore the coordinates are
$P(3,-6)$ and $Q(12,12)$
b The shaded area R is given by

$$
\left|\int_{3}^{12}-\sqrt{12} x^{\frac{1}{2}} \mathrm{dx}\right|-(12-3) \times 6
$$

$$
=\left|\left[-\frac{2 \sqrt{12} x^{\frac{3}{2}}}{3}\right]_{3}^{12}\right|^{1}-54
$$

$$
=\left|-\frac{2 \sqrt{12}(\sqrt{12})^{3}}{3}+\frac{2 \sqrt{12}(\sqrt{3})^{3}}{3}\right|-54
$$

$$
=\left|-\frac{288}{3}+\frac{36}{3}\right|-54
$$

$$
=\frac{288}{3}-\frac{36}{3}-\frac{162}{3}
$$

$$
=\frac{90}{3}=30
$$

12a $y^{2}=36 x$
$2 y \frac{\mathrm{dy}}{\mathrm{d} x}=36$

$$
\frac{\mathrm{dy}}{\mathrm{~d} x}=\frac{18}{y}
$$

At $P, y=18 p \Rightarrow \frac{\mathrm{dy}}{\mathrm{d} x}=\frac{18}{18 p}=\frac{1}{p}$
The gradient of the normal at P is therefore $-p$
The equation for l is therefore
$\frac{y-18 p}{x-9 p^{2}}=-p$
$y-18 p=-p\left(x-9 p^{2}\right)$
$y-18 p=-p x+9 p^{3}$
$y+p x=18 p+9 p^{3}$
b At $T(27,0)$,

$$
\begin{aligned}
0+27 p & =18 p+9 p^{3} \\
9 p^{3}-9 p & =0 \\
9 p\left(p^{2}-1\right) & =0 \\
9 p(p+1)(p-1) & =0 \\
p=0 \Rightarrow & P(0,0) \\
p=1 \Rightarrow & P(9,18) \\
p=-1 \Rightarrow & P(9,-18)
\end{aligned}
$$

12 c l has positive gradient, so P has coordinates $P(9,-18)$
So $p=-1$
Substituting $p=-1$ into equation (1)
gives

$$
y-x=-18-9
$$

$$
y=x-27
$$

Now solving $y=x-27$ and $y^{2}=36 x$ simultaneously:

$$
\begin{aligned}
(x-27)^{2} & =36 x \\
x^{2}-54 x+729 & =36 x \\
x^{2}-90 x+729 & =0 \\
(x-9)(x-81) & =0
\end{aligned}
$$

$x \neq 9$ (since $x=9$ at P), so $x=81$ and $y=81-27=54$

The coordinates of Q are therefore $Q(81,54)$
d The shaded region is given by

$$
\begin{aligned}
& \int_{0}^{81} 6 x^{\frac{1}{2}} \mathrm{~d} x-\frac{1}{2} \times(81-27) \times 54 \\
& =\left[4 x^{\frac{3}{2}}\right]_{0}^{81}-1458 \\
& =4 \times 9^{3}-1458 \\
& =2916-1458 \\
& =1458
\end{aligned}
$$

13 a The gradient of $P Q$ is given by

$$
\begin{aligned}
& \frac{2 a q-2 a p}{a q^{2}-a p^{2}}=\frac{2 q-2 p}{q^{2}-p^{2}} \\
= & \frac{2(q-p)}{(q+p)(q-p)}=\frac{2}{p+q}
\end{aligned}
$$

The equation of the line joining P and Q is therefore:

$$
\begin{aligned}
\frac{y-2 a p}{x-a p^{2}} & =\frac{2}{p+q} \\
(p+q)(y-2 a p) & =2\left(x-a p^{2}\right) \\
(p+q) y-2 a p(p+q) & =2 x-2 a p^{2} \\
(p+q) y-2 a p^{2}-2 a p q & =2 x-2 a p^{2} \\
(p+q) y-2 a p q & =2 x \\
(p+q) y-2 x & =2 a p q
\end{aligned}
$$

b The line $P Q$ passes through the focus $S(a, 0)$, so $0-2 a=2 a p q$

Therefore $p q=-1$

13 c $\quad y^{2}=4 a x$
$\begin{aligned} 2 y \frac{\mathrm{dy}}{\mathrm{d} x} & =4 a \\ \frac{\mathrm{dy}}{\mathrm{d} x} & =\frac{4 a}{2 y}=\frac{2 a}{y}\end{aligned}$
At $P, y=2 a p \Rightarrow \frac{\mathrm{dy}}{\mathrm{d} x}=\frac{2 a}{2 a p}=\frac{1}{p}$
The equation of the tangent at point P is therefore $\frac{y-2 a p}{x-a p^{2}}=\frac{1}{p}$,
or $y=\frac{x-a p^{2}}{p}+2 a p$
Similarly, the equation of the tangent at point Q is
$y=\frac{x-a q^{2}}{q}+2 a q$
Solving equations (1) and (2)
simultaneously:
$\frac{x-a q^{2}}{q}+2 a q=\frac{x-a p^{2}}{p}+2 a p$
$p\left(x-a q^{2}\right)+2 a p q^{2}=q\left(x-a p^{2}\right)+2 a p^{2} q$
$p x-a p q^{2}=q x-a q p^{2}+2 a p^{2} q-2 a p q^{2}$
$p x-q x=a p q^{2}-a q p^{2}+2 a p^{2} q-2 a p q^{2}$
$p x-q x=a p^{2} q-a p q^{2}$
$x(p-q)=a p q(p-q)$
$p \neq q$, so $x=a p q$
Substituting in equation (1):
$y=\frac{a p q-a p^{2}}{p}+2 a p$
$y=a q-a p+2 a p$
$y=a p+a q$
$y=a(p+q)$
The point of intersection is therefore
(apq, $a(p+q)$)
d Since $p q=-1, x=a p q=-a$, which is the equation of the directrix.

14 a Suppose $P\left(c t, \frac{c}{t}\right)$ is a general point on
the hyperbola $x y=c^{2}$, or $y=\frac{c^{2}}{x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} v}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}=\frac{\frac{-c}{t^{2}}}{c}=-\frac{1}{t^{2}}$
The tangent to the hyperbola at P has equation

$$
\begin{aligned}
\frac{y-\frac{c}{t}}{x-c t} & =-\frac{1}{t^{2}} \\
t^{2}\left(y-\frac{c}{t}\right) & =-(x-c t) \\
t^{2} y-c t & =-x+c t \\
x+t^{2} y & =2 c t
\end{aligned}
$$

At $A, y=0$, so $x=2 c t$ and the coordinates of A are $A(2 c t, 0)$
At $B, x=0$, so $t^{2} y=2 c t$ and $y=\frac{2 c}{t}$
The coordinates of B are therefore
$B\left(0, \frac{2 c}{t}\right)$
$A P^{2}=(c t-2 c t)^{2}+\left(\frac{c}{t}-0\right)^{2}=c^{2} t^{2}+\frac{c^{2}}{t^{2}}$
$B P^{2}=(c t-0)^{2}+\left(\frac{c}{t}-\frac{2 c}{t}\right)^{2}=c^{2} t^{2}+\frac{c^{2}}{t^{2}}$
$A P^{2}=B P^{2}$, so $A P=B P$
b The area of triangle $A O B$ is
$\frac{1}{2} \times 2 c t \times \frac{2 c}{t}=2 c^{2}$,
so the area is constant as it does not depend on t.

15a The gradient of $P Q$ is given by

$$
\begin{aligned}
& \frac{2 a q-2 a p}{a q^{2}-a p^{2}}=\frac{2 q-2 p}{q^{2}-p^{2}} \\
& =\frac{2(q-p)}{(q+p)(q-p)}=\frac{2}{p+q}
\end{aligned}
$$

The equation of the line joining P and Q is therefore:

$$
\begin{aligned}
\frac{y-2 a p}{x-a p^{2}} & =\frac{2}{p+q} \\
(p+q)(y-2 a p) & =2\left(x-a p^{2}\right) \\
(p+q) y-2 a p(p+q) & =2 x-2 a p^{2} \\
(p+q) y-2 a p^{2}-2 a p q & =2 x-2 a p^{2} \\
(p+q) y-2 a p q & =2 x \\
(p+q) y-2 x & =2 a p q
\end{aligned}
$$

The line $P Q$ passes through the focus
$S(a, 0)$, so $0-2 a=2 a p q$
Therefore $p q=-1$

$$
\begin{aligned}
y^{2} & =4 a x \\
2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} & =4 a \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{4 a}{2 y}=\frac{2 a}{y} \\
\text { At } y & =2 a p, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{p}
\end{aligned}
$$

The equation of the tangent at point P is therefore $\frac{y-2 a p}{x-a p^{2}}=\frac{1}{p}$,

$$
\begin{equation*}
\text { or } y=\frac{x-a p^{2}}{p}+2 a p \tag{1}
\end{equation*}
$$

Similarly, the equation of the tangent at point Q is

$$
\begin{equation*}
y=\frac{x-a q^{2}}{q}+2 a q \tag{2}
\end{equation*}
$$

Solving equations (1) and (2)
simultaneously:

$$
\begin{aligned}
& \frac{x-a q^{2}}{q}+2 a q=\frac{x-a p^{2}}{p}+2 a p \\
& p\left(x-a q^{2}\right)+2 a p q^{2}=q\left(x-a p^{2}\right)+2 a p^{2} q \\
& p x-a p q^{2}=q x-a q p^{2}+2 a p^{2} q-2 a p q^{2}
\end{aligned}
$$

$p x-q x=a p q^{2}-a q p^{2}+2 a p^{2} q-2 a p q^{2}$
$p x-q x=a p^{2} q-a p q^{2}$
$x(p-q)=\operatorname{apq}(p-q)$
$p \neq q$, so $x=a p q$
Since $p q=-1, x=a p q=-a$, which is the equation of the directrix.

Therefore the two tangents meet on the directrix.

15b The midpoint M of $P Q$ has coordinate

$$
\begin{aligned}
& M\left(\frac{a p^{2}+a q^{2}}{2}, \frac{2 a p+2 a q}{2}\right) \\
& =M\left(\frac{a\left(p^{2}+q^{2}\right)}{2}, a(p+q)\right)
\end{aligned}
$$

Now $y^{2}=a^{2}(p+q)^{2}$
and

$$
\begin{aligned}
2 a(x-a) & =2 a\left(\frac{a\left(p^{2}+q^{2}\right)}{2}-a\right) \\
& =2 a^{2}\left(\frac{p^{2}+q^{2}}{2}-1\right) \\
& =2 a^{2}\left(\frac{(p+q)^{2}-2 p q}{2}-1\right) \\
& =2 a^{2}\left(\frac{(p+q)^{2}+2}{2}-1\right) \\
& =2 a^{2}\left(\frac{(p+q)^{2}}{2}+1-1\right) \\
& =2 a^{2}\left(\frac{(p+q)^{2}}{2}\right) \\
& =a^{2}(p+q)^{2}=y^{2}
\end{aligned}
$$

Therefore the locus of the midpoint of $P Q$ has equation $y^{2}=2 a(x-a)$

Challenge

a For a general point $P\left(a t^{2}, 2 a t\right)$ on the parabola, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}=\frac{2 a}{2 a t}=\frac{1}{t}$
The gradient of the normal at P is therefore $-t$

Since the incoming ray is parallel to the x axis, from the following right-angled triangle, you have that $\tan \alpha=t$.

b $\tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}=\frac{2 t}{1-t^{2}}$

From the diagram above, the gradient of the reflected ray is

$$
\begin{aligned}
\tan (\pi-2 \alpha) & =-\tan 2 \alpha \\
& =-\frac{2 t}{1-t^{2}} \\
& =\frac{2 t}{t^{2}-1}
\end{aligned}
$$

c The focus of the parabola has
coordinates $S(a, 0)$
The gradient of $P S$ is therefore
$\frac{2 a t-0}{a t^{2}-a}=\frac{2 t}{t^{2}-1}$
The reflected ray has a common point (P) and the same gradient as $P S$. The ray therefore passes through the point S.

