Recurrence relations 4A

1 a Let u_{n} be the value of the endowment policy after n years.
During a year, the policy increase is $0.05 u_{n-1}$.
So $u_{n}=u_{n-1}+0.05 u_{n-1}=1.05 u_{n-1}, u_{0}=7000$.
b $u_{1}=1.05 u_{0}=1.05 \times 7000=7350$
$u_{2}=1.05 u_{1}=1.05 \times 7350=7717.5$
$u_{3}=1.05 u_{2}=1.05 \times 7717.5=8103.375$
$u_{4}=1.05 u_{3}=1.05 \times 8103.375=8508.54375$
So the value of the endowment after 4 years is $£ 8508.54$.
2 a During an eight hour period, $0.78 d_{n-1}$ of the drug remains and 25 ml is added.
So $d_{n}=0.78 d_{n-1}+25, d_{0}=156$
b After 24 hours, $n=3$
$d_{1}=0.78 d_{0}+25=0.78 \times 156+25=146.68$
$d_{2}=0.78 d_{1}+25=0.78 \times 146.68+25=139.4104$
$d_{3}=0.78 d_{2}+25=0.78 \times 139.4104+25=133.740112$
Hence, to the nearest ml , the amount of drug in the patient's system is 134 ml .
3 Each month 0.5% is added to the balance and $£ 200$ paid off so
$b_{n}=b_{n-1}+0.005 b_{n-1}-200=1.005 b_{n-1}-200$ with $b_{0}=5000$
Hence $k=1.005$
4 The percentage change in population due to births and deaths is $+1 \%$ and the net migration into the country is 50000 .
So $P_{n}=P_{n-1}+0.01 P_{n-1}+50000=P_{n}=1.01 P_{n-1}+50000$ with $P_{0}=12500000$
$5 \quad u_{n-1}=5(n-1)+2=5 n-3$
So $u_{n-1}+5=5 n-3+5=5 n+2=u_{n}$
$6 u_{n-1}=6 \times 2^{n-1}+1$
So $2 u_{n-1}-1=2\left(6 \times 2^{n-1}+1\right)-1=6 \times 2 \times 2^{n-1}+2-1=6 \times 2^{n}+1=u_{n}$
7 a Substituting $i=1,2,3,4$ gives $1,3,5,7$
The sequence is formed by summing terms so
$u_{1}=1$
$u_{2}=1+3=4$
$u_{3}=1+3+5=9$
$u_{4}=1+3+5+7=16$
b $\quad u_{n+1}=\sum_{i=1}^{n}(2 i-1)+2(n+1)-1=u_{n}+2 n+1, n \geqslant 1$

7 c $\quad u_{n+1}=(n+1)^{2}=n^{2}+2 n+1=u_{n}+2 n+1$
8 a i The increase in oil production every month is 1%, so the multiplier is 1.01 .
Hence after n months, the amount of oil produced is $2000 \times 1.01^{n-1}$.
ii The increase in sales every month is 20 .
Hence after n months, the amount of barrels sold is $1800+20(n-1)=1780+20 n$.
b $s_{n}=s_{n-1}+2000 \times 1.01^{n-1}-(1780+20 n)=s_{n-1}+2000 \times 1.01^{n-1}-1780-20 n$ with $s_{0}=0$
9 a With one person, there is no one else to shake hands with so there are no handshakes.
b Each person added shakes hands with the existing n people in the group so $\mathrm{h}(n+1)=\mathrm{h}(n)+n$.

10 a $u_{0}=1, u_{1}=1$ as given
$u_{2}=2 \times 1+3 \times 1=5$
$u_{3}=2 \times 5+3 \times 1=13$
$u_{4}=2 \times 13+3 \times 5=41$
$u_{5}=2 \times 41+3 \times 13=121$
b $u_{0}=1, u_{1}=1$ as given
$u_{2}=1-2 \times 1=-1$
$u_{3}=-1-2 \times 1=-3$
$u_{4}=-3-2 \times-1=-1$
$u_{5}=-1-2 \times-3=5$
c $u_{0}=1, u_{1}=1$ as given
$u_{2}=1+1+2 \times 2=6$
$u_{3}=6+1+2 \times 3=13$
$u_{4}=13+6+2 \times 4=27$
$u_{5}=27+13+2 \times 5=50$

11 After n hours, bacteria alive after $n-1$ hours double, so $+2 B_{n-1}$ while bacteria alive after $n-2$ hours die so $-B_{n-2}$.
Hence after n hours, the number of bacteria is $B_{n}=2 B_{n-1}-B_{n-2}, n \geqslant 2$ with $B_{0}=100$

$$
12 \begin{aligned}
u_{n-1}=(2-(n-1)) 2^{n-1+1}=(3-n) 2^{n} \\
u_{n-2}=(2-(n-2)) 2^{n-2+1}=(4-n) 2^{n-1} \\
\begin{aligned}
4\left(u_{n-1}-u_{n-2}\right) & =2^{2}(3-n) 2^{n}-2^{2}(4-n) 2^{n-1} \\
& =2(3-n) 2^{n+1}-(4-n) 2^{n+1} \\
& =2^{n+1}(2(3-n)-(4-n)) \\
& =(2-n) 2^{n+1}
\end{aligned}
\end{aligned}
$$

which equals u_{n} as required.
13 a The options are: $10,10,10,10 ; 10,10,20 ; 10,20,10 ; 20,10,10 ; 20,20$
Hence there are 5 options and $J_{4}=5$.
b $J_{1}=1$ since the kangaroo can cover 10 cm in only one way, a single small jump $J_{2}=2$ since the kangaroo can cover 20 cm with either two small jumps or one large jump
When $n=3$, you can either add a single large jump to the $n=1$ options, or a single small jump to the $n=2$ options, so there are $1+2=3$ options.
Generally, when you consider J_{n}, you can either add one large jump to the options for J_{n-2} or a single small jump to the options for J_{n-1} hence $J_{n}=J_{n-1}+J_{n-2}$
c $J_{5}=5+3=8$
$J_{6}=8+5=13$
$J_{7}=13+8=21$
$J_{8}=21+13=34$
14 a Initially, there are four rabbits so $F_{0}=4$
Those four rabbits each produce six offspring so $F_{1}=6 \times 4+4=28$
In each subsequent year, $F_{n-1}-F_{n-2}$ rabbits just born produce two offspring each and the F_{n-2} older rabbits each produce six offspring.
Hence $F_{n}=2\left(F_{n-1}-F_{n-2}\right)+6 F_{n-2}+F_{n-1}=3 F_{n-1}+4 F_{n-2}$ as required.
b The model assumes no female rabbits ever die.
15a When $n=1$, the only options are 0 and 1 so $b_{1}=2$
When $n=2$, the options are 00,01 and 10 so $b_{2}=3$
b Strings of length n ending with 0 that do not have consecutive 1 s are the strings of length $n-1$ with no consecutive 1 s , so there are b_{n-1} such strings.
Strings of length n ending with 1 that do not have consecutive 1 s must have 0 as their ($n-1$)th digit, otherwise they will end with a pair of 1s.
It follows that the strings with length n ending with a 1 that have no consecutive 1 s are the strings of length $n-2$ with no consecutive 1 s with 01 added at the end, so there are b_{n-2} such strings.
Hence $b_{n}=b_{n-1}+b_{n-2}$ as required.
c $b_{3}=3+2=5$
$b_{4}=5+3=8$
$b_{5}=8+5=13$
$b_{6}=13+8=21$
$b_{7}=21+13=34$

