Recurrence relations 4C

1 a *n* even:
$$5(-1)^{n-1} + 6(-1)^{n-2} = -5 + 6 = 1 = (-1)^n$$

n odd: $5(-1)^{n-1} + 6(-1)^{n-2} = 5 - 6 = -1 = (-1)^n$
b $5 \times 6^{n-1} + 6 \times 6^{n-2} = 5 \times 6^{n-1} + 6^{n-1} = 6 \times 6^{n-1} = 6^n$
c $5(A(-1)^{n-1} + B(6^{n-1})) + 6(A(-1)^{n-2} + B(6^{n-2}))$
 $= -5A(-1)^{n-2} + 6B(6^{n-1})$
 $= A(-1)^n + B(6^n)$
2 a $5(3^n) - 6 \times 5(3^{n-1}) + 9 \times 5(3^{n-2})$
 $= 5(3^n) - 2 \times 5(3^n) + 9(-(n-2)3^{n-2})$
 $= -n3^n + 6n(3^{n-1}) + 6 \times 3^{n-1} - 9n(3^{n-2}) - 9 \times 2(3^{n-2})$
 $= -n3^n + 6n(3^{n-1}) + 6 \times 3^{n-1} - 9n(3^{n-2}) - 9 \times 2(3^{n-2})$
 $= -n3^n + 2n3^n + 2 \times 3^n - n3^n - 2 \times 3^n = 0$
c $5(3^n) - n3^n - 6(5(3^{n-1}) - (n-1)3^{n-1}) + 9(5(3^{n-2}) - (n-2)3^{n-2})$
 $= 5(3^n) - n3^n - 10(3^n) + 6n3^{n-1} - 6(3^{n-1}) + 5(3^n) - 9n3^{n-2} + 18(3^{n-2})$
 $= 5(3^n) - n3^n - 10(3^n) + 2n3^n - 2(3^n) + 5(3^n) - n3^n + 2(3^n) = 0$
3 a $\cos\left((n+2)\frac{\pi}{2}\right) + \cos\left(n\frac{\pi}{2}\right) = \cos\left(\pi + n\frac{\pi}{2}\right) + \cos\left(n\frac{\pi}{2}\right)$
 $= -\cos\left(n\frac{\pi}{2}\right) + \cos\left(n\frac{\pi}{2}\right) = 0$
b $\sin\left((n+2)\frac{\pi}{2}\right) + \sin\left(n\frac{\pi}{2}\right) = 0$
c $\cos\left((n+2)\frac{\pi}{2}\right) + \sin\left(n\frac{\pi}{2}\right) = 0$
($\cos\left((n+2)\frac{\pi}{2}\right) + \sin\left(n\frac{\pi}{2}\right) = 0$
($\cos\left((n+2)\frac{\pi}{2}\right) + \sin\left((n+2)\frac{\pi}{2}\right) + \cos\left(n\frac{\pi}{2}\right) + \sin\left(n\frac{\pi}{2}\right)$
 $= -\sin\left(n\frac{\pi}{2}\right) + \sin\left((n+2)\frac{\pi}{2}\right) + \cos\left(n\frac{\pi}{2}\right) + \sin\left(n\frac{\pi}{2}\right)$
 $= \cos\left(\pi + n\frac{\pi}{2}\right) + \sin\left((\pi + n\frac{\pi}{2}\right) + \cos\left(n\frac{\pi}{2}\right) + \sin\left(n\frac{\pi}{2}\right)$

$$= -\cos\left(n\frac{\pi}{2}\right) + -\sin\left(n\frac{\pi}{2}\right) + \cos\left(n\frac{\pi}{2}\right) + \sin\left(n\frac{\pi}{2}\right) = 0$$

4 $au_{n-1} + bu_{n-2} = a(cF(n-1) + dG(n-1)) + b(cF(n-2) + dG(n-2))$
 $= c(aF(n-1) + bF(n-2)) + d(aG(n-1) + bG(n-2))$

 $= cF(n) + dG(n) = u_n$

- 5 a Auxiliary equation: $r^2 2r + 1 = 0$ Solving gives r = 1General solution: $a_n = (A + Bn)(1^n) = A + Bn$
 - **b** Auxiliary equation: $r^2 3r + 2 = 0$ Solving gives r = 1 or r = 2General solution: $u_n = A(1^n) + B(2^n) = A + B(2^n)$
 - **c** Auxiliary equation: $r^2 6r + 9 = 0$ Solving gives r = 3General solution: $x_n = (A + Bn)(3^n)$
 - **d** Auxiliary equation: $r^2 4r + 5 = 0$ Solving gives $r = 2 \pm i$ General solution: $t_n = A(2+i)^n + B(2-i)^n$
- 6 Auxiliary equation must have solutions of r = 7 or r = 1Thus (r-7)(r-1) = 0Hence $r^2 - 8r + 7 = 0$ Hence a = -8 and b = 7
- 7 a Auxiliary equation: $r^2 5r + 6 = 0$ Solving gives r = 3 or r = 2General solution: $a_n = A(2^n) + B(3^n)$ Substituting initial conditions: 2 = A + B5 = 2A + 3BSolving simultaneously gives A = 1 and B = 1Hence closed form of the recurrence relation is $a_n = 2^n + 3^n$
 - **b** Auxiliary equation: $r^2 6r + 9 = 0$ Solving gives r = 3General solution: $u_n = (A + Bn)(3^n)$ Substituting initial conditions: 2 = 3(A + B)5 = 9(A + 2B)

Solving simultaneously gives $A = \frac{7}{9}$ and $B = -\frac{1}{9}$

Hence closed form of the recurrence relation is $u_n = \left(\frac{7}{9} - \frac{1}{9}n\right)(3^n) = (7 - n)(3^{n-2})$

c Auxiliary equation: $r^2 - 7r + 10 = 0$ Solving gives r = 5 or r = 2General solution: $s_n = A(2^n) + B(5^n)$ Substituting initial conditions: 4 = A + B17 = 2A + 5BSolving simultaneously gives A = 1 and B = 3Hence closed form of the recurrence relation is $s_n = 2^n + 3(5^n)$

SolutionBank

7 **d** Auxiliary equation: $r^2 - 2r + 5 = 0$ Solving gives $r = 1 \pm 2i$ General solution: $u_n = A(1+2i)^n + B(1-2i)^n$ Substituting initial conditions: 1 = A + B5 = A(1+2i) + B(1-2i) = A + B + 2(A - B)iSolving simultaneously gives $2(A - B)i = 4 \Rightarrow (A - B)i = 2$ $(1 - 2B)i = 2 \Rightarrow B = \frac{i-2}{2i} = \frac{1+2i}{2}$ $\Rightarrow A = 1 - \frac{1+2i}{2} = \frac{1-2i}{2}$

Hence closed form of the recurrence relation is $u_n = \left(\frac{1-2i}{2}\right)(1+2i)^n + \left(\frac{1+2i}{2}\right)(1-2i)^n$

Or
$$u_n = \frac{5}{2} \left[(1+2i)^{n-1} + (1-2i)^{n-1} \right]$$

8 a Auxiliary equation: $r^2 - 5r + 4 = 0$ Solving gives r = 4 or r = 1General solution: $u_n = A(1^n) + B(4^n)$ Substituting initial conditions: 20 = A + B19 = A + 4B

Solving simultaneously gives $A = \frac{61}{3}$ and $B = -\frac{1}{3}$

Hence closed form of the recurrence relation is $u_n = \frac{61}{3} - \frac{1}{3}(4^n)$

b $u_{n+1} - u_n = -\frac{4}{3}(4^n) - \left(-\frac{1}{3}(4^n)\right) = -4^n < 0$ so u_n is decreasing. $u_n < 0 \Rightarrow 4^n > 61 \Rightarrow n \ge 3$

9 a Auxiliary equation: $r^2 - \sqrt{2}r + 1 = 0$ Solving gives $r = \frac{\sqrt{2}}{2}(1 \pm i)$

Complex solutions with modulus 1 and $\theta = \frac{\pi}{4}$

General solution:
$$u_n = 1^n \left(A \cos\left(\frac{n\pi}{4}\right) + B \sin\left(\frac{n\pi}{4}\right) \right) = A \cos\left(\frac{n\pi}{4}\right) + B \sin\left(\frac{n\pi}{4}\right)$$

Substituting initial conditions:

$$1 = A$$
$$1 = \frac{A}{\sqrt{2}} + \frac{B}{\sqrt{2}}$$

Solving simultaneously gives A = 1 and $B = \sqrt{2} \left(1 - \frac{1}{\sqrt{2}} \right) = \sqrt{2} - 1$ Hence closed form of the recurrence relation is $\mu = \cos\left(\frac{n\pi}{\sqrt{2}}\right) + \left(\sqrt{2} - 1\right)\sin\left(\frac{n\pi}{\sqrt{2}}\right)$

Hence closed form of the recurrence relation is $u_n = \cos\left(\frac{n\pi}{4}\right) + \left(\sqrt{2} - 1\right)\sin\left(\frac{n\pi}{4}\right)$

- **b** cos and sin are both periodic so the sequence is periodic. Period of sin and cos is 2π so period of u_n is $\frac{2\pi}{\frac{\pi}{4}} = 8$
- **10 a** Sequence is formed Fibonacci like so first seven terms are 1, 3, 4, 7, 11, 18, 29.
 - **b** Auxiliary equation: $r^2 r 1 = 0$ Solving gives $r = \frac{1 \pm \sqrt{5}}{2}$

General solution:
$$L_n = A\left(\frac{1+\sqrt{5}}{2}\right)^n + B\left(\frac{1-\sqrt{5}}{2}\right)^n$$

Substituting initial conditions:

$$1 = A\left(\frac{1+\sqrt{5}}{2}\right) + B\left(\frac{1-\sqrt{5}}{2}\right)$$
$$3 = A\left(\frac{1+\sqrt{5}}{2}\right)^{2} + B\left(\frac{1-\sqrt{5}}{2}\right)^{2} = A\left(\frac{3+\sqrt{5}}{2}\right) + B\left(\frac{3-\sqrt{5}}{2}\right)$$

Solving simultaneously gives A = 1 and B = 1

Hence closed form of the recurrence relation is $L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$

11 a Auxiliary equation: $r^2 - 5r + 6 = 0$ Solving gives r = 2 or r = 3Complementary function is $x_n = A(2^n) + B(3^n)$ Try particular solution λ :

$$\lambda = 5\lambda - 6\lambda + 1 \Longrightarrow \lambda = \frac{1}{2}$$

Hence general solution is $x_n = A(2^n) + B(3^n) + \frac{1}{2}$

b Auxiliary equation: $r^2 - r - 2 = 0$ Solving gives r = -1 or r = 2Complementary function is $u_n = A(2^n) + B(-1)^n$ Try particular solution $\lambda n + \mu$: $\lambda n + \mu - (\lambda(n-1) + \mu) - 2(\lambda(n-2) + \mu) = 2n$ $\lambda n + \mu - \lambda n + \lambda - \mu - 2\lambda n + 4\lambda - 2\mu = 2n$

Equating coefficients:

$$-2\lambda = 2 \Rightarrow \lambda = -1$$

 $\mu + \lambda - \mu + 4\lambda - 2\mu = 0 \Rightarrow -2\mu = 5 \Rightarrow \mu = -\frac{5}{2}$

Hence general solution is $u_n = A(2^n) + B(-1)^n - n - \frac{5}{2}$

- c Auxiliary equation: $r^2 + 4r + 3 = 0$ Solving gives r = -3 or r = -1Complementary function is $a_n = A(-3)^n + B(-1)^n$ Try particular solution $\lambda(-2)^n$: $\lambda(-2)^{n+2} + 4\lambda(-2)^{n+1} + 3\lambda(-2)^n = 5(-2)^n$ $4\lambda - 8\lambda + 3\lambda = 5 \Rightarrow \lambda = -5$ Hence general solution is $a_n = A(-3)^n + B(-1)^n - 5(-2)^n$
- **d** Auxiliary equation: $r^2 + 4r + 3 = 0$ Solving gives r = -3 or r = -1Complementary function is $a_n = A(-3)^n + B(-1)^n$ Try particular solution $\lambda n(-3)^n$: $\lambda (n+2)(-3)^{n+2} + 4\lambda (n+1)(-3)^{n+1} + 3\lambda n(-3)^n = 12(-3)^n$ $9\lambda (n+2) - 12\lambda (n+1) + 3\lambda n = 12$ $\Rightarrow 18\lambda - 12\lambda = 12 \Rightarrow \lambda = 2$ Hence general solution is $a_n = A(-3)^n + B(-1)^n + 2n(-3)^n$

SolutionBank

Further Pure Mathematics Book 2

- 11 e Auxiliary equation: $r^2 6r + 9 = 0$ Solving gives r = 3Complementary function is $a_n = (A + Bn)(3^n)$ Try particular solution $\lambda n^2(3^n)$: $\lambda (n+2)^2 (3^{n+2}) - 6\lambda (n+1)^2 (3^{n+1}) + 9\lambda n^2 (3^n) = 3^n$ $9\lambda (n+2)^2 - 18\lambda (n+1)^2 + 9\lambda n^2 = 1$ $\Rightarrow 36\lambda - 18\lambda = 1 \Rightarrow \lambda = \frac{1}{18}$ Hence general solution is $a_n = (A + Bn)(3^n) + \frac{1}{18}n^2(3^n) = \left(A + Bn + \frac{n^2}{18}\right)(3^n)$
 - **f** Auxiliary equation: $r^2 7r + 10 = 0$ Solving gives r = 2 or r = 5Complementary function is $u_n = A(2^n) + B(5^n)$ Try particular solution $\lambda n + \mu$: $\lambda n + \mu = 7(\lambda(n-1) + \mu) - 10(\lambda(n-2) + \mu) + 6 + 8n$ $\lambda n + \mu = 7\lambda n - 7\lambda + 7\mu - 10\lambda n + 20\lambda - 10\mu + 6 + 8n$ Equating coefficients: $\lambda = 7\lambda - 10\lambda + 8 \Rightarrow \lambda = 2$ $\mu = -7\lambda + 7\mu + 20\lambda - 10\mu + 6 \Rightarrow 4\mu = 32 \Rightarrow \mu = 8$ Hence general solution is $u_n = A(2^n) + B(5^n) + 8 + 2n$
- 12 a Auxiliary equation: $r^2 2r 3 = 0$ Solving gives r = 3 or r = -1Complementary function is $u_n = A(3^n) + B(-1)^n$ Try particular solution λ :

$$\lambda = 2\lambda + 3\lambda + 1 \Longrightarrow \lambda = -\frac{1}{4}$$

Hence general solution is $u_n = A(3^n) + B(-1)^n - \frac{1}{4}$

Substituting initial conditions:

$$3 = 3A - B - \frac{1}{4} \implies 3A - B = \frac{13}{4}$$
$$7 = 9A + B - \frac{1}{4} \implies 9A + B = \frac{29}{4}$$

Solving simultaneously gives $A = \frac{7}{8}$ and $B = -\frac{5}{8}$

Hence closed form of the recurrence relation is $u_n = \frac{7}{8}(3^n) - \frac{5}{8}(-1)^n - \frac{1}{4} = \frac{1}{8}(7(3^n) - 5(-1)^n - 2)$

12b Auxiliary equation:
$$r^2 - 3r + 2 = 0$$

Solving gives $r = 2$ or $r = 1$
Complementary function is $a_n = A + B(2^n)$
Try particular solution $\lambda(-1)^n$:
 $\lambda(-1)^{n-1} - 3\lambda(-1)^n + 2\lambda(-1)^{n-1} = 6(-1)^n$
 $\lambda + 3\lambda + 2\lambda - 6 \Rightarrow \lambda - 1$
Hence general solution is $a_n = A + B(2^n) - (-1)^n$
Substituting initial conditions:
 $12 = A + B - 1 \Rightarrow A + B = 13$
 $12 = A + 2B + 1 \Rightarrow A + 2B = 11$
Solving simultaneously gives $B = -2$ and $A = 15$
Hence closed form of the recurrence relation is $a_n = 15 - 2(2^n) - (-1)^n = 15 - 2^{n+1} + (-1)^{n+1}$
c Auxiliary equation: $r^2 - 3r - 10 = 0$
Solving gives $r = 5$ or $r = -2$
Complementary function is $u_n = A(5^n) + B(-2)^n$
Try particular solution $\lambda n(5^n)$:
 $\lambda n(5^n) = 3\lambda(n-1)(5^{n-1}) + 10\lambda(n-2)(5^{n-2}) + 7(5^n)$
 $25\lambda n = 15\lambda(n-1) + 10\lambda(n-2) + 175$
 $\Rightarrow 0 = -15\lambda - 20\lambda + 175 \Rightarrow \lambda = 5$
Hence general solution is $u_n = A(5^n) + B(-2)^n + 5n(5^n)$
Substituting initial conditions:
 $4 = A + B$
 $3 = 5A - 2B + 25 \Rightarrow 5A - 2B = -22$
Solving simultaneously gives $A = -2$ and $B = 6$
Hence closed form of the recurrence relation is $u_n = -2(5^n) + 6(-2)^n + 5n(5^n)$
 $an(5^{n+1}) - 2(5^n) + 6(-2)^n$
d Auxiliary equation: $r^2 - 10r + 25 = 0$
Solving gives $r = 5$
Complementary function is $x_n = (A + Bn)(5^n)$
Try particular solution $\lambda n^2(5^n)$:
 $\lambda n^2(5^n) = 10\lambda(n-1)^2(5^n) - 25\lambda(n-2)^2(5^{n-2}) + 8(5^n)$
 $25\lambda n^2 = 50\lambda(n-1)^2 - 25\lambda(n-2)^2 + 200$
 $0 = 502 - 100\lambda + 200 \Rightarrow \lambda = 4$
Hence general solution is $x_n = (A + Bn)(5^n)$
Try particular solution is $x_n = (A + Bn)(5^n)$
Hence general solution is $x_n = (A + Bn)(5^n) + 4n^2(5^n)$
Substituting initial conditions:
 $6 - A$
 $10 = 5A + 5B + 20 \Rightarrow B = -8$
Hence closed form of the recurrence relation is $x_n = (6 - 8n)(5^n) + 4n^2(5^n) = (4n^2 - 8n + 6)(5^n)$
13a Try particular solution k:
 $k + 4k + 4k = 7 \Rightarrow k = \frac{7}{9}$

SolutionBank

Further Pure Mathematics Book 2

13 b Auxiliary equation: $r^2 + 4r + 4 = 0$ Solving gives r = -2Complementary function is $b_n = (A + Bn)(-2)^n$

Hence general solution is $b_n = (A + Bn)(-2)^n + \frac{7}{9}$

Substituting initial conditions:

$$1 = A + \frac{7}{9} \implies A = \frac{2}{9}$$
$$2 = -2(A + B) + \frac{7}{9} \implies B = -\frac{5}{6}$$

Hence closed form of the recurrence relation is $b_n = \left(\frac{2}{9} - \frac{5}{6}n\right)(-2)^n + \frac{7}{9} = \frac{2}{9}(-2)^n - \frac{5}{6}n(-2)^n + \frac{7}{9}$

- 14 a Auxiliary equation: $r^2 7r + 6 = 0$ Solving gives r = 6 or r = 1Complementary function is $u_n = A(6^n) + B$ Try particular solution λn : $\lambda n = 7\lambda(n-1) - 6\lambda(n-2) + 75$ $\lambda n = 7\lambda n - 7\lambda - 6\lambda n + 12\lambda + 75$ $\Rightarrow 0 = 5\lambda + 75 \Rightarrow \lambda = -15$ Hence general solution is $u_n = A(6^n) + B - 15n$
 - **b** Substituting initial conditions:

2 = A + B $2 = 6A + B - 15 \ 6A + B = 17$ Solving simultaneously gives A = 3 and B = -1Hence closed form of the recurrence relation is $u_n = 3(6^n) - 1 - 15n = 3(6^n) - 15n - 1$

15 a Try particular solution
$$kn^{2}(3^{n})$$
:
 $k(n+2)^{2}(3^{n+2}) - 6k(n+1)^{2}(3^{n+1}) + 9kn^{2}(3^{n}) = 7(3^{n})$
 $9k(n+2)^{2} - 18k(n+1)^{2} + 9kn^{2} = 7$
 $\Rightarrow 36k - 18k = 7 \Rightarrow k = \frac{7}{18}$

b Auxiliary equation: $r^2 - 6r + 9 = 0$ Solving gives r = 3General solution is $u_n = (A + Bn)(3^n) = A(3^n) + Bn(3^n)$

c General solution is $u_n = A(3^n) + Bn(3^n) + \frac{7}{18}n^2(3^n)$

Substituting initial conditions:

1 = A

$$4 = 3A + 3B + \frac{21}{18} \implies B = -\frac{1}{18}$$

Hence closed form of the recurrence relation is $u_n = 3^n - \frac{1}{18}n(3^n) + \frac{7}{18}n^2(3^n) = \left(1 - \frac{1}{18}n + \frac{7}{18}n^2\right)(3^n)$

16 a Auxiliary equation: $r^2 - r + 1 = 0$ Solving gives $r = \frac{1}{2}(1 \pm \sqrt{3}i)$

Complex solutions with modulus 1 and $\theta = \frac{\pi}{2}$

General solution:
$$u_n = 1^n \left(A \cos\left(\frac{n\pi}{3}\right) + B \sin\left(\frac{n\pi}{3}\right) \right) = A \cos\left(\frac{n\pi}{3}\right) + B \sin\left(\frac{n\pi}{3}\right)$$

Substituting initial conditions:

Substituting initial conditions:

0 = A

$$3 = B\left(\sin\left(\frac{\pi}{3}\right)\right) \Longrightarrow B = \frac{3}{\frac{\sqrt{3}}{2}} = 2\sqrt{3}$$

Hence the closed form of the recurrence relation is $u_n = 2\sqrt{3} \left(\sin \left(\frac{\pi}{3} n \right) \right)$

- **b** sin is periodic so the sequence is periodic. Period of $\sin = 2\pi$ so period of sequence $= \frac{2\pi}{\frac{\pi}{3}} = 6$
- 17 a If A is first, you cannot have A second but you can have it third so 2 × 3 options. If A is second, you cannot have A first or third so 2 × 2 options. If A is third, you cannot have A second but you can have it first so 3 × 2 options but ABA and ACA already counted so 4 options left. Having no As gives 2 × 2 × 2 options. 6+4+4+8=22
 - **b** Strings of length *n* with no consecutive As are the strings of length n 1 with no consecutive As with a B or a C added at the end.

Thus there are $2s_{n-1}$ such strings.

But strings of length *n* ending in an A that do not have consecutive As must have B or C as their (n - 1)th letter, otherwise they will end in a pair of As. It follows that strings of length *n* ending with an A that have no consecutive As are the strings of length n - 2 with either a B or a C added at the end.

Thus there are $2s_{n-2}$ such strings.

Hence $s_n = 2s_{n-1} + 2s_{n-2}$ with $s_0 = 1$ and $s_1 = 3$

c i Auxiliary equation: $r^2 - 2r - 2 = 0$ Solving gives $r = 1 \pm \sqrt{3}$ General solution is $s_n = A(1 + \sqrt{3})^n + B(1 - \sqrt{3})^n$ Substituting initial conditions: 1 = A + B $3 = A(1 + \sqrt{3}) + B(1 - \sqrt{3})$

Solving simultaneously gives $A = \frac{3 + 2\sqrt{3}}{6}$ and $B = \frac{3 - 2\sqrt{3}}{6}$

Hence closed form of the recurrence relation is $s_n = \frac{1}{6} \left[(3 + 2\sqrt{3})(1 + \sqrt{3})^n + (3 - 2\sqrt{3})(1 - \sqrt{3})^n \right]$

ii Substitute n = 20: $s_{20} = 578272256$

 $u = \sqrt{\frac{u_{n-2}}{2}}, \quad u_n = 8, \quad u_n = \frac{1}{2}$

Challenge

$$u_{n} = \sqrt{u_{n-1}}, \quad u_{0} = 0, \quad u_{1} = 2\sqrt{2}$$

$$\log_{2} u_{n} = \frac{1}{2}\log_{2} u_{n-2} - \frac{1}{2}\log_{2} u_{n-1}$$
Let $v_{n} = \log_{2} u_{n}$
Then $v_{0} = \log_{2} 8$ $v_{1} = \log_{2} \left(2^{-\frac{3}{2}}\right) = -\frac{3}{2}$
The recurrence relation becomes $v_{n} = \frac{1}{2}v_{n-2} - \frac{1}{2}v_{n-1}$

The auxiliary equation is

$$r^{2} + \frac{1}{2}r - \frac{1}{2} = 0$$

$$2r^{2} + r - 1 = 0$$

$$(2r - 1)(r + 1) = 0$$

$$r = -1 \text{ or } \frac{1}{2}$$

2 So the general solution has the form

$$v_{n} = A(-1)^{n} + B\left(\frac{1}{2}\right)^{n}$$

$$n = 0: \quad A + B = 3$$

$$n = 1: \quad -A + 0.5B = 3 \quad \frac{3}{2}B = \frac{3}{2} \implies B = 1, \ A = 2$$

$$v_{n} = 2(-1)^{n} + \left(\frac{1}{2}\right)^{n}$$
and $u_{n} = 2^{v_{n}} = 2^{2(-1)^{n} + \left(\frac{1}{2}\right)^{n}}$

Need auxiliary equation to have complex solutions such that $\theta = \frac{\pi}{6}$, i.e. complex solutions of the 2

form $p \pm qi$ such that $\frac{q}{p} = \frac{1}{\sqrt{3}}$ hence complex solutions $\sqrt{3} \pm i$. $(r - (\sqrt{3} + i))(r - (\sqrt{3} - i)) = 0$ $\Rightarrow r^2 - 2\sqrt{3}r + 4 = 0$ Hence possible recurrence relation is $u_n = 2\sqrt{3}u_{n-1} - 4u_{n-2}$ giving $a = 2\sqrt{3}$ and b = -4Magnitude of complex solutions is 2 so $u_n = 2\left(A\cos\left(n\frac{\pi}{6}\right) + B\sin\left(n\frac{\pi}{6}\right)\right)$

Using initial conditions: $0 = 2A \implies A = 0$ $k = 2\left(A\cos\left(\frac{\pi}{6}\right) + B\sin\left(\frac{\pi}{6}\right)\right) \Longrightarrow k = B$

Therefore particular solution is $u_n = 2k \sin\left(n\frac{\pi}{6}\right)$ so sequence is periodic with period 12 and oscillates between $\pm 2k$