Recurrence relations 4C

1 a n even: $5(-1)^{n-1}+6(-1)^{n-2}=-5+6=1=(-1)^{n}$ n odd: $5(-1)^{n-1}+6(-1)^{n-2}=5-6=-1=(-1)^{n}$
b $5 \times 6^{n-1}+6 \times 6^{n-2}=5 \times 6^{n-1}+6^{n-1}=6 \times 6^{n-1}=6^{n}$
c $\quad 5\left(A(-1)^{n-1}+B\left(6^{n-1}\right)\right)+6\left(A(-1)^{n-2}+B\left(6^{n-2}\right)\right)$
$=-5 A(-1)^{n-2}+6 A(-1)^{n-2}+5 B\left(6^{n-1}\right)+6 B\left(6^{n-2}\right)$
$=A(-1)^{n-2}+6 B\left(6^{n-1}\right)$
$=A(-1)^{n}+B\left(6^{n}\right)$
2 a $5\left(3^{n}\right)-6 \times 5\left(3^{n-1}\right)+9 \times 5\left(3^{n-2}\right)$

$$
=5\left(3^{n}\right)-2 \times 5\left(3^{n}\right)+5\left(3^{n}\right)=0
$$

b $-n 3^{n}-6\left(-(n-1) 3^{n-1}\right)+9\left(-(n-2) 3^{n-2}\right)$

$$
\begin{aligned}
& =-n 3^{n}+6 n\left(3^{n-1}\right)+6 \times 3^{n-1}-9 n\left(3^{n-2}\right)-9 \times 2\left(3^{n-2}\right) \\
& =-n 3^{n}+2 n 3^{n}+2 \times 3^{n}-n 3^{n}-2 \times 3^{n}=0
\end{aligned}
$$

c $5\left(3^{n}\right)-n 3^{n}-6\left(5\left(3^{n-1}\right)-(n-1) 3^{n-1}\right)+9\left(5\left(3^{n-2}\right)-(n-2) 3^{n-2}\right)$

$$
\begin{aligned}
& =5\left(3^{n}\right)-n 3^{n}-10\left(3^{n}\right)+6 n 3^{n-1}-6\left(3^{n-1}\right)+5\left(3^{n}\right)-9 n 3^{n-2}+18\left(3^{n-2}\right) \\
& =5\left(3^{n}\right)-n 3^{n}-10\left(3^{n}\right)+2 n 3^{n}-2\left(3^{n}\right)+5\left(3^{n}\right)-n 3^{n}+2\left(3^{n}\right)=0
\end{aligned}
$$

3 a $\cos \left((n+2) \frac{\pi}{2}\right)+\cos \left(n \frac{\pi}{2}\right)=\cos \left(\pi+n \frac{\pi}{2}\right)+\cos \left(n \frac{\pi}{2}\right)$

$$
=-\cos \left(n \frac{\pi}{2}\right)+\cos \left(n \frac{\pi}{2}\right)=0
$$

b $\sin \left((n+2) \frac{\pi}{2}\right)+\sin \left(n \frac{\pi}{2}\right)=\sin \left(\pi+n \frac{\pi}{2}\right)+\sin \left(n \frac{\pi}{2}\right)$

$$
=-\sin \left(n \frac{\pi}{2}\right)+\sin \left(n \frac{\pi}{2}\right)=0
$$

c $\quad \cos \left((n+2) \frac{\pi}{2}\right)+\sin \left((n+2) \frac{\pi}{2}\right)+\cos \left(n \frac{\pi}{2}\right)+\sin \left(n \frac{\pi}{2}\right)$
$=\cos \left(\pi+n \frac{\pi}{2}\right)+\sin \left(\pi+n \frac{\pi}{2}\right)+\cos \left(n \frac{\pi}{2}\right)+\sin \left(n \frac{\pi}{2}\right)$
$=-\cos \left(n \frac{\pi}{2}\right)+-\sin \left(n \frac{\pi}{2}\right)+\cos \left(n \frac{\pi}{2}\right)+\sin \left(n \frac{\pi}{2}\right)=0$
$4 a u_{n-1}+b u_{n-2}=a(c \mathrm{~F}(n-1)+d \mathrm{G}(n-1))+b(c \mathrm{~F}(n-2)+d \mathrm{G}(n-2))$
$=c(a \mathrm{~F}(n-1)+b \mathrm{~F}(n-2))+d(a \mathrm{G}(n-1)+b \mathrm{G}(n-2))$
$=c \mathrm{~F}(n)+d \mathrm{G}(n)=u_{n}$

5 a Auxiliary equation: $r^{2}-2 r+1=0$
Solving gives $r=1$
General solution: $a_{n}=(A+B n)\left(1^{n}\right)=A+B n$
b Auxiliary equation: $r^{2}-3 r+2=0$
Solving gives $r=1$ or $r=2$
General solution: $u_{n}=A\left(1^{n}\right)+B\left(2^{n}\right)=A+B\left(2^{n}\right)$
c Auxiliary equation: $r^{2}-6 r+9=0$
Solving gives $r=3$
General solution: $x_{n}=(A+B n)\left(3^{n}\right)$
d Auxiliary equation: $r^{2}-4 r+5=0$
Solving gives $r=2 \pm \mathrm{i}$
General solution: $t_{n}=A(2+\mathrm{i})^{n}+B(2-\mathrm{i})^{n}$
6 Auxiliary equation must have solutions of $r=7$ or $r=1$
Thus $(r-7)(r-1)=0$
Hence $r^{2}-8 r+7=0$
Hence $a=-8$ and $b=7$
7 a Auxiliary equation: $r^{2}-5 r+6=0$
Solving gives $r=3$ or $r=2$
General solution: $a_{n}=A\left(2^{n}\right)+B\left(3^{n}\right)$
Substituting initial conditions:

$$
\begin{aligned}
& 2=A+B \\
& 5=2 A+3 B
\end{aligned}
$$

Solving simultaneously gives $A=1$ and $B=1$
Hence closed form of the recurrence relation is $a_{n}=2^{n}+3^{n}$
b Auxiliary equation: $r^{2}-6 r+9=0$
Solving gives $r=3$
General solution: $u_{n}=(A+B n)\left(3^{n}\right)$
Substituting initial conditions:

$$
\begin{aligned}
& 2=3(A+B) \\
& 5=9(A+2 B)
\end{aligned}
$$

Solving simultaneously gives $A=\frac{7}{9}$ and $B=-\frac{1}{9}$
Hence closed form of the recurrence relation is $u_{n}=\left(\frac{7}{9}-\frac{1}{9} n\right)\left(3^{n}\right)=(7-n)\left(3^{n-2}\right)$
c Auxiliary equation: $r^{2}-7 r+10=0$
Solving gives $r=5$ or $r=2$
General solution: $s_{n}=A\left(2^{n}\right)+B\left(5^{n}\right)$
Substituting initial conditions:

$$
\begin{aligned}
& 4=A+B \\
& 17=2 A+5 B
\end{aligned}
$$

Solving simultaneously gives $A=1$ and $B=3$
Hence closed form of the recurrence relation is $s_{n}=2^{n}+3\left(5^{n}\right)$

7 d Auxiliary equation: $r^{2}-2 r+5=0$
Solving gives $r=1 \pm 2 \mathrm{i}$
General solution: $u_{n}=A(1+2 \mathrm{i})^{n}+B(1-2 \mathrm{i})^{n}$
Substituting initial conditions:

$$
\begin{aligned}
& 1=A+B \\
& 5=A(1+2 \mathrm{i})+B(1-2 \mathrm{i})=A+B+2(A-B) \mathrm{i}
\end{aligned}
$$

Solving simultaneously gives

$$
\begin{aligned}
& 2(A-B) \mathrm{i}=4 \Rightarrow(A-B) \mathrm{i}=2 \\
& (1-2 B) \mathrm{i}=2 \Rightarrow B=\frac{\mathrm{i}-2}{2 \mathrm{i}}=\frac{1+2 \mathrm{i}}{2} \\
& \Rightarrow A=1-\frac{1+2 \mathrm{i}}{2}=\frac{1-2 \mathrm{i}}{2}
\end{aligned}
$$

Hence closed form of the recurrence relation is $u_{n}=\left(\frac{1-2 \mathrm{i}}{2}\right)(1+2 \mathrm{i})^{n}+\left(\frac{1+2 \mathrm{i}}{2}\right)(1-2 \mathrm{i})^{n}$
Or $u_{n}=\frac{5}{2}\left[(1+2 \mathrm{i})^{n-1}+(1-2 \mathrm{i})^{n-1}\right]$
8 a Auxiliary equation: $r^{2}-5 r+4=0$
Solving gives $r=4$ or $r=1$
General solution: $u_{n}=A\left(1^{n}\right)+B\left(4^{n}\right)$
Substituting initial conditions:

$$
\begin{aligned}
& 20=A+B \\
& 19=A+4 B
\end{aligned}
$$

Solving simultaneously gives $A=\frac{61}{3}$ and $B=-\frac{1}{3}$
Hence closed form of the recurrence relation is $u_{n}=\frac{61}{3}-\frac{1}{3}\left(4^{n}\right)$
b $u_{n+1}-u_{n}=-\frac{4}{3}\left(4^{n}\right)-\left(-\frac{1}{3}\left(4^{n}\right)\right)=-4^{n}<0$ so u_{n} is decreasing.
$u_{n}<0 \Rightarrow 4^{n}>61 \Rightarrow n \geqslant 3$

9 a Auxiliary equation: $r^{2}-\sqrt{2} r+1=0$
Solving gives $r=\frac{\sqrt{2}}{2}(1 \pm \mathrm{i})$
Complex solutions with modulus 1 and $\theta=\frac{\pi}{4}$
General solution: $u_{n}=1^{n}\left(A \cos \left(\frac{n \pi}{4}\right)+B \sin \left(\frac{n \pi}{4}\right)\right)=A \cos \left(\frac{n \pi}{4}\right)+B \sin \left(\frac{n \pi}{4}\right)$
Substituting initial conditions:

$$
\begin{aligned}
& 1=A \\
& 1=\frac{A}{\sqrt{2}}+\frac{B}{\sqrt{2}}
\end{aligned}
$$

Solving simultaneously gives $A=1$ and $B=\sqrt{2}\left(1-\frac{1}{\sqrt{2}}\right)=\sqrt{2}-1$
Hence closed form of the recurrence relation is $u_{n}=\cos \left(\frac{n \pi}{4}\right)+(\sqrt{2}-1) \sin \left(\frac{n \pi}{4}\right)$
b \cos and \sin are both periodic so the sequence is periodic.
Period of \sin and \cos is 2π so period of u_{n} is $\frac{2 \pi}{\frac{\pi}{4}}=8$
10 a Sequence is formed Fibonacci like so first seven terms are $1,3,4,7,11,18,29$.
b Auxiliary equation: $r^{2}-r-1=0$
Solving gives $r=\frac{1 \pm \sqrt{5}}{2}$
General solution: $L_{n}=A\left(\frac{1+\sqrt{5}}{2}\right)^{n}+B\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
Substituting initial conditions:

$$
\begin{aligned}
& 1=A\left(\frac{1+\sqrt{5}}{2}\right)+B\left(\frac{1-\sqrt{5}}{2}\right) \\
& 3=A\left(\frac{1+\sqrt{5}}{2}\right)^{2}+B\left(\frac{1-\sqrt{5}}{2}\right)^{2}=A\left(\frac{3+\sqrt{5}}{2}\right)+B\left(\frac{3-\sqrt{5}}{2}\right)
\end{aligned}
$$

Solving simultaneously gives $A=1$ and $B=1$
Hence closed form of the recurrence relation is $L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}$

11 a Auxiliary equation: $r^{2}-5 r+6=0$
Solving gives $r=2$ or $r=3$
Complementary function is $x_{n}=A\left(2^{n}\right)+B\left(3^{n}\right)$
Try particular solution λ :

$$
\lambda=5 \lambda-6 \lambda+1 \Rightarrow \lambda=\frac{1}{2}
$$

Hence general solution is $x_{n}=A\left(2^{n}\right)+B\left(3^{n}\right)+\frac{1}{2}$
b Auxiliary equation: $r^{2}-r-2=0$
Solving gives $r=-1$ or $r=2$
Complementary function is $u_{n}=A\left(2^{n}\right)+B(-1)^{n}$
Try particular solution $\lambda n+\mu$:

$$
\begin{aligned}
& \lambda n+\mu-(\lambda(n-1)+\mu)-2(\lambda(n-2)+\mu)=2 n \\
& \lambda n+\mu-\lambda n+\lambda-\mu-2 \lambda n+4 \lambda-2 \mu=2 n
\end{aligned}
$$

Equating coefficients:

$$
\begin{aligned}
& -2 \lambda=2 \Rightarrow \lambda=-1 \\
& \mu+\lambda-\mu+4 \lambda-2 \mu=0 \Rightarrow-2 \mu=5 \Rightarrow \mu=-\frac{5}{2}
\end{aligned}
$$

Hence general solution is $u_{n}=A\left(2^{n}\right)+B(-1)^{n}-n-\frac{5}{2}$
c Auxiliary equation: $r^{2}+4 r+3=0$
Solving gives $r=-3$ or $r=-1$
Complementary function is $a_{n}=A(-3)^{n}+B(-1)^{n}$
Try particular solution $\lambda(-2)^{n}$:

$$
\begin{aligned}
& \lambda(-2)^{n+2}+4 \lambda(-2)^{n+1}+3 \lambda(-2)^{n}=5(-2)^{n} \\
& 4 \lambda-8 \lambda+3 \lambda=5 \Rightarrow \lambda=-5
\end{aligned}
$$

Hence general solution is $a_{n}=A(-3)^{n}+B(-1)^{n}-5(-2)^{n}$
d Auxiliary equation: $r^{2}+4 r+3=0$
Solving gives $r=-3$ or $r=-1$
Complementary function is $a_{n}=A(-3)^{n}+B(-1)^{n}$
Try particular solution $\lambda n(-3)^{n}$:
$\lambda(n+2)(-3)^{n+2}+4 \lambda(n+1)(-3)^{n+1}+3 \lambda n(-3)^{n}=12(-3)^{n}$
$9 \lambda(n+2)-12 \lambda(n+1)+3 \lambda n=12$
$\Rightarrow 18 \lambda-12 \lambda=12 \Rightarrow \lambda=2$
Hence general solution is $a_{n}=A(-3)^{n}+B(-1)^{n}+2 n(-3)^{n}$

11 e Auxiliary equation: $r^{2}-6 r+9=0$
Solving gives $r=3$
Complementary function is $a_{n}=(A+B n)\left(3^{n}\right)$
Try particular solution $\lambda n^{2}\left(3^{n}\right)$:

$$
\begin{aligned}
& \lambda(n+2)^{2}\left(3^{n+2}\right)-6 \lambda(n+1)^{2}\left(3^{n+1}\right)+9 \lambda n^{2}\left(3^{n}\right)=3^{n} \\
& 9 \lambda(n+2)^{2}-18 \lambda(n+1)^{2}+9 \lambda n^{2}=1 \\
& \Rightarrow 36 \lambda-18 \lambda=1 \Rightarrow \lambda=\frac{1}{18}
\end{aligned}
$$

Hence general solution is $a_{n}=(A+B n)\left(3^{n}\right)+\frac{1}{18} n^{2}\left(3^{n}\right)=\left(A+B n+\frac{n^{2}}{18}\right)\left(3^{n}\right)$
f Auxiliary equation: $r^{2}-7 r+10=0$
Solving gives $r=2$ or $r=5$
Complementary function is $u_{n}=A\left(2^{n}\right)+B\left(5^{n}\right)$
Try particular solution $\lambda n+\mu$:

$$
\begin{aligned}
& \lambda n+\mu=7(\lambda(n-1)+\mu)-10(\lambda(n-2)+\mu)+6+8 n \\
& \lambda n+\mu=7 \lambda n-7 \lambda+7 \mu-10 \lambda n+20 \lambda-10 \mu+6+8 n
\end{aligned}
$$

Equating coefficients:

$$
\begin{aligned}
& \lambda=7 \lambda-10 \lambda+8 \Rightarrow \lambda=2 \\
& \mu=-7 \lambda+7 \mu+20 \lambda-10 \mu+6 \Rightarrow 4 \mu=32 \Rightarrow \mu=8
\end{aligned}
$$

Hence general solution is $u_{n}=A\left(2^{n}\right)+B\left(5^{n}\right)+8+2 n$
12 a Auxiliary equation: $r^{2}-2 r-3=0$
Solving gives $r=3$ or $r=-1$
Complementary function is $u_{n}=A\left(3^{n}\right)+B(-1)^{n}$
Try particular solution λ :

$$
\lambda=2 \lambda+3 \lambda+1 \Rightarrow \lambda=-\frac{1}{4}
$$

Hence general solution is $u_{n}=A\left(3^{n}\right)+B(-1)^{n}-\frac{1}{4}$
Substituting initial conditions:

$$
\begin{aligned}
& 3=3 A-B-\frac{1}{4} \Rightarrow 3 A-B=\frac{13}{4} \\
& 7=9 A+B-\frac{1}{4} \Rightarrow 9 A+B=\frac{29}{4}
\end{aligned}
$$

Solving simultaneously gives $A=\frac{7}{8}$ and $B=-\frac{5}{8}$
Hence closed form of the recurrence relation is $u_{n}=\frac{7}{8}\left(3^{n}\right)-\frac{5}{8}(-1)^{n}-\frac{1}{4}=\frac{1}{8}\left(7\left(3^{n}\right)-5(-1)^{n}-2\right)$

12 b Auxiliary equation: $r^{2}-3 r+2=0$
Solving gives $r=2$ or $r=1$
Complementary function is $a_{n}=A+B\left(2^{n}\right)$
Try particular solution $\lambda(-1)^{n}$:

$$
\begin{aligned}
& \lambda(-1)^{n+1}-3 \lambda(-1)^{n}+2 \lambda(-1)^{n-1}=6(-1)^{n} \\
& \lambda+3 \lambda+2 \lambda=-6 \Rightarrow \lambda=-1
\end{aligned}
$$

Hence general solution is $a_{n}=A+B\left(2^{n}\right)-(-1)^{n}$
Substituting initial conditions:

$$
12=A+B-1 \Rightarrow A+B=13
$$

$$
12=A+2 B+1 \Rightarrow A+2 B=11
$$

Solving simultaneously gives $B=-2$ and $A=15$
Hence closed form of the recurrence relation is $a_{n}=15-2\left(2^{n}\right)-(-1)^{n}=15-2^{n+1}+(-1)^{n+1}$
c Auxiliary equation: $r^{2}-3 r-10=0$
Solving gives $r=5$ or $r=-2$
Complementary function is $u_{n}=A\left(5^{n}\right)+B(-2)^{n}$
Try particular solution $\lambda n\left(5^{n}\right)::$

$$
\begin{aligned}
& \lambda n\left(5^{n}\right)=3 \lambda(n-1)\left(5^{n-1}\right)+10 \lambda(n-2)\left(5^{n-2}\right)+7\left(5^{n}\right) \\
& 25 \lambda n=15 \lambda(n-1)+10 \lambda(n-2)+175 \\
& \Rightarrow 0=-15 \lambda-20 \lambda+175 \Rightarrow \lambda=5
\end{aligned}
$$

Hence general solution is $u_{n}=A\left(5^{n}\right)+B(-2)^{n}+5 n\left(5^{n}\right)$
Substituting initial conditions:

$$
\begin{aligned}
& 4=A+B \\
& 3=5 A-2 B+25 \Rightarrow 5 A-2 B=-22
\end{aligned}
$$

Solving simultaneously gives $A=-2$ and $B=6$
Hence closed form of the recurrence relation is $u_{n}=-2\left(5^{n}\right)+6(-2)^{n}+5 n\left(5^{n}\right)$

$$
=n\left(5^{n+1}\right)-2\left(5^{n}\right)+6(-2)^{n}
$$

d Auxiliary equation: $r^{2}-10 r+25=0$
Solving gives $r=5$
Complementary function is $x_{n}=(A+B n)\left(5^{n}\right)$
Try particular solution $\lambda n^{2}\left(5^{n}\right)$:

$$
\begin{aligned}
& \lambda n^{2}\left(5^{n}\right)=10 \lambda(n-1)^{2}\left(5^{n-1}\right)-25 \lambda(n-2)^{2}\left(5^{n-2}\right)+8\left(5^{n}\right) \\
& 25 \lambda n^{2}=50 \lambda(n-1)^{2}-25 \lambda(n-2)^{2}+200 \\
& 0=50 \lambda-100 \lambda+200 \Rightarrow \lambda=4
\end{aligned}
$$

Hence general solution is $x_{n}=(A+B n)\left(5^{n}\right)+4 n^{2}\left(5^{n}\right)$
Substituting initial conditions:

$$
\begin{aligned}
& 6=A \\
& 10=5 A+5 B+20 \Rightarrow B=-8
\end{aligned}
$$

Hence closed form of the recurrence relation is $x_{n}=(6-8 n)\left(5^{n}\right)+4 n^{2}\left(5^{n}\right)=\left(4 n^{2}-8 n+6\right)\left(5^{n}\right)$
13a Try particular solution k :

$$
k+4 k+4 k=7 \Rightarrow k=\frac{7}{9}
$$

13 b Auxiliary equation: $r^{2}+4 r+4=0$
Solving gives $r=-2$
Complementary function is $b_{n}=(A+B n)(-2)^{n}$
Hence general solution is $b_{n}=(A+B n)(-2)^{n}+\frac{7}{9}$
Substituting initial conditions:

$$
\begin{aligned}
& 1=A+\frac{7}{9} \Rightarrow A=\frac{2}{9} \\
& 2=-2(A+B)+\frac{7}{9} \Rightarrow B=-\frac{5}{6}
\end{aligned}
$$

Hence closed form of the recurrence relation is $b_{n}=\left(\frac{2}{9}-\frac{5}{6} n\right)(-2)^{n}+\frac{7}{9}=\frac{2}{9}(-2)^{n}-\frac{5}{6} n(-2)^{n}+\frac{7}{9}$

14a Auxiliary equation: $r^{2}-7 r+6=0$
Solving gives $r=6$ or $r=1$
Complementary function is $u_{n}=A\left(6^{n}\right)+B$
Try particular solution λn :

$$
\begin{aligned}
& \lambda n=7 \lambda(n-1)-6 \lambda(n-2)+75 \\
& \lambda n=7 \lambda n-7 \lambda-6 \lambda n+12 \lambda+75 \\
& \Rightarrow 0=5 \lambda+75 \Rightarrow \lambda=-15
\end{aligned}
$$

Hence general solution is $u_{n}=A\left(6^{n}\right)+B-15 n$
b Substituting initial conditions:

$$
\begin{aligned}
& 2=A+B \\
& 2=6 A+B-156 A+B=17
\end{aligned}
$$

Solving simultaneously gives $A=3$ and $B=-1$
Hence closed form of the recurrence relation is $u_{n}=3\left(6^{n}\right)-1-15 n=3\left(6^{n}\right)-15 n-1$
15a Try particular solution $k n^{2}\left(3^{n}\right)$:

$$
\begin{aligned}
& k(n+2)^{2}\left(3^{n+2}\right)-6 k(n+1)^{2}\left(3^{n+1}\right)+9 k n^{2}\left(3^{n}\right)=7\left(3^{n}\right) \\
& 9 k(n+2)^{2}-18 k(n+1)^{2}+9 k n^{2}=7 \\
& \Rightarrow 36 k-18 k=7 \Rightarrow k=\frac{7}{18}
\end{aligned}
$$

b Auxiliary equation: $r^{2}-6 r+9=0$
Solving gives $r=3$
General solution is $u_{n}=(A+B n)\left(3^{n}\right)=A\left(3^{n}\right)+\operatorname{Bn}\left(3^{n}\right)$
c General solution is $u_{n}=A\left(3^{n}\right)+B n\left(3^{n}\right)+\frac{7}{18} n^{2}\left(3^{n}\right)$
Substituting initial conditions:

$$
\begin{aligned}
1 & =A \\
4 & =3 A+3 B+\frac{21}{18} \Rightarrow B=-\frac{1}{18}
\end{aligned}
$$

Hence closed form of the recurrence relation is $u_{n}=3^{n}-\frac{1}{18} n\left(3^{n}\right)+\frac{7}{18} n^{2}\left(3^{n}\right)=\left(1-\frac{1}{18} n+\frac{7}{18} n^{2}\right)\left(3^{n}\right)$

16a Auxiliary equation: $r^{2}-r+1=0$
Solving gives $r=\frac{1}{2}(1 \pm \sqrt{3} \mathrm{i})$
Complex solutions with modulus 1 and $\theta=\frac{\pi}{3}$
General solution: $u_{n}=1^{n}\left(A \cos \left(\frac{n \pi}{3}\right)+B \sin \left(\frac{n \pi}{3}\right)\right)=A \cos \left(\frac{n \pi}{3}\right)+B \sin \left(\frac{n \pi}{3}\right)$
Substituting initial conditions:

$$
\begin{aligned}
& 0=A \\
& 3=B\left(\sin \left(\frac{\pi}{3}\right)\right) \Rightarrow B=\frac{3}{\frac{\sqrt{3}}{2}}=2 \sqrt{3}
\end{aligned}
$$

Hence the closed form of the recurrence relation is $u_{n}=2 \sqrt{3}\left(\sin \left(\frac{\pi}{3} n\right)\right)$
b \sin is periodic so the sequence is periodic. Period of $\sin =2 \pi$ so period of sequence $=\frac{2 \pi}{\frac{\pi}{3}}=6$
17 a If A is first, you cannot have A second but you can have it third so 2×3 options.
If A is second, you cannot have A first or third so 2×2 options.
If A is third, you cannot have A second but you can have it first so 3×2 options but ABA and ACA already counted so 4 options left.
Having no As gives $2 \times 2 \times 2$ options.
$6+4+4+8=22$
b Strings of length n with no consecutive As are the strings of length $n-1$ with no consecutive As with a B or a C added at the end.
Thus there are $2 s_{n-1}$ such strings.
But strings of length n ending in an A that do not have consecutive As must have B or C as their $(n-1)$ th letter, otherwise they will end in a pair of As. It follows that strings of length n ending with an A that have no consecutive As are the strings of length $n-2$ with either a B or a C added at the end.
Thus there are $2 s_{n-2}$ such strings.
Hence $s_{n}=2 s_{n-1}+2 s_{n-2}$ with $s_{0}=1$ and $s_{1}=3$
c i Auxiliary equation: $r^{2}-2 r-2=0$
Solving gives $r=1 \pm \sqrt{3}$
General solution is $s_{n}=A(1+\sqrt{3})^{n}+B(1-\sqrt{3})^{n}$
Substituting initial conditions:

$$
\begin{aligned}
& 1=A+B \\
& 3=A(1+\sqrt{3})+B(1-\sqrt{3})
\end{aligned}
$$

Solving simultaneously gives $A=\frac{3+2 \sqrt{3}}{6}$ and $B=\frac{3-2 \sqrt{3}}{6}$
Hence closed form of the recurrence relation is $s_{n}=\frac{1}{6}\left[(3+2 \sqrt{3})(1+\sqrt{3})^{n}+(3-2 \sqrt{3})(1-\sqrt{3})^{n}\right]$
ii Substitute $n=20: s_{20}=578272256$

Challenge

$1 \quad u_{n}=\sqrt{\frac{u_{n-2}}{u_{n-1}}}, \quad u_{0}=8, \quad u_{1}=\frac{1}{2 \sqrt{2}}$
$\log _{2} u_{n}=\frac{1}{2} \log _{2} u_{n-2}-\frac{1}{2} \log _{2} u_{n-1}$
Let $v_{n}=\log _{2} u_{n}$
Then $v_{0}=\log _{2} 8 \quad v_{1}=\log _{2}\left(2^{-\frac{3}{2}}\right)=-\frac{3}{2}$
The recurrence relation becomes $v_{n}=\frac{1}{2} v_{n-2}-\frac{1}{2} v_{n-1}$
The auxiliary equation is
$r^{2}+\frac{1}{2} r-\frac{1}{2}=0$
$2 r^{2}+r-1=0$
$(2 r-1)(r+1)=0$
$r=-1$ or $\frac{1}{2}$
So the general solution has the form
$v_{n}=A(-1)^{n}+B\left(\frac{1}{2}\right)^{n}$
$\left.\begin{array}{lc}n=0: & A+B=3 \\ n=1: & -A+0.5 B=3\end{array}\right\} \frac{3}{2} B=\frac{3}{2} \Rightarrow B=1, A=2$
$v_{n}=2(-1)^{n}+\left(\frac{1}{2}\right)^{n}$
and $u_{n}=2^{v_{n}}=2^{2(-1)^{n}+\left(\frac{1}{2}\right)^{n}}$
2 Need auxiliary equation to have complex solutions such that $\theta=\frac{\pi}{6}$, i.e. complex solutions of the form $p \pm q$ i such that $\frac{q}{p}=\frac{1}{\sqrt{3}}$ hence complex solutions $\sqrt{3} \pm \mathrm{i}$.
$(r-(\sqrt{3}+\mathrm{i}))(r-(\sqrt{3}-\mathrm{i}))=0$
$\Rightarrow r^{2}-2 \sqrt{3} r+4=0$
Hence possible recurrence relation is $u_{n}=2 \sqrt{3} u_{n-1}-4 u_{n-2}$ giving $a=2 \sqrt{3}$ and $b=-4$
Magnitude of complex solutions is 2 so $u_{n}=2\left(A \cos \left(n \frac{\pi}{6}\right)+B \sin \left(n \frac{\pi}{6}\right)\right)$
Using initial conditions:
$0=2 A \Rightarrow A=0$
$k=2\left(A \cos \left(\frac{\pi}{6}\right)+B \sin \left(\frac{\pi}{6}\right)\right) \Rightarrow k=B$
Therefore particular solution is $u_{n}=2 k \sin \left(n \frac{\pi}{6}\right)$ so sequence is periodic with period 12 and oscillates between $\pm 2 k$

