Poisson distributions 2B

Note that because you are required to use tables in this exercise, when calculating the difference between two values (for example in question 2b), you would obtain a slightly different answer on your calculator; this is because the table contains values already rounded to $4 \mathrm{~d} . \mathrm{p}$. and so you may introduce inaccuracy at the fourth decimal place when combining values.

1 a Use tables with $\lambda=5.5$

$$
\mathrm{P}(X \leqslant 3)=0.2017
$$

b Use tables with $\lambda=5.5$

$$
\mathrm{P}(X \geqslant 6)=1-\mathrm{P}(X \leqslant 5)=1-0.5289=0.4711
$$

c Use tables with $\lambda=5.5$

$$
\begin{aligned}
\mathrm{P}(3 \leqslant X \leqslant 7) & =\mathrm{P}(X \leqslant 7)-\mathrm{P}(X \leqslant 2) \\
= & 0.8095-0.0884=0.7211
\end{aligned}
$$

2 a Use tables with $\lambda=10$

$$
\mathrm{P}(X \geqslant 8)=1-\mathrm{P}(X \leqslant 7)=1-0.2202=0.7798
$$

b Use tables with $\lambda=10$

$$
\begin{aligned}
\mathrm{P}(7 \leqslant X \leqslant 12) & =\mathrm{P}(X \leqslant 12)-\mathrm{P}(X \leqslant 6) \\
= & 0.7916-0.1301=0.6615
\end{aligned}
$$

c Use tables with $\lambda=10$

$$
\begin{aligned}
\mathrm{P}(4<X<9) & =\mathrm{P}(X \leqslant 8)-\mathrm{P}(X \leqslant 4) \\
& =0.3328-0.0293=0.3035
\end{aligned}
$$

3 a Use tables with $\lambda=3.5$

$$
\mathrm{P}(X \geqslant 2)=1-\mathrm{P}(X \leqslant 1)=1-0.1359=0.8641
$$

b Use tables with $\lambda=3.5$

$$
\begin{aligned}
\mathrm{P}(3 \leqslant X \leqslant 6) & =\mathrm{P}(X \leqslant 6)-\mathrm{P}(X \leqslant 2) \\
= & 0.9347-0.3208=0.6139
\end{aligned}
$$

c Use tables with $\lambda=3.5$

$$
\begin{aligned}
\mathrm{P}(2<X \leqslant 5) & =\mathrm{P}(X \leqslant 5)-\mathrm{P}(X \leqslant 2) \\
= & 0.8576-0.3208=0.5368
\end{aligned}
$$

4 a Use tables with $\lambda=4.5$

$$
\mathrm{P}(X \geqslant 5)=1-\mathrm{P}(X \leqslant 4)=1-0.5321=0.4679
$$

b Use tables with $\lambda=4.5$

$$
\begin{aligned}
\mathrm{P}(3<X \leqslant 5) & =\mathrm{P}(X \leqslant 5)-\mathrm{P}(X \leqslant 3) \\
= & 0.7029-0.3423=0.3606
\end{aligned}
$$

c Use tables with $\lambda=4.5$

$$
\begin{aligned}
\mathrm{P}(1 \leqslant X<7) & =\mathrm{P}(X \leqslant 6)-\mathrm{P}(X \leqslant 0) \\
& =0.8311-0.0111=0.8200
\end{aligned}
$$

5 a Use tables with $\lambda=8$
$\mathrm{P}(X \leqslant a)=0.3134$
so $a=6$
b Use tables with $\lambda=8$
$\mathrm{P}(X \leqslant b)=0.7166$
so $b=9$
c Use tables with $\lambda=8$
$\mathrm{P}(X<c)=\mathrm{P}(X \leqslant c-1)=0.0996$
so $c-1=4$
$c=5$
d Use tables with $\lambda=8$
$\mathrm{P}(X>d)=1-\mathrm{P}(X \leqslant d)=0.8088$
so $\mathrm{P}(X \leqslant d)=1-0.8088=0.1912$
so $d=5$
6 a Use tables with $\lambda=3.5$
$\mathrm{P}(X \leqslant a)=0.8576$
so $a=5$
b Use tables with $\lambda=3.5$
$\mathrm{P}(X>b)=1-\mathrm{P}(X \leqslant b)=0.6792$
so $\mathrm{P}(X \leqslant b)=1-0.6792=0.3208$
so $b=2$
c Use tables with $\lambda=3.5$
$\mathrm{P}(X \leqslant c) \geqslant 0.95$
This is true for all values of $c>6$
d Use tables with $\lambda=3.5$
$\mathrm{P}(X>d) \leqslant 0.005$
So $1-\mathrm{P}(X \leqslant d) \leqslant 0.005$
$\mathrm{P}(X \leqslant d) \geqslant 1-0.005$
$\mathrm{P}(X \leqslant d) \geqslant 0.995$
This is true for all values of $d>8$

