Poisson distributions 2C

1 a i The probability that there are exactly 4 requests for replacement light bulbs is $\mathrm{P}(X=4)$. As $X \sim \operatorname{Po}(3)$

$$
\mathrm{P}(X=4)=\frac{e^{-3} \times 3^{4}}{4!}=0.1680 \text { (4 d.p.) }
$$

ii The probability that there are more than 5 requests is $\mathrm{P}(X>5)$.
Find this from the tables using $\lambda=3$

$$
\mathrm{P}(X>5)=1-\mathrm{P}(X \leqslant 5)=1-0.9161=0.0839
$$

b Let Y be the number of requests in a fortnight, so use the tables with $\lambda=6$.
i As $Y \sim \operatorname{Po}(6)$

$$
\mathrm{P}(Y=6)=\frac{e^{-6} \times 6^{6}}{6!}=0.1606 \text { (4 d.p.) }
$$

ii Use the tables with $\lambda=6$

$$
\mathrm{P}(X \leqslant 4)=0.2851
$$

2 a Weeds must grow independently of the presence of other weeds. They must grow at a constant average density so that the mean number in any area of the field is proportional to the area.
b Let X be the number of weeds in a random $4 \mathrm{~m}^{2}$ area of the field. In this model, $X \sim \operatorname{Po}(4 \times 1.3)$, i.e. $X \sim \operatorname{Po}(5.2)$, so $\lambda=5.2$.
As the tables in the textbook do not give values of the Poisson cumulative distribution function for $\lambda=5.2$ and the required probability $\mathrm{P}(X \leqslant 2)$ must be found using a calculator.
$\mathrm{P}(X \leqslant 2)=0.1088$
c Let Y be the number of weeds in a random $5 \mathrm{~m}^{2}$ area of the field. In this model, $X \sim \operatorname{Po}(5 \times 1.3)$, i.e. $X \sim \operatorname{Po}(6.5)$, so $\lambda=6.5$ and the tables can be used to find the required value.
$\mathrm{P}(X>8)=1-\mathrm{P}(X \leqslant 8)=1-0.7916=0.2084$
3 a Detection occurs at a constant mean rate of 2.5. So a suitable model is to let $X=$ the number of faulty components detected in a hour, with $X \sim \operatorname{Po}(2.5)$.
b It is assumed that faulty components are found independently of each other and that the detection is evenly spread throughout each hour (so that the mean rate of detection in k hours is 2.5 k for all positive values of k).
c As $X \sim \operatorname{Po}(2.5)$

$$
\mathrm{P}(X=2)=\frac{e^{-2.5} \times 2.5^{2}}{2!}=0.2565(4 \text { d.p. })
$$

d Let Y be the number of faulty components detected in a 3-hour period, so $Y \sim \operatorname{Po}(7.5)$.
Use the tables with $\lambda=7.5$
$\mathrm{P}(X \geqslant 6)=1-\mathrm{P}(X \leqslant 5)=1-0.2414=0.7586$
e Let Z be the number of faulty components detected in a 4-hour period, so $Z \sim \operatorname{Po}(10)$.
Use the tables with $\lambda=10$
$\mathrm{P}(X \geqslant 7)=1-\mathrm{P}(X \leqslant 6)=1-0.1301=0.8699$
4 a Let X be the number of telephone calls in a 20 -minute interval, so $X \sim \operatorname{Po}(5)$.
i $\mathrm{P}(X=4)=\frac{e^{-5} \times 5^{4}}{4!}=0.1755$ (4 d.p.)
ii Use the tables with $\lambda=5$
$\mathrm{P}(X>8)=1-\mathrm{P}(X \leqslant 8)=1-0.9319=0.0681$

4 b Let Y be the number of telephone calls in a 30 -minute interval, so $Y \sim \operatorname{Po}(7.5)$.
i Use the tables with $\lambda=7.5$

$$
P(X \geqslant 6)=1-P(X \leqslant 5)=1-0.2414=0.7586
$$

ii Use the tables with $\lambda=7.5$
$\mathrm{P}(X \leqslant 10)=0.8622$

5 a Let X be the number of cars crossing in any given minute, so $X \sim \operatorname{Po}(3), \lambda=3$. $\mathrm{P}(X>5)=1-\mathrm{P}(X \leqslant 5)=1-0.9161=0.0839$
b Let Y be the number of cars crossing in any given 2-minute period, so $Y \sim \operatorname{Po}(6), \lambda=6$. $\mathrm{P}(X \leqslant 3)=0.1512$

6 Let X be the number of customers arriving for breakfast between 10 am and 10:20 am. As 20 minutes is 5×4 minutes, the model is $X \sim \operatorname{Po}(5)$.
a Use the tables with $\lambda=5$
$\mathrm{P}(X \leqslant 2)=0.1247$
b Use the tables with $\lambda=5$ $\mathrm{P}(X>10)=1-\mathrm{P}(X \leqslant 10)=1-0.9863=0.0137$

7 a Let X be the number of houses the agent sells in a week, so $X \sim \operatorname{Po}(1.8)$. As $\lambda=1.8$, all answers must be found using a calculator.
i $\mathrm{P}(X=0)=\frac{e^{-1.8} \times 1.8^{0}}{0!}=0.1653$ (4 d.p.)
ii $\mathrm{P}(X=3)=\frac{e^{-1.8} \times 1.8^{3}}{3!}=0.1607$ (4 d.p.)
iii $\mathrm{P}(X \geqslant 3)=1-\mathrm{P}(X \leqslant 2)=1-0.7306=0.2694$
b Let Y be the number of weeks, over a period of 4 weeks, in which the agent meets her target. As the probability that the agent meets her target is $\mathrm{P}(X \geqslant 3)=0.2694$ (from part aiii), the model is $Y \sim \mathrm{~B}(4,0.2694)$.
$\mathrm{P}(Y=1)=\binom{4}{1}(0.2694)^{1}(1-0.2694)^{3}=0.4202$ (4 d.p.)

8 a Let X be the number of patients arriving during a 30-minute period, so $X \sim \operatorname{Po}(2.5)$.
i $\mathrm{P}(X=4)=\frac{e^{-2.5} \times 2.5^{4}}{4!}=0.1336$ (4 d.p.)
ii Use the tables with $\lambda=2.5$
$\mathrm{P}(X \geqslant 3)=1-\mathrm{P}(X \leqslant 2)=1-0.5438=0.4562$
b If the next patient arrives before $11: 15 \mathrm{am}$ then there must be at least one patient in the 15 -minute period between 11:00 am and 11:15 am.
Let Y be the number of patients arriving during a 15 -minute period, so $Y \sim \operatorname{Po}(1.25)$. As $\lambda=1.25$, the solution must be found using a calculator.
$\mathrm{P}(X \geqslant 1)=1-\mathrm{P}(X=0)=1-0.2865=0.7135$

9 a Let X be the number of times the lift breaks down in one week, $Y \sim \operatorname{Po}(0.75)$. As $\lambda=0.75$, the solutions must be found using a calculator.
i $\quad \mathrm{P}(X \geqslant 1)=1-\mathrm{P}(X=0)=1-0.4724=0.5276$
ii $\mathrm{P}(X=2)=\frac{e^{-0.75} \times 0.75^{2}}{2!}=0.1329$ (4 d.p.)
b If the lift breaking down can be modelled using a Poisson distribution then each breakdown occurs independently of any previous history. So the probability of at least one breakdown in the next week will be $\mathrm{P}(X \geqslant 1)=0.5276$, as given in part ai.

10 a Let X be the number of flaws in a 50 m length of material, so $X \sim \operatorname{Po}(1.5)$.

$$
\mathrm{P}(X=3)=\frac{e^{-1.5} \times 1.5^{3}}{3!}=0.1255 \text { (4 d.p.) }
$$

b Let Y be the number of flaws in a 200 m length of material, so $Y \sim \operatorname{Po}(6)$.
Use the tables with $\lambda=6$
$\mathrm{P}(X<4)=\mathrm{P}(X \leqslant 3)=0.1512$
c Let A be the number of rolls in a random sample of 5 which have fewer than 4 flaws. As $\mathrm{P}(X<4)=0.1512$ (from part b), the model is $A \sim \mathrm{~B}(5,0.1512)$.

$$
\begin{aligned}
\mathrm{P}(A \geqslant 2) & =1-\binom{5}{1}(0.1512)^{1}(1-0.1512)^{4}-\binom{5}{0}(0.1512)^{0}(1-0.1512)^{5} \\
& =0.1670
\end{aligned}
$$

11 a Let X be the number of chocolate chips in a biscuit, so $X \sim \operatorname{Po}(5)$.
Use the tables with $\lambda=5$ $\mathrm{P}(X<3)=\mathrm{P}(X \leqslant 2)=0.1247$
b Let Y be the number of biscuits in a pack of 6 which contain fewer than 3 chocolate chips. As $\mathrm{P}(X<3)=0.1247$ (from part $\mathbf{a})$, the model is $Y \sim \mathrm{~B}(6,0.1247)$.
$\mathrm{P}(Y=3)=\binom{6}{3}(0.1247)^{3}(1-0.1247)^{3}=0.0260$
12 a Let X be the number of requests for minibuses on a Sunday in summer, so $X \sim \operatorname{Po}(5)$.
Use the tables with $\lambda=5$
$\mathrm{P}(X<4)=\mathrm{P}(X \leqslant 3)=0.2650$
b Let n be the number of minibuses that the company must have to be 99% sure they can fulfil all requests; so $\mathrm{P}(X \leqslant n) \geqslant 0.99$.
From the tables with $\lambda=5, \mathrm{P}(X \leqslant 10)=0.9863, \mathrm{P}(X \leqslant 11)=0.9945$
So the company needs 11 minibuses to be 99% sure they can fulfil all requests.
13 a Let X be the number of boats hired in a 30 -minute period, so $X \sim \operatorname{Po}(4.5)$.
Use the tables with $\lambda=4.5$
$\mathrm{P}(X \geqslant 6)=1-\mathrm{P}(X \leqslant 5)=1-0.7029=0.2971$
b Let Y be the number of boats hired in a 20 -minute period, so $Y \sim \operatorname{Po}(3)$.
Use the tables with $\lambda=3$
$\mathrm{P}(Y>8)=1-\mathrm{P}(Y \leqslant 8)=1-0.9962=0.0038$
So the probability that more than 8 boats are requested is 0.38%, which is less than 1%.

13 c Let n be the number of boats that the company must have to be 99% sure they can meet all demands in a 30 -minute period; so $\mathrm{P}(X \leqslant n) \geqslant 0.99$.
From the tables with $\lambda=4.5, \mathrm{P}(X \leqslant 9)=0.9829, \mathrm{P}(X \leqslant 10)=0.9933$
So company needs 10 boats to be 99% sure they can fulfil all requests over the hire period.
14 a Let X be the number of breakdowns in a randomly chosen week, so $X \sim \operatorname{Po}(1.5)$.
Use the tables with $\lambda=1.5$
$\mathrm{P}(X \leqslant 2)=0.8088$
b Let Y be the number of breakdowns in a randomly chosen two-week period, so $Y \sim \operatorname{Po}(3)$. Use the tables with $\lambda=3$ $\mathrm{P}(Y \geqslant 5)=1-\mathrm{P}(Y \leqslant 5)=1-0.8153=0.1847$
c Let A be the number of breakdowns in a randomly chosen six-week period, so $A \sim \operatorname{Po}(9)$.
Let n be the least number of breakdowns so that $\mathrm{P}(X>n) \leqslant 0.05$
$\mathrm{P}(X>n)=1-\mathrm{P}(X \leqslant n) \Rightarrow \mathrm{P}(X \leqslant n)=1-\mathrm{P}(X>n)$
So find n such that $\mathrm{P}(X \leqslant n) \leqslant 0.95$
From the tables with $\lambda=4.5, \mathrm{P}(X \leqslant 13)=0.9261, \mathrm{P}(X \leqslant 14)=0.9585$
So the smallest value of n is 14 .

