Poisson distributions Mixed exercise 2

1 a Let X be the number of accidents in a one-month period. Assume a Poisson distribution.
So $X \sim \operatorname{Po}(0.7)$
$\mathrm{P}(X=0)=\mathrm{e}^{-0.7}=0.4966$ (4 d.p.)
b Let Y be the number of accidents in a three-month period. So $Y \sim \operatorname{Po}(2.1)$
$\mathrm{P}(Y=2)=\frac{\mathrm{e}^{-2.1} \times 2.1^{2}}{2!}=0.2700$ (4 d.p.)
c Let A be the number of accident-free months in a sample of six months. So $A \sim \mathrm{~B}(6,0.4966)$ from part a
$\mathrm{P}(A=2)=\binom{6}{2} \times(0.4966)^{2} \times(0.5034)^{4}=0.2376$ (4 d.p.)
2 a X must have a constant mean rate so that the mean number of misprints in a sample is proportional to the number of chapters. Misprints must occur independently of one another and be distinct (i.e. can be counted singly in the text).
b The model is $X \sim \operatorname{Po}(2.25)$. Find $\mathrm{P}(\mathrm{X} \leqslant 1)$ using a calculator:

$$
\mathrm{P}(X \leqslant 1)=0.3425
$$

c Let Y be the number of misprints in two randomly chosen chapters. So $Y \sim \operatorname{Po}(4.5)$
As $\lambda=4.5$, the required value can be found from the tables in the textbook:

$$
\begin{aligned}
\mathrm{P}(Y>6) & =1-\mathrm{P}(Y \leqslant 6) \\
& =1-0.8311=0.1689
\end{aligned}
$$

3 As $Y \sim \operatorname{Po}(\lambda)$ then $\mathrm{P}(Y=5)=\frac{\mathrm{e}^{-\lambda} \lambda^{5}}{5!}$ and $\mathrm{P}(Y=3)=\frac{\mathrm{e}^{-\lambda} \lambda^{3}}{3!}$
So as $\mathrm{P}(Y=5)=1.25 \times \mathrm{P}(Y=3)$

$$
\begin{aligned}
\frac{\mathrm{e}^{-\lambda} \lambda^{5}}{120} & =1.25 \times \frac{\mathrm{e}^{-\lambda} \lambda^{3}}{6} \\
\lambda^{2} & =25 \\
\lambda & =5 \quad \text { (since } \lambda \text { must be positive) }
\end{aligned}
$$

4 a The event (receipt of an email) has a constant mean rate through time. Emails are received singly and independently of each other.
b i Let X be the number of emails received in a 10-minute period. Assume a Poisson distribution, so $X \sim \operatorname{Po}(6)$

$$
\mathrm{P}(X=7)=\frac{\mathrm{e}^{-6} \times 6^{7}}{7!}=0.1377 \text { (4 d.p.) }
$$

ii Using the tables:

$$
\mathrm{P}(X \geqslant 8)=1-\mathrm{P}(X \leqslant 7)=1-0.7440=0.2560
$$

5 a A binomial distribution $\mathrm{B}(n, p)$ may be approximated by a Poisson distribution $\operatorname{Po}(n p)$ when n is large and p is small, and typically $n p \leqslant 10$.
b $\quad X \sim \mathrm{~B}(50,0.08)$

$$
\begin{aligned}
\mathrm{P}(X \leqslant 3) & =\binom{50}{3}(0.08)^{3}(0.92)^{47}+\binom{50}{2}(0.08)^{2}(0.92)^{48}+\binom{50}{1}(0.08)(0.92)^{49}+\binom{50}{0}(0.92)^{50} \\
& =0.4253(4 \text { d.p. })
\end{aligned}
$$

5 c Use as an approximation $X \sim \operatorname{Po}(50 \times 0.08)$, i.e. $X \sim \operatorname{Po}(4)$
Using the tables:
$\mathrm{P}(X \leqslant 3)=0.4335$
d Percentage error $=\frac{0.4335-0.4253}{0.4253} \times 100 \%=1.93 \%(2 \mathrm{~d} . \mathrm{p})$
$6 \mathrm{P}(Y>10)<0.1$ so $\mathrm{P}(Y \leqslant 10)>0.9$
From the tables, for $\lambda=7, \mathrm{P}(Y \leqslant 10)=0.9015$
For $\lambda=8, \mathrm{P}(Y \leqslant 10)=0.8159$
So the largest integer value for λ satisfying the given condition is $\lambda=7$
7 a Let X be the number of cuttings taking root in a sample of 20 . So $X \sim \mathrm{~B}(20,0.075)$

$$
\begin{aligned}
\text { i } \quad \mathrm{P}(X=2) & =\binom{20}{2}(0.075)^{2}(0.925)^{18}=0.2627(4 \text { d.p. }) \\
\text { ii } \quad \mathrm{P}(X>4) & =1-\mathrm{P}(X \leqslant 4) \\
& =1-0.9858=0.0142
\end{aligned}
$$

b Let Y be the number of cuttings taking root in a sample of 80 . Then $Y \sim \mathrm{~B}(80,0.075)$ and this can be approximated by $Y \sim \operatorname{Po}(80 \times 0.075)$, i.e. $Y \sim \operatorname{Po}(6)$
Using the tables:

$$
\begin{aligned}
\mathrm{P}(Y \geqslant 8) & =1-\mathrm{P}(Y \leqslant 7) \\
& =1-0.7440=0.2560
\end{aligned}
$$

8 Let X be the number of fish caught in a two-hour period. So $X \sim \operatorname{Po}(4)$. Use this to find the probability that the angler catches at least 5 fish on a two-hour fishing trip.

$$
\mathrm{P}(X \geqslant 5)=1-\mathrm{P}(X \leqslant 4)=1-0.6288=0.3712
$$

Then let Y be the number of trips in which the angle catches at least 5 fish from a sample of 5 trips. So using the probability for catching at least 5 fish on a single trip, $Y \sim \mathrm{~B}(5,0.3712)$

$$
\mathrm{P}(Y=3)=\binom{5}{3}(0.3712)^{3}(0.6288)^{2}=0.2022 \text { (4 d.p.) }
$$

9 a Let X be the number of cherries in a cake. So $X \sim \operatorname{Po}(2.5)$
i $\mathrm{P}(X=4)=\frac{\mathrm{e}^{-2.5} \times 2.5^{4}}{4!}=0.1336$ (4 d.p.)
ii Using the tables:

$$
\begin{aligned}
\mathrm{P}(X \geqslant 3) & =1-\mathrm{P}(X \leqslant 2) \\
& =1-0.5438=0.4562
\end{aligned}
$$

b Let Y be the number of cherries in 4 cakes. So $Y \sim \operatorname{Po}(10)$
Using the tables:

$$
\begin{aligned}
\mathrm{P}(Y>12) & =1-\mathrm{P}(X \leqslant 12) \\
& =1-0.7916=0.2084
\end{aligned}
$$

c Let A be the number of packets containing more than 12 cherries in a sample of 8 packets. So, using the result from $\mathbf{b}, A \sim \mathrm{~B}(8,0.2084)$
$\mathrm{P}(A=2)=\binom{8}{2}(0.2084)^{2}(0.7916)^{6}=0.2992$ (4 d.p.)

10 a Let X be the number of cars sold in a week. A plausible model for number of cars sold in a week would be $X \sim \operatorname{Po}(6)$.
It may be supposed that sales are independent of each other and occur singly (assuming the salesman does not supply businesses); the constant mean rate is consistent with a Poisson model.
b $\mathrm{P}(X=5)=\frac{\mathrm{e}^{-6} \times 6^{5}}{5!}=0.1606$ (4 d.p.)
c Let Y be the number of weeks in which the salesman sells exactly 5 cars, in a sample of 4 consecutive weeks. So, using the result from $\mathbf{b}, Y \sim \mathrm{~B}(4,0.1606)$

$$
\mathrm{P}(Y=2)=\binom{4}{2}(0.1606)^{2}(0.8394)^{2}=0.1090 \text { (4 d.p.) }
$$

11 Assuming a Poisson distribution for each, A with and B being the number of letters received by Abbie and Ben in a given day (respectively): $A \sim \operatorname{Po}(1.2)$ and $B \sim \operatorname{Po}(0.8)$ so $A+B \sim \operatorname{Po}(2)$

$$
\text { a } \begin{aligned}
\mathrm{P}(A \geqslant 1 \text { and } B \geqslant 1) & =\mathrm{P}(A \geqslant 1) \times \mathrm{P}(B \geqslant 1) \\
& =(1-\mathrm{P}(A=0)) \times(1-\mathrm{P}(B=0)) \\
& =\left(1-\mathrm{e}^{-1.2}\right) \times\left(1-\mathrm{e}^{-0.8}\right) \\
& =(1-0.30119) \times(1-0.44933) \\
& =0.69881 \times 0.55067=0.3848(4 \text { d.p. })
\end{aligned}
$$

b $\mathrm{P}(A+B=3)=\frac{\mathrm{e}^{-2} \times 2^{3}}{3!}=0.1804$ (4 d.p.)
c Let Y be the number of days on which they receive a total of 3 letters between them, from a sample of 5 days. So, using the result from $\mathbf{b}, Y \sim \mathrm{~B}(5,0.1804)$

$$
\begin{aligned}
\mathrm{P}(Y \geqslant 3) & =1-\mathrm{P}(Y \leqslant 2) \\
& =1-0.9560=0.0440
\end{aligned}
$$

12 Let X be the number of desktops sold in a day and Y the number of laptops sold in a day. Assuming Poisson distributions for both and that sales of desktops and laptops are independent: $X \sim \operatorname{Po}(2.4)$ and $Y \sim \operatorname{Po}(1.6)$ so $X+Y \sim \operatorname{Po}(4)$

$$
\text { a } \begin{aligned}
\mathrm{P}(X \geqslant 2 \text { and } Y \geqslant 2) & =\mathrm{P}(X \geqslant 2) \times \mathrm{P}(Y \geqslant 2) \quad \text { (independence) } \\
& =(1-\mathrm{P}(X \leqslant 1)) \times(1-\mathrm{P}(Y \leqslant 1)) \\
& =(1-0.30844) \times(1-0.52493) \\
& =0.69156 \times 0.47507=0.3285(4 \text { d.p. })
\end{aligned}
$$

b $\mathrm{P}(X+Y=6)=\frac{\mathrm{e}^{-4} \times 4^{6}}{6!}=0.1042$ (4 d.p.)
c Let A be the combined total of computer sales in a two-day period. So $A \sim \operatorname{Po}(8)$ and the required value can be found from the tables:
$\mathrm{P}(A \leqslant 6)=0.3134$

13 a Let X be the number of booked passengers not turning up for the flight. Assuming independence between booked passengers, $X \sim \mathrm{~B}(150,0.04)$
(Note: independence of events is doubtful in this example; consider reasons why this may be the case.)
b Approximate the binomial by $X \sim \operatorname{Po}(150 \times 0.04)$, i.e. $X \sim \operatorname{Po}(6)$ and use tables to find: $\mathrm{P}(X \leqslant 1)=0.0174$

$$
13 \text { c } \quad \begin{aligned}
\mathrm{P}(X \geqslant 3) & =1-\mathrm{P}(X \leqslant 2) \\
& =1-0.0620=0.9380
\end{aligned}
$$

14 a Let X be the number of misdirected calls in a sample of 10 consecutive calls. Assuming independence between calls, $X \sim \mathrm{~B}(10,0.02)$

$$
\begin{aligned}
\mathrm{P}(X>1) & =1-\mathrm{P}(X \leqslant 1) \\
& =1-\binom{10}{1}(0.02)^{1}(0.98)^{9}-\binom{10}{0}(0.98)^{10} \\
& =0.0162(4 \text { d.p. })
\end{aligned}
$$

b Let Y be the number of misdirected calls in a sample of 500 calls. Again assuming independence between calls, $X \sim \mathrm{~B}(10,0.02)$ $\mathrm{E}(Y)=500 \times 0.02=10$ and $\operatorname{Var}(Y)=500 \times 0.02 \times 0.98=9.8$
c Approximating the binomial with a Poisson distribution, $Y \sim \operatorname{Po}(10)$, and finding the required value from tables:
$\mathrm{P}(Y \leqslant 7)=0.2202$

15 a Let X be the number of people with the disease in a random sample of 10 people.
So $X \sim \mathrm{~B}(10,0.025)$

$$
\mathrm{P}(X=2)=\binom{10}{2}(0.025)^{2}(0.975)^{8}=0.0230 \text { (4 d.p.) }
$$

b Let Y be the number of people with the disease in a random sample of 120 people.

$$
\begin{aligned}
& \text { So } Y \sim \mathrm{~B}(120,0.025) \\
& \mathrm{E}(Y)=120 \times 0.025=3 \text { and } \operatorname{Var}(Y)=120 \times 0.025 \times 0.975=2.925
\end{aligned}
$$

c Approximating the binomial with a Poisson distribution, $Y \sim \operatorname{Po}(3)$, and finding the required value from tables:

$$
\begin{aligned}
\mathrm{P}(Y>6) & =1-\mathrm{P}(Y \leqslant 6) \\
& =1-0.9665=0.0335
\end{aligned}
$$

16 a Assuming that accidents can be modelled using a Poisson distribution (so that the mean number of accidents in a given period of time will be proportional to the length of time), let X be the number of accidents in a six-month period. So $X \sim \operatorname{Po}(7.5)$, and from the tables:

$$
\mathrm{P}(X \leqslant 4)=0.1321
$$

b Let Y be the number of accidents in a single month. So $Y \sim \operatorname{Po}(1.25)$

$$
\begin{aligned}
\mathrm{P}(Y \geqslant 1) & =1-\mathrm{P}(Y=0) \\
& =1-\mathrm{e}^{-1.25}=1-0.2865=0.7135(4 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

c Let A be the number of months in which there is at least one accident, out of a sample of 6 months. From part b, $A \sim \mathrm{~B}(6,0.7135)$

$$
\mathrm{P}(A=4)=\binom{6}{4}(0.7135)^{4}(0.2865)^{2}=0.3191 \text { (4 d.p.) }
$$

17 a Assume a Poisson distribution for breakdowns. Let X be the number of breakdowns in a single month, so $X \sim \operatorname{Po}\left(\frac{2}{3}\right)$
$\mathrm{P}(X=2)=\frac{\mathrm{e}^{-\frac{2}{3}} \times\left(\frac{2}{3}\right)^{2}}{2!}=0.1141$ (4 d.p.)
b Let Y be the number of months in which there are at least 2 breakdowns.
$\mathrm{P}(X \geqslant 2)=1-\mathrm{P}(X \leqslant 1)=1-0.8557=0.1443$
So $Y \sim \mathrm{~B}(4,0.1443)$
$\mathrm{P}(Y=3)=\binom{4}{3}(0.1443)^{3}(0.8557)^{1}=0.0103$ (4 d.p.)
18 a Visits can be counted singly; assuming visits are independent and at a constant average rate, they may be modelled by a Poisson distribution; the rate of 240 per hour would then scale to a mean rate of 4 in any given minute. Let X be the number of visits in a single minute. So $X \sim \operatorname{Po}(4)$
b $\mathrm{P}(X=8)=\frac{\mathrm{e}^{-4} \times 4^{8}}{8!}=0.0298$ (4 d.p.)
c Let Y be the number of visits in a two-minute period. $\operatorname{So} Y \sim \operatorname{Po}(8)$
Using the tables:

$$
\begin{aligned}
\mathrm{P}(Y \geqslant 10) & =1-\mathrm{P}(Y \leqslant 9) \\
& =1-0.7166=0.2843
\end{aligned}
$$

19 a Let X be the number of policies sold in the week.

$$
\begin{aligned}
\bar{x} & =\frac{\sum f x}{\sum f}=\frac{10 \times 0+23 \times 1+35 \times 2+33 \times 3+24 \times 4+14 \times 5+7 \times 6+3 \times 7+1 \times 8}{10+23+35+33+24+14+7+3+1}=2.86 \\
\sigma^{2} & =\frac{\sum f x^{2}}{\sum f}-(\bar{x})^{2} \\
& =\frac{10 \times 0^{2}+23 \times 1^{2}+35 \times 2^{2}+33 \times 3^{2}+24 \times 4^{2}+14 \times 5^{2}+7 \times 6^{2}+3 \times 7^{2}+1 \times 8^{2}}{10+23+35+33+24+14+7+3+1}-2.86^{2} \\
& =2.867(3 \text { d.p. })
\end{aligned}
$$

b The values of mean and variance are the same, to 2 significant figures, which would support the validity of a Poisson model.
c Model $X \sim \operatorname{Po}(2.9)$ and by calculator:

$$
\mathrm{P}(X \leqslant 2)=0.4460(4 \text { d.p. })
$$

Challenge

a Assuming the number of planes landing in a given period of time can be modelled by a Poisson distribution, let X be the number of planes landing between 2 pm and $2: 30 \mathrm{pm}$ and let Y be the number of planes landing between 2.30 pm and 3 pm . Then $X \sim \operatorname{Po}(7.5), Y \sim \operatorname{Po}(7.5)$ and $X+Y \sim \operatorname{Po}(15)$
The solution uses the formula for conditional probability: $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \text { and } B)}{\mathrm{P}(\mathrm{B})}$

$$
\begin{aligned}
\mathrm{P}(X=5 \mid X+Y=10) & =\frac{\mathrm{P}(X=5 \text { and } Y=5)}{\mathrm{P}(X+Y=10)} \\
& =\frac{\frac{\mathrm{e}^{-7.5} \times 7.5^{5}}{5!} \times \frac{\mathrm{e}^{-7.5} \times 7.5^{5}}{5!}}{\frac{\mathrm{e}^{-15} \times 15^{10}}{10!}} \\
& =\frac{10!}{(5!)^{2}} \times \frac{7.5^{10}}{15^{10}}=\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2} \times\left(\frac{1}{2}\right)^{10}=\frac{3 \times 2 \times 7 \times 6}{2^{10}}=\frac{252}{2^{10}}=\frac{63}{2^{8}} \\
& =\frac{63}{256}=0.2461(4 \text { d.p. })
\end{aligned}
$$

b $\quad \mathrm{P}(X>7 \mid X+Y=10)=\frac{\mathrm{P}(X>7 \text { and } X+Y=10)}{\mathrm{P}(X+Y=10)}$

$$
=\frac{\mathrm{P}(X=8 \text { and } Y=2)+\mathrm{P}(X=9 \text { and } Y=1)+\mathrm{P}(X=10 \text { and } Y=0)}{\mathrm{P}(X+Y=10)}
$$

$$
=\frac{\frac{\mathrm{e}^{-7.5} \times 7.5^{8}}{8!} \times \frac{\mathrm{e}^{-7.5} \times 7.5^{2}}{2!}}{\frac{\mathrm{e}^{-15} \times 15^{10}}{10!}}+\frac{\frac{\mathrm{e}^{-7.5} \times 7.5^{9}}{9!} \times \frac{\mathrm{e}^{-7.5} \times 7.5^{1}}{9!}}{\frac{\mathrm{e}^{-15} \times 15^{10}}{10!}}+\frac{\frac{\mathrm{e}^{-7.5} \times 7.5^{10}}{10!} \times \frac{\mathrm{e}^{-7.5} \times 7.5^{0}}{0!}}{\frac{\mathrm{e}^{-15} \times 15^{10}}{10!}}
$$

$$
=\frac{7.5^{10}}{15^{10}} \times 10!\times\left(\frac{1}{2 \times 8!}+\frac{1}{9!}+\frac{1}{10!}\right)=\frac{1}{2^{10}} \times(45+10+1)
$$

$$
=\frac{7}{128}=0.0547 \text { (4 d.p.) }
$$

