Probability generating functions 7B

1 a If $X \sim \mathrm{~B}(n, p)$, then $\mathrm{G}_{X}(t)=(1-p+p t)^{n}$
So $X \sim \mathrm{~B}(4,0.5), \mathrm{G}_{X}(t)=(1-0.5+0.5 t)^{4}=(0.5+0.5 t)^{4}=0.5^{4}(1+t)^{4}=\frac{1}{16}(1+t)^{4}$
b $\quad Y \sim \mathrm{~B}(6,0.2), \mathrm{G}_{Y}(t)=(1-0.2+0.2 t)^{6}=(0.8+0.2 t)^{6}$
c $\quad X \sim \mathrm{~B}(5,0.9), \mathrm{G}_{X}(t)=(1-0.9+0.9 t)^{5}=(0.1+0.9 t)^{5}$
d If $X \sim \operatorname{Po}(\lambda)$, then $\mathrm{G}_{X}(t)=\mathrm{e}^{\lambda(t-1)}$
$X \sim \operatorname{Po}(3), \mathrm{G}_{X}(t)=\mathrm{e}^{3(t-1)}$
e $\quad X \sim \operatorname{Po}(1.7), \mathrm{G}_{X}(t)=\mathrm{e}^{1.7(t-1)}$
f $\quad Y \sim \operatorname{Po}(0.2), \mathrm{G}_{Y}(t)=\mathrm{e}^{0.2(t-1)}$
2 a If $X \sim \operatorname{Geo}(p)$, then $\mathrm{G}_{X}(t)=\frac{p t}{1-(1-p) t}$
$X \sim \operatorname{Geo}(0.3), \mathrm{G}_{X}(t)=\frac{0.3 t}{1-(1-0.3) t}=\frac{0.3 t}{1-0.7 t}=\frac{3 t}{10-7 t}$
b $\quad Y \sim \operatorname{Geo}(0.8), \mathrm{G}_{Y}(t)=\frac{0.8 t}{1-(1-0.8) t}=\frac{0.8 t}{1-0.2 t}=\frac{4 t}{5-t}$
c If $X \sim$ Negative $\mathrm{B}(r, p)$, then $\mathrm{G}_{X}(t)=\left(\frac{p t}{1-(1-p) t}\right)^{r}$
$X \sim$ Negative $B(3,0.4), \mathrm{G}_{X}(t)=\left(\frac{0.4 t}{1-(1-0.4) t}\right)^{3}=\left(\frac{0.4 t}{1-0.6 t}\right)^{3}=\left(\frac{2 t}{5-3 t}\right)^{3}$
d $\quad Y \sim$ Negative $\mathrm{B}(5,0.9), \mathrm{G}_{Y}(t)=\left(\frac{0.9 t}{1-(1-0.9) t}\right)^{5}=\left(\frac{0.9 t}{1-0.1 t}\right)^{5}=\left(\frac{9 t}{10-t}\right)^{5}$
3 a Let the random variable X be the number of sixes obtained in 5 rolls, then $X \sim \mathrm{~B}(5,0.2)$
So $\mathrm{G}_{X}(t)=(1-0.2+0.2 t)^{5}=(0.8+0.2 t)^{5}$
b Let the random variable Y be the number of throws of the dice until a six is thrown,
then $Y \sim \operatorname{Geo}(0.2)$
So $\mathrm{G}_{Y}(t)=\frac{0.2 t}{1-(1-0.2) t}=\frac{0.2 t}{1-0.8 t}=\frac{t}{5-4 t}$

3 c Let the random variable Y be the number of throws of the dice until two sixes have been thrown, then $Z \sim$ Negative $\mathrm{B}(2,0.2)$
So $\mathrm{G}_{Z}(t)=\left(\frac{0.2 t}{1-(1-0.2) t}\right)^{2}=\left(\frac{0.2 t}{1-0.8 t}\right)^{2}=\left(\frac{t}{5-4 t}\right)^{2}$
4 a $X \sim \operatorname{Po}(0.3)$
b $\mathrm{P}(X=1)=\frac{\mathrm{e}^{-0.3} 0.3^{1}}{1!}=0.3 \mathrm{e}^{-0.3}=0.2222(4$ d.p. $)$
c If $X \sim \operatorname{Po}(\lambda)$, then $\mathrm{G}_{X}(t)=\mathrm{e}^{\lambda(t-1)}$
So $\mathrm{G}_{X}(t)=\mathrm{e}^{0.3(t-1)}$
5 a $X \sim \operatorname{Geo}(0.35)$
b $\mathrm{P}(X=6)=0.35(1-0.35)^{5}=0.35 \times 0.65^{5}=0.0406$ (4 d.p.)
c $\quad \mathrm{G}_{X}(t)=\frac{0.35 t}{1-(1-0.35) t}=\frac{0.35 t}{1-0.65 t}=\frac{7 t}{20-13 t}$
$6 \quad X \sim \mathrm{~B}(4,0.8)$, $\operatorname{so} \mathrm{P}(X=x)=\binom{4}{x} 0.8^{x}(1-0.8)^{4-x}$

$$
\begin{aligned}
\mathrm{G}_{X}(t) & =\sum t^{x} \mathrm{P}(X=x) \\
& =(0.2)^{4}+4(0.8)(0.2)^{3} t+6(0.8)^{2}(0.2)^{2} t^{2}+4(0.8)^{3}(0.2) t^{3}+(0.8)^{4} t^{4} \\
& =(0.2)^{4}+4(0.2)^{3}(0.8 t)+6(0.2)^{2}(0.8 t)^{2}+4(0.2)(0.8 t)^{3}+(0.8 t)^{4} \\
& =(0.2+0.8 t)^{4}
\end{aligned}
$$

$7 X \sim \operatorname{Po}(3.5)$, so $\mathrm{P}(X=x)=\frac{\mathrm{e}^{-3.5} 3.5^{x}}{x!}$

$$
\begin{aligned}
\mathrm{G}_{X}(t) & =\sum t^{x} \mathrm{P}(X=x)=\sum t^{x} \frac{\mathrm{e}^{-3.5} 3.5^{x}}{x!} \\
& =\mathrm{e}^{-3.5} \sum \frac{t^{x} 3.5^{x}}{x!}=\mathrm{e}^{-3.5} \sum \frac{(3.5 t)^{x}}{x!} \\
& =\mathrm{e}^{-3.5}\left(1+3.5 t+\frac{(3.5 t)^{2}}{2!}+\frac{(3.5 t)^{3}}{3!}+\ldots\right)
\end{aligned}
$$

The expression in brackets is the Maclaurin expansion of e^{x} where $x=3.5 t$, so:
$\mathrm{G}_{X}(t)=\mathrm{e}^{-3.5} \mathrm{e}^{3.5 t}=\mathrm{e}^{3.5 t-3.5}=\mathrm{e}^{3.5(t-1)}$
$8 \quad Y \sim \operatorname{Geo}(0.7)$, so $\mathrm{P}(Y=y)=(1-0.7)^{y-1} 0.7$

$$
\begin{aligned}
\mathrm{G}_{Y}(t) & =\sum_{y=1}^{\infty} t^{y} \mathrm{P}(Y=y)=\sum_{y=1}^{\infty} t^{y} 0.3^{y-1} 0.7 \\
& =0.7 t \sum_{y=1}^{\infty}(0.3 t)^{y-1}=0.7 t \sum_{y=0}^{\infty}(0.3 t)^{y} \\
& =0.7 t\left(1+0.3 t+(0.3 t)^{2}+\ldots\right)
\end{aligned}
$$

The bracketed expression is the sum of an infinite geometric series, with first term 1 and common ratio $0.3 t$. Using the formula for the sum of a geometric series gives:

$$
\left(1+0.3 t+(0.3 t)^{2}+\ldots\right)=\frac{1}{1-0.3 t}
$$

So $G_{Y}(t)=0.7 t \frac{1}{1-0.3 t}=\frac{0.7 t}{1-0.3 t}$
$9 \quad X \sim \mathrm{~B}(n, p)$, so $\mathrm{P}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$

$$
\begin{aligned}
\mathrm{G}_{X}(t) & =\sum t^{x} \mathrm{P}(X=x)=\sum t^{x}\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum\binom{n}{x}(p t)^{x}(1-p)^{n-x} \\
& =(1-p)^{n}+\binom{n}{1}(1-p)^{n-1} p t+\binom{n}{2}(1-p)^{n-2}(p t)^{2}+\binom{n}{3}(1-p)^{n-3}(p t)^{3}+\ldots+(p t)^{n}
\end{aligned}
$$

This is the binomial expansion of $(a+b)^{n}$ (see Pure Year 1, Chapter 8) with $a=1-p$ and $b=p t$ So $\mathrm{G}_{X}(t)=(1-p+p t)^{n}$
$10 X \sim \operatorname{Po}(\lambda)$, so $\mathrm{P}(X=x)=\frac{\mathrm{e}^{-\lambda} \lambda^{x}}{x!}$

$$
\begin{aligned}
\mathrm{G}_{X}(t) & =\sum t^{x} \mathrm{P}(X=x)=\sum t^{x} \frac{\mathrm{e}^{-\lambda} \lambda^{x}}{x!} \\
& =\mathrm{e}^{-\lambda} \sum \frac{(\lambda t)^{x}}{x!}=e^{-\lambda}\left(1+\lambda t+\frac{(\lambda t)^{2}}{2!}+\frac{(\lambda t)^{3}}{3!}+\ldots\right)
\end{aligned}
$$

The bracketed expression is the Maclaurin expansion of e^{x} where $x=\lambda t$
So $\mathrm{G}_{X}(t)=\mathrm{e}^{-\lambda} \mathrm{e}^{\lambda t}=\mathrm{e}^{\lambda t-\lambda}=\mathrm{e}^{\lambda(t-1)}$
$11 Y \sim \operatorname{Geo}(p)$, so $\mathrm{P}(Y=y)=p(1-p)^{y-1}$

$$
\begin{aligned}
\mathrm{G}_{Y}(t) & =\sum t^{y} \mathrm{P}(Y=y)=\sum_{y=1}^{\infty} t^{y} p(1-p)^{y-1} \\
& =p t \sum_{y=1}^{\infty}(t(1-p))^{y-1}=p t \sum_{y=0}^{\infty}(t(1-p))^{y} \\
& =p t\left(1+(1-p) t+((1-p) t)^{2}+\ldots\right)
\end{aligned}
$$

The bracketed expression is the sum of an infinite geometric series, with first term 1 and common ratio $(1-p) t$. Using the formula for the sum of a geometric series gives:
So $\mathrm{G}_{Y}(t)=p t \frac{1}{1-(1-p) t}=\frac{p t}{1-(1-p) t}$

