MARK SCHEME for the March 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ components.

Page 2	Mark Scheme	Syllabus	$P_{2} \frac{1}{3}$
	Cambridge IGCSE - March 2015	0606	12

1 (i) (ii) (iii) (iv)	Members who play football or cricket, or both Members who do not play tennis There are no members who play both football and tennis There are 10 members who play both cricket and tennis.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
2	$\begin{aligned} & k x-3=2 x^{2}-3 x+k \\ & 2 x^{2}-x(k+3)+(k+3)=0 \end{aligned}$ Using $b^{2}-4 a c$, $\begin{aligned} & (k+3)^{2}-(4 \times 2 \times(k+3))(<0) \\ & (k+3)(k-5)(<0) \end{aligned}$ Critical values $k=-3,5$ $\text { so }-3<k<5$	M1 DM1 DM1 A1 A1	for attempt to obtain a 3 term quadratic equation in terms of x for use of $b^{2}-4 a c$ for attempt to solve quadratic equation, dependent on both previous M marks for both critical values for correct range
3 (i) (ii)	$4-5 x= \pm 9 \text { or }(4-5 x)^{2}=81$ leading to $x=-1, x=\frac{13}{5}$	B1 B1 B1 M1 A1, A1	for shape, must touch the x-axis in the correct quadrant for y intercept for x intercept for attempt to obtain 2 solutions, must be a complete method A1 for each
4 (i) (ii)	$729+2916 x+4860 x^{2}$ $2 \times \text { their } 4860-\text { their } 2916=6804$	$\begin{gathered} \text { B1,B1 } \\ \mathbf{B 1} \\ \mathbf{M 1} \\ \text { A1 } \end{gathered}$	B1 for each correct term for attempt at 2 terms, must be as shown

5 (i) (ii) (iii)	gradient $=4$ Using either $(2,1)$ or $(3,5), c=-7$ $\mathrm{e}^{y}=4 x+c$ so $y=\ln (4 x-7)$ Alternative method: $\frac{y-1}{5-1}=\frac{x-2}{3-2}$ or equivalent $\begin{aligned} & \mathrm{e}^{y}=4 x-7 \\ & \text { so } y=\ln (4 x-7) \end{aligned}$ $x>\frac{7}{4}$ $\ln 6=\ln (4 x-7)$ so $x=\frac{13}{4}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { M1,A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1ft } \\ \hline \text { B1ft } \end{gathered}$	for gradient, seen or implied for attempt at straight line equation to obtain a value for c for correct method to deal with e^{y} for attempt at straight line equation using both points allow correct unsimplified for correct method to deal with e^{y} ft on their $4 x-7$ ft on their $4 x-7$
6 (i) (ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x\left(2 \sec ^{2} 2 x\right)-\tan 2 x}{x^{2}} \\ & \text { Or } \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{-1}\left(2 \sec ^{2} 2 x\right)+\left(-x^{-2}\right) \tan 2 x \end{aligned}$ When $x=\frac{\pi}{8}, y=\frac{8}{\pi}(2.546)$ When $x=\frac{\pi}{8}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\frac{\pi}{2}-1}{\frac{\pi^{2}}{64}}$ $\begin{equation*} =\frac{32}{\pi}-\frac{64}{\pi^{2}} \tag{3.701} \end{equation*}$ Equation of the normal: $\begin{aligned} & y-\frac{8}{\pi}=-\frac{\pi^{2}}{32(\pi-2)}\left(x-\frac{\pi}{8}\right) \\ & y=-0.27 x+2.65(\text { allow } 2.66) \end{aligned}$	A2,1,0 B1 M1 A1	for attempt to differentiate a quotient (or product) -1 each error for y-coordinate (allow 2.55) for an attempt at the normal, must be working with a perpendicular gradient allow in unsimplified form in terms of π or simplified decimal form

Page 4	Mark Scheme	Syllabus	P_{2}
	Cambridge IGCSE - March 2015	0606	12

7 (i) (ii) (iii)	$\mathrm{p}\left(\frac{1}{2}\right): \frac{a}{8}+\frac{b}{4}-\frac{3}{2}-4=0$ Simplifies to $a+2 b=44$ $\mathrm{p}(-2):-8 a+4 b+6-4=-10$ Simplifies to $2 a-b=3$ oe Leads to $a=10, b=17$ $\left.\begin{array}{l} \begin{array}{rl} \mathrm{p}(x) & =10 x^{3}+17 x^{2}-3 x-4 \\ & =(2 x-1)\left(5 x^{2}+11 x+4\right) \end{array} \\ x=\frac{1}{2} \end{array}\right\}=\frac{-11 \pm \sqrt{41}}{10} .$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { B2,1,0 } \\ \\ \text { B1 } \\ \text { B1, B1 } \end{gathered}$	for correct use of $x=\frac{1}{2}$ for correct use of $x=-2$ for solution of equations for both, be careful as AG for a, allow verification -1 each error
8 (a) (i) (ii) (b) (i) (ii) (iii)	Range $0 \leqslant y \leqslant 1$ Any suitable domain to give a one-one function $y=2+4 \ln x$ oe $\ln x=\frac{y-2}{4} \quad$ oe $\mathrm{g}^{-1}(x)=\mathrm{e}^{\frac{x-2}{4}}$ Domain $x \in \square$ Range $y>0$ $\begin{aligned} & \mathrm{g}\left(x^{2}+4\right)=10 \\ & 2+4 \ln \left(x^{2}+4\right)=10 \end{aligned}$ leading to $x=1.84$ only Alternative method: $\begin{aligned} & \mathrm{h}(x)=x^{2}+4=\mathrm{g}^{-1}(10) \\ & \mathrm{g}^{-1}(10)=\mathrm{e}^{2}, \text { so } x^{2}+4=\mathrm{e}^{2} \end{aligned}$ leading to $x=1.84$ only $\begin{aligned} & \frac{4}{x}=2 x \\ & x^{2}=2 \\ & x=\sqrt{2} \end{aligned}$	B1 B1 M1 A1 B1 B1 M1 DM1 A1 M1 DM1 A1 B1 M1 A1	e.g. $0 \leqslant x \leqslant \frac{\pi}{4}$ for a complete method to find the inverse must be in the correct form for correct order for attempt to solve for one solution only for correct order for attempt to solve for one solution only for given equation, allow in this form for attempt to solve, must be using derivatives for one solution only, allow 1.41 or better.

9 (i)	Area of triangular face $=\frac{1}{2} x^{2} \frac{\sqrt{3}}{2}=\frac{\sqrt{3} x^{2}}{4}$ Volume of prism $=\frac{\sqrt{3} x^{2}}{4} \times y$ $\frac{\sqrt{3} x^{2}}{4} \times y=200 \sqrt{3}$ so $x^{2} y=800$ $A=2 \times \frac{\sqrt{3} x^{2}}{4}+2 x y$ leading to $A=\frac{\sqrt{3} x^{2}}{2}+\frac{1600}{x}$ $\frac{\mathrm{d} A}{\mathrm{~d} x}=\sqrt{3} x-\frac{1600}{x^{2}}$ When $\frac{\mathrm{d} A}{\mathrm{~d} x}=0, x^{3}=\frac{1600}{\sqrt{3}}$ $x=9.74$ so $A=246$ $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x}=\sqrt{3}+\frac{3200}{x^{3}}$ which is positive for $x=9.74$ so the value is a minimum	B1 M1 A1 M1 A1 M1 M1 A1 A1 M1 A1ft	for area of triangular face for attempt at volume their area $\times y$ for correct relationship between x and y for a correct attempt to obtain surface area using their area of triangular face for eliminating y correctly to obtain given answer for attempt to differentiate for equating $\frac{\mathrm{d} A}{\mathrm{~d} x}$ to 0 and attempt to solve for correct x for correct A for attempt at second derivative and conclusion, or alternate methods ft for a correct conclusion from completely correct work, follow through on their positive x value.
10 (i) (ii)	$\begin{aligned} & \tan \theta=\frac{1+2 \sqrt{5}}{6+3 \sqrt{5}} \times \frac{6-3 \sqrt{5}}{6-3 \sqrt{5}} \\ &=\frac{6-3 \sqrt{5}+12 \sqrt{5}-30}{36-45} \\ &=\frac{8}{3}-\sqrt{5} \\ & \tan ^{2} \theta+1=\sec ^{2} \theta \\ & \frac{64}{9}-\frac{16 \sqrt{5}}{3}+5+1=\operatorname{cosec}^{2} \theta \end{aligned}$ so $\operatorname{cosec}^{2} \theta=\frac{118}{9}-\frac{16 \sqrt{5}}{3}$ Alternate solutions are acceptable	M1 A1, A1 M1 A1, A1	for attempt at $\cot \theta$ together with rationalisation Must be convinced that a calculator is not being used. A1 for each term for attempt to use the correct identity or correct use of Pythagoras' theorem together with their answer to (i) Must be convinced that a calculator is not being used. A1 for each term

