hun man hall

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		h 4
Pag	e 2 Mark Scheme: Teachers' version	Syllabus
	IGCSE- May/June 2010	0606
Mark Sch	neme Notes	dith Color
Mark	s are of the following three types:	Ad, CO
M	Method mark, awarded for a valid method applied to the protection for numerical errors, algebraic slips or errors in	

Mark Scheme Notes

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{\ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

		h	1
Page 3	Mark Scheme: Teachers' version	Syllabus '%	2
	IGCSE– May/June 2010	0606	3.
		1/2	

	IGCSE- May/June 2010	0606	10	
The follow	wing abbreviations may be used in a mark scheme or used	d on the scri	pts:	Athor Ms
AG	IGCSE- May/June 2010 ne following abbreviations may be used in a mark scheme or used on the scripts: Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid) DD Benefit of Doubt (allowed when the validity of a solution may not be absolutely			
BOD	BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)			itely
CAO	O Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)			
ISW	Ignore Subsequent Working			
MR	Misread			
PA	Premature Approximation (resulting in basically correct accurate)	work that is	s insufficie	ently
sos	See Other Solution (the candidate makes a better attempt	pt at the san	ne questior	n)

Penalties

- MR 1A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

		The state of the s
Page 4	Mark Scheme: Teachers' version	Syllabus
	IGCSE- May/June 2010	0606

variable. M1 for attempt to get 2 or 3 quadratic = 0 DM1 A1,A1 Self-action of $x = -2$ or -1 , or verification $x = -2$ or			1	Q ₁ / ₂
A1,A1 Solution So	1	$24x^2 - 6x = 0$	M1	M1 for attempt to get an equal variable.
A1,A1 Solution So			M1	M1 for attempt to get 2 or 3 quadratic = 0
6a + b = 61 $when x = -1, 2a + b = 29 leading to a = 8 and b = 13 A1 A1 A1 A1 A1 A1 A1 A1$		leading to $(0, 1)$ and $\left(\frac{1}{4}, -2\right)$	A1,A1	DM1 for attempt to solve A1 for each pair of values
when $x = -1$, $2a + b = 29$ leading to $a = 8$ and $b = 13$ A1 A1 A1 A1 for each correct (allow unsimplified) A1 M1 A1 for $a = 8$, $b = 13$ B1 B1 for \overline{AB} (i) $\overline{AB} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} -17 \\ 25 \end{pmatrix}$ $= \begin{pmatrix} 21 \\ -20 \end{pmatrix}$ unit vector $= \begin{pmatrix} 2\frac{1}{2} \\ -2\frac{1}{2} \\ -2\frac{1}{2} \end{pmatrix}$ or equivalent M1, A1 [3] (ii) $\overline{OC} - \begin{pmatrix} -17 \\ 25 \end{pmatrix} = 3 \begin{pmatrix} 21 \\ -20 \end{pmatrix}$ $\overline{OC} = \begin{pmatrix} 46 \\ -35 \end{pmatrix}$ A1 [2] 4 (i) gradient = -2 $y^2 = -2\sec x + c$ leading to $y^2 = -2\sec x + 6.4$ B1 B1 for gradient M1 for correct attempt to link y^2 and $\sec x$ A1 [3] (ii) when $y = 2$, $\cos x = \frac{5}{6}$ DM1 A1 [3] M1 for attempt to solve their equation using $y = 2$ M1 M1 for attempt to differentiate DM1 for attempt to differentiate	2		M1	
leading to $a=8$ and $b=13$ A1 for $a=8$, $b=13$ B1 B1 for \overline{AB} with vector = $\begin{pmatrix} 21/2 \\ -20 \end{pmatrix}$ or equivalent with vector = $\begin{pmatrix} -21/2 \\ -20/2 \\ -20/2 \\ 25 \end{pmatrix}$ or equivalent of \overline{AB} (ii) $\overline{OC} - \begin{pmatrix} -17 \\ 25 \end{pmatrix} = 3 \begin{pmatrix} 21 \\ -20 \end{pmatrix}$ or equivalent of \overline{AB} A1 for \overline{AB} M1 for magnitude of \overline{AB} M1 for \overline{AB} A1 [2] 4 (i) gradient = -2 $y^2 = -2\sec x + c$ leading to $y^2 = -2\sec x + 6.4$ B1 B1 for gradient of \overline{AB} M1 for correct attempt to link y^2 and \overline{AB} A1 [3] (ii) when $y = 2$, $\cos x = \frac{5}{6}$ DM1 DM1 for attempt to solve their equation using $y = 2$ 5 $\frac{dy}{dx} = \frac{3}{x^2}$, gradient at $A = \frac{1}{3}$, normal grad = -3 coords of A (3, 5) normal $y - 5 = -3(x - 3)$ DM1 DM1 for use of perp grads DM1 for attempt at normal				
$= \begin{pmatrix} 21 \\ -20 \end{pmatrix}$ unit vector $= \begin{pmatrix} 2\frac{1}{2} \\ -2\frac{9}{2} \\ -2\frac{9}{2} \end{pmatrix}$ or equivalent $= \begin{pmatrix} 2\frac{1}{2} \\ -2\frac{9}{2} \\ -2\frac{9}{2} \end{pmatrix}$ or equivalent $= \begin{pmatrix} 11 \\ -20 \\ -2\frac{9}{2} \\ -2\frac{9}{2} \end{pmatrix}$ $= \begin{pmatrix} 17 \\ 25 \\ -20 \end{pmatrix}$ $= \begin{pmatrix} 21 \\ -20 \\ -2\frac{9}{2} \\ -2\frac{9}{2} \end{pmatrix}$ M1 M1 for magnitude of \overline{AB} M1 for \overline{AB} M2 M1 for \overline{AB} M3 M1 for \overline{AB} M1 for adjective of \overline{AB} M2 M1 for adjective of \overline{AB} M3 M1 for adjective of \overline{AB} M4 M1 for correct attempt to link y^2 and sec x A1 [3] M1 DM1 for attempt to solve their equation using $y = 2$ [2] M2 M1 for attempt to differentiate M3 for adjective of perp grads M4 M1 for attempt to differentiate M5 DM1 for attempt to differentiate M6 DM1 for attempt to differentiate M7 DM1 for attempt to differentiate M8 DM1 for attempt to differentiate M9 DM1 for attempt to differentiate DM1 DM1 for attempt at normal DM1 for attempt at normal		leading to $a = 8$ and $b = 13$	A1	•
unit vector = $\begin{pmatrix} 2\frac{1}{2}\frac{29}{29} \\ -2\frac{9}{29} \end{pmatrix}$ or equivalent (ii) $\overrightarrow{OC} - \begin{pmatrix} -17\\25 \end{pmatrix} = 3\begin{pmatrix} 21\\-20 \end{pmatrix}$ $\overrightarrow{OC} = \begin{pmatrix} 46\\-35 \end{pmatrix}$ M1 M1 for $\begin{pmatrix} -17\\25 \end{pmatrix} + 3\overrightarrow{AB}$ A1 [2] B1 M1 for correct attempt to link y^2 and sec x A1 [3] (ii) when $y = 2$, $\cos x = \frac{5}{6}$ DM1 $\cot y = 2$ [2] DM1 for attempt to solve their equation using $y = 2$ $\cot y = \frac{3}{4}$ $\cot y = $	3			
(ii) $\overrightarrow{OC} - \begin{pmatrix} -17 \\ 25 \end{pmatrix} = 3 \begin{pmatrix} 21 \\ -20 \end{pmatrix}$ $\overrightarrow{OC} = \begin{pmatrix} 46 \\ -35 \end{pmatrix}$ A1 [2] Heading to $y^2 = -2\sec x + c$ leading to $y^2 = -2\sec x + 6.4$ (ii) when $y = 2$, $\cos x = \frac{5}{6}$ B1 B1 for gradient M1 for correct attempt to link y^2 and $\sec x$ A1 [3] DM1 for attempt to solve their equation using $y = 2$ [2] M1 M1 for attempt to solve their equation using $y = 2$ M1 M1 for attempt to differentiate M3 M1 for attempt to differentiate M4 M5 M6 M7 M8 M9			B1	B1 for \overline{AB}
$\overrightarrow{OC} = \begin{pmatrix} 46 \\ -35 \end{pmatrix}$ $A1$ [2]		unit vector = $\begin{pmatrix} 21/29 \\ -20/29 \end{pmatrix}$ or equivalent		M1 for magnitude of \overrightarrow{AB}
4 (i) gradient = -2 $y^2 = -2\sec x + c$ leading to $y^2 = -2\sec x + 6.4$ B1 M1 for correct attempt to link y^2 and $\sec x$ A1 [3] (ii) when $y = 2$, $\cos x = \frac{5}{6}$ DM1 A1 DM1 for attempt to solve their equation using $y = 2$ [2] 5 $\frac{dy}{dx} = \frac{3}{x^2}$, gradient at $A = \frac{1}{3}$, normal grad = -3 coords of A (3, 5) normal $y - 5 = -3(x - 3)$ DM1 DM1 for use of perp grads			M1	M1 for $\binom{-17}{25} + 3\overline{AB}$
$y^2 = -2\sec x + c$ leading to $y^2 = -2\sec x + 6.4$ M1 for correct attempt to link y^2 and $\sec x$ [3] (ii) when $y = 2$, $\cos x = \frac{5}{6}$ DM1 or attempt to solve their equation using $y = 2$ [2] 5 $\frac{dy}{dx} = \frac{3}{x^2}$, gradient at $A = \frac{1}{3}$, normal grad = -3 coords of A (3, 5) normal $y - 5 = -3(x - 3)$ DM1 or attempt to differentiate DM1 for attempt to differentiate DM1 for attempt to differentiate		$\overrightarrow{OC} = \begin{pmatrix} 46 \\ -35 \end{pmatrix}$		
(ii) when $y = 2$, $\cos x = \frac{5}{6}$ DM1 A1 BM1 for attempt to solve their equation using $y = 2$ $\frac{dy}{dx} = \frac{3}{x^2},$ gradient at $A = \frac{1}{3}$, normal grad = -3 coords of $A(3, 5)$ normal $y - 5 = -3(x - 3)$ DM1 for attempt to differentiate DM1 B1 DM1 for use of perp grads DM1 for use of perp grads DM1 for attempt at normal	4	$y^2 = -2\sec x + c$		M1 for correct attempt to link y^2 and
		3		
gradient at $A = \frac{1}{3}$, normal grad = -3 coords of A (3, 5) normal $y - 5 = -3(x - 3)$ DM1 DM1 for use of perp grads B1 DM1 DM1 for attempt at normal		(ii) when $y = 2$, $\cos x = \frac{5}{6}$	A1	
normal grad = -3 DM1 DM1 for use of perp grads B1 DM1 for attempt at normal $y - 5 = -3(x - 3)$	5	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{x^2} ,$	M1	M1 for attempt to differentiate
coords of A (3, 5) normal $y - 5 = -3(x - 3)$ B1 DM1 DM1 for attempt at normal		gradient at $A = \frac{1}{3}$,		
normal $y - 5 = -3(x - 3)$ DM1 DM1 for attempt at normal				DM1 for use of perp grads
when $v = 0$, $\lambda = -$		normal $y - 5 = -3(x - 3)$		DM1 for attempt at normal
[5]		when $y = 0$, $x = \frac{1}{3}$		

		Thun S	2
Page 5	Mark Scheme: Teachers' version	Syllabus	
	IGCSE- May/June 2010	0606	

	(A)
6 (a) (i)	B1 B1 for $y = \cos x$
	B1 B1 for either a translation of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
	B1 B1 for $y = \cos x$ B1 B1 for either a translation of $\begin{pmatrix} b \\ 1 \end{pmatrix}$ cycles B1 B1 for correct curve
	[3]
(ii) 4	B1 [1]
(b) (i) 5	B1 [1]
(ii) $\frac{2\pi}{3}$	B1 [1]
7 (i) Igv 1 1.70 2.04 2.36	M1 M1 for attempt to take logs and plot graph A2,1,0 —1 for each error either in table or on graph. [3]
(ii) gradient = n = -1.37 (allow 1.32 to 1.42)	M1 M1 for use of gradient A1 [2]
(iii) $p = 30$ (allow 28 to 32)	M1 M1 for use of graph or their equation [2]
8 (i) $\begin{pmatrix} 16 & 9 \\ 1 & -2 \end{pmatrix}$	B1 B1 at least 2 correct B1 B1 all correct
(ii) $\frac{1}{8-3} \begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix}$	B1 B1 for determinant B1 For matrix
(iii) $\mathbf{X} = \mathbf{AB}$ $= \begin{pmatrix} -5 & 12 \\ 0 & 8 \end{pmatrix}$	M1 M1 for attempt at valid method A2,1,0 —1 each error [3]

		my 1
Page 6	Mark Scheme: Teachers' version	Syllabus 2
	IGCSE- May/June 2010	0606
•		De la

			,	Qx, Qx
9	(i)	$5 + 5 + 3\theta + 8\theta = 15.5$	M1, DM1	M1 for use of arc length DM1 for attempt to find perimete.
		$\theta = 0.5$	A1 [3]	
	(ii)	$\frac{1}{2}(3)^2 \theta : \frac{1}{2}(8)^2 \theta - \frac{1}{2}(3)^2 \theta$	M1 DM1	M1 for a sector area M1 for attempt to find area of <i>XABY</i>
		= 9:55	DM1, A1 [4]	M1 for attempt to obtain ratio
10	(i)	10 C ₇ = 120	B1 [1]	
	(ii)	${}^{6}C_{5} \times {}^{4}C_{2} = 36$	B1, B1 [2]	B1 for ${}^{6}C_{5} \times {}^{4}C_{2}$, B1 for 36
	(iii)	Need $(6C + 1M) + (5C + 2M) + (4C + 3M)$ $4 + (ii) + (^{6}C_{4} \times ^{4}C_{3})$ = 100	M1 B1, B1 A1 [4]	M1 for a correct method B1 for 4, B1 for 60
11	(i)	$48 = 12 \ln (2t + 3)$ 2t + 3 = e ⁴ t = 25.8	M1 DM1 A1 [3]	M1 for attempt to deal with logs DM1 for attempt to solve
	(ii)	$x = 12 \ln (2t + 3)$ $v = \frac{24}{2t + 3}$	B1	B1 $\frac{1}{2t+3}$ B1 24
		2t + 3 when $t = 1$, $v = 4.8$	B1 [3]	B1 for 4.8
	(iii)	$a = -\frac{48}{(2t+3)^2}$	B1	B1 for $\frac{1}{(2t+3)^2}$
		when $t = 1$, $a = -1.92$	$ \begin{vmatrix} \sqrt{B1} \\ B1 \end{vmatrix} $ [3]	√B1 on '24' B1 for −1.92

		huy 1	1
Page 7	Mark Scheme: Teachers' version	Syllabus '2	Ž
	IGCSE- May/June 2010	0606	

	T	Dr. Com
12 EITHER		135C/C
(i) $y = 4 \sin 2x + c$	M1 M1	M1 for attempt to integrate M1 for attempt to get c provided function of sin 2x is used
passes through $\left(\frac{\pi}{4},7\right)$, $c=3$	A1 [3]	function of $\sin 2x$ is used
(ii) $5 = 4 \sin 2x + 3$ $0.5 = \sin 2x$	M1 M1	M1 for attempt to equate to 5 and solve M1 for a correct method to find x
$x = \frac{\pi}{12}, \frac{5\pi}{12}$	A1 √A1 [4]	√A1 on first solution
(iii) $\int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} 4 \sin 2x + 3 dx$	M1	M1 for attempt to integrate
$[-2\cos 2x + 3x]_{\frac{\pi}{12}}^{\frac{5\pi}{12}}$ $= \pi + 2\sqrt{3}$	A1 DM1	DM1 for correct use of limits
Shaded area = $\pi + 2\sqrt{3} - \frac{5\pi}{3}$	M1	M1 for area of rectangle
(= 1.37)	A1 [5]	
12 OR	-	
(i) $y = 2e^{3x} - 12x + c$	M1, A1	M1 for attempt to integrate, condone omission of <i>c</i>
Passes through $(0, 1)$, so $c = -1$	M1, A1 [4]	M1 for attempt to obtain c
(ii) $6e^{3x} - 12 = 0$	M1	M1 for attempt to solve
leading to $x = \frac{1}{3} \ln 2$ and $y = 3 - 4 \ln 2$	A1, A1	
(allow (0.231, 0.227)	[3]	
(iii) $\frac{d^2 y}{dx^2} = 18e^{3x}$, always +ve so min	M1, A1 [2]	M1 for a complete, correct method
(iv) at $(0, 1)$, gradient = -6 tangent : $y - 1 = -6(x - 0)$	M1	M1 for attempt to get equation of tangent at (0, 1)
when $y = 0, x = \frac{1}{6}$	DM1 A1 [3]	DM1 for substitution of $y = 0$