

MARK SCHEME for the May/June 2013 series

0444 MATHEMATICS (US)

0444/11

Paper 1 maximum raw mark 56

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			hun y
F	age 2 Mark Scheme		Syllabus 5. 2
		IGCSE – May/June 2013	Syllabus Munary Syllabus
cao	eviations correct answer	•	dthscloud
cso	correct solutio	n only	40
dep	dependent		Y.C.
ft	follow through		-0
isw	ignore subsequ	uent working	
oe	or equivalent		
SC	Special Case		

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working

seen or implied soi

	Qu	Answers	Mark	Part Answers
1		$\frac{9}{20}$ cao	1	
2		11 or -11	1	
3		-9 or -23	2	B1 for 7 or 16 seen
4		72	2	M1 for 84 ÷ 7
5		105	2	M1 for $180 - 55 - 50$ or B1 for 55 or 75 seen in the correct angle inside the triangle
6		8	2	M1 for $\frac{3k}{2k} \times \frac{16n}{3n}$
7	(a)	$\begin{pmatrix} 6\\ -8 \end{pmatrix}$	1 1	If zero, SC1 for vector <i>QP</i>
	(b)	(-1, 1)	1	
8		[b =] 5(a+9) oe final answer	2	M1 for one correct step
9	(a)	32	1	
	(b)	7n - 3 oe	2	B1 for 7 <i>n</i>
10	(a)	-6	1	
	(b)	13	2	B1 for $\frac{12}{16}$ or $\frac{14}{16}$ or $\frac{13}{16}$ seen
11	(a)	[0].55 oe	1	
	(b)	18	2	M1 for 40 × [0].45 oe
12	(a)	cuboid	1	condone [rectangular] prism
	(b)	pentagon	1	
	(c)	obtuse	1	

	Page 3		Mark Scher	ne	Syllabus 2. 5	
	IGCSE – May/Ju			3 0444 Jun 19	Mar	
13	(a)	7		1	Aths	.2
	(b)	37.5	5	1		Uy
		cm3	3	1	Syllabus 3 0444 A A	·C
14		32.0	54 cao final answer	3	M1 for $400 + 400 \times \frac{4}{100}$ and M1 for interest for 2 nd year $= \frac{4}{100} \times \text{their } 416$ OR M2 for $400 \times (1 + \frac{4}{100})^2 - 400$ or M1 for $400 \times (1 + \frac{4}{100})^2$	
					or if zero, SC2 for answer 432.64	
15	(a)	55[.	00]	1		
	(b)	200		2	M1 for 220 ÷ 1.1 or equivalent	
16	(a) (i)	[<i>p</i> =	[-1 and [q] =]5	1		
	(ii)	1 ≤	$f(x) \le 19$ oe	1	Accept <i>y</i> for $f(x)$ Condone < for \leq	
	(b)	[0],	1, 2, 3, 4 oe	1		
17	(a)	C, I)	1, 1		
	(b)	-2		1		
18	(a)		rect ruled line pairs of correct arcs	1 1		
	(b)		rect ruled line pairs of correct arcs	1 1		
19	(a)	$\frac{1}{25}$		1		
	(b)	[0].	25	1		
	(c) (i)	a ⁹	final answer	1		
	(ii)	$4b^{12}$	² final answer	2	B1 for $4b^k$ or B1 for kb^{12} where k is an integer (k $\neq 0$)	

Page 4			Mark Scheme IGCSE – May/June 2013		Syllabus 0444	143	
	(a)	5x + 15	final answer	1		Syllabus 0444 $y-x^2$) or $x(12y-3x)$	the state of the s
	(b)	3x(4y-x)	final answer	2	B1 for 3(4 <i>x</i>)	$(y - x^2)$ or $x(12y - 3x)$	10UQ.
	(c)	15		2	M1 for correction $5x = 51 + 51$	ect first step -24 or $x - \frac{24}{5} = \frac{51}{5}$ or bette	er C

Ľ