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Chapter 1

The Real Numbers

1.1 Discussion: The Irrationality of
p

2

1.2 Some Preliminaries

Exercise 1.2.1. (a) Assume, for contradiction, that there exist integers p and
q satisfying

(1)
µ

p

q

∂2

= 3.

Let us also assume that p and q have no common factor. Now, equation (1)
implies

(2) p2 = 3q2.

From this, we can see that p2 is a multiple of 3 and hence p must also be
a multiple of 3. This allows us to write p = 3r, where r is an integer. After
substituting 3r for p in equation (2), we get (3r)2 = 3q2, which can be simplified
to 3r2 = q2. This implies q2 is a multiple of 3 and hence q is also a multiple of
3. Thus we have shown p and q have a common factor, namely 3, when they
were originally assumed to have no common factor.

A similar argument will work for
p

6 as well because we get p2 = 6q2 which
implies p is a multiple of 2 and 3. After making the necessary substitutions, we
can conclude q is a multiple of 6, and therefore

p
6 must be irrational.

(b) In this case, the fact that p2 is a multiple of 4 does not imply p is also a
multiple of 4. Thus, our proof breaks down at this point.

Exercise 1.2.2. (a) False, as seen in Example 1.2.2.
(b) True. This will follow from upcoming results about compactness in

Chapter 3.
(c) False. Consider sets A = {1, 2, 3}, B = {3, 6, 7} and C = {5}. Note that

A \ (B [ C) = {3} is not equal to (A \B) [ C = {3, 5}.

1



2 Chapter 1. The Real Numbers

(d) True.
(e) True.

Exercise 1.2.3. (a) If x 2 (A \B)c then x /2 (A \B). But this implies x /2 A
or x /2 B. From this we know x 2 Ac or x 2 Bc. Thus, x 2 Ac [ Bc by the
definition of union.

(b) To show Ac [ Bc µ (A \ B)c, let x 2 Ac [ Bc and show x 2 (A \ B)c.
So, if x 2 Ac [ Bc then x 2 Ac or x 2 Bc. From this, we know that x /2 A or
x /2 B, which implies x /2 (A \B). This means x 2 (A \B)c, which is precisely
what we wanted to show.

(c) In order to prove (A [B)c = Ac \Bc we have to show,

(1) (A [B)c µ Ac \Bc and,

(2) Ac \Bc µ (A [B)c.

To demonstrate part (1) take x 2 (A [ B)c and show that x 2 (Ac \ Bc). So,
if x 2 (A [ B)c then x /2 (A [ B). From this, we know that x /2A and x /2 B
which implies x 2 Ac and x 2 Bc. This means x 2 (Ac \Bc).

Similarly, part (2) can be shown by taking x 2 (Ac \Bc) and showing that
x 2 (A[B)c. So, if x 2 (Ac\Bc) then x 2 Ac and x 2 Bc. From this, we know
that x /2 A and x /2 B which implies x /2 (A [ B). This means x 2 (A [ B)c.
Since we have shown inclusion both ways, we conclude that (A[B)c = Ac\Bc.

Exercise 1.2.4. (a)When a and b have the same sign, consider the following
two cases:

(i) If a ∏ 0 and b ∏ 0 then we have a + b > 0 which implies |a + b| = a + b.
Furthermore, because |a| = a and |b| = b, we have |a|+ |b| = a+b. This implies,
|a + b| = |a| + |b|, which satisfies the triangle inequality.

(ii) If a ∑ 0 and b ∑ 0 then we have a+ b ∑ 0 which implies |a+ b| = °a° b.
Furthermore, since we know |a| = °a and |b| = °b we have |a| + |b| = °a ° b.
This implies, |a + b| = |a| + |b|, which satisfies the triangle inequality.

(b)If a ∏ 0, b < 0, and a + b ∏ 0 then we have |a + b| = a + b = a° (°b) =
|a|° |b| < |a| + |b|. This implies |a + b| ∑ |a| + |b| as desired.

Exercise 1.2.5. (a) Observe that |a° b| = |a + (°b)| ∑ |a| + |° b| = |a| + |b|
which implies |a° b| ∑ |a| + |b|.

(b) First note that |a| = |a ° b + b| ∑ |a ° b| + |b|. Taking |b| to the left
side of the inequality we get |a|° |b| ∑ |a° b|. Reversing the roles of a and b in
the previous argument gives |b|° |a| ∑ |b° a|, and because |a° b| = |b° a| the
result follows.

Exercise 1.2.6. (a) f(A) = [0, 4] and f(B) = [1, 16]. In this case, f(A \B) =
f(A) \ f(B) = [1, 4] and f(A [B) = f(A) [ f(B) = [0, 16].

(b) Take A = [0, 2] and B = [°2, 0] and note that f(A \ B) = {0} but
f(A) \ f(B) = [0, 4].
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(c) We have to show y 2 g(A \B) implies y 2 g(A) \ g(B). If y 2 g(A \B)
then there exists an x 2 A\B with g(x) = y. But this means x 2 A and x 2 B
and hence g(x) 2 g(A) and g(x) 2 g(B). Therefore, g(x) = y 2 g(A) \ g(B).

(d) Our claim is g(A [ B) = g(A) [ g(B). In order to prove it, we have to
show,

(1) g(A [B) µ g(A) [ g(B) and,

(2) g(A) [ g(B) µ g(A [B).

To demonstrate part (1), we let y 2 g(A [ B) and show y 2 g(A) [ g(B). If
y 2 g(A [ B) then there exists x 2 A [ B with g(x) = y. But this means
x 2 A or x 2 B, and hence g(x) 2 g(A) or g(x) 2 g(B). Therefore, g(x) = y 2
g(A) [ g(B).

To demonstrate the reverse inclusion, we let y 2 g(A) [ g(B) and show
y 2 g(A [ B). If y 2 g(A) [ g(B) then y 2 g(A) or y 2 g(B). This means we
have an x 2 A or x 2 B such that g(x) = y. This implies, x 2 A [ B, and
hence g(x) 2 g(A[B). Since we have shown parts (1) and (2), we can conclude
g(A [B) = g(A) [ g(B).

Exercise 1.2.7. (a) f°1(A) = [°2, 2] and f°1(B) = [°1, 1]. In this case,
f°1(A\B) = f°1(A)\f°1(B) = [°1, 1] and f°1(A[B) = f°1(A)[f°1(B) =
[°2, 2].

(b) In order to prove g°1(A \B) = g°1(A) \ g°1(B), we have to show,

(1) g°1(A \B) µ g°1(A) \ g°1(B) and,

(2) g°1(A) \ g°1(B) µ g°1(A \B).

To demonstrate part (1), we let x 2 g°1(A\B) and show x 2 g°1(A)\g°1(B).
So, if x 2 g°1(A \ B) then g(x) 2 (A \ B). But this means g(x) 2 A and
g(x) 2 B, and hence g(x) 2 A \B. This implies, x 2 g°1(A) \ g°1(B).

To demonstrate the reverse inclusion, we let x 2 g°1(A)\ g°1(B) and show
x 2 g°1(A \B). So, if x 2 g°1(A) \ g°1(B) then x 2 g°1(A) and x 2 g°1(B).
This implies g(x) 2 A and g(x) 2 B, and hence g(x) 2 A \ B. This means,
x 2 g°1(A \B).

Similarly, in order to prove g°1(A[B) = g°1(A)[g°1(B), we have to show,

(1) g°1(A [B) µ g°1(A) [ g°1(B) and,

(2) g°1(A) [ g°1(B) µ g°1(A [B).

To demonstrate part (1), we let x 2 g°1(A[B) and show x 2 g°1(A)[g°1(B).
So, if x 2 g°1(A [ B) then g(x) 2 (A [ B). But this means g(x) 2 A or
g(x) 2 B, which implies x 2 g°1(A) or x 2 g°1(B). From this we know
x 2 g°1(A) [ g°1(B).
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To demonstrate the reverse inclusion, we let x 2 g°1(A)[ g°1(B) and show
x 2 g°1(A [ B). So, if x 2 g°1(A) \ g°1(B) then x 2 g°1(A) or x 2 g°1(B).
This implies g(x) 2 A or g(x) 2 B, and hence g(x) 2 A [ B. This means,
x 2 g°1(A [B).

Exercise 1.2.8. (a) There exist two real numbers a and b satisfying a < b such
that for all n 2 N we have a + 1/n ∏ b.

(b) There exist two distinct rational numbers with the property that every
number in between them is irrational.

(c) There exists a natural number n where
p

n is rational but not a natural
number.

(d) There exists a real number x such that n ∑ x for all n 2 N.

Exercise 1.2.9. (a) We will use induction to prove xn ∑ 2, for every n 2 N.
For n = 1, we can easily see x1 = 1 ∑ 2. Now, we want to show that

if we have xn ∑ 2, then it follows that xn+1 ∑ 2.

Starting from the induction hypothesis xn ∑ 2, we multiply across the inequality
by 1/2 and add 1 to get

1
2
xn + 1 ∑ 1

2
2 + 1 = 2,

which is precisely the the desired conclusion xn+1 ∑ 2. By induction, the claim
is proved for all n 2 N.

Exercise 1.2.10. (a) For n = 1, we can easily see y1 = 1 < 4, and this proves
the base case. Now, we want to show that

if we have yn < 4, then it follows that yn+1 < 4.

Starting from the induction hypothesis yn < 4, we can multiply across the
inequality by 3/4 and add 1 to get

3
4
yn + 1 <

3
4

4 + 1 = 4,

which is the the desired conclusion yn+1 ∑ 4. By induction, the claim is proved
for all n 2 N.

(b) For n = 1, we can easily see y1 = 1 < 7/4 = y2, proving the base case.
Now, we want to show that

if we have yn ∑ yn+1, then it follows that yn+1 ∑ yn+2.

Starting from the induction hypothesis yn ∑ yn+1, we can multiply across the
inequality by 3/4 and add 1 to get

3
4
yn + 1 <

3
4
yn+1 + 1

which is the the desired conclusion yn+1 ∑ yn+1. By induction, the claim is
proved for all n 2 N.
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Exercise 1.2.11. We will use induction, this time starting with n = 0, to prove
the claim. When n = 0 then A = ;. For this case, the set A has just the empty
set as its only subset. Since 20 = 1, the claim is true in this case.

Now we have to show that if sets of size n have 2n different subsets, then
it follows that sets of size n + 1 have 2n+1 different subsets. Given a set A
of size n + 1, first remove an arbitrary element a 2 A. The set A\{a} has n
elements, and we can use the induction hypothesis to say that there are exactly
2n subsets of A\{a}. Said another way, there are precisely 2n subsets of A
that do not contain the particular element a. By adding the element a to each
of these we will produce 2n new subsets of A. Since every subset of A either
contains a or does not contain a, we can be sure that we have listed them all.
Thus, the total number of subsets of A is given by 2n (for the subsets without a)
plus 2n (for the subsets that do contain a), and 2n + 2n = 2n+1. By induction,
the claim is proved for all n 2 N.

Exercise 1.2.12. (a) From Exercise 1.2.3 we know (A1[A2)c = Ac
1\Ac

2 which
proves the base case. Now we want to show that

if we have (A1 [A2 [ · · · [An)c = Ac
1 \Ac

2 \ · · · \Ac
n, then it follows that

(A1 [A2 [ · · · [An+1)c = Ac
1 \Ac

2 \ · · · \Ac
n+1.

Since the union of sets obey the associative law,

(A1 [A2 [ · · · [An+1)c = ((A1 [A2 [ · · · [An) [An+1)c

which is equal to
(A1 [A2 [ · · · [An)c \Ac

n+1.

Now from our induction hypothesis we know that

(A1 [A2 [ · · · [An)c = Ac
1 \Ac

2 \ · · · \Ac
n

which implies that

(A1 [A2 [ · · · [An)c \Ac
n+1 = Ac

1 \Ac
2 \ · · · \Ac

n \Ac
n+1.

By induction, the claim is proved for all n 2 N.
(b) The point here is to distinguish between asserting that a statement is

true for all values of n 2 N and asserting that it is true in the infinite case.
Induction cannot be used when we have an infinite number of sets. It is used
to prove facts that hold true for each value of n 2 N. For instance, in Exercise
1.2.2, we could use induction to show that

Tn
k=1 Ak is infinite for all choices of

n 2 N , but notice that this conclusion is not true for
T1

k=1 An.
(c) In order to prove (

S1
n=1 An)c =

T1
n=1 Ac

n we have to show,

(1)

√ 1[

n=1

An

!c

µ
1\

n=1

Ac
n and,
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(2)
1\

n=1

Ac
n µ

√ 1[

n=1

An

!c

.

To demonstrate part (1), we let x 2 (
S1

n=1 An)c and show x 2
T1

n=1 Ac
n. So, if

x 2 (
S1

n=1 An)c then x /2 An for all n 2 N. This implies x is in the complement
of each An and by the definition of intersection x 2

T1
n=1 Ac

n.
To demonstrate the reverse inclusion, we let x 2

T1
n=1 Ac

n and show x 2
(
S1

n=1 An)c. So, if x 2
T1

n=1 Ac
n then x 2 Ac

n for all n 2 N which means
x /2 An for all n 2 N. This implies x /2 (

S1
n=1 An) and we can now conclude

x 2 (
S1

n=1 An)c.

1.3 The Axiom of Completeness

Exercise 1.3.1. (a) For any z 2 Z5 the additive inverse is y = 5° z.
(b) For z = 1 the additive inverse is x = 1, for z = 2 it is x = 3, for z = 3 it

is x = 2,and for z = 4 it is x = 4.
(c) For any z 2 Z4 the additive inverse is y = 4 ° z. However, the multi-

plicative inverse of 2 does not exist. In general, additive inverses exist in Zn for
all values of n. Multiplicative inverses exist for prime values of n only.

Exercise 1.3.2. (a) A real number i is the greatest upper bound, or the infi-
mum, for a set A µ R if it meets the following two criteria:

(i) i is a lower bound for A; i.e., i ∑ a for all a 2 A, and

(ii) if l is any lower bound for A, then l ∑ i.

(b) Lemma: Assume i 2 R is a lower bound for a set A µ R. Then, i = inf A
if and only if, for every choice of ≤ > 0, there exists an element a 2 A satisfying
i + ≤ > a.

(i) To prove this in the forward direction, assume i = inf A and consider
i + ≤, where ≤ > 0 has been arbitrarily chosen. Because i + ≤ > i, statement
(ii) implies i + ≤ is not a lower bound for A. Since this is the case, there must
be some element a 2 A for which i + ≤ > a because otherwise i + ≤ would be a
lower bound.

(ii) For the backward direction, assume i is a lower bound with the property
that no matter how ≤ > 0 is chosen, i+ ≤ is no longer a lower bound for A. This
implies that if l is any number greater than i then l is no longer a lower bound
for A. Because any number greater than i cannot be a lower bound, it follows
that if l is some other lower bound for A, then l ∑ i. This completes the proof
of the lemma.

Exercise 1.3.3. (a) Because A is bounded below, B is not empty. Also, for
all a 2 A and b 2 B, we have b ∑ a. The first thing this tells us is that B is
bounded above and thus Æ = sup B exists by the Axiom of Completeness. It
remains to show that Æ = inf A. The second thing we see is that every element
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of A is an upper bound for B. By part (ii) of the definition of supremum, Æ ∑ a
for all a 2 A and we conclude that Æ is a lower bound for A.

Is it the greatest lower bound? Sure it is. If l is an arbitrary lower bound
for A then l 2 B, and part (i) of the definition of supremum implies l ∑ Æ. This
completes the proof.

(b) We do not need to assume that greatest lower bounds exist as part of
the Axiom of Completeness because we now have a proof that they exist. By
demonstrating that the infimum of a set A is always equal to the supremum of a
different set, we can use the existence of least upper bounds to assert the assert
the existence of greatest lower bounds.

(c) Given a set A, define °A = {°a : a 2 A}. Now if A is bounded
below it follows that °A is bounded above and it is not too hard to prove
inf A = sup(°A) using an argument much like those in Exercise 1.3.5.

Exercise 1.3.4. Observe that all elements of B are contained in A and hence
supA ∏ b for all b 2 B. By Definition 1.3.2 part (ii), supB is less than or equal
to any other upper bounds of B. Because sup A is an upper bound for B, it
follows that sup B ∑ sup A.

Exercise 1.3.5. (a) Note that c + supA is an upper bound for c + A. Now, we
have to show if d is any upper bound for c + A, then c + supA ∑ d. We know
c + a ∑ d for all a 2 A, and thus a ∑ d° c for all a 2 A. This means d° c is an
upper bound for A and by part (ii) of Definition 1.3.2, supA ∑ d° c. But this
implies c + supA ∑ d which is precisely what we wanted to show.

(b) In the case c = 0, cA = {0} and without too much difficulty we can argue
that sup(cA) = 0 = c supA. So let’s focus on the case where c > 0. Observe
that c sup A is an upper bound for cA. Now, we have to show if d is any upper
bound for cA, then c supA ∑ d. We know ca ∑ d for all a 2 A, and thus a ∑ d/c
for all a 2 A. This means d/c is an upper bound for A, and by Definition 1.3.2
supA ∑ d/c. But this implies c sup A ∑ c(d/c) = d, which is precisely what we
wanted to show.

(c) Assuming the set A is bounded below, we claim sup(cA) = c inf A for the
case c < 0. In order to prove our claim we first show c inf A is an upper bound
for cA. Since inf A ∑ a for all a 2 A, we multiply both sides of the equation
to get c inf A ∏ ca for all a 2 A. This shows that c inf A is an upper bound for
cA. Now, we have to show if d is any upper bound for cA, then c inf A ∑ d. We
know ca ∑ d for all a 2 A, and thus d/c ∑ a for all a 2 A. This means d/c
is a lower bound for A and from Exercise 1.3.2, d/c ∑ inf A. But this implies
c inf A ∑ c(d/c) ∑ d, which is precisely what we wanted to show.

Exercise 1.3.6. (a) The supremum is 3 and the infimum is 1.
(b) The supremum is 1 and the infimum is 0.
(c) The supremum is 1/2 and the infimum is 1/3.
(d) The supremum is 9 and the infimum is 1/9.

Exercise 1.3.7. Since a is an upper bound for A, we just need to verify the
second part of the definition of supremum and show that if d is any upper bound
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then a ∑ d. By the definition of upper bound a ∑ d because a is an element of
A. Hence, by Definition 1.3.2, a is the supremum of A.

Exercise 1.3.8. Set ≤ = supB ° supA > 0. By Lemma 1.3.7, there exists an
element b 2 B satisfying supB° ≤ < b, which implies supA < b. Because supA
is an upper bound for A, then b is as well.

Exercise 1.3.9. (a) True.
(b) False. If we consider A = (a, b), every element in A is less than b but

sup A = b.
(c) False. Consider, the open sets A = (c, d) and B = (d, f). Then a < b for

every a 2 A and b 2 B, but supA = d = inf B.
(d) True
(e) False. If we take A = [0, 2] and B = (0, 2), we see that sup A = supB

but there is no element b 2 B that is an upper bound for A.

1.4 Consequences of Completeness

Exercise 1.4.1. We have to show there exists a rational number between a and
b when a < 0. If b > 0, then by Theorem 1.4.3 we know there exists a rational
number r satisfying 0 < r < b and so a < r < b as well. If b ∑ 0 then we can
use Theorem 1.4.3 to say that there exists r 2 Q satisfying °b < r < °a and
it follows that a < °r < b. The proof that °r is rational is part of the next
exercise.

Exercise 1.4.2. (a) We have to show if a, b 2 Q, then ab and a+b are elements
of Q. By definition, Q = {p/q : p, q 2 Z, q 6= 0}. So take a = p/q and b = c/d
where p, q, c, d 2 Z and q, d 6= 0. Then, ab = pc

qd where pc, qd 2 Z because Z is
closed under multiplication. This implies ab 2 Q. To see that a + b is rational,
write

p

q
+

c

d
=

pd + qc

qd
,

and observe that both pd + qc and qd are integers with qd 6= 0.
(b) Assume, for contradiction, that a + t 2 Q. Then t = (t + a) ° a is the

difference of two rational numbers, and by part (a) t must be rational as well.
This contradiction implies a + t 2 I.

Likewise, if we assume at 2 Q, then t = (at)(1/a) would again be rational
by the result in (a). This implies at 2 I.

(c) The set of irrationals is not closed under addition and multiplication.
Given two irrationals s and t, s + t can be either irrational or rational. For
instance, if s =

p
2 and t = °

p
2, then s + t = 0 which is an element of Q.

However, if s =
p

2 and t = 2
p

2 then s + t =
p

2 + 2
p

2 = 3
p

3 which is an
element of I. Similarly, st can be either irrational or rational. If s =

p
2 and

t = °
p

2, then st = °1 which is a rational number. However,if s =
p

2 and
t =

p
3 then st =

p
2
p

3 =
p

6 which is an irrational number.
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Exercise 1.4.3. We have to show the existence of an irrational number between
any two real numbers a and b. By applying Theorem 1.4.3 on the real numbers
a°
p

2 and b°
p

2 we can find a rational number r satisfying a°
p

2 < r < b°
p

2.
This implies a < r +

p
2 < b. From Exercise 1.4.2(b) we know r +

p
2 is an

irrational number between a and b.

Exercise 1.4.4. Observe that 0 < 1/n for all n 2 N. This implies 0 is a
lower bound. Now we have to show that if c is any lower bound then c ∑ 0. If
c > 0, then the Archimedean Property of R states there exists n 2 N such that
1/n < c. This means that any c > 0 is not a lower bound. Thus, if c is a lower
bound it must satisfy c ∑ 0 as desired.

Exercise 1.4.5. Let x 2 R be arbitrary. To prove
T1

n=1(0, 1/n) = ; it is
enough to show that x /2 (0, 1/n) for some n 2 N. If x ∑ 0 then we can take
n = 1 and observe x /2 (0, 1). If x > 0 then by Theorem 1.4.2 we know there
exists an n0 2 N such that 1/n0 < x. This implies x /2

T1
n=1(0, 1/n), and our

proof is complete.

Exercise 1.4.6. (a) Now, we need to pick n0 large enough so that

1
n0

<
Æ2 ° 2

2Æ
or

2Æ

n0
< Æ2 ° 2.

With this choice of n0, we have

(Æ° 1/n0)2 > Æ2 ° 2Æ/n0 = Æ2 ° (Æ2 ° 2) = 2.

This means (Æ ° 1/n0) is an upper bound for T . But (Æ ° 1/n0) < Æ and
Æ = supT is supposed to be the least upper bound. This contradiction means
that the case Æ2 > 2 can be ruled out. Because we have already ruled out
Æ2 < 2, we are left with Æ2 = 2 which implies Æ =

p
2 exists in R.

(b) Define the set T = {t 2 R : t2 < b, and let Æ = supT which we know
exists because T is non-empty (it contains 0) and bounded above. As before,
we’ll show Æ2 = b by ruling out the possibilities Æ2 < b and Æ2 > b.

First assume Æ2 < b and observe,

µ
Æ +

1
n

∂2

= Æ2 +
2Æ

n
+

1
n2

< Æ2 +
2Æ

n
+

1
n

= Æ2 +
2Æ + 1

n
.

From Theorem 1.4.2(ii), choose n0 large enough so that

1
n0

<
b° Æ2

2Æ + 1
.
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This implies (2Æ + 1)/n0 < 2° Æ2, and consequently that

µ
Æ +

1
n0

∂2

< Æ2 + (b° Æ2) = b.

Thus, Æ + 1/n0 2 T , contradicting the fact that Æ is an upper bound for T . We
conclude that Æ2 < b cannot happen.

Now, let’s assume Æ2 > b. This time, we have
µ

Æ° 1
n

∂2

= Æ2 ° 2Æ

n
+

1
n2

> Æ2 ° 2Æ

n
.

This time pick n0 large enough so that

1
n0

<
Æ2 ° b

2Æ
or

2Æ

n0
< Æ2 ° b.

With this choice of n0, we have

(Æ° 1/n0)2 > Æ2 ° 2Æ/n0 = Æ2 ° (Æ2 ° b) = b.

This means (Æ°1/n0) is an upper bound for T . But then (Æ°1/n0) < Æ = sup T
leads to a contradiction because all upper bounds of T should be greater than
or equal to the supremum Æ. Thus, Æ2 > b is not a possibility and we are left
with Æ2 = b as desired.

Exercise 1.4.7. Next let n2 = min{n 2 N : f(n) 2 A\{f(n1)}} and set
g(2) = f(n2). In general, assume we have defined g(k) for k < m, and let
g(m) = f(nm) where nm = min{n 2 N : f(n) 2 A\{f(n1) . . . f(nk°1)}}.

To show that g : N ! A is 1–1, observe that m 6= m0 implies nm 6= nm0 and
it follows that f(nm) = g(m) 6= g(m0) = f(nm0) because f is assumed to be 1–1.
To show that g is onto, let a 2 A be arbitrary. Because f is onto, a = f(n0) for
some n0 2 N. This means n0 2 {n : f(n) 2 A} and as we inductively remove the
minimal element, n0 must eventually be the minimum by at least the n0 ° 1st
step.

Exercise 1.4.8. (a) Because A1 is countable, there exists a 1–1 and onto func-
tion f : N! A1.

If B2 = ;, then A1 [A2 = A1 which we already know to be countable.
If B2 = {b1, b2, . . . , bm} has m elements then define h : A1 [B2 via

h(n) =
Ω

bn if n ∑ m
f(n°m) if n > m.

The fact that h is a 1–1 and onto follows immediately from the same properties
of f .
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If B2 is infinite, then by Theorem 1.4.12 it is countable, and so there exists
a 1–1 onto function g : N! B2. In this case we define h : A1 [B2 by

h(n) =
Ω

f((n + 1)/2) if n is odd
g(n/2) if n is even.

Again, the proof that h is 1–1 and onto is derived directly from the fact that f
and g are both bijections. Graphically, the correspondence takes the form

N : 1 2 3 4 5 6 · · ·

l l l l l l

A1 [B2 : a1 b1 a2 b2 a3 b3 · · ·

To prove the more general statement in Theorem 1.4.13, we may use induc-
tion. We have just seen that the result holds for two countable sets. Now let’s
assume that the union of m countable sets is countable, and show that the union
of m + 1 countable sets is countable.

Given m + 1 countable sets A1, A2, . . . , Am+1, we can write

A1 [A2 [ · · · [Am+1 = (A1 [A2 [ · · · [Am) [Am+1.

Then Cm = A1 [ · · · [Am is countable by the induction hypothesis, and Cm [
An+1 is just the union of two countable sets which we know to be countable.
This completes the proof.

(b) Induction can not be used when we have infinite number of sets. It can
only be used to prove facts that hold true for each value of n 2 N. See the
discussion in Exercise 1.2.12 for more on this.

(c) Let’s first consider the case where the sets {An} are disjoint. In order to
achieve 1-1 correspondence between the set N and

S1
n=1 An, we first label the

elements in each countable set An as

An = {an1, an2, an3, . . .}.

Now arrange the elements of
S1

n=1 An in an array similar to the one for N given
in the exercise:

A1 = a11 a12 a13 a14 a15 · · ·
A2 = a21 a22 a23 a24 · · ·
A3 = a31 a32 a33 · · ·
A4 = a41 a42 · · ·
A5 = a51 · · ·

...

This establishes a 1–1 and onto mapping g : N !
S1

n=1 An where g(n) corre-
sponds to the element ajk where (j, k) is the row and column location of n in
the array for N given in the exercise.
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If the sets {An} are not disjoint then our mapping may not be 1–1. In this
case we could again replace An with Bn = An\{A1 [ · · · [ An°1}. Another
approach is to use the previous argument to establish a 1–1 correspondence
between

S1
n=1 An and an infinite subset of N, and then appeal to Theorem

1.4.12.

Exercise 1.4.9. (a) Since A ª B we know there is 1-1, onto function from A
onto B. This means we can define another function g : B ! A that is also 1-1
and onto. More specifically, if f : A ! B is 1-1 and onto then f°1 : B ! A
exists and is also 1-1 and onto.

(b) We will show there exists a 1-1, onto function h : A ! C. Because
A ª B, there exists g : A ! B that is 1–1 and onto. Likewise, B ª C implies
that there exists f : B ! C that is also 1-1 and onto. So let’s define h : A ! C
by the composition h = f ± g.

In order to show f ± g is 1-1, take a1, a2 2 A where a1 6= a2 and show
f(g(a1)) 6= f(g(a2)). Well, a1 6= a2 implies that g(a1) 6= g(a2) because g is 1–1.
And g(a1) 6= g(a2) implies that f(g(a1)) 6= (f(g(a° 2)) because f is 1–1. This
shows f ± g is 1–1.

In order to show f ± g is onto, we take c 2 C and show that there exists an
a 2 A with f(g(a)) = c. If c 2 C then there exists b 2 B such that f(b) = c
because f is onto. But for this same b 2 B we have an a 2 A such that g(a) = b
since g is onto. This implies f(b) = f(g(a)) = c and therefore f ± g is onto.

Exercise 1.4.10. For each k 2 N, let Ak be the set of subsets of N whose
maximal element is k. For example, A1 is the set containing just the subset
{1}. In A2 we would have {2} and {1, 2}. For A3 there would be four elements:
{3}, {1, 3}, {2, 3}, and {1, 2, 3}. There are two key observations to make. The
first is that every Ak contains a finite number of elements. The second is that
every finite subset of N must appear in exactly one of the sets Ak. Setting
A0 = ;, this allows us to assert that the set of all finite subsets of N is equal toS1

k=0 Ak. Now we may proceed as in the proof of Theorem 1.4.11 (i) and argue
that the countable union of finite subsets is countable.

Exercise 1.4.11. (a). The function f(x) = (x, 1
3 ) is 1–1 from (0, 1) to S.

(b) Given (x, y) 2 S, let’s write x and y in their decimal expansions

x = .x1x2x3 . . . and y = .y1y2y3 . . .

where we make the convention that we always use the terminating form (or
repeated 0s) over the repeating 9s form when the situation arises.

Now define f : S ! (0, 1) by

f(x, y) = .x1y1x2y2x3y3 . . .

In order to show f is 1–1, assume we have two distinct points (x, y) 6= (w, z)
from S. Then it must be that either x 6= w or y 6= z, and this implies that in
at least one decimal place we have xi 6= wi or yi 6= zi. But this is enough to
conclude f(x, y) 6= f(w, z).
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The function f is not onto. For instance the point t = .555959595 . . . is
not in the range of f because the ordered pair (x, y) with x = .555 . . . and
y = .5999 . . . would not be allowed due to our convention of using terminating
decimals instead of repeated 9s.

Exercise 1.4.12. (a)
p

2 is a root of the polynomial x2 ° 2, 3
p

2 is a root of
the polynomials x3 ° 2, and

p
3 +

p
2 is a root of x4 ° 10x2 + 1. Since all of

these numbers are roots of polynomials with integer coefficients, they are all
algebraic.

(b) Fix n, m 2 N. The set of polynomials of the form

anxn + an°1x
n°1 + · · · + a1x + a0

satisfying |an| + |an°1| + · · · + |a0| ∑ m is finite because there are only a finite
number of choices for each of the coefficients (given that they must be integers.)
If we let Anm be the set of all the roots of polynomials of this form, then because
each one of these polynomials has at most n roots, the set Anm is finite. Thus
An, the set of algebraic numbers obtained as roots of any polynomial (with
integer coefficients) of degree n, can be written as a countable union of finite
sets

An =
1[

m=1

Anm.

It follows that An is countable.
(c) If A is the set of all algebraic numbers, then A =

S1
n=1 An. Because each

An is countable, we may use Theorem 1.4.13 to conclude that A is countable as
well.

If T is the set transcendental numbers, then A [ T = R. Now if T were
countable, then R = A[T would also be countable. But this is a contradiction
because we know R is uncountable, and hence the collection of transcendental
numbers must also be uncountable.

Exercise 1.4.13. (a) Given y 2 f(X), the fact that f is 1–1 implies that the
x 2 X satisfying f(x) = y must be unique. This allows us to define the function
f°1 from f(X) back to X because now there is no ambiguity about the value
of f°1(y). By focusing only on the range f(X) (and not all of Y ) we may say
that f is a 1–1 and onto function from X to f(X). Its inverse, f°1, from f(X)
back to X is then easily seen to be 1–1 and onto as well.

(b) If x /2 g(Y ) then g°1(x) is not defined, and the number of elements to the
left of x in Cx is 0. Similarly, if g°1(x) /2 f(X), then f°1(g°1(x)) is not defined
and the chain terminates with just one element to the left of x. In general, we
get a finite number of elements to the left of x if some iterate falls outside of
either g(Y ) or f(X).

(c) Given x, x0 2 X, assume Cx \ Cx0 6= ;. Without loss of generality, let
y 2 Y satisfy y 2 Cx \ Cx0 . Then either

y = f(g(· · · g(f(x)))) or y = g°1(f°1(· · · f°1(g°1(x)))),
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and a similar statement is true with x0 in place of x. Equating the expressions
for x and x0 and applying the appropriate combination of f, g, f°1 and g°1, we
can show that x 2 Cx0 and x0 2 Cx. This is sufficient to conclude Cx = Cx0 .

(d)Let C by a chain in B. Then C \ Y is not a subset of f(X), so there
exists y Ω Y with y 2 C but y /2 f(X). Note that C and Cy have a point in
common, so they must be equal.

(e) Note that Y1 µ f(X). To show f : X1 ! Y1 is onto we pick a y1 2 Y1

and show there exists x1 2 X1 with f(x1) = y1. Well, if y1 2 Y1 µ f(X), we
know there exists x1 2 X such that f(x1) = y1. But we must be sure that
x1 2 X1. However, Cx1 contains y1 which is an element of some chain in A.
Since chains that intersect must be identical, Cx1 µ A, and x1 2 X1.

Now we have to show g : Y2 ! X2 is onto. To do this, we pick x2 2 X2

and show that there exists y2 2 Y2 with g(y2) = x2. Since x2 2 X2 µ g(Y )
we know there exists y2 2 Y such that g(y2) = x2. Now we need to show that
y2 2 B because if y2 2 Y and y2 2 B then y2 2 B \ Y = Y2. We know that Cx2

contains y2 which is an element of some chain B. Since chains that intersect
are identical Cx2 µ B, y2 2 B, and hence y2 2 Y2.

Finally, to prove X ª Y define h : X ! Y by

h(x) =
Ω

f(x) if x 2 X1

g°1(x) if x 2 X2

Because X = X1 [X2 and f and g°1 are 1–1 and have disjoint ranges on these
respective spaces, we get that h is 1–1. Because Y = Y1 [Y2 and f and g°1 are
respectively onto, it follows that h is onto as well.

1.5 Cantor’s Theorem

Exercise 1.5.1. The function f(x) = (x°1/2)/(x°x2) is a 1–1, onto mapping
from (0, 1) to R. This shows (0, 1) ª R, and the result follows using the ideas
in Exercise 1.4.9.

Exercise 1.5.2. (a) The real number x = .b1b2b3b4 . . . cannot be equal to
f(1) = a11a12a13a14 . . . because they differ in the first decimal place; i.e., b1 6=
a11.

(b) The real number x cannot be equal to f(2) because b2 6= a22 and they
differ in the second decimal place. In general, x 6= f(n) because bn 6= ann.

(c) Since f is onto, every real number x 2 (0, 1) should be in the indexed
array. However, the specific x we have constructed is not equal to f(n) for any
n 2 N, and hence not contained in the range of f . This is contradiction to the
assumption that f is onto. We conclude that (0,1) must be uncountable.

Exercise 1.5.3. (a) If we imitate the proof to try and show that Q is uncount-
able, we can construct a real number x in the same way. This x will again
fail to be in the range of our function f , but there is no reason to expect x to
be rational. The decimal expansions for rational numbers either terminate or
repeat, and this will not be true of the constructed x.
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(b) By using the digits 2 and 3 in our definition of bn we eliminate the
possibility that the point x = .b1b2b3 . . . has some other possible decimal repre-
sentation (and thus it cannot exist somewhere in the range of f in a different
form.)

Exercise 1.5.4. Our proof will have the same structure as that of Cantor’s.
So let us assume for contradiction that there exists a function f : N ! S that
is 1-1 and onto. The 1-1 correspondence between N and S can be represented
by the following indexed array

N
1 √! f(1) = .a11 a12 a13 a14 a15 a16 · · ·

2 √! f(2) = .a21 a22 a23 a24 a25 a26 · · ·

3 √! f(3) = .a31 a32 a33 a34 a35 a36 · · ·

4 √! f(4) = .a41 a42 a43 a44 a45 a46 · · ·

5 √! f(5) = .a51 a52 a53 a54 a55 a56 · · ·

6 √! f(6) = .a61 a62 a63 a64 a65 a66 · · ·
...

...
...

...
...

...
...

...
. . .

where amn = 1 or 0 for m,n 2 N. Now let us define a sequence (xn) =
(x1, x2, x3, . . .) 2 S via

xn =
Ω

0 if ann = 1
1 if ann = 0.

From this definition we can see that f(1) is not the sequence (xn) because a11

is not the same as x1. Similarly, f(2) 6= (xn) since a22 6= x2. In general,
f(n) 6= (xn) since ann 6= xn for all n 2 N . Because f is onto, all sequences in
S should be in the range of f . However, the specific sequence (xn) we defined
above is not equal to f(n) for any n 2 N. This contradiction implies that the
set S is uncountable.

Exercise 1.5.5. (a) P (A) = {;, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
(b) An induction proof for this fact is given in Exercise 1.2.11. A more

combinatoric proof can be obtained by listing the n elements of A. To construct
a subset of A, we consider each element and associate either a ‘Y’ if we decide
to include it in our subset or an ‘N’ if we decide not to include it. Thus, to
each subset of A there is an associated sequence of length n of Y s and Ns. This
correspondence is 1–1, and the proof is done by observing there are 2n such
sequences.

Exercise 1.5.6. (a) Given set A = {a, b, c}, A can be mapped in a 1–1 fashion
into P (A) in many ways. For example, we could write

(i)
a ! {a}
b ! {a, c}
c ! {a, b, c}
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As another example we might say
(ii)

a ! {b, c}
b ! ;
c ! {a, c}.

(b) An example of 1–1 mapping from B to P (B) is:

1 ! {1}
2 ! {2, 3, 4}
3 ! {1, 2, 4}
4 ! {2, 3}.

(c) Because 2n > n for every n, the power set P (A) simply has too many
elements to be mapped into A in a 1–1 fashion.

Exercise 1.5.7. For the example in (a) (i), the set B = {b}. For example (ii)
we get B = {a, b}. In part (b) we find B = {3, 4}. In every case, the set B fails
to be in the range of the function that we defined.

Exercise 1.5.8. (a) If a0 2 B, then by the definition of B we conclude that
a0 /2 f(a0). But f(a0) = B which means that a0 /2 B, a contradiction. Thus we
must reject the possibility that a0 2 B.

(b) But now let’s assume that a0 /2 B. Then by the definition of B, a0 2 f(a0).
Because f(a0) = B, this implies that a0 2 B, which is another contradiction.
Therefore a0 /2 B is equally unacceptable.

Because it is impossible for a0 to be in neither B nor Bc, the initial assump-
tion that B = f(a0) for some a0 2 A must have been false. In other words, such
an element a0 does not exist, and the function f : A ! P (A) is not onto.

Exercise 1.5.9. (a) The set A of functions from {0, 1} to N is countable. To
see this, first observe that A can be put into a 1–1 correspondence with the
set of ordered pairs {(m,n) : m,n 2 N}. To be precise, if f 2 A, then f is a
function from {0, 1} to N, and we can match it up with the ordered pair (m,n)
where m = f(0) and n = f(1).

To show that {(m, n) : m, n 2 N} is countable, we can either use an ar-
gument similar to the proof of Theorem 1.4.11 (i) where we showed that Q is
countable. Another approach would be to write

{(m,n) : m,n 2 N} =
1[

n=1

{(m,n) : m 2 N}

and use Theorem 1.4.13.
(b) This set is uncountable. A function from N to {0, 1} is in fact just a

sequence consisting of 0’s and 1’s, so the set of such functions is precisely the
set S from Exercise 1.5.4.

(c) The set P (N) does contain an uncountable antichain. To construct such
an antichain, let’s first let E = {2, 4, . . . , 2n, . . .} be the even natural numbers
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and O = {1, 3, . . . , 2n° 1, . . .} be the odd natural numbers, enumerated in the
standard way. Now consider the set S from Exercise 1.5.4 which we know to
be uncountable. For each s = (s1, s2, s3, . . .) we construct the subset As µ N
using the rule that

2n 2 As if and only if sn = 1 and
2n° 1 2 As if and only if sn = 0.

The fact that E and O are disjoint with N = E [O is enough to prove that the
collection {As : s 2 S} is an uncountable antichain.
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Chapter 2

Sequences and Series

2.1 Discussion: Rearrangements of Infinite Se-
ries

2.2 The Limit of a Sequence

Exercise 2.2.1. a) Let ≤ > 0 be arbitrary. We must show that there exists an
N 2 N such that n ∏ N implies | 1

6n2+1 ° 0| < ≤. Well,
ØØØØ

1
6n2 + 1

° 0
ØØØØ =

1
6n2 + 1

,

as this will always be positive. So pick N to satisfy N >
p

1/6≤. It then follows
that for n ∏ N implies 1

6n2+1 < ≤.
b) Let ≤ > 0 be arbitrary. Now we must produce an N so that n ∏ N implies

| 3n+1
2n+5 °

3
2 | < ≤. This time notice,
ØØØØ
3n + 1
2n + 5

° 3
2

ØØØØ =
3
2
° 3n + 1

2n + 5
=

6n + 15° 6n° 2
4n + 10

=
13

4n + 10
.

Now pick N such that N > 13°10≤
4≤ , then for n ∏ N it follows that 13

4n+10 < ≤.
c) Let ≤ > 0 be arbitrary. We must produce an N so that n ∏ N implies

| 2p
n+3

° 0| < ≤. Well,
ØØØØ

2p
n + 3

° 0
ØØØØ =

2p
n + 3

.

Pick N to satisfy N > 4/≤2 ° 3. It then follows that when n ∏ N we get
2p
n+3

< ≤ as desired.

Exercise 2.2.2. Consider the sequence (° 1
2 , 1

2 ,° 1
2 , 1

2 · · · ) This sequence ver-
conges to x = 0. To see this, note that we only have to produce a single ≤ > 0

19
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where the prescribed condition follows, and in this case we can take ≤ = 1. This
≤ works because for all N 2 N, it is true that n ∏ N implies |xn ° 1

2 | < 1.
This is also an example of a vercongent sequence that is divergent. Notice

that the “limit” x = 0 is not unique. We could also show this same sequence
verconges to x = 1 by choosing ≤ = 2.

In general, a vercongent sequence is a bounded sequence. By a bounded
sequence, we mean that there exists an M ∏ 0 satisfying |xn| <∑ M for all
n 2 N. In this case we can always take x = 0 and ≤ = M + 1. Then |xn ° x| =
|xn| < ≤, and the sequence (xn) verconges to 0.

Exercise 2.2.3. a) There exists at least one college in the United States where
all students are less than seven feet tall.

b) There exists a college in the United States where all professors gave at
least one student a grade of C or less.

c) At every college in the United States, there is a student less than six feet
tall.

Exercise 2.2.4. For any ≤ that is greater than 1, there exists a response N . In
this case, N can be any natural number.

For any ≤ that is less than or equal to 1, there exists no suitable response.
This is because, although the 1s in the sequence occur less and less frequently
as we go out the sequence, there is still no point in the sequence where the
sequence enters the neighborhood (°≤, ≤) and never leaves.

Exercise 2.2.5. a) The limit of (an) is zero. To show this let ≤ > 0 be arbitrary.
We must show that there exists an N 2 N such that n ∏ N implies |[[1/n]]°0| <
≤. Well, pick N > 1. If n ∏ N we then have;

ØØØØ

∑∑
1
n

∏∏
° 0

ØØØØ = |0° 0| < ≤,

because [[1/n]] = 0 for all n > 1.
b) Again the limit of an is zero. Let ≤ > 0 be arbitrary. By picking N > 10

we have that for n ∏ N ,
ØØØØ

∑∑
10 + n

2n

∏∏
° 0

ØØØØ = |0° 0| < ≤,

because [[(10 + n)/2n]] = 0 for all n > 10.
In these exercises, the choice of N does not depend on ≤ in the usual way. In

exercise (b) for instance, setting N = 11 is a suitable response for every choice
of ≤ > 0. Thus, this is a rare example where a smaller ≤ > 0 does not require a
larger N in response.

Exercise 2.2.6. (a) Any larger N will also work for the same ≤ > 0.
(b) This same N will also work for any larger value of ≤.
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Exercise 2.2.7. a) A sequence (an) “converges to infinity” if, for every positive
number a, there exists an N 2 N such that whenever n ∏ N it follows that
an > a.

Let a > 0 be arbitrary. We must show that there exists an N 2 N such that
n ∏ N implies that

p
n > a. Well, pick N > a2. Then,

p
n > a for all n ∏ N .

b) According to the above definition, this sequence does not converge to
infinity.

Exercise 2.2.8. (a) The sequence (°1)n is frequently in the set 1.
(b) Definition (i) is stronger. “Frequently” does not imply “eventually”, but

“eventually” implies “frequently”.
(c) A sequence (an) converges to a real number a if, given any ≤-neighborhood

V≤(a) of a, (an) is eventually in V≤(a).
(d) Suppose an infinite number of terms of a sequence (xn) are equal to 2,

then (xn) is frequently in the interval (1.9, 2.1). However, (xn) is not necessarily
eventually in the interval (1.9, 2.1). Consider the sequence (2, 0, 2, 0, 2, · · · ), for
instance.

2.3 The Algebraic and Order Limit Theorems

Exercise 2.3.1. Let ≤ > 0 be arbitrary. We need to show that there exists an
N such that when n ∏ N , |an ° a| < ≤. Well, for all n

|an ° a| = |a° a| = 0 < ≤.

So we can choose N to be anything we like.

Exercise 2.3.2. (a) Let ≤ > 0 be arbitrary. We must find an N such that
n ∏ N implies |pxn ° 0| < ≤. Because (xn) ! 0, there exists N 2 N such that
n ∏ N implies |xn ° 0| = xn < ≤2. Using this N , we have

p
(xn)2 < ≤2, which

gives |pxn ° 0| < ≤ for all n ∏ N , as desired.
(b) Part (a) handles the case x = 0, so we may assume x > 0. Let ≤ > 0.

This time we must find an N such that n ∏ N implies |pxn °
p

x| < ≤, for all
n ∏ N . Well,

|
p

xn °
p

x| = |
p

xn °
p

x|
µp

xn +
p

x
p

xn +
p

x

∂

=
|xn ° x|
p

xn +
p

x

∑ |xn ° x|p
x

Now because (xn) ! x and x > 0, we can choose N such that |xn ° x| < ≤
p

x
whenever n ∏ N . And this implies that for all n ∏ N ,

|
p

xn °
p

x| <
≤
p

xp
x

= ≤
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as desired.

Exercise 2.3.3. Let ≤ > 0 be arbitrary. We must show that there exists an N
such that n ∏ N implies |yn ° l| < ≤. In terms of ≤-neighborhoods (which are a
bit easier to use in this case), we must equivalently show yn 2 (l ° ≤, l + ≤) for
all n ∏ N .

Because (xn) ! l, we can pick an N1 such that xn 2 (l ° ≤, l + ≤) for all
n ∏ N1. Similarly, because (zn) ! l we can pick an N2 such that zn 2 (l°≤, l+≤)
whenever n ∏ N2. Now, because xn ∑ yn ∑ zn, if we let N = max{N1, N2},
then it follows that yn 2 (l ° ≤, l + ≤), for all n ∏ N. This completes the proof.

Exercise 2.3.4. We can prove this directly from the definition of convergence,
or by using the Algebraic Limit Theorem.

(i) Proof using the definition of convergence:
Let ≤ > 0 be arbitrary. Let’s show |l1 ° l2| < ≤. We know that lim an = l1,

so there exists N1 2 N such that n ∏ N1 implies |an ° l1| < ≤/2. Similarly,
since lim an = l2, there exists N2 2 N such that n ∏ N2 implies |an ° l2| < ≤/2.
Setting N = max{N1, N2} gives us that for n ∏ N ,

|l1 ° l2| = |l1 ° an + an ° l2|
∑ |l1 ° an| + |an ° l2|
= |an ° ln| + |an ° l2|
< ≤/2 + ≤/2
= ≤.

Thus it is clear that |l1 ° l2| < ≤. By Theorem 1.2.6, l1 = l2.
(ii) Proof using the Algebraic Limit Theorem:
First observe that

lim(an ° an) = lim(an)° lim(an) = l1 ° l2

But we also have
lim(an ° an) = lim 0 = 0,

and therefore l1 ° l2 = 0 which implies l1 = l2.

Exercise 2.3.5. ()) Let ≤ > 0 be arbitrary. Let’s call the limit that (zn)
converges to L. Then we need to show that there exists an N such that when
n ∏ N , it follows that |yn ° L| < ≤. Because (zn) ! L, we can pick N so that
|zn°L| < ≤ for all n ∏ N. Because yn = z2N it certainly follows that |yn°L| < ≤
whenever n ∏ N. A similar argument holds for the (xn) sequence.

(() Let ≤ > 0 be arbitrary. Again, let L be the common limit of (xn) and
(yn). We need to show that there exists an N such that when n ∏ N it follows
that |zn°L| < ≤. Choose N1 so that |xn°L| < ≤ for all n ∏ N1, and choose N2

such that |yn ° L| < ≤ for all n ∏ N2. Finally, let N = max{2N1, 2N2}, and it
follows from the construction of the sequence (zn) that |zn ° L| < ≤ whenever
n ∏ N .
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Exercise 2.3.6. (a)By the triangle inequality,

|bn| = |bn ° b + b| ∑ |bn ° b| + |b|

Thus
|bn|° |b| ∑ |bn ° b|,

and in fact
||bn|° |b|| ∑ |bn ° b|.

Since (bn) ! b, there exists N 2 N such that |bn ° b| < ≤ whenever n ∏ N .
Therefore, ||bn|° |b|| ∑ |bn°b| < ≤ for all n ∏ N as well, which proves |bn|! |b|.

(b) The converse of (a) is false. Consider bn = (°1)n. We can see that
|bn|! 1, but (bn) is divergent.

Exercise 2.3.7. a) Because (an) is bounded, there exists a K satisfying |an| ∑
K. Let ≤ > 0 be arbitrary. We need to find an N such that when n ∏ N it
follows that |anbn ° 0| < ≤. Well,

|anbn ° 0| = |an||bn| ∑ K|bn|.

Because (bn) ! 0, we can pick an N such that

|bn| <
≤

K
.

Finally, we can conclude that for this choice of N ,

|anbn ° 0| ∑ K|bn| < K
≤

K
= ≤

for all n ∏ N . Therefore, (anbn) ! 0.
We may not use the Algebraic Limit Theorem in this case because the hy-

pothesis of that theorem requires that both (an) and (bn) be convergent. (And
this may not be so for (an).)

b) No, for instance if (an) = (1,°1, 1,°1, · · · ), (anbn) will not converge.
c) All convergent series are bounded. Therefore, if (an) ! a and (bn) ! 0,

then by part (a), (anbn) ! 0.

Exercise 2.3.8. (a) Consider (xn) = (°1, 1,°1, 1, · · · ), and (yn) = (1,°1, 1,°1, · · · ).
Both sequences diverge but (xn + yn) converges.

(b) Such a request is impossible because by the Algebraic Limit Theorem, if
(xn + yn) converges to l and (xn) converges to x, then

lim(yn) = lim(yn + xn ° xn) = lim(xn + yn)° lim(xn) = l ° x.

So (yn) must also converge.
(c) Consider the sequence (bn) = (1, 1

2 , 1
3 , 1

4 , · · · ). To prevent the sequence
from “converging to infinity” we could also add alternating negative signs.
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(d) Such a request is impossible. By Theorem 2.3.2,(bn) is bounded. If
(an ° bn) were bounded, then we could show that

(an) = (an ° bn) + (bn)

would also have to be bounded, which is not the case. Thus, (an ° bn) is
unbounded.

(e) Take (an) = 1/n, and (bn) = (°1)n. Such a request would be impossible
if we were given that lim an 6= 0.

Exercise 2.3.9. No, the Order Limit Theorem (Theorem 2.3.4) does not re-
main valid if the inequalities are assumed to be strict (in the conclusion of the
theorem). For example, the sequence (1/n) converges to zero although every
term is strictly positive.

Exercise 2.3.10. Let ≤ > 0 be arbitrary. We want to produce an N such that
for every n ∏ N , |bn ° b| < ≤. Because (an) ! 0, there exists an N 2 N such
that for every n ∏ N,

an = |an ° 0| < ≤.

Using this same N , we have |bn ° b| ∑ an < ≤ whenever n ∏ N . Therefore
(bn) ! b.

Exercise 2.3.11. Let ≤ > 0 be arbitrary. Then we need to find an N such
that n ∏ N implies |yn ° L| < ≤. Because (xn) ! L, we know that there exists
M > 0 such that |xn ° L| < M for all n. Also, there exists an N1 such that
n ∏ N1 implies |xn ° L| < ≤/2. Now for n ∏ N1 we can write

|yn ° L| =
ØØØØ
x1 + x2 + · · · + xN1 + · · · + xn

n
° nL

n

ØØØØ

=
ØØØØ
(x1 ° L) + (x2 ° L) + · · · + (xN1°1 ° L)

n
+

(xN1 ° L) + · · · + (xn ° L)
n

ØØØØ

∑
ØØØØ
(x1 ° L) + (x2 ° L) + · · · + (xN1°1 ° L)

n

ØØØØ +
ØØØØ
(xN1 ° L) + · · · + (xn ° L)

n

ØØØØ

∑ (N1 ° 1)M
n

+
≤(n°N1)

2n
.

Because N1 and M are fixed constants at this point, we may choose N2 so that
(N1°1)M

n < ≤/2 for all n ∏ N2. Finally, let N = max{N1, N2} be the desired N .
To see that this works, keep in mind that n°N1

n < 1 and observe

|yn ° L| ∑ (N1 ° 1)M
n

+
≤(n°N1)

2n
<

≤

2
+

≤

2
= ≤

for all n ∏ N . This completes the proof.

The sequence (xn) = (1,°1, 1,°1, · · · ) does not converge, but the averages
satisfy (yn) ! 0.
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Exercise 2.3.12. (a) Intuitively speaking,

lim
m,n!1

am,n

should be a number that is arbitrarily close to the values of am,n when m and
n are both large. However, with two index variables, this raises the question
of whether we insist that the variables be large simultaneously or whether we
allow them to “go to infinity” one at a time in an iterated fashion.

The ”iterated” limit limn!1 limm!1 am,n is the limit of the sequence of
the limits of the columns in the doubly indexed array am,n. To compute this,
first fix n 2 N and let

bn = lim
m!1

am,n = lim
m!1

1
1 + n/m

=
1

1 + 0
= 1.

Thus
lim

n!1
lim

m!1
am,n = lim

n!1
bn = lim

n!1
1 = 1.

In the other order, we first fix m and compute the limit along each row of
the am,n array to get

lim
m!1

lim
n!1

am,n = lim
m!1

µ
lim

n!1

m/n

(m/n) + 1

∂
= lim

m!1

0
0 + 1

= 0.

From this example we can see that it is possible for

lim
m!1

lim
n!1

am,n 6= lim
n!1

lim
m!1

am,n,

and so defining doubly indexed limits in this fashion would be problematic to
say the least.

(b) A doubly indexed array (am,n) satisfies

lim
m,n!1

am,n = l

if for every positive number ≤, there exists an N 2 N such that whenever
n,m ∏ N it follows that |am,n ° l| < ≤.

2.4 The Monotone Convergence Theorem and a
First Look at Infinite Series

Exercise 2.4.1. We will show that if
P1

n=0 2nb2n diverges then
P1

n=1 bn di-
verges by again exploiting a relationship between the partial sums

sm = b1 + b2 + · · · + bm, and tk = b1 + 2b2 + · · · + 2kb2k .

Because
P1

n=0 2nb2n diverges, its monotone sequence of partial sums (tk) must
be unbounded. To show that (sm) is unbounded it is enough to show that for
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all k 2 N, there is term sm satisfying sm ∏ tk/2. This argument is similar to
the one for the forward direction, only to get the inequality to go the other way
we group the terms in sm so that the last (and hence smallest) term in each
group is of the form b2k .

Given an arbitrary k, we focus our attention on s2k and observe that

s2k = b1 + b2 + (b3 + b4) + (b5 + b6 + b7 + b8) + · · · + (b2k°1+1 + · · · + b2k)
∏ b1 + b2 + (b4 + b4) + (b8 + b8 + b8 + b8) + · · · + (b2k + · · · + b2k)
= b1 + b2 + 2b4 + 4b8 + · · · + 2k°1b2k

=
1
2

°
2b1 + 2b2 + 4b4 + 8b8 + · · · + 2kb2k

¢

= b1/2 + tk/2.

Because (tk) is unbounded, the sequence (sm) must also be unbounded and
cannot converge. Therefore,

P1
n=1 bn diverges.

Exercise 2.4.2. (a) We will show that this sequence is decreasing and bounded.
First, let’s use induction to show that this sequence is decreasing. Observe

that x1 = 3 > 1 = x2. Now, we need to prove that if xn > xn+1, then
xn+1 > xn+2. Well, xn > xn+1 implies that °xn < °xn+1. Adding 4 to both
sides of the inequality gives 4° xn < 4° xn+1. It follows that

1
4° xn

>
1

4° xn+1
,

which is precisely what we need to conclude xn+1 > xn+2. Thus by induction,
(xn) is decreasing.

The argument above shows that (xn) is bounded above by 3, so now we’ll
show that (xn) is bounded below. Clearly x1 > 0. Now assume xn > 0. Because
(xn) is decreasing, we know that xn ∑ x1 = 3, which implies that xn+1 = 1

4°xn

is positive. By induction, (xn) is bounded below by 0 for all n 2 N.
Therefore this sequence converges by Monotone Convergence Theorem.
(b) Since the sequence (xn+1) is just the sequence (xn) shifted by 1 (and

without the first term), the two sequences have the same limit.
(c) From (b), we can let x = lim(xn) = lim(xn+1). Now the Algebraic Limit

Theorem tells us that

x = lim xn+1 = lim
1

4° xn
=

1
4° x

,

and it follows that x must satisfy the equation x2 ° 4x + 1 = 0. Solving the
equation gives

x =
4 ±

p
16° 4
2

= 2 ±
p

3,

and since x1 = 3 and (xn) is decreasing, we conclude that x = 2°
p

3.
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Exercise 2.4.3. (a) First, y1 = 1 < 7/2 = y2. To use induction to prove that
(yn) is increasing we assume yn < yn+1 and show that yn+1 < yn+2. Starting
with the inequality yn < yn+1, we take reciprocals to get 1/yn > 1/yn+1. Then
multiplying by °1 and adding 4 to each side gives 4° 1/yn < 4° 1/yn+1 which
is precisely the desired statement yn+1 < yn+2.

Now we know that (yn) is increasing and bounded below by y1 = 1. Because
the terms in (yn) are all positive, it follows that yn < 4 for all n 2 N and our
increasing sequence is bounded above. Thus, by the Monotone Convergence
Theorem we may set

y = lim yn = lim yn+1.

Taking limits across the recursive equation for yn+1 gives

y = lim yn+1 = lim(4° 1/yn) = 4° 1/y

which implies that y satisfies y2°4y +1 = 0. A little algebra yields y =
p

3+2.

Exercise 2.4.4. We will show that this sequence is increasing and bounded.
First rewrite the sequence in a recursive way: x1 =

p
2, xn+1 =

p
2xn.

Let’s prove that the sequence is increasing by induction. For the base case
we observe that

x1 = 2 <

q
2
p

2 = x2,

so we just need to prove that xn < xn+1 implies xn+1 < xn+2. But if xn < xn+1

then
p

xn <
p

xn+1, and multiplying by
p

2 gives
p

2xn <
p

2xn+1. Thus we
have xn+1 < xn+2 and the sequence is increasing.

To show the sequence is bounded above by 2 we first observe that x1 < 2.
Now if xn < 2, then xn+1 =

p
2xn <

p
2 · 2 = 2 as well, and (xn) is bounded.

Therefore this sequence converges by Monotone Convergence Theorem and
we can assert that both (xn) and (xn+1) converge to some real number l. Taking
limits across the recursive equation xn+1 =

p
2xn yields l =

p
2l, which implies

l = 2.
We should note that the last steps in this problem involved taking the limit

inside a square root sign, and this is not a manipulation that is justified by the
Algebraic Limit Theorem. Instead we should reference Exercise 2.3.2 to support
this part of the argument.

Exercise 2.4.5. (a) We first observe that a simple induction argument shows
that xn is positive for all n. We can also write

x2
n+1 ° 2 =

µ
1
2

µ
xn +

2
xn

∂∂2

° 2 =
x2

n

4
+

1
x2

n

° 1 =
µ

xn

2
° 1

xn

∂2

∏ 0

as any number squared is positive. This shows that x2
n ∏ 2 for all choices of n.

(It’s worth mentioning that this part of the argument, and the next, is not by
induction.)

Now let’s argue that (xn) is decreasing. If we write

xn ° xn+1 = xn °
1
2

µ
xn +

2
xn

∂
=

1
2
xn °

1
xn

=
x2

n ° 2
2xn

,
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then we can see that xn ° xn+1 is positive because x2
n ∏ 2. Because we have

shown that (xn) is decreasing and bounded below, we may set x = lim xn =
lim xn+1. Taking limits across the recursive equation we find

x = lim
n!1

xn+1 = lim
n!1

1
2

µ
xn +

2
xn

∂
=

x

2
+

1
x

which implies x =
p

2.
(b) The sequence

xn+1 =
1
2

µ
xn +

c

xn

∂

converges to
p

c using a similar argument.

Exercise 2.4.6. (a) For each n 2 N, set An = {ak : k ∏ n} so that yn =
sup An. Because An+1 µ An it follows (by Exercise 1.3.4) that yn+1 ∑ yn and
so (yn) is decreasing. If L is a lower bound for (an), then for all n 2 N it must
be that yn ∏ an ∏ L. Thus (yn) is both decreasing and bounded, and it follows
from the Monotone Convergence Theorem that (yn) converges.

(b)Define the limit inferior of (an) as

lim inf an = lim zn,

where zn = inf{ak : k ∏ n}. The sequence (zn) is increasing (because we are
taking the greatest lower bound of a smaller set each time) and bounded above
(because (an) is bounded.) Thus (zn) converges by MCT.

(c) For each n 2 N we have yn ∏ zn, so by the Order Limit Theorem
(Theorem 2.3.4) lim yn ∏ lim zn. This shows lim sup an ∏ lim inf an for every
bounded sequence.

The sequence (an) = (1, 0, 1, 0, 1, 0, · · · ) has lim sup an = 1 and lim inf an =
0. Notice that this sequence is not convergent.

(d) First let’s prove that if lim yn = lim zn = l, then lim an = l as well. Let
≤ > 0. There exists an N 2 N such that yn 2 V≤(l) and zn 2 V≤(l) for all n ∏ N .
Because zn ∑ an ∑ yn, it must also be the case that an 2 V≤(l) for all n ∏ N .
Therefore lim an exists and is equal to l.

Next, let’s show that if lim an = l, then lim yn = l. (The proof that lim zn = l
is similar.) Let ≤ > 0 be arbitrary. Because lim an = l, there exists an N 2 N
such that n ∏ N implies an 2 V≤(l). This means that l°≤ and l+≤ are lower and
upper bounds for the set {an, an+1, an+2, · · · }. It follows that l° ≤ ∑ yn ∑ l + ≤
for all n ∏ N . Keeping in mind that we already know y = lim yn exists, we can
use the Order Limit Theorem to assert that l ° ≤ ∑ y ∑ l + ≤, and because ≤ is
arbitrary we must have y = l. (Theorem 1.2.6 could be referenced in this last
step.)
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2.5 Subsequences and the Bolzano–Weierstrass
Theorem

Exercise 2.5.1. Assume (an) ! L and let (anj ) be a subsequence of (an). We
must show (anj ) ! L as well. Let ≤ > 0 be arbitrary. We need to produce an
N 2 N such that j ∏ N implies |anj °L| < ≤. Because (an) ! L we know there
exists an N such that |an ° L| < ≤ for n ∏ N . But nj ∏ j, so this same N
works for the subsequence as well. To be precise, j ∏ N implies nj ∏ N , and
so |anj ° L| < ≤ as desired.

Exercise 2.5.2. (a) Letting sn = a1+a2+· · ·+sn, we are given that lim sn = L.
For the regrouped series, let’s write

b1 = a1 + a2 + · · · + an1 ,

b2 = an1+1 + an1+2 + · · · + an2 ,

...
bm = anm°1+1 + · · · + anm ,

and the claim is that the series
P1

m=1 bm converges to L as well.
To prove this, just observe that if (tm) is the sequence of partial sums for

the regrouped series, then

tm = b1 + b2 + · · · + bm

= (a1 + · · · + an1) + · · · + (anm°1+1 + · · · + anm) = snm .

which means that (tm) is a subsequence of (sn) and therefore converges to L by
Theorem 2.5.2.

Exercise 2.5.3. (a) (1/2, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 4/5, · · · , 1/n, (n°1)/n, · · · )
(b) Impossible. This convergent subsequence would then be bounded; how-

ever, this would imply that the original sequence was also bounded. Because
the original sequence is monotone, we know it cannot be bounded because we
are told it diverges.

(c) The sequence
µ

1, 1,
1
2
, 1,

1
2
,
1
3
, 1,

1
2
,
1
3
,
1
4
, 1,

1
2
,
1
3
,
1
4
,
1
5
, 1, · · ·

∂

has this property. Notice that there is also a subsequence converging to 0. We
shall see that this is unavoidable.

(d) (1, 1, 2, 1, 3, 1, 4, 1, 5, 1, · · · )
(e) Impossible. Theorem 2.5.5 guarantees us that all bounded sequences

have convergent subsequences.

Exercise 2.5.4. Let’s assume, for contradiction, that (an) does not converge to
a. Paying close attention to the quantifiers in the definition of convergence for
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a sequence, what this means is that there exists an ≤0 > 0 such that for every
N 2 N we can find an n ∏ N for which |a° an| ∏ ≤0. Using this, we can build
a subsequence of (an) that never enters the ≤–neighborhood V≤0(a). To see how,
first pick n1 so that |a° an1 | ∏ ≤. Next choose n2 > n1 so that |a° an2 | ∏ ≤0.
Because our negated definition says that ”...for every N 2 N, we can find an
n ∏ N ...” we can be sure that having chosen nj , we may pick nj+1 > nj so
that |a° anj+1 | ∏ ≤0.

Because (an) is bounded, the resulting subsequence (anj ) must be bounded
as well. Now apply the Bolzano–Weierstrass Theorem to (anj ) to say that there
exists a convergent subsequence (of (anj ) and hence also of (an)) which we will
write as (anjk

). By hypothesis, this convergent subsequence must converge to
a, but therein lies the contradiction. Because (anjk

) is a subsequence of (anj ),
it never enters the neighborhood V≤0(a) and it cannot converge to a. This
completes the proof.

Exercise 2.5.5. From Example 2.5.3 we know that this is true for 0 < b < 1.
If b = 0 we get the constant sequence (0, 0, 0, . . .), so let’s focus on the case
°1 < b < 0. Let ≤ > 0 be arbitrary and set a = |b|. Because we know (an) ! 0
(by Example 2.5.3), we may choose N so that n ∏ N implies |an ° 0| < ≤. But
this N will also work for the sequence (bn) because

|bn ° 0| = |bn| = |an| < ≤

whenever n ∏ N .

Exercise 2.5.6. Because (an) is bounded, the set S is not empty and bounded
above. By AoC, we know there exists an s 2 R satisfying s = supS. For a
fixed k 2 N consider s ° 1/k. Because s is the least upper bound, s ° 1/k is
not an upper bound and there exists a point s0 2 S satisfying s ° 1/k < s0.
A quick look at the definition of S then shows that, in fact, s ° 1/k 2 S and
consequently there exist an infinite number of terms an satisfying s° 1/k < an.

Because s is an upper bound for S we can be sure that s + 1/k /2 S from
which we can conclude that there are only a finite number of terms an satisfying
s + 1/k < an. Taken together, these observations show that for all k 2 N, there
are an infinite number of terms an satisfying

s° 1
k

< an ∑ s +
1
k

.

To inductively build our convergent subsequence (ank) first pick an1 to satisfy
s°1 < an1 ∑ s+1. Now given that we have constructed ank , choose nk+1 > nk

so that
s° 1

k + 1
< ank+1 ∑ s +

1
k + 1

.

(Here we are using the fact that this inequality is satisfied by an infinite number
of terms an and so there is certainly one where n > nk.) To show (ank) ! s,
we let ≤ > 0 be arbitrary and choose K > 1/≤. If k ∏ K then 1/k < ≤ which
implies s° ≤ < ank < s + ≤, and the proof is complete.
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2.6 The Cauchy Criterion

Exercise 2.6.1. (a) (1,°1/2, 1/3,°1/4, 1/5,°1/6, . . .)
(b) (1, 2, 3, 4, 5, 6, . . .)
(c) Impossible, if a sequence is Cauchy then Theorem 2.6.4 tells us that it

converges and Theorem 2.5.2 says that subsequences of convergent sequences
converge.

(d) (1, 1, 1/2, 2, 1/3, 3, 1/4, 4, 1/5, 5, . . .)

Exercise 2.6.2. Assume (xn) converges to x, and let ≤ > 0 be arbitary. Becuase
(xn) ! x, there exists N 2 N such that n,m ∏ N implies |xn ° x| < ≤/2 and
|xm ° x| < ≤/2. By the triangle inequality,

|xn ° xm| = |xn ° x + x° xm|
∑ |xn ° x| + |xm ° x|

<
≤

2
+

≤

2
= ≤.

Therefore, |xn ° xm| < ≤ whenever n,m ∏ N , and (xn) is a Cauchy sequence.

Exercise 2.6.3. (a) The difference is that this definition only requires that the
difference between consecutive elements become arbitrarily small, whereas the
real Cauchy property requires that any two elements beyond a certain point in
the sequence differ by an arbitrarily small amount.

(b) (1), (1 + 1/2), (1 + 1/2 + 1/3), (1 + 1/2 + 1/3 + 1/4), . . .
This is the sequence of partial sums for the harmonic series

P
1/n which we

have seen diverges even though sn+1 ° sn = 1/n goes to zero.

Exercise 2.6.4. Let ≤ > 0 be arbitrary. We know that there exists an N1 2 N
such that n,m ∏ N implies |an ° am| < ≤/2. Also, we know there exists an
N2 2 N such that n,m ∏ N2 implies |bn ° bm| < ≤/2. Set N = max{N1, N2}.
By the triangle inequality and its variation in Exercise 1.2.5 (b),

|cn ° cm| = ||an ° bn|° |am ° bm||
∑ |(an ° bn)° (am ° bm)|
= |(an ° am) + (bm ° bn)|
∑ |an ° am| + |bm ° bn|

<
≤

2
+

≤

2
= ≤,

whenever n,m ∏ N . Therefore (cn) is a Cauchy sequence.

Exercise 2.6.5. (a) Let ≤ > 0 be arbitrary. We need to find an N so that
n,m ∏ N implies |(xn + yn) ° (xm + ym)| < ≤. Because (xn) and (yn) are
Cauchy we can pick N so that when n,m ∏ N it follows that |xn ° xm| < ≤/2
and |yn ° ym| < ≤/2. Now write,

|(xn + yn)° (xm + ym)| ∑ |xn ° xm| + |yn ° ym| <
≤

2
+

≤

2
= ≤.
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(b) Let ≤ > 0 be arbitrary. We must produce an N such that n,m ∏ N
implies |xnyn ° xmym| < ≤. Note that

|xnyn ° xmym| = |xnyn ° xnym + xnym ° xmym|
∑ |xnyn ° xnym| + |xnym ° xmym|
= |xn||yn ° ym| + |ym||xn ° xm|.

Because (xn) and (yn) are Cauchy, we know by Lemma 2.6.3 that they are
bounded. So let K ∏ |xn| and L ∏ |ym| for all m,n. We also know that we
can pick N1 such that m,n ∏ N1 implies |xn ° xm| < ≤

2L . Similarly, pick N2 so
that m,n ∏ N2 implies |yn ° ym| < ≤

2K . Now let N = max{N1, N2}. Then for
m,n ∏ N it follows that

|xnyn ° xmym| ∑ |xn||yn ° ym| + |ym||xn ° xm| < K
≤

2K
+ L

≤

2L
= ≤.

Exercise 2.6.6. (a) Let A be a non-empty set that is bounded above, and
let b1 be an upper bound for A. Next choose a real number a1 that is not an
upper bound for A. Necessarily, a1 < b1 and we can let I1 be the closed interval
I1 = [a1, b1].

Our goal in this proof is to show that the set A has a least upper bound,
and our major tool for getting there is the Nested Interval Property. With an
eye toward using NIP, bisect the interval I1 and let c1 be the midpoint. If c1

is an upper bound for A, then set b2 = c1 and a2 = a1. If c1 is not an upper
bound for A, then set b2 = b1 and a2 = c1. Letting I2 = [a2, b2], we see that
in either case described the left endpoint a2 is not an upper bound for A while
the right endpoint b2 is an upper bound for A.

We now continue this process inductively. Given that we have constructed
In = [an, bn], we let cn be the midpoint. If cn is an upper bound for A, we let
bn+1 = cn and an+1 = an. If cn is not an upper bound then it becomes the left
endpoint; i.e., an+1 = cn and bn+1 = bn. The resulting collection In = [an, bn]
of nested intervals has the property that, for every n 2 N, the point an fails to
be an upper bound while bn is an upper bound.

By the Nested Interval Property, we know there exists a real number

s 2
1\

n=1

In.

Setting M = b1 ° a1, we can also see that the length of In is M/2n°1 which
tends to zero. From this fact, we can easily prove that

s = lim an and s = lim bn.

We now claim that s = sup A. To show that s is an upper bound for A, we
let a 2 A be arbitrary. Because each bn is an upper bound, we observe that
a ∑ bn for all n. By the Order Limit Theorem, a ∑ s as well, and we conclude
that s is an upper bound for A.
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To show that s is the least upper bound, we let l be some arbitrary upper
bound and observe that an < l for all n. Again using the Order Limit Theorem,
we may conclude s ∑ l, and this completes the argument.

(b) Let In = [an, bn] be a nested collection of closed intervals. To prove NIP,
we must produce an x 2 R satisfying am ∑ x ∑ bm for all m 2 N.

Because the intervals are nested, the sequence (an) is increasing and bounded
above (by b1 for instance.) By MCT, we know there exists a real number x
satisfying x = lim an. Now fix m 2 N. A short contradiction argument shows
am ∑ x. The nested property of the intervals also gives us that an ∑ bm for all
n 2 N, and the Order Limit Theorem then implies x ∑ bm, as desired.

(c) Just as in (b), we start with a nested collection of closed intervals In =
[an, bn] and argue that there is a real number x common to all of them. Focusing
on the sequence (an) of left-hand endpoints, we may not assert (because MCT
is off limits) that it converges, but it is certainly bounded. By the Bolzano–
Weierstrass Theorem, there exists a convergent subsequence (ank), and we can
set x = lim ank .

Now fix m 2 N. Because ank ∑ bm for all k 2 N, the Order Limit Theorem
implies, just as before, that x ∑ bm. Also, choosing a particular term nK ∏ m
we can argue that am ∑ anK ∑ x must be true. Thus x 2 Im for all m, andT1

n=1 Im is not empty.
(d) Let (an) be a bounded sequence so that there exists M > 0 satisfying

|an| ∑ M for all n. Our goal is to use the Cauchy Criterion to produce a
convergent subsequence.

First construct the sequence of closed intervals and the subsequence with
ank 2 Ik according to the method described in the proof of the Bolzano-
Weierstrass Theorem in the text. Rather than using NIP to produce a can-
didate for the limit of this subsequence, we can argue that (ank) is convergent
by appealing to the Cauchy Criterion.

Let ≤ > 0. By construction, the length of Ik is M(1/2)k°1 which converges
to zero. Choose N so that k ∏ N implies that the length of Ik is less than ≤. So
for any s, t ∏ N , because ans and ant are in Ik, it follows that |ans ° ant | < ≤.
Having shown (ank) is a Cauchy sequence, we know it converges.

2.7 Properties of Infinite Series

Exercise 2.7.1. (a) Here we show that the sequence of partial sums (sn) con-
verges by showing that it is a Cauchy sequence. Let ≤ > 0 be arbitrary. We
need to find an N such that n > m ∏ N implies |sn ° sm| < ≤. First recall,

|sn ° sm| = |am+1 ° am+2 + am+3 ° · · · ± an|.

Because (an) is decreasing and the terms are positive, an induction argument
shows that for all n > m we have

|am+1 ° am+2 + am+3 ° · · · ± an| ∑ |am+1|.
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So, by virtue of the fact that (an) ! 0, we can choose N so that m ∏ N implies
|am| ∑ ≤. But this implies

|sn ° sm| = |am+1 ° am+2 + · · · ± an| ∑ |am+1| < ≤

whenever n > m ∏ N , as desired.
(b) Let I1 be the closed interval [0, s1]. Then let I2 be the closed interval

[s2, s1], which must be contained in I1 as (an) is decreasing. Continuing in this
fashion, we can construct a nested sequence of closed intervals

I1 ∂ I2 ∂ I3 ∂ · · · .

By the Nested Interval Property there exists at least one point S satisfying
S 2 In for every n 2 N. We now have a candidate for the limit, and it remains
to show that (sn) ! S.

Let ≤ > 0 be arbitrary. We need to demonstrate that there exists an N
such that |sn ° S| < ≤ whenever n ∏ N . By construction, the length of In is
|sn°sn°1| = an. Because (an) ! 0 we can choose N such that an < ≤ whenever
n ∏ N . Thus,

|sn ° S| ∑ an < ≤

because both sn, S 2 In.
(c) The subsequence (s2n) is increasing and bounded above (by a1 for in-

stance.) The Monotone Convergence Theorem allows us to assert that there
exists an S 2 R satisfying S = lim(s2n). One way to prove that the other
subsequence (s2n+1) converges to the same value is to use the Algebraic Limit
Theorem and the fact that (an) ! 0 to write

lim(s2n+1) = lim(s2n + a2n+1) = S + lim(a2n+1) = S + 0 = S.

The fact that both (s2n) and (s2n+1) converge to S implies that (sn) ! S as
well. (See Exercise 2.3.5.)

Exercise 2.7.2. (a) (i) Assume
P1

k=1 bk converges. Thus, given ≤ > 0, there
exists an N 2 N such that whenever n > m ∏ N it follows that |bm+1 + bm+2 +
· · · + bn| < ≤. Since 0 ∑ ak ∑ bk for all k 2 N, we have

|am+1 + am+2 + · · · + an| < |bm+1 + bm+2 + · · · + bn| < ≤

whenever n > m ∏ N , and
P1

k=1 ak converges as well.
(ii) Rather than trying to work with a negated version of the Cauchy Cri-

terion, we can argue by contradiction. This is actually an example of a contra-
positive proof. Rather than proving ”If P, then Q,” we can argue that ”Not Q
implies not P.” In the context of this particular problem, ”Not Q implies not
P” is just the statement “

P1
k=1 bk converges implies that

P1
k=1 ak converges.”

But this is exactly what we showed in (i).
(b)(i) Let sn = a1 + · · · + an be the partial sums for

P1
k=1 ak, and let

tn = b1 + · · · + bn be the partial sums for
P1

k=1 . Because 0 ∑ ak ∑ bk for all
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k 2 N, both (sn) and (tn) are increasing, and in addition we have sn ∑ tn for
all n 2 N. Because

P1
k=1 bk converges, (tn) is bounded and thus (sn) is also

bounded. By MCT,
P1

k=1 ak converges.
(ii) As mentioned previously, this is just the contrapositive version of the

statement in (i).

Exercise 2.7.3. (a) The key observation is that an = pn + qn. If both
P

pn

and
P

qn converge, then by the Algebraic Limit Theorem,
P

an would also
converge, and this is not the case.

(b) In addition to an = pn + qn, we also have |an| = pn ° qn. Because
we are given that

P
|an| diverges, it must be (for the reasons similar to those

in (a)) that at least one of
P

pn or
P

qn diverges. So let’s assume (without
loss of generality) that

P
pn diverges. If

P
qn were to converge, then we could

write pn = an° qn. Keeping in mind that we are assuming
P

an converges, the
Algebraic Limit Theorem would imply that

P
pn should also converge. This

contradiction implies that
P

qn must, in fact, diverge.

Exercise 2.7.4. One example would be

xn = (1, 0, 1, 0, 1, 0, . . .) and yn = (0, 1, 0, 1, 0, 1, . . .).

Another would be to set xn = yn = 1/n for all n 2 N.

Exercise 2.7.5. (a) By definition of absolute convergence,
P

|an| must con-
verge. Theorem 2.7.3 tells us that there must be an N such that n ∏ N implies
|an| < 1. Now, a2

n < |an| for n ∏ N . Thus, by Theorem 2.7.4,
P1

n=N a2
n con-

verges and therefore so does
P1

n=1 a2
n as there are only a finite number of terms

before N . Because a2
n ∏ 0, the convergence is absolute.

This result does not hold without absolute convergence. Consider
P

(°1)n+1/
p

n
which converges conditionally; however,

P
1/n diverges.

(b) This is not a true statement. Consider
P

1/n2 which converges, however,P
1/n does not converge.

Exercise 2.7.6. (a) Because (yn) is bounded, there exits M ∏ 0 such that
|yn| ∑ M . Now we are given that

P
|xn| converges, and the Algebraic Limit

Theorem tells us that
P

M |xn| also converges. Because |xnyn| ∑ M |xn|, we
may use the Comparison Test to assert that

P
|xnyn| converges. Finally, the

Absolute Convergence Test implies
P

xnyn converges.
(b) Set xn = (°1)n/n, and let yn = (°1)n which is certainly bounded. ThenP
xn converges conditionally, but

P
xnyn =

P
1/n diverges.

Exercise 2.7.7. By the Cauchy Condensation Test (Theorem 2.4.6)
P

1/np

converges if and only if
P

2n (1/2n)p converges. But notice that

X
2n

µ
1
2n

∂p

=
Xµ

1
2n

∂p°1

=
Xµ

1
2p°1

∂n

.

By the Geometric Series Test (Example 2.7.5), this series converges if and only
if | 1

2p°1 | < 1. Solving for p we find that p must satisfy p > 1.
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Exercise 2.7.8. In order to show that
P1

k=1(ak + bk) = A+B, we must argue
that the sequence of partial sums

rm = (a1 + b1) + (a2 + b2) + (a3 + b3) + · · · + (am + bm)

converges to A+B. We are given that
P1

k=1 ak = A and
P1

k=1 bk = B, meaning
that the partial sums

sm = a1 + a2 + a3 + · · · + am

converge to A and
tm = b1 + b2 + b3 + · · · + bm

converge to B. Because sm + tm = rm, applying the Algebraic Limit Theorem
for sequences (Theorem 2.3.3) yields (rm) ! A + B, as desired.

Exercise 2.7.9. (a) This r0 must exist because R is dense in itself.
First, pick an ≤-neighborhood around r of size ≤0 = |r ° r0|. Because

lim
ØØØan+1

an

ØØØ = r, there exists an N such that n ∏ N implies
ØØØan+1

an

ØØØ 2 V≤0(r).

It follows that
ØØØan+1

an

ØØØ ∑ r0 for all n ∏ N , and this implies the statement in (a)
(b) Having chosen N , |aN | is now a fixed number. Also,

P
(r0)n is a geometric

series with |r0| < 1, so it converges. Therefore, by the Algebraic Limit Theorem
|aN |

P
(r0)n converges.

(c) From (a) we know that there exists an N such that |aN+1| ∑ |aN |r0.
Extending this we find |aN+2| ∑ |aN+1|r0 ∑ |aN |(r0)2, and using induction we
can say that

|ak| ∑ |aN |(r0)k°N for all k ∏ N.

Thus,
P1

k=N |ak| converges by the Comparison Test and part (b). Because

1X

k=1

|ak| =
N°1X

k=1

|ak| +
1X

k=N

|ak|

and
PN°1

k=1 |ak| is just a finite sum, the series
P1

k=1 |ak| converges.

Exercise 2.7.10. (a) The idea here is that eventually the terms an “look like” a
non-zero constant times 1/n, and we know that any series of this form diverges.
To make this precise, let ≤0 = l/2 > 0. Because (nan) ! l, there exists N 2 N
such that nan 2 V≤0(l) for all n ∏ N . A little algebra shows that this implies
we must have nan > l/2, or

an > (l/2) (1/n) for all n ∏ N.

Because this inequality is true for all but some finite number of terms, we may
still appeal to the Comparison Test to assert that

P
an diverges.

(b) Assume that lim(n2an) ! L ∏ 0. The definition of convergence (with
≤0 = 1) tells us that there exists an N such that n2an < L + 1 for all n ∏ N .
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This means that eventually an < (L + 1)/n2. We know that the series
P

1/n2

converges, and by the Algebraic Limit Theorem for series (Theorem 2.7.1),P
(L + 1)/n2 converges as well. Thus, by the Comparison Test

P
an must

converge.

Exercise 2.7.11. A preliminary example would be to let

(an) = (1, 0, 1, 0, 1, . . . ) and (bn) = (0, 1, 0, 1, 0, . . .).

To handle the more challenging version, we shall construct two positive de-
creasing sequences (an) and (bn) with min{an, bn} = 1/n2 where

P
an andP

bn each diverge. First set a1 = b1 = 1. For 2 ∑ n ∑ 5, let an = 1/4 and let
bn = 1/n2. By holding an = 1/4 constant over 4 terms, we have added 1 to the
partial sums of

P
an. For 6 ∑ n ∑ 6 + 24, let an = 1/n2 and hold bn = 1/25

constant. This will add one to the partial sums of
P

bn. Now we switch again
and hold an = 1/302 for the next 302 terms while letting bn = 1/n2. Continuing
this process will ensure that the partial sums of

P
an and

P
bn are unbounded

while
P

min{an, bn} =
P

1/n2 converges.

Exercise 2.7.12. First write
nX

j=m+1

xjyj =
nX

j=m+1

(sj ° sj°1)yj

=
nX

j=m+1

sjyj °
nX

j=m+1

sj°1yj .

Then, focusing on the second sum in the above expression, we have

nX

j=m+1

sj°1yj =
n°1X

j=m

sjyj+1 = smym+1 ° snyn+1 +
nX

j=m+1

sjyj+1.

Substituting this back into our first equation gives the result.

Exercise 2.7.13. (a) Let M > 0 be an upper bound for the partial sums, sn,
of

P
xn. Making use of Exercise 2.7.12 and overestimating the partial sums ofP

xn with M , we find
ØØØØØØ

nX

j=m+1

xjyj

ØØØØØØ
=

ØØØØØØ
snyn+1 ° smym+1 +

nX

j=m+1

sj(yj ° yj+1)

ØØØØØØ

∑ Myn+1 + Mym+1 +
nX

j=m+1

M(yj ° yj+1)

= Myn+1 + Mym+1 + M(ym+1 ° yn+1)
= 2Mym+1.
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(b) In order to show that the series converges we will use the Cauchy Crite-
rion for Series. Let ≤ > 0 be arbitrary. We must show that there exists an N such
that whenever n > m ∏ N it follows that |xm+1ym+1+xm+2ym+2+· · ·+xnyn| <
≤. By part (a),

|xm+1ym+1 + xm+2ym+2 + · · · + xnyn| =

ØØØØØØ

nX

j=m+1

xjyj

ØØØØØØ
∑ 2Mym+1.

Because (yn) ! 0, we can pick N such that m ∏ N implies ym < ≤/(2M).
Using this N , we find that

|xm+1ym+1 + xm+2ym+2 + · · · + xnyn| ∑ 2Mym+1 < 2M
≤

2M
= ≤

whenever n > m ∏ N as desired.
(c) The Alternating Series Test is the special case where xn = (°1)n+1. The

partial sums of
P

xn in this case look like (1, 0, 1, 0, 1, . . .) which is a bounded
sequence.

Exercise 2.7.14. (a) Abel’s Test differs from Dirichlet’s Test in that we assume
more about

P
xn but less about (yn). Specifically, we now assume that

P
xn

converges; however, (yn) may converge to a limit greater than zero.
(b) Let A > 0 be an upper bound for the partial sums, sn, of

P
an. By

making use of Exercise 2.7.12 and replacing the partial sums of
P

an with A,
we find

ØØØØØØ

nX

j=1

ajbj

ØØØØØØ
=

ØØØØØØ
snbn+1 ° smbm+1 +

nX

j=m+1

sj(bj ° bj+1)

ØØØØØØ

∑ Abn+1 + Abm+1 +

ØØØØØØ

nX

j=m+1

A(bj ° bj+1)

ØØØØØØ

= Abn+1 + Abm+1 + A(bm+1 ° bn+1)
= 2Abm+1 ∑ 2Ab1.

(c) In order to show that the series converges we will use the Cauchy Crite-
rion. Let ≤ > 0 be arbitrary. We must show that there exists an N such that
whenever n > m ∏ N it follows that

|xm+1ym+1 + xm+2ym+2 + · · · + xnyn| =

ØØØØØØ

nX

j=m+1

xjyj

ØØØØØØ
< ≤.

Thinking of m as fixed for the moment, let an = xm+n and bn = ym+n, and
apply part (b) to get

ØØØØØØ

nX

j=m+1

xjyj

ØØØØØØ
=

ØØØØØØ

n°mX

j=1

ajbj

ØØØØØØ
∑ 2A1b1
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where A1 is an upper bound on the partial sums of
P1

j=m+1 xj . But this is
the crucial point. Because

P
xn converges, the Cauchy Criterion tells us that

its “tail” can be made arbitrarily small. That is, we can pick N such that
n > m ∏ N implies

nX

j=m+1

xj <
≤

2y1
.

Looking again at what the constant A1 represents, it now follows that if m ∏ N
then

A1 ∑

ØØØØØØ

nX

j=m+1

xj

ØØØØØØ
<

≤

2y1
.

Putting this altogether and noting that b1 = y1+n ∑ y1, we find

|xm+1ym+1 + xm+2ym+2 + · · · + xnyn| ∑ 2A1b1 < 2y1
≤

2y1
= ≤

whenever n > m ∏ N as desired.

2.8 Double Summations and Products
of Infinite Series

Exercise 2.8.1. Examining the sum over squares we get s11 = °1, s22 = °3/2,
s33 = °7/4, and in general

snn = °2 +
1

2n°1
.

Now taking the limit we find (snn) ! °2. This value corresponds to the value
previously computed by fixing j and summing down each column.

Exercise 2.8.2. In order to show that the iterated series

1X

i=1

1X

j=1

aij

converges we must first show that for each fixed i 2 N the series
P1

j=1 aij

converges to some real number ri. Then we need to show that the series
P1

i=1 ri

converges.
Fix i 2 R. By our hypothesis,

P1
j=1 |aij | converges. Thus, the Absolute

Convergence Test tells us
P1

j=1 aij converges to some real number ri. By looking
at the partial sums, we can use the Order Limit Theorem to assert that |ri| ∑ bi,
where bi =

P1
j=1 |aij |. Because

P1
i=1 bi converges,

P1
i=1 |ri| converges by the

Comparison Test, and then
P

ri must converge as well.
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Exercise 2.8.3. (a) As we have been doing, let bi =
P1

j=1 |aij | for all i 2 N.

Our hypothesis tells us that there exists L ∏ 0 satisfying
P1

i=1 bi = L. Because
we are adding all non-negative terms, it follows that

tmn =
mX

i=1

nX

j=1

|aij | ∑
mX

i=1

1X

j=1

|aij | ∑
mX

i=1

bi ∑ L.

Thus, tmn is bounded. We can now conclude that (tnn) converges by the Mono-
tone Convergence Theorem, as it is both increasing and bounded.

(b) Let ≤ > 0 be arbitrary. We need to find an N such that n > m ∏ N
implies |snn ° smm| < ≤. Now the expression snn ° smm is really a sum over a
finite collection of aij terms. If each aij included in the sum is replaced with
|aij |, the sum only gets larger (this is just the triangle inequality), and the result
is that

|snn ° smm| =

ØØØØØØ

nX

i=1

nX

j=1

aij °
mX

i=1

mX

j=1

aij

ØØØØØØ
∑ |tnn ° tmm|.

We know that (tnn) converges, so pick N so that n > m ∏ N implies |tnn °
tmm| < ≤. It follows that (snn) is Cauchy and must converge.

Exercise 2.8.4. (a) The fact that tmn is a sum of non-negative terms implies
that if m1 ∏ m and n1 ∏ n then tm1n1 ∏ tmn. So let N1 = max{m0, n0}. Then
it follows that

B ° ≤

2
< tm0,n0 ∑ tmn ∑ B

for all m,n ∏ N1.
(b) Without loss of generality, let n > m ∏ N . Then,

|smn ° S| = |smn ° smm + smm ° S|
∑ |smn ° smm| + |smm ° S|

=

ØØØØØØ

mX

i=1

nX

j=m+1

aij

ØØØØØØ
+ |smm ° S|

∑ |tmn ° tmm| + |smm ° S|.

We have already chosen N1 such that

|tmn ° tmm| <
≤

2
whenever n > m ∏ N1.

Because (snn) ! S, we can pick N2 so that

|smm ° S| <
≤

2
whenever m ∏ N2.

Setting N = max{N1, N2}, we can conclude that |smn ° S| < ≤/2 + ≤/2 = ≤ for
all n > m ∏ N .
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Exercise 2.8.5. Thinking of m as fixed and n as the limiting variable, the
Algebraic Limit Theorem can be applied to the finite number of components of

smn =
nX

j=1

a1j +
nX

j=1

a2j + · · · +
nX

j=1

amj

to conclude that
lim

n!1
smn = r1 + r2 + · · · + rm.

If, in addition, we insist that m ∏ N (where N is the one constructed in the
previous exercise), then we have that

°≤ < smn ° S < ≤

is eventually true once n is larger than N . Applying the Order Limit Theorem
we find

°≤ ∑ (r1 + r2 + · · · + rm)° S ∑ ≤

for all m ∏ N .
This last statement is extremely close to what we need to conclude thatP1

i=1

P1
j=1 aij converges to S. Given an arbitrary ≤ > 0, we have produced an

N such that

|(r1 + r2 + · · · + rm)° S| ∑ ≤ for all m ∏ N

The only distraction is that our definition of convergence requires a strict in-
equality, and we have a “less than or equal to ≤” result. This, however, is not a
problem. Because ≤ is arbitrary, we could just as easily have chosen to let ≤0 < ≤
at the beginning and constructed our argument using ≤0 throughout the proof.
On a more general note, while we strive at the introductory level to adhere to
the exact wording of our definitions, there comes a point in epsilon–style argu-
ments where it becomes more convenient to simply make quantities less than
something that we know can be made arbitrarily small.

Exercise 2.8.6. As the exercise explains, the same argument can be used to
prove

P1
j=1

P1
i=1 aij converges to S once we show that for each j 2 N the sumP1

i=1 aij converges to some real number cj .
To show

P1
i=1 aij converges for each j 2 N, it suffices to prove that the ab-

solute series
P1

i=1 |aij | converges. Recall that bi =
P1

j=1 |aij |, so it is certainly
the case that bi ∏ |aij | for all i, j 2 N. But our hypothesis says that

P1
i=1 bi

converges, and so by the Comparison Test,
P1

i=1 |aij | converges for all values of
j.

Exercise 2.8.7. (a) In order to prove absolute convergence, let

un = |d2| + |d3| + |d4| + · · · + |dn| =
nX

k=2

|dk|.
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We must now show that (un) converges. Well,

un =
nX

k=2

|dk| ∑
nX

i=1

nX

j=1

|aij | = tnn.

Because, un ∑ tnn for all n and (tnn) converges, we know that un converges by
the Comparison Test.

(b) Let ≤ > 0 be arbitrary. We need to find N such that n ∏ N implies
|
Pn

k=2 dk ° S| < ≤. By hypothesis, (snn) ! S, so choose N1 so that

|snn ° S| <
≤

2
for all n ∏ N1.

We are also given that (tnn) converges (this is the absolute convergence hypoth-
esis), an so there exists N2 such that

|tnn ° tmm| <
≤

2
for all n > m ∏ N2.

In essence, this says that once we get far enough out into the array (aij) in any
direction, the absolute values of the terms do not add up to anything significant.
To take advantage of this we set N = max{N1, 2N2}. Then, for n ∏ N

ØØØØØ

nX

k=2

dk ° S

ØØØØØ =

ØØØØØ

nX

k=2

dk ° snn + snn ° S

ØØØØØ

∑

ØØØØØ

nX

k=2

dk ° snn

ØØØØØ + |snn ° S|

<

ØØØØØ

nX

k=2

dk ° snn

ØØØØØ +
≤

2

Because n ∏ 2N2, the partial sum
Pn

k=2 dk along diagonals contains every term
in the “square” sum sN2N2 . It follows that

ØØØØØsnn °
nX

k=2

dk

ØØØØØ ∑ (tnn ° tN2N2) <
≤

2
.

Putting it altogether, we have
ØØØØØ

nX

k=2

dk ° S

ØØØØØ <
≤

2
+

≤

2
= ≤ for all n ∏ N,

and we conclude that
P1

k=2 dk = S.

Exercise 2.8.8. (a) It is possible, as suggested, to prove that
P1

i=1

P1
j=1 |aibj |

converges by first proving that it is bounded and then taking advantage of
the fact that it is monotone. However, a method similar to proving that it
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is bounded can be used to directly prove that it converges. We will use this
method. Let

1X

i=1

|ai| = L and
1X

j=1

|bj | = M.

For each fixed i 2 N, the Algebraic Limit Theorem allows us write
P1

j=1 |aibj | =
|ai|

P1
j=1 |bj |. Continuing this process, we see

1X

i=1

1X

j=1

|aibj | =
1X

i=1

|ai|
1X

j=1

|bj | =
1X

i=1

|ai|M = M
1X

i=1

|ai| = ML,

and therefore
P1

i=1

P1
j=1 |aibj | converges to ML.

(b) Again, fix i 2 R. Now we can write

lim
n!1

snn = lim
n!1

nX

i=1

nX

j=1

aibj = lim
n!1

√
nX

i=1

ai

!0

@
nX

j=1

bj

1

A .

Applying the Algebraic Limit Theorem to the limits of these partial sums we
find that limn!1 snn = AB. From part (a) we know that

P1
i=1

P1
j=1 |aibj |

converges, so we can use Theorem 2.8.1 and Exercise 2.8.7 to conclude that

1X

i=1

1X

j=1

aibj =
1X

j=1

1X

i=1

aibj =
1X

k=2

dk = lim
n!1

snn = AB.
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Chapter 3

Basic Topology of R

3.1 Discussion: The Cantor Set

3.2 Open and Closed Sets

Exercise 3.2.1. (a) We cannot always take minimums of infinite sets. There-
fore the step where we let ≤ = min{≤1, ≤2, . . . , ≤N} > 0 requres that we are
working with a finite collection of open sets. You can, however, take the infi-
mum of an infinite set, but the infimum of the set could be 0.

(b) Let On = (°1
n , 1

n ). Then
T1

n=1 On = ;.

Exercise 3.2.2. (a) {°1, 1}
(b) B is not a closed set because it does not contain its limit points.
(c) B is not an open set. Given any point of B, it is impossible to find an

≤-neighborhood contained in B.
(d) All points in B are isolated points.
(e) B = B [ {°1, 1}

Exercise 3.2.3. (a) Neither. Given any point in Q, there is no ≤-neighborhood
contained in Q. The set of limit points not contained in Q is I.

(b) Closed. Given any point in N, there is no ≤-neighborhood of that point
contained in the set.

(c) Open. The limit point 0 is not contained in the set {x 2 R : x > 0}.
(d) Neither. There is no ≤-neighborhood of 1 contained in (0, 1]. The limit

point 0 is not contained in the set.
(e) Neither. There is no ≤-neighborhood of any point in the set contained in

{1 + 1/4 + 1/9 + · · · + 1/n2 : n 2 N}. Without the square on the n in this set,
we would have no limit point. However, since

P1
n=1 1/n2 converges, the limit of

the partial sums is a limit point for this set. This limit point is not an element
of the set.

Exercise 3.2.4. Let x = lim an for some sequence (an) contained in A, and
assume that an 6= x for all n in N. We want to show that x is a limit point of A.

45
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The sequence (an) converges to x, so by Definition 2.2.3B, every ≤-neighborhood
V≤(x) contains all but a finite number of the terms of (an). Since (an) is con-
tained in A, this means that V≤(x)\A is non-empty and contains elements other
than x. Hence, x is a limit point of A.

Exercise 3.2.5. ()) Assume a is an isolated point of A. By Definition 3.2.5,
a is not a limit point. Therefore there exists an ≤-neighborhood V≤(a) such that
V≤(a)\A = ; or V≤(a)\A = {a}. Since a is an element of A the former cannot
be true. Therefore, V≤(a) \A = {a}.

(() Assume that there exists an ≤-neighborhood V≤(a) such that V≤(a)\A =
{a}. It follows from Definition 3.2.4 that a is not a limit point of A, and hence
it is isolated.

Exercise 3.2.6. ()) Assume that the set F µ R is closed. Then F contains
its limit points. We will show that that every Cauchy sequence (an) contained
in F has its limit in F by showing that the limit of (an) is either a limit point
or possibly an isolated point of F . Because (an) is Cauchy, we know x = lim an

exists. If an 6= x for all x, then it follows from Theorem 3.2.5 that x is a limit
point of F . Now consider a Cauchy sequence an where an = x for some n.
Because (an) µ F it follows that x 2 F as well. (Note that if an is eventually
equal to x, then it may not be true that x is a limit point of F .)

(() Assume that every Cauchy sequence contained in F has a limit that is
also an element of F . To show that F is closed we want to show that it contains
its limit points. Let x be a limit point of F . By Theorem 3.2.5, x = lim an for
some sequence (an). Because (an) converges, it must be a Cauchy sequence. So
x is contained in F , and therefore F is closed.

Exercise 3.2.7. Let x 2 O, where O is an open set. Let x = lim xn. It follows
from Definition 3.2.1 that there exists an ≤-neighborhood V≤(x) of x such that
V≤(x) 2 O. Because (xn) is a convergent sequence, by Definition 2.2.3B every
≤-neighborhood V≤(x) of x contains all but a finite number of the terms of (xn).
Therefore all but a finite number of terms of (xn) are contained in O.

Exercise 3.2.8. (a) Let L be the set of limit points of A, and suppose that x is
a limit point of L. We want to show that x is an element of L; in other words,
that x is a limit point of A. Let V≤(x) be arbitrary. By the definition of a limit
point, V≤(x) intersects L at a point l 2 L, where l 6= x. Now choose ≤0 > 0 small
enough so that V≤0(l) µ V≤(x) and x /2 V≤0(l). Since l 2 L, l is a limit point of A
and so V≤0(l) intersects A. This implies V≤(x) intersects A at a point different
than x, and therefore x is a limit point of A and thus an element of L.

(b) Assume x is a limit point of A[L and consider the ≤-neighborhood V≤(x)
for an arbitrary ≤ > 0. We know V≤(x) must intersect A [ L and we would like
to argue that it in fact intersects A. If V≤(x) intersects A at a point different
than x we are done, so let’s assume that there exists an l 2 L with l 2 V≤(x).
Using the same argument employed in (a), we take ≤0 > 0 small enough so that
V≤0(l) µ V≤(x), and x /2 V≤0(l). Because l is a limit point of A we have that there
exists an a 2 V≤0(l) µ V≤(x) and thus V≤(x) intersects A at some point other
than x, as desired.



3.2. Open and Closed Sets 47

Exercise 3.2.9. (a) Let y be a limit point of A [B. By Theorem 3.2.5, there
exists a sequence (cn) contained in A [B satisfying y = lim cn with y 6= cn for
all n 2 N. Because (cn) is contained in A[B it must be that either A or B (or
both) contains an infinite number of terms of (cn). This subsequence contained
entirely in one set or the other will also converge to y, and we are done with
another nod to Theorem 3.2.5.

(b) Clearly A µ A [ B, and any limit point of A will by definition be a
limit point of A [ B. Thus A µ A [B. Similarly, B µ A [B. It follows that
A[B µ A [B. We also have that A[B µ A[B, and so A [B µ A [B. But
by Theorem 3.2.14, A[B is closed, so A [B = A[B. Hence, A [B µ A[B,
and so A [B = A [B.

(c) No. Take An = {1/n}. Then
S1

n=1 An = {1/n : n 2 N}. But
S1

n=1 An =
{1/n : n 2 N} [ {0}.
Exercise 3.2.10. (a) Let x 2

°S
∏2Λ E∏

¢c. Then x is not an element of E∏

for all ∏. Hence x 2 Ec
∏ for all ∏. So x 2

T
∏2Λ Ec

∏. We have just shown
that

°S
∏2Λ E∏

¢c µ
T

∏2Λ Ec
∏. Now we will show that

T
∏2Λ Ec

∏ µ
°S

∏2Λ E∏

¢c.
Let x 2

T
∏2Λ Ec

∏. Then for all ∏, x /2 E∏. So x /2
S

∏2Λ E∏, and hence
x 2

°S
∏2Λ E∏

¢c. Therefore
√

[

∏2Λ

E∏

!c

=
\

∏2Λ

Ec
∏.

Secondly, we want to show that
√

\

∏Λ

E∏

!c

=
[

∏2Λ

Ec
∏.

Let x 2
°T

∏2Λ E∏

¢c. Then there exists a ∏0 2 Λ for which x is not an element
of E∏0 . Therefore x 2 Ec

∏0 . So x 2
S

∏2Λ Ec
∏, and we have

°T
∏2Λ E∏

¢c µS
∏2Λ Ec

∏. Now assume x 2
S

∏2Λ Ec
∏. Then there exists a ∏0 2 Λ such that

x /2 E∏0 . Therefore x /2
T

∏2Λ E∏, so x 2
°T

∏2Λ E∏

¢c. So it is also true thatS
∏2Λ Ec

∏ µ
°T

∏2Λ E∏

¢c and we have reached our desired conclusion.
(b) (i)Suppose that E∏ is a finite collection of closed sets. Then their com-

plements, Ec
∏ are a finite collection of open sets. We know by Theorem 3.2.3

that the intersection of a finite collection of open sets is open. In symbols,

\

∏2Λ

Ec
∏ =

√
[

∏2Λ

E∏

!c

is an open set. Therefore the union of a finite collection of closed sets,
S

∏2∏ E∏

is closed.
(ii) Now suppose that E∏ is an arbitrary collection of closed sets. ThenS

∏2Λ Ec
∏ is open by Theorem 3.2.3. By De Morgan’s Laws,

[

∏2Λ

Ec
∏ =

√
\

∏2∏

E∏

!c

.
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It then follows from Theorem 3.2.13 that the intersection of an arbitrary collec-
tion of closed sets is closed.

Exercise 3.2.11. Let A be bounded above and let s = sup A. Then for ≤ > 0,
there exists an a 2 A such that s° ≤ < a. Hence a falls in the ≤-neighborhood
V≤(s) of s. So V≤(s) intersects A at a point other than s, and hence s is a limit
point of A. Therefore s 2 A.

Exercise 3.2.12. (a) True. By Theorem 3.2.12 A is closed. It then follows
from Theorem 3.2.13 that A

c is open.
(b) True. If a 2 A is an isolated point, then there exists an ≤0 > 0 satisfying

V≤0(a) \ A = {a}. It follows that for any 0 < ≤ ∑ ≤0 we would again have
V≤(a)\A = {a}. However, for A to be open, it would have to be that V≤(a) µ A
for some 0 < ≤ ∑ ≤0, and this is impossible.

(c) True. Throughout the proof, let’s let L be the set of limit points for A.
()) Suppose that A is closed. Then A includes its limit points, so A =

A[L = A. (() Let A = A. Then A = A[L, hence A contains its limit points
and therefore it is closed.

(d) True. See Exercise 3.2.11.
(e) True. If A = {a1, a2, · · · , an} is a finite set, then A has no limit points.

(To prove this, let x 2 R be arbitrary and let ≤0 = min{|x ° an| : an 6= x}.
Then V≤0(x) cannot intersect A at a point other than x, and therefore x is not
a limit point.) By default, A contains its empty set of limit points and thus is
closed.

(f) False. (°1,
p

2) [ (
p

2,1) is a counterexample. For a more interesting
example, see Exercise 3.4.10.

Exercise 3.2.13. For contradiction, assume that there exists a nonempty set
A that is both open and closed. Because A 6= R, B = Ac is also non-empty,
and B is open and closed as well. Pick a point a1 2 A and b1 2 B. We can
assume, without loss of generality, that a1 < b1. Bisect the interval [a1, b1] at
c = (b1 ° a1)/2. Now c 2 A or c 2 B. If c 2 A, let a2 = c and let b2 = b1. If
c 2 B, let b2 = c and let a2 = a1. Continuing this process yields a sequence of
nested intervals In = [an, bn], where an 2 A and bn 2 B. By the Nested Interval
Property, there exists an x 2

T1
n=1 In. Because the lengths (bn ° an) ! 0, we

can show lim an = x which implies that x 2 A because A is closed. However, it
is also true that lim bn = x and thus x 2 B because B is closed. Thus we have
shown x 2 A and x 2 Ac. This contradiction implies that no such A exists, and
we conclude that R are ; are the only two sets that are both open and closed.
(This argument is closely related to the discussion of connected sets in the next
section.)

Exercise 3.2.14. (a) [a, b] =
T1

n=1(a° 1/n, b + 1/n).
(b) (a, b] =

T1
n=1(a, b + 1/n) ; (a, b] =

S1
n=1[a + 1/n, b]

(c) Because Q is countable, we can write Q = {r1, r2, r3, . . .}. Note that
each singleton set {rn} is closed and the complement {rn}c is open. Then
Q =

S1
n=1{rn} shows that Q is an Fæ set, and I = Qc =

T1
n=1{rn}c shows that

I is a G± set.
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Figure 3.1: x + y = s must intersect C1 £ C1.

3.3 Compact Sets

Exercise 3.3.1. Let K be compact. Then by Theorem 3.3.4, K is closed and
bounded. By the Axiom of Completeness, supK exists, and by Exercise 3.2.11
we know sup K 2 K. Because K is closed, K = K and hence supK 2 K. A
similar argument shows inf K 2 K.

Exercise 3.3.2. Let K µ R be closed and bounded. Since K is bounded, the
Balzano-Weierstrass Theorem guarantees that for any sequence (an) contained
in K, we can find a convergent subsequence (ank). Because the set is closed,
the limit of this subsequence is also in K. Hence K is compact.

Exercise 3.3.3. We will show that the Cantor set is closed and bounded.
Recall that C =

T1
n=0 Cn. Each Cn is closed because it is a finite union of

closed intervals. Now since C is an intersection of closed sets, C itself is closed
by Theorem 3.2.14. By construction, the Cantor set is bounded above by 1 and
below by 0. Hence, C is a compact set.

Exercise 3.3.4. Let K be compact and let F be closed. Then K \ F is closed
by Theorem 3.2.14. Because K is bounded, K \ F must be bounded as well.
Thus K \ F is closed and bounded, and hence compact.

Exercise 3.3.5. (a) Not compact. Let (an) be a sequence of rational numbers
converging to

p
2.

(b) Not compact. Let (an) be a sequence of rational numbers converging to
an irrational number in the interval (0, 1).

(c) Not compact. Let an = n.
(d) Compact.
(e) Not compact. Let an = 1/n. The sequence (an) converges to 0 (and thus

so does every subsequence), which is not an element of the set.
(f) Compact.
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Exercise 3.3.6. (a) Fix s 2 [0, 2]. We want to find an x1, y1 2 C1 such that
x1 + y1 = s. We know that C1 = [0, 1/3] [ [2/3, 1]. Then we have that:

[0, 1/3] + [0, 1/3] = [0, 2/3]

[0, 1/3] + [2/3, 1] = [2/3, 4/3]

[2/3, 1] + [2/3, 1] = [4/3, 1].

Hence C1 + C1 = [0, 2/3] [ [2/3, 4/3] [ [4/3, 2] = [0, 2], so for any s 2 [0, 2],
we can find an x1, y1 2 C1 such that x1 + y1 = s.

A convenient way to visualize this result in the (x, y)–plane is to shade in
the four squares corresponding to the components of C1 £ C1 (see Figure 3.1)
and observe that, for each s 2 [0, 2], the line x + y = s must intersect at least
one of the squares. For each n we can draw a similar picture (with increasing
numbers of smaller squares), and our job is to argue that the line x + y = s
continues to intersect at least one of the smaller squares

To argue by induction, suppose that we can find xn, yn 2 Cn such that
xn + yn = s. To show that this must hold for n + 1, let’s focus attention on
a square from the nth stage where xn + yn = s holds (i.e., where x + y = s
intersects an nth stage square). Moving to the n + 1th stage means removing the
open middle third of this shaded region. But this results in a situation precisely
like the one in Figure 3.1, implying that the line x + y = s must intersect a
(n + 1)st stage square. This shows that there exist xn+1, yn+1 2 Cn+1 where
xn+1 + yn+1 = s.

(b) We have (xn) and (yn) with xn, yn 2 Cn and xn + yn = s for all n.
The sequence (xn) doesn’t converge, but (xn) is bounded so by the Bolzano-
Weierstrass Theorem there exists a convergent subsequence (xnk). Set x =
lim xnk . Now look at the corresponding subsequence (ynk) = s ° xnk . Using
the Algebraic Limit Theorem, we see that this subsequence converges to y =
lim(x°xnk) = s°x. This shows x+y = s. We now need to argue that x, y 2 C.

One temptation is to say that because C is closed, x = lim(xnk) must be in
C. However, we don’t know (and it probably isn’t true) that (xnk) is in C. We
can say that (xnk) is in C1, and because C1 is closed we may conclude x 2 C1.
In fact, given any fixed n0, we can argue that x 2 Cn0 because xnk is (with
the exception of some finite number of terms) contained in Cn0 . This implies
x 2

T1
n=1 Cn = C as desired, and a similar argument works for y.

Exercise 3.3.7. (a) True. By Theorem 3.2.14, an arbitrary intersection of
closed sets is closed. Boundedness is also preserved by intersections; therefore,
the arbitrary intersection of compact sets will be compact.

(b) False. Let K be a closed interval and let A be an open set such that
A µ K. Then A \K is not closed, and hence it is not compact.

(c) False. Let Fn = [n,1). Then Fn is closed for all n, but the intersection
of these sets is empty.

(d) True. A finite set is clearly bounded, and by a previous exercise we know
that a finite set is closed.

(e) False. The rational numbers are countable but they are not compact.
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Exercise 3.3.8. (a) If A1 \K and B1 \K both had finite subcovers consisting
of the form {O∏ : ∏ 2 Λ}, then there would exist a finite subcover for K. But
we assumed that such a finite subcover did not exist for K. Hence either A1\K
or B1 \K (or both) has no finite subcover.

(b) Let I1 be a half of I0 whose intersection with K does not have a finite
subcover, so that I1 \ K cannot be finitely covered and I1 µ I0. Then bisect
I1 into two closed intervals, A2 and B2 and again let I2 = A2 if A2 \K does
not have a finite subcover. Otherwise, let I2 = B2 Continuing this process of
bisecting the interval In, we get the desired sequence In with lim |In| = 0.

(c) Because K is compact, K \ In is also compact for each n 2 N. By
Theorem 3.3.5,

T1
n=1 In \K is non-empty, and there exists an x 2 K \ In for

all n.
(d) Let x 2 K and let O∏0 be an open set that contains x. Because O∏0

is open, there exists ≤0 > 0 such that V≤0(x) µ O∏0 . Now choose n0 such that
|In0 | < ≤0. Then In0 is contained in the single open set O∏0 and thus it has a
finite subcover. This contradiction implies that K must have originally had a
finite subcover.

Exercise 3.3.9. (a) Let O∏ = (∏° 1,∏ + 1) where ∏ 2 N.
(b) Let Æ be a fixed irrational number in the interval (0, 1). For each n 2 N

set On = (°1,Æ ° 1/n) [ (Æ + 1/n, 2). The union over n of all these sets gives
(°1,Æ) [ (Æ, 2) which contains Q \ [0, 1]. This cover has no finite subcover.

(c) Let O∏ = (∏° 1,∏ + 1) where ∏ 2 N.
(e) Let On = (1/n, 2) for each n 2 N. The union gives (0, 2) and there is no

finite subcover.

Exercise 3.3.10. If A is a finite set then it clearly clompact. Conversely,
assume A is clompact. Because a singleton set is a closed set, the collection of
singleton sets consisting of the elements of A is a closed cover. This cover must
have a finite subcover, and it follows that A is a finite set. To summarize, a set
is “clompact” if and only if it is finite.

3.4 Perfect Sets and Connected Sets

Exercise 3.4.1. Let P be a perfect set and let K be compact. Consider the
set P \K. This set is closed by Theorem 3.2.14. Since K is bounded, P \K
will be bounded as well, and thus the intersection of the two sets is compact.
However, P \K is not necessarily perfect. For example, let K be a singleton
set contained in P . Then P \K is a singleton set and is not perfect.

Exercise 3.4.2. No. A non-empty perfect set must be uncountable and subsets
of Q are all countable sets.

Exercise 3.4.3. (a) We are given an arbitrary x 2 C. Because x 2 C1 µ C,
x must fall in one of the two intervals that make up C1. The key idea to
remember is that C contains at least the endpoints of these two intervals. Thus,
if 0 ∑ x < 1/3, let x1 = 1/3. If x = 1/3, then take x = 0. We can do a similar
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Figure 3.2: The “open middle–fourth” Cantor set.

thing if x falls in the other interval. This is, if 2/3 ∑ x < 1, then let x1 = 1,
and if x = 1 then set x1 = 2/3. In all of these cases we have x1 2 C with
|x° x1| ∑ 1/3.

(b) For each n 2 N, the length of each interval that makes up Cn is 1/3n.
It is also true that the endpoints of these intervals are always elements of C.
For every n, let xn be an endpoint of the interval that contains x. If x happens
to be an endpoint of a Cn interval, then let xn be the opposite endpoint of this
interval. Thus we have xn 2 C with xn 6= x such that |x°xn| ∑ 1/3n. Because
1/3n ! 0, it follows that xn ! x. This means that x 2 C is not an isolated
point. Having already seen that C is closed, we conclude that C is perfect.

Exercise 3.4.4. (a) This set is compact and perfect, and the arguments proceed
exactly as they do for the original Cantor set. (See Figure 3.2.)

(b) The length of this set is equal to 1 minus the lengths of the missing
pieces:

Length = 1°
µ

1
4

+ 2(
3
32

) + 4(
9

256
) + · · ·

∂

= 1°
µ

1
4

+
3
16

+
9
64

+ · · ·
∂

= 1°
µ

1/4
1° 3/4

∂

= 1° 1 = 0.

To find the dimension of this set, magnify the set by 8
3 . Then C0 = [0, 8/3]

and C1 = [0, 1] [ [5/3, 8/3]. Thus we obtain two copies of the set. If x is the
dimension of the set, then x should satisfy 2 = ( 8

3 )x, or x = ln 2
ln(8/3) º .707.

Exercise 3.4.5. Let U and V be disjoint, open sets with A µ U and B µ V .
We claim that U \ V = ; and U \ V = ;. To see why this is true, note that
because U and V are disjoint we have U µ V c. Now V c is closed (because V
is open) and thus U must also satisfy U µ V c by Theorem 3.2.12. This proves
U \ V = ;, and the other statement has a similar proof.
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Since A µ U , limit points of A will also be limit points of U and we get
A µ U . Hence A \ V = ; and therefore A \ B = ;. Similarly, B µ V , so
A \B = ;. Therefore, A and B are separated.

Exercise 3.4.6. ()) Let E be a connected set. Assume E = A[B where A, B
are disjoint, non-empty sets. Since E is connected, A and B are not separated.
So either A \ B or A \ B is not empty. Without loss of generality, assume
x 2 A \B. Then x 2 B and x 2 A, but x /2 A because A and B were assumed
to be disjoint. Therefore x is a limit point of A. Then by Theorem 3.2.5 there
exists a convergent sequence (xn) contained in A that converges to x.

(() We will prove this direction by proving the contrapositive. Assume
E µ R is disconnected. We want to find two non-empty, disjoint sets A, B
satisfying E = A[B such that there never exists a convergent sequence (xn) ! x
with (xn) contained in one of A or B, and x an element of the other. Because
E is disconnected, there exist separated sets A and B satisfying E = A [ B.
Now suppose (xn) is contained in A and (xn) ! x. Then either x 2 A or x is a
limit point of A, and in either case x 2 A. Because A[B = ;, we know x /2 B.
If we assume (xn) is convergent sequence in B, a similar argument shows that
its limit cannot be in A. This completes the proof.

Exercise 3.4.7. (a) Consider A = Q \ (0, 5). Then A is disconnected, for we
can write A = (0,

p
2) [ (

p
2, 5). But A = [0, 5], which is connected.

(b) If A is connected, A is connected as well. This follows directly from
Theorem 3.4.7. If A is perfect then A is closed and A = A. Hence, A is perfect
as well.

Exercise 3.4.8. (a) Given any x, y 2 Q, choose z 2 I such that x < z < y.
We know that such a z exists because the irrational numbers are dense. Then
let Q = A [ B, where A = Q \ (°1, z) and B = Q \ (z,1). The sets A and
B are separated (see Example 3.4.5(ii)), and x 2 A and y 2 B.

(b) The set of irrational numbers is totally disconnected because the rational
numbers are also dense in R. Thus we can follow the same argument as in part
(a) by letting x, y 2 I and choosing z 2 Q.

Exercise 3.4.9. (a) The length of each interval in Cn is 1/3n. If we choose an
N so that 1/3N < ≤, then x, y cannot belong to the same interval.

(b) Let x and y be on separate intervals of CN , where N is chosen as in (a).
Then there exists an open interval between x and y that is not contained in C.
Choose z in this interval. Then x < z < y and z /2 C.

If (a, b) were an open interval satisfying (a, b) µ C, then we could find
x, y 2 C with a < x < y < b, and it would follow that [x, y] µ C. However, we
have now shown that for all such x and y there exists a point z 2 (x, y) with
z /2 C. Thus, C contains no intervals (open or closed).

(c) Informally speaking, totally disconnected sets in R and sets that do not
contain any intervals. This is the content of part (b). To say it again, we know
that given any x, y 2 C with x < y, there exists a z /2 C satisfying x < z < y.
Take A = C \ [0, z) and B = C \ (z, 1]. Then A,B are separated with x 2 A
and y 2 B, and C = A [B.
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Exercise 3.4.10. (a) Since O =
S1

n=1 V≤n(rn) is a union of open sets, O is
open. Therefore F is closed. Every rational number is contained in O, so F
must contain only irrationals. Now we must argue that F is non-empty. To
informally see this, look at the “length” of O. Since O is the union of open sets
of length 1/2n°1, the length of O must be no greater than

P1
n=1 1/2nn° 1 = 2.

Therefore the entire real line cannot be covered by O, and hence F is non-empty.
A way to avoid applying the concept of “length” to sets that are not finite

unions of intervals would be to assume, for contradiction, that F = ;. Then
O = R and, in particular, the compact set [0, 3] is covered by {V≤n(rn) : n 2 N}.
Now let {V≤n1

(rn1), V≤n2
(rn2), . . . V≤nm

(rnm)} be a finite subcover for [0, 3]. The
lengths of this finite collection of open intervals must sum to a total less than
2, and therefore they cannot cover the set [0, 3].

(b) No, the set F does not contain any non-empty open intervals. Every
non-trivial interval contains a rational number and this rational is not an ele-
ment of F . Hence F contains no such intervals. This proves that F is totally
disconnected. Given arbitrary a, b 2 F with a < b, we can find a rational num-
ber c with a < c < b. Then writing F = A [ B where A = F \ (°1, c) and
B = F \ (c,1) finishes the argument.

(c) It is not possible to know whether F is perfect as it is possible for F to
contain isolated points.

There does exist a non-empty perfect set of irrational numbers. To modify
the construction, we again write Q = {r1, r2, r3, . . .}, but this time we define ≤n

inductively. Set ≤1 =
p

2/2 and, as a convention, let V≤(x) = ; whenever ≤ = 0.
For n ∏ 2, let ≤n = min{

p
2/2n, dn/2} where

dn = inf{|x° rn| : x 2
n°1[

k=1

V≤k(rk)}.

Geometrically, dn is the distance from rn to the set On°1 =
Sn°1

k=1 V≤k(rk). The
idea is to inductively build the open set O as a disjoint union of positively
spaced neighborhoods of the form V≤n(rn). If dn = 0, then because ≤n is always
irrational whenever it is non-zero, we may conclude rn 2 On°1. If dn > 0, then
the definition of ≤n ensures that

(1) V≤n(rn) \ V≤m(rm) = ; for all 1 ∑ m < n.

Now O =
S1

n=1 V≤n(rn) is open and contains Q, so F = Oc is again a closed set
inside the irrationals. It remains to show that it contains no isolated points.

Let x 2 F be arbitrary and assume, for contradiction, that x is isolated.
Thus there exits ≤0 > 0 such that (x°≤0, x) and (x, x+≤0) are both be contained
in O. Because of the way we constructed O it now follows that there must exist
n0 and m0 such that

(x° ≤0, x) µ V≤n0 (rn0) and (x, x + ≤0) µ V≤m0 (rm0).

But this contradicts statement (1) above because the point x is a limit point
of each of these two neighborhoods. This contradiction proves x is not isolated
and the proof is complete.
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3.5 Baire’s Theorem

Exercise 3.5.1. ()) Let A be a G± set. We want to show that this implies
that Ac is an Fæ set. By the definition of a G± set, A can be written as the
countable intersection of open sets. In symbols, A =

T1
n=1 On where On is open

for each n 2 N. Then by De Morgan’s Law, Ac =
S1

n=1 Oc
n. Because On is

open, Oc
n is closed. Hence, Ac is the countable union of closed closed sets, and

therefore it is an Fæ set.
(() Now let B be an Fæ set. Then we know that B =

S1
n=1 Fn, where

Fn is closed for each n 2 N. It then follows from De Morgan’s Law that
Bc =

T1
n=1 F c

n. Therefore, Bc is the countable intersection of open sets, which
makes it a G± set.

Exercise 3.5.2. (a) countable.
(b) finite.
(c) finite.
(d) countable.

Exercise 3.5.3. See Exercise 3.2.14.

Exercise 3.5.4. (a) Pick a point x1 2 G1. Since G1 is open, there exists an
≤1 > 0 such that V≤1(x1) µ G1. Now take ≤01 < ≤1, and let I1 = V≤01

(x1). The
significant point to make here is that I1 is a closed interval but we still have the
containment I1 µ V≤1(x1) µ G1.

Because G2 is dense, there exists an x2 2 V≤01
(x1) µ G1. Now G2 \ V≤01

(x1)
is open, so there exists an ≤2 > 0 such that V≤2(x2) µ G2 \ V≤01

(x1). If we again
choose a smaller ≤02 < ≤2, then as before the closed interval I2 = V≤02

(x2) satisfies
I2 µ G2 as well as I2 µ I1. We may continue this process to create a nested
sequence of closed intervals I1 ∂ I2 ∂ I3 ∂ · · · satisfying In µ Gn for all n 2 N.

(b) By the Nested Interval Property, there exists an x 2
T1

n=1 In. Because
In µ Gn it follows that x 2 Gn for all n. Hence

T1
n=1 Gn is not empty.

Exercise 3.5.5. Let F be a closed set containing no non-empty open intervals.
Then F c is open and we claim that it must also be dense in R. To see why,
assume x, y 2 R satisfy x < y. By hypothesis, the open interval (x, y) is not
contained in F which means there exists a point z 2 F c satisfying x < z < y.
This proves F c is dense.

Turning to the statement in the exercise, assume for contradiction that R =S1
n=1 Fn where each Fn is a closed set containing no non-empty open intervals.

Taking complements we get ; =
T1

n=1 F c
n, and we have just seen that each F c

n

is a dense open set in R. But this is a contradiction, because the intersection
of dense open sets is not empty.

Exercise 3.5.6. Assume, for contradiction, that I is an Fæ set. Then we can
write I =

S1
n=1 Fn, where each Fn is a closed set. Because each Fn is a subset

of I, we can also assert that Fn fails to contain any open intervals. Now Q is the
countable union of singleton sets, and each singleton set certainly qualifies as a
closed set containing no open intervals. But this implies that we can write R
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as the countable union of closed sets, none of which contain any open intervals.
In the previous exercise we showed that this is impossible, hence I cannot be
an Fæ set.

If Q were a G± set, then by Exercise 3.5.1, we could show that I was an Fæ

set, which we have just shown to be impossible.

Exercise 3.5.7. The set (I \ (°1, 0]) [ (Q \ [0,1)) is neither an Fæ set nor
a G± set.

Exercise 3.5.8. ()) Assume that E is nowhere dense in R. Then E contains
no nonempty open intervals. Given any x, y 2 R with x < y, we know (x, y) is
not a subset of E. So there exists a z 2 E

c satisfying x < z < y. We also have
that E

c is open because E is closed. This proves E
c is dense.

(() Assume that E
c is dense. Then for any x, y 2 R with x < y, we can

find a z 2 E
c satisfying x < z < y. Therefore E cannot contain any nonempty

open intervals. It then follows from the definition that E is nowhere-dense.

Exercise 3.5.9. (a) Somewhere in between.
(b) Nowhere dense.
(c) Dense.
(d) Nowhere dense.

Exercise 3.5.10. Assume, for contradiction, that R =
S1

n=1 En. Then cer-
tainly R =

S1
n=1 En. By De Morgan’s Law this implies that ; =

T1
n=1 En

c.
Because En is nowhere dense, En

c is dense. We also know that En
c is open.

Then we have reached a contradiction, since by Theorem 3.5.2 the countable
intersection of dense, open sets is not empty.
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Functional Limits and
Continuity

4.1 Discussion: Examples of Dirichlet and Thomae

4.2 Functional Limits

Exercise 4.2.1. (a) Let ≤ > 0. Notice that

|f(x)° 8| = |(2x + 4)° 8| = |2x° 4| = 2|x° 2|.

Choose ± = ≤/2. Then 0 < |x° 2| < ± = ≤/2 implies that

|f(x)° 8| = 2|x° 2| < 2
≥ ≤

2

¥
= ≤.

(b) Let ≤ > 0. Choose ± = ≤
1
3 . Then 0 < |x| < ± = ≤

1
3 implies that

|f(x)° 0| = |x3| < (≤
1
3 )3 = ≤.

(c) Given an arbitrary ≤ > 0, our goal is to make |x3 ° 8| < ≤ by restricting
|x° 2| to be smaller than some carefully chosen ±. Note that

|x3 ° 8| = |(x2 + 2x + 4)(x° 2)| = |(x2 + 2x + 4)||x° 2|.

By insisting that ± ∑ 1, we can restrict x to fall in the interval (1, 3). This
implies |(x2 + 2x + 4)| ∑ 9 + 6 + 4 = 19.

Now choose ± = min{1, ≤/19}. If 0 < |x° 2| < ±, then it follows that

|x3 ° 8| = |(x2 + 2x + 4)| |x° 2| ∑ 19
≥ ≤

19

¥
= ≤

as desired.

57
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(d) For arbitrary ≤ > 0, choose ± = 1/10. Then, 0 < |x ° º| < ± = 1/10
implies 3 < x < 4 and hence [[x]] = 3. Thus, |[[x]] ° 3| = |3 ° 3| = 0 < ≤ as
desired.

Although in most cases smaller values of ≤ require smaller values of ± in
response, this is a non-standard situation where ± can be chosen independently
of the value of ≤.

Exercise 4.2.2. Then any smaller ± will also suffice.

Exercise 4.2.3. (a) If xn = °1/n and yn = 1/n for n 2 N , then lim(xn) =
lim(yn) = 0. However,

|xn|
xn

=
|° 1/n|
°1/n

= °1 and
|yn|
yn

=
|1/n|
1/n

= 1.

Thus,

lim
|xn|
xn

6= lim
|yn|
yn

,

and so by Corollary 4.2.5, limx!0 |x|/x does not exist.

(b) Let xn = n+1
n and yn =

q
n+1

n for n 2 N . Then lim(xn) = lim(yn) = 0.
We also have xn 2 Q and yn 2 I for all n 2 N, so that

lim g(xn) = lim 1 = 1 while lim g(yn) = lim 0 = 0.

By Corollary 4.2.5, limx!1 g(x) does not exist.

Exercise 4.2.4. (a) Let xn = (n+1)/n, yn =
p

(n + 1)/n and zn = (2n+1)/2n.
Note that lim(xn) = lim(yn) = lim(zn) = 1.

(b) For (xn) we get t(xn) = 1/n which converges to 0.
For (yn) we get t(yn) = 0 which converges to 0.
For (zn) we get t(zn) = 1/2n which converges to 0.
(c) The point to make is that the closer a rational number is to 1, the larger

its denominator has to be, and thus the smaller the value of t(x). Because
t(x) = 0 for all irrational numbers, the conjecture is that limx!1 t(x) = 0.

In order to prove our claim, we have to show that given ≤ > 0, there exists
a ± neighborhood around 1 such that x 2 V±(1) implies t(x) 2 V≤(0). If we set
T = {x 2 R : t(x) ∏ ≤}, then notice that x 2 T if and only if x is a rational
number of the form x = m/n where n ∑ 1/≤. If we focus on some finite interval
such as [0, 2] then the restriction on the size of n implies that the set T \ [0, 2]
is finite. With finite sets, we are allowed to take minimums and so let

± = min{y : y 2 T \ [0, 2]} > 0.

To see that this choice of ± “works”, we note that if x 2 V±(1) then x /2 T and
thus t(x) 2 V≤(0).
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Exercise 4.2.5. (a) Showing lim
x!c

[f(x)+g(x)] = L+M is equivalent to showing
f(xn) + g(xn) ! L + M whenever xn ! c. Since we are given f(xn) ! L and
g(xn) ! M , we can use Theorem 2.3.3 part (ii) to conclude f(xn) + g(xn) !
L + M .

(b) Let ≤ > 0 be arbitrary. We need to show, there exists ± such that
0 < |x° c| < ± implies |(f(x) + g(x))° (L + M)| < ≤. Note that,

|(f(x)+g(x))° (L+M)| = |(f(x)°L)+(g(x)°M)| ∑ |f(x)°L|+ |g(x)°M |.

Since limx!c f(x) = L, there exists ±1 such that 0 < |x ° c| < ±1 implies
|f(x) ° L| < ≤/2. In addition, because limx!c g(x) = M , there exists ±2 such
that 0 < |x° c| < ±2 implies |g(x)°M | < ≤/2. Now if we pick ± = min{±1, ±2}
then 0 < |x° c| < ± implies that

|(f(x) + g(x))° (L + M)| ∑ |f(x)° L| + |g(x)°M |

<
≤

2
+

≤

2
= ≤,

as desired.
(c) Showing lim

x!c
[f(x)g(x)] = LM is equivalent to showing f(xn)g(xn) !

LM whenever xn ! c. Since we are given f(xn) ! L and g(xn) ! M , we can
use Theorem 2.3.3 part (iii) to conclude f(xn)g(xn) ! LM .

Now let’s write another proof of the corollary based on Definition 4.2.1. Note
that,

|f(x)g(x)° (LM)| = |f(x)g(x)° f(x)M + f(x)M ° (LM)|
∑ |f(x)(g(x)°M)| + |M(f(x)° L)|
= |f(x)||g(x)°M | + |M ||f(x)° L|.

Since limx!c f(x) = L, there exists ±1 such that 0 < |x ° c| < ±1 implies
|f(x)° L| < ≤/(2M).

Next we need a lemma that says f(x) is bounded. Although this may not
be the case over the whole domain A, it is certainly true in some neighborhood
around x = c. Given ≤0 = 1, for instance, we know there exists ±2 > 0 such
that 0 < |x ° c| < ±2 implies |f(x) ° L| < 1, and in this case we then have
|f(x)| < |L| + 1.

We now use the fact that limx!c g(x) = M to assert that there exists ±3 > 0
such that 0 < |x ° c| < ±3 implies |g(x) °M | < ≤/(2(|L| + 1)). Finally, if we
pick ± = min{±1, ±2, ±3}, then

|f(x)g(x)° (LM)| ∑ |f(x)||g(x)°M | + |M ||f(x)° L|

< (|L| + 1)
µ

≤

2(|L| + 1)

∂
+ M

≥ ≤

2M

¥
= ≤

whenever 0 < |x° c| < ±.
Finally, we point out that this proof assumes M 6= 0. The case M = 0 is a

little easier in fact and can be handled as a corollary of the next exercise.
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Exercise 4.2.6. We are given that there exists an M > 0 such that |f(x)| ∑ M
for all x 2 A. Let ≤ > 0 be arbitrary. Because we know limx!c g(x) = 0, there
exists ± > 0 such that 0 < |x ° c| < ± implies |g(x) ° 0| = |g(x)| < ≤/M . It
follows that

|g(x)f(x)° 0| = |g(x)||f(x)| <
≥ ≤

M

¥
M = ≤

whenever 0 < |x° c| < ± . Therefore, limx!c g(x)f(x) = 0.

Exercise 4.2.7. (a) We say limx!c f(x) = 1 if for every arbitrarily large M ,
there exists ± > 0, such that whenever 0 < |x° c| < ± it follows that f(x) > M .

Let M > 0 be arbitrary. To prove limx!c 1/x2 = 1, we can choose ± =
q

1
M .

Then 0 < |x| < ± =
q

1
M implies x2 < 1

M from which it follows that 1/x2 > M ,
as desired.

(b) We say limx!1 f(x) = L if for every ≤ > 0, there exists K > 0, such
that whenever x > K it follows that |f(x)° L| < ≤.

Let ≤ > 0. To prove limx!1 1/x = 0, choose K = 1/≤. If x > K = 1/≤, then
1/x < ≤ as desired.

(c) We say limx!1 f(x) = 1 if for every M > 0 there exists K > 0, such
that whenever x > K it follows that f(x) > M . An example of function with
such a limit would be f(x) =

p
x. Given an arbitrary M > 0, choose K = M2.

If x > K = M2, then it follows that
p

x > M as desired.

Exercise 4.2.8. Let limx!c f(x) = L and let limx!c g(x) = M . We are asked
to show L ∏ M . This result is in the same spirit as the Order Limit Theorem
(Theorem 2.3.4), and using the Sequential Criterion for Functional Limits we
can in fact derive this result from OLT.

Let (xn) be a sequence in A satisfying (xn) ! c with xn 6= c for all n.
We are given than f(xn) ∏ g(xn), and thus the Order Limit Theorem tells us
lim f(xn) ∏ lim g(xn). (This requires that we know the limits exist, a hypothesis
not included in early editions of this problem.) By the Sequential Criterion for
Functional Limits, L = lim f(xn) and M = lim g(xn), and thus L ∏ M as
desired.

Exercise 4.2.9. This is another situation where we could use the analogous
statement for sequences (Exercise 2.3.3) to prove the functional limit version.
(We could also apply the previous exercise to each inequality.) Instead, we shall
give a proof in terms of the ≤–± definition of functional limits.

Let ≤ > 0. Because limx!c f(x) = L, there exists ±1 > 0 such that 0 <
|x ° c| < ±1 implies L ° ≤ < f(x) < L + ≤. Likewise, there exists ±2 > 0 such
that 0 < |x° c| < ±2 implies L ° ≤ < h(x) < L + ≤. Choosing ± = min{±1, ±2},
we see that

L° ≤ < f(x) ∑ g(x) ∑ h(x) < L + ≤

whenever 0 < |x° c| < ±, which implies |g(x)° L| < ≤ as desired.
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4.3 Combinations of Continuous Functions

Exercise 4.3.1. (a) Let ≤ > 0. Note that |g(x) ° c| = | 3
p

x° 0| = | 3
p

x| where
c = 0. Now if we set ± = ≤3, then |x° 0| < ± = ≤3 implies | 3

p
x| < ≤. This shows

g(x) is continuous at c = 0.
(b) For c 6= 0 write,

|g(x)° g(c)| = | 3
p

x° 3
p

c| = | 3
p

x° 3
p

c|
√

3
p

x2 + 3
p

xc + 3
p

c2

3
p

x2 + 3
p

xc + 3
p

c2

!

=
|x° c|

3
p

x2 + 3
p

xc + 3
p

c2
∑ |x° c|

3
p

c2
.

Therefore, if we pick ± = ≤ 3
p

c2, then |x° c| < ± = ≤ 3
p

c2 implies

|g(x)° g(c)| = | 3
p

x° 3
p

c| ∑ |x° c|
3
p

c2
<

≤ 3
p

c2

3
p

c2
= ≤.

Exercise 4.3.2. (a) Let ≤ > 0. Because g is continuous at f(c) 2 B, for every
≤ > 0, there exists an Æ > 0 such that |g(y)° g(f(c))| < ≤ whenever y satisfies
|y ° f(c)| < Æ. Now, because f is continuous at c 2 A, for this value of Æ, we
can find a ± > 0 such that |x° c| < ± implies that |f(x)° f(c)| < ±. Combining
the two statements, we see that for ≤ > 0, there exists ± > 0 such that |x°c| < ±
implies |g(f(x))° g(f(c))| < ≤. Therefore, g ± f is continuous at c.

(b) Let’s now prove Theorem 4.3.9 using the sequential characterization of
continuity in Theorem 4.3.2 (iv).

Assume (xn) ! c (with c 2 A). Our goal is to show g(f(xn)) ! g(f(c)).
Because f is continuous at c, we know f(xn) ! f(c). Then, because g is
continuous at f(c), we know that g(f(xn)) ! g(f(c)). This completes the
proof.

Exercise 4.3.3. Let ≤ > 0. We need to argue that |f(x) ° f(c)| can be made
less than ≤ for all values of x in some ± neighborhood around an arbitrary c.
For the case where a 6= 0, write

|f(x)° f(c)| = |(ax + b)° (ac + b)| = |ax° ac| = |a||x° c|.

So if we pick ± = ≤/|a|, then |x° c| < ± = ≤/|a| implies

|f(x)° f(c)| = |a||x° c| < |a| ≤

|a| = ≤.

Therefore, f(x) is continuous.
If a = 0, then |f(x)° f(c)| = 0, and we may choose ± = 1 regardless of how

≤ is chosen.

Exercise 4.3.4. (a) Let ≤ > 0 and fix n 2 Z. If we set ± = 1, then the
point x = n will be the only element of the domain that lies in the V±(n)
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neighborhood. It follows trivially that f(x) 2 V≤(f(n)) for the point x = n, and
we may conclude that f is continuous at n by Theorem 4.3.2 (iii).

(b) Let ≤ > 0. If c is an isolated point of A, then there exists a neighborhood
V±(c) that intersects the set A only at c. Because x 2 V±(c) \ A implies that
x = c, we see f(x) = f(c) 2 V≤(f(c)). Thus f(x) is continuous at the isolated
point c using the criterion in Theorem 4.3.2 (iii).

Exercise 4.3.5. Set ≤0 = |g(c)| which we are assuming to be greater than zero.
Because g is continuous, we know there exists an open neighborhood V±(c) with
the property that g(x) 2 V≤0(g(c)) provided x 2 V±(c). But notice that V≤0(g(c))
does not contain zero and so we can be sure that g(x) 6= 0 whenever x 2 V±(c).
This guarantees f(x)/g(x) is defined on V±(c) as long as x 2 A. (To properly
answer this question as written we need the additional assumption that c be an
interior point to the common domain A.)

Exercise 4.3.6. (a) We are asked to show Dirichlet’s function g(x) is nowhere-
continuous on R. First consider an arbitrary r 2 Q. Because I is dense in
R there exists a sequence (xn) µ I with (xn) ! r. Then, g(xn) = 0 for all
n 2 N while g(r) = 1. Since lim g(xn) = 0 6= g(r) we can use Corollary 4.3.3 to
conclude g(x) is not continuous at r 2 Q.

Now let’s consider an arbitrary i 2 I. Because Q is dense in R we can find
a sequence (yn) µ Q with (yn) ! i. This time g(yn) = 1 for all n 2 N while
g(i) = 0. Because lim g(yn) = 1 6= g(i) we can conclude that g is not continuous
at i. Combining the two results, we can conclude that Dirichlet’s function is
indeed nowhere continuous on R.

(b) Consider an arbitrary rational number r 2 Q and observe that t(r) 6= 0.
Because I is dense, there exists a sequence (xn) µ I with (xn) ! r. Then,
t(xn) = 0 for all n 2 N while t(r) 6= 0. Thus, lim t(xn) 6= t(r) and t(x) is not
continuous at r.

(c) Consider an arbitrary c 2 I. Given ≤ > 0, set T = {x 2 R : t(x) ∏ ≤}. If
x 2 T , then x is a rational number of the form x = m/n with m,n 2 Z where
n satisfies |n| ∑ 1/≤. By focusing our attention on the interval [c ° 1, c + 1]
around the point c, we see that the restriction on the size of n implies that the
set T \ [c ° 1, c + 1] is finite. In a finite set, all points are isolated so we can
pick a neighborhood V±(c) around c such that all x 2 V±(c) implies x /2 T . But
if x /2 T then t(x) < ≤ or t(x) 2 V≤(t(c)). By Theorem 4.3.2 (iii), we conclude
t(x) is continuous at c.

Exercise 4.3.7. We will prove the set K is closed by showing that it contains all
its limit points. Let c be a limit point of K. By Theorem 3.2.5 there is a sequence
(xn) µ K with (xn) ! c. Because h is continuous on R, lim h(xn) = h(c). But
notice xn 2 K, implies h(xn) = 0, and thus lim h(xn) = 0. We conclude
h(c) = 0, which implies c 2 K, as desired.

Exercise 4.3.8. (a) Consider an arbitrary c 2 I. Because Q is dense in R we
can find a sequence (rn) µ Q such that (rn) ! c. Using the continuity of f , we
see lim f(xn) = f(c). But we are given that xn µ Q implies f(xn) = 0, and so
f(c) = lim f(xn) = 0.
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(b) First define a new function h(x) = f(x)° g(x). By Theorem 4.2.4, h(x)
is continuous. Because f(r) = g(r) at every r 2 Q, we have h(r) = 0 on Q and
part(a) implies h(x) = 0 on all of R. This shows f and g are the same function.
(The hypothesis that f and g are continuous was not included in early editions.)

Exercise 4.3.9. Geometrically speaking, the condition on f described in this
problem says that if f is applied to any two points x and y, then the image
values f(x) and f(y) are closer together (in a uniform way) than x and y. This
is the reason for the term “contraction.”

(a) Let ≤ > 0 and fix y 2 R. To show f is continuous at y, choose ± = ≤/c,
and observe that |x° y| < ± = ≤/c implies

|f(x)° f(y)| ∑ c|x° y| < c
≥ ≤

c

¥
= ≤.

Because y is arbitrary, f(x) must be continuous on R.
(b) Observe that for any fixed n 2 N,

|ym+1 ° ym+2| = |f(ym)° f(ym+1)| ∑ c|ym ° ym+1|.

This idea can be extended inductively to conclude that

|ym+1 ° ym+2| ∑ c|ym ° ym+1|
∑ c2|ym°1 ° ym|
∑ · · · ∑ cm|y1 ° y2|.

The fact that 0 < c < 1 means
P1

n=1 cn converges, and this will enable us to
conclude that (yn) is a Cauchy sequence. To see how, first note that for m < n
we have

|ym ° yn| ∑ |ym ° ym+1| + |ym+1 ° ym+2| + · · · + |yn°1 ° yn|
∑ cm°1|y1 ° y2| + cm|y1 ° y2| + · · · + cn°2|y1 ° y2|
= cm°1|y1 ° y2|(1 + c + · · · + cn°m°1)

< cm°1|y1 ° y2|
µ

1
1° c

∂
.

Let ≤ > 0, and choose N 2 N large enough so that cN°1 < ≤(1 ° c)/|y1 ° y2|.
Then the previous calculation shows that n > m ∏ N implies |ym ° yn| < ≤.
We conclude that (yn) is Cauchy.

(c) Set y = lim yn. Because f is continuous, f(y) = lim f(yn). But f(yn) =
yn+1, and so f(y) = lim yn+1. Because lim yn+1 = lim yn = y, it follows that
f(y) = y and y is a “fixed point.”

(d) The argument in (b) and (c) applies to any sequence of iterates. Thus,
given an arbitrary x, we may assert that (x, f(x), f(f(x)), . . .) converges to a
limit x0 and that x0 is a fixed point of f . But y is also a fixed point and so

|f(x0)° f(y)| = |x0 ° y|.



64 Chapter 4. Functional Limits and Continuity

However,
|f(x0)° f(y)| ∑ c|x0 ° y|,

must also be true, and because 0 < c < 1 we conclude that x0 = y.
In summary, if f is a contraction on R, then f has a unique fixed point, and

every sequence of iterates converges to this unique point.

Exercise 4.3.10. (a) Note that f(0) = f(0 + 0) = f(0) + f(0) which implies
f(0) = 0. For any x 2 R, f(0) = f(x ° x) = f(x) + f(°x) = 0. This implies
f(°x) = °f(x).

(b) Fix c 2 R and let (xn) ! c. To prove that f is continuous at c it is
enough to show lim f(xn) = f(c).

Now (c°xn) ! 0. Because we are given that f is continuous at 0, it follows
that

lim f(xn ° c) = f(0) = 0.

Combining the additive condition on f with the Algebraic Limit Theorem then
gives

0 = lim f(c° xn) = lim(f(c)° f(xn)) = f(c)° lim f(xn),

and we get f(c) = lim f(xn) as desired.
(c) For any n 2 N,

f(n) = f(1 + 1 + . . . + 1) = f(1) + f(1) + . . . + f(1) = nf(1) = nk.

For z 2 Z, the case z < 0 is all that remains to do. In (a) we saw f(°x) =
°f(x). Observing that z = °|z| and |z| 2 N, we can write

(1) f(z) = f(°|z|) = °f(|z|) = °|z|k = zk.

Before taking on an arbitrary rational number, let’s consider 1/n where
n 2 N. In this case,

k = f(1) = f

µ
1
n

+
1
n

+ · · · + 1
n

∂

= nf

µ
1
n

∂
,

which gives f(1/n) = k/n. For m,n 2 N we then get

f(m/n) = f

µ
1
n

+
1
n

+ · · · + 1
n

∂

= mf

µ
1
n

∂
= k(m/n).

Finally, for any r 2 Q satisfying r < 0, an argument similar to equation (1)
above gives the result.
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(d) Fix x 2 R. Because Q is dense in R, there exists a sequence (rn) µ Q
with (rn) ! x. By our work in part (c) we know that f(rn) = krn for all n.
Then, because f is continuous at x, we have

f(x) = lim f(rn) = lim krn = kx.

This completes the proof.

Exercise 4.3.11. (a) The greatest integer function, h(x) = [[x]] from Example
4.3.7 is a suitable example.

(b) Let

k(x) =

8
<

:

x(1° x) if 0 < x < 1 with x 2 Q
0 if 0 < x < 1 with x /2 Q
0 if x ∏ 1 or x ∑ 0.

Because x(1 ° x) tends to zero as x approaches 0 and 1, it is possible to show
that k is continuous at these points.

(c) This time let

l(x) =

8
<

:

1 if 0 ∑ x ∑ 1 with x 2 Q
0 if 0 ∑ x ∑ 1 with x /2 Q
0 if x > 1 or x > 0.

which fails to be continuous at 0 and 1, as requested.
(d) The function

g(x) =
Ω

1/n if x = 1/n for some n 2 N
0 otherwise

is not continuous on A, but observe that it is continuous at 0. (Setting g(x) = 1
when x 2 A would not work, instance.)

Exercise 4.3.12. (a) Fix c 2 C so that g(c) = 1. The standard way to
proceed is to find a sequence (xn) in the complement of C with (xn) ! c. Then
lim g(xn) 6= g(c) would show g is not continuous at c. Finding this sequence
amounts to arguing that the Cantor set does not contain any intervals, and this
is the content of Exercise 3.4.9.

A more concise approach might be the following. Let ≤0 = 1/2. Then for
every ± > 0, the neighborhood V±(c) is not a subset of C (because C contains
no intervals). Thus there exists a point x 2 V±(c) with x /2 C, and consequently
g(x) = 0 /2 V≤0(g(c)). By the criterion in Theorem 4.3.2 (iii), g is not continuous
at c.

(b) Now fix c /2 C, and let ≤ > 0 be arbitrary. Because C is closed, Cc is
open. This means that there exists a ± > 0 with V±(c) µ Cc. Now, if we consider
any x 2 V±(c), then x 2 Cc implies g(x) = 0. Looking again at the criterion for
continuity in Theorem 4.3.2 (iii), we see that x 2 V±(c) implies g(x) 2 V≤(g(c)),
and thus g(x) is continuous at every c /2 C.
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4.4 Continuous Functions on Compact Sets

Exercise 4.4.1. (a) Fix c 2 R and write

|f(x)° f(c)| = |x3 ° c3| = |x° c||x2 + xc + c2|.

Insisting that ± ∑ 1 means that x will fall in the interval (c° 1, c + 1) and thus

|x2 + xc + c2| < (c + 1)2 + (c + 1)2 + c2 < 3(c + 1)2.

Now pick ± = min{1, ≤/(3(c + 1)2)}. Then |x° c| < ± implies

|f(x)° f(c)| <

µ
≤

3(c + 1)2

∂
3(c + 1)2 = ≤.

(b) The dependence of ≤ on the point c is evident in the previous formula
with larger choices of c resulting in smaller values of ±. This means that the
sequences (xn) and (yn) we seek are necessarily going to tend to infinity.

Set xn = n and yn = n + 1/n. Then |xn ° yn| = 1/n tends to zero as
required, while

|f(xn)° f(yn)| = |n3 °
µ

n +
1
n

∂3

| = 3n +
3
n

+
1
n3
∏ 3,

stays e0 = 3 units apart for all n 2 N. This proves f is not uniformly continuous
on R.

(c) Let A be bounded by M . If x, c 2 A then |x2 + xc + c2| ∑ 3M2. Given
≤ > 0 we can now choose ± = ≤/(3M2), which is independent of c. If |x° c| < ±,
it follow that

|f(x)° f(c)| ∑
≥ ≤

3M2

¥
3M2 = ≤,

and f is uniformly continuous on A.

Exercise 4.4.2. For f(x) = 1/x2 we see

|f(x)° f(y)| =
ØØØØ

1
x2
° 1

y2

ØØØØ =
ØØØØ
y2 ° x2

x2y2

ØØØØ = |y ° x|
µ

y + x

x2y2

∂
.

If we restrict our attention to x, y ∏ 1, then we can estimate
y + x

x2y2
=

1
x2y

+
1

xy2
∑ 1 + 1 = 2.

Given ≤ > 0, we may then choose ± = ≤/2 (independent of x and y), and it
follows that |f(x) ° f(y)| < (≤/2)2 = ≤ whenever |x ° y| < ±. This shows f is
uniformly continuous on [1,1).

If x and y are allowed to be arbitrarily close to zero, then the expression
(x+y)/(x2y2) is unbounded and we get into trouble. To see this more explicitly,
set xn = 1/

p
n and yn = 1/

p
n + 1. Then |xn ° yn|! 0 while

|f(xn)° f(yn)| = |n° (n + 1)| = 1.

By the criterion in Theorem 4.4.6, we conclude that f is not uniformly contin-
uous on (0, 1].
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Exercise 4.4.3. Because compactness is preserved by continuous functions, the
set f(K) is compact. By Exercise 3.3.1, y1 = sup f(K) exists and y1 2 f(K).
Because y1 2 f(K), there must exist (at least one point) x1 2 K satisfying
f(x1) = y1, and it follows immediately from the definition of the supremum
that f(x) ∑ f(x1) for all x 2 K.

A similar argument using the infimum yields x0.

Exercise 4.4.4. Because [a, b] is a compact set, it follows from the Extreme
Value Theorem that f attains a minimum. That is, there exists a point x0 2
[a, b] where f(x0) ∑ f(x) for all x 2 [a, b]. Then, because f(x0) > 0, we may
write

1
f(x)

∑ 1
f(x0)

,

and we see that 1/f is bounded.

Exercise 4.4.5. Negating the definition of uniform continuity gives the fol-
lowing: A function f : A ! R fails to be uniformly continuous on A if there
exists ≤0 > 0 such that for all ± > 0 we can find two points x and y satisfying
|x° y| < ± but with |f(x)° f(y)| ∏ ≤0.

The fact that no ± “works” means that if we were to try ± = 1, we would be
able to find points x1 and y1 where |x1 ° y1| < 1 but |f(x1) ° f(y1)| ∏ ≤0. In
a similar way, if we try ± = 1/n where n 2 N, it follows that there exist points
xn and yn with |xn ° yn| < 1/n but where |f(xn)° f(yn)| ∏ ≤0. The sequences
(xn) and (yn) are precisely the ones described in Theorem 4.4.6.

Exercise 4.4.6. (a) Let f(x) = 1/x and set xn = 1/n. Then f(xn) = n which
is not a Cauchy sequence.

(b) This is impossible. A Cauchy sequence (xn) in [0, 1] must have a limit
in [0, 1] because this is a closed set. If x = lim xn, then by continuity f(x) =
lim f(xn). Because f(xn) converges, it is a Cauchy sequence as well.

(c) This is also impossible for the same reasons as in (b). Note that we did
not use the compactness of [0, 1] but only the fact that it was closed.

(d) The function f(x) = x(1° x) has this property.

Exercise 4.4.7. Let ≤ > 0 be arbitrary. Because f is uniformly continuous on
(a, b], there exists ±1 > 0 such that |f(x) ° f(y)| < ≤/2 whenever x, y 2 (a, b]
satisfy |x° y| < ±1. Likewise, there exists ±2 > 0 such that |f(x)° f(y)| < ≤/2
whenever x, y 2 [b, c) satisfy |x° y| < ±2.

Now set ± = min{±1, ±2} and assume we have x and y satisfying |x°y| < ±. If
both x and y fall in (a, b], or if they both fall in [b, c), then we get |f(x)°f(y)| <
≤/2 < ≤. In the case where x < b and y > b we may write

|f(x)° f(y)| ∑ |f(x)° f(b)| + |f(b)° f(y)| <
≤

2
+

≤

2
= ≤.

Because ±1 and ±2 are both independent of x and y, ± is as well and we conclude
that f is uniformly continuous on (a, c).
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Exercise 4.4.8. (a) We are given that f is uniformly continuous on [b,1). The
set [0, b] is compact, and so by Theorem 4.4.8, f is also uniformly continuous
on [0, b]. By argument precisely like the one in Exercise 4.4.7, we can show f is
uniformly continuous on [0,1).

(b) Let’s first focus our attention on the domain [1,1). If x, y ∏ 1, it follows
that

|
p

x°py| =
ØØØØ

x° yp
x +py

ØØØØ ∑ |x° y|1
2
.

So, given ≤ > 0 we can choose ± = 2≤, and it follows that f(x) =
p

x is uniformly
continuous on [1,1). By the observation in part (a), we get that f is uniformly
continuous on [0,1).

Exercise 4.4.9. (a) First write the Lipschitz condition in the form

|f(x)° f(y)| ∑ M |x° y| for all x, y 2 A.

Given ≤ > 0, we choose ± = ≤/M . Then |x° y| < ± implies

|f(x)° f(y)| < M
≤

M
= ≤.

This proves f is uniformly continuous.
(b) No, all uniformly continuous functions are not Lipschitz. Consider

f(x) =
p

x on [0, 1]. A continuous function on a compact set is uniformly
continuous. However, if we set y = 0 and consider x > 0, then we get

ØØØØ
f(x)° f(y)

x° y

ØØØØ =
ØØØØ

p
x

x

ØØØØ =
1p
x

,

which is not bounded for x values arbitrarily close to zero.

Exercise 4.4.10. Yes, uniformly continuous functions map bounded sets to
bounded sets.

Given ≤0 = 1, there exists ±0 > 0 such that |f(x) ° f(y)| < 1 as long as
|x ° y| < ±0. Now the fact that A is bounded means that we can find a finite
collection of points {x1, x2, . . . , xn} where the ±0 neighborhoods

{V±0(x1), V±0(x2), . . . , V±0(xn)}

cover A. For each 0 ∑ i ∑ n, the image set f(V±0(xi) \ A) is bounded because
|f(x) ° f(y)| ∑ 1 whenever x, y 2 V±0(xi) \ A. Because f(A) is covered by the
finite collection of bounded sets {f(V±0(xi) \ A) : 0 ∑ i ∑ n}, it follows that
f(A) is bounded as well.

Exercise 4.4.11. ()) Assume g is continuous on R and let O µ R be open.
We want to prove g°1(O) is open. To do this, we fix c 2 g°1(O) and show that
there is a ±–neighborhood of c satisfying V±(c) µ g°1(O).

Because c 2 g°1(O), we know g(c) 2 O. Now O is open, so there exists an
≤ > 0 such that V≤(g(c)) µ O. Given this particular ≤, the continuity of g at
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c allows us to assert that there exists a neighborhood V±(c) with the property
that x 2 V±(c) implies g(x) 2 V≤(g(c)) µ O. But this implies V±(c) µ g°1(O),
which proves that g°1(O) is open.

(() Conversely, we assume g°1(O) is open whenever O is open, and show
that g is continuous at an arbitrary point c 2 R.

Let ≤ > 0, and set O = V≤(g(c)). Certainly O is open, so our hypothesis
gives us that g°1(O) is open. Because c 2 g°1(O), there exists a ± > 0 with
V±(c) µ g°1(O). But this means that whenever x 2 V±(c) we get g(x) 2 O =
V≤(g(c)), and we conclude that g is continuous at c by the criterion in Theorem
4.3.2 (iii).

Exercise 4.4.12. Assume f is continuous on a compact set K. We must show
f is uniformly continuous.

Let ≤ > 0. Then for each x 2 K, the continuity of f tells us that there exists
a ±x > 0 (depending on x) with the property that

|y ° x| < ±x implies |f(y)° f(x)| < ≤/2.

Now consider the open cover of K consisting of the neighborhoods of the form

{V 1
2 ±x

(x) : x 2 K}.

Because K is compact, there exists a finite subcover corresponding to a finite
set of points {x1, x2, . . . , xn} in K. That is,

K µ V 1
2 ±x1

(x1) [ V 1
2 ±x2

(x2) [ · · · [ V 1
2 ±xn

(xn).

Because we have a finite cover, we may now let

± = min{1
2
±x1 ,

1
2
±x2 , . . . ,

1
2
±xn},

and be confident that ± > 0.
Now assume |x° y| < ±. Because we have a cover for K, there must exist xi

for some 0 ∑ i ∑ n where |xi ° x| < 1
2±xi < ±xi . It follows that |f(x)° f(xi)| <

≤/2. Also,

|y ° xi| ∑ |y ° x| + |x° xi| < ± +
1
2
±xi < ±xi ,

and so we get |f(y)° f(xi)| < ≤/2 as well. Finally,

|f(x)° f(y)| ∑ |f(x)° f(xi)| + |f(xi)° f(y)|

<
≤

2
+

≤

2
= ≤.

Because ± is chosen independently of x, this shows f is uniformly continuous on
K.

Exercise 4.4.13. (a) We want to show that f(xn) is a Cauchy sequence, so
let ≤ > 0 be arbitrary. Because f is uniformly continuous, there exists ± > 0
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such that |f(x)° f(y)| < ≤ whenever |x° y| < ±. Given this ±, we use the fact
that (xn) is a Cauchy sequence to say that there exists an N 2 N such that
|xn ° yn| < ± whenever m,n ∏ N . Combining the last two statements we see
that |f(xn)°f(yn)| < ≤ whenever m, n ∏ N , which shows that f(xn) is Cauchy.

(b) ()1) Let’s first assume f is uniformly continuous on (a, b). Now fix a
sequence (xn) in (a, b) with (xn) ! a. It follows from (a) that g(xn) converges,
so let’s define the value of g(a) by asserting that g(a) = lim g(xn).

Proving that g is continuous at a amounts to showing that if we now take an
arbitrary sequence (yn) that converges to a, then it follows that g(a) = lim g(yn)
as well. This is equivalent to showing that

lim[g(yn)° g(xn)] = 0.

Given ≤ > 0, there exists a ± > 0 such that |g(y) ° g(x)| < ≤ whenever
|x°y| < ±. Because (xn) and (yn) each converge to a, we see that (yn°xn) ! 0.
Thus, there exists an N 2 N such that |yn ° xn| < ± for all n ∏ N . But this
implies

|g(yn)° g(xn)| < ≤ for all n ∏ N,

and we conclude lim[g(yn)° g(xn)] = 0. Because this implies g(a) = lim g(yn),
we see that g is continuous at a.

A similar argument can be used for the point b.

(() Given that g can be continuously extended to the domain [a, b], we
immediately get that g is uniformly continuous because [a, b] is a compact set.
Thus g is certainly uniformly continuous on the smaller set (a, b).

4.5 The Intermediate Value Theorem

Exercise 4.5.1. The set [a, b] is connected, and so by Theorem 4.5.2, the image
set f([a, b]) is also connected. Because f(a) and f(b) are both elements of
f([a, b]), we see that L 2 f([a, b]) as well by Theorem 3.4.6. But this implies
that there exists a point c 2 (a, b) satisfying L = f(c), as desired.

Exercise 4.5.2. (a) False. The function f(x) = 1/x takes the bounded interval
(0, 1) to the unbounded interval (1,1).

(b) False. The function f(x) = x(1° x) takes the open interval (0, 1) to the
set (0, 1/4], which is clearly not open.

(c) True. By the Preservation of Compactness result, a continuous function
maps a bounded closed set (i.e., a compact set) to another compact set. Then,
by the Preservation of Connectedness result we may conclude that this compact
set is, in fact, an interval.

Exercise 4.5.3. No, because Q is not connected. If such a function were to
contain 1 and 2 in its range, then by the Intermediate Value Theorem, its range
would also have to contain

p
2 (and many other irrational points).
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Exercise 4.5.4. Assume f : [a, b] ! 1 is increasing and satisfies the inter-
mediate value property stated in Definition 4.5.3. Let’s fix c 2 (a, b) (the case
where c is an endpoint is similar), and let ≤ > 0. Our task is to produce a ± > 0
such that |x° c| < ± implies |f(x)° f(c)| < ≤.

We know f(a) ∑ f(c). If f(c) ° ≤/2 < f(a), then set x1 = a. If f(a) ∑
f(c)° ≤/2, then the intermediate value property for f implies that there exists
x1 < c where f(x1) = f(c)° ≤/2. Because f is increasing, we see that in either
case x 2 (x1, c] implies

f(c)° ≤

2
= f(x1) ∑ f(x) ∑ f(c).

We can follow a similar process on the other side to get that there exists a point
x2 > c with the property that

f(c) ∑ f(x) ∑ f(x2) = f(c) +
≤

2
,

whenever x 2 [c, x2). Finally, we set ± = min{c°x1, x2° c}, and it follows that

f(c)° ≤

2
∑ f(x) ∑ f(c) +

≤

2
provided |x° c| < ±.

This completes the proof.

Exercise 4.5.5. Assume, for contradiction, that f(c) > 0. If we set ≤0 = f(c),
then the continuity of f implies that there exists a ±0 > 0 with the property that
x 2 V±0(c) implies f(x) 2 V≤0(f(c)). But this implies that f(x) > 0 and thus
x /2 K for all x 2 V±0(c). What this means is that if c is an upper bound on K,
then c° ±0 is a smaller upper bound, violating the definition of the supremum.
We conclude that f(x) > 0 is not allowed.

Now assume that f(c) < 0. This time, the continuity of f allows us to
produce a neighborhood V±1(c) where x 2 V±1(c) implies f(x) < 0. But this
implies that a point such as c + ±1/2 is an element of K, violating the fact that
c is an upper bound for K.

It follows that f(c) < 0 is also impossible, and we conclude that f(c) = 0 as
desired.

This proves the Intermediate Value Theorem for the special case where L =
0. To prove the more general version, we consider the auxiliary function h(x) =
f(x) ° L which is certainly continuous. From the special case just considered
we know h(c) = 0 for some point c 2 (a, b) from which it follows that f(c) = L.

Exercise 4.5.6. By repeating the construction started in the text, we get a
nested sequence of intervals In = [an, bn] where f(an) < 0 and f(bn) ∏ 0 for all
n 2 N. By the Nested Interval Property, there exists a point c 2

T1
n=1 In. The

fact that the lengths of the intervals are tending to zero means that the two
sequences (an) and (bn) each converge to c.

Because f is continuous at c, we get f(c) = lim f(an) where f(an) < 0 for
all n. Then the Order Limit Theorem implies f(c) ∑ 0. Because we also have
f(c) = lim f(bn) with f(bn) ∏ 0, it must be that f(c) ∏ 0. We conclude that
f(c) = 0.
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Exercise 4.5.7. The trick here is to apply the Intermediate Value Theorem to
the function g(x) = f(x)°x. Because the range of f is contained in the interval
[0, 1] we see that

g(0) = f(0) ∏ 0 and g(1) = f(1)° 1 ∑ 0.

It follows from IVT that we must have g(c) = 0 for some point c 2 [0, 1], and
this is equivalent to f(c) = c.

Exercise 4.5.8. No. Let (m1, h1) represent the position of the minute and hour
hands respectively on “clock 1”, where the variables take values in the interval
[0, 12] (with zero identified with 12). Let (m2, h2) be the same for “clock 2.”

Assume that clock 1 is set at 12:00 and clock 2 is set at H:00, where H 2
{1, 2, . . . 11}. If we set x = m2 = h1, then we may consider m1 = m1(x) to be a
continuous function of x with m1(0) = 0 and m1(1) = 12. Likewise, h2 = h2(x)
is also a continuous function of x with h2(0) = H and h2(1) = H + (1/12).
Now what happens to the function d(x) = h2(x) °m1(x) as x ranges over the
domain [0, 1]? Well, d(0) = H > 0 and d(1) = H + (1/12)° 12 < 0, and so by
IVT there must exist a point c 2 (0, 1) where d(c) = 0. For this value of c, the
two times corresponding to

m1 = m1(c), h1 = c and m2 = c, h2 = h2(c),

are indistinguishable if the hands on the two clocks are identical. This happens
11 times (once for each value of H) in the course of a twelve hour span of time.

(Note: Refinements in this solution have admittedly made the use of IVT a
bit artificial in this problem. We could explicitly write h2(x) = H + (x/12) and
m1(x) = 12x, and then solve to get c = (12H)/143. As an example, let’s set
H = 1. Then for clock 1 we have (144/143,12/143) which is approximately
12:05:02, and for clock 2 we have (12/143,144/143) which is approximately
1:00:25.)

4.6 Sets of Discontinuity

Exercise 4.6.1. This problem is contained in Exercise 4.3.11

Exercise 4.6.2. We say that limx!c° f(x) = L if for all ≤ > 0 there exists a
± > 0 such that |f(x)° L| < ≤ whenever 0 < c° x < ±.

Exercise 4.6.3. ()) Let’s assume limx!c f(x) = L. Then given ≤ > 0, there
exists a ± > 0 such that |f(x) ° L| < ≤ whenever 0 < |x ° c| < ±. This ± then
satisfies the required condition to prove the existence of the left and right limits.

(() In the other direction, if we are given ≤ > 0 then we know that there
exists a ±1 > 0 such that |f(x)°L| < ≤ whenever 0 < x° c < ±1. We also know
there exists a ±2 > 0 such that |f(x)° L| < ±2 whenever 0 < c° x < ±2. If we
set ± = min{±1, ±2}, then it follows that |f(x) ° l| < ≤ for all 0 < |x ° c| < ±.
We conclude limx!c f(x) = L.
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Exercise 4.6.4. This argument is very similar in spirit to the proof of the
Monotone Convergence Theorem.

Given c 2 R, let’s prove that limx!c° f(x) exists for an increasing function
f . Our first task is to produce a candidate for the value of the limit. To this
end, set

A = {f(x) : x < c}.

Because f is increasing, A is bounded above by f(c). By AoC, we can set
L = supA. The claim is that limx!c° f(x) = L.

Let ≤ > 0. By the least upper bound property of the supremum, we know
that there exists an x0 < c satisfying

L° ≤ < f(x0) ∑ L.

If we set ± = c° x0, then the fact that f is increasing implies that

L° ≤ < f(x0) ∑ f(x) ∑ L

whenever 0 < c° x < ±. This proves the claim.
For the right-hand limit we can fashion a similar argument to show that

lim
x!c+

f(x) = L0,

where L0 = inf{f(x) : x > c}. A final consequence of this argument is that the
value of the function at c must satisfy

L ∑ f(c) ∑ L0.

If L = L0 then f is continuous at c, and if L < L0 then we have a jump
discontinuity. There are no other possibilities.

Exercise 4.6.5. Let c be a point of discontinuity for an increasing function f .
If we set

lim
x!c°

f(x) = Lc and lim
x!c+

f(x) = L0c,

then we know Lc < L0c. Because Q is dense in R, there exists a rational number
rc satisfying Lc < rc < L0c. It is also true that c1 < c2 implies rc1 < rc2 which
implies that the mapping ¡(c) = rc defined on the set of discontinuities of f
must be 1–1. Because the range of ¡ is a subset of Q, it follows that the set of
discontinuities of f is either countable or finite.

Exercise 4.6.6. For Dirichlet’s function we see R is closed.
For the modified Dirichlet function, we set An = (°1,°1/n] [ [1/n,1)

which is closed for each n 2 N. Then R\{0} =
S1

n=1 An is an Fæ set.
For Thomae’s function we observe that Q is the countable union of singleton

sets, and a singleton set is closed.
For the interval (0, 1] write (0, 1] =

S1
n=1[1/n, 1].
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Exercise 4.6.7. Before getting started on this proof, let’s observe that the
statement c 2 DÆ is equivalent to saying that for all ± > 0 there exist points
y, z 2 V±(c) satisfying |f(y)° f(z)| ∏ Æ.

To prove DÆ is closed we let c be a limit point of DÆ and argue that c 2 DÆ.
So let ± > 0 be arbitrary. Because c is a limit point, there must exist x0 2 DÆ

satisfying x0 2 V±/2(c). But this means that there exist points y, z 2 V±/2(x0)
where |f(y) ° f(z)| ∏ Æ. Because V±/2(x0) µ V±(c), the points y, z provide us
with exactly what we need to conclude that c 2 DÆ.

(An alternate proof showing Dc
Æ is open is also a productive way to attack

this problem.)

Exercise 4.6.8. Assume Æ1 < Æ2 and let c 2 DÆ2 . Given ± > 0, the statement
c 2 DÆ2 implies that there exist y, z 2 V±(c) satisfying

|f(y)° f(z)| ∏ Æ2 > Æ1.

Thus c 2 DÆ1 as well.

Exercise 4.6.9. Assume f is continuous at x. Then given our fixed Æ > 0, we
know there exists a ± > 0 such that

|f(y)° f(x)| <
Æ

2
provided y 2 V±(x).

Thus, if y, z 2 V±(x) we then get

|f(y)° f(z)| ∑ |f(y)° f(x)| + |f(x)° f(z)|

<
Æ

2
+

Æ

2
= Æ,

and we conclude that f is Æ-continuous at x. The contrapositive of this conclu-
sion is that if f is not Æ-continuous at x, then it certainly cannot be continuous
at x. This is precisely what it means to say DÆ µ Df .

Exercise 4.6.10. Assume f is not continuous at x. Negating the ≤–± definition
of continuity we get that there exists an ≤0 > 0 with the property that for all
± > 0 there exists a point y 2 V±(x) where |f(y) ° f(x)| ∏ ≤0. Noting simply
that both x, y 2 V±(x), we conclude that f is not Æ-continuous for Æ = ≤0 (or
anything smaller.)

To prove Df =
S1

n=1 D1/n we argue for inclusion each way. If x 2 Df , then
we have just shown that x 2 D≤0 for some ≤0 > 0. Choosing n0 2 N small enough
so that 1/n0 ∑ ≤0, it follows that x 2 D1/n0 . This proves Df µ

S1
n=1 D1/n.

For the reverse inclusion we observe that Exercise 4.6.9 implies D1/n µ Df

for all n 2 N, and the result follows.
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The Derivative

5.1 Discussion: Are Derivatives Continuous?

5.2 Derivatives and the Intermediate
Value Property

Exercise 5.2.1. (i) First we rewrite the difference quotient as

(f + g)(x)° (f + g)(c)
x° c

=
f(x) + g(x)° f(c)° g(c)

x° c

=
f(x)° f(c)

x° c
+

g(x)° g(c)
x° c

.

The fact that f and g are differentiable at c together with the functional-limit
version of the Algebraic Limit Theorem (Theorem 4.2.4) justifies the conclusion

(f + g)0(c) = f 0(c) + g0(c).

(ii) This time we rewrite the difference quotient as

(kf)(x)° (kf)(c)
x° c

=
kf(x)° kf(c)

x° c

= k

µ
f(x)° f(c)

x° c

∂

Because f is differentiable at c, it follows from the functional-limit version of
the Algebraic Limit Theorem that

(kf)0(c) = kf 0(c).

Exercise 5.2.2. (a) For c 6= 0, the derivative of f at c is given by the formula

f 0(c) = lim
x!c

1/x° 1/c

x° c
= lim

x!c

(c° x)/xc

x° c
= lim

x!c

°1
xc

=
°1
c2

.

75
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(b) To avoid confusion with the notation in Theorem 5.2.4, let’s set h(x) =
1/x. By the Chain Rule,

µ
1

g(x)

∂0
= (h ± g)0(x) =

°g0(x)
[g(x)]2

.

Then using the product rule (Theorem 5.2.4 (iii)), we have
µ

f

g

∂0
(x) = [f(x)(h ± g)(x)]0 = f 0(x)(h ± g)(x) + f(x)(h ± g)0(x)

=
f 0(x)
g(x)

° f(x)g0(x)
[g(x)]2

=
g(x)f 0(x)° f(x)g0(x)

[g(x)]2

provided that g(c) 6= 0.
(c) Rewrite the difference quotient as

(f/g)(x)° (f/g)(c)
x° c

=
1

x° c

µ
f(x)
g(x)

° f(c)
g(c)

∂

=
1

x° c

µ
f(x)g(c)° f(c)g(x)

g(x)g(c)

∂

=
1

x° c

µ
f(x)g(c)° f(c)g(c) + f(c)g(c)° f(c)g(x)

g(x)g(c)

∂

=
1

g(x)g(c)

µ
g(c)

f(x)° f(c)
x° c

° f(c)
g(x)° g(c)

x° c

∂
.

Applying the Algebraic Limit Theorem for functional limits gives
µ

f

g

∂0
(c) =

1
[g(c)]2

(g(c)f 0(c)° f(c)g0(c)) ,

which gives the result.

Exercise 5.2.3. Consider

h(x) =
Ω

x2 if x 2 Q
0 if x /2 Q.

For points different from zero this function is not continuous and thus not dif-
ferentiable either. At zero, we have

h0(0) = lim
x!0

h(x)
x

.

Given ≤ > 0, choose ± = ≤. Because |h(x)/x| ∑ x, we see that |h(x)/x| < ≤
whenever 0 < |x| < ± and it follows that h is differentiable at zero with h0(0) = 0.
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Exercise 5.2.4. (a) From the left side of zero we have limx!0° f(x) = 0, so
we require that limx!0+ xa = 0 as well. This occurs if and only if a > 0.

(b) From (a) we know fa(0) = 0. For f 0a(0) we again begin by considering
the limit from the left and see that

lim
x!0°

fa(x)° fa(0)
x° 0

= lim
x!0°

0
x

= 0.

Thus, we require that

lim
x!0+

xa

x
= lim

x!0+
xa°1 = 0

as well. This occurs if and only if a > 1. The derivative formula (xa)0 = axa°1

(which we have not justified for a /2 N) shows that f 0a(x) is continuous in this
case.

(c) Because we continue to get zero on the left, for the second derivative to
exist we must have

lim
x!0+

(xa)0 ° 0
x° 0

= lim
x!0+

axa°1

x
= lim

x!0+
axa°2 = 0.

This occurs whenever a > 2.

Exercise 5.2.5. (a) With regards to the existence of g0a(x) at x = 0 we see that

g0a(0) = lim
x!0

xa sin(1/x)
x

= lim
x!0

xa°1 sin(1/x) = 0,

as long as a > 1. For x 6= 0, g0a(x) always exists and using the standard rules of
differentiation we get

g0a(x) = °xa°2 cos(1/x) + axa°1 sin(1/x).

Setting 1 < a < 2 makes xa°2 cos(1/x) unbounded near zero and yields the
desired function.

(b) For g0a(x) to be continuous we need

lim
x!0

g0a(x) = g0a(0) = 0

and, looking at the above expression for g0a(x), we see that this happens as long
as a > 2. For the second derivative g00a(0) we consider the limit

g00a(0) = lim
x!0

g0a(x)
x

= lim
x!0

µ
1
x

∂ °
°xa°2 cos(1/x) + axa°1 sin(1/x)

¢

= lim
x!0

°
°xa°3 cos(1/x) + axa°2 sin(1/x)

¢

which exists if and only if a > 3. Thus setting 2 < a ∑ 3 gives the desired
function.
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(c) From (b) we see that choosing a > 3 makes g0a differentiable at zero.
Away from zero we get

g00a(x) = °xa°4 sin(1/x)° (2a° 2)xa°3 cos(1/x) + a(a° 1)xa°2 sin(1/x),

which fails to be continuous at zero when a ∑ 4. Setting 3 < a ∑ 4 gives the
desired function.

Exercise 5.2.6. (a) First let’s prove that there exists x 2 (a, b) where g(x) <
g(a). Let (xn) be a sequence in (a, b) satisfying (xn) ! a. Then we have

g0(a) = lim
n!1

g(xn)° g(a)
xn ° a

< 0.

The denominator is always positive. If the numerator were always positive then
the Order Limit Theorem would imply g0(a) ∏ 0. Because we know this is not
the case, we may conclude that the numerator is eventually negative and thus
g(x) < g(a) for some x near a.

The proof that there exists y 2 (a, b) where g(y) < g(b) is similar.
(b) We must show that g0(c) = 0 for some c 2 (a, b). Because g is dif-

ferentiable on the compact set [a, b] it must also be continuous here, and so
by Extreme Value Theorem (Theorem 4.4.3), g attains a minimum at a point
c 2 [a, b]. From our work in (a) we know that the minimum of g is neither
g(a) nor g(b), and therefore c 2 (a, b). Finally, the Interior Extremum Theorem
(Theorem 5.2.6) allows us to conclude g0(c) = 0.

To prove the general result stated in the theorem we just observe that g0(c) =
0 is equivalent to the conclusion f 0(c) = Æ.

Exercise 5.2.7. (a) A function f : A ! R is uniformly differentiable on A
with derivative f 0(t) if for every ≤ > 0 there exists a ± > 0 such that |x° t| < ±
implies ØØØØ

f(x)° f(t)
x° t

° f 0(t)
ØØØØ < ≤.

(b) Consider f(x) = x2, which has derivative f 0(x) = 2x, and observe
ØØØØ
x2 ° t2

x° t
° 2t

ØØØØ =
ØØØØ
(x° t)(x + t)

x° t
° 2t

ØØØØ = |x° t|.

Given ≤ > 0, we can choose ± = ≤. Then |x° t| < ± = ≤ implies
ØØØØ
x2 ° t2

x° t
° 2t

ØØØØ = |x° t| < ≤

as desired.
(c) Not necessarily. Consider g2(x) in Section 5.1. It is differentiable on

[0, 1], but not uniformly differentiable on [0.1]. Given a fixed ≤ > 0, the value of
the response ± gets progressively smaller as we try to compute g02(t) at points
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closer and closer to zero. To see this explicitly, set tn = 1/(2nº) and xn = 0.
Then observe that |xn ° tn|! 0 while

ØØØØ
g2(xn)° g2(tn)

xn ° tn
° g02(tn)

ØØØØ = |tn sin(1/tn) + cos(1/tn)° 2tn sin(1/tn)|

= |cos(1/tn)° tn sin(1/tn)| = 1

for all n 2 N. In the spirit of the criterion for non-uniform continuity described
in Theorem 4.4.6, we see that g2(x) is not uniformly differentiable.

Exercise 5.2.8. (a) True. Although the derivative function need not be con-
tinuous, it does satisfy the intermediate value property. Thus, if the derivative
of a function takes on two distinct values then it attains every value–rational
and irrational–in between these two.

(b) False. Consider

f(x) =
Ω

x/2 + x2 sin(1/x) if x 6= 0
0 if x = 0.

At zero we can show that f 0(0) = 1/2. Away from zero we get

f 0(x) = 1/2° cos(1/x) + 2x sin(1/x),

which takes on negative values in every ±-neighborhood of zero.
(c)True. Assume, for contradiction, that L 6= f 0(0) and choose ≤0 > 0 so

that ≤0 < |f 0(0) ° L|. From the hypothesis that limx!0 f 0(x) = L we know
there exists a ± > 0 such that 0 < |x| < ± implies that |f 0(x) ° L| < ≤0. Now
our choice of ≤0 guarantees that there exists a point Æ between f 0(0) and L but
outside V≤0(L). However, by Darboux’s Theorem, there exists a point x 2 V±(0)
such that f 0(x) = Æ. This suggests that Æ 2 V≤0(L), which is a contradiction.
Therefore L = f 0(0).

(d) True. More to come...

5.3 The Mean Value Theorem

Exercise 5.3.1. Because f 0 is continuous on the compact set [a, b], we know
that it is bounded. Thus, there exists M > 0 such that |f 0(x)| ∑ M for all
x 2 [a, b].

Now, given x < y in the interval [a, b], the Mean Value Theorem says that
there exists a point c 2 (a, b) for which

f(x)° f(y)
x° y

= f 0(c).

Because |f 0(c)| ∑ M (regardless of the value of c), it follows that
ØØØØ
f(x)° f(y)

x° y

ØØØØ ∑ M.
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Exercise 5.3.2. Because f 0 is continuous on a compact set—let’s call it I—the
Extreme Value Theorem can be used to conclude that f 0(c) attains a maximum
and a minimum value on I. Thinking in terms of absolute value, this means
that there exists a point x0 2 I where |f 0(x)| ∑ |f 0(x0)| for all x 2 I. Setting
s = |f 0(x0)|, we see from our hypothesis that 0 ∑ s < 1.

Now, given x < y in I, the Mean Value Theorem tells us that there exists a
point c 2 I where

ØØØØ
f(x)° f(y)

x° y

ØØØØ = |f 0(c)| ∑ |f 0(x0)| = s.

It follows that
|f(x)° f(y)| ∑ s|x° y|,

and f is contractive on I.

Exercise 5.3.3. (a) Set g(x) = x° h(x). Because g(1) = °1 and g(3) = 1, by
the Intermediate Value Theorem (Theorem 4.5.1), there must exist a d 2 [0, 3]
where g(d) = 0. In terms of h, we note that this implies h(d) = d, as desired.

(b) Applying the Mean Value Theorem to h on the interval [0, 3] implies that
there exists a point c 2 (0, 3) where

h0(c) =
h(3)° h(0)

3° 0
=

2° 1
3

=
1
3
.

(c) Applying Rolle’s Theorem to h on the interval [1, 3], we see that there
must exist a point a0 2 (1, 3) where h0(a) = 0. In (b), we found a point where
h0(c) = 1/3. Because 1/4 falls between 0 and 1/3, we can appeal to Darboux’s
Theorem to assert that h0(x) = 1/4 at some point between c and a.

Exercise 5.3.4. (a) Let

h(x) = [f(b)° f(a)]g(x)° [g(b)° g(a)]f(x).

From the many “algebraic limit” theorems we know that h is continuous on [a, b]
and differentiable on (a, b). We also have h(a) = g(a)f(b) ° f(a)g(b) = h(b).
Thus by Rolle’s Theorem, there exists a c 2 (a, b) where h0(c) = 0. Because

h0(x) = [f(b)° f(a)]g0(x)° [g(b)° g(a)]f 0(x),

we see that
[f(b)° f(a)]g0(c)° [g(b)° g(a)]f 0(c) = 0,

and the result follows.
(b) Set x = g(t) and y = f(t) and consider the parametric curve in the x–y

plane drawn as t ranges over the interval [a, b]. The quantity (f(b)°f(a))/(g(b)°
g(a)) corresponds to the slope of the segment joining the endpoints of this curve,
while f 0(c)/g0(c) gives the slope of the line tangent to the curve at the point
(g(c), f(c)). In this context, the Generalized Mean Value Theorem says that if
g0 is never zero, then at some point along the parametric curve, the tangent line
must be parallel to the segment joining the two endpoints.
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Exercise 5.3.5. Assume, for contradiction, that f has two distinct fixed points
x1 and x2. Noting that f(x1) = x1 and f(x2) = x2, the Mean Value Theorem
implies that there exists c where

f 0(c) =
f(x1)° f(x2)

x1 ° x2
=

x1 ° x2

x1 ° x2
= 1.

Because this is impossible, we conclude that f can have at most one fixed point.

Exercise 5.3.6. ()) First let’s show that if g(d) = d for some d 2 (0, 1), then
g0(1) > 1. Applying the Mean Value Theorem to g on [d, 1], we can see that

g0(c) =
g(1)° g(d)

1° d
=

1° d

1° d
= 1

for some c 2 (d, 1). Now we apply the Mean Value Theorem to g0 on [c, 1] to
assert that

g00(a) =
g0(1)° g0(c)

1° c

for some a 2 (c, 1). Because g00(a) > 0, the numerator in the previous expression
must be strictly positive and it follows that g0(1) > g0(c) = 1.

(() Now let’s show that if g0(1) > 1, then g(d) = d for some d 2 (0, 1).
As we often do in arguments about fixed points, define the auxiliary function
f(x) = g(x) ° x and observe that f(0) = g(0) > 0. If we could find a point
x 2 (0, 1) where f(x) < 0, then we could use the Intermediate Value Theorem
to conclude f(d) = 0 for some d.

At x = 1 we have f(1) = g(1) ° 1 = 0 and f 0(1) = g0(1) ° 1 > 0. If
(xn) µ (0, 1) satisfies (xn) ! 1, then

f 0(1) = lim
n!1

f(1)° f(xn)
1° xn

= lim
n!1

°f(xn)
1° xn

> 0.

If f(xn) ∏ 0 for all n 2 N, then the Order Limit Theorem would imply f 0(1) ∑ 0.
Because this is not the case, it follows that f(xn) < 0 must be true for some
values of n. Because f(0) > 0, we know that there must exist a point d where
f(d) = 0. Finally, this implies g(d) = d.

Exercise 5.3.7. (a) ()) If f is increasing on (a, b), then

f(x)° f(c)
x° c

∏ 0

for every x, c 2 (a, b). It follows from the Order Limit Theorem (or an analogous
version for functional limits) that

f 0(c) = lim
x!c

f(x)° f(c)
x° c

∏ 0

for all c 2 (a, b).
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(() For the other direction we use the Mean Value Theorem. Here we are
assuming f 0(x) ∏ 0 on (a, b) and we are asked to prove that f is increasing.
Given x < y, it follows from MVT that

f 0(c) =
f(y)° f(x)

y ° x

for some point c 2 (a, b). Because f 0(c) ∏ 0 and y ° x > 0, we conclude that
f(x) ∑ f(y) and f is increasing.

(b) First observe that

g0(0) = lim
x!0

x/2 + x2 sin(1/x)
x

= lim
x!0

1
2

+ x sin(1/x) =
1
2
.

Thus the derivative is strictly positive at zero. Away from zero, however, we
get

g0(x) = 1/2° cos(1/x) + 2x sin(1/x).
If we set xn = 1/(2nº), then g0(xn) < 0 for all n 2 N. Because (xn) ! 0,
there is no neighborhood around zero in which g0(x) ∏ 0, and so by part (a),
the function is not increasing in any neighborhood of zero.

The moral here is that knowing that the derivative is positive at a point does
not imply that the function is increasing near this point.

Exercise 5.3.8. Let’s consider the case where L = g0(c) > 0. Set ≤0 = L.
Because

L = lim
x!c

g(x)° g(c)
x° c

,

there exists a neighborhood V±(c) with the property that

g(x)° g(c)
x° c

2 V≤0(L)

whenever x 2 V±(c). But notice that V≤0(L) contains only positive numbers.
This means that if x > c then g(x) > g(c), and if x < c then g(x) < g(c).

Exercise 5.3.7 reminds us that a positive derivative at a single point does
not imply that the function is increasing in a neighborhood of this point. What
this exercise shows is that then we can say something weaker. If g0(c) > 0 then
it does follow that x > c implies g(x) > g(c) and x < c implies g(x) < g(c).
Very roughly speaking, we might say that “g is increasing at the point c.”

Exercise 5.3.9. Let M > 0 be arbitrary. We need to produce a ± such that
0 < |x°c| < ± implies that |f(x)/g(x)| ∏ M . Choose ±1 so that 0 < |x°c| < ±1

implies |f(x) ° L| < |L|/2. This guarantees that f(x) is not too close to zero,
and in particular we have |f(x)| ∏ |L|/2. Because limx!c g(x) = 0, we can
choose ±2 such that |g(x)| < |L|/2M provided 0 < |x° c| < ±2.

Let ± = min{±1, ±2}. Then we have
ØØØØ
f(x)
g(x)

ØØØØ ∏
|L|/2

|L|/2M
= M

whenever 0 < |x° c| < ±, and the result is proved.
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Exercise 5.3.10. The fact that f is bounded means that there exists M > 0
satisfying |f(x)| ∑ M for all x in the domain.

Let ≤ > 0. Because limx!c g(x) = 1, there exists a ± > 0 such that
0 < |x° c| < ± implies |g(x)| ∏ M/≤. It then follows that

ØØØØ
f(x)
g(x)

ØØØØ <
M

M/≤
= ≤,

provided 0 < |x° c| < ±, and the proof is complete.

Exercise 5.3.11. Let ≤ > 0. Because L = limx!a f 0(x)/g0(x), we know that
there exists a ± > 0 such that

ØØØØ
f 0(t)
g0(t)

° L

ØØØØ < ≤ provided 0 < |t° a| < ±.

This ± is going to suffice to prove L = limx!a f(x)/g(x) as well. To see why,
pick x 2 V±(a) with a < x (the case x < a is similar) and apply GMVT to f
and g on the interval [a, x]. In this case we get a point c 2 (a, x) where

f 0(c)
g0(c)

=
f(x)° f(a)
g(x)° g(a)

=
f(x)
g(x)

.

Because c must satisfy 0 < |c° a| < ±, it follows that
ØØØØ
f(x)
g(x)

° L

ØØØØ =
ØØØØ
f 0(c)
g0(c)

° L

ØØØØ < ≤

whenever 0 < |x° a| < ±. This completes the proof.

Exercise 5.3.12. For all x 6= a we can write

f(x)
g(x)

=
f(x)° f(a)
g(x)° g(a)

=
(f(x)° f(a))/(x° a)
(g(x)° g(a))/(x° a)

.

Because f and g are differentiable at a, we may use the Algebraic Limit Theorem
to conclude

lim
x!a

f(x)
g(x)

=
f 0(a)
g0(a)

.

Finally, the continuity of f 0 and g0 at a implies

L = lim
x!a

f 0(x)
g0(x)

=
f 0(a)
g0(a)

,

and the result follows.
(Note that this argument also assumes g0(a) 6= 0.)

Exercise 5.3.13. Because f and g are continuous on the interval containing
a, we can conclude that f(a) = limx!a f(x) = 0 and g(a) = limx!a g(x) = 0.
Now we have the same hypothesis as Theorem 5.3.6, and the rest of the proof
will be the same.
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5.4 A Continuous Nowhere-Differentiable
Function

Exercise 5.4.1. The graph of h1(x) is similar to the sawtooth function h(x)
except that the maximum height is now 1/2 and the length of the period is 1.
For each n, the maximum height of hn(x) is 1/2n and the period is 1/2n°1.
Note that the slopes of the segments that make up hn(x) continue to be ±1 for
all values of n.

Exercise 5.4.2. The key observation is that h(x) ∑ 1 so that for every n we
have

0 ∑ 1
2n

hn(2nx) ∑ 1
2n

.

Because the geometric series
P1

n=0 1/2n converges, the Comparison Test implies
that our series for g(x) converges for every choice of x. Because all the terms
are positive, the convergence is absolute.

Exercise 5.4.3. For each n, the linear function l(x) = 2nx is certainly con-
tinuous. Then the Composition of Continuous Functions Theorem (Theorem
4.3.9) implies h(2nx) is continuous. The Algebraic Continuity Theorem (Theo-
rem 4.3.4) part (i) implies 1

2n h(2nx) is continuous. Finally, part (ii) of the same
theorem says

gm(x) = h(x) +
1
2
h(2x) + · · · + 1

2m
h(2mx)

is continuous as long as the sum is finite.

Exercise 5.4.4. For g0(0) to exist, the sequential criterion for limits requires
that

g0(0) = lim
m!1

g(xm)° g(0)
xm ° 0

exist for any sequence (xm) ! 0. Fix m 2 N and consider xm = 1/2m. Then

g(xm) =
1X

n=0

1
2n

h(2n°m).

If n > m then h(2n°m) = 0 because the sawtooth function is zero at any
multiple of 2. If n ∑ m then we are on the part of the graph where h(x) = x
and we get

1
2n

h(2n°m) =
1
2n

2n°m =
1

2m
.

It follows that g(xm) can be represented with the finite sum

g(xm) =
mX

n=0

1
2m

.
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Turning our attention to the difference quotient, we get

g(xm)° g(0)
xm ° 0

=
Pm

n=0 1/2m

1/2m
=

mX

n=0

1 = m + 1.

Because this quantity increases without bound, it is impossible for limm!1 g(xm)/xm

to exist. It follows that g is not differentiable at zero.

Exercise 5.4.5. (a) To show that g0(1) does not exist we continue to let xm =
1/2m and consider

g(1 + xm) =
1X

n=0

1
2n

h(2n(1 + 1/2m)) =
1X

n=0

1
2n

h(2n + 2n°m).

If n > m then, as before,

1
2n

h(2n + 2n°m) = 0.

If 1 ∑ n ∑ m, then

1
2n

h(2n + 2n°m) =
1
2n

h(2n°m) =
1
2n

2n°m =
1

2m
.

If n = 0, then

1
2n

h(2n + 2n°m) = h(1 + 1/2m) = h(1)° 1/2m = g(1)° 1/2m.

If we write down the difference quotient for the interval [1, xm] we get

g(1 + xm)° g(1)
xm

=
Pm

n=0 1/2nh(2n + 2n°m)° g(1)
1/2m

=
[
Pm

n=1 1/2m] + (g(1)° 1/2m)° g(1)
1/2m

= m° 1.

Because this is (again) unbounded as m ! 1, it must be that g0(1) does not
exist.

(b) Now let x = p/2k and consider

g(x + xm) =
1X

n=0

1
2n

h(2n(x + 1/2m)) =
1X

n=0

1
2n

h(p2n°k + 2n°m).

Because we are ultimately interested in what happens as m !1, let’s compute
g(x + xm) assuming m > k.

If n > m then because we are at a multiple of 2 on the graph of h(x) it
follows that

1
2n

h(p2n°k + 2n°m) = 0.
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If k < n ∑ m, then the periodicity of h allows us to write

1
2n

h(p2n°k + 2n°m) =
1
2n

h(2n°m) =
1
2n

2n°m =
1

2m
.

Finally, if 0 ∑ n ∑ k, then 2nx and 2n°m fall on the same linear segment of
h(x) and we get

1
2n

h(p2n°k + 2n°m) =
1
2n

£
h(p2n°k) ± 2n°m

§
=

1
2n

h(2nx) ± 1/2m,

where the choice of + or ° depends on the value of p. Observing that g(x) =Pk
n=0(1/2n)h(2nx), it follows that

g(x + xm)° g(x)
xm

=
Pm

n=0 1/2nh(p2n°k + 2n°m)° g(x)
1/2m

=

£Pm
n=k+1 1/2m

§
+

hPk
n=0(1/2n)h(2nx) ± 1/2m

i
° g(x)

1/2m

= (m° k ° 1) +
kX

n=0

±1 ∏ m° 2k ° 1.

Because this is unbounded as m !1, it must be that g0(x) does not exist for
any dyadic rational point on the graph. The fact that we get 1 from the right
for all of these limits is reflected in the graph of g by the downward cusps that
appear at every dyadic rational point.

Exercise 5.4.6. (i) Because each hi is differentiable at all nondyadic points,
Theorem 5.2.4 implies that the finite sum gm is differentiable at nondyadic
points as well. This same theorem also allows us to say

|g0m+1(x)° g0m(x)| = |h0m+1(x)|

and h0m+1(x) = ±1 because it is a piecewise linear function consisting of seg-
ments of slope ± 1.

(b) The partial sum gm is a piecewise linear function and g0m(x) is the slope
of the piece containing the nondyadic point x 2 [xm, ym]. The first important
observation is that because hn(xm) = hn(ym) = 0 for all n > m, it follows
that gm(xm) = g(xm) and gm(ym) = g(ym). Focusing on the graphs over the
interval [xm, ym], what we see is that gm is the line segment connecting the
points (xm, g(xm)) and (ym, g(ym) and thus

g0m(x) =
g(ym)° g(xm)

ym ° xm
.

The other important observation is that because hn(x) ∏ 0 for all n, we get that
g(x) > gm(x). Put another way, the segment of gm over the interval [xm, ym]
lies under the graph of g (and is equal to g at the endpoints). It follows that

g(ym)° g(x)
ym ° x

<
g(ym)° g(xm)

ym ° xm
<

g(x)° g(xm)
x° xm

,
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and the result follows.
(c) If g0(x) did exist, then the sequential criterion for functional limits would

imply that

g0(x) = lim
m!1

g(xm)° g(x)
xm ° x

= lim
m!1

g(ym)° g(x)
ym ° x

.

Then we could use a squeeze theorem argument to conclude that

g0(x) = lim
m!1

g0m(x).

The problem is that limm!1 g0m(x) does not exist. From our work in (a) we see
that g0m(x) is not a Cauchy sequence and so it cannot converge. We conclude
that g0(x) does not exist.

Exercise 5.4.7. If we set g(x) =
P1

n=0(1/2n)h(3nx), then we have

|g0m+1(x)° g0m(x)| = |h0m+1(x)| = (3/2)m+1.

Because this does not tend to zero, the sequence g0m(x) again fails to be a Cauchy
sequence and we can conclude that g0(x) does not exist. To set up a parallel
with Hardy’s result, set a = 1/2 and b = 3 and notice that ab = 3/2 ∏ 1.

What happens when ab < 1? Letting a = 1/3 and b = 2 corresponds to the
function g(x) =

P1
n=0(1/3n)h(2nx). In this case we have

|g0m+1(x)° g0m(x)| = |h0m+1(x)| = (2/3)m+1,

which does tend to zero as m ! 1. Thus, our argument no longer works and,
in fact, it turns out that g(x) is differentiable at every nondyadic point in its
domain (see Theorem 6.4.3.)
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Chapter 6

Sequences and Series of
Functions

6.1 Discussion: Branching Processes

6.2 Uniform Convergence of a Sequence
of Functions

Exercise 6.2.1. (a) By dividing the numerator and denominator by n, we can
compute

lim
n!1

fn(x) = lim
n!1

nx

1 + nx2
= lim

n!1

x

1/n + x2
=

1
x

.

Therefore, the pointwise limit of fn(x) is f(x) = 1/x.
(b) The convergence of (fn(x)) is not uniform on (0,1). To see this write

|fn(x)° f(x)| =
ØØØØ

nx

1 + nx2
° 1

x

ØØØØ =
1

x + nx3
.

In order to make |fn(x)° f(x)| < ≤ we must choose

N ∏ 1° ≤x

≤x3
.

For a fixed ≤ > 0, the expression (1° ≤x)/(≤x3) grows without bound as x tends
to zero, and thus there is no way to pick a value of N that will work for every
value of x in (0,1).

(c) The convergence is not uniform on (0, 1) either. As seen in (b), the
problem arises when x tends to zero and this is equally relevant over the domain
(0, 1).

(d) The convergence is uniform on the interval (1,1). If x > 1 then it
follows that

|fn(x)° f(x)| =
1

x + nx3
∑ 1

1 + n
.

89
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Given ≤ > 0, choose N large enough so that 1/(1 + n) < ≤ whenever n ∏ N . It
follows that |fn(x) ° f(x)| < ≤ for all n ∏ N and thus (fn) ! f uniformly on
(1,1).

Exercise 6.2.2. To compute the pointwise limit write

lim
n!1

gn(x) = lim
n!1

µ
x

2
+

1
2n

sin(nx)
∂

=
x

2
.

Setting g(x) = x/2, we see that

|gn(x)° g(x)| =
ØØØØ

1
2n

sin(nx)
ØØØØ ∑

1
2n

.

Given ≤ > 0, choose N > 1/(2≤) and observe that this is independent of x. Then
n ∏ N implies

|gn(x)° g(x)| ∑ 1
2n

< ≤ for all n ∏ N.

It follows that gn ! g uniformly on R, and thus on any subset of R as well.

Exercise 6.2.3. (a) The pointwise limit of (hn) on [0,1) is

h(x) = lim
n!1

x

1 + xn
=

8
<

:

x if 0 ∑ x < 1
1/2 if x = 1
0 if x > 1

(b) Theorem 6.2.6 tells us that if the convergence were uniform then h(x)
would be continuous. However, h(x) is not continuous at x = 1 and so the
convergence cannot be uniform on any domain containing this point. In fact,
the convergence is not uniform over any domain that has x = 1 as a limit point.

(c) Consider the set [2,1). If x ∏ 2 then

|hn(x)° h(x)| =
ØØØØ

x

1 + xn
° 0

ØØØØ <
x

xn
∑ 1

2n°1
.

Given ≤ > 0, pick N so that n ∏ N implies 1/2n°1 < ≤. Then |hn(x)°h(x)| < ≤
for all n ∏ N , and we conclude that hn ! h uniformly on [2,1).

Exercise 6.2.4. Taking the derivative we find

f 0n(x) =
1° x2n

(x2n + 1)2

which yields critical points ±1/
p

n. Using the standard techniques from calculus
we can determine that the maximum of f occurs at 1/

p
n and the minimum at

°1/
p

n. Because fn(1/
p

n) = |fn(°1/
p

n)| = 1/(2
p

n), we see that

|fn(x)| ∑ 1
2
p

n
for all x 2 R.

To show (fn) ! 0 uniformly on R, we let ≤ > 0 and choose N large enough
so that n ∏ N implies 1/(2

p
n) < ≤. It follows that |fn(x) ° 0| < ≤ whenever

n ∏ N , as desired.
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Exercise 6.2.5. (a) Taking the limit for each fixed value of x we find that fn(x)
converges pointwise to

f(x) =
Ω

1 if x 6= 0
0 if x = 0.

Each of the functions fn is continuous, but the limit function f is not. Therefore,
Theorem 6.2.6 tells us that the convergence cannot be uniform.

(b) We can imitate the construction in (a) but use an unbounded function
like 1/x2 in place of the constant function 1. Specifically, let

fn(x) =
Ω

1/x2 if |x| ∏ 1/n
n3|x| if |x| < 1/n

Then each fn is continuous and the pointwise limit is f(x) = lim fn(x) = 1/x2,
except at zero where we get a limit of f(0) = 0.

Exercise 6.2.6. ()) This is the easier of the two directions. Let ≤ > 0 be
arbitrary. Given that (fn) converges uniformly on A, our job is to produce an
N such that |fn(x)° fm(x)| < ≤ for all m,n ∏ N and x 2 A.

Because we are given that (fn) converges uniformly, we may let f(x) =
limn!1 fn(x). By the definition of uniform convergence, there exists an N
with the property that

|fn(x)° f(x)| <
≤

2
for all n ∏ N and x 2 A.

Now given m,n ∏ N , it follows that

|fn(x)° fm(x)| = |fn(x)° f(x) + f(x)° fm(x)|
∑ |fn(x)° f(x)| + |f(x)° fm(x)|

<
≤

2
+

≤

2
= ≤

for all x 2 A. This completes the proof in the forward direction.
(() In this direction we assume that, given ≤ > 0, there exists an N such

that |fn(x)° fm(x)| < ≤ for all m,n ∏ N and x 2 A. Our goal is to prove that
fn(x) converges uniformly.

To produce a candidate for the limit, notice that for each x 2 A our hypoth-
esis tells us that the sequence (fn(x)) is a Cauchy sequence. Because Cauchy
sequences converge, it makes sense to define the limit function

f(x) = lim
n!1

fn(x).

It is important to realize that, because we are applying the Cauchy Criterion
to sequences generated at each point x 2 A, all we have proved thus far is that
fn(x) ! f(x) pointwise on A.

Let ≤ > 0. Using our hypothesis again (in its full strength this time), we
know that there exists an N such that

°≤ < fn(x)° fm(x) < ≤ for all m, n ∏ N and x 2 A.
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The Algebraic Limit Theorem says that

lim
m!1

(fn(x)° fm(x)) = fn(x)° f(x),

and the Order Limit Theorem then implies

°≤ ∑ fn(x)° f(x) ∑ ≤ for all n ∏ N and x 2 A.

This is sufficient to conclude that fn ! f uniformly on A.

Exercise 6.2.7. This argument really amounts to adopting the proof of Theo-
rem 6.2.6 to this stronger set of assumptions.

Let ≤ > 0 be arbitrary. We need to show that there exists a ± > 0 such that
|x° y| < ± implies |f(x)° f(y)| < ≤ for all x, y 2 A. First choose N so that

|fN (x)° f(x)| <
≤

3
for all x 2 A.

Because fN is uniformly continuous on A, there exists a ± > 0 such that

|fN (x)° fN (y)| < ≤/3 whenever |x° y| < ±.

But this implies

|f(x)° f(y)| = |f(x)° fN (x) + fN (x)° fN (y) + fN (y)° f(y)|
∑ |f(x)° fN (x)| + |fN (x)° fN (y)| + |fN (y)° f(y)|

<
≤

3
+

≤

3
+

≤

3
= ≤

We conclude that f is uniformly continuous on A.

Exercise 6.2.8. (a) False. Consider Example 6.2.2 (ii).
(b) True. Let ≤ > 0 be arbitrary and assume |g(x)| ∑ M . We need to show

that there exists an N such that n ∏ N implies |fng° fg| < ≤. Because fn ! f
uniformly, we know there exists an N such that |fn ° f | < ≤/M for all n ∏ N .
It follows that

|fng ° fg| = |g||fn ° f |
∑ M |fn ° f |
< M(≤/M) = ≤

for all n ∏ N , as desired.
(c) True. Pick N such that

|fN (x)° f(x)| ∑ 1 for all x 2 A.

If |fN (x)| ∑ M for all x 2 A, then it follows that |f(x)| ∑ M + 1 on A, and
hence f is bounded.

(d) True. Let ≤ > 0 be arbitrary. Because fn ! f uniformly on A we can
pick N1 such that n ∏ N1 implies |fn ° f | < ≤ for all x 2 A. Similarly, because
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fn ! f uniformly on B we can pick N2 so that n ∏ N2 implies |fn ° f | < ≤ for
all x 2 B. Now let N = max{N1, N2}. Then n ∏ N implies |fn ° f | < ≤ for all
x 2 A [B.

(e) True. Let x < y be arbitrary points in the domain. We are given that
fn(x) ∑ fn(y) for all n. Because fn(x) ! f(x) and fn(y) ! f(y), we may use
the Order Limit Theorem to conclude f(x) ∑ f(y). This proves f is increasing.

(f) True. The proof in (e) does not require uniform convergence.

Exercise 6.2.9. Let ≤ > 0 be arbitrary. We need to show that there exists an
N 2 N such that when n ∏ N it follows that |fn/g ° f/g| < ≤. First write

ØØØØ
fn

g
° f

g

ØØØØ =
ØØØØ
1
g

ØØØØ |fn ° f |.

Because g is continuous and never zero, 1/g is also continuous on K. The fact
that K is compact implies 1/g is bounded, so let M > 0 satisfy |1/g| ∑ M.
Because (fn) ! f uniformly, we can pick N such that

|fn ° f | <
≤

M
whenever n ∏ N.

It follows that ØØØØ
fn

g
° f

g

ØØØØ < M
≤

M
= ≤

for all n ∏ N , as desired.

Exercise 6.2.10. Let ≤ > 0 be arbitrary. We need to show that there exists an
N such that n ∏ N implies |fn(x)° f(x)| < ≤.

Because f is uniformly continuous on all of R, we can pick ± so that

|f(x)° f(y)| < ≤ whenever |x° y| < ±.

Now choose N > 1/±. If n ∏ N then |(x + 1/n)° x| < ± and it follows that

|fn(x)° f(x)| = |f(x + 1/n)° f(x)| < ≤,

as desired.
This proposition fails if f is not uniformly continuous. Consider f(x) = x2

which is continuous but not uniformly continuous on all of R. In this case we
see

|fn(x)° f(x)| = |(x + 1/n)2 ° x2| = |2x/n + 1/n2|.

Although for each x 2 R, this expression tends to zero as n ! 1, we see that
larger values of x require larger values of n and the convergence is not uniform.

Exercise 6.2.11. Without the limit functions mentioned, it is a little smoother
to argue in terms of the Cauchy Criterion. Let ≤ > 0. Choose N1 so that

|fn ° fm| < ≤/2 for all n,m ∏ N1,
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and choose N2 so that

|gn ° gm| < ≤/2 for all m, n ∏ N2.

Letting N = max{N1, N2} we see that

|(fn + gn)° (fm + gm)| ∑ |fn ° fm| + |gn ° gm|

<
≤

2
+

≤

2
= ≤

for all m,n ∏ N . It follows from the Cauchy Criterion for Uniform Convergence
that (fn + gn) converges uniformly.

(b) Looking ahead to (c), we see that problems can arise when at least one
of the limit functions is unbounded. For example, let fn(x) = x + 1/n and
gn(x) = 1/n. Then fn(x) ! x uniformly on R and gn(x) ! 0 uniformly on R.
However fn(x)gn(x) = x/n + 1/n2. Although fngn ! 0 pointwise on R, the
convergence is not uniform.

(c) The first step is to write

|fngn ° fmgm| = |fngn ° fngm + fngm ° fmgm|
∑ |fn||gn ° gm| + |gm||fn ° fm|.

Given ≤ > 0, choose N1 so that

|fn ° fm| <
≤

2M
for all n,m ∏ N1.

Also, choose N2 so that

|gn ° gm| <
≤

2M
for all m,n ∏ N2.

Letting N = max{N1, N2} we see that

|fngn ° fmgm| ∑ |fn||gn ° gm| + |gm||fn ° fm|

< M
≤

2M
+ M

≤

2M
= ≤

whenever n ∏ N , as desired.

Exercise 6.2.12. (a) Setting gn = f ° fn we see that

(i) gn is continuous for each n 2 N ,

(ii) gn(x) is decreasing for all x 2 K, and

(iii) gn(x) ! 0 for all x 2 K.
(b) We first prove that each Kn is closed. To see this, assume (xm) is a

convergent sequence in Kn. If x = lim xm, then x 2 K (because K is closed)
and the fact that gn is continuous on all of K allows us to write gn(x) =
limm!1 gn(xm). Because gn(xm) ∏ ≤ for all m, it follows that the limit gn(x)
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Figure 6.1: Sketch of f1 for the Cantor function.

also satisfies gn(x) ∏ ≤. But this implies x 2 Kn and we see that Kn contains
its limit points and thus is closed.

Each Kn is also bounded because it is a subset of the bounded set K, and
it follows that Kn is compact.

The nested property Kn ∂ Kn+1 is a direct consequence of our assumption
that gn(x) ∏ gn+1(x) for all x 2 K, and so we are prepared to use Theorem
3.3.5. Assume, for contradiction, that Kn is nonempty for every n 2 N. Then
Theorem 3.3.5 implies there exists a point x satisfying x 2 Kn for every n. But
this means gn(x) ∏ ≤ for every n, contradicting our assumption that gn(x) ! 0.
We conclude that there must exist an N for which Kn = ; for all n ∏ N , and
this is equivalent to asserting that

|gn(x)| < ≤ for all n ∏ N and x 2 K.

We conclude that gn ! 0 uniformly, and thus fn ! f uniformly as well.

Exercise 6.2.13. (a) A sketch of f1 is given in Figure 6.1.
(b) Looking at f1 for the moment, notice that for every n 2 N we have

|f1(x) ° fn(x)| = 0 if x 2 [1/3, 2/3]. Off of this middle set, the fact that every
fn is increasing means we still have the estimate

|f1(x)° fn(x)| ∑ 1
2
.

In general, given m < n we see

|fm(x)° fn(x)| ∑ 1
2m

.

By the Cauchy Criterion for Uniform Convergence (Theorem 6.2.5), we conclude
that (fn) converges uniformly.

(c) The limit function f is continuous by Theorem 6.2.6. Exercise 6.2.8 (e)
gives an argument that f is increasing, and f(0) = 0 and f(1) = 1 follows
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quickly from the fact that 0 and 1 are fixed by every fn. Finally, if x is a
point in [0, 1]\C, then x must fall in the complement of some Cm. Notice that
f(x) = fm(x) and the recursive way that each fn is constructed means that in
fact

f(y) = fn(y) for all n ∏ m and y 2 [0, 1]\Cm.

It follows that f is constant on [0, 1]\Cm.

Exercise 6.2.14. (a) The sequence of real numbers fn(x1) is bounded by M .
The Bolzano–Weierstrass Theorem implies that there is a convergent subse-
quence.

(b) Focusing on the sequence f1,k(x2), we again use the Bolzano–Weierstrass
Theorem to conclude that there is a convergent subsequence which we write as
f2,k(x2).

(c) Keep in mind that if m0 > m then (fm0,k) is a subsequence of (fm,k).
The key idea is to let

fnk = fk,k = (f1,1, f2,2, f3,3, . . .).

The nested quality shows that (fk,k) is a subsequence of f1,k and thus fk,k(x1)
converges. But what about fk,k(xm) for an arbitrary xm 2 A? Well, after the
first m terms, we see that fk,k becomes a proper subsequence of fm,k (i.e., fk,k

is eventually in fm,k), and it follows that fk,k(xm) converges. This shows fk,k

converges pointwise on A.

Exercise 6.2.15. (a) If each fn is uniformly continuous, the choice of ± can be
made independently of x but ± will certainly depend on the function fn. It is
possible for different functions fn to require smaller ± responses, and it may be
that there is no single ± that will work simultaneously for all functions in the
collection fn as the definition of equicontinuity requires.

(b) For each n, the function gn is continuous on the compact set [0, 1] and
thus it is uniformly continuous. However, the sequence (gn) is not equicontin-
uous over the set [0, 1]. The trouble occurs near 1. To make the discussion
concrete, let’s take ≤ = 1/2 and set y = 1. The definition of equicontinuity
requires us to produce a ± > 0 with the property that

|xn ° 1| <
1
2

for all n 2 N and |x° 1| < ±.

But notice that ± cannot be chosen independently of n because no matter how
close to 1 we take our value of x, it will always be possible to find a large value
of n that makes |xn ° 1| ∏ 1/2.

Exercise 6.2.16. (a) Because the set of rational numbers in [0, 1] is countable,
Exercise 6.2.14 gives us exactly what we need to produce the sequence (gs).

(b) Consider a fixed ri from our finite set {r1, r2, . . . , rm}. Because (gs) con-
verges pointwise at every rational, the sequence (gs(ri)) is a Cauchy sequence.
Thus we can choose Ni such that

|gs(ri)° gt(ri)| <
≤

3
for all s, t ∏ Ni.
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Letting N = max{N1, N2, . . . , Nm} produces the desired N .
Note that if the set {r1, r2, . . . , rm} were infinite then N would be the max-

imum of an infinite set which is problematic to say the least.
(c) Given x 2 [0, 1], we know there exists a rational ri from our designated

set satisfying |ri ° x| < ±. It follows that

|gs(x)° gs(ri)| <
≤

3
for all s 2 N.

Using this fact (twice) and the result in (b) we see that s, t ∏ N implies

|gs(x)° gt(x)| = |gs(x)° gs(ri) + gs(ri)° gt(ri) + gt(ri)° gt(x)|
∑ |gs(x)° gs(ri)| + |gs(ri)° gt(ri)| + |gt(ri)° gt(x)|

<
≤

3
+

≤

3
+

≤

3
= ≤.

It follows that (gs) converges uniformly using the Cauchy criterion in Theorem
6.2.5.

6.3 Uniform Convergence and Differentiation

Exercise 6.3.1. (a) Write

|hn(x)° 0| =
ØØØØ
sin(nx)

n

ØØØØ ∑
1
n

.

Given ≤ > 0, choose N > 1/≤ which is independent of x. Then n ∏ N implies
|hn ° 0| < ≤ and we conclude hn ! 0 uniformly.

By contrast, the sequence of derivatives

h0n(x) = cos(nx)

diverges for all values of x except x = º/2 + kº.
(b) The sequence fn(x) = sin(nx)/

p
n has this property. The lesson here is

that uniform convergence of a sequence of functions does not, by itself, imply
anything particularly useful about the behavior of the sequence of derivatives.

Exercise 6.3.2. (a) First we deduce that g = lim gn = 0, and the convergence
is uniform on [0, 1]. To prove this, we must find an N such that n ∏ N implies
|xn/n° 0| < ≤. But notice that

|x
n

n
° 0| ∑ 1

n
for all x 2 [0, 1].

Given ≤ > 0, pick N > 1/≤. Then n ∏ N implies |xn| < ≤ for all x 2 [0, 1], as
desired.

Because g(x) = 0 for all x 2 [0, 1] it is differentiable and, furthermore,
g0(0) = 0.
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(b) Writing

g0n(x) =
nxn°1

n
= xn°1,

we see that the sequence (g0n) converges pointwise on [0, 1], to

h(x) = lim
n!1

g0n(x) =
Ω

0 if x 6= 1
1 if x = 1.

The convergence is not uniform over [0, 1], and in fact it is not uniform over any
set that contains 1 as a limit point. Comparing h = lim g0n to g0 is illuminating.
Note in particular that h(1) 6= g(1), so that it is possible for the sequence of
derivatives to converge to the “wrong” value when the convergence of g0n is not
uniform. On the other hand, the convergence of g0n is uniform on sets of the
form [0, c] where c < 1, and this is reflected by the fact that h(x) = g(x) on
[0, 1).

Exercise 6.3.3. We have seen that fn ! 0 uniformly meaning that the limit
f = lim fn satisfies f 0(x) = 0 for all values of x.

Taking the derivative we get

f 0n(x) =
1° nx2

1 + 2nx2 + n2x4
.

If x 6= 0 then we can show lim f 0n(x) = 0 = f 0(x). However, for x = 0 we get
f 0n(0) = 1 for all n and thus f 0(0) 6= lim f 0n(1).

Exercise 6.3.4. (a) We have

g(x) = lim
n!1

gn(x) = lim
n!1

x

2
+

x2

2n
=

x

2
,

so g0(x) = 1/2.
(b) This time we compute g0n(x) first to get

g0n(x) =
1
2

+
x

n
,

and note that the pointwise limit of this sequence is 1/2. For x 2 [°M, M ] we
can write

|g0n(x)° 1/2| =
ØØØ
x

n

ØØØ ∑
M

n
.

Given ≤ > 0, choose N > M/≤, independent of x. Then n ∏ N implies |g0n(x)°
1/2| < ≤, and we conclude that g0n ! 1/2 uniformly on [°M, M ]. It follows
from Theorem 6.3.3 that g0(x) = 1/2.

(c) Taking the pointwise limit of fn(x) gives

f(x) = lim
n!1

fn(x) = lim
n!1

x2 + 1/n

2 + x/n
=

x2

2
.
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Thus, f 0(x) = x.
Computing the derivative sequence first we get

f 0n(x) =
4n2x + 3nx2 + 1
4n2 + 4nx + x2

,

so that
lim

n!1
f 0n(x) = lim

n!1

4x + 3x2/n + 1/n2

4 + 4x/n + x2/n2
= x.

Arguing for uniform convergence on intervals of the form [°M, M ] is less elegant
for this example but no harder really. For values of x satisfying |x| < M we
have

|f 0n(x)° x| =
ØØØØ
°nx2 ° x3 + 1
4n2 + 4nx + x2

ØØØØ ∑
nM2 + M3 + 1

4n2 ° 4nM
,

as long as n > M . Because this estimate does not depend on x and tends to
zero as n !1, it follows that f 0n(x) ! x uniformly on [°M, M ].

Exercise 6.3.5. Let x 2 [a, b] and assume, without loss of generality, that
x > x0. Applying the Mean Value Theorem to the function fn ° fm on the
interval [x0, x], we get that there exists a point Æ such that

(fn(x)° fm(x))° (fn(x0)° fm(x0)) = (f 0n(Æ)° f 0m(Æ))(b° a).

Let ≤ > 0. Because (f 0n) converges uniformly, the Cauchy Criterion asserts
that there exists an N1 such that

|f 0n(c)° f 0m(c)| <
≤

2(b° a)
for all n, m ∏ N and c 2 [a, b].

Our hypothesis states that (fn(x0)) converges so there exists an N2 such that

|fn(x0)° fm(x0)| <
≤

2
for all n,m ∏ N2.

Finally, let N = max{N1, N2}. Then if n,m ∏ N it follows that

|fn(x)° fm(x)| ∑ |(fn(x)° fm(x))° (fn(x0)° fm(x0))| + |fn(x0)° fm(x0)|
= |(f 0n(Æ)° f 0m(Æ))(b° a)| + |fn(x0)° fm(x0)|

<
≤

2(b° a)
(b° a) +

≤

2
= ≤.

Because our choice of N is independent of the point x, the Cauchy Criterion
implies that the sequence (fn) converges uniformly on [a, b].

6.4 Series of Functions

Exercise 6.4.1. Let ≤ > 0. By Theorem 6.4.4, there exists an N such that

|gm+1(x) + · · · + gn(x)| < ≤ whenever n > m ∏ N.



100 Chapter 6. Sequences and Series of Functions

Because this holds for all m ∏ N , we can set m = n° 1 to get that

|fn(x)| < ≤ whenever n > N .

This proves gn ! 0 uniformly.

Exercise 6.4.2. The key idea is to use the Cauchy criterion for convergence of
a series of real numbers given in Theorem 2.7.2. Let ≤ > 0 be arbitrary. BecauseP1

n=1 Mn converges, there exists an N such that n > m ∏ N implies

|Mm+1 + Mm+2 + · · · + Mn| < ≤.

Because

|fm+1(x) + fm+2(x) + · · · + fn(x)| ∑ Mm+1 + Mn+2 + · · · + Mn,

we can appeal to the Cauchy criterion for uniform convergence of series (Theo-
rem 6.4.4) to conclude that

P1
n=1 fn converges uniformly.

Exercise 6.4.3. (a) Because
ØØØØ
cos(2nx)

2n

ØØØØ ∑
1
2n

,

and we know
P1

n=1 1/2n converges, it follows by the Weierstrass M–Test thatP1
n=1 cos(2nx)/2n converges uniformly. Because each of the summands is con-

tinuous, the limit is as well according to Theorem 6.4.2.
(b) Again, we have an infinite sum of continuous functions and we would

like to conclude that the limit is continuous. This will follow if we can argue the
convergence is uniform. On [°1, 1] we can make the estimate |xn/n2| ∑ 1/n2.
Because

P1
n=1 1/n2 converges, we may invoke the Weierstrass M–Test to assert

that
P1

n=1 xn/n2 converges uniformly on [°1, 1]. This completes the proof.

Exercise 6.4.4. The “sawtooth” function h(x) satisfies |h(x)| ∑ 1 for all x 2 R.
Thus ØØØØ

1
2n

h(2n)
ØØØØ ∑

1
2n

.

Because
P1

n=1 1/2n, the Weierstrass M–Test implies that our series for g(x) con-
verges uniformly. The fact that h(x) is continuous allow us to invoke Theorem
6.4.2 to conclude g is continuous.

Exercise 6.4.5. (a) The series for f certainly converges uniformly, but Theorem
6.4.3 requires us to look at the differentiated series

(1)
1X

n=1

cos(kx)
k2

.

For this series we can make the estimate
ØØØØ
cos(kx)

k2

ØØØØ ∑
1
k2

.
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Because
P1

n=1 1/k2 converges, the M–Test asserts that the series above in (1)
converges uniformly. Now Theorem 6.4.3 asserts that f is differentiable and

f 0(x) =
1X

n=1

cos(kx)
k2

.

Finally, we note that the uniform convergence also implies (via Theorem 6.4.2)
that f 0(x) is continuous because each of the summands is.

(b) To use Theorem 6.4.3 to determine whether f 0(x) is differentiable requires
that we differentiate the series for f 0 term-by-term and consider

1X

n=1

° sin(kx)
k

.

Unfortunately, the Weierstrass M–Test cannot be used here because
P1

n=1 1/k
diverges.

The differentiability of f 0 turns out to be a very deep question that has been
studied in depth by Riemann and Hardy, among others.

Exercise 6.4.6. First fix x0 2 [0, 1). Now choose c to satisfy x0 < c < 1 and
apply the M–Test on [0, c]. Over this interval we get the estimate |xn/n| ∑ cn/n.
Because

P1
n=1 cn/n converges, the M–Test implies the convergence is uniform

and thus f is continuous at x0 2 [0, c].

Exercise 6.4.7. (a) First observe that the summands are continuous functions
and satisfy ØØØØ

1
x2 + n2

ØØØØ ∑
1
n2

for all x 2 R.

Because
P1

n=1 1/n2 converges, the M–Test implies the convergence is uniform
and hence h(x) is continuous on R.

(b) To determine if h is differentiable we consider the differentiated series
1X

n=1

°2x

(x2 + n2)2
.

Restricting our attention to an interval [°M,M ], we get the estimate
ØØØØ
°2x

x2 + n2

ØØØØ ∑
2M

n2
,

and, as before, we note
P1

n=1 2M/n2 converges. This proves that the differenti-
ated series converges uniformly to h0(x) and that h0 is continuous on [°M, M ].
Because the interval [°M, M ] is arbitrary in this argument, we conclude that
h0 exists and is continuous on all of R.

Exercise 6.4.8. Using the M–Test and the fact that |un(x)| ∑ 1/2n, we can
show that

P1
n=1 un(x) converges uniformly to h(x). An argument like the one

in Exercise 6.2.8 (e) shows that h is increasing. Finally, notice that Theorem
6.2.6 is stated and proved in terms of an individual point c in the domain. In
our case, if we take c to be irrational, then we see that every un is continuous
at c and thus h is as well.
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6.5 Power Series

Exercise 6.5.1. (a) The series for g converges for all x 2 (°1, 1] and is contin-
uous over this interval. The series does not converge when x = °1 and Theorem
6.5.1 implies that it then does not converge for any values of x satisfying |x| > 1.

(b) Theorem 6.5.6 implies g is differentiable on (°1, 1) with

g0(x) = 1° x + x2 ° x3 + · · · .

Notice that our formula for g0(x) no longer converges when x = 1 (although the
function g is technically differentiable at this point.)

Exercise 6.5.2. (a)
P1

n=1 xn/n2

(b)
P1

n=1 xn/n
(c)

P1
n=1(°1)nx2n/n

(d) No. If the series converges absolutely at x = 1, then
P

|an| converges,
it follows that the series converges absolutely at x = °1 as well.

Exercise 6.5.3. The set of convergent points for a power series must be R,
{0} or an interval. In the case of an interval, we have seen that the convergence
is absolute in the interior of this interval. Thus, the two endpoints are the only
candidates for conditional convergence.

Exercise 6.5.4. (a) Let x 2 (°R, R) be arbitrary. We want to prove that the
power series is continuous at x. To do this, choose c > 0 satisfying 0 < |x| <
c < R, and consider the compact set [°c, c] contained in (°R, R). Absolute
convergence of the series at x = c implies that we get uniform convergence over
the interval [°c, c]. Because the summands in a power series are continuous, we
may conclude that the series represents a continuous function on [°c, c], and
hence is continuous at x.

(b) The content of Abel’s Theorem is that convergence at an endpoint x = R
implies uniform convergence over the interval [0, R]. Once we have established
uniform convergence, continuity follows (once again) from Theorem 6.4.2 and
the observation that the summands are all continuous.

Exercise 6.5.5. Set Mn = |anxn
0 | and note that absolute convergence at x0

implies
1X

n=0

|anxn
0 | =

1X

n=0

Mn

converges. If x 2 [°c, c] then we get the estimate

|anxn| ∑ |anxn
0 | = Mn,

and the Weierstrass M–Test implies that
P1

n=0 anxn converges uniformly on
[°c, c].
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Exercise 6.5.6. Assume
P

anxn converges pointwise on the compact set K.
Because K is compact, there exist points x0, x1 2 K satisfying

x0 ∑ x ∑ x1 for all x 2 K.

At this point we need to consider a few different cases. If x0 > 0 then K µ [0, x1]
and Theorem 6.5.1 implies we get pointwise convergence on [0, x1]. Then Abel’s
Theorem implies that the convergence is uniform on [0, x1] hence over the set
K µ [0, x1].

If x1 < 0 then K µ [x0, 0] we can make a similar argument along the same
lines. If x0 ∑ 0 ∑ x1 then Theorem 6.5.1 and Abel’s Theorem imply that we
the series converges uniformly over each of the intervals [x0, 0] and [0, x1]. It is
a straightforward exercise to show that this implies uniform convergence over
[x0, x1] and hence over the set K µ [x0, x1].

Exercise 6.5.7. (a) Applying the Ratio Test to the sequence an = nsn°1 we
find

lim
n!1

ØØØØ
an+1

an

ØØØØ = lim
n!1

ØØØØ
nsn + sn

nsn°1

ØØØØ = lim
n!1

ØØØØs +
1
n

s

ØØØØ = s.

Because 0 < s < 1, the series
P

an converges by the Ratio Test. Therefore, the
sequence (nsn°1) converges to zero and thus is bounded.

(b) Let x 2 (°R, R) be arbitrary and pick t to satisfy |x| < t < R. We will
show that

P
|nanxn°1| converges, implying

P
nanxn°1 converges. First write

1X

n=1

|nanxn°1| =
1X

n=1

1
t

µ
n

ØØØ
x

t

ØØØ
n°1

∂
|antn|.

Because |x/t| < 1, by part (a) we can pick a bound L satisfying

n
ØØØ
x

t

ØØØ
n°1

∑ L for all n 2 N.

Now we have
1X

n=1

|nanxn°1| =
1X

n=1

1
t

µ
n

ØØØ
x

t

ØØØ
n°1

∂
|antn| ∑ L

t

1X

n=1

|antn|

where the last sum converges because t 2 (°R,R). Therefore,
P1

n=1 nanxn°1

converges absolutely and thus converges.

Exercise 6.5.8. (a) For a fixed x, apply the Ratio Test to the series
P

anxn

to get

lim
n!1

ØØØØ
an+1xn+1

anxn

ØØØØ = lim
n!1

ØØØØ
an+1

an

ØØØØ |x| = L|x|.

If |x| < 1/L then L|x| < 1 and the series converges.
(b) If L = 0 then L|x| = 0 < 1 for every value of x and the Ratio Test

implies that the series converges on all of R.
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(c) This will follow using the same proofs if we can prove the following
modified version of the Ratio Test:

Given a sequence (bn), let

L0 = lim
n!1

sn where sn = sup
ΩØØØØ

bk+1

bk

ØØØØ : k ∏ n

æ
.

If L0 < 1 then
P

bn converges.
The proof is very similar to the proof of the Ratio Test in Exercise 2.7.9.

First choose R to satisfy L0 < R < 1. The sequence (sn) is decreasing, and
because it converges to L0 we know there exists an N such that

ØØØØ
bk+1

bk

ØØØØ ∑ R for all k ∏ N .

An induction proof like the one before shows

|bk| ∑ |bN |Rk°N for all k ∏ N,

and then we may compare the series
P

bk to the convergent geometric series
|aN |

P
Rk to conclude that

P
bk converges.

(d) The statement in this exercise is false. A condition such as |an+1/an| ∏ 1
for all values of n after some point in the sequence would be sufficient to prove
the series diverges.

Exercise 6.5.9. Set g(x) =
P1

n=0 anxn and h(x) =
P1

n=0 bnxn. Because
g(x) = h(x) on (°R, R) we see a0 = g(0) = h(0) = b0. But we also know that
g and h are infinitely differentiable. Taking the derivative and setting x = 0
yields the formulas

a1 = g0(0) and b1 = h0(0).

Again, because g = h we see that a1 = b1. Taking successive derivatives and
setting x = 0 leads to the conclusion that an = bn for all n 2 N. (The upcoming
work on Taylor’s formula in the next section is very relevant to this discussion.)

Exercise 6.5.10. We are assuming
P

an,
P

bn and
P

dn each converge which,
according to Abel’s Theorem, tells us that the respective series for f , g, and h
converge uniformly on [0, 1]. Among other things, this implies that f , g and h
are all continuous functions over the closed interval [0, 1].

Fix x 2 [0, 1). Because we know we have convergence at 1, Theorem 6.5.1
implies that

P
anxn,

P
bnxn and

P
dnxn each converge absolutely. This fact

means that we can invoke the result in Exercise 2.8.8 to assert that

h(x) =
X

dnxn = f(x)g(x).

Because this is true for all x 2 [0, 1), and because f , g and h are continuous on
the closed interval [0, 1], it follows that h(1) = f(1)g(1) or

X
dn =

≥X
an

¥≥X
bn

¥
,

as desired.
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Exercise 6.5.11. (a) Assume
P

an converges to L. If we set f(x) =
P

anxn,
then Abel’s Theorem implies that the series for f converges uniformly on the
interval [0, 1]. Because the summands are continuous polynomials, this proves
that f is continuous on [0, 1]. In particular, this implies limx!1° f(x) = f(1).
But notice that f(1) = L and thus we have shown that

P
an is Abel-summable

to L.
(b) Using some familiar facts about geometric series, observe that

1X

n=0

(°1)nxn = 1° x + x2 ° x3 + x4 °

=
1

1° (°x)

=
1

1 + x
,

provided |x| < 1. Then limx!1° 1/(1 + x) = 1/2 shows that our series is Abel-
summable to 1/2.

Exercise 6.5.12. Begin with the observation that 0 < d0. Because G is strictly
increasing we see G(0) < G(d0). But notice G(0) = d1 and G(d0) = d0 and so
we have d1 < d0. This argument can be repeated. Given dr < d0 we have

dr+1 = G(dr) < G(d0) = d0,

and it follows that dr < d0 for all values of r. We conclude that (dr) converges
to d0—the smaller of the two fixed points.

6.6 Taylor Series

Exercise 6.6.1. Because the series converges when x = 1, Abel’s Theorem
implies that we get uniform convergence over the interval [0, 1] and thus the
series represents a continuous function over the interval [0, 1]. Assuming that
arctan(x) is continuous over [0, 1], it follows that if these two continuous func-
tions agree for all values of x 2 [0, 1), then they must also agree when x = 1.

Setting x = 1 into this formula gives “Leibniz’s formula,”

º

4
= 1° 1

3
+

1
5
° 1

7
+ · · · .

Exercise 6.6.2. From equation (1) we get

1
1 + x

= 1° x + x2 ° x3 + x4 ° x5 + · · · .

Then integrating gives

ln(1 + x) =
Z x

0

1
1 + t

dt = x° x2

2
+

x3

3
° x4

4
+

x5

5
+ · · · .

This series converges for all x in the interval (°1, 1].
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Exercise 6.6.3. The key idea is to take the derivative of each side of equation
(2) using a term-by-term approach for the series on the right (this is justified
by Theorem 6.5.7). Setting x = 0 after n derivatives gives the formula for an.

Exercise 6.6.4. We set a0 = sin(0) = 0, a1 = cos(0)/1! = 1, a2 = ° sin(0)/2! =
0, a3 = ° cos(0)/3! = °1/3!, and so on. Then substitute these values for an

and f into the expression in equation (2). It remains to show that the series
expression actually equals sin(x) for any values of x other than x = 0.

Exercise 6.6.5. To do this we will show that EN (x) ! 0 uniformly on [°2, 2].
By Lagrange’s Remainder Theorem we have

|EN (x)| =
ØØØØ
f (N+1)(c)
(N + 1)!

xN+1

ØØØØ ∑
1

(N + 1)!
ØØxN+1

ØØ ∑ 1
(N + 1)!

2N+1

for x 2 [°2, 2]. From past experience we know that factorials grow faster than
exponentials or, put another way, that limN!1 2N+1/(N +1)! = 0. Thus, given
≤ > 0 we can choose an M so that N ∏ M implies 2M+1/(M +1)! < ≤. It follow
that

|EM (x)| ∑ 2M+1

(M + 1)!
< ≤ for all M ∏ N,

and hence EN (x) ! 0 uniformly on [°2, 2].
Replacing the constant 2 with an arbitrary constant R has no effect on the

validity of the argument.

Exercise 6.6.6. (a) Because f (n)(x) = ex for every n, we get an = e0/n! = 1/n!
which yields

ex =
1X

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · .

To show that the series converges uniformly to ex on any interval of the form
[°R, R] use Lagrange’s Remainder formula to write

|EN (x)| =
ØØØØ

ec

(N + 1)!
xN+1

ØØØØ ∑
eR

(N + 1)!
RN+1

for all x 2 [°R,R]. Now, just as in the previous exercise, this error bound
tends to zero as N ! 1. Because this bound is independent of x, it follows
that EN (x) ! 0 uniformly on [°R, R] and we get that SN (x) ! ex uniformly
on [°R, R] as well.

(b) To verify the formula f 0(x) = ex we differentiate the series representation

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

term-by-term to get

(ex)0 = 0 + 1 + 2
x

2!
+ 3

x2

3!
+ 4

x3

4!
+ · · ·

= 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

= ex.
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(c) Starting from the formula ex =
P1

n=0 xn/n! we get the formula

e°x =
1X

n=0

(°x)n/n! = 1° x +
x2

2!
° x3

3!
+

x4

4!
° · · · .

Reviewing the material on Cauchy products from the end of Section 2.8 we now
write

(ex)(e°x) = (1 + x +
x2

2!
+

x3

3!
+ · · · )(1° x +

x2

2!
° x3

3!
+ · · · )

= 1 + (°1 + 1)x + (
1
2!
° 1 +

1
2!

)x2 + (
°1
3!

+
1
2!
° 1

2!
+

1
3!

)x3 + · · ·

= 1

The key to the above calculation is to use the binomial formula to show that
the coefficient for xn is

nX

k=0

1
k!

(°1)n°k

(n° k)!
=

1
n!

(°1 + 1)n = 0 for all n ∏ 1.

The point of this exercise is to illustrate that if we take the power series
representation for ex to be the definition of the exponential function, then fa-
miliar statements such as (ex)0 = ex and e°x = 1/ex follow naturally from the
definition.

Exercise 6.6.7. Applying the definition of the error function at zero we find

E(n)
N (0) = f (n)(0)° S(n)

N (0)

= f (n)(0)° n!an

= f (n)(0)° n!
f (n)(0)

n!
= 0

for all n = 0, 1, 2, · · · , N.

Exercise 6.6.8. By applying the Generalized Mean Value Theorem to the
functions EN (x) and xN+1 on the interval [0, x] we know that there exists a
point x1 2 (0, x) such that

EN (x) =
xN+1

(N + 1)
E0N (x1)

xN
1

.

Now apply the Generalized Mean Value Theorem to the functions E0N (x) and
xN on the interval [0, x1], to get that there exists a point x2 2 (0, x1) where

E0N (x1)
xN

1

=
E00N (x2)
NxN°1

2

.

Substituting this observation into our earlier result gives

EN (x) =
xN+1

(N + 1)
E0N (x1)

xN
1

=
xN+1

(N + 1)(N)
E00N (x2)
xN°1

2

.
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Continuing in this manner we find

EN (x) =
xN+1

(N + 1)
E0N (x1)

xN
1

=
xN+1

(N + 1)(N)
E00N (x2)
xN°1

2

= · · ·

=
xN+1

(N + 1)!
E(N+1)

N (xN+1)
xN°N

N+1

where xN+1 2 (0, xN ) µ · · · µ (0, x). Now set c = xN+1 and, noting that
cN°N = 1, write

EN (x) =
E(N+1)

N (c)
(N + 1)!

xN+1.

Finally, because S(N+1)
N = 0 we have that E(N+1)

N (x) = f (N+1)(x) and it follows
that

EN (x) =
E(N+1)

N (c)
(N + 1)!

xN+1 =
f (N+1)(c)
(N + 1)!

xN+1.

This proves Lagranges’s Remainder Theorem.

Exercise 6.6.9. By the definition of the derivative, we have

g0(0) = lim
x!0

g(x)° g(0)
x° 0

= lim
x!0

e°1/x2

x
= lim

x!0

1/x

e1/x2

where both numerator and denominator tend to 1 as x approaches zero. Ap-
plying the 1/1 version of L’Hospital’s rule we can write

g0(0) = lim
x!0

°1/x2

e1/x2(°2/x3)
= lim

x!0

x

2e1/x2 = 0.

Exercise 6.6.10. Computing the derivatives for x 6= 0 we find

g0(x) =
2e°1/x2

x3
, g00(x) = °6e°1/x2

x4
+

4e°1/x2

x6
,

g000(x) =
24e°1/x2

x5
° 36e°1/x2

x7
+

8e°1/x2

x9
,

and in general we can write

g(n)(x) =
nX

k=1

f(n, k)e°1/x2

x2k+n

where f(n, k) describes the coefficients.

Exercise 6.6.11. To compute g00(0) from the definition we substitute the for-
mula for g0(x) away from zero to get

g00(0) = lim
x!0

g0(x)
x

= lim
x!0

2e°1/x2

x4
= lim

x!0

2/x4

e1/x2 .
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Applying L’Hospital’s rule we can write

g00(0) = lim
x!0

°8/x5

°2e1/x2/x3
= lim

x!0

4/x2

e1/x2 .

One more application of L’Hospital’s rule lets us conclude

g00(0) = lim
x!0

°8/x3

°2e1/x2/x3
= lim

x!0

°4
e1/x2 = 0.

In general, whenever we have a quotient of the form x°m/e1/x2
, what we

discover is that by repeated applications of L’Hospital’s rule we can show

lim
x!0

1/xm

e1/x2 = 0.

An induction argument now proves that g(n)(0) = 0 for all n. To see this
explicitly, observe that if g(n)(0) = 0 then our formula from the previous exercise
yields

g(n+1)(0) = lim
x!0

g(n)(x)° g(n)(0)
x° 0

= lim
x!0

g(n)(x)
x

= lim
x!0

nX

k=1

f(n, k)/x2k+n+1

e1/x2 .

Because this limit is zero for each term in the sum, we see that g(n+1)(0) = 0,
and it follows that g(n)(0) = 0 for all values of n.

Exercise 6.6.12. We have discussed the fact that g is an infinitely differentiable
function as long as ex has this property. This means that g has a Taylor series.
Because g(n)(0) = 0 for all n, every coefficient in the series expansion is 0. Thus
the Taylor series exists and converges at every value of x to zero. But notice
that g(x) 6= 0 whenever x 6= 0. The Taylor series for g(x) exists and converges,
but it does not converge to g(x) apart from the center point x = 0. Thus, every
infinitely differentiable function cannot be represented by its Taylor series.
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Chapter 7

The Riemann Integral

7.1 Discussion: How Should Integration
be Defined?

7.2 The Definition of the Riemann Integral

Exercise 7.2.1. Momentarily fix the partition P . Then Lemma 7.2.4 implies

L(f, P ) ∑ U(f, P 0) for all partitions P 0.

Because L(f, P ) is a lower bound for the set of upper sums, it must be less than
the greatest lower bound for this set; i.e., L(f, P ) ∑ U(f). But P is arbitrary in
this discussion meaning that U(f) is an upper bound on the set of lower sums.
From the definition of the supremum we get L(f) ∑ U(f) as desired.

Exercise 7.2.2. (a) L(f, P ) = 17/2, U(f, P ) = 23/2, and U(f, P )°L(f, P ) =
3.

(b) In this case U(f, P )° L(f, P ) = 2.
(c) Adding any new point to {1, 3/2, 2, 5/2, 3} will do it.

Exercise 7.2.3. For any partition P of [a, b] we have

L(f, P ) =
nX

k=1

k(xk ° xk°1) = k(b° a),

as well as

U(f, P ) =
nX

k=1

k(xk ° xk°1) = k(b° a).

Thus L(f) = k(b ° a) and U(f) = k(b ° a). Because the upper and lower
integrals are equal, the function f(x) = k is integrable with

R b
a f = k(b° a).

111
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Exercise 7.2.4. (a) ()) Assume there exists a sequence of partitions (Pn)
satisfying

lim
n!1

[U(f, Pn)° L(f, Pn)] = 0.

Given ≤ > 0, choose PN from this sequence so that U(f, PN ) ° L(f, PN ) < ≤.
Then Theorem 7.2.8 implies f is integrable.

(() Conversely, if f is integrable then given ≤n = 1/n, Theorem 7.2.8 implies
that there exists a partition Pn satisfying U(f, Pn)°L(f, Pn) < 1/n. It follows
that

lim
n!1

[U(f, Pn)° L(f, Pn)] = 0,

as desired.
(b) For the partition Pn we have xk = k/n, mk = (k° 1)/n and Mk = k/n.

Then

U(f, Pn) =
nX

k=1

k

n
(1/n) =

1
n2

nX

k=1

k =
1
n2

µ
n(n + 1)

2

∂
,

and

L(f, Pn) =
nX

k=1

(k ° 1)
n

(1/n) =
1
n2

nX

k=1

(k ° 1) =
1
n2

µ
(n° 1)n

2

∂
.

(c) Now we may compute

lim
n!1

[U(f, Pn)° L(f, Pn)] = lim
n!1

∑
n(n + 1)

2n2
° (n° 1)n

2n2

∏
= lim

n!1

∑
1
n

∏
= 0.

The result in (a) now implies that f(x) = x is integrable.

Exercise 7.2.5. We shall use the criterion in Theorem 7.2.8. The shape of the
proof is determined by the triangle inequality estimate

U(f, P )° L(f, P ) = U(f, P )° U(fN , P ) + U(fN , P )° L(fN , P )
+L(fN , P )° L(f, P )

∑ |U(f, P )° U(fN , P )| + (U(fN , P )° L(fN , P ))
+|L(fN , P )° L(f, P )|.

Let ≤ > 0 be arbitrary. Because fn ! f uniformly, we can choose N so that

|fN (x)° f(x)| ∑ ≤

3(b° a)
for all x 2 [a, b].

Now the function fN is integrable and so there exists a partition P for which

U(fN , P )° L(fN , P ) <
≤

3
.

Let’s consider a particular subinterval [xk°1, xk] from this partition. If

Mk = sup{f(x) : x 2 [xk°1, xk]} and Nk = sup{fN (x) : x 2 [xk°1, xk]},
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then our choice of fN guarantees that

|Mk °Nk| ∑
≤

3(b° a)
.

From this estimate we can argue that

|U(f, P )° U(fN , P )| =

ØØØØØ

nX

k=1

(Mk °Nk)∆xk

ØØØØØ

∑
nX

k=1

≤

3(b° a)
∆xk =

≤

3
.

Similarly we can show

|L(fN , P )° L(f, P )| ∑ ≤

3
.

Putting this altogether, we see that using our choices of fN and P in the pre-
liminary estimate gives

U(f, P )° L(f, P ) <
≤

3
+

≤

3
+

≤

3
= ≤.

By the criterion in Theorem 7.2.8 we conclude that the uniform limit of inte-
grable functions is integrable.

Exercise 7.2.6. As in the previous exercise, we shall use the criterion in Theo-
rem 7.2.8. Let P be a partition where all the subintervals have equal length
∆x = xk ° xk°1. Because the function is increasing, on each subinterval
[xk°1, xk] we have

Mk = f(xk) and mk = f(xk°1).

Thus,

U(f, P )° L(f, P ) =
nX

k=1

(Mk °mk)∆x

= ∆x
nX

k=1

(f(xk)° f(xk°1))

= ∆x(b° a).

Given ≤ > 0, choose a partition P≤ to have equal subintervals with common
length satisfying ∆x < ≤/(b° a). The previous calculation then shows

U(f, P≤)° L(f, P≤) = ∆x(b° a) <
≤

b° a
(b° a) = ≤.
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7.3 Integrating Functions with Discontinuities

Exercise 7.3.1. (a) Let P be an arbitrary partition of [0, 1]. On any subinterval
[xk°1, xk], it must be that mk = inf{h(x) : x 2 [xk°1, xk]} = 1, and it follows
that

L(h, P ) =
nX

k=1

mk∆xk =
nX

k=1

∆xk = 1.

(b) Consider the partition P = {0, .95, 1}. Then

U(h, P ) = (1)(.95) + (2)(.05) = 1.05.

(c) Consider the partition P≤ = {0, 1° ≤/2, 1}. Then

U(h, P≤) = (1)
≥
1° ≤

2

¥
+ (2)

≥ ≤

2

¥
= 1 +

≤

2
.

The implication is that for this partition we have U(h, P≤)°L(h, P≤) < ≤, proving
that h is integrable.

Exercise 7.3.2. First write

Q \ [0, 1] = {r1, r2, r3, . . .},

which is allowed because Q \ [0, 1] is a countable set. For each n 2 N define

gn(x) =
Ω

1 if x 2 {r1, r2, . . . , rn}
0 otherwise.

Because gn has only a finite number of discontinuities we know it is integrable,
and gn ! g pointwise is easy to verify. This example is discussed explicitly in
the Epilogue to Chapter 7.

Exercise 7.3.3. Assume f is not continuous on the finite set {z1, z2, . . . , zN}.
We shall build a partition P in two steps: first handling the “bad” or discon-
tinuous points, and then handling the remainder of the interval [a, b].

Assume f is bounded by M and let ≤ > 0. Around each zi construct disjoint
subintervals small enough so that the sum of the lengths of all N of these comes
to less than ≤/(4M). Focusing on just these subintervals we see that

X

bad pts
(Mk °mk)∆xk ∑

X

bad pts
2M∆xk = 2M

≥ ≤

4M

¥
=

≤

2
.

If O is the union of the open subintervals that surround each zi, then [a, b]\O is
a compact set. Because f is continuous on this set, it is uniformly continuous
and so there exists a ± > 0 with the property that

|f(x)° f(y)| <
≤

2(b° a)
whenever |x° y| < ±.
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Focusing on the intervals that make up [a, b]\O (the “good points”), we partition
these so that all the resulting subintervals have length less than ±. This puts us
into a situation like the one in Theorem 7.2. In particular we get that

X

good pts
(Mk °mk)∆xk <

≤

2(b° a)

X

good pts
∆xk <

≤

2(b° a)
(b° a) =

≤

2
.

Putting these two parts together we see

U(f, P )° L(f, P ) =
X

bad pts
(Mk °mk)∆xk +

X

good pts
(Mk °mk)∆xk

<
≤

2
+

≤

2
= ≤,

and by the criterion in Theorem 7.2.8, f is integrable.

Exercise 7.3.4. (a) Assume f is integrable so that U(f) = L(f) =
R b

a f. Now
let f0 be the modified function where we have changed the value of f at x0. Set
D = |f(x0)° f0(x0)|. We want to prove that U(f0) = U(f) and L(f0) = L(f).

Let ≤ > 0 be arbitrary. To argue that U(f0) = U(f), it is sufficient to find a
partition for which U(f0, P ) < U(f)+ ≤. Because U(f) = inf{U(f, P ) : P 2 P},
we know there exists a partition P where

U(f, P ) < U(f) + ≤/2.

The first step is let P 0 be a refinement of P with the property that the interval(s)
containing x0 have width less than ≤/(4D). Because P µ P 0 we know U(f, P 0) ∑
U(f, P ). Now observe that because f and f0 agree everywhere except at x0 it
follows that

|U(f, P 0)° U(f0, P
0)| < D(2∆x) <

≤

2
.

(The extra 2 is needed in case the point x0 is an endpoint of an interval in P 0

and is thus contained in two subintervals.) Finally, we see that

U(f0, P
0) < U(f, P 0) +

≤

2
∑

≥
U(f) +

≤

2

¥
+

≤

2
= U(f) + ≤,

and we conclude that U(f0) = U(f).. The proof that L(f0) = L(f) is similar.
(b) This follows using an induction argument.
(c) Dirichlet’s function differs from the zero function in only a countable

number of points but is not integrable.

Exercise 7.3.5. Every interval contains points where f(x) = 0, and thus it
follows that L(f, P ) = 0 for every partition P . This implies that L(f) = 0. It
remains to show that U(f) = 0.

Let ≤ > 0 be arbitrary and consider the finite set {1, 1/2, 1/3, . . . , 1/N}
consisting of points of the form 1/n that satisfy 1/n ∏ ≤/2. Because this set is
finite, we may construct a set of disjoint intervals around each of these points
with the property that the sum of the lengths of these intervals comes to less
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than ≤/2. Letting P be the partition that results from taking the union of these
intervals together with the interval [0, ≤/2], it follows that

U(f, P ) <
≤

2
+

≤

2
= ≤,

and f integrates to zero.

Exercise 7.3.6. (a) This proof is nearly indentical to the argument in Exercise
7.3.3. In particular, we shall build a partition P in two steps: first handling
the “bad” or discontinuous points, and then handling the “good” or continuous
parts of the interval [a, b].

Assume f is bounded by M and let ≤ > 0. Because our set of discontinuities
has content zero, we may let {O1, . . . , ON} be a collection of open intervals that
covers the set of discontinuous points and satisfies

NX

n=1

|On| ∑
≤

4M
.

Focusing on just these subintervals we see that |On| = ∆xn and
X

bad pts
(Mn °mn)∆xn ∑

X

bad pts
2M∆xn = 2M

≥ ≤

4M

¥
=

≤

2
.

If O =
SN

n=1 On then [a, b]\O is a compact set. Because f is continuous on this
set, it is uniformly continuous and so there exists a ± > 0 with the property that

|f(x)° f(y)| <
≤

2(b° a)
whenever |x° y| < ±.

Focusing on the intervals that make up [a, b]\O (the “good points”), we partition
these so that all the resulting subintervals have length less than ±. This puts us
into a situation like the one in Theorem 7.2. In particular we get that

X

good pts
(Mk °mk)∆xk <

≤

2(b° a)

X

good pts
∆xk <

≤

2(b° a)
(b° a) =

≤

2
.

Putting these two parts together we see

U(f, P )° L(f, P ) =
X

bad pts
(Mk °mk)∆xk +

X

good pts
(Mk °mk)∆xk

<
≤

2
+

≤

2
= ≤,

and by the criterion in Theorem 7.2.8, f is integrable.
(b) Given a finite set {z1, z2, . . . , zN} and ≤ > 0, let On = V≤0(zn) where

≤0 = ≤/(2N). Then |On| = ≤/N and the sum of these lengths is equal to ≤, as
desired.
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(c) Recall that we defined the Cantor set C as the intersection

C =
1\

n=0

Cn,

where Cn consists of 2n closed intervals of length 1/3n. Given ≤ > 0, choose m
so that 2m(1/3m) < ≤/2. Now it would be nice if we could just use the intervals
that make up Cm as our covering set. However, the definition of content zero
requires that we use open intervals. To fix this, we can imbed each of the 2m

closed intervals that make up Cm in a slightly larger open interval whose length
is equal to 1/3m + (≤/2)2°m. This collection of open intervals will then contain
C (because Cm does) and the lengths will sum to

2m[1/3m +
≤

2
2°m] <

≤

2
+

≤

2
= ≤,

as desired.
(d) The fact that h is integrable follows immediately from (a), (c), and

the result in Exercise 4.3.12. Because C contains no intervals, we see that
L(h, P ) = 0 for every partition P and so it must be that

R 1
0 h = 0.

7.4 Properties of the Integral

Exercise 7.4.1. (a) Let ≤ > 0 be arbitrary and choose x1 and x2 so that
M 0 ° ≤/2 < |f(x1)| and m0 + ≤/2 > |f(x2)|. Then using Exercise 1.2.5 (b) we
can write

(M 0 °m0)° ≤ ∑ |f(x1)|° |f(x2)|
∑ |f(x1)° f(x2)| ∑ M °m.

(b) Let ≤ > 0. Because f is integrable, there exists a partition P satisfying
U(f, P )° L(f, P ) < ≤. But now from part (a) it follows that

U(|f |, P )° L(|f |, P ) ∑ U(f, P )° L(f, P ) < ≤,

and the result follows.
(c) Because °|f | ∑ f ∑ |f | and all of these functions are integrable, we know

from Theorem 7.4.2 (iv) and (ii) that

°
Z b

a
|f | ∑

Z b

a
f ∑

Z b

a
|f |.

Exercise 7.4.2. From Theorem 7.4.1 we get

Z b

c
f =

Z a

c
f +

Z b

a
f.
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Then Definition 7.4.3 allows us to write
R a

c f = °
R c

a f which, when substituted
into the first statement, gives us

Z c

a
f +

Z b

c
f =

Z b

a
f.

Exercise 7.4.3. The properties of the integral in Theorem 7.4.2 allow us to
write ØØØØØ

Z b

a
fn °

Z b

a
f

ØØØØØ =

ØØØØØ

Z b

a
(fn ° f)

ØØØØØ ∑
Z b

a
|fn ° f |.

Let ≤ > 0 be arbitrary. Because fn ! f uniformly, there exists an N such that

|fn(x)° f(x)| < ≤/(b° a) for all n ∏ N and x 2 [a, b].

Thus, for n ∏ N we see that
ØØØØØ

Z b

a
fn °

Z b

a
f

ØØØØØ ∑
Z b

a
|fn ° f |

∑
Z b

a

≤

b° a
= ≤,

and the result follows.

Exercise 7.4.4. (a) False. Dirichlet’s function is a counterexample.
(b) False. The functions in Exercise 7.3.5 and Exercise 7.3.6 are counterex-

amples.
(c) True. Because g is continuous at x0 with g(x0) > 0, there exists a ±-

neighborhood V±(x0) with the property that g(x) ∏ g(x0)/2 for all x 2 V±(x0).
Now let P be a partition that contains the interval V±(x0). When we compute
the lower sum L(f, P ) with respect to this partition, the contribution from the
subinterval V±(x0) is at least [g(x0)/2]2± > 0. The assumption that g(x) ∏ 0 on
the rest of [a, b] guarantees that there are no negative terms in the sum L(f, P ),
and it follows that Z b

a
f = L(f) ∏ L(f, P ) > 0.

(d) True. We again argue using lower sums. Because the value of the integral
is strictly positive, there must exist a partition P such that L(f, P ) > 0. But
this implies that there is at least one subinterval [c, d] in the partition P where
the product m(d ° c) is strictly positive. Because m = inf{f(x) : x 2 [c, d]},
setting ± = m gives the result.

Exercise 7.4.5. (a) Consider a particular subinterval [xk°1, xk] of P and let

Mk = sup{f(x) : x 2 [xk°1, xk]}, M 0
k = sup{g(x) : x 2 [xk°1, xk]}, and

M 00
k = sup{f(x) + g(x) : x 2 [xk°1, xk]}.
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Because Mk + M 0
k is an upper bound for the set {f(x) + g(x) : x 2 [xk°1, xk]}

it follows that M 00
k ∑ Mk + M 0

k. This inequality leads directly to the conclusion
that U(f + g, P ) ∑ U(f, P ) + U(g, P ).

The two sides are usually not equal because the functions f and g could
easily take on their larger values in different places of each subinterval. For
example, consider f(x) = x and g(x) = 1° x on the interval [0, 1]. Then

Mk = 1, M 0
k = 1 and M 00

k = 1,

so we have M 00
k < Mk + M 0

k.
The inequality for lower sums takes the form L(f +g, P ) ∏ L(f, P )+L(g, P ).
(b) Because f and g are integrable, there exist sequences of partitions (Pn)

and (Qn) such that

(1) lim
n!1

[U(f, Pn)° L(f, Pn)] = 0 and lim
n!1

[U(g, Qn)° L(g, Qn)] = 0.

For each n, let Rn be the common refinement Rn = Pn [Qn. Then part (a) of
this exercise and Lemma 7.2.3 imply

U(f + g, Rn)° L(f + g, Rn) ∑ [U(f, Rn) + U(g,Rn)]° [L(f, Rn) + L(g, Rn)]
∑ [U(f, Pn) + U(g, Qn)]° [L(f, Pn) + L(g,Qn)]
∑ [U(f, Pn)° L(f, Pn)] + [U(g,Qn)° L(g,Qn)].

From (1) it now follows that

lim
n!1

[U(f + g,Rn)° L(f + g, Rn)] = 0,

and the result follows.

Exercise 7.4.6. (a) Set

fn(x) =
Ω

(°1)nn if 0 < x < 1/n
0 if x = 0 or x ∏ 1/n.

Then
R 1
0 fn = (°1)n, and the limit of these integrals does not exist.

(b) Set

fn(x) =
Ω

n2 if 0 < x < 1/n
0 if x = 0 or x ∏ 1/n.

Then
R 1
0 fn = n which is unbounded as n !1.

(c) Sure. Rather than putting in step functions over the intervals [0, 1/n] we
could put taller and taller triangular “tents” that would be continuous and still
create the same effect.

(d) This is a delicate question that requires a deeper study of the integral
to work out in any satisfactory way. In all of the examples in this exercise, the
sequence of badly behaving functions has been unbounded. This turns out to
be a requirement. With a stronger integral it is possible to prove that if fn are
integrable functions that are uniformly bounded, and if fn ! f pointwise on
[a, b], then

R b
a fn !

R b
a f.
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Exercise 7.4.7. This exercise requires the stronger hypothesis (not included
in earlier editions) that gn and g are uniformly bounded; i.e., that there exists
M > 0 satisfying

|g(x)| ∑ M and |gn(x)| ∑ M for all n and x 2 [0, 1].

As a first step we use the properties of the integral proved in this section to
write ØØØØ

Z 1

0
gn °

Z 1

0
g

ØØØØ ∑
Z 1

0
|gn ° g| =

Z ±

0
|gn ° g| +

Z 1

±
|gn ° g|.

Let ≤ > 0. Let’s first pick ± < ≤/(4M). Having chosen ±, we know gn ! g
uniformly on [±, 1], so there exists an N such that |gn ° g| < ≤/2 for all n ∏ N .
It follows that if n ∏ N then

ØØØØ
Z 1

0
gn °

Z 1

0
g

ØØØØ ∑
Z ±

0
|gn ° g| +

Z 1

±
|gn ° g|

∑
Z ±

0
2M +

Z 1

±
≤/2

∑ (2M)± + ≤/2 < ≤,

and the result follows.

7.5 The Fundamental Theorem of Calculus

Exercise 7.5.1. Assume g is continuous on [a, b] and set G(x) =
R x

a g(t) dt. By
part (ii) of the Fundamental Theorem, g is the derivative of G.

Exercise 7.5.2. (a) For f(x) = |x| we get

F (x) =
Ω
°x2/2 + 1/2 if x < 0
x2/2 + 1/2 if x ∏ 0

In this case, F is continuous and differentiable with F 0(x) = f(x) for all x 2 R.
This follows from FTC but it is interesting to check this directly from the
formula for F , especially at x = 0 where we get F 0(0) = 0 from both sides.

(b) This time we get

F (x) =
Ω

x + 1 if x < 0
2x + 1 if x ∏ 0

A sketch of F is valuable and illustrates in particular that F is continuous on
all of R but fails to be differentiable at x = 0 due to the “corner” on the graph.
If x 6= 0, then we certainly get F 0(x) = f(x) as predicted by FTC.

Exercise 7.5.3. The Mean Value Theorem does not require F (x) to be differ-
entiable at the endpoints so we could get by with assuming that F is continuous
on [a, b] and differentiable on (a, b) with F 0(x) = f(x) for all x 2 (a, b). By
appealing to Theorem 7.4.1 we could in fact weaken the hypothesis even more
to allow F 0(x) = f(x) to fail at an arbitrary finite number of points.
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Exercise 7.5.4. (a) H(1) = 0. Using FTC we see that H 0(x) = 1/x for all
x > 0.

(b) Given x < y, apply the Mean Value Theorem to H on the interval [x, y]
to get H(y)°H(x) = H 0(t)(y°x) for some t 2 (x, y). Because H 0(t) = 1/t > 0,
it follows that H(y) > H(x).

(c) Using the Chain Rule, we see that

g0(x) = H 0(cx) · c =
1
cx

· c =
1
x

.

Thus g and H have the same derivative and so by Corollary 5.3.4 to the Mean
Value Theorem we know that g(x) = H(x) + k, or

H(cx) = H(x) + k,

for some constant k. To determine k, set x = 1 to get H(c) = H(1) + k = k,
and the result follows.

Exercise 7.5.5. Because f 0n ! g uniformly on any interval of the form [a, x],
it follows from Theorem 7.4.4 that

lim
n!1

Z x

a
f 0 =

Z x

a
g.

Taking the limit as n !1 on each side of the equation
R x

a f 0n = fn(x)° fn(a)
leads to the equation

f(x) = f(a) +
Z x

a
g.

But g is the uniform limit of continuous functions and so g must also be con-
tinuous. Part (ii) of the Fundamental Theorem of Calculus then implies that
f 0(x) = g(x), as desired.

Exercise 7.5.6. This exercise requires that f be continuous. If we set G(x) =R x
a f , then given this extra assumption about f , it follows from part (ii) of FTC

that G0(x) = f(x). Because F 0(x) = f(x) as well, F and G have the same
derivative and a corollary to the Mean Value Theorem implies

(1) G(x) = F (x) + k,

for some constant k. To compute k, set x = a in equation (1) to get 0 = F (a)+k
or k = °F (a). Substituting this back into (1) and setting x = b we find

Z b

a
f = G(b) = F (b)° F (a).

Exercise 7.5.7. The idea is to apply the Mean Value Theorem to the function
G(x) =

R x
a g on the interval [a, b]. Note that g is continuous and so G is
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differentiable and thus MVT can be employed. In this case we get that there
exists a point c 2 (a, b) where

G0(c) =
G(b)°G(a)

b° a
=

1
b° a

Z b

a
g.

Because G0(c) = g(c), this gives the desired result.

Exercise 7.5.8. (a) Let P be a partition of [a, b] and consider a particular
subinterval [xk°1, xk] of P . Because f 0 is continuous, we may use FTC to write

f(xk)° f(xk°1) =
Z xk

xk°1

f 0.

Computing the variation with respect to this particular partition, we get

nX

k=1

|f(xk)° f(xk°1)| =
nX

k=1

ØØØØØ

Z xk

xk°1

f 0

ØØØØØ

∑
nX

k=1

Z xk

xk°1

|f 0| =
Z b

a
|f 0|.

What we discover is that
R b

a |f 0| is an upper bound on the set of variations, and
it follows that V f ∑

R b
a |f 0| because V f is the least upper bound of this set.

(b) Given a partition P , this time we apply MVT to an arbitrary subinterval
[xk°1, xk] to get

f(xk)° f(xk°1) = f 0(ck)∆xk for some ck 2 (xk°1, xk).

Because lower sums are computed by taking the infimum over each subinterval,
this allows us to write

nX

k=1

|f(xk)° f(xk°1)| =
nX

k=1

|f 0(ck)|∆xk ∏ L(|f 0|, P ).

It follows that V f is an upper bound for the set of lower sums for |f 0| and we
immediately get V f ∏

R b
a |f 0|.

Parts (a) and (b) then imply V f =
R b

a |f 0|.

Exercise 7.5.9. In this case, H(x) = x. Any doubts about whether this
formula holds when x = 1 should be alleviated by the fact that we know H is
continuous on all of R. It is evident, then, that H is differentiable everywhere.
The point to make is that the statement in FTC part (ii) (if g is continuous
then G is differentiable) does not have a converse unless we are more specific
about the type of discontinuity in g.
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Exercise 7.5.10. Let L1 = limx!c° f(x). If we insist that f(c) = L1, then the
argument in the text for FTC part (ii) can be used to show

lim
x!c°

F (x)° F (c)
x° c

= f(c) = L1.

On the other hand, if we let L2 = limx!c+ f(x), and set f(c) = L2, then the
same argument also shows that

lim
x!c+

F (x)° F (c)
x° c

= f(c) = L2.

Because L1 6= L2 the result is that the graph of F has a “corner” at x = c and
is not differentiable.

Exercise 7.5.11. Let h(x) =
P1

n=1 un(x) be the function defined in Exercise
6.4.8. Note that 0 < h(x) < 1 and h is increasing. By Exercise 7.2.6, h is
integrable over any interval and thus we can set

H(x) =
Z x

0
h(t) dt.

Part (ii) of FTC implies that H is continuous (and differentiable at every irra-
tional point.) Also, if x < y then

H(y)°H(x) =
Z y

x
h(t) ∏ 0,

and it follows that H is increasing. Now fix a rational number rN from the
enumeration in Exercise 6.4.8. The fact that h is increasing implies that both
limx!r°N

h(x) and limx!r+
N

h(x) exist, and we can show that they must differ by
rN . Then Exercise 7.5.10 implies that H is not differentiable at rN , and hence
at any rational point in R.

7.6 Lebesgue’s Criterion for Riemann
Integrability

Exercise 7.6.1. (a) Because t(x) = 0 for every irrational and the irrationals
are dense in R, it follows that L(t, P ) = 0 for every partition P .

(b) If x 2 D≤/2 then x must be a rational number of the form x = m/n with
n ∑ 2/≤. The number of such points in the interval [0, 1] is finite.

(c) Let {x1, x2, . . . , xN} be the finite set of points in D≤/2\[0, 1]. Now build a
partition P by constructing small, disjoint intervals around each xk with length
less than ≤/(2N). Because |t(x)| ∑ 1, the contribution of all of the intervals
containing “bad points” to the upper sum will be at most N · (≤/(2N)) ·1 = ≤/2.
On all of the other intervals we have |t(x)| ∑ ≤/2 and so, taken altogether,
these contribute at most ≤/2 to the value of the upper sum. It follows that
U(t, P ) ∑ ≤/2 + ≤/2 = ≤. Thus, t is integrable and

R 1
0 t = 0.
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Exercise 7.6.2. Because C contains no intervals, g(x) will equal zero at least
once in every subinterval of every partition P . It follows that L(g, P ) = 0.
Therefore, given ≤ > 0, our task is to find a partition where U(g, P ) < ≤. From
this we will be able to conclude that g is integrable and

R 1
0 g = 0.

The set Cm consists of 2m intervals of length 3m, so choose m large enough
so that 2m/3m < ≤/2. It would be nice to simply use the intervals that make up
Cm to construct our partition, but we need to worry a bit that the endpoints
of these intervals are in C. To fix this, we can imbed each of the 2m closed
intervals that make up Cm in a slightly larger interval whose length is equal to
1/3m +(≤/2)2°m. This collection of intervals then contains C in its interior and
the lengths sum to

2m[1/3m +
≤

2
2°m] <

≤

2
+

≤

2
= ≤.

Now two things follow if we let P be the partition obtained from these slightly
enlarged intervals from Cm. First, because |g(x)| ∑ 1, the contribution of all
of the intervals containing points of C to U(g, P ) is bounded by ≤. Second, on
all of the other intervals, our function is zero and there are no contributions to
U(g, P ). It follows that U(g, P ) ∑ ≤, as desired.

Exercise 7.6.3. Let A = {a1, a2, a3, . . .} be a countable set. Given ≤ > 0, let
On = V≤n(an) where ≤n = ≤/2n+1. Clearly the collection {On : n 2 N} covers
A and we have

1X

n=1

|On| =
1X

n=1

≤

2n
= ≤.

Exercise 7.6.4. In Exercise 7.3.6 we proved that C has content zero which
immediately implies C has measure zero.

Exercise 7.6.5. Given ≤ > 0, let {On : n 2 N} be a collection of open intervals
that cover A with the property that

P1
n=1 |On| ∑ ≤/2. Likewise, let {Pn : n 2 N}

be a collection of open intervals that cover B satisfying
P1

n=1 |Pn| ∑ ≤/2. Then
the collection {On, Pn : n 2 N} is still countable (the union of countable sets is
countable), it forms a cover for the union A [B, and

1X

n=1

|On| + |Pn| =
1X

n=1

|On| +
1X

n=1

|Pn| ∑ ≤

as desired.
Now assume we are given a countable collection {A1, A2, A3, . . .} of sets of

measure zero. Let ≤ > 0. For each Ak, let {Ok,n : n 2 N} be a countable
collection of open intervals that cover Ak and satisfies

P1
n=1 |Ok,n| ∑ ≤/2k.

It follows that {Ok,n : n, k 2 N} is a countable collection of open intervals
(Theorem 1.4.13 (ii)) whose union certainly covers

S1
k=1 Ak. Finally, taking the

sum of the lengths of all of the intervals in {Ok,n : k, n 2 N} involves reordering
this set, but the content of Theorem 2.8.1 is that we are justified in simply
computing the iterated sum

1X

k=1

1X

n=1

|Ok,n| =
1X

k=1

≤

2k
= ≤.
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This shows
S1

k=1 Ak has measure zero.

Exercise 7.6.6. See Exercise 4.6.8.

Exercise 7.6.7. See Exercises 4.6.9 and 4.6.10

Exercise 7.6.8. See Exercise 4.6.7

Exercise 7.6.9. Assume, for contradiction, that f is not uniformly Æ-continuous
on K. This means that given ±n = 1/n, there must exist points xn, yn 2 K such
that

|xn ° yn| <
1
n

and |f(xn)° f(yn)| ∏ Æ.

Because (xn) µ K and K is compact, there exists a convergent subsequence
(xnk). Set x = lim xnk and note that x 2 K. If we consider the corresponding
subsequence (ynk) we see that

lim ynk = lim[xnk + (ynk ° xnk)]
= x + lim(ynk ° xnk) = x.

Because (xnk) and (ynk) both converge to x, it follows that given any ± > 0 we
can find points xnK , ynK 2 (x° ±, x + ±) satisfying |f(xnK )° f(ynK )| ∏ Æ. But
this contradicts the assumption that f is Æ-continuous at x, and we conclude
that f must be uniformly Æ-continuous on K.

Exercise 7.6.10. See Exercise 3.3.8 (c) and (d).

Exercise 7.6.11. Because D has measure zero, we know there exists a count-
able collection of open intervals {G1, G2, . . .} whose union contains D and that
satisfies

(1)
1X

n=1

|Gn| <
≤

4M
.

But Da µ D is closed and hence compact. This means we can find a finite col-
lection {G1, . . . , GN} that covers DÆ and the inequality above in (1) is certainly
true for this smaller set.

Exercise 7.6.12. If x 2 K then x /2 DÆ and it follows that f is Æ-continuous at
x. Because we are removing open intervals from [a, b], we see that K is a closed
set (it is a finite union of closed intervals). By Exercise 7.6.9, f is uniformly
Æ-continuous on K.

Exercise 7.6.13. As a first step in constructing P≤ we include the intervals
from the open cover {G1, G2, . . . , GN}. Because

PN
n=1 |Gn| < ≤/(4M) the con-

tribution of these subintervals to U(f, P≤)° L(f, P≤) can be estimated by
X

(Mk °mk)∆xk < (2M)
X

∆xk ∑ (2M)
≥ ≤

4M

¥
=

≤

2
.
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Now consider the set K = [a, b]\
SN

n=1 Gn. The function f is uniformly Æ-
continuous on K and so there exists ± > 0 such that |f(x)°f(y)| < Æ whenever
|x ° y| < ±. To finish constructing the partition P≤ we take each interval in
K and subdivide it until all of the subintervals have length less than ±. The
implication here is that on each of these subintervals we get Mk ° mk ∑ Æ.
Thus, the contribution of all of the subintervals that make up K is less than

X
(Mk °mk)∆xk ∑ Æ

X
∆xk <

µ
≤

2(b° a)

∂
(b° a) =

≤

2
.

Altogether then we get

U(f, P≤)° L(f, P≤) <
≤

2
+

≤

2
= ≤,

and it follows that f is Riemann-integrable.

Exercise 7.6.14. (a) To produce a cover for Da, let {G1, G2, . . . , GN} be the
collection of closed intervals from the partition P≤ that contain points of DÆ.
On each subinterval Gk, it follows that Mk °mk ∏ Æ. This enables us to write

Æ≤ >
X

(Mk0 °mk0)∆xk0

∏
NX

k=1

(Mk °mk)|Gk|

∏ Æ
NX

k=1

|Gk|.

What we immediately see is that
PN

k=1 |Gk| < ≤. Now our definition of measure
zero requires that our cover for DÆ consist of open intervals. To remedy this,
we can take each Gk to be open and cover the finite number of endpoints we
have lost with intervals chosen small enough to keep the sum less than ≤.

(b) From (a) we see that DÆ has measure zero. Using Exercise 7.6.7, we can
argue that the set D is a countable union of DÆ sets. With a nod to Exercise
7.6.5, we conclude that D has measure zero.

An issue discussed in Exercise 7.6.5 is that the proof in the countable case
requires a result about absolute convergence of double summations. To show
that D =

S1
n=1 D1/n has measure zero we can avoid this complication because

the cover for each D1/n consists of a finite collection of open intervals. Thus,
we have a double summation but one of the sums is finite and we can use the
Algebraic Limit Theorem to justify the manipulations we need.

Exercise 7.6.15. (a) From the definition of the derivative we get g0(0) =
limx!0 g(x)/x. For x < 0 we get g(x)/x = 0 and for x > 0 we get g(x)/x =
x sin(1/x). In both cases we see limx!0 g(x)/x = 0, so g0(0) = 0.

(b) The chain rule and product rule yield can be applied when x > 0 and
this gives us the formula

g0(x) =
Ω
° cos(1/x) + 2x sin(1/x) if x > 0
0 if x ∑ 0.
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(c) The cos(1/x) term in the formula for g0(x) oscillates between +1 and °1
as x ! 0. Because the other term in this formula converges to zero, the net
effect is that g0(x) attains every value between +1 and °1 as x ! 0 from the
right.

Exercise 7.6.16. (a) If c 2 C then fn(c) = 0 for all n 2 N. It follows that
limn!1 fn(c) = 0.

(b) If x /2 C then choose N to be the smallest natural number for which
x /2 CN . Then, by its construction, fn(x) = fN (x) for all n ∏ N and
limn!1 fn(x) = fN (x).

Exercise 7.6.17. If x /2 C then, as in the previous exercise, there is a smallest
natural number N such that x /2 CN . This means that x is part of an open
interval O µ Cc

N where

f(y) = fN (y) for all y 2 O.

Because fN is differentiable everywhere and O is open, we can be sure that f
is differentiable at x.

(b) Fix c 2 C and let x 2 [0, 1] be arbitrary. If x 2 C then f(x) = 0 so
|f(x)| ∑ (x° c)2 is trivially true. If x /2 C, then either

f(x) = (x° c0)2 sin(1/(x° c0))

for some c0 2 C or—because of the “splicing together” process—we at least have

|f(x)| ∑ (x° c0)2

where c0 is an endpoint of an interval that makes up some Cn. The point to
emphasize is that there are no elements of C between x and c0 which means
|x° c0| ∑ |x° c| and consequently

|f(x)| ∑ (x° c0)2 ∑ (x° c)2,

as desired.
Turning our attention toward computing f 0(c), we now have

ØØØØ
f(x)° f(c)

x° c

ØØØØ =
ØØØØ
f(x)
x° c

ØØØØ ∑
|x° c|2

|x° c| = |x° c|,

from which it follows that

f 0(c) = lim
x!c

f(x)° f(c)
x° c

= 0.

(c) Let CE consist of the countable set of points that appear as endpoints
of the intervals that make up C1, C2, C3, . . . . The content of Exercise 7.6.15
is not only that f 0(x) fails to be continuous at each cE 2 CE but that f 0(x)
attains every value between 1 and °1 in every neighborhood of cE . Given an
arbitrary c 2 C an argument like the one in Exercise 3.4.3 shows that there
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exists a sequence (cn) µ CE with cn ! c. Let ± > 0 be arbitrary. Choose N
so that |cN ° c| < ±/2 so that V±/2(cN ) µ V±(c). Because cN 2 CE , we know
that f 0 attains every value between 1 and °1 in the neighborhood V±/2(cN )
and therefore the same is true inside the neighborhood V±(c). Because ± was
arbitrary, we conclude that f 0 is not continuous at c.

Exercise 7.6.18. The set of discontinuities of f 0 is precisely the Cantor set C.
Because C has measure zero (see Exercise 7.6.4), Lebesgue’s Theorem (Theorem
7.6.5) implies f 0 is Riemann-integrable.

Exercise 7.6.19. We start with the interval [0, 1]. To form C1 we remove 1
interval of length 1/9. To form C2 we then remove two intervals of length 1/27.
In general, to form Cn we remove 2n°1 intervals of length 1/3n+1. If we take
the sum of the lengths of all of the intervals to be removed we get

1
9

+ 2
µ

1
27

∂
+ 4

µ
1
81

∂
+ · · · =

1/9
1° 2/3

=
1
3
.

This implies that the lengths |C1|, |C2|, |C3|, . . . satisfy

lim
n!1

|Cn| = 1° 1
3

=
2
3
.
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Additional Topics

8.1 The Generalized Riemann Integral

Exercise 8.1.1. (a) For any tagged partition (P, {ck}), it is certainly true that
mk ∑ f(ck) ∑ Mk, and this is enough to conclude

L(f, P ) ∑ R(f, P ) ∑ U(f, P ).

The fact that L(f, P ) ∑
R b

a f ∑ U(f, P ) follows from Definition 7.2.7.
(b) Because P 0 is a refinement of P≤, we can use Lemma 7.2.3 to argue

U(f, P 0)° L(f, P 0) ∑ U(f, P≤)° L(f, P≤) <
≤

3
.

Exercise 8.1.2. This again follows from Lemma 7.2.3 and the fact that P 0 is
a refinement of P .

Exercise 8.1.3. (a) To form P 0 from P we added the points of P≤. This means
adding (n ° 1) potentially new points to the interior of [a, b]. Now each new
point adds two terms to U(f, P 0) that do not appear in U(f, P ) and also creates
one term in U(f, P ) that is no longer in U(f, P 0). Thus, there can be at most
3(n ° 1) terms of the form Mk∆xk that appear in one of U(f, P 0) or U(f, P )
but not the other.

(b) Because P is assumed to be ±-fine and P µ P 0, any term from either
U(f, P 0) or U(f, P ) can be estimated by

|Mk(xx ° xk°1)| ∑ M± =
≤

9n
.

Using our conclusion from (a), we then get

U(f, P )° U(f, P 0) ∑ 3(n° 1)
≤

9n
<

≤

3
.

129
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Exercise 8.1.4. (a) For each subinterval [xk°1, xk] from a partition P , we use
Mk = sup{f(x) : x 2 [xk°1, xk]} to compute the upper sum. By the Extreme
Value Theorem, there exist points ck 2 [xk°1, xk] where f(ck) = Mk. Using the
set {ck} as our tags, it follows that U(f, P ) = R(f, P ).

(b) Assume our partition P has n subintervals. Using Lemma 1.3.7, we can
pick points ck 2 [xk°1, xk] so that

Mk ° f(ck) <
≤

n∆xk
for each k 2 {1, . . . , n}.

Then

U(f, P )°R(f, P ) =
nX

k=1

(Mk ° f(ck))∆xk <
nX

k=1

≤

n∆xk
∆xk = ≤.

Exercise 8.1.5. We shall prove f is integrable using the criterion in Theorem
7.2.8. Let ≤ > 0. From our hypothesis we know that there exists a ± > 0 such
that

(1) |R(f, P )°A| <
≤

4

for all ±-fine partitions P regardless of the choice of tags. So let P≤ be ±-fine
and use the previous exercise to pick tags {ck} so that

U(f, P≤)°R(f, P≤, {ck}) <
≤

4
.

Now we can also pick tags {dk} so that

R(f, P≤, {dk})° L(f, P≤) <
≤

4
,

and from (1) above it must be that

|R(f, P≤, {ck})°R(f, P≤, {dk})| <
≤

2
.

A triangle inequality argument then implies

U(f, P≤)° L(f, P≤) <
≤

4
+

≤

2
+

≤

4
= ≤,

and we conclude that f is integrable. A second implication from this string of
inequalities is that

L(f, P≤) ∑ A ∑ U(f, P≤),

from which may conclude that
R b

a f = A.

Exercise 8.1.6. (a) Take P = {0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1}. The choice of
tags does not matter because ∆xk = 1/10 < 1/9 = ±(ck) for every choice of ck.

(b) One such partition could be

P = {0,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
3
4
, 1}.
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For the tags we let c1 = 0 on the first subinterval [0, 1/5]. For every other
subinterval we take ck to be the right-hand endpoint: c2 = 1/4, c3 = 1/3 and
so on.

Exercise 8.1.7. Assume, for contradiction, that this process does not terminate
after a finite number of steps. Then we obtain a sequence of nested intervals
(In) satisfying |In|! 0 and

±(x) ∑ |In| for all x 2 In.

From the Nested Interval Property we know that there exists a point x0 2T1
n=1 In. But then ±(x0) ∑ |In| for all n 2 N, and it follows that ±(x0) = 0.

Because this is not allowed in the definition of a gauge, we conclude that the
algorithm does terminate after a finite number of steps and we obtain a ±(x)-fine
tagged partition.

Exercise 8.1.8. Let ±(x) = min{d1(x), ±2(x)}. It is clear that ±(x) > 0 so this
function qualifies a gauge. From Theorem 8.1.5, there exists a tagged partition
(P, {ck}) that is ±(x)-fine and, consequently, it is also ±1(x)-fine and ±2(x)-fine.
It follows that

|A1 °A2| ∑ |A1 °R(f, P )| + |R(f, P )°A2|

<
≤

2
+

≤

2
= ≤,

and we conclude that A1 = A2.

Exercise 8.1.9. Looking at Theorem 8.1.2, we just observe that the constant
± can also serve as the gauge function ± = ±(x) required in Definition 8.1.6.

Exercise 8.1.10. Let (P, {ck}) be ±(x)-fine. If c /2 Q then g(ck)∆xk = 0. If
ck = rk0 for some k0, then

g(ck)∆xk = ∆xk < ±(rk0) =
≤

2k0+1
.

Because it is possible for rk0 to be a tag in at most two partitions, it follows
that

nX

k=1

g(ck)∆xk < 2
1X

k0=1

±(rk0) = 2
≥ ≤

2

¥
= ≤.

Thus R(g, P ) < ≤ and it follows that
R 1
0 g = 0.

Exercise 8.1.11. This is due to the fact that we have a “telescoping” sum.
Writing out the terms in the finite sum

Pn
k=1 F (xk) ° F (xk°1), we can check

that all of the summands cancel out except F (xn) = F (b) and °F (x0) = °F (a).

Exercise 8.1.12. We are assuming F is differentiable with F 0(c) = f(c). This
means that

f(c) = lim
x!c

F (x)° F (c)
x° c

.

The ≤–± criterion for functional limits then asserts the existence of the ±(c) > 0
described in the exercise.
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Exercise 8.1.13. Let’s first apply the result in Exercise 8.1.12 with x = xk

and c = ck. Because our tagged partition is assumed to be ±(c)-fine we know
that (xk ° ck) ∑ (xk ° xk°1) < ±(ck) and so

ØØØØ
F (xk)° F (ck)

xk ° ck
° f(ck)

ØØØØ < ≤.

Multiplying by the positive number (xk°ck) gives the first requested inequality.
To obtain the second one we again apply Exercise 8.1.12, this time with x = xk°1

and c = ck.
An equivalent way to write these two inequalities is

°≤(xk ° ck) < F (xk)° F (ck)° f(ck)(xk ° ck) < ≤(xk ° ck)

°≤(ck ° xk°1) < F (ck)° F (xk°1)° f(ck)(ck ° xk°1) < ≤(ck ° xk°1),

and adding along the respective columns yields

°≤∆xk < F (xk)° F (xk°1)° f(ck)∆xk < ≤∆xk.

Now this is equivalent to |F (xk) ° F (xk°1) ° f(ck)∆xk| < ≤∆xk and taking a
sum over k gives us

nX

k=1

|F (xk)° F (xk°1)° f(ck)∆xk| < ≤(b° a).

Looking back at the beginning of the proof in the text, we see that we have now
derived the inequality requested in (2) albeit with ≤(b ° a) in place of ≤. This
completes the proof.

Exercise 8.1.14. (a) One implication of Theorem 8.1.9 is that every derivative
has a generalized Riemann integral.

(b) A second implication of Theorem 8.1.9 is
Z b

a
(F ± g)0 = F (g(b))° F (g(a)).

By the Chain Rule,

(F ± g)0(x) = F 0(g(x)) · g0(x)
= f(g(x)) · g0(x) = (f ± g) · g0(x)

which implies Z b

a
(f ± g) · g0 = F (g(b))° F (g(a)).

(c) Because f = F 0 on the interval g([a, b]), Theorem 8.1.9 implies that f
has generalized Riemann integral

Z g(b)

g(a)
f = F (g(b))° F (g(a)).
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Combining this with the last equation in (b) gives
Z b

a
(f ± g) · g0 =

Z g(b)

g(a)
f,

as desired.

8.2 Metric Spaces and the Baire Category The-
orem

Exercise 8.2.1. (a) This is a metric. In fact this is the standard Euclidean
distance function on R2. Conditions (i) and (ii) are straightforward. The most
common way to prove (iii) is to introduce the scalar product from vector cal-
culus. Squaring both sides of (iii) gives in equivalent inequality that can be
derived using the so-called Schwartz inequality. An alternative proof can be
derived by first considering the special case where the point z falls on the line

l(t) = (x1, x2) + t(y1 ° x1, y2 ° x2), t 2 R

through the points x and y. In this case z = l(t0) for some t0 2 R and it
follows that d(x, z) = |t0|d(x, y) and d(z, y) = |1° t0|d(x, y). Then the triangle
inequality in R implies

d(x, y) = (t0 + 1° t0) d(x, y)
∑ (|t0| + |1° t0|) d(x, y)
= d(x, z) + d(z, y).

To prove the general case, we let z 2 R2 be arbitrary, and pick zt to be the
point on the line l(t) such that the line through z and zt is perpendicular to
l(t). Because x and y are both on the line l(t), we can use the Pythagorean
Theorem to show that d(x, zt) ∑ d(x, z) and d(y, zt) ∑ d(y, z). Applying the
previous result about collinear points we get

d(x, y) ∑ d(x, zt) + d(zt, y) ∑ d(x, z) + d(z, y).

(b) This is a metric. Again, conditions (i) and (ii) can be easily verified. For
(iii), we must consider 5 distinct cases. First, suppose that x, y and z are all
distinct. Then

d(x, y) = 1 < 2 = d(x, z) + d(z, y).

If x = y 6= z, then

d(x, y) = 0 < 2 = d(x, z) + d(z, y).

If x 6= y = z, then

d(x, y) = 1 ∑ 1 = d(x, z) + d(z, y),
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which is identical to the case where y 6= x = z. Finally, if x = y = z, then

d(x, y) = 0 ∑ 0 = d(x, z) + d(z, y).

Thus the triangle inequality holds for all possible scenarios.
(c) This is a metric. It is clear that d(x, y) ∏ 0. Also, if max{|x1° y1|, |x2°

y2|} = 0, then |x1 ° y1| = 0 and |x2 ° y2| = 0. But this is true if and only if
x1 = y1 and x2 = y2. This proves (i). Because |xi°yi| = |yi°xi|, condition (ii)
holds. For (iii), consider the case where max{|x1 ° y1|, |x2 ° y2|} = |x1 ° y1|.
The triangle inequality from R1 implies

|x1 ° y1| ∑ |x1 ° z1| + |z1 ° y1|.

Because |x1 ° z1| ∑ d(x, z) and |z1 ° y1| ∑ d(z, y), it follows that

|x1 ° y1| ∑ d(x, z) + d(z, y),

and similar argument works in the other case.
(d) This is not a metric, for it fails conditions (i) and (iii). This example

fails (i) because we can have have d(x, y) = 0 where x 6= y. For instance, let
x = (1,°1) and let y = (1, 1). Then d(x, y) = |1(°1)+1(1)| = 0, but x2 6= y2, so
x 6= y. Part (iii) also does not hold in general. Consider x = (1,°1), y = (4,°1),
and z = (1, 1). Then

d(x, y) = 6 > 5 = d(x, z) + d(z, y),

which violates the triangle inequality.

Exercise 8.2.2. (a) This is a metric. Clearly d(f, g) ∏ 0 and sup{|f(x) °
g(x)|} = 0 if and only if f(x) = g(x) for all x 2 [0, 1]. We also have that
|f(x)° g(x)| = |g(x)° f(x)|, so condition (ii) holds. For (iii), we want to show
that

sup{|f(x)° g(x)|} ∑ sup{|f(x)° h(x)|} + sup{|h(x)° g(x)|}.

Because | ° g| is a continuous function on the compact set [0, 1], the Extreme
Value Theorem asserts that there exists an x0 2 [0, 1] where |f(x0) ° g(x0)| is
maximum. It follows that

|f(x0)° g(x0)| = |f(x0)° h(x0) + h(x0)° g(x0)|
∑ |f(x0)° h(x0)| + |h(x0)° g(x0)|
∑ sup{|f(x)° h(x)|} + sup{|h(x)° g(x)|}.

Hence (iii) is true and we have a metric.
(b) This is not a metric. It fails condition (i), because it is possible for

f(1)°g(1) = 0 when f 6= g. For instance, let f(x) = 2x°1 and let g(x) = 3x°2.
Then f(1)° g(1) = 0 but f(x) 6= g(x).
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(c) This is a metric. We can immediately verify that
R 1
0 |f ° g| ∏ 0. ThatR 1

0 |f ° g| = 0 implies f = g is a consequence of the fact that |f ° g| is non-
negative and continuous. The details of this argument are contained in Exercise
7.4.4 (c). This shows condition (i) holds. Clearly |f ° g| = |g° f |, so (ii) is true
as well. For (iii), we know that

|f ° g| = |f ° h + h° g|
∑ |f ° h| + |h° g|.

It then follows from Theorem 7.4.2 (i) and (iv) that
Z 1

0
|f ° g| ∑

Z 1

0
|f ° h| +

Z 1

0
|h° g|.

Thus (iii) holds, and we have a metric.

Exercise 8.2.3. See Exercise 8.2.1 (b). In this exercise, we did not use the fact
that X = R2. Hence our argument holds for any set X.

Exercise 8.2.4. Let (X, d) be a metric space and let (xn) µ X converge to
x 2 X. Given ≤ > 0, there exists an N such that d(xn, x) < ≤/2 whenever
n ∏ N . Now if n,m ∏ N we can use the triangle inequality to write

d(xm, xn) ∑ d(xm, x) + d(x, xn) <
≤

2
+

≤

2
= ≤.

Thus (xn) is a Cauchy sequence.

Exercise 8.2.5. (a) By considering values of ≤ less than one, we can show
that Cauchy sequences in this metric space are eventually constant sequences.
Because such a sequence converges (to this constant value), R2 is complete with
respect to this metric.

(b) Assume that (fn) is a Cauchy sequence in the metric of Exercise 8.2.2 (a).
Then given ≤ > 0, there exists an N such that d(xm, xn) < ≤ for all m,n ∏ N .
This implies that

|fm(x)° fn(x)| < ≤ for all m,n ∏ N and x 2 [0, 1].

Thus (fn) converges uniformly according to the Cauchy Criterion for Uniform
Convergence (Theorem 6.2.5). What is really happening here is that conver-
gence with respect to this metric is equivalent to uniform convergence on [0, 1].
If f = limn!1 fn uniformly, then f is continuous by Theorem 6.2.6. Hence f
is an element of C[0, 1] and the metric is complete.

(c) Let’s start with a Cauchy sequence (fn) in C[0, 1]. In (b) we saw that
there exists f 2 C[0, 1] such that fn ! f uniformly, but it does not have to be
the case that f 2 C1[0, 1]. A counterexample appears in Example 6.2.2 (iii).

(d) Convergent sequences in the discrete metric are eventually constant se-
quences.
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Figure 8.1: Sketch of h±(x).

Exercise 8.2.6. (a) Let ≤ > 0. We need to find a ± > 0 such that

|g(f)° g(h)| < ≤ whenever d(f, h) < ±.

Because k 2 C[0, 1], there exists a constant K > 0 satisfying |k(x)| ∑ K for all
x 2 [0, 1]. Now the properties of the Riemann integral allow us to write

|g(f)° g(h)| =
ØØØØ
Z 1

0
fk °

Z 1

0
hk

ØØØØ

=
ØØØØ
Z 1

0
(f ° h)k

ØØØØ

∑
Z 1

0
|f ° h||k| ∑ K

Z 1

0
|f ° h|.

Now pick ± = ≤/K. Then d(f, h) < ± implies

|g(f)° g(h)| ∑ K

Z 1

0
|f ° h|

< K

Z 1

0

≤

K
= ≤,

and g is continuous on C[0, 1].
(b) Let ≤ > 0. We need to find a ± > 0 such that d(f, h) < ± implies

|g(f) ° g(h)| < ≤. In this case it works to take ± = ≤. To see why, note that if
d(f, h) < ≤ then

|g(f)° g(h)| = |f(1/2)° h(1/2)| ∑ sup{|f(x)° h(x)| : x 2 [0, 1]}
= d(f, h) < ≤,

as desired.
(c) Let f be the zero function and for small ± > 0 let h± be the function

pictured in Figure 8.1. Note that h(x) = 0 on [0, 1/2 ° ±] and [1/2 + ±, 1]. On
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(1/2°±, 1/2+±) define h to be the piecewise linear “tent” satisfying h(1/2) = 1.
Then d(f, h±) =

R 1
0 |h±| = ±. Now observe that for all ± > 0 we have

|f(1/2)° h±(1/2)| = 1.

Given ≤0 = 1/2, for instance, the functions h± can be chosen arbitrarily close
to f and still satisfy |g(f) ° g(h±)| ∏ ≤0. Thus g is not continuous at f , and a
similar argument shows it is not continuous at any other point.

Exercise 8.2.7. (a) The ≤-neighborhoods of the metric in (a) are discs with
center x and radius ≤. For the metric in (b), V≤(x) = R2 if ≤ ∏ 1. If ≤ < 1,
then V≤(x) is a singleton point. The metric in part (c) has ≤-neighborhoods that
form a square with sides of length 2≤ and x in the center. In the discrete metric,
V≤(x) = X if ≤ ∏ 1. If ≤ < 1, then V≤(x) is a singleton point.

(b) Using the discrete metric in R, V≤(x) is the entire real line if ≤ ∏ 1. If
≤ < 1 then V≤(x) is a singleton point.

Exercise 8.2.8. (a) Let a 2 V≤(x). We want to show that there exists an
≤0 > 0 such that V≤0(a) µ V≤(x). According to Definition 8.2.6, d(x, a) < ≤. Let
≤0 = ≤° d(x, a). If b 2 V≤0(a) then d(a, b) < ≤0 and the triangle inequality imlies

d(x, b) ∑ d(x, a) + d(a, b)
< d(x, a) + ≤0 = ≤.

This implies that b 2 V≤(x), so V≤0(a) µ V≤(x). Hence V≤(x) is open.
The set C≤(x) is closed. Assume that y is a limit point of C≤(x). If ± > 0,

then V±(y) intersects C≤(x) at a point z 6= y. So d(x, z) ∑ ≤ and d(z, y) < ±. By
the triangle inequality,

d(x, y) ∑ d(x, z) + d(z, y)
∑ ≤ + ±.

Because ± > 0 is arbitrary, it must be that d(x, y) ∑ ≤. Therefore y 2 C≤(x) and
thus C≤(x) is closed.

(b) Let h be a limit point of Y , and let ≤ > 0 be arbitrary. Then V≤(h)
intersects Y at a point g 6= h. So d(g, h) < ≤, and g 2 Y meaning |g(x)| ∑ 1 for
all x 2 [0, 1]. It follows that

|h(x)| = |h(x)° g(x) + g(x)|
∑ |h(x)° g(x)| + |g(x)|
< ≤ + 1.

Because ≤ > 0 is arbitrary, |h(x)| ∑ 1 for all x 2 [0, 1] and thus h 2 Y . This
proves Y is closed.

(c) This set is closed. Suppose that g is a limit point of T . Then, given
≤ > 0, we know V≤(g) intersects T at a point h 6= g. So

|g(0)° h(0)| ∑ d(g, h)) < ≤.
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But h 2 T so h(0) = 0 and this implies |g(0)| < ≤. Because ≤ is arbitrary, we
conclude that g(0) = 0, and hence g 2 T . Thus T is closed.

Exercise 8.2.9. (a) A subset K of a metric space (X, d) is bounded if there
exists M > 0 and x 2 X such that d(x, k) ∑ M for all k 2 K.

(b) First let’s prove that K is bounded. Assume, for contradiction, that K
is not bounded. Our goal is to produce a sequence in K that does not have a
convergent subsequence. Because K is not bounded, there must exist elements
x1, x2 2 K satisfying d(x1, x2) ∏ 1. Having picked x2, there exists an element
x3 2 K such that d(x2, x3) ∏ 2. In general, given xn 2 K, we can pick xn+1 2 K
satisfying d(xn, xn+1) ∏ 2n. An extended triangle inequality argument shows
that it must be that d(xn, xm) ∏ 1 for all m 6= n.

Now, because K is assumed to be compact, (xn) has a convergent sub-
sequence (xnk). But the elements of the subsequence (xnk) must necessarily
satisfy d(xnk , xnk0 ) ∏ 1, and consequently (xnk) is not Cauchy and cannot con-
verge. This contradiction proves K is bounded.

To show that K is closed let x be an arbitrary limit point of K. For each
±n = 1/n, the neighborhood V±n(x) intersects K so we can choose xn 2 K \
V±n(x). It follows that (xn) ! x and (xn) µ K. By compactness, there is a
subsequence (xnk) ! y with y 2 K. But every subsequence of a convergent
sequence converges to the same limit, so y = x which implies x 2 K. Thus, K
is closed.

(c) We have already shown that Y is closed, and the fact that d(f, 0) ∑ 1
for all f 2 Y shows that Y is bounded.

To see that Y is not compact, consider the sequence fn(x) = xn and check
that fn 2 Y . Now the pointwise limit f(x) = lim fn(x) is not continuous and
every subsequence of (fn) will necessarily converge pointwise to f /2 C[0, 1].
Because convergence in the metric space C[0, 1] means uniform convergence
and uniform limits of continuous functions are continuous, we see there is no
way to find a convergent subsequence of (fn).

Exercise 8.2.10. (a) ()) Assume that E is closed. Then E contains its limit
points, so E [L = E, where L is the set of limit points of E. Therefore E = E.
(() Now assume that E = E. Then E = E [ L, so E contains its limit points
and hence it is closed.

()) Assume that E is open. Then for each x 2 E, there exists an ≤ > 0
such that V≤(x) µ E. Hence E = E±. (() For the other direction, if E± = E,
then for each x 2 E, V≤(x) µ E. Hence E is open.

(b) Let x 2 E
c. Then x /2 E. Hence there exists ≤ > 0 such that V≤(x) does

not intersect E, so V≤(x) µ Ec. By Definition 8.2.8, x 2 (Ec)±. This shows
E

c µ (Ec)±. To prove the other inclusion let x 2 (Ec)±. Then there exists
V≤(x) µ Ec. So x /2 E, and hence x 2 E

c. Thus (Ec)± µ E
c and E

c = (Ec)±.

To prove the second statement let x 2 (E±)c. Then x /2 E±, so every V≤(x)
fails to be contained in E. Thus every V≤(x) intersects Ec, and therefore x 2 Ec.
This shows (E±)c µ Ec. Now assume x 2 Ec. Then every V≤(x) intersects Ec,
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and so V≤(x) is not contained in E. Thus x /2 E± implying x 2 (E±)c. This
proves Ec µ (E±)c and hence we have (E±)c = Ec.

Exercise 8.2.11. Set ≤ = 1 and consider the discrete metric on an arbitrary
space X consisting of at least two points. If we fix x 2 X, then V≤(x) is just the
singleton set {x}. Because this set has no limit points we also get V≤(x) = {x}.
On the other hand, the set {y 2 X : d(x, y) ∑ 1} is the entire space X.

Note that an important consequence of Exercise 8.2.8 (a) is that we always
have the inclusion

V≤(x) µ {y 2 X : d(x, y) ∑ ≤}.

This fact is used implicitly in the proof of Theorem 8.2.10.

Exercise 8.2.12. ()) Let E be nowhere-dense in X. Then E
± is empty. This

means that given x 2 E, every V≤(x) intersects E
c. So x is a limit point of E

c.
It follows that E

c = X, and hence E
c is dense.

(() Now assume that E
c is dense. Then E

c = X. So every point x 2 X is
either an element of E

c or a limit point of E
c. This implies that for all ≤ > 0,

V≤(x) is not contained in E, which means that E
± is empty. Hence E is nowhere

dense.

Exercise 8.2.13. (a) Pick x1 2 O1. Because O1 is open, there exists an ≤1 > 0
such that V≤1(x1) µ O1. Since O2 is dense, there exists an x2 2 V≤1(x1) \ O2.
We also have that V≤1(x1) \ O2 is open, so there exists an ≤2 > 0 such that
V≤2(x2) µ V≤1(x1) \ O2, and let’s also insist that ≤2 satisfy ≤2 < ≤1/2. Now
certainly V≤2(x2) µ O2, but we want V≤2(x2) µ V≤1(x1) to be true. By shrinking
≤2 we can ensure that the closure of V≤2(x2) is contained in V≤1(x1). (The result
in Exercise 8.2.8 (a) and the discussion in the solution of Exercise 8.2.11 contain
the justification for this last claim.)

(b) In general, following (a) we can produce a sequence (xn) with

V≤n+1(xn+1) µ V≤n(xn) µ On where ≤n+1 < ≤1/2n.

This last condition on (≤n) ensures that (xn) is a Cauchy sequence and so
x = limn!1 xn exists because our space is complete. For each m 2 N, our
sequence (xn) is eventually contained in the set V≤m+1(xm+1) µ Om. It follows
that x 2 Om and the intersection

T1
m=1 Om is not empty.

Exercise 8.2.14. If E is nowhere-dense in X, then (E)c is dense. Although we
have not explicitly proved it to this point, we can also show that the complement
of a closed set (such as E) is open.

Now suppose that En is a collection of nowhere dense sets and assume, for
contradiction, that X =

S1
n=1 En. Then certainly it is true that X =

S1
n=1 En.

By De Morgan’s Law, this implies that
T1

n=1(En)c is empty. But since (En)c is
dense and open, this intersection is not empty by Theorem 8.2.10, so we have
reached a contradiction.
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Exercise 8.2.15. Assume f is differentiable at x so that

f 0(x) = lim
t!x

f(x)° f(t)
x° t

.

Choose n > |f 0(x)|. Applying the definition of functional limits with ≤0 =
n° |f 0(x)|, it follows that there exists a ± > 0 such that

ØØØØ
f(x)° f(t)

x° t
° f 0(x)

ØØØØ < ≤0 whenever 0 < |x° t| < ±.

Now choose m large enough so that 1/m < ±. Then we can show 0 < |x° t| <
1/m implies ØØØØ

f(x)° f(t)
x° t

ØØØØ ∑ n,

and we conclude that f 2 Am,n.

Exercise 8.2.16. (a) The sequence (xk) is contained in [0, 1] and so the Bolzano–
Weierstrass Theorem can be applied to argue that there is a convergent subse-
quence.

(b) Let ≤ > 0. Because fkl ! f uniformly, we can pick L1 so that l ∏ L1

implies |fkl(y) ° f(y)| < ≤/2 for all y 2 [0, 1]. Now the limit function f is
continuous at x and so there exists a ± > 0 such that

|f(xkl)° f(x)| <
≤

2
whenever |xkl ° x| < ±.

Because xkl ! x, we can pick L2 so that |xkl ° x| < ± for all l ∏ L2. Finally,
set L = max{L1, L2}. Then l ∏ L implies

|fkl(xkl)° f(x)| ∑ |fkl(xkl)° f(xkl)| + |f(xkl)° f(x)|

<
≤

2
+

≤

2
= ≤.

(c) If t satisfies |x°t| < 1/m, then there exists an L such that |xkl°x| < 1/m
for all l ∏ L. In this case we have

ØØØØ
fkl(xkl)° fkl(t)

xkl ° t

ØØØØ ∑ n.

Now taking the limit as l !1 and using (b) together with the Algebraic Limit
Theorem and the Order Limit Theorem gives

ØØØØ
f(x)° f(t)

x° t

ØØØØ ∑ n.

The conclusion is that f 2 Am,n meaning that Am,n contains its limit points
and thus is closed.
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Exercise 8.2.17. (a) Because f is continuous on [0,1], it is uniformly continu-
ous. Thus, given ≤ > 0, there exists ± > 0 such that

(1) |f(x)° f(y)| < ≤/4 whenever |x° y| < ±.

Now let {0 = x0 < x1 < · · · < xn = 1} be a partition of [0, 1] where every
subinterval satisfies xk ° xk°1 < ±. Our function p is going to satisfy p(xk) =
f(xk) for all k = 0, 1, . . . , n. On each subinterval [xk°1, xk] we define p(x) to be
the line segment connecting the endpoints (xk°1, f(xk°1)) and (xk, f(xk)). It’s
straightforward to check that p is piecewise linear and continuous. Also, given
a point x 2 [xk°1, xk], statement (1) above implies

|f(x)° p(x)| ∑ |f(x)° f(xk)| + |f(xk)° p(x)|

<
≤

4
+

≤

4
=

≤

2
.

It follows that kf ° pk+1 < ≤/2.
(b) Assume |h(x)| ∑ 1 for all x 2 [0, 1]. Then

|f(x)° g(x)| = |f(x)° p(x) +
≤

2
h(x)|

∑ |f(x)° p(x)| + ≤

2
|h(x)|

<
≤

2
+

≤

2
= ≤.

It follows that d(f, g) < ≤ and thus g 2 V≤(f).
(c) Because p is piecewise linear, we can let M be the maximum of the

absolute values of the slopes of each segment that make up p. Now consider the
sawtooth function h(x) from Section 5.4 and sketched in Figure 5.6. For any
choice of N 2 N, the function

gN (x) = p(x) +
≤

2
h(Nx)

is continuous, piecewise linear and, by part (b), falls in the ≤-neighborhood
V≤(f). Now if we choose N > 2(n+M)/≤, we can argue that every line segment
that makes up gN has slope greater than n in absolute value. The result of this
is that gN /2 Am,n and consequently V≤(f) is not contained in Am,n. Because ≤
and f were arbitrary, it follows that Am,n has no interior points and thus it is
nowhere dense.

We conclude that D is a subset of the countable union of the nowhere dense
sets {Am,n} and thus D is a set of first category in C[0, 1].

8.3 Fourier Series

Exercise 8.3.1. (a) Taking partial derivatives yields

@2u

@x2
= °bn sin(nx) cos(nt) · n2 =

@2u

@t2
.
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Also
u(0, t) = bn sin(0) cos(nt) = 0 and

u(º, t) = bn sin(ºn) cos(nt) = 0.

Note that this second statement requires n be an integer. Finally,

@u

@t
= °bn sin(nx) sin(nt) · n,

and setting t = 0 gives @u
@t (x, 0) = 0.

(b) The derivative is a linear transformation meaning that the derivative of
the sum of functions is the sum of the derivatives of each one. This property
makes (1) and (3) true for a sum of solutions, and (2) is easy to check as well.

Exercise 8.3.2. (a)
Z º

°º
cos(nx) dx =

1
n

sin(nx)
ØØØØ
º

°º

= 0.

(b) Using a trigonometric identity for cos2 µ we get
Z º

°º
cos2(nx) dx =

x

2
+

1
4n

sin(2nx)
ØØØØ
º

°º

=
≥º

2
+ 0

¥
°

µ
°º

2
+ 0

∂
= º.

(c) Using a trigonometric identity for cos µ sin Ø we get
Z º

°º
cos(mx) sin(nx) dx = °cos(n°m)x

2(n°m)
° cos(n + m)x

2(n + m)

ØØØØ
º

°º

= 0,

where the zero occurs because the cosine function is even and gives the same
value at x = º and x = °º.

The other integrals in (a), (b) and (c) can be done in a similar fashion.

Exercise 8.3.3. Start with equation (6) in the text and multiply each side of
this equation by cos(mx) to get

f(x) cos(mx) = a0 cos(mx) =
1X

n=1

an cos(nx) cos(mx) + bn sin(nx) cos(mx).

Now take the integral of each side of this equation from °º to º and, as before,
distribute the integral through the infinite sum. Using Exercise 8.3.2, we see
that for a0 and for every value of n 2 N we get an integral that equals zero
except the one where n = m. When n = m we get

Z º

°º
am cos2(mx) dx = amº

and it follows that Z º

°º
f(x) cos(mx) dx = amº.

The formula for am is immediate. To get the formula for bm we multiply across
equation (6) by sin(mx) and follow the same procedure.
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Exercise 8.3.4. (a) The approximating functions are trigonometric functions,
which are continuous. The limit function f(x) is not continuous. Because the
uniform limit of continuous functions is continuous, we know the convergence
in this case cannot be uniform.

(b) The function g(x) = |x| is even and so a symmetry argument shows that
bn = 0 for all n ∏ 1. For a0 we write

a0 =
1
2º

Z º

°º
|x|dx =

1
º

Z º

0
xdx =

1
º

µ
º2

2

∂
=

º

2
.

For an with n ∏ 1 we use integration by parts to compute

an =
1
º

Z º

°º
|x| cos(nx)dx =

2
º

Z º

0
x cos(nx)dx

=
2
º

µ
x

n
sin(nx) +

1
n2

cos(nx)
ØØØØ
º

0

∂

=
2

n2º
(cos(nº)° 1)

=
Ω
°4/(n2º) if n is odd
0 if n is even.

Plugging these results into equation (6) in the text we get

|x| =
º

2
° 4

º

1X

m=0

1
(2m + 1)2

cos((2m + 1)x).

Before constructing any graphs, we can observe that the coefficients in this case
go to zero like 1/n2. More specifically, we have

|an cos(nx)| < (4/º)(1/n2)

and because
P

1/n2 converges we can use the Weierstrass M-Test to conclude
that our series converges uniformly to some continuous function. In fact, Sn

does converge to g is this case as suggested by the sketch of S3 and g in Figure
8.2.

(c) Taking the term-by-term derivative of the series for g(x) = |x| in (b)
gives the Fourier series for the square-wave f(x) derived in Example 8.3.1. This
makes intuitive sense because away from zero we have g0(x) = f(x). Using
SN (x) to denote the partial sums of the Fourier series for g(x) in (b), we have
g(x) = lim SN (x). Then graphical evidence suggests that, for all x 6= nº,

(1) g0(x) = f(x) = lim S0N (x).

In order to use Theorem 6.4.3 to prove something rigorous, we would need to
know that S0N (the Fourier series for f(x)) converges uniformly. The Weierstrass
M-Test is of no use because the Fourier coefficients for f(x) go to zero like 1/n
and

P
1/n diverges. We remarked in (a) that the convergence to f(x) is not
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–3 –2 –1 1 2 3
x

Figure 8.2: g(x) = |x| and S3 on [°º,º].

uniform on intervals containing x = 0. This is reassuring since g0 does not exist
here. On compact sets that do not contain points of the form x = nº, it turns
out that the convergence of the series for f(x) is uniform meaning statement
(1) above could be proved using Theorem 6.4.3.

Differentiating the series for f(x) term-by-term gives a series of the form

4
º

1X

m=0

cos((2m + 1)x) =
4
º

(cos(x) + cos(3x) + cos(5x) + · · · ).

When x = ±º/2 the series converges to zero, but otherwise the series diverges
because the terms do not tend to zero. Thus, even though f 0 exists (away
from zero), we cannot obtain a valid representation for f 0 by differentiating
the Fourier series for f in a term-by-term fashion. This predicament should be
contrasted with the situation for power series where term-by-term differentiation
always yields a valid series.

Exercise 8.3.5. Recall that any function continuous on a compact set is uni-
formly continuous. Thus h is uniformly continuous over, say, [º, 3º]. This means
that given ≤ > 0, there exists a ± > 0 that “works” for all pairs x, y in this set.
Now the fact that h is periodic implies that this ± suffices on all of R.

Exercise 8.3.6. Let c be the midpoint of [a, b], and let’s assume [a, b] is chosen
so that sin(na) = sin(nb) = sin(nc) = 0 with sin(nx) ∏ 0 on [a, c] and sin(nx) ∑
0 on [c, b].

a
c b
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Then
Z b

a
h(x) sin(nx) dx =

Z c

a
h(x) sin(nx) dx +

Z b

c
h(x) sin(nx) dx,

and the trick is to argue that because h does not change very much over this
interval, the two integrals on the right mostly cancel out. To make this explicit,
note that sin(n(x + º/n)) = ° sin(nx) so
Z b

c
h(x) sin(nx) dx =

Z c

a
h(x+º/n) sin(n(x+º/n)) dx = °

Z c

a
h(x+º/n) sin(nx) dx.

Then we can write
ØØØØØ

Z b

a
h(x) sin(nx) dx

ØØØØØ =
ØØØØ
Z c

a
(h(x)° h(x + º/n)) sin(nx) dx

ØØØØ

∑
Z c

a
|h(x)° h(x + º/n)| sin(nx) dx

<
≤

2

Z c

a
sin(nx) dx

=
≤

2

µ
2
n

∂
=

≤

n
.

Over the interval [°º, º] there are exactly n intervals of length 2º/n like the
interval [a, b]. Thus it follows that

ØØØØ
Z º

°º
h(x) sin(nx) dx

ØØØØ ∑ n ·

ØØØØØ

Z bn

an

h(x) sin(nx) dx

ØØØØØ < n
≥ ≤

n

¥
= ≤,

for all n ∏ N . This completes the proof.

Exercise 8.3.7. (a) Because f is continuous, the function qx(u) = f(u + x)°
f(x) is continuous. It follows from the Riemann–Lebesgue Lemma (Theorem
8.3.2) that Z º

°º
qx(u) cos(Nx) dx ! 0 as N !1.

(b) The idea here is to show that the discontinuity of px(u) at zero is remov-
able; that is, that px(u) can be defined at u = 0 in such a way that makes px

continuous. To see how to do this write

px(u) =
(f(u + x)° f(x)) cos(u/2)

sin(u/2)

= 2
f(u + x)° f(x)

u
· (u/2)
sin(u/2)

· cos(u/2).

The fact that f is differentiable at x and the well-known limit limt!0 sin(t)/t = 1
imply

lim
u!0

px(u) = 2f 0(x).
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Thus, defining px(0) = 2f 0(x) makes px continuous on (°º, º] and it now follows
from the Riemann–Lebesgue Lemma that

Z º

°º
px(u) sin(Nu) du ! 0 as N !1.

Exercise 8.3.8. This exercise appeared as Exercise 2.3.11.

Exercise 8.3.9. For k = 1, 2, . . . , N write

Dk(µ) =
1
2

∑
cos(kµ) +

sin(kµ) cos(µ/2)
sin(µ/2)

∏

as in the proof of Theorem 8.3.3. Then,

1
N + 1

"
1
2

+
NX

k=1

Dk(µ)

#
=

1
2(N + 1)

"
1 +

NX

k=1

cos(kµ) +
cos(µ/2)
sin(µ/2)

NX

k=1

sin(kµ)

#

=
1

2(N + 1)

∑
1
2

+ DN (µ) +
cos(µ/2)
sin(µ/2)

sin(Nµ/2) sin((N + 1)µ/2)
sin(µ/2)

∏

=
1

2(N + 1) sin2(µ/2)
[B] ,

where

B =
sin2(µ/2)

2
+

sin(µ/2) sin(Nµ + µ
2 )

2
+ cos(µ/2) sin(Nµ/2) sin((N + 1)µ/2).

To finish the proof we must show that B = sin2((N +1)µ/2). Using the identity
sin(t) cos(t) = (1/2) sin(2t), we can write

sin2((N + 1)µ/2) = [sin(Nµ/2) cos(µ/2) + cos(Nµ/2) sin(µ/2)]2

= sin2(Nµ/2) cos2(µ/2) +
sin(Nµ) sin(µ)

2
+ cos2(Nµ/2) sin2(µ/2).

Now we use Fact 1(b) from the text together with the identities sin(t) cos(t) =
(1/2) sin(2t) and 1 + cos(t) = 2 cos2(t/2) to write

B =
sin2(µ/2)

2
+

sin(µ/2)
2

[cos(Nµ) sin(µ/2) + sin(Nµ) cos(µ/2)]

+ cos(µ/2) sin(Nµ/2) [cos(Nµ/2) sin(µ/2) + sin(Nµ/2) cos(µ/2)]

=
sin2(µ/2)

2
[1 + cos(Nµ)] +

sin(Nµ) sin(µ)
4

+
sin(Nµ) sin(µ)

4
+ sin2(Nµ/2) cos2(µ/2)

= sin2(µ/2) cos2(Nµ/2) +
sin(Nµ) sin(µ)

2
+ sin2(Nµ/2) cos2(µ/2).

This completes the derivation.
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–3 –2 –1 1 2 3
x

Figure 8.3: F16 on [°º, º].

Exercise 8.3.10. (a) Setting D0 = 1/2, we get that

Sn(x) =
1
º

Z º

°º
f(u + x)Dn(u) du for all n ∏ 0

as in the proof of Theorem 8.3.3. Then,

æN (x) =
1

N + 1

NX

n=0

Sn(x) =
1

N + 1

NX

n=0

µ
1
º

Z º

°º
f(u + x)Dn(u) du

∂

=
1
º

Z º

°º
f(u + x)

√
1

N + 1

NX

n=0

Dn(u)

!
du

=
1
º

Z º

°º
f(u + x)FN (u) du.

(b) Looking at Figure 8.3, we see that FN , like DN , has a spike at the origin.
However, unlike DN , FN ∏ 0 and as N gets larger we can observe that away
from zero the magnitude of the oscillations actually dies off to zero. To make
this observation explicit, we can refer to the formula

FN (u) =
1

2(N + 1)

"
sin((N + 1) µ

2 )
sin( µ

2 )

#2

.

If ± ∑ |u| ∑ º, then | sin(u/2)| ∏ sin(±/2) and we see

|FN (u)| ∑ 1
2(N + 1)

µ
1

sin(±/2)

∂2

.

Because this estimate tends to zero as N !1 and is independent of u, we see
that FN ! 0 uniformly on the set ± ∑ |u| ∑ º.
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(c) This follows from the fact that
R º
°º Dk(u) du = º for k = 0, 1, . . . , N .

(d) From (c) we are able to write

f(x) =
1
º

Z º

°º
f(x)FN (u) du,

so that

æN (x)° f(x) =
1
º

Z º

°º
(f(u + x)° f(x))FN (u) du

=
1
º

Z ±

°±
(f(u + x)° f(x))FN (u) du +

Z

|u|∏±
(f(u + x)° f(x))FN (u) du.

Given ≤ > 0, use the uniform continuity of f to choose ± > 0 so that

|f(x + u)° f(x)| < ≤ whenever |u| < ±.

It follows that
ØØØØØ
1
º

Z ±

°±
(f(u + x)° f(x))FN (u) du

ØØØØØ ∑ ≤

º

Z ±

°±
FN (u) du

<
≤

º

Z º

°º
FN (u) du = ≤.

Having chosen ±, now pick N0 large enough so that N ∏ N0 implies |FN (u)| ∑ ≤
for all |u| ∏ ±. Letting M be an upper bound on the size of |f | we see

|f(u + x)° f(x)|FN (u) ∑ 2M≤

as long as |u| ∏ ±, and it follows that

1
º

ØØØØØ

Z

|u|∏±
(f(u + x)° f(x))FN (u) du

ØØØØØ ∑
1
º

(2M≤)
Z º

°º
du = 4M≤.

Combining the estimates on each of these two integrals, we get that

|æN (x)° f(x)| ∑ ≤ + 4M≤ for all x 2 (°º, º] and N ∏ N0.

Because ≤ is arbitrary, we conclude that æN ! f uniformly, and the proof is
complete.

Exercise 8.3.11. Fix eN = 1/N. If we can find a polynomial pN (x) such that

|pN (x)° f(x)| < ≤N for all x 2 [0,º],

it will follow that pN ! F uniformly, as desired.
From Fejér’s theorem, we know there exists N such that

|æN (x)° f(x)| <
≤N

2
for all x 2 [0,º].
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But æN (x) is a linear combination of the partial sums Sn(x) and each Sn(x) is
a linear combination of functions of the form cos(kx) and sin(kx). From the
previous discussion about Taylor series, we know it is possible to find polyno-
mials that are arbitrarily and uniformly close to the trigonometric functions
that constitute each Sn. Because the sums in question are all finite, a repeated
application of the triangle inequality implies that we can find a polynomial pN

satisfying
|pN (x)° æN (x)| <

≤N

2
for all x 2 [0,º].

Finally, one last triangle inequality argument shows

|pN (x)° f(x)| ∑ |pN (x)° æN (x)| + |æN (x)° f(x)|

<
≤N

2
+

≤N

2
= ≤N .

This proves the result on the interval [0, º].
(b) To prove the general case we just use the change of variables t = º(x°

a)/(b°a) and observe that polynomials are preserved under this transformation.

8.4 A Construction of R From Q

Exercise 8.4.1. (a) We have to show Cr possesses the three properties of a cut.
Property (c1) can be verified by noticing that Cr contains all rational t < r and
hence, it is not the empty set. Also, the set Cr 6= Q since all rational numbers
greater than r are not contained in Cr.

To prove property (c2), fix t 2 Cr and assume q < t. Because t 2 Cr we have
q < t < r and thus q is an element of Cr, as desired.

Finally, let’s show property(c3) holds for Cr. Note that for any t 2 Cr we
can produce q 2 Cr with t < q < r by letting q = (t + r)/2 .This shows Cr does
not have a maximum.

(b) The set S is not a cut because it has a maximum.
(c) The set T is a cut.
(d) The set U is also a cut. It may seem as though

p
2 is a maximum, but

our definition of a cut deals exclusively with rational numbers. At the moment
there is no such thing as

p
2. In fact, this cut (which is equal to the cut in (c))

is to become
p

2 when we are finished.

Exercise 8.4.2. Because A is a cut, all rational q < r are also in A. Hence,
a rational number s /2 A must be greater than r 2 A because if s ∑ r then s
would be an element of A.

Exercise 8.4.3. The operations of addition and multiplication are commutative
and associative on all of these sets, and the distributive property holds. The set
of natural numbers is not a field because there is no additive identity and no
additive inverses. Although N has a multiplicative identity, it also fails to have
multiplicative inverses. The set of integers is an improvement in that Z has an
additive identity and additive inverses. However, multiplicative inverses do not
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exist for elements of Z (except for the numbers -1 and 1). The set of rational
numbers Q possesses all the properties of a field.

Exercise 8.4.4. In order to prove property (o1), we have to show that, for
every pair of real numbers A and B, at least one of the statements A µ B or
B µ A is true. This means either A is a subset of B or B be is a subset of A.
If A is a subset of B then we are done, so let’s assume that A is not a subset
of B. Our goal is to show that B µ A. Because A is not a subset of B there
must exist an element a 2 A where a /2 B. Now let b 2 B be arbitrary. Because
a /2 B, we know from Exercise 8.4.2 that b < a. Then property (c2) implies
b 2 A which shows B µ A.

Property (o2) is verified by noting that A µ B and B µ A is true if and
only if A = B. In fact, showing containment in each direction is the standard
way to prove two sets are equal.

Property (o3) is also straightforward because A µ B and B µ C certainly
implies A µ C.

Exercise 8.4.5. (a) The set A+B is not the empty set because A is not empty
and B is not empty. To argue A + B 6= Q pick r1notinA and l2 /2 B. Given
an arbitrary elements a 2 A and b 2 B, we again use Exercise 8.4.2 to say that
a < l1 and b < l2. This implies l1 + l2 is an upper bound on A + B meaning
A + B cannot be all of Q.

To show that A + B does not have a maximum, fix c 2 A + B and write
c = a + b where a 2 A and b 2 B. By property (c3) we know that there exists
s 2 A with a < s. Also, there exists r 2 B with b < r. We can now conclude
s + r 2 A + B with c < s + r.

(b) To show that addition is commutative we can write

A + B = {a + b : a 2 A, b 2 B}
= {b + a : a 2 A, b 2 B} = B + A.

The proof that addition is associative is similar in that it follows directly from
the fact that addition of rational numbers is associative. In particular, we can
show that x 2 (A + B) + C if and only if x = a + b + c where a 2 A, b 2 B and
c 2 C. Then (a + b) + c = a + (b + c) and the rest is clear sailing.

(c) (Note that some early editions of the text erroneously suggest showing
A + O = O instead of A + O = A.)

Let’s follow the advice to prove inclusions in each direction, starting with
A+O µ A. Given a+ b 2 A+O where a 2 A and b 2 O, we know b < 0. Thus,
a + b < a, and by property (c2), a + b 2 A.

To prove the reverse inclusion, fix a 2 A. By property (c3) there must exist
s 2 A satisfying a < s, from which it follows that a° s 2 O. Then

a = s + (a° s) 2 A + O,

which proves A µ A + O. These two inclusions together show A = A + O.
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Exercise 8.4.6. (a) Let’s verify property (c1). Because A 6= Q, there exists
t /2 A. Since t < t + 1 we can conclude °(t + 1) 2 °A by the definition of °A,
and thus °A 6= ;. To show °A 6= Q we start by noting A is not empty and
picking a 2 A. If r 2 °A we know there exists t /2 A with t < °r. Then t /2 A
implies a < t and it follows that r < °a. This proves that °A is bounded above
by °a and thus °A 6= Q.

To prove property (c2), we let r 2 °A and consider s 2 Q satisfying s < r.
Because r 2 °A there exists t /2 A with t < °r. Since s < r implies °r < °s
we have t < °s, which means s 2 °A.

Finally, let’s prove property (c3). If we let r 2 °A, then there exists t /2 A
with t < °r. By the density property of the rational numbers we can choose
s 2 Q such that t < s < °r. This implies °s 2 °A and, because r < °s, we
see that °A does not possess a maximum.

(b) If we set °A = {r 2 Q : °r /2 A} then °A will not necessarily be
a cut. In particular, property (c3) may fail to hold. For instance, if we let
A = {r : r < 0} then °A = {r : r ∑ 0} has a maximum value.

(c) Because r 2 °A we know there exists t /2 A with t < °r. By Exercise
8.4.2 we have a < t, which implies a < °r. Thus, a + r < 0 and so a + r 2 O.
This shows A + (°A) µ O.

Now, let’s prove the reverse inclusion by fixing o 2 O and finding a 2 A and
b 2 °A so that a + b = o. Set ≤ = |o|/2 = °o/2. Now choose a rational number
t /2 A with the property that t° ≤ 2 A. (Here we are relying on properties (c1)
and (c2) of a cut. In particular, we could show that if no such t existed then
either A = Q or A = ;.) Now the fact that t /2 A implies °(t + ≤) 2 °A. Then

o = °2≤ = °(t + ≤) + (t° ≤) 2 °A + A,

and we conclude O µ °A + A. This proves (f4).
(d) (Early versions of the text ask to prove property (o3) which has already

been done. Later versions ask for proofs of (o4) earlier and (o5) later in the
section.)

Exercise 8.4.7. (a) We must show AB has the properties of a cut. Let’s first
verify property (c1). The set AB 6= ; because all rational q < 0 are in AB.
Furthermore, because A and B are bounded above then so are products of the
form ab where both a, b ∏ 0 with a 2 A and b 2 B. This implies AB 6= Q.

To prove property (c2), we let t 2 AB be arbitrary and let s 2 Q satisfy
s < t. If s < 0 then s 2 AB by the way we have defined the product. For the
case 0 ∑ s < t it must be that t = ab where a 2 A and b 2 B satisfy a > 0 and
b > 0. Because s < ab we have s/b < a which implies s/b 2 A. Then

s =
≥s

b

¥
(b) 2 AB,

and (c2) is proved.
To verify property (c3), consider t 2 AB. If t < 0 then t < t/2 and t/2 2 AB

because t/2 < 0 as well. If t ∏ 0 then t = ab for some a 2 A and b 2 B. Applying
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property (c3) to A and B we get s 2 A and r 2 B with a < s and b < r. We
conclude sr 2 A + B with ab < sr.

(b) Let A,B and C be cuts and assume A ∑ B meaning A µ B. To show
A+C ∑ B +C we let x 2 A+C be arbitrary. Then x = a+ c where a 2 A and
c 2 C. Because A µ B we have a 2 B as well and it follows that x 2 B + C.
This proves (o4). Property (o5) follows immediately from our definition of the
product of two positive cuts.

(c) The cut I = {p 2 Q : p < 1} is the multiplicative identity. Exercise 8.4.1
contains the argument that I = C1 is actually a cut. We now show AI = A for
all A ∏ O by demonstrating inclusion both ways.

Fix q 2 AI. Because I ∏ 0, then either q < 0 or q = ab where a, b ∏ 0 with
a 2 A and b < 1. If q < 0 then q 2 A because A ∏ 0. In the other case we have
q = ab < a and property (c2) implies ab 2 A. Thus, AI µ A.

In the other direction we consider a 2 A. If a < 0 then a 2 AI by our
definition of the product of positive cuts. If a ∏ 0, then property (c3) says
that we can pick a rational p 2 A with a < p. This implies a/p < 1 and hence
a/p 2 I. But then,

a =
µ

a

p

∂
(p) 2 AI,

which shows AI µ A, and we conclude that A = AI.
(d) To show AO µ O we let b 2 AO be arbitrary. Because there are no

positive elements of O, we see from our definition of the product AO that we
must have b < 0. This implies b 2 O and we conclude AO µ O. The reverse
inclusion is true because a 2 O means a < 0 which implies a 2 AO.

Exercise 8.4.8. (a) In order to prove S 2 R we have to show S possesses the
three properties of a cut. Consider property (c1). Since A 6= ;, the set S, which
is the union of all A 2 A, cannot be the empty set. In addition, because A is
bounded above by some cut B, we have that S ∑ B. Since, B 6= Q we conclude
S 6= Q as well.

To prove property (c2), we let a 2 S and consider r 2 Q satisfying r < a.
Because a 2 S, it follows that a 2 A for some A 2 A. Since A is a cut, r 2 A
which implies r 2 S as well.

Finally, to verify property (c3), let’s fix an arbitrary a 2 S and show that
there exists an element q in S with a < q. As before, if a 2 S then a 2 A for
some A 2 A. Since A is a cut we can find q 2 A, and hence in S, with a < q.

(b) By definition, S is the union of all A 2 A which implies A µ S or A ∑ S.
This shows S is an upper bound for A. Now, let B be an arbitrary upper bound
for A. To show S ∑ B, consider an arbitrary s 2 S. As we have seen several
times now, it must be that s 2 A for some A in A and this implies a 2 B
because A µ B. Therefore, S µ B or S ∑ B, and our proof is complete.

Exercise 8.4.9. (a) We first show Cr + Cs = Cr+s by showing inclusion both
ways. For the forward inclusion, let t + p 2 Cr + Cs where t 2 Cr and p 2 Cs.
Then t < r and p < s, and we see t + p < r + s. This implies t + p 2 Cr+s and
thus Cr + Cs µ Cr+s.
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For the reverse inclusion we start with p 2 Cr+s. Then p < r + s implies
r+s°p > 0. Letting ≤ = r+s°p, a little algebra yields p = (r°≤/2)+(s°≤/2).
Observe that r ° ≤/2 2 Cr and s ° ≤/2 2 Cs, and this implies p 2 Cr + Cs, as
desired. We conclude Cr+s µ Cr + Cs and therefore the sets are equal.

To verify CrCs = Crs for positive r and s we fix q 2 CrCs. If q < 0 then
q < rs which implies q 2 Crs. If q ∏ 0 then q = ap for some a 2 Cr and
p 2 Cs where both a, p ∏ 0. Because everything is positive, we get ap < rs
which implies q = ap 2 Crs. This shows CrCs µ Crs.

For the other inclusion we consider p 2 Crs. If p < 0 then the way we have
defined the product ensures p 2 CrCs. If p ∏ 0 then observe that p < rs implies
p/s < r from which we conclude that p/s 2 Cr. Then

p =
≥p

s

¥
(s) 2 CrCs,

and it follows that Crs µ CrCs. Thus CrCs = Crs.
(b) ()) For each n 2 N the rational number r ° (1/n) 2 Cr. Because

Cr µ Cs, we see r ° (1/n) 2 Cs. This means

r ° 1
n

< s for all n 2 N,

and a short contradiction argument shows r ∑ s.
(() Conversely, assume r ∑ s. If a 2 Cr then a < r ∑ s which implies

a 2 Cs. Therefore, Cr µ Cs or, equivalently, Cr ∑ Cs.


