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Preface to the Second Edition 

Many changes have been made in this second edition of A First Course in 
Real Analysis. The most noticeable are the addition of many problems and 
the inclusion of answers to most of the odd-numbered exercises. There are 
now more than one thousand exercises throughout the book. In going over 
the text, I improved the book's readability by further clarifying many of the 
proofs, providing additional explanatory remarks, improving many of the 
figures, and changing some notation. 

The first course in analysis that follows elementary calculus is critical for 
those students who wish to go on to advanced mathematics. Because in a 
calculus course the emphasis rests on problem solving and the development 
of manipulative skills, students frequently get a misleading impression that 
mathematics is simply manipulative; thus they often are unaware of the 
theoretical basis of analysis and higher mathematics. 

In A First Course in Real Analysis we present a theoretical foundation of 
analysis that is suitable for students who have completed a standard course 
in calculus. The sixteen chapters contain enough material for a one-year 
course, but the material is so arranged that an instructor teaching a one
semester or a one- or two-quarter course can easily find a selection of topics 
that he or she thinks students should have. 

The first chapter, on the real number system, serves two purposes. First, it 
provides an opportunity for the student to develop facility in proving theo
rems. Since most students entering the course have had little or no experience 
in devising proofs, the knowledge of how one goes about this task will prove 
useful in the remainder of the course. 

Second, for those instructors who wish to give a comprehensive course in 
analysis, we provide a fairly complete treatment of the real number system, 
including a section on mathematical induction. We also supply additional 

vii 



viii Preface to the Second Edition 

material on absolute value and tl\.e solution of algebraic inequalities in Appen
dixes 1 and 2. 

If an instructor who is teaching a short course in analysis does not wish to 
discuss the real number system, he or she may choose to begin with Chapter 
2, since the seventy pages that comprise Chapters 2 through 5 cover the 
basic theory upon which elementary calculus is based. Here we prove most of 
the theorems that are "stated without proof" in the standard first-year calculus 
course. 

Critical to an understanding of analysis (and many other mathematical 
topics) is the concept of a metric space. We discuss the fundamental properties 
of metric spaces in Chapter 6. Here we show that the notion of compactness 
is central and we prove several important results, including the Reine-Borel 
theorem, which are useful later on. The ninety-four pages that make up 
Chapters 6, 13, and 15 form a coherent unit on metric spaces. In Chapter 13 
we give the theory of contraction mappings in a metric space and apply it to 
prove an existence theorem in differential equations. In Chapter 15 we study 
in detail the properties of functions defined on a metric space. We prove the 
Tietze extension theorem and the Stone-Weierstrass approximation theorem, 
results that are useful in many contexts. 

Chapters 7 and 8 show how to extend the theory of differentiation and 
integration to IRN, N ~ 2. These chapters are the natural continuations of 
Chapters 4 and 5 on differentiation and integration in IR 1 . 

Infinite sequences and infinite series are the topics of Chapters 9 and 10. 
The emphasis in Chapter 9 is on uniform convergence, a topic the student 
must master if he or she is to understand the underlying concepts of power 
series and Fourier series. There is also a (optional) discussion of multiple series 
that we treat in a unified manner. Chapter 10, on Fourier series, contains a 
proof of the useful Dini test for convergence and proofs of the customary 
theorems on term-by-term differentiation and integration of Fourier series. 
We also establish Bessel's inequality and the Riemann-Lebesgue lemma. 

In Chapter 11 we cover the important subject of differentiation under the 
integral sign for both proper and improper integrals. This topic, useful in 
many applications, is rarely presented in such detail. Since this chapter is 
relatively independent of many of the others, it may easily be included or 
omitted according to the wishes of the instructor. 

No course in Riemann integration would be complete without a treatment 
of the Riemann-Stieltjes integral. In Chapter 12 we define functions of 
bounded variation and show how they play a crucial role in the establishment 
of the Riemann-Stieltjes integral. 

In Chapter 14 we prove the Implicit Function theorem, first for a single 
equation and then for a system. We provide two proofs for a single equation, 
one using only basic techniques and a second using the fixed point theorem 
of Chapter 13. The latter proof is then extended to systems. In addition, we 
give a detailed proof of the Lagrange multiplier rule for finding maxima and 
minima, a rule frequently stated but rarely proved. For completeness we give 
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the details of the proof of the theorem on the change of variables in a multiple 
integral. Since the argument here is rather intricate, the instructor may wish 
to assign this section as optional reading for the better students. 

Proofs of Green's and Stokes's theorems and the Divergence theorem in IR 2 

and IR3 are given in Chapter 16. In order to establish the result in full generality, 
we include a study of the properties of two-dimensional surfaces in IR 3 • For 
those interested only in the basic theorems, much of this geometric analysis 
can be skipped. 

While this edition is my full responsibility, I wish to acknowledge the 
enormous debt I owe to the late Charles B. Morrey, Jr., for his essential 
contribution to the first edition as well as for his guidance and advice through
out our collaboration. 

Berkeley, California MURRAY H. PROTTER 





Preface to the First Edition 

The first course in analysis which follows elementary calculus is a critical 
one for students who are seriously interested in mathematics. Traditional 
advanced calculus was precisely what its name indicates-a course with topics 
in calculus emphasizing problem solving rather than theory. As a result 
students were often given a misleading impression of what mathematics is all 
about; on the other hand the current approach, with its emphasis on theory, 
gives the student insight in the fundamentals of analysis. 

In A First Course in Real Analysis we present a theoretical basis of analysis 
which is suitable for students who have just completed a course in elementary 
calculus. Since the sixteen chapters contain more than enough analysis for a 
one year course, the instructor teaching a one or two quarter or a one semester 
junior level course should easily find those topics which he or she thinks 
students should have. 

The first Chapter, on the real number system, serves two purposes. Because 
most students entering this course have had no experience in devising proofs 
oftheorems, it provides an opportunity to develop facility in theorem proving. 
Although the elementary processes of numbers are familiar to most students, 
greater understanding of these processes is acquired by those who work the 
problems in Chapter 1. As a second purpose, we provide, for those instructors 
who wish to give a comprehensive course in analysis, a fairly complete treat
ment of the real number system including a section on mathematical induction. 

Although Chapter 1 is useful as an introduction to analysis, the instructor 
of a short course may choose to begin with the second Chapter. Chapters 2 
through 5 cover the basic theory of elementary calculus. Here we prove many 
of the theorems which are "stated without proof" in the standard freshman 
calculus course. 

xi 



xii Preface to the First Edition 

Crucial to the development of an understanding of analysis is the concept 
of a metric space. We discuss the fundamental properties of metric spaces in 
Chapter 6. Here we show that the notion of compactness is central and we 
prove several important results (including the Heine-Borel theorem) which 
are useful later on. The power of the general theory of metric spaces is aptly 
illustrated in Chapter 13, where we give the theory of contraction mappings 
and an application to differential equations. The study of metric spaces is 
resumed in Chapter 15, where the properties offunctions on metric spaces are 
established. The student will also find useful in later courses results such as 
the Tietze extension theorem and the Stone-Weierstrass theorem, which are 
proved in detail. 

Chapters 7, 8, and 12 continue the theory of differentiation and integration 
begun in Chapters 4 and 5. In Chapters 7 and 8, the theory of differentiation 
and integration in IRN is developed. Since the primary results for IR 1 are given 
in Chapters 4 and 5 only modest changes were necessary to prove the corre
sponding theorems in IRN. In Chapter 12 we define the Riemann-Stieltjes 
integral and develop its principal properties. 

Infinite sequences and series are the topics of Chapters 9 and 10. Besides 
subjects such as uniform convergence and power series, we provide in Section 
9.5 a unified treatment of absolute convergence of multiple series. Here, in a 
discussion of unordered sums, we show that a separate treatment of the 
various kinds of summation of multiple series is entirely unnecessary. Chapter 
10 on Fourier series contains a proof of the Dini test for convergence and the 
customary theorems on term-by-term differentiation and integration of such 
series. 

In Chapter 14 we prove the Implicit Function theorem, first for a single 
equation and then for a system. In addition we give a detailed proof of the 
Lagrange multiplier rule, which is frequently stated but rarely proved. For 
completeness we give the details of the proof of the theorem on the change of 
variables in a multiple integral. Since the argument here is rather intricate, the 
instructor may wish to assign this section as optional reading for the best 
students. 

Proofs of Green's and Stokes' theorems and the divergence theorem in IR2 

and IR 3 are given in Chapter 16. The methods used here are easily extended 
to the corresponding results in IRN. 

This book is also useful in freshman honors courses. It has been our 
experience that honors courses in freshman calculus frequently falter because 
it is not clear whether the honors student should work hard problems while 
he learns the regular calculus topics or should omit the regular topics entirely 
and concentrate on the underlying theory. In the first alternative, the honors 
student is hardly better off than the regular student taking the ordinary 
calculus course, while in the second the honors student fails to learn the simple 
problem solving techniques which, in fact, are useful later on. We believe 
that this dilemma can be resolved by employing two texts-one a standard 
calculus text and the other a book such as this one which provides the 
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theoretical basis ofthe calculus in one and several dimensions. In this way the 
honors student gets both theory and practice. Chapters 2 through 5 and 
Chapters 7 and 8 provide a thorough account of the theory of elementary 
calculus which, along with a standard calculus book, is suitable as text 
material for a first year honors program. 

Berkeley, California, January 1977 
MURRAY H. PROTTER 

CHARLES B. MoRREY, JR. 
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CHAPTER 1 

The Real Number System 

1.1. Axioms for a Field 

In an elementary calculus course the student learns the techniques of differ
entiation and integration and the skills needed for solving a variety of pro
blems which use the processes of calculus. Most often, the principal theorems 
upon which calculus is based are stated without proof, while some of the 
auxiliary theorems are established in detail. To compensate for the missing 
proofs, most texts present arguments which show that the basic theorems are 
plausible. Frequently, a remark is added to the effect that rigorous proofs of 
these theorems can be found in advanced texts in analysis. 

In this and the next four chapters we shall give a reasonably rigorous 
foundation to the processes of the calculus of functions of one variable. 
Calculus depends on the properties of the real number system. Therefore, to 
give a complete foundation for calculus, we would have to develop the real 
number system from the beginning. Since such a development is lengthy and 
would divert us from our aim of presenting a course in analysis, we shall 
assume the reader is familiar with the usual properties of the system of real 
numbers. 

In this section we present a set of axioms that forms a logical basis for those 
processes of elementary algebra upon which calculus is based. Any collection 
of objects satisfying the axioms stated below is called a field. In particular, the 
system of real numbers satisfies the field axioms, and we shall indicate how 
the customary laws of algebra concerning addition, subtraction, multiplica
tion, and division follow from these axioms. 

A thorough treatment would require complete proofs of all the theorems. 
In this section and the next we establish some of the elementary laws of 
algebra, and we refer the reader to a course in higher algebra where complete 
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proofs of most of the theorems may be found. Since the reader is familiar with 
the laws of algebra and their use, we shall assume their validity throughout 
the remainder of the text. In addition, we shall suppose the reader is familiar 
with many facts about finite sets, positive integers, and so forth. 

Throughout the book, we use the word equals or its symbol = to stand for 
the words "is the same as." The reader should compare this with other uses 
for the symbol = such as that in plane geometry where, for example, two line 
segments are said to be equal if they have the same length. 

Axioms of Addition and Subtraction 

A-1. Closure property. If a and bare numbers, there is one and only one number, 
denoted a + b, called their sum. 

A-2. Commutative law. For any two numbers a and b, the equality 

b+a=a+b 

holds. 

A-3. Associative law. For all numbers a, b, and c, the equality 

(a + b) + c = a + (b + c) 

holds. 

A-4. Existence of a zero. There is one and only one number 0, called zero, such 
that a + 0 = a for any number a. 

It is not necessary to assume in Axiom A-4 that there is only one number 
0 with the given property. The uniqueness of this number is easily established. 
Suppose 0 and 0' are two numbers such that a + 0 = a and a + 0' = a for 
every number a. Then 0 + 0' = 0 and 0' + 0 = 0'. By Axiom A-2, we have 
0 + 0' = 0' + 0 and so 0 = 0'. The two numbers are the same. 

A-5. Existence of a negative. If a is any number, there is one and only one number 
x such that a + x = 0. This number is called the negative of a and is denoted by 
-a. 

As in Axiom A-4, it is not necessary to assume in Axiom A-5 that there is 
only one such number with the given property. The argument which estab
lishes the uniqueness of the negative is similar to the one given after Axiom 
A-4. 

Theorem 1.1. If a and bare any numbers, then there is one and only one number 
x such that a + x = b. This number x is given by x = b + (-a). 

PROOF. We must establish two results: (i) that b + (-a) satisfies the equation 
a+ x = band (ii) that no other number satisfies this equation. To prove (i), 
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suppose that x = b + (-a). Then, using Axioms A-2 through A-4 we see that 

a+ x =a+ [b + (-a)]= a+ [(-a)+ b] =[a+ (-a)]+ b = 0 + b =b. 

Therefore (i) holds. To prove (ii), suppose that x is some number such that 
a + x = b. Adding (-a) to both sides of this equation, we find that 

Now, 

(a+ x) + (-a)= b + (-a). 

(a+ x) + (-a)= a+ [x + (-a)]= a+ [(-a)+ x] 
=[a+ (-a)]+ X= 0 +X= X. 

We conclude that x = b + (-a), and the uniqueness of the solution is 
established. D 

Notation. The number b + (-a) is denoted by b - a. 

Thus far addition has been defined only for two numbers. By means of the 
associative law we can define addition for three, four and, in fact, any finite 
number of elements. Since (a + b)+ c and a + (b + c) are the same, we define 
a + b + cas this common value. The following lemma is an easy consequence 
of the associative and commutative laws of addition. 

Lemma 1.1. If a, b, and care any numbers, then 

a+b+c=a+c+b=b+a+c=b+c+a=c+a+b=c+b+~ 

The formal details of writing out a proof are left to the reader. 
The next lemma is useful in the proof of Theorem 1.2 below. 

Lemma 1.2. If a, b, c, and d are numbers, then 

(a + c) + (b + d) = (a + b) + (c + d). 

PROOF. Using Lemma 1.1 and the axioms, we have 

(a+ c)+ (b +d)= [(a+ c)+ b] + d 

= (a + c + b) + d = (a + b + c) + d 

= [(a + b)+ c] + d =(a+ b)+ ( c + d). D 

The next theorem establishes familiar properties of negative numbers. 

Theorem 1.2 

(i) If a is a number, then -(-a)= a. 
(ii) If a and b are numbers, then 

-(a+ b)= (-a)+ (-b). 
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PROOF. (i) From the definition of negative, we have 

(-a)+ [-(-a)]= 0, (-a)+ a= a+ (-a)= 0. 

Axiom A-5 states that the negative of (-a) is unique. Therefore, a = - (-a). 
To establish (ii), we know from the definition of negative that 

(a+ b)+ [-(a+ b)] = 0. 

Furthermore, using Lemma 1.2, we have 

(a+ b)+ [(-a)+ (-b)]= [a+ (-a)]+ [b + (-b)]= 0 + 0 = 0. 

The result follows from the "only one" part of Axiom A-5. D 

Theorem 1.2 can be stated in the familiar form: (i) The negative of (-a) 
is a, and (ii) The negative of a sum is the sum of the negatives. 

Axioms of Multiplication and Division 

M-1. Closure property. If a and b are numbers, there is one and only one 
number, denoted by ab (or a x bora· b), called their product. 

M-2. Commutative law. For every two numbes a and b, the equality 

ba = ab 

holds. 

M-3. Associative law. For all numbers a, b, and c, the equality 

(ab)c = a(bc) 

holds. 

M-4. Existence of a unit. There is one and only one number u, different from 
zero, such that au = a for every number a. This number u is called the unit 
and (as is customary) is denoted by 1. 

M-5. Existence of a reciprocal. For each number a different from zero there is 
one and only one number x such that ax= 1. This number x is called the 
reciprocal of a (or the inverse of a) and is denoted by a-1 (or 1/a). 

Remarks. Axioms M-1 through M-4 are the parallels of Axioms A-1 through 
A-4 with addition replaced by multiplication. However, M-5 is not the exact 
analogue of A-5, since the additional condition a =f. 0 is required. The reason 
for this is given below in Theorem 1.3, where it is shown that the result of 
multiplication of any number by zero is zero. In familiar terms we say that 
division by zero is excluded. 
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Special Axiom 

D. Distributive law. For all numbers a, b, and c the equality 

a(b + c) = ab + ac 

holds. 

5 

Remarks. In every logical system there are certain terms which are un
defined. For example, in the system of axioms for plane Euclidean geometry 
the terms point and line are undefined. Of course, we have an intuitive idea of 
the meaning of these two undefined terms, but in the framework of Euclidean 
geometry it is not possible to define them. In the axioms for algebra given 
above, the term number is undefined. We shall interpret number to mean real 
number (positive, negative, or zero) in the usual sense that we give to it in 
elementary courses. Actually, the above axioms for a field hold for many 
number systems, of which the collection of real numbers is only one. For 
example, all the axioms stated so far hold for the system consisting of all 
complex numbers. Also, there are many systems, each consisting of a finite 
number of elements (finite fields), which satisfy all the axioms we have stated 
until now. 

Additional axioms are needed if we insist that the real number system be 
the only collection satisfying all the given axioms. The additional axioms 
required for this purpose are discussed in Sections 1.3 and 1.4 below. 

Theorem 1.3. If a is any number, then a· 0 = 0. 

PROOF. Let b be any number. Then b + 0 = b, and therefore a(b + 0) = ab. 
From the distributive law (Axiom D), we find that 

(ab) + (a· 0) = (ab), 

so that a· 0 = 0 by Axiom A-4. D 

Theorem 1.4. If a and b are numbers and a -=f. 0, then there is one and only one 
number x such that a· x = b. The number x is given by x = ba-1• 

The proof of Theorem 1.4 is just like the proof of Theorem 1.1 with addition 
replaced by multiplication, 0 by 1, and -a by a-1. The details are left to the 
reader. 

Notation. The expression "if and only if," a technical one used frequently 
in mathematics, requires some explanation. Suppose A and B stand for propo
sitions which may be true or false. To say that A is true if B is true means that 
the truth of B implies the truth of A. The statement A is true only if B is true 
means that the truth of A implies the truth of B. Thus the shorthand statement 
"A is true if and only if B is true" is equivalent to the double implication: the 
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truth of A implies and is implied by the truth of B. As a further shorthand we 
use the symbol <=> to represent "if and only if," and we write 

A<=>B 

for the two implications stated above. 1 

We now establish the familiar principle which underlies the solution by 
factoring of quadratic and other algebraic equations. 

Theorem 1.5 

(i) We have ab = 0 if and only if a = 0 or b = 0 or both. 
(ii) We have a -# 0 and b -# 0 if and only if ab -# 0. 

PROOF. We must prove two statements in each of Parts (i) and (ii). To prove 
(i), observe that if a = 0 or b = 0 or both, then it follows from Theorem 
1.3 that ab = 0. Going the other way in (i), suppose that ab = 0. Then there 
are two cases: either a = 0 or a -# 0. If a = 0, the result follows. If a -# 0, 
then we see that 

b = l·b = (a- 1a)b = a-1(ab) = a-1 ·0 = 0. 

Hence b = 0 and (i) is established. To prove (ii), first suppose a -# 0 and b -# 0. 
Then ab-# 0, because a-# 0 and b-# 0 is the negation of the statement "a= 0 
or b = 0 or both." Thus (i) applies. For the second part of (ii), suppose ab -# 0. 
Then a-# 0 and b-# 0 for, if one of them were zero, Theorem 1.3 would apply 
~~w~=n o 

We define abc as the common value of(ab)c and a(bc). The reader can prove 
the following lemmas, which are similar to Lemmas 1.1 and 1.2. 

Lemma 1.3. If a, b, and c are numbers, then 

abc = acb = bac = bca = cab = cba. 

Lemma 1.4. If a, b, c and d are numbers, then 

(ac) · (bd) = (ab) · (cd). 

Theorem 1.6 

(i) If a -# 0, then a-1 -# 0 and [(a-1 t 1 ] = a. 
(ii) If a -# 0 and b -# 0, then (a· bt1 = (a-1 ) · (b-1 ). 

The proof of this theorem is like the proof of Theorem 1.2 with addition 
replaced by multiplication, 0 replaced by 1, and (-a), (-b) replaced by a-1, 

1 The term "necessary and sufficient" is frequently used as a synonym for "if and only if." 
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b-1. The details are left to the reader. Note that if a =1- 0, then a-1 =1- 0 because 
aa-1 = 1 and 1 =1- 0. Then Theorem 1.5 (ii) may be used with b = a-1. 

Using Theorem 1.3 and the distributive law, we easily prove the laws of 
signs stated as Theorem 1.7 below. We emphasize that the numbers a and b 
may be positive, negative, or zero. 

Theorem 1.7. If a and bare any numbers, then 

(i) a·(-b) =-(a· b). 
(ii) (-a)·b =-(a· b). 

(iii) (-a)·(-b) =a· b. 

PROOF. (i) Since b + (-b) = 0, it follows from the distributive law that 

a[b +(-b)]= a·b + a·(-b) = 0. 

Also, the negative of a· b has the property that a· b + [-(a· b)] = 0. Hence 
we see from Axiom A-5 that a· (-b)= -(a· b). Part (ii) follows from Part (i) 
by interchanging a and b. The proof of (iii) is left to the reader. 0 

Corollary. The equality (- 1) · a = -a holds. 

We now show that the laws of fractions, as given in an elementary algebra 
course, follow from the axioms and theorems above. 

Notation. We introduce the following symbols for a· b-1 : 

a 
a· b-1 = b = a/b =a...;- b. 

These symbols, representing an indicated division, are called fractions. The 
numerator and denominator of a fraction are defined as usual. A fraction with 
denominator zero has no meaning. 

Theorem 1.8 

(i) For every number a, the equality a/1 =a holds. 
(ii) If a =1- 0, then a/a = 1. 

PROOF. (i) We have a/1 = (a·1-1 ) = (a·1-1)·1 = a(l-1 ·1) = a·1 =a. (ii) If 
a =1- 0, then a/a = a· a-1 = 1, by definition. 0 

Theorem 1.9. If b =1- 0 and d =1- 0, then b · d =1- 0 and 

PROOF. That b · d =1- 0 follows from Theorem 1.5. Using the notation for 
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fractions, Lemma 1.4, and Theorem 1.6(ii), we find 

The proofs of Theorem l.lO(i) through (v) are left to the reader. 

Theorem 1.10 

(i) If b =I= 0 and c =1= 0, then 

(ii) If c =I= 0, then 
a b (a+ b) 
-+-=--. 
c c c 

(iii) If b =I= 0, then - b =I= 0 and 

(-a)_ a _ (a) 
-b---b--b. 

(iv) If b =I= 0, c =1= 0, and d =I= 0, then (cjd) =I= 0 and 

(v) If b =I= 0 and d =I= 0, then 

PROBLEMS 

(ajb) = ~ = (~)·(~). 
(cjd) b · c b c 

a c ad+bc 
b + d = bd 

D 

1. Show that in Axiom A-5 it is not necessary to assume there is only one number x 
such that a + x = 0. 

2. Prove Lemma 1.1. 

3. Prove, on the basis of Axioms A-1 through A-5, that 

(a + c) + (b + d) = (a + d) + (b + c). 

Give the appropriate reason for each step of the proof. 

4. Prove Theorem 1.4. 

5. Prove Lemma 1.3. 

6. Prove Lemma 1.4. 
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7. If a and b are any numbers show that there is one and only one number x such 
that x +a= b. 

8. Prove Theorem 1.6. 

9. Show that the Distributive Law may be replaced by the statement: for all numbers 
a, b, and c, the equality (b + c)a = ba + ca holds. 

10. Complete the proof of Theorem 1. 7. 

11. If a, b, and c are any numbers show that a - (b + c) = (a - b) - c and that 
a - (b - c) = (a - b) + c. Give reasons for each step of the proof. 

12. Show that a(b + c +d)= ab + ac +ad, giving reasons for each step. 

13. Assuming that a+ b + c + d means (a+ b +c)+ d, prove that a+ b + c + d = 

(a + b) + (c + d). 

14. Assuming the result of Problem 9, prove that 

(a + b)· (c +d) = ac + be +ad + bd. 

15. Prove Theorem l.lO(i). 

16. Prove Theorem l.lO(ii). 

17. Prove Theorem l.lO(iii). 

18. Prove Theorem l.lO(iv). [Hint: Use Theorem l.lO(i).] 

19. Prove Theorem l.lO(v). 

20. Prove that if b i= 0, d i= 0, and f i= 0, then 

21. Prove that if d i= 0, then 
a b c (a+ b +c) 
~+~+~= . 
d d d d 

22. Prove that if b i= 0, d i= 0, and f i= 0, then 

a c e (a· d · f + b · c · f + b · d ·e) 
b+d+y= (b·d·f) . 

1.2. Natural Numbers and Sequences 

Traditionally, we build the real number system by a sequence of enlargements. 
We start with the positive integers and extend that system to include the 
positive rational numbers (quotients, or ratios, of integers). The system of 
rational numbers is then enlarged to include all positive real numbers; finally, 
we adjoin the negative numbers and zero to obtain the collection of all real 
numbers. 
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The system of axioms in Section 1.1 does not distinguish (or even mention) 
positive numbers. To establish the relationship between these axioms and the 
real number system, we begin with a discussion of natural numbers. As we 
know, these are the same as the positive integers. 

Intuitively, the totality of natural numbers can be obtained by starting with 
the number 1 and then forming 1 + 1, (1 + 1) + 1, [(1 + 1) + 1] + 1, and so 
on. We call1 + 1 the number 2; then (1 + 1) + 1 is called the number 3, and 
in this way the collection of natural numbers is generated. Actually, it is 
possible to give an abstract definition of natural number, one which yields the 
same collection and which is logically more satisfactory. This is done in 
Section 1.4, where the principle of mathematical induction is established and 
illustrated. In the meantime, we shall suppose the reader is familiar with all 
the usual properties of natural numbers. 

The axioms for a field given in Section 1.1 determine addition and multi
plication for any two numbers. On the basis of these axioms we were able to 
define the sum and product of three numbers. Before describing the process 
of defining sums and products for more than three elements, we recall several 
definitions and give some notations which will be used throughout the book. 

Definitions. The set (or collection) of all real numbers is denoted by IR 1• The 
set of ordered pairs of real numbers is denoted by IR 2, the set of ordered triples 
by IR 3 and so on. A relation from IR 1 to IR 1 is a set of ordered pairs of real 
numbers; that is, a relation from IR 1 to IR 1 is a set in IR 2• The domain of this 
relation is the set in IR 1 consisting of all the first elements in the ordered pairs. 
The range of the relation is the set of all the second elements in the ordered 
pairs. Observe that the range is also a set in IR 1 • A function! from IR 1 into IR 1 

is a relation in which no two ordered pairs have the same first element. We 
use the notation f: IR 1 -+ IR 1 for such a function. The word mapping is a 
synonym for function. If D is the domain of f and S is its range, we shall 
sometimes use the notation f: D-+ S. A function is a relation (set in IR2 ) such 
that for each element x in the domain there is precisely one element y in the 
range such that the pair (x, y) is one of the ordered pairs which constitute the 
function. Occasionally, a function will be indicated by writing f: x-+ y. Also, 
for a given function f, the unique number in the range corresponding to an 
element x in the domain is written f(x). The symbol x-+ f(x) is used for this 
relationship. We assume that the reader is familiar with functional notation. 

A sequence is a function which has as its domain some or all of the natural 
numbers. If the domain consists of a finite number of positive integers, we say 
the sequence is finite. Otherwise, the sequence is called infinite. In general, the 
elements in the domain of a function do not have any particular order. In a 
sequence, however, there is a natural ordering of the domain induced by the 
usual order in terms of size which we give to the positive integers. For example, 
if the domain of a sequence consists of the numbers 1, 2, ... , n, the elements 
of the range, that is, the terms of the sequence, are usually written in the same 
order as the natural numbers. If the sequence (function) is denoted by a, then 
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the terms of the sequence are denoted by a 1 , a2 , ••• ,an or, sometimes by a(1), 
a(2), ... , a(n). The element a; or a(i) is called the ith term of the sequence. If 
the domain of a sequence a is the set of all natural numbers (so that the 
sequence is infinite), we denote the sequence by 

The sum and product of a finite sequence of terms are defined inductively. 
The following statements are proved in Section 1.4. 

Proposition 1.1 (Sum). If a 1, a2 , ••• , an is a given finite sequence, then there is 
a unique finite sequence b1 , b2 , ••• , bn with the properties: 

bl = al 

and, in general, 

for i = 1, 2, ... , n - 1 if n > 1. 

Proposition 1.2 (Product). If a 1 , a2 , ••• , an is a given sequence, then there is a 
unique finite sequence c1 , c2 , .•• , en with the properties: 

and, in general, 

for i = 1, 2, ... , n - 1 if n > 1. 

The elements b1, b2 , ••• , bn are the successive sums of the terms of the 
sequence a1 , a2 , ••• ,an, and the elements c1 , c2 , ••• ,en are the successive 
products of the terms of a 1, a2 , ••• , an. In particular, we have 

b3 = b2 + a3 = (a1 + a2 ) + a 3, 

c3 = c2 ·a3 = (a1 ·a2 )·a3 , 

b4 = b3 + a4 = [(al + az) + a 3] + a4, 

c4 = c3 · a4 = [(a1 • a2 )· a3] · a4, 

and so on. Because the sequences b1 , b2 , ••• , bn and c1 , c2 , ••. ,en are uniquely 
determined we can make the following definitions: 

Definitions. For all integers n ~ 1, the sum and product of the numbers a1 , 

a2 , ••• , an are defined by 

al + az + ... + an = bn 

We use the notation 

n 

L a; = al + az + ... + an 
i=l 

and 

and 
n n a.= a ·a ·····a ' 1 2 n· 

i=l 

The symbol fl is in general use as a compact notation for product analogous 
to the use ofL for sum. We read fli'=1 as "the product as i goes from 1 ton." 

On the basis of these definitions and the above propositions, it is not 
difficult to establish the next result. 
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Proposition 1.3. If a 1 , a2 , ••• , an, an+l is any sequence, then 

n+l ( n ) 
;~ a; = ;~ a; + an+l and 

n+l ( n ) n a;= n a; ·an+l· 
i=l i=l 

The following proposition may be proved by using mathematical 
induction. 2 

Proposition 1.4. If a 1 , a2 , ••• , am, am+l• ... , am+n is any sequence, then 

m+n m m+n 

L a; = L a; + L a; 
i=l i=l i=m+l 

and 

m+n ( m ) ( m+n ) D a; = D a; · i=Ul a; · 

The extended associative law, the extended commutative law, and the ex
tended distributive law with which the reader is familiar from elementary 
algebra, are stated in the next three propositions. 

Proposition 1.5. The sum of a finite sequence can be obtained by separating the 
given sequence into several shorter sequences, adding the terms in each of these, 
and then adding the results. A similar statement holds for products. 

Proposition 1.6. The sum of a given finite sequence is independent of the order 
of its terms. The product of a finite sequence is independent of the order of its 
terms. 

Proposition 1.7. If a is any number and b1 , b2 , ••• , bn is any sequence, then 

a· (bl + bz + · · · + bn) = (bl + bz + · · · + bJ ·a 

= ab1 + ab2 + · · · + abn. 

An expression of the form 

a-b-c+d-e 

is a shorthand notation for the sum 

a+ (-b)+ (-c)+ d +(-e). 

The justification for this shorthand is based on the definition x - y = 

x + (- y) and on Theorem 1.2(ii), which states that the negative of a sum is 
the sum of the negatives. Using these facts and Theorem 1.2(i), which asserts 

2 The principle of mathematical induction is established in Section 1.4. 
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that -(-a)= a, we obtain the usual rule for the addition and subtraction of 
any finite number of terms. With the help of the sign laws for multiplication 
and the extended distributive law, we get the standard rules for the multiplica
tion of signed sums. For example, it is easy to verify that 

(a 1 - a2 )(b1 - b2 - b3 ) = a1(b1 - b2 - b3)- a2(b1 - b2 - b3 ) 

= a1b1 - a1 b2 - a1 b3 - a2 b1 + a2 b2 + a2 b3 • 

The symbol x", for n a natural number, is defined in the customary way as 
x · x · · · · · x with x appearing n times in the product. We assume the reader is 
familiar with the laws of exponents and the customary rules for adding, 
subtracting, and multiplying polynomials. These rules are a simple con
sequence of the axioms and propositions above. 

The decimal system of writing numbers (or the system with any base) 
depends on a representation theorem which we now state. If n is any natural 
number, then there is one and only one representation for n of the form 

n = d0 (10)k + d1(10)k-1 + · · · + dk-1(10) + dk 

in which k is a natural number or zero, each di is one of the numbers 0, 1, 2, ... , 9, 
and d0 =1: 0. The numbers 0, 1, 2, ... , 9 are called digits of the decimal system. 
On the basis of such a representation, the rules of arithmetic follow from the 
corresponding rules for polynomials in x with x = 10. 

For completeness, we define the terms integer, rational number, and ir
rational number. 

Definitions. A real number is an integer if and only if it is either zero, a natural 
number, or the negative of a natural number. A real number r is said to be 
rational if and only if there are integers p and q, with q =1: 0, such that r = pjq. 
A real number which is not rational is called irrational. 

It is clear that the sum and product of a finite sequence of integers is again 
an integer, and that the sum, product, or quotient of a finite sequence of 
rational numbers is a rational number. 

The rule for multiplication of fractions is given by an extension of Theorem 
1.9 which may be derived by mathematical induction. 

We emphasize that the axioms for a field given in Section 1.1 imply only 
theorems concerned with the operations of addition, subtraction, multiplica
tion, and division. The exact nature of the elements in the field is not described. 
For example, the axioms do not imply the existence of a number whose square 
is 2. In fact, if we interpret number to be "rational number" and consider no 
others, then all the axioms for a field are satisfied. The rational number system 
forms a field. An additional axiom is needed if we wish the field to contain 
irrational numbers such as .j2. 

Consider the system with five elements 0, 1, 2, 3, 4 and the rules of addition 
and multiplication as given in the following tables: 
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Addition Multiplication 

+ 0 1 2 3 4 X 0 1 2 3 4 

0 0 1 2 3 4 0 0 0 0 0 0 

1 1 2 3 4 0 1 0 1 2 3 4 

2 2 3 4 0 1 2 0 2 4 1 3 

3 3 4 0 1 2 3 0 3 1 4 2 

4 4 0 1 2 3 4 0 4 3 2 1 

It can be shown that this system satisfies the axioms for a field. Many examples 
of fields with only a finite number of elements are easily constructed. Such 
systems do not satisfy the order axiom (Axiom I) described in the next section. 

PROBLEMS 

1. Suppose T: IR 1 -+ IR 1 is a relation composed of ordered pairs (x, y). We define the 
inverse relation ofT as the set of ordered pairs (x, y) where (y, x) belongs to T. Let 
a function a be given as a finite sequence: a 1 , a2 , ••• , an. Under what conditions 
will the inverse relation of a be a function? 

2. Prove Propositions 1.1 and 1.2 for sequences with 5 terms. 

3. Show that if a1 , a2 , ••• , a5 is a sequence of 5 terms, then f1f=1 a;= 0 if and only if 
at least one term of the sequence is zero. 

4. Prove Proposition 1.3 under the assumption that the preceding propositions have 
been established. 

5. Use Proposition 1.4 to establish the following special case of Proposition 1.5. 
Given the sequence a1 , a2 , ... , am, am+l• ... , an, an+l• .. . , aP, show that 

p m n p 

L a; = L a; + L a; + L a;. 
i=l i=l i=m+l i=n+l 

6. Prove Proposition 1.6 for the case of sequences with 4 terms. 

7. (a) State which propositions are used to establish the formula: 

5 ~ 5! 5 .. 
(a + b) = .L- .1(5 _ ')I a -'b'. 

•=0 I. I • 

(b) Same as (a) for the general binomial formula 

(a + bt = I n! an-;b; 
;=o i!(n - i)! ' 

assuming the formula is known for the case n - 1. 
(c) Develop a "trinomial" formula for (a + b + ct. 
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8. By using both positive and negative powers of 10, state a theorem on the decimal 
representation of rational numbers. [Hint: Assume the connection between rational 
numbers and repeating decimals.] 

9. Consider the system with the two elements 0 and 1 and the following rules of 
addition and multiplication: 

0+0=0, 

1 + 0 = 1, 

0·0 = 0, 

0·1 = 0, 

0 + 1 = 1, 

1 + 1 = 0, 

1·0 =0, 

1·1=1. 

Show that all the axioms of Section 1.1 are valid; hence this system forms a field. 

10. Show that the system consisting of all elements of the form a+ bJS, where a and 
b are any rational numbers, satisfies all the axioms for a field if the usual rules for 
addition and multiplication are used. 

11. Is it possible to make addition and multiplication tables so that the four elements 
0, 1, 2, 3 form the elements of a field? Prove your statement. [Hint: In the 
multiplication table each row, other than the one consisting of zeros, must contain 
the symbols 0, 1, 2, 3 in some order.] 

12. Consider all numbers of the form a + b-/6 where a and b are rational. Does this 
collection satisfy the axioms for a field? 

13. Show that the system of complex numbers a + bi with a, b real numbers, i = J=l 
satisfies all the axioms for a field. 

1.3. Inequalities 

The axioms for a field describe many number systems. If we wish to describe 
the real number system to the exclusion of other systems, additional axioms 
are needed. One of these, an axiom which distinguishes positive from negative 
numbers, is the Axiom of inequality. 

Axiom I (Axiom of inequality). Among all the numbers of the system, there is a 
set called the positive numbers which satisfies the conditions: (i) for any number 
a exactly one of the three alternatives holds: a is positive or a= 0 or -a is 
positive; (ii) any finite sum or product of positive numbers is positive. 

When Axiom I is added to those of Section 1, the resulting system of axioms 
is applicable only to those number systems which have a linear order. 3 For 
example, the system of complex numbers does not satisfy Axiom I but does 

3 That is, the numbers may be made to correspond to the points on a straight line as in analytic 
geometry. 
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satisfy all the axioms for a field. Similarly, it is easy to see that the system 
described in Problem 9 of Section 1.2 does not satisfy Axiom I. However, both 
the real number system and the rational number system satisfy all the axioms 
given thus far. 

Definitions. A number a is negative whenever -a is positive. If a and b are 
any numbers, we say that a > b (read: a is greater than b) whenever a - b is 
positive. We write a < b (read: a is less than b) whenever a - b is negative. 

The following theorem is an immediate consequence of Axiom I and the 
definition above. 

Theorem 1.11 

(i) a > 0 <=>a is positive, 
(ii) a < 0 <=>a is negative, 

(iii) a> 0<=> -a< 0, 
(iv) a< 0<=> -a> 0, 
(v) if a and b are any numbers then exactly one of the three alternatives holds: 

a > b or a = b or a < b, 
(vi) a< b<=>b >a. 

The next five theorems yield the standard rules for manipulating inequali
ties. We shall prove the first of these theorems and leave the proofs of the 
others to the reader. 

Theorem 1.12. If a, b, and c are any numbers and if a > b, then 

a+c>b+c and a-c>b-c. 

PROOF. Since a> b, it follows from the definition and Theorem l.ll(i) 
that a - b > 0. Hence (a + c) - (b + c) = a - b > 0 and (a - c) - (b - c) = 
a - b > 0. Therefore (a + c) - (b + c) is positive, as is (a - c) - (b - c). From 
the definition of "greater than" we conclude that a + c > b + c and a - c > 
b-~ D 

Theorem 1.13 

(i) If a > 0 and b < 0, then a· b < 0. 
(ii) If a < 0 and b < 0, then a· b > 0. 

(iii) 1 > 0. 

Theorem 1.14 

(i) a and b are both positive or both negative if and only if a· b > 0; a and b 
have opposite signs if and only if a· b < 0. 

(ii) If a =F 0 and b =F 0, then a· b and afb have the same sign. 



1.3. Inequalities 

Theorem 1.15 

(i) If a > b and c > 0, then 

ac >be and 
a b 
-> -. 
c c 

(ii) If a > b and c < 0, then 

ac <be and 
a b 
-<-. 
c c 

(iii) If a and b have the same sign and a > b, then 

1 1 
-a<IJ. 

Theorem 1.16. If a > b and b > c, then a > c. 

17 

Theorems 1.12 and 1.15 yield the following statements on inequalities, ones 
which are familiar to most readers. 

(a) The direction of an inequality is unchanged if the same number is added to 
or subtracted from both sides. 

(b) The direction of an inequality is unchanged if both sides are multiplied or 
divided by a positive number. 

(c) The direction of an inequality is reversed if both sides are multiplied or 
divided by a negative number. 

It is convenient to adopt a geometric point of view and to associate a 
horizontal axis with the totality of real numbers. We select any convenient 
point for the origin and denote points to the right of the origin as positive 
numbers and points to the left as negative numbers (Figure 1.1). For every 
real number there will correspond a point on the line and, conversely, every 
point will represent a real number. Then the inequality a < b may be read: a 
is to the left of b. This geometric way of looking at inequalities is frequently 
of help in solving problems. It is helpful to introduce the notion of an interval 
of numbers or points. If a and b are numbers (as shown in Figure 1.2), then the 
open interval from a to b is the collection of all numbers which are both larger 
than a and smaller than b. That is, an open interval consists of all numbers 
between a and b. A number xis between a and b if both inequalities a< x and 
x < b are true. A compact way of writing these two inequalities is 

a< x <b. 

The closed interval from a to b consists of all the points between a and b and 

-3 -2 -I 0 2 3 

Figure 1.1 
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a b 

Figure 1.2. Open interval. 

in addition the numbers (or points) a and b (Figure 1.3). Suppose a number x 
is either equal to a or larger than a, but we don't know which. We write this 
conveniently as x ~ a, which is read: x is greater than or equal to a. Similarly 
x ~ b is read: x is less than or equal to b, and means that x may be either 
smaller than b or may be b itself. A compact way of designating all points x 
in the closed interval from a to b is 

a~ x ~b. 

An interval which contains the endpoint b but not a is said to be half-open on 
the left. Such an interval consists of all points x which satisfy the double 
inequality 

a< x ~b. 

Similarly, an interval containing a but not b is called half-open on the right, 
and we write 

a~ x <b. 

Parentheses and brackets are used as symbols for intervals in the following 
way: 

(a, b) for the open interval a < x < b, 
[a, b] for the closed interval a~ x ~ b, 
(a, b] for the interval half-open on the left a < x ~ b, 
[a, b) for the interval half-open on the right a~ x <b. 

We can extend the idea of interval to include the unbounded cases. For 
example, consider the set of all numbers larger than 7. This set may be thought 
of as an interval beginning at 7 and extending to infinity to the right (see Figure 
1.4). Of course, infinity is not a number, but we use the symbol (7, oo) to 
represent all numbers larger than 7. We also use the double inequality 

7<x<oo 

to represent this set. In a similar way, the symbol ( -oo, 12) stands for all 
numbers less than 12. We also use the inequalities -oo < x < 12 to represent 
this set. 

a b 

Figure 1.3. Closed interval. 
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0 7 

Figure 1.4. A half infinite interval. 

The equation 3x + 7 = 19 has a unique solution, x = 4. The quadratic 
equation x 2 - x - 2 = 0 has two solutions, x = -1, 2. The trigonometric 
equation4 sin x = 1/2 has an infinite number of solutions, x = n/6, 5nf6, l3nf6, 
17n/6, .... The inequality x 2 ~ 2 has as its solution all numbers in the closed 
interval [ -.j2, .j2]. The solution of an equation or an inequality in one 
unknown, say x, is the collection of all numbers which make the equation or 
inequality a true statement. Sometimes this set of numbers is called the solution 
set. For example, the inequality 

3x -7 < 8 

has as its solution set all numbers less than 5. To demonstrate this we argue 
in the following way. If xis a number which satisfies the above inequality we 
can, by Theorem 1.16, add 7 to both sides and obtain a true statement. That 
is, the inequality 

3x -7 + 7 < 8 + 7 or 3x < 15 

holds. Now, dividing both sides by 3 (Theorem 1.19), we obtain x < 5, and 
therefore if x is a solution, then it is less than 5. Strictly speaking, however, 
we have not proved that every number which is less than 5 is a solution. In an 
actual proof, we begin by supposing that x is any number less than 5; that is, 
x < 5. We multiply both sides of this inequality by 3 (Theorem 1.19), and then 
subtract 7 from both sides (Theorem 1.16) to get 

3x -7 < 8, 

the original inequality. Since the hypothesis that xis less than 5 implies the 
original inequality, we have proved the result. The important thing to notice 
is that the proof consisted of reversing the steps of the original argument which 
led to the solution x < 5 in the first place. So long as each step taken is 
reversible, the above procedure is completely satisfactory for obtaining solu
tions of inequalities. 

By means of the symbol <=>, we can give a solution to this example in 
compact form. We write 

3x- 7 < 8 <=> 3x < 15 (adding 7 to both sides) 

and 
3x < 15 <=> x < 5 (dividing both sides by 3). 

The solution set is the interval ( -oo, 5). 

4 We assume the reader is familiar with the elementary properties of trigonometric functions. 
They are used mainly for illustrative purposes. 



20 1. The Real Number System 

We present a second illustration of the same technique. 

EXAMPLE 1. Find the solution set of the inequality: 

- 7 - 3x < 5x + 29. 

Solution. We have 

- 7 - 3x < 5x + 29 .;;. - 36 < 8x 

.;;. 8x > -36 

(adding 3x- 29 to both sides) 

(Theorem l.ll(vi)) 

The solution set is the interval (- 9/2, oo ). 0 

Notation. It is convenient to introduce some terminology and symbols 
concerning sets. In general, a set is a collection of objects. The objects may 
have any character (numbers, points, lines, etc.) so long as we know which 
objects are in a given set and which are not. If S is a set and P is an object in 
it, we write P E S and say that P is an element of S or that P belongs to S. If 
S1 and S2 are two sets, their union, denoted by S1 u S2 , consists of all objects 
each of which is in at least one of the two sets. The intersection of S1 and S2 , 

denoted by S1 n S2 , consists of all objects each of which is in both sets. 
Schematically, if S1 is the horizontally shaded set of points (Figure 1.5), and 
S2 is the vertically shaded set, then S1 u S2 consists of the entire shaded area, 
and S1 n S2 consists of the doubly shaded area. Similarly, we may form the 
union and intersection of any number of sets. When we write S1 u S2 u · · · u Sn 
for the union S of the n sets S 1 , S2 , ••• , Sn, then S consists of all elements each 
of which is in at least one of the n sets. We also use the notation S = Ui'=1 S; 
as a shorthand for the union of n sets. The intersection of n sets S1 , S2 , ••• , Sn 
is written S1 n S2 n · · · n Sn or, briefly, ni'=1 S;. It may happen that two sets S1 

and S2 have no elements in common. In such a case their intersection is empty, 
and we use the term empty set for the set which is devoid of members. 

I) 

Figure 1.5. Exhibiting S1 v S2 and S1 n S2 • 
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Most often we will deal with sets each of which is specified by some property 
or properties of its elements. For example, we may speak of the set of all even 
integers or the set of all rational numbers between 0 and 1. We employ the 
special symbol 

{x: x = 2n and n is an integer} 

to represent the set of all even integers. In this notation the letter x stands for 
a generic element of the set, and the properties which determine membership 
in the set are listed to the right of the colon. The symbol 

{x: x e (0, 1) and xis rational} 

represents the set of rational numbers in the open interval (0, 1). If a set has 
only a few elements, it may be specified by listing its members between braces. 
Thus the symbol {- 2, 0, 1} denotes the set whose elements are the numbers 
-2, 0, and 1. A set may be specified by any number of properties, and we use 
a variety of notations to indicate these properties. If a set of objects P has 
properties A, B, and C, we may denote this set by 

{P: P has properties A, B, and C}. 

Other examples are: the open interval (0, 2) is denoted by 

(0, 2) = {x: 0 < x < 2} 

and the half-open interval [2, 14) is denoted by 

[2, 14) = {t: 2 ~ t < 14}. 

To illustrate the use of the symbols for set union and set intersection, we 
observe that 

[1, 3] = [1, 2tJ u [2, 3] 

and 
(0, 1) = (0, +oo) 11 ( -oo, 1). 

The words and and or have precise meanings when used in connection with 
sets and their properties. The set consisting of elements which have property 
A or property B is the union of the set having property A and the set having 
property B. Symbolically, we write 

{x: x has property A or property B} 

= {x: x has property A} u {x: x has property B}. 

The set consisting of elements which have both property A and property B is 
the intersection of the set having property A with the set having property B. 
In set notation, we write 

{x: x has property A and property B} 

= {x: x has property A} 11 {x: x has property B}. 
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If A and B are two sets and if every element of A is also an element of B, 
we say that A is a subset of B, and we write A c B. The two statements A c B 
and B c A imply that A = B. 

We give two examples illustrating the way set notation is used. 

EXAMPLE 2. Solve for x: 
3 
- < 5 (x =I= 0). 
X 

Solution. Since we don't know in advance whether x is positive or negative, 
we cannot multiply by x unless we impose additional conditions. We therefore 
separate the problem into two cases: (i) xis positive, and (ii) xis negative. The 
desired solution set can be written as the union of the sets S1 and S2 defined by 

Sl = {x: ~ < 5 and X> 0}, 

S2 = { x: ~ < 5 and x < 0}. 

Now 
xe sl <=> 3 < 5x and x>O 

<=> x>l and x>O 

<=> x>l 

Similarly, 
xe s2 <=> 3 > 5x and x<O 

<=> x<l and x<O 

<=> x<O. 

Thus the solution set is (see Figure 1.6) 

S1 u S2 = (!, oo) u ( -oo, O). 

EXAMPLE 3. Solve for x: 

s2 

2x- 3 1 
--<
X+ 2 3 

'~~~~~~~~~%~( 
0 

(x =I= -2). 

s1 
]~~~~~~~~~~~ 
3 s 

Figure 1.6 
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-2 II 
5 

Figure 1. 7. Solution set (- 2, 11/5). 

Solution. As in Example 2, the solution set is the union S1 u S2 , where 

{ 2x-3 1 } 
Sl = x: X + 2 < 3 and X + 2 > 0 , 

{ 2x-3 1 } 
S2 = x: X + 2 < 3 and X + 2 < 0 . 

23 

For numbers in S1, we may multiply the inequality by x + 2 and, since x + 2 
is positive, the direction of the inequality is preserved. Hence 

X E Sl .;;.. 3(2X - 3) < X + 2 and X + 2 > 0 

.;;.. 5x < 11 and x + 2 > 0 

.;;.. x < V and x > -2 

.;;.. X E ( - 2, V ). 
For numbers in S2 , multiplication of the inequality by the negative quantity 
x + 2 reverses the direction. Therefore, 

X E S2 .;;.. 3(2X - 3) > X + 2 and X + 2 < 0 

.;;.. 5x > 11 and x + 2 < 0 

.;;.. x > V and x < - 2. 

Since there are no numbers x satisfying both conditions x > 11/5 and 
x < - 2, the set S2 is empty. The solution set (Figure 1. 7) consists of 
sl = ( -2, 11/5). o 

We shall assume the reader is familiar with the notion of absolute value 
and elementary manipulations with equations and inequalities involving the 
absolute value of numbers. For those readers who wish to review this material, 
the basic definitions and theorems are provided in Appendix 1.1. A general 
method for solving polynomial inequalities and inequalities involving quo
tients of polynomials is presented in Appendix 1.2. 

PROBLEMS 

1. Consider the field consisting of all numbers of the form a + b..[i where a and b 
are rational. Does this field satisfy Axiom I? Justify your answer. 
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2. Consider the set of all numbers of the form aiJ7 where a is a real number and 
i = J"=l. Show that it is possible to give this set an ordering in such a way that 
it satisfies Axiom I. Does this set form a field? 

3. Show that the set of all complex numbers a + bi, with a and b rational, satisfies 
all the axioms for a field. 

In Problems 4 through 7 find in each case the solution set as an interval, and 
plot. 

4. 2x - 2 < 27 + 4x 

5. 5(x - 1) > 12 - (17 - 3x) 

6. (2x + 1)/8 < (3x - 4)/3 

7. (x + 10)/6 + 1 - (x/4) > ((4 - 5x)/6) - 1 

In Problems 8 through 10, find the solution set of each pair of simultaneous 
inequalities. Verify in each case that the solution set is the intersection of the 
solution sets of the separate inequalities. 

8. 2x - 3 < 3x - 2 and 4x - 1 < 2x + 3 

9. 3x + 5 > x + 1 and 4x- 3 < x + 6 

10. 4- 2x < 1 + 5x and 3x + 2 < x- 7 

In Problems 11 through 14, express each given combination of intervals as an 
interval. Plot a graph in each case. 

11. [ -1, oo] n(-oo- 2) 

13. (-1, 1)u(O, 5) 

12. ( -oo, 2) n ( -oo, 4) 

14. ( -oo, 2) u ( -oo, 4) 

In Problems 15 through 19 find the solution set of the given inequality. 

15. 3/x < 2/5 

17. (x + 2)/(x - 1) < 4 

19. (x + 2)/(x- 3) < -2 

21. Prove Theorem 1.14. 

23. Prove Theorem 1.16. 

16. (x - 2)/x < 3 

18. x/(2 - x) < 2 

20. Prove Theorem 1.13. 

22. Prove Theorem 1.15. 

24. Using the theorems of this section prove that if a > b and c > d, then 
a+ c > b +d. 

25. Using the theorems of this section show: 

(i) If a > b > 0 and c > d > 0, then a · c > b · d. 
(ii) If a < b < 0 and c < d < 0, then a· c > b ·d. 
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1.4. Mathematical Induction 

The principle of mathematical induction with which most readers are familiar 
can be derived as a consequence of the axioms in Section 1.1. Since the 
definition of natural number is at the basis of the principle of mathematical 
induction, we shall develop both concepts together. 

Definition. A set S of numbers is said to be inductive if and only if 

(a) 1 E Sand 
(b) (x + 1) E S whenever xES. 

Examples of inductive sets are easily found. The set of all real numbers is 
inductive, as is the set of all rationals. The set of all integers, positive, zero, 
and negative is inductive. The collection of real numbers between 0 and 10 is 
not inductive since it satisfies (a) but not (b). No finite set of real numbers can 
be inductive since (b) will be violated at some stage. 

Definition. A real number n is said to be a natural number if and only if it 
belongs to every inductive set of real numbers. The set of all natural numbers 
will be denoted by the symbol N. 

We observe that N contains the number 1 since, by the definition of 
inductive set, 1 must always be a member of every inductive set. Intuitively 
we know that the set of natural numbers N is identical with the set of positive 
integers. 

Theorem 1.17. The set N of all natural numbers is an inductive set. 

PROOF. We must show that N has Properties (a) and (b) in the definition of 
inductive set. As we remarked above, (a) holds. Now suppose that k is an 
element of N. Then k belongs to every inductive setS. For each inductive set, 
if k is an element, so is k + 1. Thus k + 1 belongs to every inductive set. 
Therefore k + 1 belongs toN. Hence N has Property (b), and is inductive. D 

The principle of mathematical induction is contained in the next theorem 
which asserts that any inductive set of natural numbers must consist of the 
entire collection N. 

Theorem 1.18 (Principle of mathematical induction). If S is an inductive set of 
natural numbers, then S = N. 

PRooF. Since S is an inductive set, we know from the definition of natural 
number that N is contained inS. On the other hand, since S consists of natural 
numbers, it follows that Sis contained in N. Therefore S = N. D 
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We now illustrate how the principle of mathematical induction is applied 
in practice. The reader may not recognize Theorem 1.18 as the statement of 
the familiar principle of mathematical induction. So we shall prove a formula 
using Theorem 1.18. 

EXAMPLE 1. Show that 
n(n + 1) 

1+2 ... +n= 2 (1.1) 

for every natural number n. 

Solution. Let S be the set of natural numbers n for which the Formula (1.1) 
holds. We shall show that Sis an inductive set. 

(a) Clearly 1 e S since Formula (1.1) holds for n = 1. 
(b) Suppose k e S. Then Formula (1.1) holds with n = k. Adding (k + 1) to 

both sides we see that 

1 + ... + k + (k + 1) = k(k; 1) + (k + 1) = (k + 1~k + 2), 

which is Formula (1.1) for n = k + 1. Thus (k + 1) is inS whenever k is. 
Combining (a) and (b), we conclude that S is an inductive set of natural 

numbers and so consists of all natural numbers. Therefore Formula (l.l)holds 
for all natural numbers. 0 

EXAMPLE 2. Show that n! > 2n for each natural number n > 3. 

Solution. LetS consist of 1, 2, 3 and all n > 3 for which n! > 2n. We shall show 
that S is inductive. 

(a) Clearly 1 e S by the definition of S. 
(b) Suppose k e S. Then k = 1, 2, or 3, or k > 3 and k! > 2k. If k = 1, 

k + 1 = 2 e S. If k = 2, k + 1 = 3 e S. If k = 3, then k + 1 = 4 e S since 4! = 
24 > 24 = 16. If k > 3 and k! > 2\ then (k + 1) > 3 obviously, and 

(k + 1)! = (k + 1)·k! > (k + 1)·2k > 4·2k = 2·2k+l > 2k+l 

so that (k + 1) e S. Thus (k + 1) is in S whenever k is. 
Therefore S is inductive and so consists of all natural numbers. If n is any 

natural number > 3, it follows that n! > 2n. 0 

Note that in this example the inequality n! > 2n is false for n = 1, 2, 3. This 
made necessary the unusual definition of our setS. 

Remark. An alternative (simplier) procedure for proving statements such 
as those in Example 2 uses a modified form of Theorem 1.18. A setS of real 
numbers has the modified inductive property if(1) S has a smallest number and 
(2) (x + 1) e S whenever xeS. Theorem 1.18 becomes: if Sis a set of natural 
numbers with the modified inductive property, then S contains all the natural 
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numbers greater than the smallest natural number in S. We see that in 
Example 2, we may choose for S the set of all natural numbers greater than 
3. The result is the same. 

Now mathematical induction can be used to establish Proposition 1.1 of 
Section 1.2. We state this and subsequent propositions of Section 1.2 as 
theorems. 

Theorem 1.19. For each finite sequence of numbers a 1 , a2 , ... , an, there is 
associated a unique sequence b1 , b2 , ••• , bn such that 

(1.2) 

and 
for i = 1, 2, ... , n - 1 if n > 1. (1.3) 

PRooF. LetS be the set of all natural numbers n for which the theorem is true. 
We shall show that S is inductive and hence S = N. Clearly 1 is in S since 
b1 = a1 , by hypothesis. Let a1 , a2 , ••• , ak, ak+1 be given and suppose that k E S. 

Then there is a unique sequence b1, b2 , ••• , bk such that 

b1 = a1 

and 
for i = 1, 2, ... , k - 1 if k > 1. 

If k = 1, then b1 = a 1• We define bk+1 = bk + ak+1. Then the sequence b1 , 

b2 , ••• , bk, bk+1 satisfies Equations (1.2) and (1.3) of the theorem, and we must 
show that this sequence is unique. Suppose b~, b2, ... , b~, b/.+1 is a second 
sequence with the same properties. We have b[ = b; fori= 1, 2, ... , k because 
the assumption k E S implies these b; are unique. Now, 

b/.+1 = b~ + ak+1 = bk + ak+1 = b,.+1' 

and so (k + 1) E S. The setS is inductive and therefore S = N. The theorem 
is true for every natural number n. D 

Theorem 1.20. For each finite sequence a 1 , a2 , ••• , an there is a unique sequence 
c1 , c2 , .•• , en such that 

and 
for i = 1, 2, ... , n - 1 if n > 1. 

The proof of Theorem 1.20 is similar to the proof of Theorem 1.19 and is 
left to the reader. 

The next theorem, originally stated as Proposition 1.4 of Section 1.2, is a 
consequence ofTheorems 1.19 and 1.20.1ts proof, which employs the Principle 
of mathematical induction, is left to the reader. 
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Theorem 1.21./f a 1 , a2 , ••• , am, am+l• ... , am+n is any finite sequence, then 

and 
m+n ( m ) ( m+n ) n ai = n ai . n ai . 
i=l i=l l=m+l 

Since the set of natural numbers 1\1 is identical with the set of positive 
integers, the fact that a natural number is positive follows from the Axiom of 
inequality and the definition of 1\1. 

Theorem 1.22 (The well-ordering principle). Any nonempty set T of natural 
numbers contains a smallest element. 

PRooF. Let k be a member ofT. We define a setS of natural numbers by the 
relation 

S = {p: p e T and p ~ k}. 

The set S contains a portion (not necessarily all) of the set consisting of the 
natural numbers {1, 2, 3, ... , k- 1, k}. Thus since Sis finite it has a smallest 
element, which we denote by s. We now show that sis the smallest element of 
T. First, since s e S and S c T, then s e T. Suppose t is any element of T 
different from s. If t > k, then the inequality k ;;.: s implies that t > s. On the 
other hand, if t ~ k, then t e S. Since s is the smallest element of S and s "I= t, 
we haves < t. Thus sis smaller than any other element of T, and the proof is 
complete. D 

PROBLEMS 

In each of Problems 1 through 6 use the Principle of mathematical induction 
to establish the given formula. 

1. D=t i2 = n(n + 1)(2n + 1)/6 

2. D=t i 3 = n2 (n + 1)2/4 

3. D=t (2i- 1) = n2 

4. D=t i(i + 1) = n(n + 1)(n + 2)/3 

5. D=t i(i + 2) = n(n + 1)(2n + 7)/6 

6. D=t (1/i(i + 1)) = nj(n + 1) 

7. Suppose p, q, and r are natural numbers such that p + q < p + r. Show that 
q < r. 

8. Suppose that p, q, and r are natural numbers such that p · q < p · r. Show that 
q <r. 
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9. (a) Show that the set of positive rational numbers is inductive. 
(b) Is the set a + b.j5, a and b natural numbers, an inductive set? 
(c) Is the set of all complex numbers an inductive set? 

29 

In each of Problems 10 through 15 use the Principle of mathematical induc
tion to establish the given assertion. 

10. L7=1 [a+ (i -1)d] = n[2a + (n -1)d]/2,whereaanddareanyrealnumbers. 

11. L7=1 ari-l = a(r" - 1)/(r - 1), where a and rare real numbers, and r * 1. 

12. D=t i(i + 1)(i + 2) = n(n + 1)(n + 2)(n + 3)/4. 

13. (1 + a)" ~ 1 + na for a ~ 0 and n a natural number. 

14. D=l 32i-l = 3(9"- 1)/8. 

15. Prove by induction that 

k 

(x1 + x 2 + · · · + xk)2 = L xf + 2(x1x 2 + x 1x 3 + · · · + x 1xk + x 2x 3 
i=1 

16. Prove Theorem 1.20. 

17. Prove Theorem 1.21. 

18. Use mathematical induction to prove Proposition 1.5 of Section 1.2. 

19. Use mathematical induction to prove Proposition 1.6 of Section 1.2. 

*20. 5 We denote by f\.J x f\.J the set of all ordered pairs of natural numbers (m, n). State 
and prove a Principle of mathematical induction for sets contained in f\.J x f\.J. 

5 An asterisk is used to indicate difficult problems. 



CHAPTER 2 

Continuity and Limits 

2.1. Continuity 

Most ofthe functions we study in elementary calculus are described by simple 
formulas. These functions almost always possess derivatives and, in fact, a 
portion of any first course in calculus is devoted to the development of routine 
methods for computing derivatives. However, not all functions possess deriva
tives everywhere. For example, the functions (1 + x2)/x, cot x, and sin(l/x) do 
not possess derivatives at x = 0 no matter how they are defined at x = 0. 

As we progress in the study of analysis, it is important to enlarge substan
tially the class of functions under examination. Functions which possess 
derivatives everywhere form a rather restricted class; extending this class to 
functions which are differentiable except at a few isolated points does not 
enlarge it greatly. We wish to investigate significantly larger classes of func
tions, and to do so we introduce the notion of a continuous functions. 

Definitions. Suppose that f is a function from a domain Din IR 1 to IR 1• The 
function f is continuous at a if and only if (i) the point a is in an open interval 
I contained in D, and (ii) for each positive number 6 there is a positive number 
{)such that 

lf(x) - f(a)l < 6 whenever lx - al < b. 

Iff is continuous at each point of a set S, we say that f is continuous on S. A 
function/ is called continuous if it is continuous at every point of its domain. 

The geometric significance of continuity at a point a is indicated in Figure 
2.1. We recall that the inequality lf(x) - f(a)l < 6 is equivalent to the double 
inequality 

- 6 < f(x) - f(a) < 6 

30 
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y 

y =[(a) +E 

y = f(a) 

y = f(a) -E 

Y = f(x) ------------,-----, 
I 
I 

-----------~-- ~~ 

I : I 
--1----t----J 

1 I I 

I I I 

Figure 2.1. The graph off is in the rectangle for a - b < x < a + b. 

or 
f(a) - e < f(x) < f(a) + e. 

Similarly, the inequality lx- al <{)is equivalent to the two inequalities 

a - {) < x < a + {). 
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We construct the four lines x = a - {), x = a + {), y = f(a) - e, and y = 
f(a) + e, as shown in Figure 2.1. The rectangle determined by these four lines 
has its center at the point with coordinates (a, f(a)). The geometric inter
pretation of continuity at a point may be given in terms of this rectangle. A 
function f is continuous at a if for each e > 0 there is a number {) > 0 such 
that the graph of f remains within the rectangle for all x in the interval 
(a - {), a + {)). 

It is usually very difficult to verify continuity directly from the definition. 
Such verification requires that for every positive number e, we exhibit a 
number {) and show that the graph of f lies in the appropriate rectangle. 
However, if the function f is given by a sufficiently simple expression, it is 
sometimes possible to obtain an explicit value for the quantity {) correspond
ing to a given number e. We describe the method by means of two examples. 

EXAMPLE 1. Given the function 

1 
f:x-+--1, 

x+ 
X =f. -1, 

and a = 1, e = 0.1, find a number {) such that lf(x) - f(1)1 < 0.1 for 
lx-11<{). 
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t------- -I--~-----y = 1/(x + 1) 
1 t-o.l I 
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Solution. We sketch the graph off and observe that f is decreasing for x > - 1 
(see Figure 2.2). The equations f(x) - f(1) = 0.1, f(x) - f(1) = -0.1 can be 
solved for x. We find 

1 1 2 
----=0.1 <=> X=-
X+ 1 2 3 

and 
1 1 3 

----= -0.1 <=> X= :2' x+1 2 

Since f is decreasing in the interval j < x < ~. it is clear that the graph off 
lies in the rectangle formed by the lines x = j, x = ~. y = t- 0.1, andy= 
t + 0.1. Since the distance from x = 1 to x = j is smaller than the distance 
from x = 1 to x =~.we select (j = 1 - j = t. We make the important general 
observation that when a value of (j is obtained for a given quantity 8, then any 
smaller (positive) value for (j may also be used for the same number 8. 0 

Remarks. For purposes of illustration, we assume in this chapter that .::,rx 
is defined for all x ~ 0 if n is even and that .::,rx is defined for all x if n is odd. 
We also suppose that for positive numbers x1, x 2 , the inequality~> j""i; 
holds whenever x 2 > x 1 • Facts of this type concerning functions of the form 
.::,rx, with n a natural number, do not follow from the results given thus far. 
They will be proved in the next section. 
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EXAMPLE 2. Consider the function 

{ 
x-4 

f:x-+ f-2 x~O,x:;i:4, 

x=4. 

Ifs = 0.01,finda15suchthatlf(x)- /(4)1 < O.Olforallxsuchthatlx- 41 < 15. 

Solution. If x :;l: 4, then 

f(x) = <Jx - 2)(Jx + 2) = Jx + 2. 
Jx-2 

The graph off is shown in Figure 2.3, and we observe that f is an increasing 
function. We solve the equations f(x)- f(4) = 0.01 and f(x)- /(4) = -0.01 
and obtain 

Jx + 2 - 4 = 0.01 

Jx + 2 - 4 = -0.01 

<=> Jx = 2.01 <=> X = 4.0401 

<=> Jx = 1.99 <=> X= 3.9601. 

Since f is increasing, it follows that lf(x) - /(4)1 < 0.01 for 3.9601 < x < 
4.0401. Selecting 15 = 0.0399, we find that lf(x) - /(4)1 < s for lx - 41 < 15. 

0 

We shall frequently be concerned with functions which have a domain in 
IR 1 which consists of an interval except for a single point. This exceptional 
point may be an interior point or an endpoint of the interval. For example, 
the function (x2 + 1)/x is defined for all x except x = 0. The function log xis 
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defined for x > 0 but not for x = 0. Other examples are cot x, defined on any 
interval not containing an integral multiple of n, and the function (x3 + 8)/ 
(x + 2) not defined for x = - 2; in fact, any function defined as the quotient 
of two polynomials has excluded from its domain those values at which the 
denominator is zero. 

Definition. Suppose that a and L are real numbers and f is a function from a 
domain Din IR1 to IR1• The number a may or may not be in the domain off 
The function f tends to L as a limit as x tends to a if and only if (i) there is an 
open interval I containing a which, except possibly for the point a, is contained 
in D, and (ii) for each positive number e there is a positive number J such that 

lf(x) - Ll < e whenever 0 < lx - al < J. 

Iff tends to Las x tends to a, we write 

f(x)-+ L as x-+ a 

and denote the number L by 
Iimf(x) 
x-oa 

or by Iimx .... af(x). 

Remarks 
(i) We see that afunctionfiscontinuous at a if and only if a is in the domain 

off and f(x) -+ f(a) as x -+a. 
(ii) The condition 0 < lx- al < J (excluding the possibility x =a) is used 

rather than the condition lx- al < J as in the definition of continuity since 
f may not be defined at a itself. 

PROBLEMS 

In Problems 1 through 8 the functions are continuous at the value a given. In 
each case find a value J corresponding to the given value of e so that the 
definition of continuity is satisfied. Draw a graph. 

1. f(x) = 2x + 5, a = 1, e = 0.01 

2. f(x) = 1 - 3x, a = 2, e = 0.01 

3. f(x) = Jx, a = 2, e = 0.01 

4. f(x) = .:rx. a= 1, e = 0.1 

5. f(x) = 1 + x 2, a= 2, e = 0.01 

6. f(x) = x 3 - 4, a= 1, e = 0.5 

7. f(x) = x 3 + 3x, a = -1, e = 0.5 

8. f(x) = jh+l, a= 4, e = 0.1 
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In Problems 9 through 17 the functions are defined in an interval about the 
given value of a but not at a. Determine a value {) so that for the given values 
of Lande, the statement "lf(x) - Ll < e whenever 0 < lx - al < {)"is valid. 
Sketch the graph of the given function. 

9. f(x) = (x2 - 9)/(x + 3), a= -3, L = -6, ll = 0.005 

10. f(x) = (J2x - 2)/(x - 2), a = 2, L = t. ll = 0.01 

11. f(x) = (x2 - 4)/(x- 2), a= 2, L = 4, ll = 0.01 

12. f(x) = (x - 9)/(Jx - 3), a = 9, L = 6, ll = 0.1 

13. f(x) = (x3 - 8)/(x - 2), a = 2, L = 12, ll = 0.5 

14. f(x) = (x3 + 1)/(x + 1), a = -1, L = 3, ll = 0.1 

*15. f(x) = (x- 1)/(.yx- 1), a= 1, L = 3, ll = 0.1 

16.1 f(x) = x sin(1/x), a= 0, L =0, ll = 0.01 

*17. f(x) =(sin x)/x, a= 0, L = 1, ll = 0.1 

18. Show that limx_0 (sin(1/x)) does not exist. 

*19.1 Show that limx-oX loglxl = 0. 

20. The function f(x) = x cot x is not defined at x = 0. Can the domain off be 
enlarged to include x = 0 in such a way that the function is continuous on the 
enlarged domain? 

21. For all x e R1 define 

{ 1 ifxisarationalnumber, 
f(x) = o "f · · · al be 1 x ts an trratton num r. 

Show that f is not continuous at every value of x. 

22. Supposethatfisdefinedinanintervalaboutthenumberaandlimh_o(f(a +h)
f(a - h)] = 0. Show that f may not be continuous at a. Is it always true that 
limh_of(a +h) exists? 

2.2. Limits 

The basic theorems of calculus depend for their proofs on certain standard 
theorems on limits. These theorems are usually stated without proof in a first 
course in calculus. In this section we fill the gap by providing proofs of the 
customary theorems on limits. These theorems are the basis for the formulas 
for the derivative of the sum, product and quotient of functions and for the 
Chain Rule. 

1 For purposes of illustration we assume the reader is familiar with the elementary properties of 
the exponential, logarithmic, trigonometric, and inverse trigonometric functions. The exponential 
and logarithmic functions are discussed in Section 5.3. 
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a xo 

Theorem 2.1 (Uniqueness of limits). Suppose f is a function from IR 1 to IR 1• If 
f(x)-+ L as x -+ a and f(x)-+ M as x -+ a, then L = M. 

PRooF. We shall assume that L-:/= M and reach a contradiction. Define e = 
tiL- MI. According to the definition of limit, we know that for this positive 
number e, there is a number ~1 > 0 such that (x is in the domain off and) 

lf(x) - Ll < e for all x whenever 0 < lx - al < ~1 • 

Similarly since f(x)-+ M, there is a number ~2 > 0 such that (xis in the domain 
off and) 

lf(x)- Ml < e for all x whenever 0 < lx- al < ~2 • 

Let x0 be a number whose distance from a is less than both ~1 and ~2 • (See 
Figure 2.4.) We write 

L - M = (L - f(x0 )) + (f(xo) - M). 

Therefore, 
IL - Ml ~ IL - f(xo)l + lf(xo)- Ml 

and, from the inequalities above, 

IL - Ml < e + e = 2e. 

On the other hand, we defined e =tiL- MI. We have a contradiction, and 
soL=M. 0 

Theorem 2.2 (Limit of a constant). If c is a number and f(x) = c for all x on 
IR 1, then for every real number a 

limf(x) =c. 

PRooF. In the definition of limit, we may choose ~ = 1 for every positive e. 
Then 

lf(x)- cl = lc- cl = 0 < e for lx- al < 1. 0 

Theorem2.3(0bviouslimit).Iff(x) = xforall xon IR1 and a isanyrealnumber, 
then 

limf(x) =a. 
x-+a 

PROOF. In the definition of limit, we may choose ~=e. Then, since f(x)
f(a) = x - a, we clearly have 

lf(x)- f(a)l = lx - al < e whenever 0 < lx - al < e. 0 
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Theorem 2.4 (Limit of equal functions). Suppose f and g are functions whose 
domains contain the setS= {x: 0 < lx- al < r} for some positive number r. If 
f(x) = g(x) for all x in S and limx-+a g(x) = L, then 

limf(x) = L. 
x-+a 

PROOF. We show that the definition of limit is satisfied for f Let 6 > 0 be 
given. Then there is a number (j > 0 such that lg(x)- Ll < 6 whenever 0 < 
lx- al < (). We decrease (), if necessary, so that (j < r. Then lg(x)- Ll = 

lf(x)- Ll for 0 < lx- al < (j and so the definition of limit is satisfied for the 
function f. D 

Remarks. In Theorem 2.4 f and g may differ outside the set 0 < lx - al < r. 
In addition, one or both of the functions may not be defined at x = a. 

Theorem 2.5 (Limit of a sum). Suppose that 

lim ft (x) = Lt and lim f 2(x) = L 2 . 
x-+a x-+a 

Define g(x) = ft (x) + f 2(x). Then 

lim g(x) = Lt + L 2 • 
x-+a 

PRooF. Let 6 > 0 be given. Then, using the quantity 6/2, there are positive 
numbers (jt and ()2 such that 

1ft (x)- Ltl < ~ for all x satisfying 0 < lx- al < (jt 

and 

lf2(x)- L21 < ~ for all x satisfying 0 < lx- al < ()2 • 

Define (j as the smaller of (jt and ()2 • Then 

lg(x)- (Lt + L2)l = lft(x)- Lt + f2(x)- L2l 

~ 1ft (x) - Ltl + lf2(x) - L2l, 

and for 0 < lx - al < (),it follows that 

The result is established. D 

Corollary. Suppose that limx_.a_t;(x) = Li, i = 1, 2, ... , n. Define g(x) = 
Li'=t _t;(x). Then 

n 

lim g(x) = L Li. 
x--+a i=l 
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The corollary may be established either by induction or directly by the method 
used in the proof of Theorem 2.5. 

Theorem 2.6 (Limit of a product). Suppose that 

lim f 1 (x) = L 1 and lim f 2(x) = L 2 • 
x-+a x-+a 

Define g(x) = f 1 (x) · f 2 (x). Then 

lim g(x) = L 1 L 2 • 
x-+a 

PRooF. Suppose that e > 0 is given. We wish to show that there is a~ > 0 such 
that 

lg(x)- L 1L 21 < e whenever 0 < lx- al < ~. 

If e1 and e2 are positive numbers (their exact selection will be made later), there 
are positive numbers ~1 and ~2 such that 

lf1 (x)- L 11 < e1 whenever 0 < I x- al < ~1 (2.1) 

and 
lf2(x)- L 21 < e2 whenever 0 < lx- al < ~2 . (2.2) 

We first show that lf1(x)l < IL11 + e1 for 0 < lx- al < ~1 . To see this, we 
write 

and hence 
lft(x)l ~ lft(x)- L1l + ILtl < ll1 + ILtl· 

Define M = IL1 1 + e1• To establish the result of the theorem, we use the 
identity 

g(x)- L 1 L 2 = L 2(f1(x)- Lt} + f 1(x)(f2(x)- L2 ). 

Now we employ the triangle inequality for absolute values as well as In
equalities (2.1) and (2.2) to get 

lg(x)- L1L2I ~ IL21·1ft(x)- Ltl + lft(x)l·lf2(x)- L2l 

~ IL2I'Il1 + M·e2. 

Select e1 = ef2L2 and e2 = ef2M. The quantities ~1 and ~2 are those which 
correspond to the values of e1 and e2 , respectively. Then with~ as the smaller 
of ~1 and ~2 , it follows that 

whenever 0 < lx- al < ~.2 D 

Corollary. Suppose that .fi(x)-+ Lias x -+ a fori = 1, 2, ... , n, and suppose that 
g(x) = f 1 (x) · · · f,.(x). Then limx-+a g(x) = L 1 L 2 • • • L,.. 

2 This proof assumed that L 2 ~ 0. A slight modification of the proof establishes the result if 
L 2 =0. 
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Theorem 2. 7 (Limit of a composite function). Suppose that f and g are functions 
on ~1 to ~1 • Define the composite function h(x) = f[g(x)]. Iff is continuous 
at L, and if g(x) --. L as x --.a, then 

lim h(x) = f(L). 
;x;-+a 

PRooF. Since f is continuous at L, we know that for every e > 0 there is a 
151 > 0 such that 

lf(t)- f(L)I < B whenever It- Ll < 151 • 

From the fact that g(x)--. L as x --. a, it follows that for every e' > 0, there is 
a 15 > 0 such that 

lg(x) - Ll < e' whenever 0 < I x - al < 15. 

In particular, we may select e' = 151 • Then f[g(x)] is defined and 

lf[g(x)] - f(L)I < B whenever 0 < I x - al < 15. 0 

Remark. The result ofTheorem 2.7 is false if we weaken the hypothesis on 
the function f and require only that f tend to a limit as t --. L rather than have 
f continuous at L. An example exhibiting this fact is discussed in Problem 11 
at the end of the section. 

Corollary 1. Iff is continuous at L and g is continuous at a with g(a) = L, then 
the composite function h(x) = f[g(x)] is continuous at a. 

Speaking loosely, we say that "a continuous function of a continuous 
function is continuous." 

Corollary 2. The function F: x--. 1/x, defined for x :F 0 is continuous for every 

value of x :F 0. The function G: x -..::,rx defined for x > 0 is continuous for 
every x > 0.3 

These statements may be proved directly by the methods of Section 2.1 and 
proofs are left to the reader. 

Theorem 2.8 (Limit of a quotient). Suppose that 

lim f(x) = L and lim g(x) = M. 
;x;-+a :x:-+a 

Define h(x) = f(x)fg(x). If M :F 0, then 

lim h(x) = LfM. 
:x:-+a 

3 This can be proved only after it is shown that vfx is defined for each x > 0, i.e., if x > 0 and n 
is a natural number, there is a unique y > 0 such that y• = x. We have assumed this fact in this 
chapter for illustration only. 
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The proof of Theorem 2.8 is a direct consequence of Theorem 2.6, 2.7, and 
Corollary 2. We leave the details to the reader. 

Theorem 2.9 (Limit of inequalities). Suppose that 

lim f(x) = L and lim g(x) = M. 
x-+a x-+a 

Iff(x) ~ g(x)for all x in some interval about a(possibly excluding a itself), then 

L~M. 

PROOF. We assume that L > M and reach a contradiction. Let us define 
e = (L - M)/2; then from the definition of limit there are positive numbers <51 

and <52 such that 

lf(x)- Ll < e for all x satisfying 0 < I x - al <<51 

and 
lg(x)- Ml < e for all x satisfying 0 < I x- al <<52 . 

We choose a positive number <5 which is smaller than <51 and <52 and further
more so small that f(x) ~ g(x) for 0 < I x - al < <5. In this interval, we have 

M - e < g(x) < M + e and L - e < f(x) < L + e. 

Since M + e = L - e, it follows that 

g(x) < M + e = L - e < f(x), 

and so f(x) > g(x), a contradiction. 0 

Remarks. In Theorem 2.9 it is not necessary that f and g be defined at x = a. 
Iff and g are continuous at a, we conclude from the theorem that f(a) ~ g(a). 
If, in the hypothesis, we assume that f(x) < g(x) in an interval about a, 
(excluding a itself) it is not possible to conclude that L < M. For example, 
letting f(x) = x 3 and g(x) = x 2 , we observe that f(x) < g(x) for -1 < x < 1, 
x -:/= 0. However, f(O) = g(O) = 0. 

Theorem 2.10 (Sandwiching theorem). Suppose that f, g, and h are functions 
defined on the interval 0 < lx- al < k for some positive number k. If f(x) ~ 
g(x) ~ h(x) on this interval, and if 

limf(x) = L, lim h(x) = L, 
x-+a x-+a 

then limx-+a g(x) = L. 

PROOF. Given any e > 0, there are positive numbers <51 and <52 (which we take 
smaller than k) so that 

lf(x) - Ll < e whenever 0 < I x - al < <5 1 
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and 

lh(x)- Ll < B whenever 0 < I x- a! < <52 • 

In other words, L - B < f(x) < L + Band L - B < h(x) < L + B for all x such 
that 0 < I x - a! < t5 where t5 is the smaller of <51 and <52 • Therefore 

L - B < f(x) ~ g(x) ~ h(x) < L + B 

in this interval. We conclude that lg(x)- Ll < B for 0 < lx- a!< t5, and the 
result is established. 0 

PROBLEMS 

1. Show how Theorems 2.2, 2.3, 2.5, and 2.6 may be combined to prove that for 
every number a, the linear function ex + d has the property that 

lim(cx +d)= ca +d. 

2. Same as Problem 1 for the quadratic function: cx2 + dx + e. Show that 

lim (cx2 + dx + e) = ca2 + da + e. 

3. Same as Problem 1 for a general polynomial of degree n: 

a0 x" + a 1x"-1 + · ·· + a._1 x +a.= P.(x). 

Prove that 

lim P.(x) = P.(a). 

[Hint: Use induction.] 

4. Let P.(x) and Qm(x) be polynomials of degree nand m, respectively. Use the result 
of Problem 3 and Theorem 2.8 to show that 

lim P.(x) = P.(a) 
x-a Qm(X) Qm(a) 

whenever a is not a root of Qm(x) = 0. 

*5. Suppose that x1 , x2 , ••• , x., ... is a sequence of points tending to a. Suppose f 
and g are functions defined in an interval about a with f(x.) = g(x.). Iflim.,_ f(x) = 
L, is it true that lim.,-ag(x) = L? Justify your answer. 

6. Use the Sandwiching theorem to show that lim.,_0 x" = 0 for every positive 
integer n ~ 3 by selecting f(x) = 0, g(x) = x", h(x) = x2, -1 < x < 1. 

7. Suppose f and h are continuous at a and f(x) ~ g(x) ~ h(x) for I x - al < k. If 
f(a) = h(a) show that g is continuous at a. 

8. Suppose that lim.,-a.t;(x) = L;, lim.,_a g;(x) = M;, i = 1, 2, ... , n. Let a;, b;, i = 1, 2, 
... , n be any numbers. Under what conditions is it true that 

I. atf1(x) + · ·· + a.f.(x) a1L1 + · · · + a.L.? 
1m = . 
x-a b1g1(x) + ··· + b.g.(x) b1M1 + ··· + b.M. 
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9. Establish directly the Corollary to Theorem 2.5. 

10. Prove the Corollary to Theorem 2.6. 

*11. Let f(x) = x sin(1/x) for -n ~ x ~ n, x # 0. Sketch the graph off (Note that f 
is not defined for x = 0.) 
(a) Prove that limx-of(x) = 0. 
(b) Define g(x) = f(x). By observing that g(x) = 0 for x. = ± 1/nn, n = 1, 2, ... , 

conclude that f[g(x)] is not defined for x = x •. Note that x. -+ 0 as n-+ oo. 
(c) Using the result of Part (b) show that 

lim h(x) 
x-o 

does not exist where h(x) = f[g(x)]. Compare this result with Theorem 2.7. 
(d) If we define 

{ 
. 1 

x sm-
F(x) = O x 

-7t ~X~ 7t, X oF 0} 
x=O 

use Theorem 2.7 to show that limx-o H(x) = 0 where H(x) = F[g(x)]. 

12. Let f and g be continuous functions from IR1 to IR1• Define 

F(x) = max[f(x), g(x)] 

for each x e IR1• Show that F is continuous. 

13. Prove Theorem 2.8. 

14. Prove that if a# 0 and F: x-+ 1/x, then F is continuous at a. 

15. Prove that if a > 0 and G: x -+ .::JX, then G is continuous at a. 

2.3. One-Sided Limits 

The function f: x-+ Jx is continuous for all x > 0 and, since JO = 0, it is 
clear that f(x)-+ f(O) as x tends to 0 through positive values. Since f is not 
defined for negative values of x, the definition of continuity given in Section 
2.1 is not fulfilled at x = 0. We now wish to extend the definition of continuous 
function so that a function such as Jx will have the natural property of 
continuity at the endpoint ofits domain. For this purpose we need the concept 
of a one-sided limit. 

Definition. Suppose that f is a function from a domain D in IR1 to IR 1• The 
function f tends to L as x tends to a from the right if and only if (i) there is an 
open interval I in D which has a as its left endpoint and (ii) for each 8 > 0 
there is a (J > 0 such that 

lf(x) - Ll < 8 whenever 0 < x - a < o. 
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Iff tends to L as x tends to a from the right, we write 

f(x)-+ L as x-+ a+ 

and we denote the number L by 

lim f(x) 
x-+a+ 
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or by limx-+a• f(x). A similar definition is employed for limits from the left. In 
this case the condition 0 < x - a < {> is replaced by 

O<a-x<f> 

and the symbols f(x) -+ L as x -+ a-, 

lim f(x) = L, 
x-+a-

and limx-+a- f(x) = L are used. 

Remarks. The condition 0 < I x - al < {>is equivalent to the two conditions 
0 < x - a < {> and 0 < a - x < f>. All the theorems on limits which were 
stated and proved in Section 2.2 used the inequality 0 < I x - al < f>. As a 
result, all the theorems on limits imply corresponding theorems for limits from 
the left and limits from the right. 

The definition of one-sided limits leads to the definition of one-sided 
continuity. 

Definitions. A function f is continuous on the right at a if and only if a is in the 
domain off and f(x)-+ f(a) as x -+ a+. The function f is continuous on the left 
at a if and only if a is in the domain off and f(x)-+ f(a) as x-+ a-. 

If the domain of a function f is a finite interval, say a ~ x ~ b, then limits 
and continuity at the endpoints are of the one-sided variety. For example, the 
function f: x -+ x2 - 3x + 5 defined on the interval 2 ~ x ~ 4 is continuous 
on the right at x = 2 and continuous on the left at x = 4. The following general 
definition of continuity for functions from a set in ~1 to ~1 declares that such 
a function is continuous on the closed interval 2 ~ x ~ 4. 

Definitions. Let f be a function from a domain D in ~ 1 to ~ 1• The function f 
is continuous at a with respect to D if and only if (i) a is in D, and (ii) for each 
e > 0 there is a {> > 0 such that 

lf(x) - f(a)l < e whenever xeD and I x - al < f>. (2.3) 

A function f is continuous on D if it is continuous with respect to D at every 
point of D. 

Remarks. (i) The phrase "with respect to D" is usually omitted in the 
definition of continuity since the context will always make the situation clear. 
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(ii) If a is a point of an open interval I contained in D, then the above definition 
of continuity coincides with that given in Section 2.1. (iii) If a is the left 
endpoint of an interval I in D and if the points immediately to the left of a are 
not in D, then the above definition coincides with continuity on the right. An 
analogous statement holds for continuity on the left. Therefore, if the domain 
of a function f is the closed interval a ~ x ~ b and f is continuous on D, then 
f will be continuous on the right at a and continuous on the left at b (with 
respect to D). 

Definition. A point a is an isolated point of a set Din IR 1 if and only if there is 
an open interval I such that the set I n D consists of the single point {a}. 

A function f from a domain D in IR 1 to IR 1 is continuous at every isolated 
point of D. To see this let a be an isolated point of D and suppose I is such 
that {a}= InD. We choose <5 > 0 so small that the condition lx- ai < <5 

implies that xis in I. Then condition (ii) in the definition of continuity is always 
satisfied since (ii) holds when x = a, the only point in question. 

The theorems of Section 2.2 carry over almost without change to the case 
of one-sided limits. As an illustration we state a one-sided version of Theorem 
2.7, the limit of a composite function. 

Theorem 2.11. Suppose that f and g are functions on IR 1 to IR 1. Iff is continuous 
at Land if g(x)-+ Las x-+ a+, then 

lim f[g(x)] = f(L). 
x-+a+ 

A similar statement holds if g(x)-+ Las x-+ a-. 

The proof of Theorem 2.11 follows exactly the line of proof of Theorem 2.7. 
Although we always require x > a when g(x)-+ L, it is not true that g(x) 
remains always larger than or always smaller than L. Hence it is necessary to 
assume that f is continuous at L and not merely continuous on one side. 

With the aid of the general definition of continuity it is possible to show 
that the function g: x -+ ~. where n is a positive integer, is a continuous 
function on its domain. 

Theorem 2.12. For nan even positive integer, the function g: x -+~is con
tinuous for x on [0, oo ). For n an odd positive integer, g is continuous for x on 
( -oo, oo). 

PRooF. For x ~ 0 and for any 6 > 0, it follows that 

I~- 01 < 6 whenever lx- 01 < 6". 

Therefore g is continuous on the right at 0 for every n. If n is odd, then 
~ = -~and so g is also continuous on the left at 0. 0 
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It is sometimes easier to determine one-sided limits than two-sided limits. 
The next theorem and corollary show that one-sided limits can be used as a 
tool for finding ordinary limits. 

Theorem 2.13 (On one- and two-sided limits). Suppose that f is a function on 
!R1 to IR1• Then 

lim f(x) = L if and only if lim f(x) = L and lim f(x) = L. 
x-a x-a+ x-a-

PROOF. 

(a) Suppose f(x)-+ Las x-+ a. Then for every e > 0 there is a~ > 0 such 
that f(x) is defined for 0 < I x - al < ~ and 

lf(x)- Ll < e whenever 0 < lx- al < ~. (2.4) 

For this value of~ we have 

lf(x) - Ll < e whenever 0 < x - a < ~. 

This last statement implies that f(x)-+ L as x-+ a+. Similarly, since the 
condition 0 < lx - ai <~is implied by the inequality 0 < x- a <~.it follows 
from Inequality (2.4) that lf(x) - Ll < e whenever 0 < a - x < ~. Hence 
f(x) -+ L as x -+a-. 

(b) Now assume both one-sided limits exist. Given any e > 0, there are 
numbers ~1 > 0 and ~2 > 0 such that f(x) is defined for 0 < x- a < ~1 , and 
0 < a - x < ()2 and moreover the inequalities 

lf(x)- Ll < e whenever 0 < x- a< ~1 , 

lf(x) - Ll < e whenever 0 < a - x < ~2 , 

hold. If~ is the smaller of ~1 and ~2 then 

lf(x)- Ll < e whenever 0 < lx- al < ~. 

Corollary. Suppose f is a function on IR 1 to IR1. Then f is continuous at a if and 
only if it is continuous on the left at a and continuous on the right at a. 

EXAMPLE. Given the function 

{

X, 

f(x) = 3(x4 - 16) 

2(x3 - 8)' 

-1 ~x~2, 

2 <X~ 5, 

determine whether or not f is continuous at x = 2. Give a reason for each 
step of the proof. 

Solution. We use the Corollary to Theorem 2.13 and show that f is continuous 
on the right at 2. Define 

g1(x)=x forall x. 
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Then for -1 ::s:; x ::s:; 2, we have f(x) = g1(x). Since g1(x)-+ 2 as x-+ 2- (ob
vious limit, Theorem 2.3), it follows that f(x) -+ 2 as X-+ r. Here we have 
used Theorem 2.4 on the limit of equal functions, applied to one-sided limits 
(see Problem 14 at the end of this section.) In the interval2 < x ::s:; 5, f is given 
by 

Define 

f(x) = 
3(x - 2)(x + 2)(x2 + 4) 
2(x - 2)(x2 + 2x + 4) · 

3(x + 2)(x2 + 4) 
2(x2 + 2x + 4) for 2 < x ::s:; 5. 

Then by Theorem 2.4 again, it follows that limx ... 2 + g2(x) = limx ... 2 + f(x). To 
find the limit of g2(x) as x-+ 2+ we make straightforward applications ofthe 
theorems on limits of Section 2.2, using on each occasion the one-sided 
version. By applying the theorems on limit of a constant, obvious limit, limit 
of a sum, and limit of a product, we see that 

lim 3(x + 2)(x2 + 4) = 3·4·(4 + 4) = 96 . 
.x-+2+ 

Similarly, 
lim 2(x2 + 2x + 4) = 2(4 + 4 + 4) = 24. 

x-+2+ 

(Actually, these limits are found by simple substitution.) Now, using limit of 
a quotient and the limit of composite functions, we obtain 

lim g2(x) = J%294
6 = J4 = 2. 

x-+2+ -v 2i, 

Hence, limx ... 2 + f(x) = 2 and so limx ... 2 f(x) = 2. The function f is continuous 
at 2 since /(2) = 2 and f(x)-+ /(2) as x -+ 2. D 

PROBLEMS 

In Problems 1 through 12, in each case determine whether or not the function 
f is continuous at the given value of a. If it is not continuous, decide whether 
or not the function is continuous on the left or on the right. State reasons for 
each step in the argument as in the Example. 

1. f(x) = {x 2- 4, -1 < x :EO; 2, a = 2 
X -6, 2 <X< 5, 

2. f(x) = { :: = ~' 
x2 + 3x- 2, 

1<x<2, 
a=2 

2 :E:;x < 5, 

3. f: x-+ xflxl, a = 0 

4. f: x-+ lx- 11, a= 1 
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5. f: x-+ x(1 + (1/x2))1i2, a= 0 

6. f(x) = ((x2 - 27)/(x2 + 2x + 1))1'3, a= 3 

{ 
( 2x + 5)112 
-- , 1<x<2, 

7. f(x) = 3x - 2 

2x - 1, 2 ::s:; x < 4, 

a=2 

8. f(x) = { (x2 ~ ~: 2r2. 1 <X < 2, 
x 2 /2, 2 ::!:0 x < 5, 

a=2 

{ 
X: - 8' X oF 2, 

9. f(x) = x - 4 a = 2 

4, X= 2, 

10. f(x) = {(:: ~ ~r 3 " x<., a~ 3 

X -9, 2 <X< 3, 

{ . (1) sm -
11. f(x) = x ' 

0, 

X oF 0, 
a=O 

X =0, 

{X COS(!), X oF 0, 
12. f(x) = x 

0, X= 0, 

13. Given f(x) =tan x, -n/2 < x < n/2, g(x) = (n/2)- x. What conclusion can we 
draw about 

lim f[g(x)] 

when a = n/4? Same problem when a = n/2, when a = 0. 

14. State and prove the analog of Theorem 2.4 on the limit of equal functions for limits 
from the left. 

15. State and prove the analog of Theorem 2.5 on the limit of a sum for limits from 
the right. 

16. State and prove the analog of Theorem 2.6 on the limit of a product for limits from 
the right. 

17. State and prove the analog of Theorem 2.9 on the limit of inequalities for limits 
from the left. 

18. State and prove the analog of Theorem 2.10 (the Sandwiching theorem) for limits 
from the right. 

19. In Theorem 2.11 give an example which shows the result is false ifthe hypothesis 
on f is changed so that f is continuous on the left at L. 

20. Given f(x) = 1/x for x = 1, 2, 3, ... , n, .... For what values of x is f continuous? 
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2.4. Limits at Infinity; Infinite Limits 

Consider the function 
X 

f:x-+--1, 
x+ 

X# -1, 

2. Continuity and Limits 

whose graph is shown in Figure 2.5. Intuitively, it is clear that f(x) tends to 1 
as x tends to infinity; this statement holds when x goes to infinity through 
increasing positive values (i.e., x tends to infinity to the right) or when x goes 
to infinity through decreasing negative values (x tends to infinity to the left). 
More precisely, the symbol 

X-+ 00 

means that x increases without bound through positive values and x decreases 
without bound through negative values. If x tends to infinity only through 
increasing positive values, we write 

x-+ +oo, 

while if x tends to infinity only through decreasing negative values, we write 

X-+ -00. 

The above conventions are used to define a limit at infinity. 

Definitions. We say thatf(x)-+ Las x-+ oo if and only if for each 6 > 0 there 
is a number A > 0 such that lf(x) - Ll < 6 for all x satisfying lxl > A. 

We say that f(x)-+ Las x-+ +oo if and only if for each 6 > 0 there is an 
A > 0 such that lf(x) - Ll < 6 for all x satisfying x > A. 

I 
I 
I 
I 
I 
I 
I 

------t--
1 

-I 
I 

I 
I 
I 
I 

X =-11 

y 

y=l 
1---------

Figure 2.5. y = xj(x + 1). 
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We say that f(x)-+ L as x-+ -oo if and only if for each 8 > 0, there is an 
A > 0 such that lf(x) - Ll < 8 for all x satisfying x < -A. 

In each of the above definitions we of course suppose that xis in the domain 
off 

Many ofthe theorems on limits in Section 2.2 have direct analogs for limits 
when x tends to oo, +oo, and -oo. The statements and proofs merely require 
that x-+ a be replaced by x-+ oo, x-+ +oo, or x-+ -oo. Two exceptions to 
this direct analogy are Theorem 2.3 (Obvious limit) and Theorem 2.7 (Limit 
of a composite function). For limits at infinity, a theorem on obvious limits 
takes the following form. 

Theorem 2.14 (Obvious limit). If f(x) = 1/x for all x =F 0, then 

lim f(x) = 0, lim f(x) = 0, lim f(x) = 0. 
x-+co 

The next theorem replaces Theorem 2.7 on composite functions. 

Theorem 2.15 (Limit of a composite function). Suppose that f and g are 
functions on ~1 to ~1 • Iff is continuous at L and g(x) -+ L as x -+ +oo, then 

lim f[g(x)] = f(L). 
x-++oo 

Remarks. (i) Theorem 2.15 may also be stated with x-+ -oo or x-+ oo. 
Similarly, every theorem in Section 2.2 has three analogs according as x -+ oo, 
x-+ +oo, or x-+ -oo. (ii) The proofs of Theorems 2.14 and 2.15 follow the 
pattern of the proofs of Theorems 2.3 and 2. 7, respectively. 

Referring to Figure 2.5 and the function f: x-+ xj(x + 1), x =F -1, we see 
that f increases without bound as x tends to - 1 from the left. Also, f decreases 
without bound as x tends to -1 from the right. We say that f has an itifinite 
limit as x tends to -1; a more precise statement is given in the next definition. 

Defmitions. A function f becomes infinite as x -+ a if and only if for each 
number A > 0 there is a number~ > 0 such that lf(x)l > A for all x satisfying 
0 < I x - al < ~. We write f(x)-+ oo as x-+ a for this limit. We also use the 
symbols 

limf(x) = oo 
x-+a 

and limx .... af(x) = oo although we must remember that itifinity is not a number 
and the usual rules of algebra do not apply. 

If f is defined only on one side of a number a rather than in a deleted 
interval containing a, we may define a one-sided infinite limit. A function f 
becomes infinite as x -+a+ if and only if for each number A > 0 there is a 
number ~ > 0 such that lf(x)l > A for all x satisfying 0 < x - a < ~. An 
itifinite limit from the left is defined similarly. Various other possibilities may 
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occur. For example, the function f: x-+ 1/(x- 1)2 has the property that 
f-+ +oo as x-+ 1. In such a case f has a positive infinite limit as x-+ 1. 
Similarly, a function may have a negative infinite limit, and it may have both 
positive and negative one-sided infinite limits. Symbols for these limits are 

lim f(x) = +oo, lim f(x) = -oo, lim f(x) = +oo, 
x-+a x-+a x~a+ 

lim f(x) = -oo, lim f(x) = +oo, lim f(x) = -oo. 
x~a+ x~a- x-+a-

The theorems on limits in Section 2.2 have analogs for infinite limits which in 
most cases are the same as for finite limits. However, there are differences and 
some of these are exhibited in the following theorems. 

Theorem 2.16 (Uniqueness of limits). If a function f on !R 1 to !R\ becomes 

infinite as x -+ a, then f does not tend to a finite limit as x -+ a. 

PROOF. Suppose that f-+ oo and f-+ L, a finite number, as x-+ a. We shall 
reach a contradiction. Since f(x) -+ L, the definition of limit withe = 1 asserts 
that there is a~ > 0 such that f(x) is defined for 0 < I x - al < ~ and 

lf(x)- Ll < 1 for 0 < lx- al < ~-

Therefore -1 + L < f(x) < 1 + L, which implies that lf(x)l < 1 + ILl for 
0 < I x - al < ~-Now, since f(x)-+ oo as x-+ a, it follows that for any number 
A > 1 + ILl there is a ~1 such that f(x) is defined for 0 < I x - al < ~1 and 

lf(x)I>A for 0<1x-al<~1 • 

Thus for any value .X(#- a) closer to a than both~ and ~1 we have the impossible 

situation: 1 + ILl < A < lf(x)l < 1 + ILl. D 

Remark. The statement and proof of Theorem 2.16 with +oo or -oo instead 
of oo and with one-sided limits instead of the two-sided limit require only 
simple modifications. 

The analog of Theorems 2.7 and 2.15 on the limit of a composite function 
takes a somewhat different form for infinite limits. 

Theorem 2.17 (Limit of a composite function). Suppose that 

lim f(x) = L and lim g(x) = oo. 
x-+oo x-+a 

Then 
lim f[g(x)] = L. 
x-+a 

The proof is left to the reader. 

Remarks. There are many variants to Theorem 2.17 in which oo may be 
replaced by +oo or -oo. Also, one-sided limits may be used so that x-+ a+ 

or a-. Additional theorems may be stated with L replaced by oo, +oo, or -oo. 
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In all these theorems care must be used to ensure that the composite function 
f[g] is actually defined on an appropriate domain. The following variant of 
Theorem 2.17 illustrates this point. 

Theorem 2.17(a). Suppose that 

lim f(x) = oo and lim g(x) = a. 
x-+a x-+-oo 

Suppose that for some positive number M, we have 

g(x) =I: a for x < -M. 

Then 
lim f[g(x)] = oo . 

.x-+-oo 

Remarks. (i) If g(x) = a, then f[g(x)] may not be defined since f(a) may 
not exist. Hence we require that as x "nears" -oo, the range of g shall 
eventually exclude the number a. (ii) An example of functions f and g for which 
Theorem 2.17(a) does not apply because the hypotheses on f and g are not 
met is given by 

1 
g(x) = ! sin x, f(x) = -, X=/: 0. 

X X 

Then 
X 

lim f(x) = oo, lim g(x) = 0. f[g(x)] = -. -, 
Sln X x-+0 .x-+-oo 

The function f[g] is not defined for x = - mr:, n = 1, 2, .... Consequently, we 
cannot say that lf[g(x)] I is large for all x less than some given number - M. 

EXAMPLE 1. Given the function 

1 1 f: x-+- cos-, 
X X 

decide whether or not f tends to a limit as x tends to 0. 

Solution. For the values X 11 = 1/2mr., n = 1, 2, ... , we have f(x11 ) = 2mr:, while 
for x~ = 1/((n/2) + 2nn), we have f(x~) = 0. Hence there are certain values, X11 , 

tending to zero as n -+ oo at which f grows without bound, while on other 
values, x~, also tending to zero, at which the function f always has the value 
zero. Therefore (see Theorem 2.20 below) f has no limit as x -+ 0. See Figure 
u 0 

EXAMPLE 2. Given the function 

f . -+ J x 2 + 2x + 4 
.x 2x+3' 

evaluate lim, .... +oof(x) and lim, .... _00 f(x). Give a reason for each step. 
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Figure 2.6. y = (1/x) cos (1/x). 

2. Continuity and Limits 

Solution. For x > 0, division of numerator and denominator by x yields 

f(x) = J x 2 + 2x + 4 = 
2x + 3 

We now employ the theorems on limit of a constant, obvious limit, and the 
limits of a sum and product to obtain 

lim [1 + 2·! + 4(~)] = lim 1 + lim 2· lim ! 
.x-++oo X X .x-++oo x-++oo .x-++oo X 

+ lim 4· lim (~) 
.x-++oo x-++oo X 

= 1 + 2·0 + 4·0 

= 1; 

also 

lim (2 + 3(!)) = 2. 
x-++oo X 

Now, using the theorem on the limit of composite functions, we find 

lim 1 + 2(~) + 4(:2) = Ji = 1. 
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Therefore, lim., ... +oof(x) = t by the theorem on the limit of a quotient. For 
x < 0, care must be exercised in rewriting the algebraic expression for f. 
Division by x in the numerator and denominator yields 

/(x) ~ J x' + 2x + 4 ~ - J!, J x' + 2x + 4 
2x+3 1 2x+3 

X 

Now, proceeding as in the case for positive values of x, we obtain 

x~~oo f(x) = -~. 0 

The theorems on the limit of sums, products, and quotients of functions 
require special treatment when one or more of the functions has an infinite 
limit or when the limit of a function appearing in a denominator is zero. For 
example, the following theorem on the limit of a quotient shows the special 
hypotheses which are needed. 

Theorem 2.18. Suppose that 

limf(x) = L, 
x-+a 

and 
lim g(x) = 0. 
x-+a 

If there is a number {J such that g(x) =F 0 for 0 < I x - al < {J, then 

. f(x) 
hm-() = oo. 
x-+a g X 

The proof is left to the reader. 

Remarks. (i) The hypothesis g(x) =F 0 in a neighborhood of a is needed in 
order that f/g be defined for 0 < I x - al < fJ. (ii) Variations of Theorem 2.18 
are many. The number L may be replaced by oo without changing the 
conclusion. One-sided limits may be considered. If for example, f -+ + oo and 
g-+ o+, then we can conclude that f/g-+ +oo. 

In the case ofthe limit ofthe sum of two functions, the appropriate theorem 
states that if 

limf(x) = L, lim g(x) = oo, 
x-+a x-+a 



54 2. Continuity and Limits 

then 
lim [f(x) + g(x)] = oo. 

If both f and g tend to infinity as x tends to a, no conclusion can be drawn 
without a more detailed examination of the functions f and g. We must bear 
in mind that oo cannot be treated as a number. However, we do have the 
"rules" 

+oo +(+oo)= +oo and -oo +(-oo)= -oo. 

In the case of the limit of a product, if f(x)-+ L, L "# 0 and g(x)-+ oo, as 
x -+a, then f(x)g(x) -+ oo as x -+a. However, if L = 0, no conclusion can be 
drawn without a closer investigation of the functions f and g. 

PROBLEMS 

In each of Problems 1 through 10 evaluate the limit or conclude that the 
function tends to oo, +oo or -oo. 

1. limx_00 (X2 - 2x + 3)/(x3 + 4) 

3. limx_00 (X4 - 2x2 + 6)/(x2 + 7) 

5. limx--oo(x- Jx2 - a2 ) 

7. limx-1-jl=7/(l- x) 

9. limx-2-J4- x 2/J6- 5x + x 2 

11. Prove Theorem 2.14. 

2. limx_00 (2x2 + 3x + 4)/(x2 - 2x + 3) 

4. limx-+oo(X- Jx2 - a2 ) 

6. limx-1 .(x- 1)/JXZ=l 

8. limx-+oo(x2 + 1)/x312 

10. limx-+oo(Jx2 + 2x- x) 

12. Prove Theorem 2.15. 

13. State and prove an analog to Theorem 2.15 with x-+ -oo instead of x-+ +oo. 

14. State and prove an analog to Theorem 2.16 for one-sided limits from the right 
(i.e., x-+ a+ instead of x-+ a). 

15. Prove Theorem 2.17. 16. Prove Theorem 2.17(a). 

17. Suppose f(x)-+ +oo and g(x)-+ -oo as x-+ +oo. Find examples of functions f 
and g with these properties and such that 
(a) limx-+oo[f(x) + g(x)] = +oo (b) limx-+oo[f(x) + g(x)] = -oo 
(c) limx_ +oo [f(x) + g(x)] = A, A an arbitrary real number 

18. Find the values of p, if any, for which the following limits exist. 
(a) limx-o• xP sin(1/x) (b) limx-+oo xP sin(1/x) 

(c) limx--oo lxiP sin(1/x) 

19. State and prove an analog of Theorem 2.9 for the case when x-+ +oo (instead of 
x-+ a). 

20. State and prove an analog of Theorem 2.10 (Sandwiching theorem) for the case 
when x-+ -oo (instead of x-+ a). 

21. Prove Theorem 2.18. 
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2.5. Limits of Sequences 

An infinite sequence may or may not tend to a limit. When an infinite sequence 
does tend to a limit, the rules of operation are similar to those given in Section 
2.2 for limits of functions. 

Definition. Given the infinite sequence of numbers x 1 , x2 , ••• , xn, ... , we say 
that { xn} tends to L as n tends to infinity if and only if for each e > 0 there is 
a natural number N such that I Xn - Ll < e for all n > N. We also write xn -+ L 
as n-+ oo and4 we say that the sequence {xn} has Las a limit. The notation 

lim Xn = L 
n->oo 

or limn->oo Xn = L will be used. If the sequence { xn} increases without bound 
as n tends to infinity, the symbol xn-+ +oo as n-+ oo is used; similarly if it 
decreases without bound, we write xn-+ -oo as n-+ oo. 

For many problems it is important to study the behavior of a function f 
on a specific sequence of numbers in the domain off. For this purpose, almost 
all the theorems on limits in Section 2.2 may be used if they are interpreted 
appropriately. For example, the theorem on the limit of the sum of functions 
may be stated as follows: 

Theorem 2.19 (Limit of a sum). Suppose that xn -+a and Yn -+bas n -+ oo. Then 
Xn + Yn-+ a + bas n-+ 00. 

The theorems on the limit of a constant, limit of equal functions, limit of a 
product, limit of a quotient, limit of inequalities, and Sandwiching theorem 
have corresponding statements for sequences. 

A variation of the theorem on composite functions, Theorem 2. 7, leads to 
the next result which we state without proof. 

Theorem 2.20. Suppose that f is continuous at a and that xn-+ a as n-+ oo. Then 
there is an integer N such that f(xn) is defined for all integers n > N; further
more, f(xn) -+ f(a) as n -+ oo. 

EXAMPLE. Given the function 

f:x-+ X X { 
! sin!, x #- 0, 

0, X= 0, 

4 Strictly speaking, we should write n-+ +oo instead ofn-+ oo. However, for the natural numbers 
it is a long-established custom to write oo instead of +oo; we shall continue to observe this 
custom. 
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and the sequences 

x" = 1/nn, n = 1, 2, ... , 

Yn = 1/(2n + !)n, n = 1, 2, ... , 

Zn = 1/(2n + f)n, n = 1, 2, ... , 

find the limits of f(x")' f(y"), and f(z") as n -+ oo. 

Solution. Since sin nn = 0, n = 1, 2, ... , we have f(x")-+ 0 as n-+ oo. Also, 

f(y") = (2n + i)n sin(2n + i)n = (2n + i)n -+ +oo as n -+ oo, 

and 

f(z") = (2n + f)n sin(2n + f)n = -(2n + f)n-+ -oo as n-+ oo. 

Observing that x", Yn• and z" all tend to 0 as n -+ oo, we note that f(x) cannot 
tend to a limit as x -+ 0. D 

The axioms for a field given in Section 1.1 do not describe the real number 
system completely. Even when an order is introduced such as with Axiom I 
(Section 1.3) the real numbers are not uniquely described. For example, the 
collection of rational numbers satisfies both the axioms for a field and the 
order axiom. However, there is another difficulty. If x" is a sequence of 
numbers with the property that x" > n for every natural number n, then we 
would expect that x"-+ +oo as n-+ oo. It is actually the case that there are 
ordered fields (i.e., fields which satisfy Axiom I) which do not have the property 
just stated. Such fields are called non-Archimedean. 5 

The next axiom, when added to those of Chapter 1, serves to describe the 
real number system uniquely.6 

Axiom C (Axiom of continuity). Suppose that an infinite sequence x 1, x 2 , •.• , 

x", . ... is such that Xn+l ~ x" for all n, and there is a number M such that x" ~ M 
for all n. Then there is a number L ~ M such that x" -+ L as n -+ oo and x" ~ L 
for all n. 

The situation is shown in Figure 2.7. If we plot the numbers x" on a 
horizontal line, the corresponding points move steadily to the right as n 

5 See v. d. Waerden, Modern Algebra, Ungar Publishing Co., New York, page 211, for an example 
of a non-Archimedean ordered field. See also Problems 8, 9, and 10 at the end of this section for 
such an example. 

6 In the following sense: the general overriding assumption is that there is a particular number 
system, called the real numbers and denoted by IR 1• This system satisfies all the above axioms, 
including Axiom C. If X is any number system satisfying all the same axioms, it can be shown 
that there is a one-to-one correspondence between the elements of X and those of IR 1• Further
more, the zero and unit elements correspond and the correspondence preserves sums and 
products. Finally, if x1 , x2 , •• • , x., ... and r1 , r2 , ••• , r., ... are corresponding elements of X and 
IR 1, if both are nondecreasing bounded sequences, and if x. -+ L, r. -+ L', then Land L' correspond. 
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I I 11111111 
X 0 ••• L M 

Figure 2.7. x. tends to Las n-+ oo. 

increases. It is geometrically evident that they must cluster at some value such 

as L which cannot exceed the number M. 

Remark. If a sequence {y.} has the properties: Yn+l :;;;; Yn for all nand Yn ~ M 

for all n, we can conclude that there is a number L ~ M such that y. -+ L as 

n -+ oo and Yn ~ L for all n. To see this define x. = - y., observe that x. :;;;; 
x.+l• x.:;;;; -M for all n, and apply Axiom C to the sequence {x.}. 

By means of Axiom C we can establish the following simple result. 

Theorem 2.21 

(a) There is no real number M which exceeds all positive integers. 

(b) If x. ~ n for every positive integer n, then x.-+ +oo as n-+ oo. 
(c) limn-+oo(1/n) = 0. 

PROOF 

(a) Let x. = nand suppose there is a number M such that M ~ x. for every 

n. By Axiom C there is a number L such that x. -+ L as n -+ oo and x. :;;;; L 
for all n. Choose 8 = 1 in the definition of limit. Then for a sufficiently large 

integer N, it follows that L - 1 < x. < L + 1 for all n > N. But xN+l = N + 1 

and soL- 1 < N + 1 < L + 1. Hence N + 2 = xN+ 2 > L contrary to the 

statement x. :;;;; L for all n. 
(b) Let M be any positive number. From Part (a) there is an integer N such 

that N > M; hence x. > M for all n ~ N. 
(c) Let 8 > 0 be given. There is an integer N such that N > 1/8. Then if 

n > N, clearly 1/n < 8. The result follows. 0 

PROBLEMS 

1. Given the function f: x -+ x cos x. 
(a) Find a sequence of numbers {x.} such that x.-+ +oo and f(x.)-+ 0. 
(b) Find a sequence of numbers {y.} such that y.-+ +oo and f(y.) ..... +oo. 
(c) Find a sequence of numbers {z.} such that z.-+ +oo and f(z.)-+ -oo. 

2. Prove Theorem 2.19. 

3. If a is any number greater than 1 and n is a positive integer greater than 1, show 
that a• > 1 + n(a- 1). 

4. If a> 1, show that a•-+ +oo as n-+ oo. 

5. Prove Theorem 2.20. 

6. If -1 < a < 1, show that a•-+ 0 as n-+ oo. 
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7. Suppose that -1 < a < 1. Define 

s. = b(1 + a + a2 + · · · + a•-1 ). 

Show that lim.~"' s. = b/(1 - a). 

8. Consider all rational expressions of the form 

a0 x"' + a1x"'-1 + · · · + a,._1x +a,. 

b0 x" + b1 x" 1 + · ·· + b._1x +b. 

in which m and n are nonnegative integers. We choose b0 = 1 always, and assume 
that such fractions are reduced to their lowest terms. Show that by selecting 0/1 
as the "zero" and 1/1 as the "unit," and by using the ordinary rules of algebra for 
addition, subtraction, multiplication, and division, the totality of such rational 
expressions satisfy the axioms for a field. 

9. We say a rational expression of the type described in Problem 8 is positive whenever 
a0 > 0. Show that with this definition, the rational expressions in Problem 8 satisfy 
Axiom I of Chapter 1. 

10. Using the definition of order given in Problem 9, show that there is a rational 
expression which is larger than every positive integer njl. Hence conclude that the 
ordered field of rational expressions is non-Archimedean. 

In Problems 11 through 15 evaluate each of the limits or conclude that the 
given expression tends to oo, +oo, or -oo. 

11. lim.~00 (n2 + 2n- 1)/(n2 - 3n + 2) 

12. lim.~00 (n3 + 4n- 1)/(2n2 + n + 5) 

13. lim.~00 (n + (1/n))/(2n2 - 3n) 

14. lim.~"'Jn3 + 2n- 1j~n2 + 4n- 2 

15. lim.~ 00 [3 + sin(n)]n 

16. Suppose that x. ~ y. ~ z. for each n and suppose that x.-+ L and z.-+ L as 
n-+ oo. Then y. -+ L as n-+ oo. 



CHAPTER 3 

Basic Properties of 
Functions on ~1 

3.1. The Intermediate-Value Theorem 

The proofs of many theorems of calculus require a knowledge of the basic 
properties of continuous functions. In this section we establish the Inter
mediate-value theorem, an essential tool used in the proofs of the Funda
mental theorem of calculus and the Mean-value theorem. 

Theorem 3.1 (Nested intervals theorem). Suppose that 

n = 1, 2, ... , 

is a sequence of closed intervals such that ln+l c In for each n. If 
limn-oo (bn - an) = 0, then there is one and only one number x0 which is in 
every ln. 

PROOF. By hypothesis, we have an ~ an+l and bn+l ~ bn. Since an < bn for every 
n, the sequence {an} is nondecreasing and bounded from above by b1 (see 
Figure 3.1). Similarly, the sequence bn is nonincreasing and bounded from 
below by a 1 . Using Axiom C, we conclude that there are numbers x0 and x~ 
such that an-+ x0 , an~ x0 , and bn-+ x~, bn ~ x~, as n-+ oo. Using the fact that 
bn - an -+ 0 as n -+ oo, we find that x0 = x~ and 

for every n. Thus x 0 is in every ln. 
To show that x0 is the only number in every Jn, suppose there is another 

number x1 also in every ln. Define e = lx 1 - x0 1. Now, since an-+ x0 and 
bn-+ x0 , there is an integer N1 such that aN, > x0 - e; also there is an integer 
N2 such that bNz < x0 +e. These inequalities imply that In cannot contain x1 

for any n beyond N1 and N2 . Thus x1 is not in every ln. D 

59 
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Figure 3.1. Nested intervals. 

Remarks. The hypothesis that each In is closed is essential. The sequence of 
half-open intervals 

has the property that In+l c In for every n. Since no In contains 0, any number 
x0 in all the In must be positive. But then by choosing N > 1/x0 , we see that 
x0 cannot belong to IN= {x: 0 < x :::;; 1/N}. Although the intervals In are 
nested, they have no point in common. 

Before proving the main theorem, we prove the following result which we 
shall use often in this chapter: 

Theorem 3.2. Suppose f is continuous on [a, b], xn E [a, b] for each n, and 
Xn-+ x0 . Then x0 E [a, b] and f(xn)-+ f(x 0 ). 

PROOF. Since xn ~ a for each n, it follows from the theorem on the limit of 
inequalities for sequences that x0 ~a. Similarly, x0 :::;; b so x0 E [a, b]. If 
a< x0 < b, thenf(xn)-+ f(x 0 ) on account ofthe composite function theorem 
(Theorem 2. 7). The same conclusion holds if x0 = a or b. A detailed proof of 
the last sentence is left to the reader. D 

We now establish the main theorem of this section. 

Theorem 3.3 (Intermediate-value theorem). Suppose f is continuous on [a, b], 
c e IR\ f(a) < c, and f(b) >c. Then there is at least one number x0 on [a, b] 
such that f(x 0 ) = c. 

Remark. There may be more than one as indicated in Figure 3.2. 

PROOF. Define a1 =a and b1 =b. Then observe that f((a 1 + b1 )/2) is either 
equal to c, greater than cor less than c. If it equals c, choose x0 = (a 1 + b1 )/2 
and the result is proved. If f((a 1 + b1 )/2) > c, then define a2 = a1 and b2 = 

(a 1 + b1 )/2. If f((a 1 + b1 )/2) < c, then define a2 = ((a 1 + b1 )/2) and b2 = b1 • 

In each of the two last cases we have f(a 2 ) < c and f(b2 ) >c. Again com
putef((a2 + b2)/2).Ifthisvalueequalsc,theresultisproved.Ifj((a2 + b2)/2) > 
c set a3 = a2 and b3 = (a 2 + b2 )/2. If f((a 2 + b2)/2) < c, set a3 = (a 2 + b2 )/2 
and b3 = b2 • 

Continuing in this way, we either find a solution in a finite number of steps 
or we find a sequence {[an, bn]} of closed intervals each of which is one of the 
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y 

Figure 3.2. Illustrating the Intermediate-value theorem. 

two halves of the preceding one, and for which we have 

bn- an= (bl - al)/2n-l, 

f(an) < c, f(bn) > c for each n. 
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(3.1) 

From the Nested intervals theorem it follows that there is a unique point x0 

in all these intervals and 

lim an= Xo and lim bn = Xo. 
n-+oo n-+oo 

From Theorem 3.2, we conclude that 

f(an)-+ f(xo) and f(bn)-+ f(xo). 

From Inequalities (3.1) and the limit of inequalities it follows that f(x0 ) ::::;; c 
and f(x0 ) ;;:: c so that f(x0 ) = c. 0 

PROBLEMS 

* 1. Given the function 
if x is rational, 

if x is irrational. 

(a) Show that f is not continuous at any x0 • 

(b) If g is a function with domain all of IR\ if g(x) = 1 if xis rational, and if g is 
continuous for all x, show that g(x) = 1 for x e IR1. 

2. Let f: x-+ a,.x"' + a,._1 x"'-1 + · · · + a 1 x + a0 be a polynomial of odd degree. 
(a) Use the Intermediate-value theorem to show that the equation f(x) = 0 has at 

least one root. 
(b) Show that the range off is IR1. 

3. Let f: x-+ a,.x"' + a,._1 x"'-1 + · · · + a 1 x + a0 be a polynomial of even degree. If 
a,.a0 < 0 show that the equation f(x) = 0 has at least two real roots. 
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4. Prove the last sentence of Theorem 3.2. 

*5. A function f defined on an interval I= {x: a~ x ~ b} is called increasing
f(xd > f(x 2 ) whenever x 1 > x 2 where x 1 , x 2 E I. Suppose that f has the inter
mediate-value property: that is, for each number c between f(a) and f(b) there is 
an x 0 E I such that f(x 0 ) = c. Show that a function f which is increasing and has 
the intermediate-value property must be continuous. 

6. Give an example of a function which is continuous on [0, 1] except at x =!and 
for which the Intermediate value-theorem does not hold. 

7. Give an example of a nonconstant continuous function for which Theorem 3.3 
holds and such that there are infinitely many values x 0 where f(x 0 ) = c. 

3.2. Least Upper Bound; Greatest Lower Bound 

In this section we prove an important principle about real numbers which is 
often taken as an axiom in place of Axiom C. We shall show, in fact, that we 
can prove Axiom C using this principle (and the other axioms of real numbers). 

Definitions. A set S of real numbers has the upper bound M if and only if x ~ M 
for every number x inS; we also say that the setS is bounded above by M. The 
setS has the lower bound m if and only if x ~ m for every number x inS; we 
also say that S is bounded below by m. A set S is bounded if and only if S has 
an upper and a lower bound. Suppose that f is a function on IR 1 whose domain 
D contains the setS. We denote by !Is the restriction off to the setS; that is, 
fls has domain S and fls(x) = f(x) for all x in S. A function f is bounded 
above, bounded below, or bounded, if the set R consisting of the range off 
satisfies the corresponding condition. 

The following results follow immediately from the definitions. 

Theorem 3.4. A setS in IR 1 is bounded<=> there is a number K such that lxl ~ K 
for each x in S. A function f is bounded above by M on a set S <=> f(x) ~ M for 
all x inS; f is bounded below by mona setS<=> f(x) ~ m for all x inS. Finally, 
f is bounded on S <=>there is a number K such that lf(x)l ~ K for all x inS. 

For example, if we define 

f(x) = {2~' 
1, 

0 <X~ 1, 

X =0, 

then f is not bounded on S = { x: 0 ~ x ~ 1 }. See Figure 3.3 
We now prove the fundamental principle (see Figure 3.4). 
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Figure 3.3 
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Theorem 3.5. If a nonempty set S c IR1 has an upper bound M, then it has a 
least upper bound U; that is, there is a unique number U which is an upper bound 
for S but is such that no number U' < U is an upper bound for S. If a nonempty 
set has a lower bound m, it has a greatest lower bound L. 

PROOF. The second statement follows by applying the first to the set 
S' = {x: -xES}. We prove the first statement using the Nested intervals 
theorem. If M E S, then we may take U = M since in this case every x in S is 
less than or equal to U, and if U' < U, then U' is not an upper bound since 
U E Sand U > U'. If M is not inS let b1 = M and choose a 1 as any point of S. 
Now either (a1 + bd/2 is greater than every x in S or there is some x in S 
greater than or equal to (a1 + bd/2. In the first case if we define a2 = a 1 and 
b2 = (a1 + bd/2, then a2 E S and b2 is greater than every x in S. In the second 
case, choose for a2 one of the numbers in S which is greater than or equal to 
(a1 + b1)/2 and set b2 = b1 ; then we again have a2 E Sand b2 greater than 
every x inS. Continuing in this way, we define an infinite sequence {[a,., b,.]} 
of closed intervals such that 

[an+l• b,.+1 ] c [a,., b,.] 

for each n, and so for each n 

b,. - a,. ~ (b1 - ad/2"-1, 

and 

b,. > every number in S. (3.3) 

a1 b1 

-1---f-41 •>+1-+l -111-<• ........ 11-+1-+1 -+I-·-·._.· +I ------+1------·· X 

S U M 

Figure 3.4. U is least upper bound for S. 
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From the Nested intervals theorem, it follows that there is a unique number 
U in all these intervals and 

lim bn = U, lim an= u. 
n-+ao n-+ao 

Let x be any number in S. Then x < bn for each n, so that x ::::;; U by the 
limit of inequalities. Thus U is an upper bound for S. But now, let U' < U and 
let e = U- U'. Then, since an--+ U, it follows that there is an N such that 
U' = U - e < an ::::;; U for all n > N. But, since all the an E S, it is clear that U' 
is not an upper bound. Therefore U is unique. D 

Definitions. The number U in Theorem 3.5, the least upper bound, is also called 
the supremum of S and is denoted by 

l.u.b. S or supS. 

The number L of Theorem 3.5, the greatest lower bound, is also called the 
infimum of S and is denoted by 

g.l.b. s or inf S. 

Iff is a function on ~1 whose domain D(f) contains Sand whose range is 
denoted by R(f), we define the least upper bound or supremum off on S by 

l.u.b. f = sup f = sup R(fls)· 
s s 

A similar definition holds for the greatest lower bound. 

Corollary. If x 0 is the largest number in S, that is, if x 0 E S and x0 is larger than 
every other number inS, then x 0 = sup S. If Sis not empty and U = sup S, with 
U not inS, then there is a sequence {xn} such that each Xn is inS and Xn--+ U. 
Also, if e > 0 is given, there is an x in S such that x > U - e. Corresponding 
results hold for inf S. 

These results follow from the definitions and from the proof of Theorem 3.5. 
With the help of this corollary it is possible to show that the Axiom of 

Continuity is a consequence of Theorem 3.5. That is, if Theorem 3.5 is taken 
as an axiom, then Axiom C becomes a theorem. See Problem 14 at the end of 
this section. 

Definitions. Let f have an interval I of ~1 as its domain and a set in ~1 as its 
range. We say that f is increasing on I if and only if f(x2 ) > f(xd whenever 
x 2 > x1 • The function f is nondecreasing on I if and only if f(x 2 ) ;il: f(x 1 ) 

whenever x 2 > x 1 . The functionfis decreasing on I if and only iff(x2 ) < f(xd 
whenever x 2 > x 1 • The function f is nonincreasing on I if and only if f(x2 ) ::::;; 

f(xd whenever x 2 > x 1 • A function which has any one of these four properties 
is called monotone on I. 
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Figure 3.5. A step function. 

Monotone functions are not necessarily continuous, as the following step 
function exhibits: 

f: x-+ n, n-1~x<n, n = 1, 2, .... 

See Figure 3.5. Also, monotone functions may not be bounded. The function 
f: x-+ 1/(1 - x) is monotone on the interval I= {x: 0 ~ x < 1 }, but is not 
bounded there. 

The next two theorems on monotone functions follow from the definitions 
of this section. The proofs are left to the reader. 

Theorem 3.6. Suppose f is nondecreasing on an interval I= {x: a< x < b} and 
f(x) ~ M on I. Then there is a number C ~ M such that 

lim f(x) =C. 
x~b-

With the help of Theorem 3.6, we can establish the next result by consider
ing a variety of cases. 

Theorem 3.7. Suppose that f is a bounded monotone function on an interval I. 
Then f has a limit on the right and a limit on the left at each interior point* of I. 
Also, f has a one-sided limit at each endpoint of I. If I extends to infinity, then 
f tends to a limit as x tends to infinity in the appropriate direction. 

If a function f defined on an interval I is continuous on I, then an extension 
of the Intermediate-value theorem shows that the range off is an interval. In 

* If a and bare the endpoints of an interval, all the points between a and bare called interior points. 
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order to establish this result (Theorem 3.9 below), we use the following 
characterization of an interval on IR 1 • 

Theorem 3.8. A set S in IR 1 is an interval¢:> (i) S contains more than one point 
and (ii)for every x 1 , x 2 E S the number xis inS whenever x E (x1 , x2 ). 

PROOF. If S is an interval, then clearly the two properties hold. Therefore, we 
suppose (i) and (ii) hold and show that Sis an interval. We consider several 
cases. 

Case 1: S is bounded. Define a = inf S and b = sup S. Let x be an element 
of the open interval (a, b). We shall show xES. 

Since a = inf S, we use the Corollary to Theorem 3.5 to assert that there is 
an x 1 E S with x1 < x. Also, since b = supS, there is an x 2 inS with x 2 > x. 
Hence x E (x1 , x2 ) which by (ii) of the hypothesis shows that xES. We con
clude that every element of (a, b) is inS. Thus Sis either a closed interval, an 
open interval, or a half-open interval; its endpoints are a, b. 

Case 2: S is unbounded in one direction. Assume Sis unbounded above and 
bounded below, the case of S bounded above and unbounded below being 
similar. Let a = inf S. Then S c [a, oo ). Let x be any number such that x > a. 
We shall show that xES. As in Case 1, there is a number x1 E S such that 
x1 < x. Since S has no upper bound there is an x 2 E S such that x 2 > x. 
Using (ii) of the hypothesis, we conclude that xES. Therefore S = [a, oo) or 
S =(a, oo). 

The proof when S is unbounded both above and below follows similar lines 
and is left to the reader. 0 

We now establish a stronger form of the Intermediate-value theorem. 

Theorem 3.9. Suppose that the domain off is an interval I and f is continuous 
on I. Assume that f is not constant on I. Then the range off, denoted by J, is 
an interval. 

PROOF. We shall show that J has Properties (i) and (ii) of Theorem 3.8 and 
therefore is an interval. Since f is not constant, its range must have more than 
one point, and Property (i) is established. Now let y 1 , y2 E J. Then there are 
numbers x1 , x 2 E I such that f(xd = y 1 and f(x2 ) = y2 • We may assume that 
x1 < x 2 ; the function f is continuous on [x 1, x 2 ] and so we may apply the 
Intermediate-value theorem. If cis any number between y1 and y2 , there is 
an x0 E [x 1 , x2 ] such that f(x0 ) =c. Thus c E J, and we have established 
Property (ii). The set J is an interval. 0 

Remarks. Iff is continuous on I = { x: a ~ x ~ b}, it is not necessarily the 
case that J is determined by f(a) and f(b). Figure 3.6 shows that J may exceed 
the interval [f(a), f(b)]. In fact I may be bounded and J unbounded as is 
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Figure 3.6 

illustrated by the function f: x-+ 1/x with I= {x: 0 < x < 1}. The range is 
J = {y: 1 < y < oo }. The function/: x-+ 1/(1 + x2 ) with I = {x: 0 < x < oo} 
and J = {y: 0 < y < 1} is an example of a continuous function with an un
bounded domain and a bounded range. 

Consider the restriction to [0, oo) of the function f: x -+ x" where n is a 
positive integer. By Theorem 3.10, the range off is an interval which must be 
[0, oo) since f(O) = 0, f is increasing, and f(x)-+ +oo as x-+ +oo. Hence, for 
each x ~ 0, there is at least one number y ~ 0 such that y" = x. If y' > y, then 
(y')" > y" = x. Also if 0 ~ y' < y, then (y')" < x. Thus the solution y is unique. 
We denote it by xlf". Every positive number has an n-th root for every positive 
integer n. The function x-+ x 1'", x ~ 0, can be shown to be continuous on 
[0, oo) by the methods of Chapter 2 (see also the Inverse function theorem, 
Theorem 4.19 below). 

PROBLEMS 

In Problems 1 through 8 find l.u.b. S and g.l.b. S. State whether or not these 
numbers are in S. 

1. S = {x: 0 < x ~ 3} 

2. S = {x: x 2 - 3 < 0} 

3. S = {x: x2 - 2x- 3 < 0} 

4 . • s = {y: y = xf(x + 1), x;;?; 0} 

5. S = {s": s. = D=1 (1/2t n = 1, 2, ... } 

6. S = {s.: s. = 1 + D=l (( -1);/i!), n = 1, 2, ... } 

7. S = {x: 0 <X < 5, COS X = 0} 
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8. S={x: -lO<x< 10,sinx=!} 

9. Given that S = {s.: s. = 1 + L7=1 (1/i!), n = 1, 2, ... }, show that S has 3 as an 
upper bound. 

10. Suppose that B1 = l.u.b. S1 , B2 = l.u.b. S2 , b1 = g.l.b. S1 , and b2 = g.l.b. S2 . If 
S1 c S2 show that B1 ~ B2 and b2 ~ b1 • 

11. Suppose that S1 , S2 , ••• , s. are sets in IR 1 ; and that S = S1 u S2 u ···us •. Define 
B; = sup S; and b; = inf S;, i = 1, 2, ... , n. 
(a) Show that supS = max(B1 , B2 , ••• , B.) and inf S = min(b1 , b2 , ••• , b.). 
(b) If S is the union of an infinite collection of { S;}, find the relation between inf S, 

supS and the {b;} and {B;}. 

12. Suppose that S1 , S2 , •.• , s. are sets in IR 1 and that S = S1 n S2 n · · · n s •. If S "#- 0, 
find a formula relating supS and inf Sin terms of the {b;}, {B;} as defined in 
Problem 11. 

13. Prove Theorem 3.4 

14. Use the Corollary to Theorem 3.5 to show that Axiom C is a consequence of 
Theorem 3.5. [Hint: Let B be the least upper bound of the set of numbers {x.} 
which, as a sequence, are increasing. Then show that x. -+ B.] 

15. Prove Theorem 3.6. 

16. Prove Theorem 3.7. 

17. Complete the proof of Theorem 3.8 by establishing the result for unbounded 
intervals. 

18. Let S1 , S2 be sets in IR1• DefineS= {x: x = x1 + x 2 , x1 e S1 , x2 e S2 }. Find l.u.b. 
S, g.!. b. Sin terms ofl.u.b. S;, g.l.b. S;, i = 1, 2. In particular, if -S1 = {x: -x e Sd, 
show that l.u.b. ( -Stl = g.l.b. S1 • 

19. Suppose that Sis the union of a finite number of closed finite intervals I1, I2 , ••• , 

I., no two of which have more than one point in common. (They may be disjoint.) 
Suppose that f has domain S and is monotone on each I;. i = 1, 2, ... , n. Prove the 
result of Theorem 3. 7 for any such function f with domain S. Give two examples to 
show that the result is false if S is the union of an infinite collection of such closed 
intervals; one in case S is unbounded and another in case S is bounded. 

3.3. The Bolzano-Weierstrass Theorem 

Suppose that 
(3.4) 

is a sequence of numbers. Then the sequences x 1 , x3 , x 5 , ••• and x2 , x 5 , 

x8 , x 11 , ... are examples of subsequences of (3.4). More generally, suppose that 
k1 , k2 , k3 , ..• k., ... is an increasing sequence of positive integers. Then we say 
that 
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is a subsequence of (3.4). The choice k1 = 1, k 2 = 3, k3 = 5, k4 = 7, ... gives 
the first example of a subsequence of (3.4) above, while k1 = 2, k 2 = 5, k3 = 
8, ... gives the second subsequence of(3.4). To avoid double subscripts, which 
are cumbersome, we will frequently write y 1 = xk,, y2 = Xk 2 , ••• , Yn = xkn• ..• , 

in which case 
Y1, Y2, ... , Yn, ... 

is a subsequence of (3.4). 

Remark. We easily prove by induction that if kt. k 2 , ... , kn, ... is an 
increasing sequence of positive integers, then kn ~ n for all n. 

The sequence 

x 1 = 0, x 2 = ~' x3 = -~, ... , Xn = ( -1t ( 1- ~).... (3.5) 

has the subsequences 
0, -t, -~, -t ... 

1 3 5 7 
2· 4· 6· g, ... 

which are obtained from (3.5) by taking the odd-numbered terms and the 
even-numbered terms, respectively. Each of these subsequences is convergent 
but the original sequence (3.5) is not. The notion of a convergent subsequence 
of a given sequence occurs frequently in problems in analysis. The Bolzano
Weierstrass theorem is basic in that it establishes the existence of such con
vergent subsequences under very simple hypotheses on the given sequence. 
This theorem is a special case of a general result concerning sequences in 
metric spaces which we study in Chapter 6. 

Theorem 3.10 (Bolzano-Weierstrass theorem). Any bounded irifinite sequence 
of real numbers contains a convergent subsequence. 

PROOF. We shall use the Nested intervals theorem (Theorem 3.1). Let {xn} be 
a given bounded sequence. Then it is contained in some closed interval 
I= {x: a:::;; x:::;; b}. Divide I into two equal subintervals by the midpoint 
(a+ b)/2. Then either the left subinterval contains an infinite number of the 
{xn} or the right subinterval does (or both). Denote by / 1 = {x: a 1 :::;; x:::;; bt} 
the closed subinterval of I which contains infinitely many {xn}· (If both 
subintervals do, choose either one.) Next, divide / 1 into two equal parts by its 
midpoint. Either the right subinterval or the left subinterval of / 1 contains 
infinitely many { xn}. Denote by I 2 the closed subinterval which does. Continue 
this process, obtaining the sequence 

n = 1, 2, ... , 

with the property that each In contains xP for infinitely many values of p. Since 
bn - an = (b - a)j2n-... 0 as n-... oo, we may apply the Nested intervals theorem 
to obtain a unique number x0 contained in every ln. 
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We now construct a subsequence of {xp} converging to x 0 • Choose xk, to 
be any member of {x.} in 11 and denote xk, by y 1 • Next choose xk, to be any 
member of {xP} such that xk, is in 12 and such that k2 > k1. We can do this 
because 12 has infinitely many of the {xP}. Set xk, = y2 • Next, choose xk, as 
any member of {xP} in 13 and such that k3 > k2 • We can do this because 13 

also has infinitely many of the {xP}. Set xk, = y3. We continue, and by 
induction obtain the subsequence y1, y2 , ••• , y., .... By the method of selection 
we have 

n = 1, 2, .... 

Since a. --+ x0 , b. --+ x0 , as n --+ oo, we can apply the Sandwiching theorem 
(Theorem 2.10) to conclude that Yn--+ x 0 as n--+ oo. D 

The proof of the following theorem is left to the reader. 

Theorem 3.10'. Suppose that {x.} is a convergent sequence; that is, x.--+ x 0 as 
n--+ oo. If {y.} is an i1ifinite subsequence of {x.}, then y.--+ x0 as n--+ oo. 

PROBLEMS 

In Problems 1 through 7 decide whether or not the given sequence converges 
to a limit. If it does not, find, in each case, at least one convergent subsequence. 
We suppose n = 1, 2, 3, .... 

1. x. = ( -1)"(1 - (1/n)) 

3. x. = ( -1)"(2- r") 

5. x. = Ll=! (1/j!) 

7. x. = (sin(nn/3))(1 - (1/n)) 

9. The sequence 

2. x. = 1 + ((-1)"/n) 

4. x. = D=• (( -1)i/2i) 

6. x. = sin(nn/2) + cos nn 

8. Prove Theorem 3.10'. 

has subsequences which converge to the numbers 1, 2, and 3. 
(a) Write a sequence which has subsequences which converge to N different 

numbers where N is any positive integer. 
(*b) Write a sequence which has subsequences which converge to infinitely many 

different numbers. 

3.4. The Roundedness and Extreme-Value Theorems 

In this section we establish additional basic properties of continuous functions 
from IR 1 to IR 1. The Boundedness and Extreme-value theorems proved below 
are essential in the proofs of the basic theorems in differential calculus. 
However, the usefulness of these results, especially in the more general setting 
to be established in Chapter 6, extends to many branches of analysis. The 
Boundedness theorem shows that a function which is continuous on a closed 
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interval must have a bounded range. The Extreme-value theorem adds addi
tional precise information about such functions. It states that the supremum 
and the infimum of the values in the range are also in the range. 

Theorem 3.11 (Boundedness theorem). Suppose that the domain off is the 
closed interval I= {x: a~ x ~ b}, and f is continuous on I. Then the range of 
f is bounded. 

PROOF. We shall assume the range is unbounded and reach a contradiction. 
Suppose for each positive integer n, there is an xn E I such that lf(xn)l > n. 
The sequence {xn} is bounded, and by the Bolzano-Weierstrass theorem, there 
is a convergent subsequence y 1 ,J2, ... , Yn• ... , where Yn = xk"' which converges 
to an element x 0 E I. Since f is continuous on I, we have f(Yn)--+ f(x 0 ) as 
n--+ oo. Choosing e = 1, we know there is an N1 such that for n > N1 , we have 

if(Yn) - f(x 0 )i < 1 whenever n > N1 • 

For these nit follows that 

lf(Yn)l < if(xo)i + 1 for all n > N1 . 

On the other hand, 

if(Yn)i = if(xk)i > kn ~ n for all n, 

according to the Remark in Section 3.3. Combining these results, we obtain 

n < if(x0 )i + 1 for all n > N1 . 

Clearly we may choose n larger than lf(x0 )1 + 1 which is a contradiction. D 

Remark. In Theorem 3.11, it is essential that the domain off is closed. 
The function f: x--+ 1/(1 - x) is continuous on the half-open interval 
I= {x: 0 ~ x < 1}, but is not bounded there. 

Theorem 3.12 (Extreme-value theorem). Suppose that f has for its domain the 
closed interval I = { x: a ~ x ~ b }, and that f is continuous on I. Then there are 
numbers x 0 and x 1 on I such that f(x 0 ) ~ f(x) ~ f(xd for all x E I. That is, f 
takes on its maximum and minimum values on I. 

PROOF. Theorem 3.11 states that the range off is a bounded set. Define 

M = sup f(x) for x E I, m = inf f(x) for x E I. 

We wish to show that there are numbers x 0 , x1 E I such that f(x 0 ) = m, 
f(xd = M. We prove the existence of x 1 , the proof for x 0 being similar. 
Suppose that M is not in the range off; we shall reach a contradiction. The 
function F with domain I defined by 

1 
F: x --+ M - f(x) 
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is continuous on I and therefore (by Theorem 3.11) has a bounded range. 
Define M = sup F(x) for x E I. Then M > 0 and 

1 - 1 
f ~ M or f(x) ~ M - = for x E I. 

M- (x) M 

This last inequality contradicts the statement that M = sup f(x) for x E I, and 
hence M must be in the range off There is an x 1 E I such that f(xd = M. 

D 

Remark. A proof ofTheorem 3.12 can be based on the Bolzano-Weierstrass 
theorem. In such a proof we select a sequence {Yn} in the range off which 
tends toM; this can be done according to the Corollary to Theorem 3.5. The 
reader may complete the argument (see Problem 2 at the end of Section 3.5). 

The conclusion of Theorem 3.12 is false if the interval I is not closed. The 
function/: x ___. x2 is continuous on the half-open interval I= {x: 0 ~ x < 1}, 
but does not achieve a maximum value there. Note that f is also continuous 
on the closed interval I 1 = {x: 0 ~ x ~ 1} and its maximum on this interval 
occurs at x = 1; Theorem 3.12 applies in this situation. 

Theorem 3.12 asserts the existence of at least one value x 1 and one value 
x0 where the maximum and minimum are achieved. It may well happen that 
these maxima and minima are taken on at many points of I. 

3.5. Uniform Continuity 

In the definition of continuity of a function fat a point x0 , it is necessary to 
obtain a number ~ for each positive number e prescribed in advance (see 
Section 2.1). The number~ which naturally depends one also depends on the 
particular value x0 . Under certain circumstances it may happen that the same 
value~ may be chosen for all points x in the domain. Then we say that f is 
uniformly continuous. 

Definition. A function f with domain S is said to be uniformly continuous on 
S if and only if for every e > 0 there is a ~ > 0 such that 

lf(xd- f(x2 )1 < e whenever lx1 - x2 1 < ~ 

and x1 , x2 are in S. The important condition of uniform continuity states that 
the same value of~ holds for all x1 , x2 inS. 

Among the properties of continuous functions used in proving the basic 
theorems of integral calculus, that of uniform continuity plays a central role. 
The principal result of this section (Theorem 3.13 below) shows that under 
rather simple hypotheses continuous functions are uniformly continuous. A 
more general theorem of this type, one with many applications in analysis, is 
established in Chapter 6. 
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A function may be continuous on a set S without being uniformly con
tinuous. As Figure 3.7 shows, once an e is given, the value of~ required in the 
definition of ordinary continuity varies according to the location of x1 and 
x 2 ; the "steeper" the function, the smaller is the value of~ required. 

As an example of a continuous function which is not uniformly continuous, 
consider 

f: x-+ 1/x 

defined on the setS= {x: 0 < x ~ 1 }. It is clear that f is continuous for each 
x in S. However, with ll any positive number, say 1, we shall show there is no 
number {J such that 

lf(x1)- /(x2 )1 < 1 whenever lx1 - x2 1 < ~ 

for all xh x2 in S. To see this we choose x1 = 1/n and x2 = 1/(n + 1) for a 
positive integer n. Then lf(xd - f(x 2 )1 = In - (n + 1)1 = 1; also, we have 
lx1 - x2 1 = 1/n(n + 1). If n is very large, then x1 and x 2 are close together. 
Therefore, if a {J is given, simply choose n so large that x 1 and x 2 are closer 
together than b. The condition of uniform continuity is violated since f(x 1) 

and f(x 2 ) may not be "close." 
An example of a uniformly continuous function on a set S is given by 

f: x-+ x 2 (3.6) 

on the domainS= {x: 0 ~ x ~ 1}. To see this suppose ll > 0 is given. We 
must find a {J > 0 such that 

lxi- x~l < ll whenever lx1 - x2 1 < {J 

for all x 1, x 2 inS. To accomplish this, simply choose {J = B/2. Then, because 
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0 ~ x 1 ~ 1 and 0 ~ x2 ~ 1, we have 

lxf- x~l = lxt + x2l·lx1- x2l < 2·!e =e. 

This inequality holds for all x 1 , x2 on [0, 1] such that lx1 - x21 < ~-
The same function (3.6) above defined on the domain S1 = { x: 0 ~ x < oo} 

is not uniformly continuous there. To see this suppose e > 0 is given. Then 
for any~ > 0, choose x., x 2 so that x 1 - x2 = ~/2 and x 1 + x 2 = 4e/~. Then 
we have 

The condition of uniform continuity is violated for this x 1, x 2 • 

An important criterion which determines when a function is uniformly 
continuous is established in the next result. 

Theorem 3.13 (Uniform continuity theorem). Iff is continuous on the closed 
interval I= {x: a~ x ~ b}, then f is uniformly continuous on I. 

PRooF. We shall suppose that f is not uniformly continuous on I and reach 
a contradiction. Iff is not uniformly continuous there is an e0 > 0 for which 
there is no~> 0 with the property that lf(x.)- f(x2)1 < e0 for all pairs x 1 , 

x 2 e I and such that lx1 - x21 <~-Then for each positive integer n, there is 
a pair x~, x; on I such that 

1 
lx~ - x:l <- and lf(x~)- f(x;)l ~ eo. 

n 
(3.7) 

From the Bolzano-Weierstrass theorem, it follows that there is a subsequence 
of {x~}, which we denote {x~J, convergent to some number x0 in I. Then, 
since lx;. - x; I < 1/n, we see that x; --+ x0 as n--+ oo. Using the fact that f is 
continu~us onn I, we have n 

f(x;. ) --+ f(xo), 
n 

f(x; ) --+ f(xo). 
n 

That is, there are positive integers N1 and N2 such that 

lf(x;.J - f(x0 )1 < !eo for all n > N1 
and 

lf(x;J - f(x0 )1 < !eo for all n > N2 • 

Hence for all n larger than both N1 and N2 , we find 

lf(x;.J - f(x;JI ~ lf(x;.J - f(xo)l + lf(xo) - f(x;JI < !eo + !eo = eo. 

This last inequality contradicts (3.7), and the result is established. D 

Remarks. As the example of the functionf: x--+ 1/x shows, the requirement 
that I is a closed interval is essential. Also, the illustration of the function 
f: x--+ x2 on the set S1 = {x: 0 ~ x < oo} shows that Theorem 3.13 does not 
apply if the interval is unbounded. It may happen that continuous functions 
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are uniformly continuous on unbounded sets. But these must be decided on 
a case-by-case basis. See Problems 5 and 6 at the end of the section. 

PROBLEMS 

1. Suppose that f is a continuous, increasing function on a closed interval I = 
{ x: a ~ x ~ b }. Show that the range off is the interval [f(a), f(b)]. 

2. Write a proof of the Extreme-value theorem which is based on the Bolzano
Weierstrass theorem (see the Remark after Theorem 3.12). 

3. Supposethatfiscontinuous on the setS= {x: 0 ~ x < oo} and thatfis bounded. 
Give an example to show that the Extreme-value theorem does not hold. 

4. Suppose that f is uniformly continuous on the closed intervals I1 and I 2 • Show 
that f is uniformly continuous on S = I 1 u I 2 • 

5. Showthatthefunctionf: x-+ 1/xis uniformlycontinuousonS = {x: 1 ~ x < oo }. 

6. Show that the function f: x-+ sin xis uniformly continuous on S = {x: -oo < 
X< 00 }. 

[Hint: sin A - sin B = 2 sin((A - B)/2) cos((A + B)/2).] 

7. Suppose that f is continuous on I= {x: a< x < b}. If lim,~.+f(x) and 
lim,~b- f(x) exist, show that by defining f 0(a) = lim,~.+ f(x), f 0 (b) = Jim,~b- f(x), 
and f 0 (x) = f(x) for x e I, then the function fo defined on I 1 = {x: a~ x ~ b} is 
uniformly continuous. 

8. Consider the function!: x-+ sin(1/x) defined on I= {x: 0 < x ~ 1}. Decide whe
ther or not f is uniformly continuous on I. 

9. Show directly from the definition that the function f: x-+ Jx is uniformly con
tinuous on I1 = {x: 0 ~ x ~ 1}. 

10. Supposethatfis uniformly continuous on thehalf-openintervall = {x: 0 < x ~ 1}. 
Is it true that f is bounded on I? 

11. Given the general polynomial 

f(x) = a.x" + a._,x•-l + · · · + a1x + a0. 

Show that f is uniformly continuous on 0 ~ x ~ 1. 

12. Show that the function 

f(x) = {x sin(1/x), 0 < x ~ 1, 
0, X =0, 

is uniformly continuous on I= {x: 0 ~ x ~ 1}. 

3.6. The Cauchy Criterion 

We recall the definition of a convergent sequence x 1, x 2 , ••• , Xn, ••• • A sequence 
converges to a limit L if and only if for every e > 0 there is a positive integer 



76 3. Basic Properties of Functions on IR1 

N such that 
lxn- Ll < 8 whenever n > N. (3.8) 

Suppose we are given a sequence and wish to examine the possibility of 
convergence. Usually the number Lis not given so that Condition (3.8) above 
cannot be verified directly. For this reason it is important to have a technique 
for deciding convergence which doesn't employ the limit L of the sequence. 
Such a criterion, presented below, was given first by Cauchy. 

Definition. An infinite sequence {xn} is called a Cauchy sequence if and only 
if for each 8 > 0, there is a positive integer N such that 

lxn - xml < 8 for all m > N and all n > N. 

Theorem 3.14 (Cauchy criterion for convergence). A necessary and sufficient 
condition for convergence of a sequence { xn} is that it be a Cauchy sequence. 

PRooF. We first show that if {xn} is convergent, then it is a Cauchy sequence. 
Suppose Lis the limit of {xn}, and let 8 > 0 be given. Then from the definition 
of convergence there is an N such that 

lxn - Ll < 18 for all n > N. 

Let xm be any element of {xn} with m > N. We have 

lxn - Xml = lxn - L + L - xml 

~ lxn - Ll + IL - Xml < 18 + 18 = 8. 
Thus {xn} is a Cauchy sequence. 

Now assume {xn} is a Cauchy sequence; we wish to show it is convergent. 
We first prove that { xn} is a bounded sequence. From the definition of Cauchy 
sequence with 8 = 1, there is an integer N0 such that 

lxn - xml < 1 for all n > N0 and m > N0 • 

Choosing m = N0 + 1, we find lxn - xNo+ll < 1 if n > N0 • Also, 

lxnl = lxn - XN0 +1 + XN0 +1I 

~ lxn- XN0 +1I + lxNo+ll < 1 + lxNo+ll· 

Keep N0 fixed and observe that alllxnl beyond xNo are bounded by 1 + lxNo+ll, 
a fixed number. Now examine the finite sequence of numbers 

lx1l, lx2l, ... , lxNol' lxNo+ll + 1 

and denote by M the largest of these. Therefore lxnl ~ M for all positive 
integers n, and so {xn} is a bounded sequence. 

We now apply the Bolzano-Weierstrass theorem and conclude that there 
is a subsequence {xkJ of {xn} which converges to some limitL. We shall show 
that the sequence {xn} itself converges to L. Let 8 > 0 be given. Since {xn} is 
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a Cauchy sequence there is an N1 such that 

lxn-xml<!e forall n>N1 and m>N1 • 

Also, since { xkJ converges to L, there is an N2 such that 

lxk"- Ll < !s for all n > N2 • 
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Let N be the larger of N1 and N2 , and consider any integer n larger than N. 
We recall from the definition of subsequence of a sequence that kn ;;?:: n for 
every n. Therefore 

lxn- Ll = lxn- Xk" + Xk"- Ll :::;; lxn - Xk"l + lxk" - Ll < !e + !e =B. 

Since this inequality holds for all n > N, the sequence { xn} converges to L. D 

As an example, we show that the sequence xn =(cos nn)/n, n = 1, 2, ... is 
a Cauchy sequence. Let B > 0 be given. Choose N to be any integer larger 
than 2/e. Then we have 

lx _ x I= Ieos nn _cos mnl:::;; mlcos nnl + nlcos mnl = m + ". 
n m n m mn mn 

If m > n, we may write 

m+n 2m2 
lxn -xml :::;;--<-=-. 

mn mn n 

However, because n > N, we have n > 2/e, and so lxn- xml < B, and the 
sequence is a Cauchy sequence. 

3.7. The Heine-Borel and Lebesgue Theorems 

In this section we establish two theorems which are useful in the further 
development of differentiation and integration. The Heine-Borel theorem 
shows that "covering" a set with a collection of special sets is particularly 
helpful in verifying uniform continuity. A useful generalization of this result 
is proved in Chapter 6. 

Consider, for example, the collection of intervals 

ln={x:~<x<1}, n = 2, 3, 4, .... (3.9) 

Any collection of intervals such as (3.9) is called a family of intervals. The 
symbol :F is usually used to denote the totality of intervals in the family. Each 
interval is called a member (or element) of the family. Care must be exercised 
to distinguish the points of a particular interval from the interval itself. In the 
above example, the interval J = { x: t < x < f} is not a member of :F. How-· 
ever, every point of J is in every interval In for n > 2. The points in 0 < x < 1 
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are not themselves members of !F although each point of 0 < x < 1 is in at 
least one In. 

Definitions. A family !F of intervals is said to cover the setS in ~1 if and only 
if each point of S is in at least one of the intervals of !F. A family !F1 is a 
subfamily of !F if and only if each member of !F1 is a member of !F. 

For example, the intervals 

I~ = { x: 2
1n < x < 1}, n = 1, 2, . . . (3.10) 

formasubfamilyofFamily(3.9). Family(3.9)covers the setS= {x: 0 < x < 1} 
since every number x such that 0 < x < 1 is in In for all n larger than 1/x. Thus 
every x is in at least one In. Family (3.10) also covers S. More generally, we 
may consider a collection of sets A1 , A 2 ••• An, ... which we call a family of 
sets. We use the same symbol !F to denote such a family. A family !F covers 
a set S if and only if every point of S is a point in at least one member of !F. 

The family !F: 

Jn = {x: n < x < n + 2}, n = 0, ± 1, ± 2, ... 

covers all of ~1 • It is simple to verify that if any interval is removed from !F, 
the resulting family fails to cover ~1 • For example, if J1 is removed, then no 
member of the remaining intervals of !F contains the number 2. 

We shall be interested in families of open intervals which contain infinitely 
many members and which cover a setS. We shall examine those sets S which 
have the property that they are covered by a finite subfamily, i.e., a subfamily 
with only a finite number of members. For example, the family !F of intervals 
Kn = {x: 1/(n + 2) < x < 1/n}, n = 1, 2, ... covers the setS= {x: 0 < x < !}, 
as is easily verified (see Problem 13 at the end of the section). It may also be 
verified that no finite subfamily of !F = {Kn} covers S. However, if we consider 
the set S1 = {x: 8 < x ~ t} for any 8 > 0, it is clear that S1 is covered by the 
finite subfamily {Kt> K 2 , ••• , Kn} for any n such that n + 2 > 1/8. 

We may define families of intervals indirectly. For example, suppose 
f: x-+ 1/x with domain D = {x: 0 < x ~ 1} is given. We obtain a family !F 
of intervals by considering all solution sets of the inequality 

1 1 1 1 1 
lf(x)- f(a)l < 3 - -3 < x- a< 3 (3.11) 

for every a e D. For each value a, the interval 

La= {x: 3 ~a< x < 3 ~a} (3.12) 

is the solution of Inequality (3.11). This family !F = {La} covers the set 
D = {x: 0 < x ~ 1 }, but no finite subfamily covers D. (See Problem 16 at the 
end of this section.) 
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Theorem 3.15 (Heine-Borel theorem). Suppose that a family .'IF of open inter
vals covers the closed interval/= {x: a:::::;: x:::::;: b}. Then a finite subfamily of .'IF 
covers I. 

PROOF. We shall suppose an infinite number of members of .'IF are required to 
cover I and reach a contradiction. Divide I into two equal parts at the 
midpoint. Then an infinite number of members of .'IF are required to cover 
either the left subinterval or the right subinterval of I. Denote by 11 = 
{x: a1 :::::;: x:::::;: bd the particular subinterval needing this infinity of members 
of .'F. We proceed by dividing 11 into two equal parts, and denote by 12 = 
{x: a2 :::::;: x:::::;: b2 } that half of 11 which requires an infinite number of members 
of .'F. Repeating the argument, we obtain a sequence of closed intervals 
1, = {x: a,:::::;: x:::::;: b,}, n = 1, 2, ... each of which requires an infinite number 
of intervals of .'IF in order to be covered. Since b, - a, = (b - a)/2" --. 0 as 
n--. oo, the Nested intervals theorem (Theorem 3.1) states that there is a 
unique number x0 e I which is in every J,. However, since .'IF covers J, there 
is a member of .'IF, say J = {x: a< x < p}, such that x0 e J. By choosing N 
sufficiently large, we can find an IN contained in J. But this contradicts the 
fact that infinitely many intervals of .'IF are required to cover JN-we found 
that the one interval J covers IN. 0 

Remarks. In the Heine-Borel theorem, the hypothesis that I = { x: a :::::;: x :::::;: 
b} is a closed interval is crucial. The open interval J1 = { x: 0 < x < 1} is 
covered by the family .'IF of intervals (3.9), but no finite subfamily of .'IF covers 
J1 • Also, Theorem 3.15 is not valid if the interval/ is unbounded. For exam
ple the interval K = {x: 0:::::;: x < oo} is covered by the family .'!F1 given by 
K, = {x: n- (1/2) < x < n + (3/2)}, n = 0, 1, 2, ... but no finite subfamily of 
.'!F1 covers K. 

The next theorem is a useful alternate form of the Heine-Borel theorem. 

Theorem 3.16 (Lemma of Lebesgue). Suppose that a family .'IF of open intervals 
covers the closed interval/= {x: a:::::;: x:::::;: b}. Then there is a positive number 
p such that every interval of the form Jc = {x: c- p < x < c + p}, for each c 
in I, is contained in some single member of .'!F. 1hat is, every interval of length 
2p with midpoint in I is contained in one member of .'!F. 

c 

~------~-------J 

Figure 3.8 
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Figure 3.9 

PRooF. Each c in I is in some open interval I.= {x: ex.< x < P.} of the family 
'· Let 2b. denote the distance of c to the nearest endpoint of I. (see Figure 
3.8). Then the interval {x: c- 2b. < x < c + 2b.} is contained in I •. Denote 
by K. the interval { x: c - be < x < c + be} (see Figure 3.9). Let t§ be the family 
of all intervals K. for every c in I. Note that every K. is contained in some I., 
a member of'· From the Heine-Borel theorem, there is a finite subfamily t§1 

oft§ which covers I. Denote the members of t§1 by 

and let be, be the smallest of .b.,, b.2 , ••• , be". Choose ~or ~he p of our ~h~orem 
this value be . To see that this works let c be any pomt m I. Then c Is m K., 
for some i. We wish to show that J. = {x: c- p < x < c + p} is contained in 
some interval of'· We know that J. is contained in 

I'= {x: C;- be,- p <X< C; +be,+ p} 

(see Figure 3.10). The interval I', in turn, is contained in 

J" = {x: C;- 2bc, <X< C; + 2b • .}, 

c-p c c+p 

I' 

c; c C; + 6<; + p 

C;- 26c; C -p C; C c+p C; + 26c; 

!" 

Figure 3.10 
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since p ~ Jc·• i = 1, 2, ... , n. However, for each c;, the interval I" is contained 
in one member of!#', and the result is established. D 

The Lemma of Lebesgue may be used to give a direct proof of Theorem 
3.13 on uniform continuity. See Problem 19 at the end of this section and the 
hint given there. 

PROBLEMS 

In each of Problems 1 through 6 decide whether or not the infinite sequence 
is a Cauchy sequence. If it is not a Cauchy sequence, find at least one 
subsequence which is a Cauchy sequence. In each case, n = 1, 2, .... 

1. x. = Ll=l ( -l)i(1/2j) 

3. x. = D=l (( -1)j/i!) 

5. x. = sin(nn/3) + (1/n) 

2. x. = Ll=l (1/j!) 

4. x. = 1 + ( -1)" + (1/n) 

6. x. = (1 + ( -1)")n + (1/n) 

7. Suppose that s. = L}=1 ui and s. = L}=1 luil• n = 1, 2, .... If s.-+ S as n-+ oo, show 
that s. tends to a limit as n-+ oo. 

8. Show that Theorem 3.1, the Nested intervals theorem, may be proved as a direct 
consequence of the Cauchy criterion for convergence (Theorem 3.14). [Hint: 
Suppose I. = { x: a. :o:;; x :o:;; b.} is a nested sequence. Then show that {a.} and {b.} 
are Cauchy sequences. Hence they each tend to a limit. Since b. - a. -+ 0, the limits 
must be the same. Finally, the Sandwiching theorem shows that the limit is in every 
I •. ] 

9. Suppose that f has a domain which contains I = { x: a < x < b }, and suppose that 
f(x)-+ Las x-+ b-. Prove the following: for each e > 0 there is a {J > 0 such that 

lf(x)- f(y)l < e for all x, y with b- {J < x < b, b- {J < y <b. (3.13) 

10. Prove the converse of the result in Problem 9. That is, suppose that for every e > 0 
there is a {J > 0 such that Condition (3.13) is satisfied. Prove that there is a number 
L such that f(x)-+ Las x-+ b-. 

11. Show that the result of Problem 9 holds if I is replaced by J = {a < x < oo} and 
limits are considered as x -+ + oo. Show that the result in Problem 10 does not hold. 

12. Show that iff is uniformly continuous on I= {x: a< x < b}, then f(x) tends to 
a limit as x-+ b- and as x-+ a+. Hence show that if f 0 (a) and f 0 (b) are these limits 
and f 0 (x) = f(x) on I, then the extended function fo is uniformly continuous on 
J = {x: a :o:;; x :o:;; b}. Use the result of Problem 10. 

13. (a) Show that the family $i' of all intervals ofthe form I.= {x: 1/(n + 2) < x < 1/n} 
covers the interval J = {x: 0 < x < 1/2}. 

(b) Show that no finite subfamily of $i' covers J. 

14. Let<'§ be the family of intervals obtained by adjoining the interval {x: -1/6 < 
x < 1/6} to the family 9i' of Problem 13. Exhibit a finite subfamily of G which 
covers K = {x: 0 :o:;; x :o:;; 1/2}. 
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15. Let F 1 be the family of all intevals I.= {x: 1/2" < x < 2}, n = 1, 2, .... Show that 
~covers the interval J = {x: 0 < x < 1}. Does any finite subfamily of~ cover 
J? Prove your answer. 

16. For f(x) = 1/x defined on D = {x: 0 < x :e:; 1}, consider the inequality 
lf(x) - f(a)l < 1/3 for a e D. Show that the solution set of this inequality, denoted 
by La, is given by Equation (3.12). Show that the family F ={La} covers D. Does 
any finite subfamily ofF cover D? Prove your answer. 

17. Consider f: x-+ 1/x defined on E = { x: 1 :e:; x < oo }. Let Ia be the interval of 
values of x for which lf(x) - f(a)l < 1/3. Find Ia for each a e E. Show that the 
family F = {Ia}, a e E covers E. Is there a finite subfamily ofF which covers E? 
Prove your answer. 

18. Prove the Boundedness theorem (Theorem 3.11) using the Heine-Bore) theorem 
(Theorem 3.15). 

19. Prove the Uniform continuity theorem (Theorem 3.13) using the Lemma of 
Lebesgue (Theorem 3.16). [Hint: Let ll > 0 be given. Since fis continuous at each 
point x0 of the interval I, there is a c5'"• such that lf(x)- f(x0 )1 < £/2 whenever 
lx- x0 1 < c5x0 andx0 ,x e I. The intervals I'""= {x: x0 - c5Xo < x < x0 + bx.} form 
a family F to which we apply the Lemma of Lebesgue. Denote by p the number 
so obtained. With this number as the c5 of uniform continuity, the inequality 
lf(xd- j(x2)l :E; lf(xl)- f(xo)l + lf(xo)- f(x2)1 < ll can be established.] 

20. All the rational numbers in I = {x: 0 :e:; x :e:; 1} can be arranged in a single sequence 
as follows: 

0, t. t. }, i. *· i. !. t. t. t. i. i. t .... 
(Note that we consider all possible fractions with denominator = 1, then all with 
denominator = 2, then all with denominator = 3, and so forth.) Let ll > 0 be given, 
and let I. be the interval of length £/2" which has its center at the nth rational 
number of the above sequence. The family F = {I.}, n = 1, 2, ... covers all the 
rational numbers in I. Show that the sum ofthe lengths of all the I. is ll. Prove that 
if ll is small, then F does not cover the entire interval I. 

21. Show that cos(Jnn), n = 1, 2, ... is dense in ( -1, 1). 



CHAPTER 4 

Elementary Theory of 
Differentiation 

4.1. The Derivative in !R1 

In a first course in calculus we learn a number of theorems on differentiation, 
but usually the proofs are not provided. In this section we review these 
elementary theorems and provide the missing proofs for the basic results. 

Definition. Let f be a function on ~ 1 to ~ 1• The derivative f' is defined by the 
formula 

f '( ) _ 1. f(x + h) - f(x) 
x-tm h . 

h-+0 
(4.1) 

That is, f' is the function whose domain consists of all x in ~1 for which the 
limit on the right side ofEquation (4.1) exists. Of course the range off' is in ~1 • 

The following seven elementary theorems on the derivative, given without 
proof, are simple consequences of the theorems on limits in Chapter 2. The 
reader should write out detailed proofs as suggested in the problems at the 
end of this section. 

Theorem 4.1. Iff is a constant function, then f'(x) = 0 for all x. 

In Theorems 4.2 through 4.7 we assume that all functions involved are on 
~1 to ~1. 

Theorem 4.2. Suppose that f is defined on an open interval I, c is a real number, 
and that g is defined by the equation g(x) = cf(x). Iff'(x) exists, then g'(x) does, 
and g'(x) = cf'(x). 

83 
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Theorem 4.3. Suppose that f and g are defined on an open interval I and that F 
is defined by the equation F(x) = f(x) + g(x). If f'(x) and g'(x) exist, then F'(x) 
does, and F'(x) = f'(x) + g'(x). 

Theorem 4.4. If f'(a) exists for some number a, then f is continuous at a. 

Theorem 4.5. Suppose that u and v are defined on an open interval I and that f 
is defined by the equation f(x) = u(x) · v(x). If u'(x) and v'(x) exist, then f'(x) 
does, and f'(x) = u(x)v'(x) + u'(x)v(x). 

Theorem 4.6. Suppose that u and v are defined on an open interval I, that v(x) ::1: 0 
for all x E I, and that f is defined by the equationf(x) = u(x)/v(x). If u'(x) and 
v'(x) exist, then f'(x) does, and 

f'(x) = v(x)u'(x) - u(x)v'(x) 
[v(x)] 2 

Theorem 4.7. Given f: x -+ x" and n is an integer. Then 

f'(x) = nx"-1 • 

(We assume that x ::1:0 for n < 0.) 

We now establish the Chain rule (Theorem 4.9 below) which together with 
Theorems 4.1 through 4.7 forms the basis for calculating the derivatives of 
most elementary functions. The Chain rule is a consequence of the following 
lemma which states that every differentiable function is approximated by a 
linear function whose slope is the derivative. (See Figure 4.1.) 

y 

I 
I 
1 f(xo) 

I 

y =f(x) 

---+----------~-------------------x 
0 xo 

Figure 4.1. A linear approximation to fat (x0 , f(x0 )). 
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Theorem 4.8 (Fundamental lemma of differentiation). Suppose that f has a 
derivative at x0 . Then there is a function '1 defined in an interval about 0 such that 

f(x 0 + h)- f(x 0 ) = (f'(x0 ) + 'l(h)] ·h. 

Also, '1 is continuous at 0 with '1(0) = 0. 

PROOF. We define '1 by the formula 

{ 
-h1 (f(x0 + h) - f(x 0 )] - f'(xo), 

'l(h) = 

0, h =0. 

(4.2) 

Since f has a derivative at x0 , we see that 'l(h)-+ 0 as h-+ 0. Hence '1 is 
continuous at 0. Formula (4.2) is a restatement of the definition of '1· D 

Theorem 4.9 (Chain rule). Suppose that g and u are functions on IR 1 and 
f(x) = g[u(x)]. Suppose that u has a derivative at x0 and that g has a derivative 
at u(x0 ). Then f'(x0 ) exists and 

f'(x0 ) = g'[u(x0 )] · u'(x0 ). 

PROOF. We use the notation !:if= f(x 0 + h) - f(x0 ), Au = u(x0 + h) - u(x0 ), 

and we find 

!:if= g[u(x0 + h)] - g[u(x0 )] = g(u + Au)- g(u). (4.3) 

We apply Theorem 4.8 to the right side of Equation (4.3), getting 

!:if= [g'(u) + 'l(Au)]Au. 

Dividing by h and letting h tend to zero, we obtain (since Au -+ 0 as h -+ 0) 

lim Ahif = f'(x0 ) = lim [g'(u) + 'l(Au)] ·lim Ahu = g'[u(x0 )] • u'(x0 ). D 
h~o h~o h~o 

The Extreme-value theorem (Theorem 3.12) shows that a function which 
is continuous on a closed interval I takes on its maximum and minimum 
values there. If the maximum value occurs at an interior point1 of I, and if the 
function possesses a derivative at that point, the following result gives a 
method for locating maximum (and minimum) values of such functions. 

Theorem 4.10. Suppose that f is continuous on an interval I, and that f takes 
on its maximum value at x0 , an interior point of I. If f'(x0 ) exists, then 

f'(x0 ) = 0. 

1 All points of an interval except the endpoints are called interior points. 
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y 

--~~----~--------~----+------x o xo 
f' = 0 at a maximum and a minimum point 

~--------1--------~ 

Figure 4.2 

The proof follows immediately from the definition of derivative and is left 
to the reader. A similar result holds for functions which take on their minimum 
value at an interior point. See Figure 4.2. 

The next two theorem, Rolle's theorem and the Mean-value theorem, form 
the groundwork for further developments in the theory of differentiation. 

Theorem 4.11 (Rolle's theorem). Suppose that f is continuous on the closed 
interval I= {x: a :s;; x :s;; b}, and that f has a derivative at each point of I1 = 
{x: a< x < b}. If f(a) =/(b)= 0, then there is a number x 0 e I1 such that 
f'(x0 ) = 0. 

PROOF. Unless f(x) = 0, in which case the result is trivial, f must be positive 
or negative somewhere. Suppose it is positive. Then according to the Extreme
value theorem, f achieves its maximum at some interior point, say x0 • Now 
we apply Theorem 4.10 to conclude that f'(x0 ) = 0. Iff is negative on Il> we 
apply the same theorems to the minimum point. See Figure 4.3. 0 

Theorem 4.12 (Mean-value theorem). Suppose that f is continuous on the closed 
interval I= {x: a :s;; x :s;; b} and that f has a derivative at each point of I 1 = 
{x: a< X< b}. Then there exists a number e E I1 such that 

f'<e> = f(b)- f(a). 
b-a 

PRooF. We construct the function 

F(x) = f(x) - f(bi = ~(a) (x - a) -/(a). 
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y y y 

Figure 4.3. Illustrating Rolle's theorem. 

We have 

F'(x) = f'(x) - f(b) - f(a). 
b-a 
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By substitution, we see that F(a) = F(b) = 0. Thus F satisfies the hypotheses 
of Rolle's theorem and there is a number~ E I1 such that F'(~) = 0. Hence 

0 = F'(~) = f'(~) _ f(b)- f(a), 
b-a 

and the result is established. See Figure 4.4. 0 

The next theorem, a direct consequence of the Mean-value theorem, is 
useful in the construction of graphs of functions. The proof is left to the reader; 
see Problem 13 at the end of this section. 

Theorem 4.13. Suppose that f is continuous on the closed interval I and has a 
derivative at each point of I 1, the interior of I. 

y y = f(x) 

I 
I 
I J<b> 
I 
I 
I 

Figure 4.4. Illustrating the Mean-value theorem. 
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(a) Iff' is positive on I 1 , then f is increasing on I. 
(b) Iff' is negative on I 1, then f is decreasing on I. 

See Figure 4.2. 

L'Hopital's rule, so useful in the evaluation of indeterminate forms, has its 
theoretical basis in the following three theorems. 

Theorem 4.14 (Generalized Mean-value theorem). Suppose that f and F are 
continuous functions defined on I= {x: a::::;; x::::;; b}. Suppose that f' and F' 
exist on I 1 = {x: a< x < b}, the interior of I, and that F'(x) =I= 0 for x e I1 • 

Then 

(i) F(b) - F(a) =1= 0, and 
(ii) there is a number ~ e I 1 such that 

f(b) - f(a) _ f'(~) 
F(b) - F(a) - F'(~). 

(4.4) 

PRooF. According to the Mean-value theorem applied to F, there is a number 
'7 e I 1 such that F(b)- F(a) = F'(rJ)(b- a). Since F'(rJ) =I= 0, we conclude that 
F(b)- F(a) =I= 0 and (i) is proved. To prove (ii), define the function </Jon I by 
the formula 

f(b)- f(a) 
</J(x) = f(x) - f(a) - F(b) _ F(a) [F(x) - F(a)]. 

A simple calculation shows that </J(a) = f/J(b) = 0 and so Rolle's theorem can be 
applied to f/J. The number~ e I1 such that </J'(~) = 0 yields 

0 = </J'(~) = f'(~) _ f(b) - f(a) F'(~), 
F(b)- F(a) 

which is Equation (4.4). D 

Theorem 4.15 (L'Hopital's rule for 0/0). Suppose that f and F are continuous 
functions on I = { x: a < x < b} and that f' and F' exist on I with F' =I= 0 on I. If 

then 

lim f(x) = lim F(x) = 0 and lim f'(x) = L 
x-+a+ x-+a+ x-+a+ F'(x) ' 

lim f(x) = L. 
x-+a+ F(x) 

PROOF. We extend the definitions off and F to the half-open interval I 1 = 

{a ::::;; x < b} by setting f(a) = 0, F(a) = 0. Since F'(x) =I= 0 on I and F(a) = 0, 
we see from Theorem 4.12 that F(x) =I= 0 on I. Let e > 0 be given. Then there 
is a (j > 0 such that 

lf'(x) I F'(x) - L < e for all x such that a < x < a + (J. 
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Now we write 

'

f(x) _ L' =I f(x)- f(a) _ L' 
F(x) F(x) - F(a) ' 

and apply the Generalized Mean-value theorem to obtain 

~~i:~- L' = ~~:~~~- L' < e, 

89 

where ~ is such that a < ~ < x < a + b. Since e is arbitrary the result follows. 
D 

Remark. The size of the interval I is of no importance in Theorem 4.15. 
Therefore the hypotheses need only hold in an arbitrarily small interval in 
which a is one endpoint. 

Corollary 1. L'Hopital's rule holds for limits from the left as well as limits from 
the right. If the two-sided limits are assumed to exist in the hypotheses of 
Theorem 4.15, then we may conclude the existence of the two-sided limit off/F. 

Corollary 2. A theorem similar to Theorem 4.15 holds for limits as x-+ +oo, 
-oo, or oo. 

PROOF OF CoROLLARY 2. Assume that 

lim f(x) = lim F(x) = 0, 
x-+oo x-++oo 

. f'(x) 
hm -,-----( ) = L, 

x-+oo F X 
F'(x) # 0 on I. 

We let z = 1/x and define the functions g and G by the formulas 

g(z) = fG)• G(z) = FG). 
Then 

G'(z) =-z12F'G)• 

so that g'(z)/G'(z)-+ L, g(z)-+ 0, and G(z)-+ 0 as z-+ o+. Hence we apply 
Theorem 4.15 to gjG and the result is established. The argument when x-+ -oo 

or oo is similar. D 

Theorem 4.16 (L'Hopital's rule for oo/oo). Suppose that f' and F' exist on 

I= {x: a< x < b}. If 

lim f(x) = lim F(x) = oo, and 
x-+a+ x-+a+ 

and if F'(x) # 0 on I, then 

lim f(x) = L. 
x-a+ F(x) 

. f'(x) 
hm -,-----( ) = L, 
x-a+ F X 
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PRooF. The hypotheses imply that f and F are continuous on I and that F(x) 
does not vanish in some interval I,= {z: a< x <a+ h}. From the definition 
of limit we know that for every 8 > 0 there is a o > 0 such that 

l
r<e> 1 1 . F'(e)- L < 28 for all e tn I6 = {x: a< x <a+ o}. (4.5) 

Choose o smaller than h and consider x and c in 16 with x < c. Then from the 
Generalized Mean-value theorem, it follows that 

f(x)- f(c) J'(e) 
F(x)- F(c) = F'(e) · 

(4.6) 

Substituting Equation (4.6) into Inequality (4.5), we get 

I f(x)- f(c) _ Ll < ~ 8• 
F(x)- F(c) 2 

(4.7) 

Since we are interested in small values of 8, we may take 8less than 1 and obtain 

I f(x) - f(c) I 1 1 
F(x)- F(c) < ILl + 28 < ILl + 2' 

An algebraic manipulation allows us to write the identity 

f(x) _ f(x) - f(c) = f(c) _ F(c) [f(x) - f(c) J. 
F(x) F(x) - F(c) F(x) F(x) F(x)- F(c) 

Taking absolute values and using Inequality (4.8), we find 

(4.8) 

~~~~- :~:~ = ~~1)1 ~~~~;)I+ I;~~I(ILI + D· (4'9) 

We keep c fixed and let x tend to a+. Then F(x) tends to oo and the right side 
of Inequality (4.9) tends to zero. Therefore, there is a o1 > 0 (which we take 
less than 0) SO that if a < X < 01 we have 

I f(c) I 1 I F(c) I 8 
F(x) < 48 and F(x) < 4(1LI + !)' (4.10) 

Finally, we use Inequalities (4.7), (4.9), and (4.10) to get 

I f(x) _ Ll ~ I f(x) _ f(x) - f(c) I + I f(x) - f(c) _ Ll 
F(x) F(x) F(x) - F(c) F(x) - F(c) 

1 1 
< 28 + 28 = 8. D 

Remarks. As in Theorem 4.15, the size of the interval I in Theorem 4.16 is 
of no importance. Therefore, we need only assume that F'(x) does not vanish 
in some sufficiently small neighborhood to the right of a. Indeterminate forms 
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such as 0 · oo, 100 , and oo - oo may frequently be reduced by algebraic mani
pulation and by use of the logarithmic function to 0/0 or oojoo. Then we may 
apply Theorem 4.15 or 4.16. Sometimes f'(x)/F'(x) as well as f(x)/F(x) is 
indeterminate. In such cases, we can apply Theorem 4.15 or 4.16 to f'/F' and 
see whether or not f"/F" tends to a limit. This process may be applied any 
number of times. 

EXAMPLE. Evaluate 

1. 1 +X- ex 
tm 2 

x-+0 2x 

Solution. Setf: x-+ 1 + x- ex and F: x-+ 2x2• Then limx .... 0(f(x)/F(x)) yields 
the indeterminate form 0/0. We try to apply Theorem 4.15 and find that 
limx .... o(f'(x)/F'(x)) also gives 0/0. A second attempt at application of the 
theorem shows that 

. f"(x) . -ex 1 
hm--=hm--= -
x-+o F"(x) x-+0 4 4 · 

Hence limx .... o(f'(x)/F'(x)) = -1/4 so that limx .... 0(f(x)/F(x)) = -1/4. 

PROBLEMS 

1. Use Theorem 2.5 on the limit of a sum to write out a proof of Theorem 4.3 on the 
derivative of the sum of two functions. 

2. Use the identity 

u(x + h)v(x + h) - u(x)v(x) = u(x + h)v(x + h) 

- u(x + h)v(x) + u(x + h)v(x) - u(x)v(x) 

and Theorems 2.5 and 2.6 to prove the formula for the derivative of a product 
(Theorem 4.5). 

3. The Leibniz rule for the nth derivative of a product is given by 

d" n 
-(f(x)g(x)) = f(•l(x)g(x) +-p•-11(x)g'(x) 
dx" 1! 

n(n - 1) + --2!-f(•-2>(x)g(2l(x) + ... + f(x)g(•l(x), 

where the coefficients are the same as the coefficients in the binomial expansion. 

n n(n- 1) 
(A+ B)"= A"+ -A"-1 B + ---A"-2B2 

1! 2! 

n(n - 1)(n - 2) + A"-3 B3 + ... + B". 
3! 

Use mathematical induction to establish the Leibniz rule. 
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4. Use Theorem 2.5 and 2.8 on the limit of a sum and the limit of a quotient to prove 
the formula for the derivative of a quotient. Start with an identity analogous to 
the one in Problem 2. For Theorem 4.6 use the identity 

u(x + h) _ u(x) = u(x + h)v(x) - u(x)v(x) - (u(x)v(x + h) - u(x)v(x)) 

v(x + h) v(x) v(x + h)v(x) 

5. State hypotheses which assure the validity of the formula (the extended Chain rule) 

F'(x0 ) = f' {u[v(x0 )]}u'[v(x0 )]v'(x0 ) 

where F(x) = f{u[v(x)]}. Prove the result. 

6. Show that if f has a derivative at a point, then it is continuous at that point 
(Theorem 4.4). 

7. We define the one-sided derivative from the right and the left by the formulas 
(respectively) 

D+f( ) _ 1. f(xo + h) - f(xo) 
x0 - tm h , 

h-o+ 

D-f( ) _ 1. f(xo + h) - f(xo) 
x 0 - tm h . 

h-+O-

Show that a function f has a derivative at x0 if and only if v+ f(x 0 ) and v-f(x 0 ) 

exist and are equal. 

8. Prove Theorem 4. 7 for n a positive integer. Then use Theorem 4.6 to establish the 
result for n a negative integer. 

9. (a) Suppose f: x-+ x3 and x0 = 2 in the Fundamental Lemma of differentiation. 
Show that 17(h) = 6h + h2• 

(b) Find the explicit value of 17(h) iff: x-+ x- 3, x0 = 1. 

10. (Partial Converse of the Chain rule.) Suppose that f, g, and u are related so that 
f(x) = g[u(x)], u is continuous at x0 ,f'(x0 ) exists, g'[u(x0 )] exists and is not zero. 
Then prove that u'(x0 ) is defined and f'(x 0 ) = g'[u(x0 )]u'(x0 ). [Hint: Proceed as 
in the proof of the Chain rule (Theorem 4.9) to obtain the formula 

~u N/h 
h = [g'(u) + I'J(~u)] · 

Since (by hypothesis) u is continuous at x0 , it follows that limh~o ~u = 0. Hence 
I'J(~u)-+ 0 as h -+ 0. Complete the proof.] 

11. Prove Theorem 4.10. 

12. Suppose that f is continuous on an open interval I containing x0 , suppose that f' 
is defined on I except possibly at x0 , and suppose that f'(x)-+ Las x-+ x0 • Prove 
that f'(x 0 ) = L. 

13. Prove Theorem 4.13. [Hint: Use the Mean-value theorem.] 

14. Discuss the differentiability at x = 0 of the function 

{ 
. 1 

x sm-, x =I= 0, 
f: X-+ X 

0, X =0. 
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15. Discuss the differentiability at x = 0 of the function 

{ x"sin~, x#O, 
f: X-+ X 

0, X= 0, 

where n is an integer larger than l. For what values of k, does the kth derivative 
exist at x = 0? (See Problem 12.) 

16. Iff is differentiable at x0 , prove that 

I. f(xo + 11.h) - f(xo - Ph) _ ( p)f'( ) 
1m h - 11. + x 0 • 
h~o 

17. Prove the identity in between Equations (4.8) and (4.9) on page 90. 

18. Suppose limx~a+ f(x) = 0, limx~a+ F(x) = oo. State a theorem analogous to Theo
rem 4.16 for limx~a+ f(x)F(x). 

19. Prove Corollary 1 to Theorem 4.15. 

20. Suppose that f(x)-+ oo, F(x)-+ oo, and f'(x)!F'(x)-+ +oo as x-+ +oo. Prove that 
f(x)!F(x)-+ +oo as x-+ +oo. 

21. Evaluate the following limit: 

I. tan x- x 
liD 3 
x~o X 

22. Evaluate the following limit: 

23. Evaluate 

lim (1+~)x· 
x-+co X 

[Hint: Take logarithms.] 

24. If the second derivative f" exists at a value x0 , show that 

I. f(x 0 + h) - 2f(xo) + f(xo - h) _ f"( ) 
lm h2 - Xo. 
h~O 

25. Suppose that f is defined by 

ifx > 0, 

ifx ~0. 

(a) Show that j<•)(O) exists for every positive integer n (see Problem 7) and has the 
value 0. 

(b) Show that the function 

{
e-lfx2 

g: X-+ 0 
ifx #0, 

ifx = 0, 

has the property that g<•)(O) = 0 for all n. (See Problem 10.) 
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4.2. Inverse Functions in !R1 

We have seen in Section 1.2 that a relation from IR 1 to IR 1 is a set of ordered 
pairs of real numbers; that is, a relation is a set in IR2 . A function from IR 1 to 
IR1 is a particular case of a relation, one in which no two ordered pairs have 
the same first element. 

Definition. Suppose that Sis a relation from IR 1 to IR 1• We define the inverse 
relation of S as the set of pairs (x, y) such that (y, x) is in S. 

If Sis the solution set in IR 2 of an equation such as f(x, y) = 0, the inverse 
of S is the solution set in IR 2 of the equation f(y, x) = 0. Suppose that f is a 
function, and we consider the ordered pairs in IR2 which form the graph of the 
equation y = f(x). Then the inverse off is the graph of the equation x = f(y). 
The simplest examples of functions show that the inverse of a function is a 
relation, and not necessarily a function. For example, the function f: x-+ x 2, 

with graph y = x2 has for its inverse the relation whose graph is given by 
y2 = x. This inverse relation is not a function. 

Theorem 4.17 (Inverse function theorem). Suppose that f is a continuous, 
increasing function which has an interval I for domain and has range J. (See 
Figure 4.5.) Then, 

(a) J is an interval. 
(b) The inverse relation goff is a function with domain J, and g is continuous 

and increasing on J. 
(c) We have 

g[f(x)] = x for x e I and f[g(x)] = x for x e J. (4.11) 

A similar result holds iff is decreasing on I. 

PRooF. From the Intermediate-value theorem (Theorem 3.3) we know at once 
that J is an interval. We next establish the formulas in Part (c). Let x 0 be any 

I 
d 

I 
b 

X2 

xo Yo+ e 

J XI I Yo 

l 1 Yo -e 

c a 

0 a Yo - E Yo Yo + E b 0 c Xi xo 
I J 

Figure 4.5. f and g are inverse functions. 
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point of J. Then there is a number Yo in I such that x 0 = f(y0 ). Since f is 
increasing, y0 is unique. Hence g is a function with domain J, and the formulas 
in Part (c) hold. To show that g is increasing, suppose that x1 < x 2 with x1 , 

x 2 in J. Then it follows that g(xd < g(x2), for otherwise we would have 
f[g(xd] ~ f[g(x 2 )] or x 1 ~ x 2 • 

We now show that g is continuous. Let x0 be an interior point of J and 
suppose y0 = g(x0 ) or, equivalently, x 0 = f(y0 ). Let x~ and x; be points of J 
such that x~ < x 0 < x;. Then the points y~ = g(xD andy;= g(x;) of I are 
such that y~ < y0 < y;. Hence y0 is an interior point of I. Now let e > 0 be 
given and chosen so small that y0 - e and Yo+ e are points of I. We define 
x1 = f(y0 - e) and x 2 = f(y0 + e). See Figure 4.5. Since g is increasing, 

Yo- e = g(xd ~ g(x) ~ g(x2 ) =Yo+ e for all x such that x 1 ~ x ~ x 2 • 

Because y0 = g(x0 ) the above inequalities may be written 

g(x0)- e ~ g(x) ~ g(x0 ) + e for x1 ~ x ~ x 2 • (4.12) 

Choosing<) as theminimumofthedistancesx2 - x0 andx0 - x1 , we obtain 

lg(x)- g(x0 )1 < e whenever lx- x0 1 < <5. 

That is, g is continuous at x0 , an arbitrary interior point of J. A slight 
modification of the above argument shows that if the range J contains its 
endpoints, then g ts continuous on the right at c and continuous on the left at d. 

D 

The proof of Theorem 4.17 for functions which are decreasing is completely 
analogous. In this case the inverse function g is also decreasing. If the function 
f in the Inverse function theorem has a derivative, then the following result 
on the differentiability of the inverse function g holds. 

Theorem 4.18 (Inverse differentiation theorem). Suppose that f satisfies the 
hypotheses of Theorem4.17. Assume that x 0 is a point of J such that f'[g(x0 )] is 
defined and is different from zero. Then g'(x0 ) exists and 

I 1 
g (xo) = f'[g(xo)]. 

PROOF. From Theorem 4.17 we have Formula (4.11) 

f[g(x)] = x. 

(4.13) 

Using the Chain rule as given in Problem 10 of Section 4.1, we conclude that 
g'(x0 ) exists and 

f'[g(x0 )]g'(x0 ) = 1. 

Since f' # 0 by hypothesis, the result follows. D 

Remarks. It is most often the case that a function f is not always increasing 
or always decreasing. In such situations the inverse relation of f may be 
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y 

y = x2 

0 
----/2 ----+----I.----

Figure 4.6 

analyzed as follows: First find the intervals I1 , I 2 , ••• on each of which f is 
always increasing or always decreasing. Denote by J; the function f restricted 
to the interval Ii, i = 1, 2, .... Then the inverse of each J; is a function which 
we denote 9i· These inverses may be analyzed separately and differentiation 
applied to the formulas J;[9i(x)] = x, i = 1, 2, .... 

For example, suppose f: x-+ x 2 is defined on I= {x: -oo < x < oo }. 
Then f is increasing on the interval I 1 = { x: 0 :s;; x < oo} and decreasing on 
I 2 = { x: -oo < x :s;; 0}. The restriction off to I 1 , denoted / 1 , has the inverse 
91 : x-+ Jx with domain J1 = {x: 0 :s;; x < oo }. The restriction off to I 2 , 

denoted / 2 , has the inverse 92 : x-+ -Jx, also with domain J1 • Equations 
(4.11) become in these two cases: 

(Jx)2 =X for X E J1 , 

(-Jx) 2 =x forxeJ1 , 

p = x for x e I 1 , 

- p = x for x e I 2 . 

The inverse relation off is 91 u 92 • See Figure 4.6. 

PROBLEMS 

In each of Problems 1 through 12 a function f is given. Find the intervals 
I1 , I 2 , ••• on which f is either increasing or decreasing, and find the corre
sponding intervals J1 , J2 , •.• on which the inverses are defined. Plot a graph 
off and the inverse functions 91 , 92 , ••• corresponding to J1 , J2 , •••• Find 
expressions for each 9i when possible. 

1. f: x-+ x 2 + 2x + 2 

3. f: x -+ 4x - x2 

5. f: x -+ 2xj(x + 2) 

7. f: x-+ (4x)/(x2 + 1) 

9. f: x -+ x 3 + 3x 

2. f: x-+ (x2/2) + 3x- 4 

4. f: X-+ 2- X- (x2/2) 

6. f: x -+ (1 + x)/(1 - x) 

8. f: x-+ (x- 1)3 

10. f: x-+ (2x3/3) + x 2 - 4x + 1 
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11. f: x ---> x 3 + 3x2 - 9x + 4 

13. Suppose that f and g are increasing on an interval I and that f(x) > g(x) for all 
x E I. Denote the inverses off and g by F and G and their domains by 11 and 12 , 

respectively. Prove that F(x) < G(x) for each x E 11 n 12 • 

In each of Problems 14 through 18 a function f is given which is increasing or 
decreasing on I. Hence there is an inverse function g. Compute f' and g' and 
verify Formula (4.13) of the Inverse differentiation theorem. 

14. f: x --->4x/(x2 + 1),I = {x:! < x < oo} 

15. f: x---> (x- 1)3, I= {x: 1 < x < oo} 

16. f: x---> x3 + 3x, I= {x: -oo < x < oo} 

17. f: x ---> sin x, I = { x: n/2 < x < n} 

18. f: x---> e3x, I= {x: -00 < x < oo} 

19. In the Inverse function theorem show that if the range 1 contains its endpoints, 
then g is continuous on the right at c and continuous on the left at d. 

20. Given the function 

f: x ---> {x sin(1/x), 0 < x ~ 1, 
0, X= 0, 

describe the intervals I 1 , I 2 , ••• , and the corresponding intervals 11 , 12 , ••• for which 
the Inverse function theorem holds. 



CHAPTER 5 

Elementary Theory of 
Integration 

5.1. The Darboux Integral for Functions on IR1 

The reader is undoubtedly familiar with the idea of integral and with methods 
of performing integrations. In this section we define integral precisely and 
prove the basic theorems which justify the processes of integration employed 
in a first course in calculus. 

Let f be a bounded function whose domain is a closed interval I = 
{x: a~ x ~ b}. We subdivide I by introducing points t1 , t2 , ••• , tn_1 which 
are interior to I. Setting a= t0 and b = tn and ordering the points so 
that t0 < t 1 < t2 < ··· < tn, we denote by I1 , I2 , ••• ,In the intervals Ii = 
{ x: ti_1 ~ x ~ ti}· Two successive intervals have exactly one point in common. 
(See Figure 5.1.) We call such a decomposition of I into subintervals a 
subdivision of I, and we use the symbol A to indicate such a subdivision. 

Since f is bounded on I, it has a least upper bound (l.u.b.), denoted by M. 
The greatest lower bound (g.l.b.) off on I is denoted by m. Similarly, Mi and 
mi denote the l.u.b. and g.l.b., respectively, off on Ii. The length of the interval 
Ii is ti - ti_1 ; it is denoted by l(IJ 

Definitions. The upper Darboux sum of f with respect to the subdivision A, 
denoted s+ (f, A), is defined by 

n 

s+(J, A) = L Mjl(Ij). (5.1) 
i=1 

Similarly the lower Darboux sum, denoted S_(J, A), is defined by 
n 

S_(J, A)= L mil(Ii). (5.2) 
i=1 

98 
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to 12 • • • t;- I I; • • • In - I 

a b 

~---------------1----------------~ 

Figure 5.1. A subdivision of I. 

Figure 5.2 shows the significance of a typical term in s+ and one in S_ in case 
f(x) > 0 for x on I. 

Suppose a is a subdivision a= t0 < t 1 < · · · < tn-t < tn = b, with the cor
responding intervals denoted I1 , I2 , ••• ,In. We obtain a new subdivision by 
introducing additional subdivision points between the various {ti}· This new 
subdivision will have subintervals I~, I;, ... , I;,. each of which is a part (or all) 
of one of the subintervals of a. We denote this new subdivision a' and call it 
a refinement of a. 

Suppose that a1 with subintervals I1 , I2 , ••• , In and that a2 with sub
intervals J1 , J2 , ••• , Jm are two subdivisions of an interval I. We get a new 
subdivision of I by taking all the endpoints of the subintervals of both a1 and 
a2 , arranging them in order of increasing size, and then labelling each sub
interval having as its endpoints two successive subdivision points. Such a 
subdivision is called the common refinement of a1 and a2 , and each sub
interval of this new subdivision is of the form Ii n J", i = 1, 2, ... , n, k = 
1, 2, ... , m. Each Ii n J" is either empty or entirely contained in a unique 
subinterval (Ii) of a1 and a unique subinterval (J") of a2 • An illustration of 
such a common refinement is exhibited in Figure 5.3. 

Theorem 5.1. Suppose that f is a bounded function with domain I= {x: a~ 
x ~ b}. Let a be a subdivision of I and suppose that M and mare the least upper 

y 

Term inS • Term inS_ 

Figure 5.2 
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Figure 5.3. A common refinement. 

bound and greatest lower bound off on I, respectively. Then 

(a) m(b - a) ~ S_(f, A) ~ s+(f, A) ~ M(b -a). 

(b) If A' is a refinement of A, then 

S_(f, A)~ S_(f, A')~ s+(f, A')~ s+(f, A). 

(c) If A1 and A2 are any two subdivisions of I, then 

S_(J, Ad ~ s+(f, A2). 

PROOF 
(a) From the definition ofleast upper bound and greatest lower bound, we 

have 
i= l,2, ... ,n. 

Also, b- a= L~=1 l(/1). Thus the inequalities in Part (a) are an immediate 
consequence of the definition of s+ and S_ as given in Equations (5.1) and 
(5.2): n n 

m(b - a) = L ml(I1) ~ L m1l(I1) = S_(J, A) 
i=l i=l 

n 

~ s+(J, A)= L M,l(I,) ~ M(b- a) 
i=l 

(b) To prove Part (b), let A1 be the subdivision of I 1 which consists of all 
those intervals of A' which lie in I 1• Since each interval of A' is in a unique A1 

we have, applying Part (a) to each A1, 

n n 

S_(J, A) = L m1l(I1) ~ L S_(J, A1) = S_(f, A') 
i=l i=l 

n n 

~ s+(f, A')= :r s+(J. A,)~ :r M,l(U = s+(f, A). 
1=1 i=l 
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(c) To prove Part (c), let A be the common refinement of A1 and A2 • Then, 
using the result in Part (b), we find 

0 

Definitions. Iff is a function on IR 1 which is defined and bounded on I = 
{x: a~ x ~ b}, we define its upper and lower Darboux integrals by r f(x) dx = inf s+(f, A) for all subdivisions A of I 

Jb f(x) dx = sup S_(J, A) for all subdivisions A of I. 

If 

Ib f(x) dx = Jb f(x) dx, 

we say that f is Darboux integrable, or just integrable, on I and we designate 
the common value by r f(x)dx. 

The following results are all direct consequences of the above definitions. 

Theorem 5.2. If m ~ f(x) ~ M for all x E I= {x: a~ x ~ b}, then 

m(b - a) ~ Jb f(x) dx ~ r f(x) dx ~ M(b - a). 

PRooF. Let A1 and A2 be subdivisions of I. Then from Parts (a) and (c) of 
Theorem 5.1, it follows that 

m(b- a)~ S_(f, A1 ) ~ s+(f, A2 ) ~ M(b- a). 

We keep A1 fixed and let A2 vary over all possible subdivisions. Thus s+(f, A2 ) 

is always larger than or equal to S_(J, Ad, and so its greatest lower bound is 
always larger than or equal to S_(f, A1 ). We conclude that 

m(b - a) ~ S_(f, Ad ~ Ib f(x) dx ~ M(b - a). 

Now letting A1 vary over all possible suJ?divisions, we see that the least 
upper bound of S_(f, Ad cannot exceed J:f(x) dx. The conclusion of the 
theorem follows. 

Corollary. If m ~ f(x) ~ M for all x E I= {x: a~ x ~ b}, and f is Darboux 
integrable, then 

m(b - a) ~ r f(x) dx ~ M(b - a). 
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The next theorem establishes simple properties of upper and lower Darboux 
integrals. We first prove the following elementary facts about the supremum 
and infimum of functions. 

Lemma 5.1. Suppose that f is a bounded function on an interval I= {x: a~ 
x ~ b}. Let k be a real number and define g(x) = kf(x). 

(i) Suppose k > 0. Then infxei g(x) = k infxed(x) and SUPxei g(x) = 

k SUPxei f(x). 
(ii) Suppose k < 0. Then infxeig(x) = k SUPxed(x) and SUPxeig(x) = 

k infxed(x). 

PROOF. We prove the last statement in Part (ii), the other proofs being similar. 
Let m = inf f(x) for x E I. Then f(x) ~ m for all x E I. Since k < 0, we have 
g(x) = kf(x) ~ km for all x E I. Hence 

sup g(x) ~ km. (5.3) 

To show sup g(x) = km, let e > 0 be given. Then there is an x0 E I such that 
f(xo) < m - (ejk). Consequently, since k < 0, we find 

g(x0 ) = kf(x0 ) > km - e. 

Since e is arbitrary, we obtain 

sup g(x) ~ km. 

The result follows from Inequalities (5.3) and (5.4). 

(5.4) 

D 

Theorem 5.3. Assuming that all functions below are bounded, we have the 
following formulas: 

(a) If g(x) = kf(x) for all x E I = { x: a ~ x ~ b} and k is a positive number, 
then 
(i) 1~ g(x) dx = k 1~f(x) dx and I~ g(x) dx = k I~f(x) dx. 

If k < 0, then 

(ii) 1~ g(x) dx = k J:f(x) dx and I~ g(x) dx = k 1~f(x) dx. 

(b) If h(x) = f 1(x) + f 2 (x)for all x E I, then 

(i) 1~ h(x) dx ~ 1~f1 (x) dx + 1~f2 (x) dx. 

(ii) J:h(x) dx ~ J:f1 (x) dx + I~f2 (x) dx. 

(c) If f 1 (x) ~ f 2 (x) for all x E I, then 

(i) 1~f1 (x) dx ~ 1~f2 (x) dx and 
- -

(ii) f:f1(x) dx ~ J~f2 (x) dx. 
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(d) If a< b < c and f is bounded on I'= {x: a~ x ~ c}, then 

(i) I~J(x) dx = I=f(x) dx + I!;J(x) dx and 

(ii) f~f(x) dx = J=f(x) dx + f!;f(x) dx. 

103 

We shall prove (i) of Part (a) and (ii) of Part (d), the proofs of the remaining 
parts being similar. 

PRooF OF (i) oF PART (a). Let a be any subdivision of I with subintervals I 1 , 

Iz, ... , In. Denote by m1 and M1 the inf f and sup f on Ii> respectively. Similarly, 
m1 and M1 are the corresponding values for g on I1• Since k > 0, Lemma 5.1 
shows that m1 = km1 and M1 = kM1• Hence 

sup S_(g, a) = sup kS_(J, Li) = k sup S_(j, a). 

Therefore 

PRooF OF (ii) OF PART (d). Let 8 > 0 be given. Since J=J(x) dx is defined as 
a greatest lower bound over all subdivisions, there is a subdivision L\ 1 of 
I= {x: a~ x ~ b} such that 

fb 1 
s+(f, Lid< a f(x) dx + 28. (5.5) 

Similarly, there is a subdivision liz of I"= {x: b ~ x ~ c} such that 

rc 1 
s+(f, Liz)< Jb f(x) dx + 28. (5.6) 

Let a be the subdivision of I'= {x: a~ x ~ c} consisting of all subintervals 
of L\1 and liz. Then because of (5.5) and (5.6) 

f f(x) dx ~ s+(j, a) 

= s+(j, Lid + s+(f, Liz) 

< Ib f(x) dx + f f(x) dx + ~8 + ~8. 
Since these inequalities are true for every 8 > 0, we conclude that 

f f(x) dx ~ r f(x) dx + f f(x) dx. (5.7) 

We now show that the reverse inequality also holds. Let 8 > 0 be given. 
Then, by definition, there is a subdivision a of I' such that 

s+(f, a) < f f(x) dx + 8. 
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Figure 5.4 

We make a refinement of A by introducing into A one more subdivision 
point-namely b. Calling this refinement A', we know that s+(f, A'):::::; 
s+(f, A). Next denote by A1 the subintervals of A' contained in I, and by A2 

the subintervals of A' contained in/". (See Figure 5.4.) Then 

f f(x) dx + f f(x) dx :::::; s+(f, Ad + s+(f, A2 ) 

= s+(f, A') 

:::::; s+(f, A) 

< J: f(x) dx + e. 

Since these inequalities are true for every e > 0, it follows that 

f f(x) dx + f f(x) dx :::::; J: f(x) dx. 

Combining this with Inequality (5.7) we get the result for upper integrals. 0 

Corollary. If the functions considered in Theorem 5.3 are Darboux integrable, 

the following formulas hold: 

(a) If g(x) = kf(x) and k is any constant, then r g(x) dx = k r f(x) dx. 

(b) If h(x) = f 1 (x) + f 2(x), then r h(x) dx = r ft (x) dx + r f2(x) dx. 

(c) If f 1 (x) :::::; f 2(x) for all x E I, then r ft (x) dx :::::; r f2(x) dx. 

(d) Suppose f is Darboux integrable on I 1 = {x: a:::::; x:::::; b} and on I2 = 
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{x: b ~ x ~ c}. Then it is Darboux integrable on I= {x: a~ x ~ c}, and 

f f(x) dx = r f(x) dx + f f(x) dx. (5.8) 

It is useful to make the definitions 

f f(x) dx = 0 and r f(x) dx = - r f(x) dx. 

Then Formula (5.8) above is valid whether or not b is between a and c so long 
as all the integrals exist. 

Theorem 5.4. Iff is integrable on an interval I, then it is integrable on every 
subinterval I' contained in I. 

The proof of this result is left to the reader. 
It is important to be able to decide when a particular function is integrable. 

The next theorem gives a necessary and sufficient condition for integrability. 

Theorem5.5.Supposethatfisboundedonanintervall = {x: a~ x ~ b}. Then 
f is integrable <:> for every B > 0 there is a subdivision A of I such that 

s+(f, A) - S_(J, A) < B. (5.9) 

PROOF. Suppose that Condition (5.9) holds. Then from the definitions of upper 
and lower Darboux integrals, we have 

f f(x) dx - Jb f(x) dx ~ s+(j, A) - S_(f, A) < B. 

Since this inequality holds for every B > 0 and the left side of the inequality is 
independent of B, it follows that 

f f(x) dx - Jb f(x) dx = 0. 

Hence f is integrable. 
Now assume f is integrable; we wish to establish Inequality (5.9). For any 

B > 0 there are subdivisions A1 and A2 such that 

s+(J, Ad< r f(x) dx + ~B and S_(J, A2) > Jb f(x) dx - ;. (5.10) 

We choose A as the common refinement of A1 and A2. Then (from Theorem 
5.1) 

s+(J, A)- S_(J, A)~ s+(j, A1)- S_(J, A2). 

Subsytuting Inequalities (5.10) into the above expression and using the fact 
that J:f(x) dx = J:f(x) dx, we obtain s+(J, A)- S_(J, A)< B, as required. 

- 0 
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Corollary 1. Iff is continuous on the closed interval I= {x: a~ x ~ b}, then 
f is integrable. 

Corollary 2. Iff is monotone on the closed interval I= {x: a~ x ~ b}, then f 
is integrable. 

PRooF OF CoROLLARY 1 (SKETCH). The function f is uniformly continuous and 
hence for any e > 0 there is a ~ such that 

e 
lf(x) - f(y)l < b _ a whenever lx - yl < ~-

Choose a subdivision L\ of I so that no subinterval of L\ has length larger than 
~- This allows us to establish Formula (5.9) and the result follows from 
Theorem 5.5. D 

The proof of Corollary 2 is left to the reader. See Problem 9 at the end of 
the section and the hint given there. 

Remark. In Corollaries 1 and 2 it is essential that the interval I is closed. 
For example, the function f: x--+ 1/x is both continuous and monotone on 
the half-open interval I= {x: 0 < x ~ 1 }. However, f is not integrable there; 
it is not bounded there. Also, as the reader knows, 

f. 1 ~ dx =log x]: = -log e. 
• X 

The integral tends to infinity as e --+ 0. It is easy to verify directly that s+ (J, A) = 
+oo for every subdivision of I. 

Theorem 5.6 (Mean-value theorem for integrals). Suppose that f is continuous 
on I= {x: a~ x ~ b}. Then there is a number e in I such that r f(x) dx = f(e)(b - a). 

PROOF. According to the Corollary to Theorem 5.2, we have 

m(b - a) ~ r f(x) dx ~ M(b - a), (5.11) 

where m and M are the minimum and maximum off on I, respectively. From 
the Extreme-value theorem (Theorem 3.12) there are numbers x0 and x 1 e I 
such that f(x 0 ) = m and f(xd = M. From Inequalities (5.11) it follows that r f(x) dx = A(b - a) 

where A is a number such that f(x0 ) ~ A ~ f(xt). Then the Intermediate-



5.1. The Darboux Integral for Functions on IR 1 107 

value theorem (Theorem 3.3) shows that there is a number ~ E I such that 
f(~) =A. 0 

We now present two forms of the Fundamental theorem of calculus, a result 
which shows that differentiation and integration are inverse processes. 

Theorem 5.7 (Fundamental theorem of calculus-first form). Suppose that f 
is continuous on I = { x: a ~ x ~ b }, and that F is defined by 

F(x) = Lx f(t) dt. 

Then F is continuous on I and F'(x) = f(x) for each x E I1 = {x: a< x < b}. 

PRooF. Since f is integrable on every subinterval of I, we have 

f x+h fx fx+h 
a f(t) dt = a f(t) dt + x f(t) dt 

or 

F(x + h) = F(x) + Ix+h f(t) dt. 

We apply the Mean-value theorem for integrals to the last term on the right, 
getting 

F(x + h- F(x) = f(~), 

where~ is some number between x and x +h. Now, lets> 0 be given. There 
is a b > 0 such that lf(y)- f(x)l < s for all y on I 1 (taking ~ = y) with 
IY- xl <b. Thus, ifO < lhl < b, we find that 

I F(x + h~ - F(x) - f(x) I = If(~) - f(x)l < s 

since I~ - xl ~ I hI < b. Since this is true for each s > 0, the result follows. 0 

Theorem 5.8 (Fundamental theorem of calculus-second form). Suppose that 
f and Fare continuous on I= {x: a~ x ~ b} and that F'(x) = f(x) for each 
x E I1 = {x: a< x < b}. Then r f(x) dx = F(b) - F(a). 

The proof is left to the reader. See Problem 20 at the end of the section and 
the hint given there. 

Suppose that f is a nonnegative integrable function defined on I = 
{x: a~ x ~ b}. We are familiar with the fact that r f(x) dx (5.12) 
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y 

Figure 5.5 

gives the area under the curve, as shown in Figure 5.5. In elementary courses, 
the definition of area is usually discussed intuitively. The area of rectangles, 
polygons, circles, etc. are determined by formulas and a precise definition of 
the area of more general regions is usually omitted. One way to proceed would 
use Integral (5.12) as a definition of the area ofthe region shown in Figure 5.5. 
Then more general regions can be decomposed into subregions each of the 
type shown in the figure, and the area of the entire region is taken as the sum 
of the areas of its constituent parts. 

A more satisfactory approach starts from the basic principle that a square 
of one unit length on each side has an area of one square unit. This fact 
together with a limiting principle allows us to develop a precise definition of 
area-one which agrees fully with our intuition. We provide the details in 
Section 5.4. 

PROBLEMS 

1. Compute s+(f, A) and S_(J, A) for the function f: X--+ x 2 defined on I= 
{ x: 0 ~ x ~ 1} where A is the subdivision of I into 5 subintervals of equal size. 

2. (a) Given the function f: x--+ x3 defined on I= {x: 0 ~ x ~ 1 }. Suppose A is a 
subdivision and A' is a refinement of A which adds one more point. Show that 

s+(J, A') < s+(J, A) and S_(f, A') > S_(f, A). 

(b) Give an example of a function f defined on I such that 

s+(J, A')= s+(J, A) and S_(f, A')= S_(f, A) 

for the two subdivisions in Part (a). 
(c) Iff is a strictly increasing continuous function on I show that s+(f, A')< 

s+(f, A) where A' is any refinement of A. 

3. If g(x) = kf(x) for all x e I= {x: a~ x ~ b}, show that (Theorem 5.3(a)): 

s: g(x)dx = k r f(x)dx if k < 0. 
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4. (a) If h(x) = / 1(x) + / 2(x) for x e I= {x: a~ x ~ b}, show that (Theorem 5.3(b)) r h(x) dx ~ r /1 (x) dx + r fz(X) dx, 

f h(x) dx ~ f /1(x) dx + f /2 (x) dx. 

(b) If / 1 and / 2 are Darboux integrable, show that r h(x) dx = r f1(x) dx + r fz(X) dx. 

5. If fdx) ~ / 2 (x) for x e I= {x: a~ x ~ b}, show that (Theorem 5.3(c)) r /1 (x) dx ~ r fz(X) dx and f /1 (x) dx ~ f fz(X) dx. 

If / 1 and / 2 are Darboux integrable conclude that r f1(x) dx ~ r fz(X) dx. 

6. Show that 

f: f(x) dx = r f(x) dx + f: f(x) dx 

whether or not b is between a and c so long as all three integrals exist. 

7. Suppose that f is integrable on I= {x: a~ x ~ b}. Let I'= {x: IX~ x ~ P} be a 
subinterval of/. Prove that f is integrable on I' (Theorem 5.4). [Hint: With 
a< IX< p < b, extend Theorem 5.3(d) to three intervals. Then subtract the lower 
integrals from the upper ones.] 

8. Complete the proof of Corollary 1 to Theorem 5.5. 

9. Iff is increasing on the interval I= {x: a~ x ~ b}, show that f is integrable. 
(Corollary 2 to Theorem 5.5.) [Hint: Use the formula 

n 

s+(f, d)- S_(f, d)= L [f(x;)- f(x;-d]I(IJ] 
i=l 

Replace each I(/;) by the length of the longest subinterval getting an inequality, 
and then observe that the terms "telescope." 

10. A function f defined on an interval I is called a step-function if and only if I can 
be subdivided into a finite number of subintervals I 1 , 12 , ••• , I. such that f(x) = c; 
for all x interior to I; where the C;, i = 1, 2, ... , n, are constants. Prove that every 
step-function is integrable (whatever values f(x) has at the endpoints of the/;) and 
find a formula for the value of the integral. 

11. Given the function f defined on I = { x: 0 ~ x ~ 1} by the formula 

f x) = {1 if x is rational, 
( 0 if x is irrational. 

Prove that Hf(x) dx = 0 and J~f(x) dx = 1. 
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12. Suppose that f is a bounded function on I = {x: a ~ x ~ b}. Let M =sup f(x) 
and m = inf f(x) for x E I. Also, define M* = sup lf(x)l and m* = inflf(x)l for 
X E I. 
(a) Show that M* - m* ~ M - m. 
(b) If f and g are nonnegative bounded functions on I and N = sup g(x), 

n = inf g(x) for x E I, show that 

sup f(x)g(x)- inf f(x)g(x) ~ MN - mn. 

13. (a) Suppose that f is bounded and integrable on I = {x: a ~ x ~ b }. Prove that 
lfl is integrable on I. [Hint: See Problem 12(a).] 

(b) Show that IJif(x) dxl ~ J!lf(x)l dx. 

14. Suppose that f and g are nonnegative bounded, and integrable on I= {x: a~ 
x ~ b}. Prove that fg is integrable on I. [Hint: See Problem 12(b).] 

15. Suppose thatfis defined on I= {x: 0 ~ x ~ 1} by the formula 

--. if x = J... where j is an odd integer 
f(x) = 2 2 . • {

1 . 

and 0 < 1 < 2 , n = 1, 2, ... , 
0 otherwise. 

Determine whether or not f is integrable and prove your result. 

16. Suppose that f and g are positive and continuous on I= {x: a~ x ~ b}. Prove 
that there is a number e E I such that r f(x)g(x) dx = f(e) r g(x) dx. 

[Hint: Use the Intermediate-value theorem and see Problem 5.] 

17. Suppose that f is continuous on I = {x: a ~ x ~ b} except at an interior point c. 

Iff is also bounded on I, prove that f is integrable on I. Show that the value of 
fat c does not affect the value of J!f(x) dx. Conclude that the value off at any 
finite number of points cannot affect the value of the integral off 

18. Suppose that f is continuous, nonnegative and not identically zero on I = 
{x: a~ x ~ b}. Prove that J!f(x) dx > 0. Is the result true iff is not continuous 
but only integrable on I? 

19. Suppose thatfis continuous on I= {x: a~ x ~ b} and that J!f(x)g(x) dx = Ofor 
every function g continuous on I. Prove that f(x) = 0 on I. 

20. Prove Theorem 5.8. [Hint: Write 
• 

F(b)- F(a) = L {F(x;)- F(x;-d} 
i=1 

for some subdivision of I. Apply the Mean-value theorem to each term in the 
sum.] 

21. Suppose that f is continuous on I = { x: a ~ x ~ b} and thatJ! f(x) dx = 0. Iff is 
nonnegative on I show that f = 0. 

22. Given f defined on I= {x: a~ x ~ b}. Suppose J!Jl(x) dx exists. Does it follow 
that J!f(x) dx exists? 
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5.2. The Riemann Integral 

In addition to the development of the integral by the method of Darboux, 
there is a technique due to Riemann, which starts with a direct approximation 
of the integral by a sum. The main result of this section shows that the two 
definitions of integral are equivalent. 

Definitions. Suppose that A is a subdivision of I= {x: a~ x ~ b} with sub
intervals I 1 , I2 , ... , In. We call the mesh of the subdivision A the length of the 
largest subinterval among l(Id, 1(12 ), ••• , l(In)· The mesh is denoted by II All. 
Suppose that f is defined on I and that A is a subdivision. In each subinterval 
of A we choose a point X; e I;. The quantity 

n 

L f(x;)l(I;) 
i=l 

is called a Riemann sum. 

For nonnegative functions it is intuitively clear that a Riemann sum with 
very small mesh gives a good approximation to the area under the curve. (See 
Figure 5.6.) 

Definitions. Suppose that f is defined on I= {x: a~ x ~ b}. Then f is 
Riemann integrable on I if and only if there is a number A with the following 
property: for every 8 > 0 there is a {) > 0 such that for every subdivision A 
with mesh less than /J, the inequality 

I;~ f(x;)l(I;) - A I < 8 (5.13) 

holds for every possible choice of X; in I;. The quantity A is called the Riemann 
integral off 

y 

Figure 5.6. A Riemann sum. 
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Theorem 5.9. The Riemann integral of a function is unique. 

The proof of Theorem 5.9 follows the outline of the proof of Theorem 2.1 
on the uniqueness oflimits, and is left to the reader. (See Problem 6 at the end 
of the section and the hint given there.) 

Theorem 5.10. Iff is Riemann integrable on I= {x: a~ x ~ b}, then f is 
bounded on I. 

PRooF. In the definition of Riemann integral, choose e = 1 and let A be a 
subdivision such that Inequality (5.13) holds. We have 

I;~ f(x;)l(I;) - A I < 1 and I;~ f(x;)l(I;) - A I < 1 

where x1 , x 2 , ••• , xn and x~, x2., ... , x~ are any points of I such that X; and xi 
are in I;. Therefore 

Now select X; = xi for i = 2, 3, ... , n. Then the above inequality becomes 

2 
lf(x1)- f(xDil(Id < 2 <=> lf(x1)- f(xDI < l(Id" 

Using the general inequality loci - IPI < loc -/31, we obtain 

lf(x1)1 < l(:1) + lf(xDI. 

Fix x~ and observe that the above inequality is valid for every x1 E I 1• 

Hence f is bounded on I 1 . Now the same argument can be made for I 2 , I 3 , 

... , In. Therefore f is bounded on I. D 

Theorem 5.11. Iff is Riemann integrable on I= {x: a~ x ~ b}, then f is 
Darboux integrable on I. Letting A denote the Riemann integral, we have 

A= r f(x)dx. 

PRooF. In Formula (5.13), we may replace e by t:/4 for a subdivision A with 
sufficiently small mesh: 

I;~ f(x;)l(I;)- A I < i· (5.14) 

Let M; and m; denote the least upper bound and greatest lower bound, 
respectively, off in I;. Then there are points xi and xi' such that 

f(x;) > M; - 4(b ~ a) and f(xi') < m; + 4(b ~ a) 
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These inequalities result just from the definition of l.u.b. and g.l.b. Then we 
have 

n n [ 8 J s+(f, A)=;~ M;l(I;) < ;~ f(x;) + 4(b _a) 1(1;) 

n 

= L f(x;)l(l;) + -!8. 
i:1 

Hence, using Inequality (5.14), we find 

(5.15) 

Similarly, 

n n [ 8 J S_(f, A) = ;~ m;l(I;) > ;~ f(x;') - 4(b _ a) 1(1;) 

n 

= L f(xi')l(l;) - -!8, 
i:1 

and 
8 

S_(f, A) > A - :2" (5.16) 

Subtraction oflnequality (5.16) from Inequality (5.15) yields 

s+(f, A)- S_(f, A)< 8, 

and so f is Darboux integrable. Furthermore, these inequalities show that 

A= r f(x) dx. D 

In order to show that every Darboux integrable function is Riemann 
integrable, we need the following technical result. 

Lemma 5.2. Suppose f is defined and bounded on [a, b]. Then for each 8 > 0 
there is a ~ > 0 such that 

s+(f, A)< f f(x) dx + 8 and S_(f, A)> Jb f(x) dx- 8 (5.17) 

for every subdivision A of mesh < ~-

PROOF. We shall show that for each 8 > 0, there is a ~1 > 0 such that the first 
oflnequalities (5.17) holds for all subdivisions of mesh less than ~1 ; a similar 
proof would show that there is a ~2 > 0 such that the second of inequalities 
( 5.17) holds. Then ~ may be chosen as the smaller of ~1 and ~2 • 

To prove the first statement above, let 8 > 0 be given. There is a subdivision 
A0 = {11 , ... , Ik}, where k ~ 2and I;= [t;_1 , t;] and a= t0 < t1 < ··· < tk = 
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b, such that 

fb e 
s+(J, ao) < a f(x) dx + 2" (5.18) 

Now, choose any number rt less than the minimum of t1 - t1_ 1 and 
ej2(k - 1)(M - m); then let a be a subdivision of mesh ~ 'I· There are at most 
k - 1 intervals of a which contain any points t1 in their interiors. Let these 
intervals be denoted by J 1, ••• , JP (p ~ k - 1 ), and let the remaining intervals 
of a be K 1 , ••• , K 4 • Let a' be the common refinement of a0 and a; then a' 
consists of the intervals K 1 , ••• , K 4 and the 2p intervals Jj and Jj', j = 1, ... , p 
into which each~ is divided by the point t1 in it. We find 

s+(f, a)= t Mil(~)+ t M:l(Kk) 
j=1 k=1 

s+(f, a') = f [MJl(Jj) + MJ'l(Jj')] + f M:l(Kk) ~ s+(J, ao) 
j=1 k=1 

(5.19) 

where Mi, MJ, Mj', and M: are the least upper bounds off in the correspond
ing subintervals. Thus, since for each j, 

l(~) = l(Jj) + l(JJ'), 

we see that 
P e 

s+(f, a) - s+(f, a') ~ (M- m) i~ l(~) ~ (k - 1)(M- m) · '1 < 2. 
(5.20) 

Now, from Expressions (5.18), (5.19), and (5.20) it follows that 

e f-b 
s+(J, a)< s+(J, ao) + 2 < a f(x) dx +e. D 

Theorem 5.12. A function f is Riemann integrable on [a, b] if and only if it is 
Darboux integrable on [a, b]. 

PRooF. That Riemann integrability implies Darboux integrability is the con
tent of Theorem 5.11. To show that a Darboux integrable function f is 
Riemann integrable, let e > 0 be given and choose a ~ so that the result of 
Lemma 5.2 above becomes applicable for a subdivision a with mesh less than 
~-We have r f(x) dx - e < S_(J, a) ~ 

1
t f(x1)l(11) ~ s+(f, a) < r f(x) dx + e. 

Since e is arbitrary, we find r f(x)dx =A 

where A is the Riemann integral off D 
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In light of Theorem 5.12 we shall now drop the terms Darboux and 
Riemann, and just refer to functions as integrable. 

One of the most useful methods for performing integrations when the 
integrand is not in standard form is the method known as substitution. For 
example, we may sometimes be able to show that a complicated integral has 
the form r f[u(x)]u'(x) dx. 

Then, if we set u = u(x), du = u'(x) dx, the above integral becomes 

f.

u(b) 

f(u) du, 
U(ll) 

and this integral may be one we recognize as a standard integration. In an 
elementary course in calculus these substitutions are usually made without 
concern for their validity. The theoretical foundation for such processes is 
based on the next result. 

Theorem 5.13. Suppose that f is continuous on an open interval I. Let u and u' 
be continuous on an open interval J, and assume that the range of u is contained 
in I. 1{ a, b e J, then 

f. b f.u(b) 
f[u(x)]u'(x) dx = f(u) du. 

II U(ll) 

PRooF. Let c e I and define 

F(u) = f f(t) dt. 

From the Fundamental theorem of calculus (Theorem 5.7), we have 

F'(u) = f(u). 

Defining G(x) = F[u(x)], we employ the Chain rule to obtain 

G'(x) = F'[u(x)]u'(x) = f[u(x)]u'(x). 

Since all functions under consideration are continuous, it follows that r f[u(x)]u'(x) dx = f..b G'(x) dx 

= G(b)- G(a) 

= F[u(b)] - F[u(a)]. 

From Equation (5.22) above, we see that 

f.
u(b) f.u(ll) f.u(b) 

F[u(b)] - F[u(a)] = f(t) dt- f(t) dt = f(t) dt, 
C C U{ll) 

and the theorem is proved. 

(5.21) 

(5.22) 

D 
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PROBLEMS 

1. (a) Suppose that f is continuous on I= {x: a~ x ~ b}. Show that all upper and 
lower Darboux sums are Riemann sums. 

(b) Suppose that f is increasing on I= {x: a~ x ~ b}. Show that all upper and 
lower Darboux sums are Riemann sums. 

(c) Give an example of a bounded function f defined on I in which a Darboux 
sum is not a Riemann sum. 

2. Suppose that f is integrable on I= {x: a~ x ~ b}, and suppose that 0 < m ~ 
f(x) ~ M for x e I. Prove that J!(l/f(x)) dx exists. 

3. Suppose that u, u', v, and v' are continuous on I= {x: a~ x ~ b}. Establish the 
formula for integration by parts: 

f u(x)v'(x) dx = u(b)v(b) - u(a)v(a) - f v(x)u'(x) dx. 

4. Suppose u, v, w, u', v', and w' are continuous on I= {x: a~ x ~ b}. Establish the 
extended integration by parts formula: 

f u(x)v(x)w'(x) dx = u(b)v(b)w(b) - u(a)v(a)w(a) - f u(x)v'(x)w(x) dx 

-f u'(x)v(x)w(x) dx. 

5. Give an example of a function f defined on I= {x: 0 ~ x ~ 1} such that 1!1 is 
integrable but f is not. 

6. Show, from the definition, that the Riemann integral is unique (Theorem 5.9). 
[Hint: Assume that there are two different numbers A and A' satisfying Inequality 
(5.13), and then reach a contradiction.] 

7. Prove the following extension of Theorem 5.13. Suppose that u is continuous for 
a ~ x ~ b, that u' is continuous only for a < x < b, and that u' tends to a limit 
both as x-+ a+ and x-+ b-. Define (assuming u(a) < u(b)) 

{
f(u) for u(a) ~ u ~ u(b), 

f 0 (u) = f[u(a)] for u ~ u(a), 

f[u(b)] for u ;;.. u(b), 

{
u(x) fora~x~b. 

u0 (x) = u(a) + u'(a)(x - a) for x ~ a, 

u(b) + u'(b)(x - b) for x ;;.. b, 

where u'(a) and u'(b) are the limiting values of u'(x). Then Formula (5.21) holds. 

8. State conditions on u, v, and f such that the following formula is valid: 

fb Ju[o(b)] 
f[u{v(x)}]u'[v(x)]v'(x) dx = f(u) du. 

a u[ll(a)] 
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9. Suppose that f and g are integrable on I= {x: a~ x ~ b}. Then f 2, g2, and fg 
are integrable. (See Problem 14, Section 5.1.) Prove the Cauchy-Schwarz inequality 

[f f(x)g(x) dx J ~ [f JZ(x) dx J [f g2(x) dx J. 
[Hint: Set IX = J! jl(x) dx, fJ = J! f(x)g(x) dx, andy = J! g2(x) dx and observe that 
1Xz2 + 2/Jz + y ;,;:?; 0 for all real numbers z.] 

10. Given f on I= {x: a~ x ~ b}. If J!Jl(x) dx exists, does it follow that J!f(x) dx 
exists? 

5.3. The Logarithm and Exponential Functions 

The logarithm function and the exponential function are undoubtedly fami
liar to the reader. In this section, we define these functions precisely and 
develop their principal properties. 

Definitions. The natural logarithm function, denoted by log, is defined by the 
formula 

J"1 
log x = -dt, 

1 t 
x>O. 

Theorem 5.14. Let f: x-+ log x be defined for x > 0 and suppose a and bare 
positive numbers. The following ten statements hold: 

(i) log(ab) =log a+ log b. 
(ii) log(a/b) = log a - log b. 

(iii) log 1 = 0. 
(iv) log( a') = r log a for every rational number r. 
(v) f'(x) = 1/x. 

(vi) f is increasing and continuous on I= {x: 0 < x < +oo }. 
(vii) 1/2 ~ log 2 ~ 1. 

(viii) log x-+ +oo as x-+ +oo. 
(ix) log X-+ -00 as X-+ 0+. 
(x) The range off is all of IR1• 

PROOF. To prove (i), we write 

log(ab) = Jab! dt = fa! dt + Jab! dt. 
1t 1t at 

Changing variables in the last integral on the right by letting u = t/a, we see 
that 

fab 1 fb 1 
-dt = -du. 

a t 1 U 

Hence log(ab) = log a + log b. 
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To prove (ii), apply (i) to a = b ·(a/b) getting 

log a= log b +log(~). 
which yields (ii). 

To verify (iii), simply set a = b in (ii). 
To establish (iv) we proceed step by step. If r is a positive integer, we get 

the result from (i) with a= b and mathematical induction. For negative 
integers, write a-"= 1/a" and employ (ii). Finally, ifr = pjq where p and q are 
integers, set u = a1fq, and thus uq = a. Hence q log u = log a. Since 

we find 

log( a•) = log(uP) = p log u = !!_log a = r log a. 
q 

Statement (v) is simply a statement ofthe Fundamental theorem of calculus 
(Theorem 5.7). 

As for (vi), f is increasing since its derivative is positive; f is continuous 
since every differentiable function is continuous. 

To establish the inequalities in (vii), we use upper and lower Darboux sums 
to show that 

- ~ ~t ~ 1. 1 J2 1 
2 1 t 

The details are left to the reader. (A graph off: t-+ 1/t makes the result 
evident. See Figure 5.7(a). A sketch off: x-+ log xis shown in Figure 5.7(b).) 

To prove (viii), note that if x > 2", n a positive integer, then 

log x > log(2") = n log 2 ~ tn 
(because of vi). Let M be any positive number. Choose n so that n > 2M; hence 
log x > M if x > 2", and (viii) is established. Inequality (ix) is shown similarly 
by choosing x < 2-". 

The Intermediate-value theorem together with (viii) and (ix) allows us to 
deduce (x). D 

Since the logarithm function is increasing (item (vi) above), its inverse is a 
function; therefore, the following definition makes sense. 

Definition. The inverse of the logarithm function is called the exponential 
function and is denoted by exp. 

Theorem 5.15. Iff: x-+ exp x is the exponential function, the following nine 
statements hold: 

(i) f is continuous and increasing for all x e IR 1; the range of f is 
I= {x: 0 < x < +oo}. 



5.3. The Logarithm and Exponential Functions 

-I 

2 

I 
2 

0 

y 

y 

I 
2 

2 

(a) 

(b) 

Figure 5.7. The logarithm and its inverse. 

(ii) f'(x) = exp x for all x. 
(iii) exp(x + y) = (exp x) · (exp y). 
(iv) exp(x - y) = (exp x)/(exp y). 
(v) exp(rx) = (exp x)", for r rational. 

(vi) f(x)-+ +oo as x-+ +oo. 
(vii) f(x)-+ 0 as x-+ -oo. 

(viii) log(exp x) = x for all x e ~1 and exp(log x) = x for all x > 0. 
(ix) If a > 0 and r is rational, then exp(r log a) = a'. 

119 
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PROOF. Items (i) and (viii) are immediate consequences of the Inverse function 
theorem (Theorem 4.17). 

To establish (ii), first set y = exp x. From Theorem 4.18, exp is differenti
able. By the Chain rule applied to log y = x, it follows that 

1 I 1 I - y = or y = y = exp x. 
y 

To prove (iii), set y 1 = exp x 1 and y2 = exp x 2 . Then x 1 =log y 1 , x 2 = 
log y2 , and 

Hence 
exp(x 1 + x2 ) = Y1Y2 = (exp x 1)(exp x2 ). 

The proof of (iv) is similar to the proof of (iii). 
The formula in (v) is obtained by induction (as in the proof of part (iv) of 

Theorem 5.14). The proofs of (vi) and (vii) follow from the corresponding 
results for the logarithm function. See Figure 5.7 in which we note that since 
the exponential function is the inverse of the logarithm, it is the reflection of 
the logarithm function with respect to the line y = x. 

Item (ix) is simply proved: exp(r log a) = exp(log(a')) = a', the first equal
ity coming from Theorem 5.14, Part (iv) and the second from Part (viii) of this 
theorem. D 

Expressions of the form 

for x rational have been defined by elementary means. If x = pjq, then we 
merely take the pth power of a and then take the qth root of the result. 
However, the definition of quantities such as 

3fi, (j7)" 

cannot be given in such an elementary way. For this purpose, we use the 
following technique, a standard one for extending the domain of a function 
from the rational numbers to the real numbers. 

Definition. For a > 0, and x e IR 1, we define 

ax = exp(x log a). 

Observe that when x is rational this formula coincides with (ix) of Theorem 
5.15 so that the definition is consistent with the basic idea of "raising to a 
power." 

Theorem 5.16. Define f: x--. ax, a> 0. Then the following three statements 
hold: 

(i) f is positive and continuous for all x e IR 1• 
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(ii) If a# 1, then the range off is I= {x: 0 < x < +oo }. 
(iii) If a > 1, then f is increasing; if a < 1, then f is decreasing. 

The proof of this theorem follows directly from the definition of ax and is 
left to the reader. 

Definitions. If b > 0 and b # 1, the function Iogb (called logarithm to the base 
b) is defined as the inverse of the function f: x-+ bx. When b = 10 we call the 
function the common logarithm. 

The next theorem describes many ofthe familiar properties ofthe logarithm 
to any base and of the function ax. The proof is left to the reader. 

Theorem 5.17. Let a> 0, b > 0 be fixed. Define f: x-+ ax. Then the following 
six statements hold: 

(i) ax • aY = ax+y; ax jaY= ax-y; (ax)Y = aXY; (abt = axbx; (afbt = ax;bx. 
(ii) f'(x) = ax log a. 

(iii) If b # 1, then Iogbx = log xjlog b. 
(iv) If b # 1, the function g: x-+ Iogbx is continuous for all x e I = 

{x:O<x<+oo}. 
(v) If a # 1, b # 1, then Iogbx = (logax) · (logba). 

(vi) If b # 1, x > 0, y > 0, then Iogb(xy) = Iogbx + Iogby; Iogb(xjy) = 

Iogbx - Iogby; logb(xY) = y Iogbx; Iogb 1 = 0. 

Definition. e = exp 1. 

Theorem 5.18. The following statements about the logarithm function and 
exponential function are valid: 

(i) logex = log x for all x > 0. 
(ii) exp x = ex for all x. 

(iii) Given f: x-+ x" with nan arbitrary real number, then f'(x) = nx"-1• 

(iv) limx--+o+ (1 + x)11x = e. 

Remarks. The proofs of these four statements are left to the reader. State
ments (i) and (ii) are almost immediate consequences of the definitions. It 
is interesting to note that the formula in (iii) is almost always proved in 
elementary courses for n a rational number, although the formula is frequently 
stated as being valid for all real numbers n. The proof of (iii) simply uses the 
definition: x" = exp(n log x). Then the Chain rule is used to differentiate 
exp(n log x), from which the result follows. Similarly (iv) is established by 
writing (1 + x) 11x = exp[(1/x) log(1 + x)]. Since exp is a continuous function, 
we compute the quantity limx__.o+ [(1/x) log(1 + x)]. The expression (1 + x)11x 

may be used to give an approximate value for e if x is small. 
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PROBLEMS 

1. Prove the three properties of the function f: x ...... ax as stated in Theorem 5.16. 

2. Show that the familiar "laws of exponents" are valid for the function f: x ...... ax. 
(Theorem 5.17, Part (i).) 

3. Given f: X ...... ax, show that f'(x) =ax log a. (Theorem 5.17, Part (ii).) 

4. Given f: x ...... xn with n any real number; show that f'(x) = nxn-1• (Theorem 
5.18, Part (iii).) 

5. Show that 2 < e < 4. 

6. Prove that limx-+o+(1 + x)11x = e. (Theorem 5.18, Part (iv).) 

7. If x > -1, show that log(1 + x) ~ x. 

8. Prove that ex ;;:. 1 + X for all X. 

9. Show that F: x ...... [1 + (1/x)Y is an increasing function. 

10. Given f: x -+log x. From the definition of derivative, we know that 

lim f(x +h)- f(x) = ~. 
h-+0 h X 

Use this fact to deduce that limh ... o (1 + h) 11h = e. 

5.4. Jordan Content and Area 

In this section, we develop a precise theory of area of bounded sets of points 
in IR 1 (i.e., sets which are interior to some rectangle). We may think of S as a 
reasonably simple region such as the set of points "inside and on the curve" 
in Figure 5.8, but what we do will apply equally well to any bounded set. Since 

y 

y=D 

4 

3 

2 

y=C I 

0 X 

2 3 4 

x=A x=B 

Figure 5.8. A grid in R 2• 
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Sis bounded, we may assume that every point (x, y) of S satisfies the conditions 

A < x < B and C < y < D 

where A, B, C, and Dare integers; i.e., (x, y) is interior to the rectangle bounded 
by the lines x = A, x = B, y = C, and y = D (see Figure 5.8). 

Now for each n, suppose that ~2 is divided up into small squares of side 
(t)" by drawing all the lines x = i/2" andy = j/2" where i and j are integers; 
a typical square consists of all points (x, y) for which 

i- 1 i 
--~x ~- and 

2" 2" 
j- 1 j 
--~y~-

2" - - 2"" 
(5.23) 

Definitions. For a given n, these squares will be called the squares of the nth 
grid. For a given n, a square which lies entirely inS is an inner square for S; 
any square which contains at least one point of S is a covering square for S. 

For each n, there are 4" squares of the nth grid in each unit square and 
hence, since A, B, C, and D are integers, there are 4"(B - A)(D - C) such 
squares in the rectangle 

R = {(x, y): A~ x ~ B, C ~ y ~ D}. 

It is natural to consider the quantities. 

1 
A;(S) = 4,. times the number of inner squares for S 

and 

A:(s) = ;,. times the number of covering squares for S. 

Evidently A;(S) represents the "area" (yet to be defined) of the union of all 
the inner squares and A:(s) represents that of the union of the covering 
squares. 

Lemma 5.3. Suppose that S is interior to the rectangle R above; i.e., if (x, y) e S, 
then A < x < B and C < y < D and A, B, C, and D are integers. Then each 
covering square r for S is contained in R. 

PROOF. Suppose (x, y) e S 11 r where 

i-1 i j-1 j 
-----z_n ~ x ~ 2,. and -y ~ y ~ 2,. for some i and j. 

Since A < x < B, it follows that i/2" ~ x > A or i > 2" ·A. Therefore i - 1 ~ 
2" ·A since i and A are integers. Likewise, the inequality (i- 1)/2" ~ x < B 
holds, so that (i - 1) < 2" ·Band therefore i ~ 2" ·B. Consequently, 

i- 1 i 
A ~--<-~B. 

2" 2" 
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In a similar way it can be shown that 

j- 1 j 
C :!(--<-:!(D 

"""' 2" 2""""' ' 

and so r is in R. D 

Concerning the quantities A;(S) and A:(s), we have the following results: 

Theorem 5.19. Suppose that S is interior to the rectangle R as in Lemma 5.3. 
Then 

(a) 0 :s:;; A;(S) :s:;; A:(s) :s:;; (B - A)(D - C) for each n; 
(b) A,;-+1 (S) ;;:: A;(S) for each n; 
(c) A;+t (S) :s:;; A:(S) for each n; 
(d) the sequences A,;-(S) and A:(S) tend to limits, denoted by A-(S) and A+(S), 

respectively, and 

0 :s:;; A-(S) :s:;; A+(S) :s:;; (B- A)(D- C); 

(e) the quantities A,;-(S), A:(s), A-(S), and A +(S) are all independent of the 
size of the rectangle R so long as R contains S in its interior. 

PROOF. Part (a) follows from the lemma, the definitions, and the fact that there 
are exactly 4"(B - A)(D - C) squares of the nth grid in R. Part (b) follows 
since if r is an inner square of the nth grid, the four squares of the (n + 1)st 
grid which constitute r are all inner squares. Part (c) follows since if r' is a 
covering square of the (n + 1)st grid, then r' contains a point (x, y) of S so that 
the square r of the nth grid which contains r' also contains (x, y) and so is a 
covering square for S. Part (d) follows from Parts (a), (b), and (c) since the 
sequences are bounded and monotone; Part (e) is evident. D 

Definitions. The number A-(S) and A +(S) are called the inner and outer areas 
of S, respectively. In case A-(S) =A +(S), we say that Sis a figure and define 
its area A(S) as the common value of A -(S) and A +(S). The area of a set is 
also called the Jordan content. 

Of course, if Sis too complicated, it can happen that A-(S) <A +(S). As an 
example, let S consist of all the points (x, y) where x and y are both rational 
numbers with 0 < x < 1 and 0 < y < 1. Its inner area is zero since no square 
consists entirely of such points and its outer area is 1 since every square of the 
nth grid in R = { (x, y): 0 :s:;; x :s:;; 1, 0 :s:;; y :s:;; 1} contains such a point. 

Since not every bounded set is a figure, it is important to prove theorems 
which will guarantee that a given set is a figure, for only then can we legiti
mately speak of its area. In order to state such theorems, we now introduce 
some additional terminology about sets in IR 2 : If S1 and S2 are sets, the 
difference sl - s2 (or sl - s2) consists of all points in sl which are not in s2. 
A point P0 is an interior point of S if and only if it is the center of an actual 
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y 

d 

c 

,-x<xo.Yo> 
p I ,_ .... / 

--~--~----------------~------x 
a b 

Figure 5.9. (x0 , y0 ) is an interior point. 
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disk contained in S; the totality of interior points of S is denoted by s<0 1. If 
P1 (x1 , y 1 ) and P2(x2, y2) are any two points of IR2, then 

j(xl - X2)2 + (yl - Y2)2 

is the Euclidean distance between P1 and P2 • We denote it by IP1 P21. A point 
P0 (x0 , y0 ) is said to be a limit point of S if and only if there is a sequence 
{Pn(xn, Yn)} of points of S such that Pn =I P0 for each n and IPoPnl = 

j(x"- x0 ) 2 + (Yn- y0 ) 2 -+ 0; the union of a setS and the set of all its limit 
points is called the closure of S and is denoted by S. If a set S contains all its 
limit points, i.e., S = S, then S is said to be closed. The boundary of a set S is 
the setS- s<01. 

Lemma 5.4. Let R = {(x, y): a~ x ~band c ~ y ~ d} be a rectangle in !R2• 

Then (i) R is closed, and (ii) R<01 = {(x, y): a< x <band c < y < d}. 

PROOF. The proof of Part (i) and the proof that { (x, y): a < x < b and 
c < y < d} c R<01 are left to the reader (see Figure 5.9). To complete the proof 
of (ii), suppose (x0 , y0 ) is interior to R. Then all points (x, y) such that 
(x- x0 ) 2 + (y- y0 ) 2 ~ p 2 belong to R for some p > 0. In particular, the 
points (x, y0 ) with x 0 - p ~ x ~ x 0 + p and the points (x0 , y) with Yo - p ~ 

y ~ y0 + p (see Figure 5.9) all belong to R. Thus a ~ x 0 - p < x 0 < x 0 + 
p ~ b and c ~ Yo - p < Yo < Yo + p ~ d. That is R<01 c { (x, y): a < x < b, 
c < y < d}. 0 

We now prove several intuitively evident, elementary theorems about area. 

Theorem 5.20. Suppose that each of the sets S1 , ..• , SP is bounded; some of them 
may intersect. 
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(b) A+(S1 u ···uS,)~ A+(Sd +···+A +(S,). 
(c) If no two of the S; have common interior points, then 

A-(81 u ···uS,)~ A-(Sd + · ·· + A-(S,). 

(d) If each S; is a figure, then S1 u · · · uS, is a figure and if no two of the S; 
have common interior points, then 

A(S1 u ···uS,) = A(Sd + · · · + A(S,). 

(e) If R is a rectangle as in Lemma 5.4, then R and R<01 are figures and 

A(R<0l) = A(R) = (b - a)(d - c). 

PRooF. (a) Each inner square for S1 is an inner square for S2 , and each covering 
square for S1 is one for S2 . Thus 

A,;-(S1 ) ~ A,;-(S2 ) and A:(Sd ~ A:(S2 ) for each n. 

Part (a) then follows from Theorem 5.19 and the limit of inequalities. 
The proof of Part (b) is left to the reader. 
To prove Part (c), suppose that r is an inner square for some particularS;. 

Then, of course, r is an inner square for the union. Moreover, r is not an inner 
square for any Si with j :1: i for if it were, every interior point of r would be an 
interior point of both S; and Si contrary to the hypotheses. Thus we must have 

A,;-(S1 u ···uS,) ~ A,;-(Sd + · · · + A,;-(S,) for each n. (5.24) 

(That the strict inequality may hold in Expression (5.24) is indicated in Figure 
5.10.) 

The proof of Part (d) is left to the reader. 
We shall prove Part (e) for the rectangle R; the proof for R<0l is similar. For 

each n, let i,. be the unique integer such that 

i,.- 1 i,. 
~<a~2" 

and define 



5.4. Jordan Content and Area 127 

y 

a. ' b~ b. a. 
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I I I 
\I 

__..d. 
y=d 

"-d~ 

R 
' __..c. 

Y =c 
--c. 

0 I 
X 

I 
x =a x=b 

Figure 5.11. R = {(x, y): a~ x ~ b, c ~ y ~ d}. 

(see Figure 5.11). In a similar way, define b., b~, c., c~, d., and d~ so that 

a~ - a. = b. - b~ = (t)", etc. (5.25) 

By counting the number of inner and covering squares, we obtain 

A;(R) = (b~- a~)(d~- c~) and A:(R) =(b.- a.)(d.- c.). (5.26) 

From Expression (5.25), it follows that a- (t)" ~a. <a, etc., so that a.-+ a, 
a~-+ a, etc., and Part (e) follows by passing to the limit in Equation (5.26). D 

We define a boundary square of the nth grid for S to be a covering square 
for S which is not an inner square. The shaded squares in Figure 5.8 are exactly 
the boundary squares for the set S of that figure. The next lemma and theorem 
provide useful facts about the union and intersection of figures. Also, we 
observe the intuitively evident fact that the boundary of a figure must have 
zero area. 

Lemma5.5 

(a) A square r of the nth grid is a boundary square for S ¢> r contains a point 
of Sand a point not inS. 

(b) A set S is a figure¢> the area of the union of its boundary squares of the 
nth grid-+ 0 as n-+ oo. 

The proof is left to the reader. 

Theorem 5.21. Suppose that S 1 , •.. , SP are figures and p ~ 2. Then the union 
sl u ... u sp, the intersection sl (\ ... (\ sp, and the difference sl - s2 are all 
figures. The boundary of a figure has area zero. 

PROOF. We shall prove that sl u ... u sp is a figure for the case p = 2. The 
general result follows by induction. Let r be a boundary square of the nth grid, 
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for S1 u S2. Then r contains a point Pin S1 u S2 and a point Q not in S1 u S2. 
Then pis in sl or s2 or both and Q is not in either sl or S2. If p E Sl, then r 
is a boundary square for Sl; if p E s2, r is one for s2, and if pis in both, then 
r is one for both. Thus the number of boundary squares for S1 u S2 is less than 
or equal to the number for S1 plus the number for S2 • The result follows by 
dividing by 4" and letting n ~ oo. 

The proofs that S1 n · · · n SP and S1 - S2 are figures are similar to the above 
proof and are left to the reader. The proof that the boundary of a figure has 
zero area is also left to the reader. D 

PROBLEMS 

1. Let R be the rectangle R = {(x, y): a :s:; x :s:; b, c :s:; y :s:; d}. Prove that R is closed 
(Lemma 5.4(i)). 

2. Show that the interior of the rectangle R in Problem 1 is the set R 0 = 

{ (x, y): a < x < b, c < y < d} (Lemma 5.4(ii)). 

3. Let S1 and S2 be bounded sets. Show that 

A +(S1 v S2) :s:; A +(Sd +A +(S2). 

4. If S1 and S2 are figures which have no common interior points, show that 

A(S1 v S2) = A(Sd + A(S2). 

5. If sl and s2 are figures, show that 

A(S1 v S2) + A(S1 n S2) = A(S1) + A(S2). 

6. Show that a setS in IR2 is a figure if and only ifthe area of the union of its boundary 
squares of the nth grid tends to zero as n--+ oo (Lemma 5.5(b)). 

7. If sl, s2, ... ' spare figures, show that sl (\ s2 (\ ... (\ sp is a figure. 

8. If sl and s2 are figures, show that sl - s2 is a figure. 

9. Prove that the boundary of a figureS in IR2 has area zero. 

10. LetS be a set contained in a rectangle R in IR2. Show that 

A_(S) = A(R)- A+(R- S). 

11. Prove the following theorem: Suppose that f is defined and bounded on [a, b], 
c < f(x) for every x on [a, b ], and suppose F1 = { (x, y): a :s:; x :s:; b, c :s:; y < f(x)} 
and F2 = { (x, y): a :s:; x :s:; b, c :s:; y :s:; f(x). Then (see Figure 5.12) 

f [f(x)- c] dx :s:; A-(Fd :s:; A-(F2), 

r [f(x)- c] dx ~ A+(F2) ~ A+(Ft}. 

[Hint: Define g(x) = f(x) - c. Let e > 0 be given. Then there is a subdivision .1 
such that S_(g, .1) > 1: g(x) dx -e. Let mi = inf g(x) on li. For each i, let ri = 
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y 

y=f(x) 

--od-----~~~~----~--------x 

Figure 5.12 

{(x, y): x E I;, c ~ y < m; + c}. Then r1 ur2 u··· ur. c F1 c F2 • Hence A-(F2 ) ~ 

A-(Fd ~ A(r1 u r2 u ··· u r.) = S_(g, A)> £!g(x) dx- e.] 

12. Prove the following theorem: Suppose f and g are integrable on [a, b] and f(x) ~ 

g(x) on [a, b]. Suppose also that S = { (x, y): a ~ x ~ b, f(x) ~ y ~ g(x) }. Then S 

is a figure and 

A(S) = f [g(x)- f(x)] dx. 



CHAPTER 6 

Elementary Theory of 
Metric Spaces 

6.1. The Schwarz and Triangle Inequalities; 
Metric Spaces 

In Chapters 2 through 5 we developed many properties of functions from IR 1 

into IR 1 with the purpose of proving the basic theorems in differential and 
integral calculus of one variable. The next step in analysis is the establishment 
of the basic facts needed in proving the theorems of calculus in two and more 
variables. One way would be to prove extensions of the theorems of Chapters 
2-5 for functions from IR2 into IR 1, then for functions from IR 3 into IR 1, and so 
forth. However, all these results can be encompassed in one general theory 
obtained by introducing the concept of a metric space and by considering 
functions defined on one metric space with range in a second metric space. In 
this chapter we introduce the fundamentals of this theory and in the following 
two chapters the results are applied to differentiation and integration in 
Euclidean space in any number of dimensions. 

We establish a simple version of the Schwarz inequality, one of the most 
useful inequalities in analysis. 

Theorem 6.1 (Schwarz inequality). Let x = (x1 , x2, . .. , xN) and y = 
(y1, Y2• ... , YN) be elements ofiRN. Then 

I N I ( N )1/2 ( N )1/2 
i~ XiYi ~ i~ xt i~ Yt (6.1) 

The equality sign holds<=> either all the xi are zero or there is a number A. such 
that Yi = A.xifor i = 1, 2, ... , N. 

130 
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PROOF. If every X; is zero, then the equality sign in Expression (6.1) holds. 
Assume there is at least one X; not zero. We form the function 

N 

f(A) = 2: (y; - AxY, 
i=l 

which is nonnegative for all values of A. We set 

N N N 

A= 2: xf, B = 2: X;Y;. c = 2: yf. 
i=l i=l i=l 

Then clearly, 
f(A) = AA2 - 2BA + C ~ 0, A>O. 

From elementary calculus it follows that the nonnegative minimu.m value of 
the quadratic function f(A) is 

AC-B2 

A 

The statement AC- B2 ~ 0 is equivalent to Expression (6.1). The equality 
sign in Expression (6.1) holds if f(A) = 0 for some value of A, say A1 ; in this 
case Y; - A1 X; = 0 for every i. D 

We recall that in the Euclidean plane the length of any side of a triangle is 
less than the sum of the lengths of the other two sides. A generalization of this 
fact is known as the Triangle inequality. It is proved by means of a simple 
application of the Schwarz inequality. 

Theorem 6.2 (Triangle inequality). Let x = (x1 , x2, ... , xN) 
(yl, Y2· ... , YN) be elements of ~N. Then 

and y = 

N ~ ~ 
;~ (x; + YY ~ ..J ;~ xf + ..J ;~ yf. (6.2) 

The equality sign in Expression ( 6.2) holds<=> either all the X; are zero or there 
is a nonnegative number A such that Y; = AX; for i = 1, 2, ... , N. 

PRooF. We have 
N N N N N 
L (X; + Y;)2 = L (xf + 2X;Y; + yf} = L xf + 2 L X;Y; + L yf. 
i=l i=l i=l i=l i=l 

We apply the Schwarz inequality to the middle term on the right, obtaining 

N N ~ ~ N 
i~ (x; + Y;f ~ ;~ xf + 2 ..J i~ xf ..J i~ yf + i~ yf, 

and so 
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Since the left side of this inequality is nonnegative, we may take the square 
root to obtain Expression (6.2). 

If all x1 are zero, then equality in Expression (6.2) holds. Otherwise, equality 
holds if and only if it holds in the application of Theorem 6.1. The non
negativity of A. is required to ensure that 2 If=1 x1y1 has all nonnegative terms 
when we set y1 = A.x1• D 

Corollary. Let x = (x 1 , x 2 , ... , xN), y = (y 1, y2 , ... , YN), and z = (zl> z2, ... , zN) 
be elements of JRN. Then 

N 

L (x;-zY ~ (6.3) 
1=1 

The equality sign in Expression ( 6.3) holds <:t> there is a number r with 0 ~ r ~ 1 
such that y1 = rx1 + (1 - r)z1 for i = 1, 2, ... , N. 

PRooF. Setting a1 = x1 - y1 and b1 = y1 - z1 for i = 1, 2, ... , N, we see that 
Inequality (6.3) reduces to Inequality (6.2) for the elements a = (at> ... , aN) 
and b = (b1 , b2 , ... , bN). The number r is A.t/(1 + A.d in Theorem 6.1. D 

Remark. The Corollary to Theorem 6.2 is the familiar assertion that the 
sum of the lengths of any two sides of a triangle exceeds the length of the third 
side in Euclidean N-dimensional space. The equality sign in Expression (6.3) 
occurs when the three points all lie on the same line segment with y falling 
between x and z. 

In this chapter we shall be concerned with sets or collections of elements, 
which may be chosen in any manner whatsoever. A set will be considered fully 
described whenever we can determine whether or not any given element is a 
member of the set. 

Definition. Let S and T be sets. The Cartesian product of S and T, denoted 
S x T, is the set of all ordered pairs (p, q) in which p e S and q e T. The 
Cartesian product of any finite number of sets S1, S2 , •.• , SN is the set of ordered 
N-tuples (p1, pz, ... , PN) in which PiES; fori= 1, 2, ... , N. We write s1 X 

S2 x ... x SN. 

EXAMPLES. (1) The space JRN is the Cartesian product JR1 x JR1 x · · · x IR1 (N 
factors). 

(2) The Cartesian product of 11 = {x: a~ x ~ b} and / 2 = {x: c ~ x ~ d} 
is the rectangle T = { (x, y): a ~ x ~ b, c ~ y ~ d}. That is, 

T = 11 x 12 • 

(3) The Cartesian product of the circle C = { (x, y): x 2 + y2 = 1} with IR 1 

yields a right circular cylinder U in IR 3 : 

U = { (x, y, z): x 2 + y2 = 1, -oo < z < oo} = C x IR 1• 
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Definition. Let S be a set and suppose d is a function with domain consisting 
of all pairs of points of S and with range in ~ 1• That is, d is a function from 
S x S into ~1 • We say that Sand the function d form a metric space when the 
function d satisfies the following conditions: 

(i) d(x, y) ~ 0 for all (x, y) E S x S; and d(x, y) = 0 if and only if x = y. 
(ii) d(y, x) = d(x, y) for all (x, y) E S x S. 

(iii) d(x, z) ~ d(x, y) + d(y, z) for all x, y, z in S. (Triangle inequality.) 

The function d satisfying Conditions (i), (ii), and (iii) is called the metric or 
distance function in S. Hence a metric space consists of the pair (S, d). 

EXAMPLES OF METRIC SPACES. (1) In the space ~N, choose 

N 

d(x, y) = L (x; - Y;)2 
i=1 

wherex = (x1, x2 , ... , xN)andy = (Yt> y2 , ••• , YN). Thefunctiondisametric. 
Conditions (i) and (ii) are obvious, while (iii) is precisely the content of the 
Corollary to Theorem 6.2. The pair (~N. d) is a metric space. This metric, 
known as the Euclidean metric, is the familiar one employed in two and three 
dimensional Euclidean geometry. 

(2) In the space ~N. choose 

d1(x, y) = max lx;- Y;l 
l:s:;i:s:;N 

where x = (x1 , x2 , ••• , xN) andy= (y1 , y2 , ••• , YN). The reader can verify that 
d1 is a metric. Therefore (~N, dd is a metric space. We observe that this metric 
space is different from the space (~N. d) exhibited in the first example. 

(3) LetS be any set. We define 

d(x, y) = {0 ~fx = y, 
1 tfx =F y. 

Clearly, ii is a metric and (S, d) is a metric space. Thus any set may have a 
metric attached to it, and thereby become a metric space. When attaching a 
metric to a set, we say that the set or space is metrized. Of course, such a simple 
metric as ii merely tells us whether or not two points coincide and is hardly 
useful. 

(4) Let f(J be the collection of all continuous functions which have I= 
{x: 0 ~ x ~ 1} for domain and have range in ~1 • For any two elements J, g 
in f(J, define 

d(f, g) = max 1/(x) - g(x)l. 
O:s:;;x:s:;;l 

It is not difficult to verify that d is a metric. Hence ("c. d) is a metric space. 

Examples 1, 2, and 3 above show that a given set may become a metric 
space in a variety of ways. Let S be a given set and suppose that (S, dd and 
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(S, d2 ) are metric spaces. We define the metrics d1 and d2 as equivalent if and 
only if there are positive constants c and C such that 

cd1(x, y) ~ d2 (x, y) ~ Cd1(x, y) 

for all x, y in S. It is not difficult to show that the metrics in Examples 1 and 
2 are equivalent. On the other hand, if the set S in Example 3 is taken to be 
IRN, it is easy to show that dis not equivalent to either of the metrics in 
Examples 1 and 2. 

PROBLEMS 

1. Show that (IRN, d1) is a metric space where 

d1 (x, y) = max lx; - Y;l, 
IE;IE;N 

x = (x1, X2, ... , xN), Y = (y,, Y2, ... , YN). 

2. Suppose that (S, d) is a metric space. Show that (S, d') is a metric space where 

d'( ) _ d(x, y) x,y- . 
1 + d(x, y) 

[Hint: Show first that d(x, z) = A.[d(x, y) + d(y, z)] for some A. with 0 :=:;; A. :=:;; 1.] 

3. Given the metric spaces (IRN, d) and (IRN, d') 

N 

d(x, y) = L (x1 - y1)2 

i=l 

and d' is defined as in Problem 2. Decide whether or not d and d' are equivalent. 

4. Show that the metrics d and d1 in Examples (1) and (2) above of metric spaces are 
equivalent. 

5. Show that (IRN, d2 ) is a metric space where 

N 

d2 (x, y) = I lx; - y;l, 
i=l 

x = (x1 , x2, ... , xN),y = (y1 , y2, ... , YN). Isd2 equivalent to themetricd1 given in 
Problem 1? 

6. Let (x1 , x2), (x~, x;) be points of IR2. Show that (IR2, d3 ) is a metric space where 

d(( )(, '))-{lx21+1x;l+lx1 -x~l ifx 1 #x~. 
3 x,, x2, x,, x2 - I 'I "f ' . x 2 - x 2 1 x 1 = x 1 

7. For x, y e IR1, define d4 (x, y) = lx - 3yl. Is (IR1, d4 ) a metric space? 

8. Let fiJ be the collection of continuous functions which have I= {x: 0 :=:;; x :=:;; 1} for 
domain and have range in IR 1• Show that (CC, d) is a metric space where 

d(f, g) = max lf(x) - g(x)l 

for f, g e fiJ. 
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9. Let rt be the same collection described in Problem 8. Define 

d(J, g) = f lf(x) - g(x)l dx 

for f, g e rt. Show that (CC, d) is a metric space. 
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10. Suppose x = (x1, x2 , ••• , x., ... ), y = (Yt, y2 , ••• , y., ... )are infinite sequences such 
that 

00 00 

I x? and I Yf 
i=l i=l 

both converge. 1 Prove that the series I~1 XiYi converges and establish the Schwarz 
inequality. 

1
00 I (00 )1'2(oo )1/2 -~ xiYi ~ -~ x? -~ Yf 

1-1 1-1 1-1 
(6.4) 

[Hint: Use Theorem 6.1 and the theorem on the limit of inequalities.] 

11. State and prove conditions which must prevail when the equality sign holds in 
Formula (6.4) of Problem 10. 

12. Suppose x = (x1 , x2 , ••• , x., ... )andy= (y1, y2 , ••• , y., ... )are as in Problem 10. 
Show that I~1 (xi + yy converges and prove the Triangle inequality 

( 
00 )1/2 ( 00 )1/2 ( 00 )1/2 
i~ (xi + YY ~ i~ x? + i~ Yf (6.5) 

Show that the equality sign holds in Formula (6.5) if and only if either x = 0 or 
there is a nonnegative number A. such that Yi = A.xi for all i. 

13. Let 12 be the collection of all infinite sequences x = (x1 , x2 , ••• , x., ... ) such that 
I~1 xf converges. Define 

00 

d(x, y) = I (xi - YY 
i=l 

for x, y e 12 • Show that (12 , d) is a metric space. (The space (12 , d) is called real 
numerical Hilbert space.) [Hint: Prove an extension of the Corollary to Theorem 
6.2, using the result in Problem 12.] 

14. A sequence x 1 , x 2 , ••• , x., ... is bounded if and only if there is a number m such 
that lxil ~ m for all i. Let M denote the collection of all bounded sequences, and 
define 

d(x, y) = sup lxi - yJ 
l~i~oo 

Show that (M, d) is a metric space. 

15. Let B be the collection of all absolutely convergent series. Define 

00 

d(x, y) = I I xi - yJ 
i=l 

Show that (B, d) is a metric space. 

1 Problems 10-15 assume the reader has studied convergence and divergence of infinite series. 
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16. Let C be the subset of IR 2 consisting of pairs (cos 8, sin 8) for 0 ~ 8 < 2n. Define 

d*(pl, Pz) = l81- 8zl, 

where p1 =(cos 81 , sin 8d, p2 =(cos 82 , sin 82 ). Show that (C, d*) is a metric 
space. Is d* equivalent to the metric d1 of Problem 1 applied to the subset C of 
!Rz? 

17. Let S be a set and d a function from S x S into IR1 with the properties: 
(i) d(x, y) = 0 if and only if x = y. 

(ii) d(x, z) ~ d(x, y) + d(z, y) for all x, y, z E S. 
Show that d is a metric and hence that (S, d) is a metric space. 

6.2. Elements of Point Set Topology 

In this section we shall develop some of the basic properties of metric spaces. 
From an intuitive point of view it is natural to think of a metric space as a 
Euclidean space of one, two, or three dimensions. While such a view is 
sometimes helpful for geometric arguments, it is important to recognize that 
the definitions and theorems apply to arbitrary metric spaces, many of which 
have geometric properties far removed from those of the ordinary Euclidean 
spaces. 

For convenience we will use the letterS to denote a metric space with the 
understanding that a metric d is attached to S. 

Definition. Let p1 , p2 , ••• , Pn, ... denote a sequence of elements of a metric 
spaceS. We use the symbol {Pn} to denote such a sequence. Suppose p0 E S. 
We say that Pn tends to Po as n tends to infinity if and only if d(pn, p0 )-+ 0 as 
n -+ oo. The notations Pn -+Po and limn--+oo Pn = Po will be used. 

Theorem 6.3 (Uniqueness of limits). Suppose that {Pn}, p, q are elements of S, 
a metric space. If Pn-+ p and Pn-+ q as n-+ oo, then p = q. 

This theorem is an extension of the corresponding simpler result for 
sequences of real numbers discussed in Section 2.5. The prooffollows the lines 
of the proof of Theorem 2.1 and is left to the reader. 

Definitions. Let p0 be an element of S, a metric space, and suppose r is a positive 
number. The open ball with center at p0 and radius r is the set B(p0 , r) given by 

B(p0 , r) = {pES: d(p, p0 ) < r}. 

The closed ball with center at p0 and radius r is the set B(p0 , r) given by 

B(p0 , r) = {pES: d(p, p0 ) ~ r}. 

Figure 6.1 shows an open ball with center at (0, 0) and radius 1 in the 
space IR2 with metric d(x, y) = (Lf=1(xi- YY) 112• Figure 6.2 shows an open 
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y 

Figure 6.1. An open ball with center at (0, 0) and radius 1. The circle forming the 
boundary of B(O, 1) is not part of the open ball. 

ball with center at (0, 0) and radius 1 in the space IR2 with metric d(x, y) = 

max1=1, 2 lx1 - y;l. 

Figures 6.1 and 6.2 illustrate the care which must be exercised in employing 
geometric reasoning for statements about a general metric space. For example, 
suppose the metric 

{
0 ifx = y, 

d(x, y) = 1 ifx # y, 

y 

I 

0 

B(O, I) 

I 

metric: d=max(ixi-Yii.lx2 

X 

Figure 6.2. An open ball with center at (0, 0) and radius 1. The four sides of the square 
forming the boundary of B(O, 1) are not part of the open ball. 
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is attached to R2• Then any open ball of radius less than 1 contains only one 
point, the center; also, any ball of radius larger than 1 contains all of R2• 

We note that in Figures 6.1 and 6.2 the closed ball B(O, 1) consists in each 
case of the union of the open ball and the boundary (circle or square) of the 
ball. 

Definition. Let A be a set in a metric space S and suppose Po is an element of 
A. We say p0 is an isolated point of A if and only if for some positive number 
r there is an open ball B(p0 , r) such that 

B(p0 , r) n A = {Po}, 

where {p0 } is the set consisting of the single element p0 . 

For example, in R1 with the Euclidean metric the set A= {x: 1 ~ x ~ 2, 
x = 3, 4} has the elements 3 and 4 as isolated points of A. None of the points 
in the interval 1 ~ x ~ 2 is an isolated point of A. 

Definition. A point p0 is a limit pointl of a set A if and only if every open ball 
B(p0 , r) contains a point p of A which is distinct from p0 • Note that Po may 
or may not be an element of A. 

For example, in R1 with the usual Euclidean metric defined by d(x1 , x 2 ) = 
lx1 - x2 1, the set C = {x: 1 ~ x < 3} has x = 3 as a limit point. In fact, every 
member of C is a limit point of C. 

A set A in a metric space S is closed if and only if A contains all of its limit 
points. 

A set A in a metric space S is open if and only if each point p0 in A is the 
center of an open ball B(p0 , r) which is contained in A. That is, B(p0 , r) c A. 
It is important to notice that the radius r may change from point to point in A. 

Theorem 6.4. A point Po is a limit point of a set A if and only if there is a sequence 
{Pn} with Pn e A and Pn :F Po for every n and such that Pn-+ Po as n -+ oo. 

PRooF 
(a) If a sequence {Pn} ofthetheoremexists, then clearly every open ball with 

Po as center will have points of the sequence (all :F p0 ). Thus Po is a limit 
point. 

(b) Suppose Po is a limit point of A. We construct a sequence {Pn} with the 
desired properties. According to the definition of limit point, the open ball 
B(p0 , !) has a point of A. Let p1 be such a point. Define r2 = d(p0 , pt)/2 
and construct the ball B(p0 , r2 ). There are points of A in this ball (different 
from p0 ), and we denote one of them by p2 • Next, define r3 = d(p0 , p2 )/2 
and choose p3 e A in the ball B(p0 , r3 ). Continuing this process, we see that 

2 The term cluster point is also in common use. 
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rn < 1/2"-+ 0 as n -+ oo. Since d(p0 , Pn) < '"' it follows that {Pn} is a sequence 
tending to p0 , and the proof is complete. 0 

In Section 5.4 we defined a limit point in the special case of IR2 with the 
Euclidean metric. We gave a definition in terms of a sequence {Pn} rather than 
the one in terms of open balls. Theorem 6.4 shows that the two definitions are 
equivalent. 

Theorem6.5 

(a) An open ball is an open set. 
(b) A closed ball is a closed set. 

PROOF 

(a) Let B(p0 , r) be an open ball. Suppose q e B(p0 , r). We must show 
that there is an open ball with center at q which is entirely in B(p0 , r). Let 
r1 = d(p0 , q). We consider a ball of radius f = (r - rtl/2 with center at q. 
See Figure 6.3. Let q' be a typical point of B(q, r). We shall show that 
q' e B(p0 , r). We can accomplish this by showing that d(p0 , q') < r. We have 

d(p0 , q') ~ d(p0 , q) + d(q, q') < r1 + f = r1 + i(r- rtl 

= i(r + r1 ) < r. 

(b) To show that B(p0 , r) is a closed set we must show that every limit point 

of B(p0 , r) belongs to B(p0 , r). If q is such a limit point, there is a sequence 

p1 , p2 , ••• , Pn• ... in B(p0 , r) such that d(pn, q)-+ 0. However, for each n, 
we have 

Therefore 

d(pn, Po) ~ r. 

d(q, Po) ~ d(q, Pn) + d(pn, Po) ~ d(q, Pn) + r. 

B(q~ 

~ 
Po 

Figure 6.3. An open ball is an open set. 
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Letting n ---+ oo, the Theorem on the limit of inequalities shows that d(q, p0 ) 

~ r. That is, q E B(p0 , r). D 

Remark. In the proof of Theorem 6.5, Figure 6.3 was used as an intuitive 
aid in following the argument. It is important to observe that the argument 
itself is entirely analytic and does not depend on any "geometric reasoning." 

Let S be a space of elements, by which we mean that S is the totality of 
points (or elements) under consideration. A set of points is a collection of 
elements in S. We shall often deal with a set of sets, that is, a set whose 
elements are sets inS. We speak of such a set as a family of sets and denote 
it by a script letter such as :F. If the number of sets in the family is finite, we 
use the term finite family of sets and use subscripts to identify the members. 
For example, {A 1 , A 2 , ••• , An} where each Ai is a set in S comprise a finite 
family of sets. 

Definitions. Let :F be a family of sets, a typical member of :F being denoted 
by the letter A. That is, A is a set of points in a spaceS. We define the union 
of the sets in /F, denoted UA e ~A, by the formula 

U A = {p: pES and pis in at least one set of :F}. 
Ae~ 

We define the intersection of the sets in /F, denoted nA E ~A, by the formula 

n A= {p: pES and pis in every set of :F}. 
Ae~ 

If A and B are sets in S, we define their difference B - A by the formula 

B- A= {p: pis in Band pis not in A}. 

If A is any set in S, we define the complement of A, denoted <c(A), as the set 
S-A. 

The following important identities, known as the de Morgan formulas, are 
useful in the study of families of sets. 

Theorem 6.6 (de Morgan formulas). Suppose that Sis any space and :F is a 
family of sets. Then 

(a) <c[ U A]= n <c(A). 
Ae ~ Ae ~ 

<c[ n A]= U <c(A). 
Ae~ Ae~ 

(b) 

PRooF 
(a) We employ a standard device to show that two sets A and Bare equal: 

we show that A is contained in Band that B is contained in A. For this purpose 
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suppose that p e ~TUA e, A]. Then pis not in the union ofthe sets in :F, and 
hence p is not in any A e :F. Thus p is in ~(A) for every A in :F. That is, 
p E nAe ,~(A). We have shown that ~[UAe ,-A] c nAe ,~(A). Next, let 
p E nAe ,-~(A) and, by reversing the discussion we find that nAe ,-~(A) c 
[UAe ,-A]. Hence Part (a) is proved. Part (b) is proved similarly and is left to 
the reader. D 

Remark. Observe that Theorem 6.6 applies for any space S whether or not 
it is metrized. 

Theorem6.7 

(a) The union of any family :F of open sets in a metric space is open. 
(b) Let A 1 , A 2 , ••• , An be a finite family of open sets. Then the intersection 

n~=l Ai is open. 

PROOF 

(a) Suppose that p e UA e, A. Then pis in at least one set A in :F. Since A is 
open there is an open ball with center at p and radius r, denoted B(p, r), 
which is entirely in A. Hence B(p, r) c UAe ,-A. We have just shown that 
any point of UAe ,A is the center of an open ball which is also in UAe ,A. 
Thus the union of any family of open sets is open. 

(b) Suppose that p e nj=1 Ai. Then for each i there is an open ball B(p, ri) 
which is entirely in Ai. Definer= min(r1 , r2 , ••• , rn). The open ball B(p, r) 
is in every Ai and hence is in n~=1 Ai. Thus the set nj=1 Ai is open. D 

Remark. The result of Part (b) of Theorem 6.7 is false if the word finite is 
dropped from the hypothesis. To see this consider IR 2 with the Euclidean 
metric and define the infinite family of open sets A1 , k = 1, 2, ... , by the formula 

A1 = {(x, y): 0 ~ x2 + y2 < H· 
Each Ak is an open ball (and therefore an open set), but the intersection 
nr=l A1 of this family consists of the single point (0, 0), clearly not an open 
set (see Figure 6.4). 

Theorem6.8 

(a) Let A be any set in a metric spaceS. Then A is closed«>~(A) is open. 
(b) The space S is both open and closed. 
(c) The null set is both open and closed. 

PROOF. We first assume A is closed and prove that ~(A) is open. Let p e ~(A) 
and suppose there is no open ball about p lying entirely in ~(A). We shall 
reach a contradiction. If there is no such ball then every ball about p contains 
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y 

Figure 6.4. The intersection of an infinite family of open sets is not necessarily open. 

points of A (necessarily different from p since p e ~(A)). This fact asserts that 
p is a limit point of A. But since A is assumed closed, we conclude that p is in 
A, which contradicts the fact that p e ~(A). Thus there is an open ball about 
p in ~(A), and so ~(A) is open. 

The proof that A is closed if ~(A) is open is left to the reader. 
Part (b) is a direct consequence of the definitions of open and closed sets. 

Part (c) follows immediately from Parts (a) and (b) since the null set is the 
complement of S. 0 

Theorem6.9 

(a) The intersection of any family~ of closed sets is closed. 
(b) Let A1, A2 , ••• , A, be a finite family of closed sets. Then the union U~=l A1 

is closed. 

The proof of Theorem 6.9 is an immediate consequence of the de Morgan 
formulas (Theorem 6.6) and Theorems 6.7 and 6.8 The details are left to the 
reader. 

It is important to observe that Part (b) of Theorem 6.9 is false if the word 
finite is dropped from the hypothesis. The reader may easily construct an 
infinite family of closed sets such that the union of the family is not a closed set. 

Definition. Let {p,} be an infinite sequence of points. An infinite sequence of 
points { q,} is called a subsequence of {p,} if and only if there is an increasing 
sequence of positive integers k1 , k2 , ••• , k,, ... such that for every n 
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To illustrate subsequences, observe that the sequence 

Pt• P2, ... , Pn• · ·· 

has subsequences such as 
Pt,PJ,Ps•···· 

Ps• Pto• Pts~ · · ·, 

Pt• P4• P1• · · · · 

It is clear that the subscripts {kn} of a subsequence have the property that kn ~ n 
for every n. This fact may be proved by induction, as we noted in Section 3.3. 

Theorem 6.10. Suppose that {Pn} is an itifinite sequence in a metric spaceS, and 
that {qn} is a subsequence. If Pn-. Po as n _... 00, then qn-. Po as n-. oo. 

(Every subsequence of a convergent sequence converges to the same limit.) 

PROOF. Let e > 0 be given. From the definition of convergence, there is a 
positive integer N such that d(pn, p0 ) < e for all n > N. However, for each n, 
we have qn = Pk" with kn ~ n. Thus 

d(qn, Po) = d(pk"• p0 ) < e for all n > N. 

Therefore qn-. Po as n-. oo. 0 

Remark. Part (a) of Theorem 6.9 may be proved directly from the definition 
of a closed set. To do so, the result of Theorem 6.10 is used. 

Definitions. A point p is an interior point of a set A in a metric space if and 
only if there is an r > 0 such that B(p, r) is contained in A. The interior of a 
set A, denoted A<0 >, is the set of all interior points of A. For any set A, the 
derived set of A, denoted A', is the collection of limit points of A. The closure 
of A, denoted A, is defined by A= Au A'. The boundary of a set A, denoted 
oA, is defined by oA =A- A<0 >. 

EXAMPLE. Let A be the open ball in ~2 (with the Euclidean metric) given by 
A= {(x, y): 0::::; x 2 + y2 < 1}. Then every point of A is an interior point, so 
that A = A<0 >. More generally, the property which characterizes any open set 
is the fact that every point is an interior point. The boundary of A is the circle 
oA = { (x, y): x 2 + y2 = 1 }. The closure of A is the closed ball A= { (x, y): 
0::::; x 2 + y2 ::::; 1 }. We also see that A', the derived set of A, is identical with A. 

Theorem 6.11. Let A be any set in a metric space S. We have 

(a) A' is a closed set. 
(b) A is a closed set. 
(c) oA is a closed set. 
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(d) A<OJ is an open set. 
(e) If A c Band B is closed, then A c B. 
(f) If B c A and B is open, then B c A<0 >. 
(g) A point is a closed set. 
(h) A is open<=> C(5 A is closed. 

The proofs of these facts are left to the reader. 

PROBLEMS 

1. Suppose that p. -+Po and q.-+ q0 in a metric spaceS. If d(p., q.) < a for all n, show 
that d(p0 , q0 ) ::::; a. 

2. If P. -+ p0 , Pn -+ q0 in a metric space S, show that Po = q0 (Theorem 6.3). 

3. Given IR2 with the metric d(x, y) = IY1 - x 1 1 + IY2 - x2l, x = (x,, x2), y = (y,, Y2). 
Describe (and sketch) the ball with center at (0, 0) and radius 1. 

4. Given IR 1 with the metric d(x, y) = lx- yl. Find an example of a set which is 

neither open nor closed. 

5. Given IR 1 with d(x, y) = lx - Yl· Show that a finite set consists only of isolated 

points. Is it true that a set consisting only of isolated points must be finite? 

6. Given an example of a set in IR 1 with exactly four limit points. 

7. In IR 1 with the Euclidean metric, define A= {x: 0::::; x::::; 1 and x is a rational 

number}. Describe the set A. 

8. Given IR2 with the Euclidean metric. Show that the setS = { (x, y): 0 < x 2 + y2 < 
1} is open. Describe the sets s<OJ' S'' as, S, ~(S). 

9. If S is any space and fJ' is a family of sets, show that 

~ [ n A] = U ~(A) 
AeF AeF 

(Part (b) of the de Morgan formulas). 

10. Let A, B, and C be arbitrary sets in a space S. Show that 
(a) ~(A- B)= Bu~(A) 
(b) A- (A- B)= An B 
(c) An (B - C)= (An B)- (An C) 
(d) Au (B - A) = Au B 
(e) (A - C) u (B - C) =(Au B) - C 

11. In IR2 with the Euclidean metric, find an infinite collection of open sets {A.} such 

that n. A. is the closed ball B(O, 1 ). 

12. In a metric space S, show that a set A is closed if ~(A) is open (Theorem 6.8). 

13. Show that in a metric space the intersection of any family fJ' of closed sets is closed. 

14. Let A1 , A 2 , ..• , A. be a finite family of closed sets in a metric space. Show that the 

union is a closed set. 
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15. Let A1 , A2 , ••• ,A., ... be sets in a metric space. Define B = UAi. Show that 
ii :::J U A; and give an example to show that ii may not equal U A;. 

16. In IR1 with the Euclidean metric, give an example of a sequence {p.} with two 
subsequences converging to different limits. Give an example of a sequence which 
has infinitely many subsequences converging to different limits. 

17. Using only the definition of closed set prove that the intersection of any family of 
closed sets is closed (Theorem 6.9(a)). 

18. Suppose that f is continuous on an interval I= {x: a~ x ~ b} with f(x) > 0 on 
I. Let S = { (x, y) E IR2 : a ~ x ~ b, 0 ~ y ~ f(x)} (Euclidean metric). 
(a) Show that S is closed. 
(b) Find S' and S. 
(c) Find s<o> and prove the result. 
(d) Find as. 

19. If A is a set in a metric space, show that A' and A are closed sets (Theorem 6.11 (a), 
(b)). 

20. If A is a set in a metric space, show that oA is closed and A<0> is open (Theorem 
6.1l(c), (d)). 

21. If A and B are sets in a metric space, show that if A c B and B is closed, then 
A c B (Theorem 6.11 (e)). 

22. If A and Bare sets in a metric space, show that if B c A and B is open, then B c A<0> 

(Theorem 6.11 (f)). 

23. If A is a set in a metric space, show that 

A is open-. It'( A) is closed 

(Theorem 6.1l(h)). 

6.3. Countable and Uncountable Sets 

If A and B are sets with a finite number of elements we can easily compare 
their sizes by pairing the elements of A with those of B. If, after completing 
the pairing process, there remain unpaired members of one of the sets, say of 
A, then A is said to be larger than B. The same situation holds for sets with 
infinitely many elements. While many pairs of infinite sets can be matched in 
a one-to-one way, it is a remarkable fact that there are infinite sets which 
cannot be paired with each other. The problem of the relative sizes of sets with 
infinitely many members has been studied extensively, and in this section we 
shall describe only the basic properties of the sizes of finite and infinite sets. 
These properties and the more sophisticated developments of the theory of 
infinite sets turn out to be useful tools in the development of analysis. The 
theorems we consider below pertain to sets in RN although Theorems 6.12(b) 
and 6.13 hold for arbitrary sets. 
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Definitions. A setS is denumerable if and only if Scan be put into one-to-one 
correspondence with the positive integers. A set S is countable if and only if S 
is either finite or denumerable. 

Theorem 6.12 

(a) Any nonempty subset of the natural numbers is countable. 
(b) Any subset of a countable set is countable. 

PROOF. To establish Part (a}, letS be the given nonempty subset. By Theorem 
1.30, S has a smallest element; we denote it by k1 • If S = {kt}, then S has 
exactly one element. If the set S - { k1 } is not empty, it has a smallest element 
which we denote k 2 • We continue the process. If, for some integer n, the set 
S - { k1 , k2 , ••• , kn} is empty, then Sis finite and we are done. Otherwise, the 
sequence k1 , k 2 , ••• , kn, ... is infinite. We shall show that S = { k1 , k2 , ••• , 

kn, ... }. Suppose, on the contrary, that there is an element of S not among the 
kn. Then there is a smallest such element which we denote by p. Now k1 is the 
smallest element of Sand so k1 ~ p. Let T be those elements of k1 , k2 , ••• , kn, 
... with the property that k; ~ p. Then Tis a finite set and there is an integer 
i such that k; ~ p < ki+ 1 for some i. Since p is not equal to any of the ki, it 
follows that k; < p < k;H· By construction, the element k;+l is the smallest 
element of S which is larger than k1 , k 2 , ..• , ki. Since p is in S, we have a 
contradiction ofthe inequality k; < p < ki+l· Thus S = {k1, k 2 , ••• , kn, ... }. 

Part (b) is a direct consequence of Part (a). D 

Theorem 6.13. The union of a countable family of countable sets is countable. 

PROOF. Let S1 , S2 , ••• , Sm, ... be a countable family of countable sets. For each 
fixed m, the set Sm can be put into one-to-one correspondence with some or 
all of the pairs (m, 1), (m, 2}, ... , (m, n}, .... Hence the unionS can be put into 
one-to-one correspondence with a subset of the totality of ordered pairs (m, n) 
with m, n = 1, 2, .... However, the totality of ordered pairs can be arranged 
in a single sequence. We first write the ordered pairs as shown in Figure 6.5. 

/ .... / 

(I, I) _..(!, 2r _..(1, 3( _..(1, 4) ,; -~ 
.,..., / ........ / 

(2, 1) (2, 2) (2, 3) (2, 4) ... 
...... .,...,...... ,.. '*"" 

/ (3, 1) (3, 2f' (3, 3( (3, 4) ..... ..... ..... 
/ _..(4, 1) (4, 2)/ (4, 3) (4, 4) 
,.,.."""' ... /""""""' ..... 

..... .....-: .. 

Figure 6.5 
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Then we write the terms in diagonal order as follows: 

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), (4, 1), .... 

This sequence, is in one-to-one correspondence with the positive integers. The 
reader may verify that the ordered pair (p, q) in the above ordering corres
ponds to the natural number r given by 

(p + q - 1 )(p + q - 2) 
r = 2 + q. 0 

Theorem 6.13 shows that the set of all integers (positive, negative, and zero) 
is denumerable. Since the rational numbers can be put into one-to-one corre
spondence with a subset of ordered pairs (p, q) of integers (pis the numerator, 
q the denominator), we see that the rational numbers are denumerable. 

The next theorem shows that the set of all real numbers is essentially larger 
than the set of all rational numbers. Any attempt to establish a one-to-one 
correspondence between these two sets must fail. 

Theorem 6.14. ~ 1 is not countable. 

PRooF. It is sufficient to show that the interval I = { x : 0 < x < 1} is not 
countable. Suppose I is countable. Then we may arrange the members of I in 
a sequence x 1, x 2, ... , xn, .... We shall show there is a number x e I not in 
this sequence, thus contradicting the fact that I is countable. Each xi has a 
unique proper decimal development, as shown in Figure 6.6. Each dii is a digit 
between 0 and 9. 

x1 = O.d11 d12 d13 .•• 

x 2 = O.d21 d22 d23 ••• 

x3 = O.d31 d32 d33 ... 

Figure 6.6. Decimal expansion of x 1, x 2 , ••• , xn, .... 

We now define a number x in I by the following decimal development: 

(6.6) 

Each digit ai is given by 

a.= {4 ifdii #= 4, 
I 5 ifdii = 4. 

Then Expression (6.6) is a proper decimal expansion of the number x and it 
differs from xn in the nth place. Hence x #= xn for every n, and I is not countable. 

0 
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The proofs of the next two theorems are left to the reader. (See Problems 
5, 6, and 7 at the end of this section and the hints given there.) 

Theorem 6.15 

(a) Any family of disjoint open intervals in IR 1 is a countable family. 
(b) Any family of disjoint open sets in IRN is a countable family. 

Theorem 6.16. Let f be a monotone function defined on an interval I of IR 1 . 

Then the set of points of discontinuity off is countable. 

Definitions. An open cell in IRN is a set of the form 

{(xl, Xz, ... ' xn): a;< X;< b;, i = 1, 2, ... ' N}. 

We suppose that a; < b; for every i. Note that an open cell is a straightforward 
generalization of an open interval in IR 1• Similarly, a closed cell is a set of the 
form 

Again, we assume that a; < b; for every i. 

Theorem 6.17. An open set in IR 1 is the union of a countable family of disjoint 
open intervals. 

PROOF. Let G be the given open set and suppose x 0 E G. Since G is open there 
is an open interval J which contains x 0 and such that J c G. Define I(x0 ) as 
the union of all such open intervals J. Then I(x0 ) is open and contained in G. 

Furthermore, since the union of a set of open intervals having a common point 
is an open interval, I(x0 ) is an open interval. Let x 1 and x2 be distinct points 
of G. We shall show that I(x1 ) and I(x2 ) are disjoint or that I(x 1 ) = I(x2 ). 

Suppose that I(x1 ) n I(x2 ) is not empty. Then I(x1 ) u I(x2 ) is an interval in 
G which contains both x 1 and x 2 . Hence I(xd u I(x2 ) is contained in both 
I(x1 ) and I(x2 ). Therefore I(x1 ) = I(x2 ). Thus G is composed of the union of 
disjoint open intervals of the type I (x0 ) and by Theorem 6.15(a) this union is 
countable. 0 

Theorem 6.18. An open set in IRN is the union of a countable family of closed 
cells whose interiors are disjoint. 

PROOF. Let G be an open set in IRN. Construct the hyperplanes (i.e. hyperplanes 
parallel to the coordinate hyperplanes, X; = 0) given by 

k; 
X;= 2n' i = 1, 2, ... , N 

where kl> k2 , ••• , kN are any integers and n is any nonnegative integer. For 
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each such integer n, the inequalities 

k;- 1 k; 
--~x.~-

2" ""' '""' 2"' 
i = 1, 2, ... , N, n = 1, 2, 3, ... , 
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define a hypercube, and the totality of all such hypercubes as the {k;} take on 
integer values determines the nth grid of IRN. Let F0 be the union of all the 
closed hypercubes of the Oth grid which are contained in G. Let G1 be the 
union of all closed hypercubes of the first grid which are in G but such that 
no hypercube of G1 is contained in F0 • Define F1 = F0 u G1 • We define G2 as 
the union of all closed hypercubes of the second grid which are in G but such 
that no hypercube of G2 is contained in F1 • Define F2 = F1 u G2 . We continue 
the process. Clearly, the sets F0 , G1 , G2 , ... , Gk, ... are such that each set 
consists of a countable family of hypercubes and no two such cubes have any 
common interior points. Furthermore, for each n, the set F. is the union of all 
hypercubes of the nth grid which are in G. We shall show that G = U.F •. To 
see this, let Po E G. Since G is open there is a ball B with center p0 and radius 
r such that B c G. For any n such that r• JN < r, there is a hypercube of 
the nth grid which contains Po and is entirely in B. Hence this hypercube is in 
G. Because Po is arbitrary, it follows that G c U. F •. Since each F. is contained 
in G, the proof is complete. D 

Remark. The decomposition of open sets into the union of closed cells is 
not unique. See Problem 10 at the end of this section. 

PROBLEMS 

1. Show that the totality of rational points in IR2 (that is, points both of whose 
coordinates are rational numbers) is denumerable. 

2. Show that the totality of rational points in IRN is denumerable. 

3. Define the set S as follows. The element xis in S if x is an infinite sequence of the 
form (r1, r2 , ... , r., 0, 0, ... , 0, ... ). That is, from some non, the sequence consists 
entirely of zeros and the nonzero entries are rational numbers. Show that S is 
denumerable. 

4. An algebraic number is any number which is the root of some equation of the form 

a0x" + a,x•-l + ·· · + a._1x +a.= 0, 

in which each a; is an integer and n is a positive integer. The number n may vary from 
element to element. A real algebraic number is a real root of any such equation. 
(a) Show that the totality of real algebraic numbers is countable. 
(b) Show that the totality of algebraic numbers is countable. 

5. Show that any family of pairwise disjoint open intervals in IR 1 is countable. [Hint: 
Set up a one-to-one correspondence between the disjoint intervals and a subset of 
the rational numbers. (Theorem 6.15 (a).)] 
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6. Show that any family of disjoint open sets in IRN is countable. (Theorem 6.15 (b).) 
See the hint in Problem 5. 

7. Prove Theorem 6.16 [Hint: Show that the points of discontinuity can be put into 
one-to-one correspondence with a family of disjoint open intervals.] 

8. Show that every infinite set contains a denumerable subset. 

9. Let G be an open set in IR 1. Show that G can be represented as the union of open 
intervals with rational endpoints. 

10. Let G = { (x, y): 0 < x < 1, 0 < y < 1} be a subset of IR2 • 

(a) Give explicitly a family of closed cells (as in Theorem 6.18) in IR 2 whose union 
is G. 

(b) Show that the choices of the closed cells may be made in infinitely many ways. 

11. Let I = { x : 0 < x < 1}. Let S be the totality of functions! having domain I and 
range contained in I. Prove that the set S cannot be put into one-to-one corre
spondence with any subset of IR 1 • 

12. Let I={x:O<x<1} and J={(x,y):O<x<1,0<y<1}. Show that the 
points of I and J can be put into one-to-one correspondence. Extend the result to 
I and K = {(x1, ... , xN): 0 <X;< 1, i = 1, 2, ... , N}. 

6.4. Compact Sets and the Heine-Borel Theorem 

In Theorem 3.10 we established the Bolzano-Weierstrass theorem which states 
that any bounded infinite sequence in IR 1 contains a convergent subsequence. In 
this section we investigate the possibility of extending this theorem to metric 
spaces. We shall give an example below which shows that the theorem does 
not hold if the bounded sequence in IR 1 is replaced by a bounded sequence in 
a metric space S. However, the important notion of compactness, which we 
now define, leads to a modified extension of the Bolzano-Weierstrass theorem. 

Definition. A set A in a metric spaceS is compact if and only if each sequence 
of points (Pn} in A contains a subsequence, say {qn}, which converges to a 
point Po in A. 

We see immediately from the definition of compactness and from the 
Bolzano-Weierstrass theorem that every closed, bounded set in IR1 is compact. 
Also, it is important to notice that the subsequence {qn} not only converges 
to p0 but that Po is in A 

Definition. A set A in a metric space S is bounded if and only if A is contained 
in some ball B(p, r) with r > 0. 

Theorem 6.19. A compact set A in a metric space S is bounded and closed. 
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PROOF. Assume A is compact and not bounded. We shall reach a contradic
tion. Define the sequence {Pn} as follows: choose p1 EA. Since A is not 
bounded, there is an element p2 in A such that d(p 1 , p2 ) > 1. Continuing, for 
each n, there is an element Pn in A with d(p 1 , Pn) > n - 1. Since A is compact, 
we can find a subsequence {qn} of {Pn} such that qn converges to an element 
p0 E A. From the definition of convergence, there is an integer N such that 
d(qn, p0 ) < 1 for all n ~ N. But 

d(qn, P1) ~ d(qn, Po)+ d(po, Pd < 1 + d(po, P1). (6.7) 

Since qn is actually at least the nth member of the sequence {Pn}, it follows 
that d(qn, Pd > n - 1. For n sufficiently large, this inequality contradicts 
Inequality (6.7). Hence A is bounded. 

Now assume that A is not closed. Then there is a limit point p0 of A which 
is not in A. According to Theorem 6.4, there is a sequence {Pn} of elements in 
A such that Pn-+ p0 as n-+ oo. But any subsequence of a convergent sequence 
converges to the same element. Hence the definition of compactness is con
tradicted unless Po E A. D 

It is natural to ask whether or not the converse of Theorem 6.19 holds. We 
give an example of a bounded sequence of elements in a metric space which 
has no convergent subsequence. Thus any set containing this sequence, even 
if it is bounded and closed, cannot be compact. The space we choose for the 
example is the space CC of continuous functions on I = { x : 0 ~ x ~ 1} with 
range in IR 1 and with the metric 

d(f, g) = max lf(x) - g(x)l. 
O~x~l 

We consider the sequence fn defined by 

{ 

0 for 0 ~ x ~ 2-n-I, 
2n+ 2(x- rn-1) for rn-1 ~X ~ 3 · rn- 2 , 

fn(X) = - 2n+ 2 (x - 2-n) for 3 · rn- 2 ~ X ~ rn, 

0 for rn- 1 ~ X ~ 1. 

Figure 6.7 shows a typical member of the sequence Un}· Since the "sawtooth" 
parts of two different functions fn, fm do not overlap, it is easily verified that 

d(fn, fm) = 1 for n -:f. m. 

Furthermore, d(fn, 0) = 1 for every n. Hence we have a bounded sequence 
which cannot have a convergent subsequence since every element is at distance 
1 from every other element. The set Un} is not compact in CC. 

For some metric spaces the property of being bounded and closed is 
equivalent to compactness. The next theorem establishes this equivalence for 
the spaces./RN with a Euclidean or equivalent metric. 
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y 

Figure 6. 7. A bounded sequence with no convergent subsequence. 

Theorem 6.20. A bounded, closed set in IRN is compact. 

PROOF. Let A be bounded and closed. Then A lies in a cell 

C = {(x1, x 2 , ••• , xN):ai ~xi~ bi> i = 1, 2, ... , N}. 

Let {Pn} be any sequence in A. Writing Pt = (p~, pf, ... , p~), we have ai ~ 
p~ ~ bi> i = 1, 2, ... , N, k = 1, 2, ... , n, .... Starting with i = 1, it is clear that 
{pt} is a bounded sequence of real numbers. By the Bolzano-Weierstrass 
theorem, {p~} has a convergent subsequence. Denote this convergent sub
sequence {p~. }. Next let i = 2 and consider the subsequence {pf.} of {pf}. Since 
{pf.} is bounded, it has a convergent subsequence which we denote {pf .. }. 
Observe that {p~ .. } being a subsequence of the convergent sequence {p~.} is 
also convergent. Proceeding to i = 3, we choose a subsequence of {p; .. } which 
converges, and so on until i = N. We finally obtain a subsequence of {pk}, 
which we denote by {qt} such that every component of qk consists of a 
convergent sequence of real numbers. Since A is closed, qk converges to an 
element c of IRN with c in A. The set A is compact. D 

The proof of the next theorem is left to the reader. 

Theorem 6.21. In any metric space a closed subset of a compact set is compact. 

Definition. A sequence {Pn} in a metric spaceS is a Cauchy sequence if and 
only if for every 8 > 0 there is a positive integer N such that d(pn, Pm) < 8 

whenever n, m > N. 

Remarks. We know that a Cauchy sequence in IR 1 converges to a limit 
(Section 3.6).1t is easy to see that a Cauchy sequence {Pn} in IRN also converges 
to a limit. Writing Pn = (p!, p;, ... , p~), we observe that {pU, k = 1, 2, ... is 
a Cauchy sequence of real numbers for each i = 1, 2, ... , N. Hence p~ -+ ci, 
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i = 1, 2, ... , Nand the element c = (c1, c2, ... , eN) is the limit of the sequence 
{Pk}· However, we cannot conclude that in a general metric space a Cauchy 
sequence always converges to an element in the space. In fact, the statement 
is false. To see this, consider the metric space (S, d) consisting of all rational 
numbers with themetricd(a, b)= Ia- bi. SinceaCauchysequence of rational 
numbers may converge to an irrational number, it follows that a Cauchy 
sequence in S may not converge to a limit in S. 

The proofs of the following three theorems concerning Cauchy sequences 
and compact sets are left to the reader. 

Theorem 6.22. In a metric spaceS, if Pn-+ p0 , then {Pn} is Cauchy sequence. 

Theorem 6.23. If A is a compact set in a metric spaceS and if {Pn}is a Cauchy 
sequence in A, then there is a point Po E A such that Pn -+Po as n -+ oo. 

Theorem 6.24. Let A be a compact set in a metric spaceS. Let S1 , S2 , ••• , Sn, ... 
be a sequence of nonempty closed subsets of A such that Sn => Sn+t for each n. 
Then n:'=t Sn is not empty. 

The next theorem shows that a compact set may be covered by a finite 
number of balls of any fixed radius. Of course, the number of balls needed to 
cover a set will increase as the common radius of the balls becomes smaller. 

Theorem 6.25. Suppose that A is a compact set in a metric space S. Then for 
each positive number~. there is a finite number of points p1 , p2 , ••• , Pn in A such 
that Ui'=t B(p 1 , ~)=>A. 

PRooF. Assume A is not empty and choose a point p1 in A. Let~ be given. If 
A c: B(p 1 , ~)the theorem is established. Otherwise choose p2 E A- B(p 1 , ~). 
If A c: B(p1 , ~) u B(p2 , ~)the theorem is established. Otherwise choose p3 E 

A- (B(p 1 , ~) u B(p2 , ~)).We continue the process. If A is covered in a finite 
number of steps the result is proved. Otherwise there is an infinite sequence 
p1 , p2 , ••• , Pk, .. such that each P; is at distance at least ~ from all previous 
elements Pi· That is, d(p;, Pi) ~ ~ for all i i= j. Hence no subsequence of {p;} 
can converge to a point, contradicting the hypothesis that A is compact. 
Therefore the selection of p1 , p2 , ••• must stop after a finite number of steps, 
and the result is proved. D 

Let H be a set in a space S and suppose that F is a family of sets in S. The 
family F covers H if and only if every point of H is a point in at least one 
member of F. Coverings of compact sets by a finite number of open balls, as 
given in Theorem 6.25, have a natural extension to coverings by any family 
of open sets. The next theorem, an important and useful one in analysis, gives 
one form ofthis result. It is a direct extension of Theorem 3.15. 
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Theorem 6.26 (Heine-Borel theorem). Let A be a compact set in a metric space 
S. Suppose that fF = { G11 } is a family of open sets which covers A. Then a finite 
subfamily of fF covers A. 

PROOF. Suppose no such subfamily exists. We shall reach a contradiction. 
According to Theorem 6.25 with (j = 1/2, there is a finite number of points 
p11 , P1 2, .•. , Plk, in A such that A c U~,;1 B(p1;, 1/2). Then one of the sets 

An B(p 11 , 1/2), An B(p12 , 1/2), ... , An B(plk,, 1/2) 

is such that an infinite number of open sets of fF are required to cover it. 
(Otherwise, the theorem would be proved.) Call this set An B(p1, 1/2) and 
observe that it is a compact subset of A. Now apply Theorem 6.25 to this 
compact subset with (j = 1/22 . Then there is a finite number of points p21 , p22 , 

••• , P2k2 in A n B(p1 , 1/2) such that 

One of the balls B(p21 , r 2 ), ••. , B(p2k2 , r 2 ) is such that an infinite number 
of open sets of fF are required to cover the portion of A contained in that ball. 
Denote that ball by B(p2 , 1/4). Continuing in this way we obtain a sequence 
of closed balls 

... , , ... 

such that Pn E A n B(Pn-1 , 1/2"-1 ), and an infinite number of open sets of fF 

are required to cover A n B(pn, 1/2"). Since d(Pn-1 , Pn) ~ 1/2"-1 for each n, the 
sequence {Pn} is a Cauchy sequence and hence converges to some element p0 . 

Now since A is compact, we have Po E A. Therefore Po lies in some open set G0 

of fF. Since Pn --+ p0 , there is a sufficiently large value of n such that B(pn, 1/2") c 

G0 • However, this contradicts the fact that an infinite number of members of 
fF are required to cover B(pn, 1/2") n A. 0 

Remarks. The compactness of A is essential in establishing the Heine-Borel 
theorem. It is not enough to assume, for example, that A is bounded. To see 
this, recall the set {fn} of functions in ~ the space of continuous functions, 
which are defined following Theorem 6.19. There we saw that d(fn, fm) = 1 
for all n #- m. Hence we can cover {fn} by a family fF of balls {B(fn, t)} and 
each ball will contain exactly one function of the set {fn}· No finite subfamily 
can cover this set. Note that {fn} is a bounded set. 

A simpler example is given by the set in IR 1 defined by A = { x : 0 < x < 1}. 
We cover A with the family fF of open intervals defined by Ia = {x: a/2 < 
x < 1} for each a E A. It is not difficult to verify that no finite subcollection 
of {Ia} can cover A. 

The next theorem is a useful equivalent form of the Heine-Borel theorem. 
The statement and proof should be compared with that ofTheorem 3.16. 
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Figure 6.8. B(p, p) is in one open set of§". 

Theorem 6.27 (Lebesgue lemma). Let A be a compact set and 1F = { Ga} a family 
of open sets which covers A, as in Theorem 6.26. The there is a positive number 
p such that for every pEA the ball B(p, p) is contained in one of the open sets 
of§. 

PRooF. Since 1F covers A, each point p of A is the center of some ball of radius 
say 2rP which is entirely in one open set of§. Hence the ball B(p, rp) is also 
in the same open set. Denote by~ the family of open balls {B(p, rp)} for all 
peA. By the Heine-Borel theorem, a finite subfamily of~ which we denote 

B(pl> rd, B(p2 , r2 ), ••• , B(p"' r11) 

covers A. Let p = min 1 ,.;,.~cr;. Now ifp E A, then pis in some ball B(pi, rj). We 
have (see Figure 6.8) 

B(p, p) c B(pi, ri + p) c B(pi, 2ri). 

The ball B(pi, 2ri) was chosen so that it lies in a single open set of§. Since 
p is an arbitrary point of A, the proof is complete. D 

The equivalent form of the Heine-Borel theorem given by the Lebesgue 
lemma is particularly useful in the proof of the basic theorem on the change 
of variables in a multiple integral. This topic is discussed in Chapter 14. 

PROBLEMS 

1. Show that the union of a compact set and a finite set is compact. 

2. (a) Show that the intersection of any number of compact sets is compact. 
(b) Show that the union of any finite number of compact sets is compact. 
(c) Show that the union of an infinite number of compact sets may not be compact. 
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3. Consider the space IR2 with the Euclidean metric. We define A = { (x, y): 0 ~ x ~ 1, 
0 ~ y ~ 1}, and we define B =A- {P(1, 1)}. Show that B can be covered by 
an infinite family :F of open rectangles in such a way that no finite subfamily of 
:F covers B. 

4. Let 12 be the space of sequences x = { x1 , x 2 , ... , x., ... } such that Ir;1 xf con
verges. In this space, define e. = {0, 0, ... , 0, 1, 0 ... } in which all entries are zero 
except the nth which is 1. The distance between two points x and y is d(x, y) = 

(Lr;1 (x;- y;)2)112. Show that the set {e.} is a bounded noncompact set in 12. 

5. In IR 1 we cover the set A = { x: 0 ~ x ~ 1} by a family of open intervals defined 
as follows: 

Ia = {X : ~ < X < 2} 
for all a such that 0 <a~ 1. We define 10 = {x: -1/5 ~ x ~ 1/5}. Let :F = 10 u 
{1.: 0 <a~ 1}. For this family :F find a value of pin the Lebesgue lemma. 

6. Suppose that :F is a family of open sets in IR 2 which covers the rectangle R = 

{ (x, y): a ~ x ~ b, c ~ y ~ d}. Show that R can be divided into a finite number of 
rectangles by lines parallel to the sides of R such that no two rectangles have 
common interior points and such that each closed rectangle is contained in one 
open set of :F. 

7. Let d be the space of sequences x = { x 1 , x 2 , ••• , x., ... } in which only a finite 
number of the X; are different from zero. In d define d(x, y) by the formula 

d(x, y) = max lx;- y;i. 
l~i<oo 

(a) Show that dis a metric space. 
(b) Find a closed bounded set in d which is not compact. 

8. Suppose that :F is a family of open sets in IR 2 which covers the circle C = 

{ (x, y): x 2 + y2 = 1}. Show that there is a p > 0 such that :F covers the set 

A= {(x, y): (1- p)2 ~ x2 + y2 ~ (1 + p)2}. 

9. Show that in a metric space a closed subset of a compact set is compact (Theorem 
6.21). 

10. Give an example of points in IR 1 which form a compact set and whose limit points 
form a countable set. 

11. Show that in a metric space a convergent sequence is a Cauchy sequence (Theorem 
6.22). 

12. Let {P.} be a Cauchy sequence in a compact set A in a metric space. Show there 
is a point Po E A such that P.-+ Po as n-+ oo (Theorem 6.23). 

13. Let S1 , •.. , s., ... be a sequence of closed sets in the compact set A such that 
s. => s.+t• n = 1, 2, .... Show that n::'=t s. is not empty. 

14. In IR 3 with the Euclidean metric consider all points on the surface xi + x~ - x~ = 

1. Is this set compact? 
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6.5. Functions on Compact Sets 

In Chapter 3, we discussed the elementary properties of functions defined on 
~1 with range in ~1 • We were also concerned with functions whose domain 
consisted of a part of ~1, usually an interval. In this section we develop 
properties of functions with domain all or part of an arbitrary metric space S 
and with range in ~1 • That is, we consider real-valued functions. We first take 
up the fundamental notions of limits and continuity. 

Definition. Suppose that f is a function with domain A, a subset of a metric 
spaceS, and with range in ~1 ; we write f: A-+ ~1 • We say that f(p) tends to 
l as p tends to p0 through points of A if and only if (i) Po is a limit point of A, 
and (ii) for each 8 > 0 there is a ~ > 0 such that 

lf(p) - II < 8 for all pin A 

with the property that 0 < d(p, p0 ) <~.We write 

f(p)-+ l as p -+ p0 , p E A. 

We shall also use the notation 

lim f(p) = l. 
rPo 
peA 

Observe that the above definition does not require f(p0 ) to be defined nor 
does p0 have to belong to the set A. However, when both of these conditions 
hold, we are able to define continuity for real-valued functions. 

Definitions. Let A be a subset of a metric spaceS, and suppose f: A-+ ~1 is 
given. Let p0 EA. We say that f is continuous with respect to A at Po if and 
only if (i) f(p0 ) is defined, and (ii) either Po is an isolated point of A or Po is a 
limit point of A and 

f(p)-+ f(Po) asP-+ p0 , PEA. 

We say that f is continuous on A if and only iff is continuous with respect to 
A at every point of A. 

Remarks. If the domain off is the entire metric space S, then we say f is 
continuous at p0 , omitting the phrase "with respect to A". The definitions of 
limit and continuity for functions with domain in one metric space S1 and 
range in another metric space S2 are extensions of those given above. See 
Problem 9 at the end ofthis section. A fuller discussion is given in Section 6. 7. 

The theorems in Section 2.2 all have straightforward extensions to func
tions defined on subsets of a metric space with the exception of the theorem 
on composite functions (Theorem 2.7). To illustrate the extensions we first 
establish the analog of Theorem 2.1 on the uniqueness of limits. 
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Theorem 6.28 (Uniqueness oflimits). Let A be a subset of a metric space Sand 
suppose f: A-+ IR 1 is given. If 

f(p) -+ L as P-+ Po, peA, 

and 
f(p) -+ M asP-+ Po, peA, 

thenL = M. 

PRooF. Suppose L -:1 M. We assume L < M, the proof for L > M being the 
same. Define 8 = (M - L)/2. Then there are numbers <51 > 0 and <52 > 0 such 
that 

lf(p)- Ll < 8 for all peA for which 0 < d(p, p0 ) <<51 , 

lf(p) - Ml < 8 for all peA for which 0 < d(p, p0 ) < <52 • 

(6.8) 

Let t5 be smaller of <5 1 and <52 • Since p0 is a limit point of A, there is a point 
p e B(p0 , <5) which is in A. We have from the inequalities in (6.8) 

M- L ~ IM- f(p)l + 1/(p)- Ll < 8 + 8 = 28, 

a contradiction to 8 = (M - L)/2. Hence M = L. 0 

Note the similarity of the above proof to the proof of Theorem 2.1. The 
proofs of Theorems 2.2-2.6 and 2.8 to 2.10 may be generalized in exactly the 
same way. (See Problems 1-8 at the end of this section.) 

The basic properties of functions defined on IR 1 discussed in Chapter 3 do 
not always have direct analogs for functions defined on a subset of a metric 
space. For example, the Intermediate-value theorem (Theorem 3.4) for func
tions defined on an interval of IR 1 does not carry over to real-valued functions 
defined on all or part of a metric space. However, when the domain of a 
real-valued function is a compact subset of a metric space, many of the 
theorems of Chapter 3 have natural extensions. For example, the following 
theorem is the analog of the Boundedness theorem (Theorem 3.12). 

Theorem 6.29. Let A be a compact subset of a metric space S. Suppose that 
f: A -+ IR 1 is continuous on A. Then the range off is bounded. 

PROOF. We assume the range is unbounded and reach a contradiction. Sup
pose that for each positive integer n, there is a p,. e A such that 1/(p,.)l > n. 
Since A is compact, the sequence {p,.} c A must have a convergent sub
sequence, say { q,.}, and q,. -+ pwith p e A. Since f is continuous on A, we have 
f(q,.) -+ f(p) as n-+ oo. Choosing 8 = 1 in the definition of continuity on A 
and observing that d(q,., p) -+ 0 as n -+ oo, we can state that there is an N1 such 
that for n > N1 , we have 

lf(q,.)- f(p)l < 1 whenever n > N1 • 



6.5. Functions on Compact Sets 

We choose N1 so large that lf(p)l < N1 . Now for n > N1 , we may write 

lf(qn)l = lf(qn) - f(p) + f(p)l ~ lf(qn) - f(p)l + lf(P)I < 1 + lf(p)l. 
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Since q" is at least the nth member of the sequence {Pn}, it follows that 
lf(qn)l > n for each n. Therefore, 

n < lf(qn)l < 1 + lf(p)l < 1 + Nl, 

a con traduction for n sufficiently large. Hence the range off is bounded. D 

Note the similarity of the above proof to that of Theorem 3.12. Also, 
observe the essential manner in which the compactness of A is employed. The 
result clearly does not hold if A is not compact. The next result is the analog 
ofthe Extreme-value theorem (Theorem 3.12). The proof is left to the reader. 

Theorem 6.30. Let A be a compact subset of a metric space S. Suppose that 
f: A-+ IR 1 is continuous on A. Then the range off contains its supremum and 
infimum. 

Definition. Let A be a subset of a metric spaceS, and suppose f: A-+ IR 1 is 
given. We say that f is uniformly continuous on a set B if and only if (i) B c A, 
(ii) for each e > 0 there is a b > 0 such that lf(p) - f(q)l < e whenever p, q E B 
and d(p, q) < b. (The quantity b depends one but not on the particular points 
p, q in B.) 

The Uniform continuity theorem (Theorem 3.13) has the following 
extension. 

Theorem 6.31. Suppose that f: A-+ IR1 is continuous on a compact set B, and 
B c A. Then f is uniformly continuous on B. 

The proof follows that of Theorem 3.13 and is left to the reader. 

PROBLEMS 

In Problems 1 through 7 a set A in a metric space S is given. All functions are 
real-valued (range in IR 1) and have domain A. 

1. If c is a number and f(p) = c for all p E A, then show that for any limit point p0 

of A, we have 

(Theorem on limit of a constant). 

lim f(p) = c 
P-Po 
peA 

2. Suppose f and g are such that f(p) = g(p) for all p E A - {p0 } where Po is a limit 
point of A, and suppose thatf(p)--+ 1 asp--+ p0 , pEA. Show that g(p)--+ 1 asp--+ p0 , 

p E A (Limit of equal functions). 
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3. Suppose that / 1 (p) -> 11 asp -> p0 , p E A and / 2 (p) -> 12 as p -> p0 , p E A. Show that 
!1 (p) + f2(p) ->11 + 12 asp-> p0 , pEA. 

4. Under the hypotheses of Problem 3,showthatf1 (p)· / 2(p) ->11 ·12 asp-> p0 ,p EA. 

5. Assume the hypotheses of Problem 3 hold and that 12 # 0. Show that 
!1 (p)/f2(p) ->1d12 asP-> Po. pEA. 

6. Suppose that f(p) ~ g(p) for all pEA, that f(p)-> L as p-> p0 , p E A, and that 
g(p)-> M as p-> p0 , pEA. Show that L ~ M. Show that the same result holds if 
we assume f(p) ~ g(p) in some open ball containing p0 • 

7. State and prove an analog to Theorem 2.10 (Sandwiching theorem) for functions 
defined on a set A in a metric space with range in IR1• 

8. Prove the following extension of the composite function theorem (Theorem 2.7). 
Suppose that f: IR1 ->IR1 is continuous at Land that g is a function g: S ->IR1, 

where Sis a metric space. Assume that g(p)-> Las p-> p0 , p E S. Then f[g(p)] -> 
f(L) asp-> p0 , pES. 

9. Let S1 and S2 be two metric spaces. Suppose f: S1 -> S2 is given. 
(a) Define continuity at a point Po E s1. 
(b) Let A be a subset of S1 • Define continuity off at p0 with respect to A. 
(c) Define the statement: f(p)-> q0 as p-> p0 through points of A; that is 

lim f(p) = q0 • 

~71 

10. Let A be a subset of a metric space S and suppose we are given f: A -> IR2 with 
the Euclidean metric in IR2• Using the definition of limit obtained in Problem 9, 
prove a generalization of the theorem on uniqueness oflimits (Theorem 6.28). Does 
the result hold if IR2 is replaced by a general metric space S2? 

11. Let A be a subset of IR1 and let f: A -> IR1 be continuous on A. Show, by construct
ing an example, that if A is not an interval then the Intermediate-value theorem 
(Theorem 3.4) may not hold. 

12. Suppose f: A-> IR 1 is continuous on A, a compact set in a metric space. Show that 
the range off contains its supremum and infimum (Theorem 6.30). 

13. Suppose that f: A -> IR 1 is continuous on a compact set B in A. Show that f is 
uniformly continuous on B (Theorem 6.31). 

14. Let A= {(x, y): 0 ~ x ~ 1, 0 ~ y ~ 1} be a subset of IR2• We define B = 

A - { (1, 1) }. Show that the function f: B ->IR1 given by 

f(x, y) = (1 - xy)-1 

is continuous on B but not uniformly continuous on B. 

15. Show how Theorem 6.29 may be proved by using the Heine-Bore! theorem 
(Theorem 6.26). 

16. Prove Theorem 6.31 by means of the Lebesgue lemma (Theorem 6.27). 
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6.6. Connected Sets 

Intuitively, we think of a set of points as connected if any two points of the 
set can be joined by a path of points situated entirely within the set itself. 
Looked at another way, we may think of a set as connected if it cannot be 
divided into two or more "separate pieces." It is this latter characterization 
which we use for the definition of a connected set. 

Definition. A set A in a metric space S is said to be connected if and only if A 

cannot be represented as the union of two nonempty disjoint sets neither of 
which contains a limit point of the other. 

For example, the set A in ~ 1 given by 

A= {x: 0 < x < 1 or 1 < x < 2} 

is not connected. To see this, note that A = B1 u B2 where B1 = { x: 0 < x < 1} 
and B2 = {x: 1 < x < 2}. The sets B1 and B2 are disjoint. While B1 and B2 

have a common limit point (x = 1), the point itself is in neither set (Figure 6.9). 
We give a second more interesting example by defining in ~2 the sets D1 = 

{(x,y):(x -1)2 + y 2 ~ 1} and D2 = {(x,y):(x + 1)2 + y2 < 1}. The set C 
given by D1 u D2 is connected. Although D1 and D2 are disjoint sets, observe 
that P(O, 0), a member of D1 , is a limit point of D2 (Figure 6.10). It can be 
shown that there is no way to decompose C into two nonempty sets neither 
of which contains a limit point of the other. 

Notation. Let f: X --+ Y be a function from a metric space X into a metric 
space Y. Suppose that S is a subset of X. Then /IS denotes the function f 
restricted to S. The range of /IS is denoted by R{fiS). 

The following theorem, an extension to metric spaces of Theorem 3.9, 
indicates the importance of the notation of connectedness. 

Theorem 6.32 (Intermediate-value theorem). Suppose f is a function from a 

metric space X into ~1 which is continuous on a nonempty connected setS. Then 

R(/IS) is an interval or a point. 

PROOF. If /IS is constant, then R{fiS) is a point. Otherwise, by virtue of 
Theorem 3.8, it is sufficient to show that if y 1 and y2 e R{fiS) and cis between 
y 1 and y2 , thence R(/IS). Suppose cis not in R{fiS). Let S1 be the subset of 
points p e S where f(p) < c and let S2 be the subset of points p e S where 

O<x<l 1<x<2 

0 2 

A = B 1 u B 2 is not connected 

Figure 6.9 
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C = D1 U D2 is connected 

Figure 6.10 

f(p) >c. Then 81 and S2 are disjoint and also nonempty since Yt> y2 e R(fiS), 
i.e., there are points Pi (in Si) such that f(pi) = Yi> i = 1, 2. Therefore, since S 
is connected, one ofthe S1 must contain a limit point of the other. On the other 
hand, suppose Po e 81 and let e = c - f(p0 ). Then B > 0 and there is a /J > 0 
such that lf(p)- f(p0 )1 < Bfor all pinS with d(p, p0 ) < /J. For all such points, 
f(p) < f(p0 ) + B = c, so that p e 81 . Thus B(p0 , /J) contains no points of 82 

and so p0 is not a limit point of 82 • Similarly no point of 82 is a limit point of 
81 • This is a contradiction. Then cis in the range off and so R(fiS) is an 
interval. [] 

The proofs of the following two theorems are left to the reader (see Prob
lems 1 and 2 at the end of the section). 

Theorem 6.33. Let fF be any family of connected subsets of a metric space X 
such that any two members of fF have a common point. Then the union A= 
U { S : S e fF} of all the sets in fF is connected. 

Theorem 6.34. If Sis a connected subset of a metric space, then Sis connected. 

Theorem 6.35. Any interval I in IR 1 is a connected subset of IR 1• 

PRooF. It is sufficient to prove the theorem for a closed interval I= [a, b] 
since any interval I is either already closed or is the union of an increasing 
sequence {[an, bnJ} of closed intervals; that is, [an, bnJ c [an+t, bn+tJ for each 
n. For example, [a, b) = U::'=t [an, bnJ, where an = a and where 

bn = b - (b - a)/2n, n = 1, 2, ... ; 

similarly, [a, +oo) = U::'=t [a, a+ n]. Analogous formulas hold for other 
types of intervals. Hence, once the result is established for a closed interval, 
Theorem 6.33 yields the result for any interval. 



6.6. Connected Sets 163 

Suppose the interval [a, b] = S1 u S2 where S1 and S2 are disjoint and 
nonempty. Let U; = supS;, i = 1, 2; by renumbering the S;, if necessary, we 
may assume U1 ~ U2 ~ b. Suppose U1 < b. Then every x with U1 < x ~ b 
belongs to S2 SO U2 = b. If Ul E S1, it is certainly a limit point of S2. If Ul E S2, 
then it is not in S1 and hence is a limit point of S1 (see the Corollary to Theorem 
3.5). If Ul = U2 = b, then bE Sl or S2. If bE S~o it is a limit point of S2 and 
vice-versa. Thus in all cases, one of the S; contains a limit point of the other. 
Hence [a, b] is connected. D 

Suppose f is a function from IR1 to IR1 which is continuous on an interval 
I. Then /II, i.e. the set {(x, y): x e I andy= f(x)}, is connected (the proof of 
this fact is left to the reader). For example, if we assume that the sine function 
is continuous and periodic on IR1 and has range J = {y: -1 ~ y ~ 1 }, we see 
that the following sets sl and s2 are connected: 

Sl = {(x, y): X> 0, y = sin(1/x)}, 

S2 = {(x, y): X< 0, y = sin(1/x)}. 

Their union is not connected. However, if - 1 ~ 'I ~ 1, the set 

S1 u S2 u { (x, y): -1 ~ x ~ 1, y = , } 

is connected; but if I'll > 1, the set 

S1uS2 u{(x,y): -1 ~x~ 1,y='1} 

(6.9) 

is not connected. The proofs of all these facts are left to the reader. Further 
theorems and examples concerning connected sets are given in the next 
section. 

PROBLEMS 

1. Prove Theorem 6.33. [Hint: Let A = Ll v L2 where Ll and Ll are disjoint and 
nonempty. Then prove by contradiction that some S of F has a nonempty 
intersection with both L1 and L2 .] 

2. Prove that if Sis a connected subset of a metric space, then Sis connected (Theorem 
6.34). 

3. Prove that iff is a function from IR1 to IR1 which is continuous on an interval I, 
then the set { (x, y): x e I, y = f(x)} is a connected subset of IR2• 

In Problems 4, 5, and 6 assume that S1 and S2 are the sets defined in Equations 
(6.9); also assume the elementary properties of the sine function. 

4. Prove that S1 v S2 is not connected. 

5. Prove that S1 v S2 v {(x, y): -1 ~ x ~ 1, y = 17} is connected if I'll~ 1. 

6. Prove that sl v s2 v {(x, y): -1 ~X~ 1, y = '7} is not connected if,,,> 1. 
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7. Prove that if A is a connected set in a metric space and A c B c X, then B is 
connected. 

8. Prove that if S is a closed subset of a metric space which is not connected then 
there exist closed, disjoint, nonempty subsets sl and s2 of s such that s = sl u s2 0 

9. Let A be the set of all rational numbers in IR1• Show that A is not connected. 

10. Let B be the set of points in IR 2 both of whose coordinates are rational. Show that 
B is not connected. 

11. Let A and B be connected sets in a metric space with A - B not connected and 
suppose A - B = C1 u C2 where C1 11 C2 = C1 11 C2 = 0. Show that B u C1 is 
connected. 

12. Let I= {x: a..;; x..;; b} and suppose that f: I-+ I is continuous. Show that f has 
a fixed point, i.e., show that the equation f(x) = x has at least one solution. [Hint: 
Assume the result is false and form the function F(x) = x - f(x). Note that f(a) > a 
and f(b) < b, and that F is continuous under the hypothesis that x # f(x) for 
all x e I.] 

13. InR3 with the Euclidean metric, show that the setS= {(x1, x2 , x 3): x~ + x~ = x~, 
(x1 , x 2 , x 3 ) + (0, 0, 0)} is not connected. 

6.7. Mappings from One Metric Space to Another 

In Section 1.2 we defined a relation from ~1 to ~1, and we also described 
functions or mappings as special cases of relations. We now define relations 
and functions between arbitrary sets and show how some of the theorems 
developed for continuous real-valued functions may be extended to functions 
from one metric space to another. 

Definitions. A relation from a set A to a set B is a collection of ordered pairs 
(p, q) in which p e A and q e B. The set of all the elements p in the collection 
is called the domain of the relation and the set of all the elements q is called 
the range. If no two of the ordered pairs in the collection have the same first 
element, the relation is called a mapping. We also use the terms function and 
transformation to mean the same thing. Iff is a mapping from A to B we write 
f: A -+ B and if p is in the domain, the f(p) is the unique element q such that 
(p, q) e f Iff is a mapping from A to B and the domain off is all of A, we 
say that f is on A into B. If the range off is all of B, we say the mapping is 
onto B. If A1 is a subset ofthe domain ofthe mapping!, then the imagef(A 1 ) 

under f consists of all points q such that f(p) = q for some p E A1 • If B1 is a 
subset of the range off, the inverse image f- 1(B1 ) under f is the set of all pin 
the domain off such that f(p) e B1 • If Tis a relation from A to B, the inverse 
relation r-1 is the set of all ordered pairs (q, p) such that (p, q) e T. 
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Remarks. (i) The inverse relation of a mapping f is ordinarily not a mapping. 
However, iff is one-to-one, then the inverse /-1 will be a mapping also. 
(ii) We recall that the parametric equations of a curve in three-space are given by 

x1 = f(t), x2 = g(t), x3 = h(t). 

These equations represent a mapping from IR1 to IR 3 • More generally a 
mapping f from IRN to IRM may be given explicitly by a set of M equations of 
the form 

Y1 = /1(x1, X2, ... , xN), 

Y2 = f2(x1, X2, ... , xN), 

Each/; is a mapping from IRN to IR1, and the collection represents a mapping 
from IRN to IRM = IR1 x IR1 x · · · x IR1 (M factors). 

Suppose that the domain and range of a mapping are sets in metric spaces. 
Then we easily extend to such mappings the definitions oflimit and continuity 
given in Chapter 3 for functions from IR 1 to IR 1. It turns out that many of the 
Theorems of Chapter 3 use only the fact that IR1 is a metric space. 

Definitions. Let (S1, dd and (S2, d2) be metric spaces, and suppose that f is a 
mapping from S1 into S2. Let A be a subset of S1. We say that f(p) tends to 
q0 as p tends to p0 for p e A if and only if (i) Po is a limit point of A, and (ii) 
for every e > 0 there is a J > 0 such that d2(f(p), q0 ) < e for all peA such 
that d1(p, p0 ) < J. We say also thatf(p) has the limit q0 asp tends to Po (after 
uniqueness of limits is proved). The symbols 

and 

f(p) -+ qo as P -+ Po• 

lim f(p) = q0 
p-+po 
peA 

peA, 

are used. If A is the entire space S1, we omit the phrase "for all peA" in the 
above definition. The mapping f is continuous with respect to A at p0 if and 
only if (i) f(p0 ) is defined, and (ii) either p0 is an isolated point of A or p0 is a 
limit point of A and f(p) -+ f(p0 ) asp -+ p0 for p e A. A function f is continuous 
on A if and only iff is continuous with respect to A at each point of A. If A 
is all of S1, we omit the phrase "with respect to A" in the definition of 
continuity. 

It is important to observe that a function may be continuous with respect 
to a set A at some points of S1 and yet not be continuous at these same points 
with respect to a larger set. For example, consider the function f from IR1 into 
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IR 1 defined by 

f(x) = {~ 
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if xis rational, 

if xis irrational. 

Then f is not continuous at any point. However, if A denotes the set of 
rational numbers in !Rl, then f is continuous with respect to A at every 
rational number. This fact is obvious since f is constant on A. On the other 
hand, f is not continuous with respect to A at any irrational number although 
every irrational is a limit point of points in A. 

The theorems in Section 6.5 on functions defined on a metric space into IR 1 

have direct analogs to functions from one metric space to another. Some of 
these are stated in the problems at the end of this section. We illustrate the 
form such theorems take in the following version of the Composite function 
theorem. 

Theorem 6.36 (Composite function theorem). Suppose that f is a mapping on 
a metric space (S1 , dd into a metric space (S2 , d2 ), and that g is a mapping on 
(S2 , d2 ) into a metric space (S3 , d3 ). 

(a) Suppose that f(p)-+ q0 as p-+ Po and that g is continuous at q0 • Then 
g[f(p)] -+ g(q0 ) asp-+ Po· 

(b) Suppose that f is continuous on S1 and g is continuous on S2 • Then the 
composite function go f is continuous on S1 . (Here go f(p) = g[f(p)J.) 

The proof is similar to the proof of the Composite function theorem for 
functions on IR 1 (Theorem 2.7). 

The next theorem shows that continuous functions may be characterized 
in terms of the open sets in a metric space. 

Theorem 6.37. Let f be a mapping on a metric space (S1 , d1 ) into a metric space 
(S2 , d2 ). Then f is continuous on S1 <=>for every open set U in S2 , the set f-1(U) 
is an open set in sl. 

PROOF 
(a) Assume that f is continuous on S1 • Let U be an open set in S2 • We shall 

show that f- 1(U) is an open set in S1 • Consider p0 e f- 1(U). From the 
definition of continuity, for every e > 0 there is a {) > 0 such that d2(f(p), 
f(p0 )) < e whenever d1 (p, p0 ) < {).Select e so small that the open ball B(f(p0 ), 

e) is contained in U. Then f-1 (B) c f- 1 (U). Also, the open ball B1(p0 , {)) 

which, from the definition of continuity is contained in f- 1 (B), is also in 
f- 1(U). This shows that p0 is an interior point of f- 1(U). Therefore every 
point of f- 1(U) is an interior point, and so f- 1(U) is open. 

(b) Assume that f- 1(U) is open for every.open set U in S2 • We shall show 
that f is continuous. Consider Po e S1 and let e > 0 be given. The open ball 
B(f(p0 ), e) in S2 has an inverse image which is open and which contains p0 • 
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We choose b so small that the open ball B1 (p0 , b) is contained entirely in 
f- 1 (B). Then the definition of continuity is satisfied with this value of b. D 

The statements of many theorems are greatly simplified when we introduce 
the notion of a "metric subspace" of a metric space. Such a space may be 
generated by any subset of a given metric space, and it enables us to regard 
the given subset as the universe of discourse instead of the whole space. 

Definition. Suppose that (X, d) is a metric space and suppose S c X. The 
metric subspace generated by S is the metric space (S, d8 ) where d8 is the 
restriction of the metric d to (S x S). 

The proofs of the following facts are left to the reader. 

Theorem 6.38 

(a) Suppose that f is a mapping from a metric space X into a metric space Y, 
that S c X, and that P0 , Pn E S, n = 1, 2, ... ; also, suppose that f is con
tinuous with respect to S at P0 , that f(Pn) is defined for each n, and that 
Pn--+ Po. Then f(Pn)--+ f(Po). 

(b) Suppose that f is a mapping from a metric space X with metric d into a 
metric space Y with metric d', that S c X, and that P0 E S. Then f is 
continuous with respect to S at P0 .;;. f(P0 ) is defined and, for each e > 0, 
there is a b > 0 such that d'(f(P), f(P0 )) < e for all P in S for which 
d(P, P0 ) <b. 

A partial converse to Theorem 6.38(a) is easily stated for the case that Sis 
the whole space. 

Theorem 6.39. Suppose that f is a mapping from a metric space X onto a metric 
space Y, that P0 E X, and that f(Pn) --+ f(P0 ) for every sequence { Pn} in X such 
that Pn--+ P0 • Then f is continuous at P0 . 

PROOF. Suppose f is not continuous at P0 • Then, from Theorem 6.38(b) with 
S =X, there is an e0 > 0 such that there is no b satisfying the condition of 
that theorem. Thus, for each n, there is a Pn such that d(P0 , Pn) < 1/n but 
d'(f(Pn),f(P0 )) ~ e0 . Then Pn--+ P0 butf(Pn) does not--+ f(P0 ), a contradiction. 

D 

The following versions of the Composite function theorem hold. 

Theorem 6.40 (Composite function theorem). Suppose f is a continuous map
ping from a metric space X into a metric space Y and g is a continuous mapping 
from Y into a metric space Z. 

(a) If g is continuous at Q0 and f(P)--+ Q0 asP--+ P0 , then g[f(P)] --+ g(Q0 ) as 
p--+ Po. 
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(b) If the domain off is X, the domain of g is Y, iff is continuous on X and if 
g is continuous on Y, then g of is continuous on X. (Here g of denotes the 
composite map: (go f)(P) = g[J(P)].) 

The proofs are left to the reader. 

Remarks 
(i) If the domain of a function f is a subset of a metric space S1, we may 

reword Theorem 6.37 appropriately. Consider the domain off as a subspace, 
and then the inverse image of an open set in the range must be an open set in 
this subspace. 

(ii) It is not true that continuous functions always map open sets onto 
open sets. For example, the function f from IR 1 into IR 1 given by f(x) = x 2 

maps the open interval I = { x : - 1 < x < 1} onto the half-open interval 
J={x:O:::;;x<1}. 

(iii) The theorem corresponding to Theorem 6.37 for closed sets is a re
statement of the definition of continuity: f is continuous on S1 if and only if 
for every closed set A in S2 , the set f- 1 (A) is a closed set in S1 • Continuous 
functions do not necessarily map closed sets onto closed sets. For example, 
the function f from IR 1 into IR 1 given by f(x) = 1/(1 + x 2 ) maps the closed set 
A= {x: 0:::;; x < oo} onto the half-open interval I= {x: 0 < x:::;; 1}. 

Definitions. Let (S, d) be a metric space and let A be a subset of S. Using the 
metric d, we know that we may consider (A, d) as a metric subspace. A set C 
contained in A is open in A if and only if C is open when considered as a set 
in the metric space (A, d). In a similar way, we define Cis closed in A and C 
is connected in A. 

For example, let A be a set of isolated points in IR 1 . Then A, considered as 
a metric space, has the property that every subset is open. However, no 
nonempty isolated set is open in IR 1• Thus sets may be open when considered 
in reference to a subspace without being open in the entire space. Similar 
examples are easily obtained for closed sets. 

Theorem 6.41. Suppose that (A, d) is a metric subspace of the metric space (S, d). 
Then for any set C in A, 

(a) Cis open in A<=> there is an open set G inS such that C = G n A. 
(b) Cis closed in A<=> there is a closed set FinS such that C = F n A. 
(c) If Cis connected in A, then Cis connected inS. 

PRooF 
(a) Denote by B(p, r) the open ball in S with center at p and radius r. If 

pEA, denote by BA(p, r) the open ball in A with center at p and radius r. 
Clearly, BA(p, r) = A n B(p, r). Suppose Cis open in A. Then each point p E C 
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has an open ball BA(p, rP) lying entirely in C. We have, taking the union of 
such balls, 

Since BA(p, rp) = An B(p, rp), we may write 

C =An [ U B(p, rp)J. 
peC 

But the union of any collection of open sets is open. Hence C = A n G where 
G = UpecB(p, rp) with G an open set inS. 

Now suppose that C = G n A where G is an open set inS. We wish to show 
that C is open in A. Each point p E C is the center of an open ball B(p, rp) 
contained in G. Since BA(p, rP) = An B(p, rp), the ball BA(p, rP) is contained 
in A n G = C. Therefore each point of C is an interior point with respect to 
A. Hence C is open in A. 

The proofs of Parts (b) and (c) are Problems 7 and 8 at the end of this 
section. D 

Definition. A mapping! from a metric space (S1 , d1 ) into a metric space (S2 , d2 ) 

is uniformly continuous on A, a subset of S1 , if and only if (i) the domain off 
contains A, (ii) for each 8 > 0 there is a {) > 0 such that d2(f(p), f(q)) < 8 

whenever d1 (p, q) < {) and p, q E A, and (iii) the number {) is the same for all 
p, q in A. 

Remarks. If a function is uniformly continuous on a set A, it is continuous 
at each point p in A with respect to A. It may not, however, be continuous at 
such points with respect to sets other than A. For example, the function f 
from IR1 to IR1, which is 1 if xis rational and 0 if xis irrational, is uniformly 
continuous on the set A of rational numbers and it is continuous with respect 
to A at each rational point. However, f is not continuous (with respect to IR1 ) 

at any point. 

Theorem 6.42. Let A be a subset of a metric space (S1, dd, and suppose f is a 
continuous function on A into a metric space (S2 , d2 ). 

(a) If A is compact, then f(A) is compact. 
(b) If A is connected, then f(A) is connected. 
(c) If A is compact, then f is uniformly continuous on A. 
(d) If A is compact and f is one-to-one, then f- 1 is continuous. 

The proof of Theorem 6.42 is left to the reader. (These are Problems 12, 13, 
14, and 15 at the end of this section.) 

We now establish an important theorem about open connected sets in IRN. 
It states that any two points in an open connected set G in IRN can be joined 
by a polygonal path which lies entirely in G. 
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Definition. Let I = { x : a :::;; x :::;; b} be any interval and let z be a continuous 
mapping from I into !RN. Then z is said to be piecewise linear if and only if 
there exist numbers t0 , t 1 , ••• , tk in I with a = t0 < t 1 < · · · < tk = b such that 
the mapping z is a linear function on each interval Ii = {x: ti_1 :::;; x:::;; ti}, 
j = 1, 2, ... , k. That is, zi = (z{, ... , zk} has the form: zf = afx + b/, i = 1, 2, 
... , N, j = 1, 2, ... , k. The a{, b/ are numbers: 

*Theorem 6.43. 3 Let G be an open connected set in !RN and suppose that u and v 
are in G. Then there exists a piecewise linear mapping z : I -+ !RN such that 
z(a) = u, z(b) = v and the range of z is contained in G. 

PROOF. Let u be any fixed point of G, and define G1 to be the set of all points 
v in G for which such a piecewise linear mapping exists. Clearly G 1 is not empty 
since, for any point in a sufficiently small ball with u as center, a linear mapping 
from u to that point can be constructed which is entirely in G. We show that 
G1 is an open set. Let v E G1 • Then there is a piecewise linear map z: I-+ !RN 
with z(a) = u and z(b) = v. Since G is open there is a ball B(v, p) lying entirely 
in G. Suppose wE B(z, p); we choose cas any real number larger than b and 
denote J = {x: a:::;; x:::;; c}. Now we define the piecewise linear mapping 
e: J-+ !RN SO that e(t) = z(t) for t E I, and We let e be a linear map On the 
intervalJ- I with e(b) = v and e(c) = w. Then e is a piecewise linear mapping 
of the desired type on J. A change of scale transforms e into a piecewise linear 
map on I. Thus wE G1. We have shown that every point of B(z, p} is in G1 

and so G 1 is open. 
Now suppose G- G1 is not empty. Since G1 is open no point of G1 is a 

limit point of G - G1 . Hence, since G is connected, there must be a point 
v' E G - G1 which is a limit point of G1 . Because G is open there is a ball 
B(v', p) contained in G. Since v' is a limit point of G1 , there is a point w' in 
B(v', p) which is in G1 (see Figure 6.11). Then there is a piecewise linear 

Figure 6.11. A piecewise linear map. 

3 Theorems with an asterisk may be omitted without loss of continuity. 



6.7. Mappings from One Metric Space to Another 171 

mapping connecting u and w'. Now construct a linear map connecting w' and 
v'. This yields a piecewise linear mapping connecting u and v'. Thus v' E G1, 

a contradiction. Hence G- G1 is empty and the result is established. D 

*Theorem 6.44 

(a) A set S in a metric space is connected<=> S is not the union of two nonempty 
disjoint subsets, each of which is open in S. 

(b) A setS in a metric space is connected<=> the only subsets of S which are both 
open and closed in S are S itself and the empty set, 0. 

PROOF OF (a). Suppose that S is not connected. Then S = S1 U S2 where S1 

and S2 are disjoint, nonempty, and neither contains a limit point of the 
other. Thus each point p of S1 is the center of a ball B(p, 2rp) which contains 
no point of S2 ; similarly, each point q of S2 is the center of a ball B(q, 2pq) 
which contains no point of S1 • We define 

Clearly, G1 and G2 are open and nonempty; we show that they are disjoint. 
Assume there is a points E G1 n G2 • Then for some p E S1 and q E S2 , we must 
haves E B(p, rp) n B(q, pp). With d as the distance function, we have 

d(s, p) < rP ~ !d(p, S2 ) ~ !d(p, q). 

Also, 
d(s, q) < Pp ~ td(q, S1 ) ~ td(q, p). 

Therefore, d(p, q) ~ d(p, s) + d(s, q) < !d(p, q) + td(p, q) = d(p, q), a contra
diction. Hence there is no such point s; G1 n G2 = 0. We observe that 
S = (S n G1 ) u (S n G2 ) and so S is the union of two disjoint, nonempty 
subsets, each of which is open in S. We proved half of Part (a). 

To establish the remainder of Part (a), supposeS = T1 u T2 where T1 and 
T2 are disjoint nonempty subsets of S, each of which is open in S. Since T1 is 
open in S, there is an open set G1 in the metric space such that T1 = G1 n S 
(Theorem 6.41(a)). Then for each p E T1 there is a ball B(p, r) contained in G1 

which contains no point of T2 • Hence T1 contains no limit point of T2 • 

Similarly, T2 contains no limit point of T1 • We have just shown that Sis not 
connected, and Part (a) is established. 

The proof of Part (b) is left to the reader. D 

PROBLEMS 

1. Suppose that (S1 , d1 ) and (S2 , d2 ) are metric spaces and that A is a subset of S1 • 

Let f be a mapping on A into S2 which is continuous with respect to A at a point 
Po· Suppose p1 , p2 , ••• , p., ... is a sequence of points of A such that p.--+ Po and 
PoE A. Show that f(p.)--+ f(p0 ) asP.--+ p0 • 

2. Show that if a function f is continuous with respect to A at any point p0 it is 
continuous with respect to C at p0 if C is any set contained in A. 
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3. Let f be a mapping from the metric space (S1 , d1 ) into the metric space (S2 , d2 ). 

State and prove a theorem on uniqueness oflimits which is the analog of Theorem 
6.28. 

4. Prove Theorem 6.36. 

5. Give an example of a continuous function from IR 1 into IR1 which maps an open 
set onto a closed set. 

6. Let (S, d) be a metric space and let A and C be subsets with C c A. Suppose A is 
closed. Show that if C is closed in A, then C is closed in S. 

7. Prove Part (b) of Theorem 6.41. 

8. Prove Part (c) of Theorem 6.41. 

9. Let (S1 , d1 ) and (S2 , d2 ) be metric spaces and suppose that f is a mapping on S1 

into S2 • Show that f is continuous if and only if for every closed set A in S2 , the 
set f- 1(A) is closed in S1 . 

10. Given an example of a mapping from IR 1 into IR 1 which is continuous at every 
point of IR 1 but not uniformly continuous on IR 1. 

11. Suppose that (S1 , dt), (S2 , d2 ), and (S3 , d3 ) are metric spaces with fa uniformly 
continuous mapping on s1 into s2 and g a uniformly continuous mapping on s2 
into S3 • Show that go f is uniformly continuous on S1 • 

12. Prove Part (a) of Theorem 6.42. [Hint: See Problem 1.] 

13. Prove Part (b) of Theorem 6.42. 

14. Prove Part (c) of Theorem 6.42. 

15. Prove Part (d) of Theorem 6.42. 

16. Let f and g be continuous mappings on (S1 , d1 ) into (S2 , d2 ). Let A be the set of 
points of S1 such that f(p) = g(p). Show that A is closed. 

17. In IR3 , letS be the set given by 

S = {(x1 , x 2 , x3 ): 1 <xi+ x~ + x~ < 4}. 

Give an explicit construction of a piecewise linear mapping z from I = 
{x: 0 ~ x ~ 1} into IR 3 with range inS such that z(O) = p1 and z(1) = p2 where 
p 1 = (- 3/2, 0, 0), p2 = (3/2, 0, 0). 

18. Prove Part (b) of Theorem 6.44. 

19. Let A and B be compact sets in IRN such that An B = 0. Show that inf d(p, q) 
where the infimum is taken for all p E A, all q E B is positive. 



CHAPTER 7 

Differentiation in IRN 

7.1. Partial Derivatives and the Chain Rule 

There are two principal extensions to IRN of the theory of differentiation of 
real-valued functions on IR 1. In this section, we develop the natural generaliza
tion of ordinary differentiation discussed in Chapter 4 to partial differentiation 
of functions from IRN to IR 1 • In Section 7.3, we extend the ordinary derivative 
to the total derivative. 

We shall use letters x, y, z, etc. to denote elements in IRN. The components 
of an element x are designated by (x 1 , x2 , •.• , xN) and as usual, the Euclidean 
distance, given by the formula 

N 

d(x, y) = L (x; - Y;)2, 
i=l 

will be used. We also write d(x, y) = lx- yi and d(x, 0) = lxl. 

Definition. Letfbe a function with domain an open set in IRN and range in IR 1. 

We define theN functions!,; with i = 1, 2, ... , N by the formulas 

!,;(xl, x2, ... , xN) 

I. f(x1, ... ,X;+ h, ... , xN)- f(xl> ... ,X;, ... , xN) 
= tm ---------=---------

h-+0 h 

whenever the limit exists. The functions f. 1 , f. 2, ... , f.N are called the first 
partial derivatives off 

We assume the reader is familiar with the elementary processes of partial 
differentiation. The partial derivative with respect to the ith variable is com-

173 
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puted by holding all other variables constant and calculating the ordi
nary derivative with respect to X;. That is, to compute L at the value 
a= (a1 , a2 , ••• ,aN), form the function <p (from IR 1 to IR 1 ) by s~tting 

(7.1) 

and observe that 
f)a) = <p'(a;). (7.2) 

There are many notations for partial differentiation and, in addition to the 
one above, the most common ones are 

DJ, of 
ox;' 

Good notation is important in studying partial derivatives since the many 
letters and subscripts which occur can often lead to confusion. The two "best" 
symbols, especially when discussing partial derivatives of higher order, are f.; 
and DJ, and we shall employ these most of the time. 

We recall that the equations of a line segment in IRN connecting the points 
a= (a1 , ... , aN) and a+ h = (a1 + h1 , ... , aN+ hN) are given parametrically 
by the formulas (the parameter is t) 

O~t~l. 

The next theorem is the extension to functions from IRN to IR 1 of the 
Mean-value theorem (Theorem 4.12). 

Theorem 7.1. Let r; be the line segment in IRN connecting thP points 
(a1, a2 , ••. , a;, ... , aN) and (a 1, a2 , ... , a;+ h;. ... , aN). Suppose f is a function 
from IRN into IR 1 with domain containing r;, and suppose that the domain of L 
contains r;. Then there is a real number ~i on the closed interval in IR 1 with 
endpoints a; and a; + h; such that 

f(a 1 , ••• , a;+ h;, ... , aN)- f(a 1 , ••• , a;, ... , aN)= h;!,;(a1 , ••• , ~;, ••• ,aN). 
(7.3) 

PROOF. If h; = 0, then Equation (7.3) holds. If h; =I= 0, we use the notation of 
Expression (7.1) to write the left side of Equation (7.3) in the form 

<p(a; + h;) - <p(a;). 

For this function on !Rl, we apply the Mean-value theorem (Theorem 4.12) to 
conclude that 

<p(a; + h;)- <p(a;) = h;<p'(~;). 

This formula is a restatement of Equation (7.3). D 

Theorem 4.8, the Fundamental lemma of differentiation, has the following 
generalization for functions from IRN into IR 1• We state the theorem in the 
general case and prove it for N = 2. 
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Theorem 7.2 (Fundamental lemma of differentiation). Suppose that the func
tions f and f. 1 , f. 2, ... , f.N all have a domain in IRN which contains an open ball 
about the point a= (a1, a2, ... , aN). Suppose all the f.; i = 1, 2, ... , N, are 
continuous at a. Then 

(a) f is continuous at a; 
(b) there are functions 81(x), 82(x), ... , 8N(x), continuous at x = 0 such that 

81 (0) = 82(0) = · · · = 8N(O) = 0 and 

N 

f(a +h)- f(a) = L [f.;(a) + 8;(h)]h; (7.4) 
i=l 

for h = (h1, h2, ... , hN) in some ball B(O, r) in IRN of radius rand center at 
h = 0. 

PROOF. For N = 2. We employ the identity 

f(al + h1, a2 + h2)- f(al, a2) 

= [f(a1 + h1, a 2)- f(al, a2)] 

+ [f(a1 + h1o a2 + h2)- f(a 1 + h1, a2)]. (7.5) 

Since f, f. 1 and !, 2 are defined in an open ball about a = (a1 , a 2 ), this identity 
is valid for h1 , h2 in a sufficiently small ball (of radius, say, r) about h1 = h2 = 0. 
Applying Theorem 7.1 to the right side of Equation (7.5), we find there are 
numbers el(hl, h2), e2(hl, h2) on the closed intervals from alto al + hl and 
from a2 to a2 + h2, respectively (see Figure 7.1), such that 

f(al + hl, a2 + h2)- f(al> a2) = f.t(el, a2)hl + f.2(al + hl, e2)h2. (7.6) 

Equation (7.6) is valid for h1 , h2 in the ball of radius r about h1 = h2 = 0. 

Figure 7.1 
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Now define 

e1(h1, h2) = /1(~1, a2)- f1(a1, a2), 

e2(h1, h2) = f2(a1 + h1, ~2)- f2(a1, a2). (7.7) 

We wish to show that e1 and e2 are continuous at (0, 0). Let e > 0 be given. 
Since f 1 and f 2 are continuous at (a1 , a 2 ), there is a{> > 0 such that 

lf 1(x1, x 2)- f 1(a1, a 2)1 < e and lf 2(x1, x2)- f 2 (a 1 , a2)1 < e, (7.8) 

for (x 1 , x2 ) in a ball of radius{> with center at (a1 , a2 ). Comparing Expressions 
(7.7) and (7.8), we see that if h1 and h2 are sufficiently small (so that (~ 1 , ~2 ) is 
close to (a1 , a2 )), then 

le1(h1, h2)1 < e and le2(h1, h2)1 <e. 

Moreover, e1 (0, 0) = 0 and e2 (0, 0) = 0. Substituting the values of e1 and e2 

from Equations (7.7) into Equation (7.6) we obtain Part (b) of the theorem. 
The continuity off at (a1 , a2 ) follows directly from Equation (7.4). 

The proof for N > 2 is similar. D 

The Chain rule for ordinary differentiation (Theorem 4.9) can be extended 
to provide a rule for taking partial derivatives of composite functions. We 
establish the result for a function f: !RN-+ IR 1 when it is composed with 
N functions gl, g2, ... , gN, each of which is a mapping from !RM into IR 1 • 

The integer M may be different from N. If y = (y1, y2 , ••• , YN) and 
x = (x 1 , x2 , ... , x M) are elements of !RN and IRM, respectively, then in custom
ary terms, we wish to calculate the derivative of H(x) (a function from !RM into 
IR 1 ) with respect to xi, where f = f(y 1, y2, ... , YN) and 

(7.9) 

Theorem 7.3 (Chain rule). Suppose that each of the functions gl, g2, ... , gN is 
a mapping from !RM into IR 1. For a fixed integer j between 1 and M, assume 

that g~i' g~i' ... , g~ are defined at some point b = (b1 , b2, ... , bM). Suppose that 
f and its partial derivatives 

f1,f2, ... ,fN 

are continuous at the point a= (g1(b), g2(b), ... , gN(b)). Form the function H 
as in Equation (7.9). Then the partial derivative of H with respect to xi is given by 

N 

H,j(b) = L f;[g 1 (b), g2(b), ... ' gN(b)Jg:j(b). 
i=1 

PROOF. Define the following functions from IR 1 into IR 1. 

cp(x) = H(b~> ... , bi_1, xi, bi+1, ... , bM) 

1/Ji(xj) = gi(b1, ... , bi_1, xi, bi+1, ... , bM), i = 1, 2, ... , N. 
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Then, according to Equation (7.9), we have 

tp(xi) = f[l/l 1(xi), I/J 2 (xj), ... , 1/JN(xi)]. 

With h denoting a real number, define 

litp = tp(bj + h) - tp(bj) 

t;..pi = .pi(bj +h)- 1/Ji(bj), i = 1, 2, ... , N. 
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Since each .pi is continuous at bi, it follows that t;..pi--+ 0 ash--+ 0. We apply 
Equation (7.4) of Theorem 7.2 to the function tp and use t;..pi instead of h; in 
that equation. We obtain 

(7.10) 

In this formula, we have 8; = 8;(lii/Jl, ... , fit/IN) and 8;--+ 0 as t;..pk--+ 0, 
k = 1, 2, ... , N. 

Now write Equation (7.10) in the form 

fitp N fii/Ji 
h = i~ {f;[g1(b), ... , gN(b)] + 8;}h, 

valid for lhl sufficiently small. Letting h tend to 0, we get the statement of the 
Chain rule. D 

Definitions. Let D be a subset of ~Nand suppose f: D--+ ~1 is a given function. 
For x = (x1 , ... , xN) and k a real number, we use the symbol kx to denote 
(kx1 , kx2 , ••• , kxN). Thenfis homogeneous of degree n if and only if(i) kx e D 
whenever x e D and k -::!- 0, and (ii) 

f(kx) = k"f(x) for x e D, k -::!- 0. 

The function f is positively homogeneous of degree n if and only if the two 
conditions above hold for all k > 0 and all x e D. 

Remarks. The quantity n need not be an integer. For example, the func
tion f: (x, y)--+ x-113 + y-1' 3 is homogeneous of degree -1/3. A function 
may be positively homogeneous but not homogeneous. The function 

f: (x, y) --+ J x2 + y2 is positively homogeneous of degree 1 but not 
homogeneous. 

Theorem 7.4 (Euler's theorem on homogeneous functions). Suppose that 
f: ~N--+ ~ 1 is positively homogeneous of degree nand suppose that !, 1, f. 2 , ••• , 

fN are continuous for a-::!- 0. Then 
N 

L aJ;(a) = nf(a). (7.11) 
i=1 

The proof is left to the reader. 
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PROBLEMS 

1. Let D be an open connected set in IRN and suppose f: D-+ IR 1 has the property 

that f 1 = f 2 = · · · = fN = 0 for all xED. Show that f =constant in D. 

2. Let f: IRN -+ IR 1 be given and suppose that g 1, g2 , ••• , gN are N functions from IRM 
into IR1• Let h1, h2 , ••• , hM be M functions from Winto IR 1. Give a formula for the 
Chain rule for H,;(x), where 

H(x) = f{g 1 [h1 (x), ... , hM (x)], g2 [h1(x), ... , hM(x)], ... }. 

3. Write a proof of Theorem 7.2 for N = 3. 

4. Use the Chain rule to compute H, 2 (x) where His given by (7.9) and f(x) =xi + 
x~- 3x3 , g 1(x) =sin 2x 1 + x 2 x 3 , g2 (x) =tan x 2 + 3x3 , g3 (x) = x 1x 2 x3 • 

5. Use the Chain rule to compute H, 3(x) where H is given by (7.9) and f(x) = 

2x1x2 + x~- x~, g 1(x) = log(x 1 + x2)- x~, g2(x) =xi+ x~, g3(x) = xix3 + x4 , 

g4 (x) = cos(x1 + x3)- 2x4 . 

6. Consider the function f: IR2 -+ IR 1 defined by 

f( ) { 
: 1x 2

2 , (x1,x2 )i=(O,O), 
X 1, X 2 = X 1 + X 2 

0, X 1 = X 2 = 0. 

(a) Show that f is not continuous at x 1 = x 2 = 0. 
(b) Show that f 1 and f 2 exist at x 1 = x 2 = 0. Why does this fact not contradict 

Theorem 7.2? 

7. Consider the function f: IR2 -+ IR 1 such that f 1 and f 2 exist and are bounded in 
a region about x 1 = x 2 = 0. Show that f is continuous at (0, 0). 

8. Given the function f: IR2 -+ IR 1 defined by 

Show that f 1 and f 2 are bounded near (0, 0) and therefore (Problem 6) that f is 
continuous at (0, 0). 

9. Iff: IRN-+ IR1 is homogeneous of degree 0, show by a direct computation that f 
satisfies Euler's differential equation: 

N 

I X;f; = 0. 
i::;:l 

10. Prove Theorem 7.4, Euler's theorem on homogeneous functions. 

7.2. Taylor's Theorem; Maxima and Minima 

Definitions. Let f be a function from !RN into IR 1• We define the second partial 
derivative J.;.i as the first partial derivative of f.; with respect to xi. We define 
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the third partial derivative !,;,j,k as the first partial derivative of f.;.i· Fourth, 
fifth, and higher derivatives are defined similarly. 

In computing second partial derivatives it is natural to ask whether the 
order of computation affects the result. That is, is it always true that f.;.i = f.i.i 
for i =f. j? There are simple examples which show that the order of computa
tion may lead to different results. (See Problem 3 at the end of this section.) 
The next theorem gives a sufficient condition which validates the interchange 
of order of partial differentiation. 

Theorem 7.5. Let f: !RN ~ IR1 be given and suppose that f, f.;, f.i.i• and f.i.i are 
all continuous at a point a. Then 

f · .(a) = f · ·(a) • 1,) ,),1 • 

PROOF. We establish the result for N = 2 with i = 1 and j = 2. The proof in 
the general case is exactly the same. 

Writing a= (a 1 , a2 ), we define 

Ad= f(a 1 + h, a2 +h)- f(a 1 + h, a2)- f(a 1, a2 +h)+ f(a 1, a2). (7.12) 

We shall show that Ad/h2 tends to the limit f. 1•2 (a 1 , a2 ) and also that the 
same quantity tends to f. 2 , 1 . Hence the two second derivatives must be equal. 
Define 

Then 

cp(s) = f(a 1 + s, a2 + h) - f(a 1 + s, a2), 

1/l(t) = f(a 1 + h, a2 + t)- f(a 1, a2 + t). 

Ad= cp(h) - cp(O), Ad = 1/l(h) - 1/1(0). 

(7.13) 

(7.14) 

(7.15) 

We apply the Mean-value theorem to Equations (7.15), getting 

Ad= 1/l'(tdh, (7.16) 

where s1 and t1 are numbers between 0 and h. From Equations (7.13) and 
(7.14), it follows that 

cp'(sd = /. 1(a1 + s1, a2 +h)- f. 1(a 1 + s1, a2), (7.17) 

1/l'(td = /. 2(a 1 + h, a2 + t1)- f. 2(a 1, a2 + td. (7.18) 

A second application of the Mean-value theorem to Equations (7.17) and (7.18) 
yields 

cp'(sl) = !.1,2(a1 + s1, a2 + t2)h, 

1/l'(tl) = f.2.1(a1 + s2, a2 + tdh, 

where s2 and t2 are numbers between 0 and h. Substituting these expressions 
in Equations (7.16) we find 

1 
h2Ad= f.1.2(a1 + s1, a2 + t2) = f.2.1(a1 + S2, a2 + td. 
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Letting h tend to zero and observing that s 1 , s2 , t 1 , and t2 all tend to zero with 
h, we obtain the desired result. D 

Definitions. A multi-index rx is an element (rx 1, rx2, ... , rxN) in IRN where each 
rx; is a nonnegative integer. The order of a multi-index, denoted by lrxl, is 
the nonnegative integer rx 1 + rx2 + · · · + rxN. We extend the factorial symbol 
to multi-indices by defining rx! = rx 1 ! · rx2 ! ... rxN!. If f3 is another multi-index 
(/31, f3z, ... , f3N), we define 

rx + f3 = (rx1 + fJ1, rxz + f3z, ... , rxN + f3N). 

Let x = (x1 , x 2 , ••• , xN) be any element of!RN. Then the monomial x" is defined 
by the formula 

Clearly, the degree of x" is lrxl. Any polynomial in IRN is a function f of the 
form 

f(x) = L CaX" (7.19) 
lal<;n 

in which rx is a multi-index, the c" are constants, and the sum is taken over all 
multi-indices with order less than or equal ton, the degree of the polynomial. 

EXAMPLE 1. Given f(x 1 , x 2 ) =xi+ 3x 1 x~- 3xi- 3x~ + 4. Write fin the 
form of Equation (7.19). 

Solution. We set rx = (rx1 , rx2) and consider multi-indices with lrxl ~ 3 since the 
polynomial is of degree 3. Then 

where 
c30 = 1, c12 = 3, 

c11 = 0, c02 = -3, c10 = c01 = 0, c00 = 4. D 

Lemma 7.1 (Binomial theorem). Suppose that x, y E IR 1 and n is a positive 
integer. Then 

( ) n _ f n! n-j j 
X + y - .L.. "I( _ ")I X y . 

1=o J. n J . 

The proof is easily established by induction on n, and we leave the details 
to the reader. 

The Multinomial theorem, an extension to several variables of the binomial 
theorem, is essential for the development of the Taylor expansion for functions 
of several variables. 
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Lemma 7.2 (Multinomial theorem). Suppose that x = (x~> x2, ... , xN) is an 
element of IRN and that n is any positive integer. Then 

nl 
(xl + x2 + ... + xN)" = L ~x'" 

l«i=n ex! 

~ n! .. .. 
- £.... I IXl' ... XNN• 

«, + ... +«N=n (Xl. • • • (XN• 

(7.20) 

PROOF. We fix the integer nand prove Equation (7.20) by induction on the 
integer N. For N = 1, Equation (7.20) becomes 

which is true. Now, suppose that Equation (7.20) holds for N = k. We shall 
prove that it also holds for N = k + 1. To do this, we first observe that the 
binomial theorem yields 

(x1 + x2 + · · · + xk+1)" = [(x1 + · · · + xk) + xk+1]" 

~ n! . . 
= £.... •1( .) 1xl+1(X1 + ··· + xkr-1. (7.21) 

i=O 1· n- 1 . 

From the induction hypothesis, the right side of Equation (7.21) becomes 

II I ( _ ')I 
~ ~ n. n 1. .. .. i 
!-- £.... . 'I( -")I I lxl' ... xkkxk+l· 

1=0 «,+···+«k=n-J1· n 1 · CX1····cxk. 
(7.22) 

Setting cxk+l = j and cancelling (n- j)!, we find that Expression (7.22) 
becomes 

This last expression is the right side of Equation (7.20) with k replaced by 
k + 1. The induction is established. D 

Let G be an open set in IRN and letf: G-+ IR1 be a function with continuous 
second derivatives in G. We know that in the computation of second deriva
tives the order of differentiation may be interchanged. That is, J.i,J = !,1,i for 
all i and j. We may also write f.i.J = DlDd] and, using the symbol o for 
composite maps as described in Theorem 6.40, we have for two differential 
maps Di and D1 

Di o D1(f) = D;[D1f]. 

Iff has third and higher order derivatives, then 

D; o D1 o Dk(f) = Di{D1[Dk(f)]}, 

D; o D1 o Dt o D1(f) = D;(D1{Dt[D1(f)]} ), 

and so on. We shall usually omit the symbol o, especially when the order of 
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differentiation may be interchanged. A linear combination of differential maps 
is called a differential operator. If a, b, c, d are constants, the combination 

aD1D2D3 + bD2D1D1 + cD1D3 + dD2 

is an example of a differential operator. A differential operator acts on func
tions which are assumed to have continuous derivatives up to the required 
order on a fixed open set in IRN. With any polynomial in IRN of the form 

P(el,e2•····eN)= L c,.e .. , 
l11l.;n 

we associate the differential operator 

P(D1 , D2 , .•• , DN) = L c,.D11• 

l11l.;n 

(7.23) 

(7.24) 

If oc is the multi-index (oc1, oc2, .•• , ocN), then D11 is the operator given by 
D11 = D~· Di2 ••• Dil· That is, D11f means that f is first differentiated with respect 
to xN exactly ocN times; then it is differentiated ocN-l times with respect to xN-1> 

and so on until all differentiations of f are completed. The order of the 
differential operator (7.24) is the degree of the polynomial (7.23). 

By induction it is easy to see that every differential operator consisting of 
a linear combination of differential maps is of the form (7.24). The differentia
tions may be performed in any order. The polynomial P(el> e2, ... ,eN) in 
(7.23) is called the auxiliary polynomial of the operator (7.24). We illustrate 
the use of the notation with an example. 

EXAMPLE 2. Suppose that f: IR2 -.!R1 is given by f(x 1 , x2 ) = x1e"'' cos x 2 • 

Let P(e1 , e2) = et + 2eie~ + et be a given polynomial. Show that 
P(D1 , D2 )f = 0. 

Solution. We have 

D1(f) = aaf = (x1 + l)e"'• cos x 2 ; 
xl 

= (x1 + 2)e"'' cos x 2 ; 

v:(f) = (xl + 3)e"'' cos x2; 

D2(f) = -x1e"'• sin x 2 ; 

Di(f) = -x1 e"'' cos x 2 ; 

Di(f) = x1e"'' cos x 2 • 

Therefore, 
D 

We now introduce several definitions and simple facts concerning the 
algebra of linear operators with the purpose of applying them to linear 
differential operators as defined by (7.24). These operators are useful in the 
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proof of Taylor's theorem and the second derivative test for maxima and 
minima of functions of several variables (Theorem 7.8 below). 

Definitions. Let L 1, L2 , ••• , Lt be differential operators, each of which has the 
same domain and range in a Euclidean space. Let c 1 , c2 , ... , ck be real numbers. 
The operator denoted by c1L 1 + c2 L 2 + · · · + ckLk is the operator L such 
that L(f) = c1L 1(f) + · · · + ctLt(f) for all fin the domain of the L1, i = 
1, 2, ... , k. The operator L 1 L 2 is the operator L such that L(f) = L 1 {L2(f)} 
for all fin the domain of L 2 and with the function L2(f) in the domain of L 1 • 

The operators L 1L2L3 , L 1L2L3 L4 , etc., are defined similarly. 

Lemma 7.3. Suppose that L 1 , L 2 , ••• , Lk are differential operators and c1 , 

c2 , ••. , Ct are real numbers. Let P;(~) be the auxiliary polynomial for Li> 
i = 1, 2, ... , k. Then 

(i) the auxiliary polynomial P(~) for c1L 1 + c2 L 2 + · · · + CtLt is P(~) = 

c1 Pt(~) + · · · + ckPk(~); 
(ii) the auxiliary polynomial for L 1 L 2 ••• Lt is P1 (~)P2 (~) ... Pt(~). 

PROOF. Let n be the maximum order of all the operators L1• Then we may write 

Li= L bi<ZD", 
1«1 .... 

i=1,2, ... ,k. 

(If some of the L1 are of order less than n, then the b1" are zero for I oc I beyond 
the order of the operator.) We have 

k 

c1L 1 + · · · + ctLt = L ci L bi"D", 
j=l 1«1 .... 

and the auxiliary polynomial for L is 

k k 

1: cj 1: bj"~" = 1: cjPj(~). 
j=l 1«1"" j=l 

We establish Part (ii) for two operators, the general result following by 
induction. Let 

Then 

L 1 = L c"D", 
l«l"m 

L2 = L dpDP, 
IPI"" 

L1(f) = L 1 [L2(f)] = L c"D" L dpDP 
l«l"m IPI"" 

P1 (~) = L L c"dp~"~P = P1(~)P2(~). 
l«l"m IPI"" 

D 

Definitions. Let f: ~N-+ ~1 be a given function, and suppose a e ~N and 
b e ~N with I b I = 1. The directional derivative off in the direction b at the point 
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0 

Figure 7.2. The line joining a and a + b. 

a, denoted by dbf(a), is the number defined by 

d f( ) _ 1. f(a + tb) - f(a) 
b a-1m . 

t .... O t 
(7.25) 

Note that the difference quotient in the definition is taken by subtracting 
f(a) from the value off taken on the line segment in RN joining a and a + b. 
See Figure 7 .2. The second directional derivative off in the direction b at the 
point a is simply db[dd] (a) and it is denoted by (db)2f(a). The nth directional 
derivative, (db)"f(a), is defined similarly. 

Lemma 7.4. Suppose that f: RN-+ R1 and all its partial derivatives up to and 
including order n are continuous in a ball B(a, r). Then 

(dbff(a) = L n; b«D"j(a). 
l«l=n 01:. 

Symbolically, the nth directional derivative is written 

(db)n = L n;b«D«. 
l«l=n 01:. 

(7.26) 

PROOF. For n = 1, we set tP(t) = f(a + tb). Then dbf(a) = tP'(O). We use the 
Chain rule to compute tP' and, denoting b = (b1, b2 , • •• , bN), we find 

dbf(a) = b1Dd(a) + · · · + bNDNf(a). 

That is, db = b1 D1 + · · · + bNDN. By induction, we obtain 

(d:)f = (b1D1 + ... + bNDN)"f. 

Using the Multinomial theorem (Lemma 7.2), we get Equation (7.26). 0 

Theorem 7.6 (Taylor's theorem for functions from R1 to R1 ). Suppose that 
f: R1 to R1 and all derivatives off up to and including order n + 1 are 
continuous on an interval I= {x: lx- al < r}. Then for each x on I, there is a 
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number ~ on the open interval between a and x such that 

n 1 1 
f(x) = I - J<k)(a)(x- 4 + pn+l)(~Hx- ar1. (7.27) 

k;o k! (n + 1)! 

The proof of Theorem 7.6 makes use of Rolle's theorem (Theorem 4.11) 
and is deferred until Chapter 9. See Theorem 9.24. Observe that for n = 0, 
Formula (7.27) is the Mean-value theorem. (See Problem 6 at the end of this 
section and the hint given there.) The last term in (7.27) is called the remainder. 

We now use Theorem 7.6 to establish Taylor's theorem for functions from 
a domain in !RN to !R 1. 

Theorem 7.7 (Taylor's theorem with remainder). Suppose that f: !RN ~ IR 1 and 
all its partial derivatives up to and including order n + 1 are continuous on a 
ball B(a, r). Then for each x in B(a, r), there is a point ~ on the straight line 
segment from a to x such that 

1 1 
f(x) = L -,-D"f(a)(x- a)"+ L -,-D"f(~)(x- a)". (7.28) 

lal<>n a. lal;n+l ex. 

PROOF. If x =a the result is obvious. If x #a, define b = (b1, b2 , ••• , bN) by 

b.= X;- a; 
' lx- al· 

We note that lbl = 1 and define r/J(t) = f(a + tb). We observe that r/J(O) = f(a) 
and r/J(Ix- al) = f(a + lx- al· b)= f(x). By induction, it follows that r/J has 
continuous derivatives up to and including order n + 1 since f does. Now we 
apply Taylor's theorem (Theorem 7.6) to r/J, a function of one variable. Then 

r/J(t) = .f. ~ rfJUl(O)ti + 1 I ¢J<n+1)('r)t"+1, 
1;o J. (n + 1). 

(7.29) 

where r is between 0 and t. From Lemma 7.4, it is clear that 

"I 
rfJW(t) = (dbYf(a + tb) = L. 1; b"D".f(a + tb). (7.30) 

lai;J ex. 

We set t = lx - al in Equation (7.29), getting 

r/J(Ix- al) = f(x) = I ~rjJW(O)Ix- ali+ 1 ¢J<n+l)(r)lx- al"+1. 
i;O J! (n + 1)! 

Inserting Equation (7.30) into this expression, we find 

f(x) = .L --:-,- L. 1; b"D"f(a)lx- ali n 1 [ "I J 
J;O}· lai;Jex. 

+ 1 
1 [ L (n + 1 

1)! b"D"(~)Ix- al"+l]. 
(n + 1). lal;n+l ex. 
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By definition we have xi- ai = bdx- aj, and so (x- a)«= b«Jx- ajl«l. 
Employing this fact in the above expression for f(x), we obtain Equation 
~2~ D 

The last terms in formula (7.28) are known as the remainder. 

For functions from ~1 into ~1 the Second Derivative test is one ofthe most 
useful for identifying the maximum and minimum points on the graph of the 
function. We recall that a function f with two derivatives and with f'(a) = 0 
has a relative maximum at a if its second derivative at a is negative. It has a 
relative minimum at a if f"(a) > 0. If f"(a) = 0, the test fails. With the aid of 
Taylor's theorem for functions from ~N into ~1 we can establish the corre
sponding result for functions of N variables. 

Definitions. Let f: ~N-+ ~1 be given. The function f has a local maximum at 
the value a if and only if there is a ball B(a, r) such that f(x) - f(a) ~ 0 for 
x E B(a, r). The function f has a strict local maximum at a if and only if 
f(x) - f(a) < 0 for x E B(a, r) except for x = a. The corresponding definitions 
for local minimum and strict local minimum reverse the inequality sign. Iff 
has partial derivatives at a, we say that f has a critical point at the value a if 
and only if DJ(a) = 0, i = 1, 2, ... , N. 

Theorem 7.8 (Second derivative test). Suppose that f: ~N-+ ~1 and its partial 
derivatives up to and including order 2 are continuous in a ball B(a, r). Suppose 
that f has a critical point at a. For h = (h1, h2 , .•• , hN), define llf(a, h)= 
f(a + h) - f(a); also define 

1 1 N 
Q(h) = L ----,D«.f(a)h« = 1 -~ DiDif(a)hihi. (7.31) 

1«1=2 (X. 2. 1,]=1 

(a) If Q(h) > 0 for h =F 0, then1 f has a strict local minimum at a. 
(b) If Q(h) < 0 for h =F 0, then f has a strict local maximum at a. 
(c) If Q(h) has a positive maximum and a negative minimum, then llf(a, h) 

changes sign in any ball B(a, p) such that p < r. 

PRooF. We establish Part (a), the proofs of Parts (b) and (c) being similar. 
Taylor's theorem with remainder (Theorem 7.7) for n = 1 and x =a+ his 

1 
f(a +h)= f(a) + L D«J(a)h~~. + L 1 D«J(e)h~~., (7.32) 

1«1=1 1«1=2 oc. 

where e is on the straight line segment connecting a with a + h. Since f 
has a critical point at a, the first sum in Equation (7.32) is zero, and the 

1 If Q is a quadratic form such as Q(h) = L~J=l aiihihJ, then Q is positive definite if and only 
if Q(h) > 0 for all h "# 0. Also, Q is negative definite when - Q is positive definite. 
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second sum may be written 

L1f(a, h)= L AD"l"(a)h'" + L A[D'1(e)- D'1(a)]h'". (7.33) 
1«1=2 0!. 1«1=2 0!. 

Setting lhl2 = h~ + h~ + · · · + h~ and 

e(h) = L A[D'1(e>- D'1(a)J lhh'"12 , 
1«1=2 (X. 

we find from Equation (7.33) 

L1f(a, h) = Q(h) + lhl2e(h). (7.34) 

Because the second partial derivatives off are continuous near a, it follows 
that e(h) -+ 0 as h -+ 0. Also, 

2 ~ hi hj 2 
Q(h) = lhl t,f;t DPJf(a)fhj"fiiT = lhl Qt(h). 

The expression Q1 (h) is continuous for h on the unit sphere in RN. Accord
ing to the hypothesis in Part (a), Q 1, a continuous function, must have a 
positive minimum on the unit sphere which is a closed set. Denote this 
minimum by m. Hence, 

Q(h) ~ lhl2 m for all h. 

Now choose I hi so small that le(h)l < m/2. Inserting the inequalities for Q(h) 
and le(h)l into Equation (7.34), we find 

L1f(a, h)> tlhl 2m 

for lhl sufficiently small and h ¥- 0. We conclude that f has a strict local 
minimum at a. D 

Remarks. The quantity Q given in Expression (7.31) is a quadratic form. In 
linear algebra, we develop the fact that Q is positive definite if and only if the 
matrix (AiJ) = (DPJf(a)) has all positive eigenvalues. Also, Q is negative 
definite when all the eigenvalues of (A1J) are negative. The quadratic form Q 
has a positive maximum and a negative minimum when the matrix has at least 
one positive and at least one negative eigenvalue. It is not necessary to find 
all the eigenvalues in order to determine the properties of Q. It is sufficient to 
"complete the square", as in elementary algebra, to determine which of the 
cases (a), (b), or (c) of Theorem 7.8 prevails. 

PROBLEMS 

1. Given f: IR3 -+ IR1 defined by 

f(x1, x2, x3) =(xi+ x~ + x~)-112, 

Show that f satisfies the equation 

/.1,1 + /.2,2 + /.3,3 = 0. 
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2. Given f: IR2 -+ IR 1 defined by f(x 1 , x2) = xt- 2x~x2 - x 1 x2 and given L 1(D) = 

2D1 - 3D2 , L2(D) = D1D2, show that (L1L2)(/) = (L2Ld(f). 

3. Given f: IR2 -+ IR 1 defined by 

Show that / 1, 2 (0, 0) = -1 and / 2 , 1(0, 0) = 1. 

4. Write out the proof of Theorem 7.5 for a function f from IRN into IR1. 

5. Prove the Binomial theorem (Lemma 7.1). 

6. Establish the Taylor expansion for functions from IR 1 into IR 1 (Theorem 7.6). [Hint: 
Make use of the function 

f'(t)(x - t) J<"1(t)(x - t)" (x - t)"+1 
q>(t) = f(x)- f(t)- - · · · - - R.(a, x).,---~= 

1! n! (x - a)"+1 

where R.(a, x) is the remainder in the Taylor expansion of f(x). Note that q>(a) = 
q>(x) = 0.] 

7. Write out explicitly all the terms of the Taylor expansion for a function/: IR 3 -+ IR1 

for the case n = 2. 

8. Find the relative maxima and minima of the function f: IR2 -+ IR 1 given by 

f(x 1 , x2) = x~ + 3x1 x~- 3xf- 3x~ + 4. 

9. Find the critical points of the function f: IR4 -+ IR 1 given by 

f(x 1 , x 2 , x 3 , x4 ) = xf + x~ + x~- xi- 2x1 x2 + 4x1 x3 + 3x1 x4 

- 2x2x4 + 4x1 - 5x2 + 7. 

10. Write out proofs of Parts (b) and (c) of the Second derivative test (Theorem 7.8). 

In each of Problems 11 through 13, determine whether Q: R3 -+ IR 1 is positive 
definite, negative definite, or neither. 

11. Q(x1 , x 2 , x 3 ) = xf + 5x~ + 3x~- 4x1x2 + 2x1x 3 - 2x2x 3 

12. Q(xl> x2 , x 3 ) = xf + 3x~ + x~- 4x1x2 + 2x1 x3 - 6x2 x 3 

13. Q(x1 , x 2 , x 3 ) = -xf- 2x~- 4x~- 2x1x 2 - 2x1 x3 

7.3. The Derivative in IRN 

Each partial derivative of a function f: RN-+ IR 1 is a mapping from RN into 
R 1• This generalization of the ordinary derivative, useful for many purposes, 
is unsatisfactory in that it singles out a particular direction in which the 
differentiation is performed. We now take up another extension of the ordi
nary derivative, one in which the difference quotient tends to a limit as x-+ a 
regardless of the direction of approach. 
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Let A be an open subset of ~N, and suppose that f and g are functions from 
A into ~1 • We denote by d(x, y) the Euclidean distance between two points 
X, yin ~N. 

Definition. The continuous functions f and g are tangent at a point a E A if 
and only if 

lim lf(x) - g(x)l = O. 
x-+a d(x, a) 
xi' a 

We note that if two functions are tangent at a point a then, necessarily, 
f(a) = g(a). Also, iff, g, and hare functions with f and g tangent at a and with 
g and h tangent at a, then we verify simply that f and h are tangent at a. To 
see this, observe that 

lf(x) - h(x)l lf(x) - g(x)l lg(x) - h(x)l 
----::-c-----:-- ~ + . 

d(x, a) d(x, a) d(x, a) 

As x --+ a, the right side tends to 0 and hence so must the left side. 
Let L: ~N--+ ~ 1 be a linear function; that is, Lis of the form 

N 

L(x) = b0 + L bkxk, 
k=1 

where b0 , b1, •.. , bN are real numbers. It may happen that a function f is 
tangent to a linear function at a point a. If so, this linear function is unique, 
as we now show. 

Theorem 7.9. Suppose that L 1 and L 2 are linear functions tangent to a function 
fat a point a. Then L 1 = L 2 • 

PROOF. It is convenient to write the linear functions L 1 and L 2 in the form 

N N 

L 1 (x) = c0 + L ck(xk- ak), L 2 (x) = c~ + L cl.(xk - ak). 
k=1 k=1 

From the discussion above, it follows that L 1(a) = L 2 (a) = f(a). Hence, 
c0 = c~. Also, for every e > 0, we have 

(7.35) 

for all x sufficiently close to a. For z E ~N, we use the notation liz II = d(z, 0). 
Now, with () a real number, choose 

(jz 
x-a=w· 

Then, for sufficiently smalllbl, we find from Inequality (7.35) that 

I N , (jzk I liz II 
kf:1 (ck- ck)fzlf ~ elbl W = elbl. 



190 7. Differentiation in IRN 

Therefore, 

and since this inequality holds for all positive 6, we must have ck = clc, 
k = 1, 2, ... , N. D 

Definitions. Suppose that f: A-+ IR 1 is given, where A is an open set in IRN 
containing the point a. The function f is differentiable at a if and only if there 
is a linear function L(x) = f(a) + L:=l ck(xk - ad which is tangent to fat a. 
A function f is differentiable on a set A in IRN if and only if it is differentiable 
at each point of A. The function L is called the tangent linear function to f at 
the point a. The function L is also called the derivative or total derivative off 
at a. We use the symbol f'(a) for the derivative off at the point a in IRN. 

Theorem 7.10. Iff is differentiable at a point a, then f is continuous at a. 

The proof is left to the reader. 

As we saw in Section 7.1, a function/may have partial derivatives without 
being continuous. An example of such a function is given in Problem 6 at the 
end of Section 7.1. Theorem 7.10 suggests that differentiability is a stronger 
condition than the existence of partial derivatives. The next theorem verifies 
this point. 

Theorem 7.11. Iff is differentiable at a point a, then all first partial derivatives 
off exist at a. 

PROOF. Let L be the tangent linear function to fat a. We write 

N 

L(x) = f(a) + L ck(xk - ak). 
k=l 

From the definition of derivative, it follows that 

1
/(x)- f(a)- I ck(xk- ak)l 

lim k=l = 0. 
x-+a d(x, a) 

(7.36) 

x;fa 

For x we choose the element a + h where h = (0, 0, ... , 0, hi, 0, ... , 0). Then 
Equation (7.36) becomes 

lim if(a + h) - f(a) - cihd = O; 
h;-+0 lhd 
h;;fO 
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we may therefore write 

l
f(a +h)- f(a) _ ·I= (h·) 

hi C, 8 I' 
(7.37) 

where e(h1) -+ 0 as h1 -+ 0. 
We recognize the left side of Equation (7.37) as the expression used in the 

definition of f,;(a). In fact, we conclude that 

C· = f·(a) 
l ,l ' 

i = 1, 2, ... , N. 0 

A partial converse of Theorem 7.11 is also true. 

Theorem 7.12. Suppose that f.;, i = 1, 2, ... , N are continuous at a point a. Then 
f is differentiable at a. 

This result is most easily established by means of the Taylor expansion 
with remainder (Theorem 7. 7) with n = 0. We leave the details for the reader. 

Definitions. Suppose that f has all first partial derivatives at a point a in IRN. 
The gradient off is the element in IRN whose components are 

(f.l (a), f.2(a), ... , f.N(a)). 

We denote the gradient off by Vf or grad f 
Suppose that A is a subset of IRN and f: A-+ IR 1 is differentiable on A. Let 

h = (h1 , h2 , ••• , hN) be an element of IRN. We define the total differential df as 
that function from A x IRN -+ IR 1, given by the formula 

N 

df(x, h) = L f.k(x)hk. (7.38) 
k=l 

Using the inner or dot product notation for elements in IRN, we may also write 

df(x, h) = Vf(x) ·h. 

Remarks. Equation (7.38) shows that the total differential (also called the 
differential) of a function f is linear in h and bears a close resemblance to the 
tangent linear function. The differential vanishes when x = a and h = 0, while 
the tangent linear function has the value f(a) at the corresponding point. The 
Chain rule (Theorem 7.3) takes a natural form for differentiable functions, as 
the following theorem shows. 

Theorem 7.13 (Chain rule). Suppose that each of the functions g1, g2 , ••• , gN is 
a mapping from IRM into IR 1 and that each g1 is differentiable at a point 
b = (b1 , b2 , •.• , bM). Suppose that f: IRN-+ IR 1 is differentiable at the point a= 
(g1(b), g2 (b), ... , gN(b)). Form the function 

H(x) = f[g 1(x), g2 (x), ... , gN(x)]. 
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Then H is differentiable at b and 

N 

dH(b, h) = L j;[g(b)] dgi(b, h). 
i:l 

The proof is similar to the proof of Theorem 7 .3, and we leave it to the reader. 

PROBLEMS 

1. Let f and g be functions from IRN into IR 1 • Show that iff and g are differentiable 
at a point a, then f + g is differentiable at a. Also, rx.f is differentiable at a for every 
real number rx.. 

2. Let f: IR 3 -> IR1 be given by 

Find Vf and df(x, h). 

3. Let f and g be functions from IRN into IR 1 • Show that iff and g are differentiable, 
and rx. and p are numbers, then 

V(rx.f + pg) = rx.Vf + pVg, 

V(fg) = fVg + gVf 

4. Let f: IRN-> IR 1 and g: IR 1 -> IR 1 be given. Assume that the range off is contained 
in the domain of g. Show that, in such a case, 

V[g(f)] = g'Vf 

5. Show that iff is differentiable at a point a, then it is continuous at a. (Theorem 7.10.) 

6. Suppose that all first partial derivatives of a function f: IRN .... IR1 are continuous 
at a point a. Show that f is differentiable at a. (Theorem 7.12.) 

7. Given f: IRN-> IR 1 and an element be IRN with lib II = 1. The directional derivative 
off in the direction b at the point a, denoted by d&f, is the function from [RN into 
IR 1 defined by 

d f . f(a + tb) - f(a) 
b =hm . 

t-o t 

Suppose that all first partial derivatives off are continuous at a point a. Show 
that the directional derivative off in every direction exists at a and that 

(d&f)(a) = Vf(a) ·b. 

8. Suppose that A is an open set in IRN. Let f: IRN .... IR 1 be differentiable at each point 
of A. Assume that the derivative off, a mapping from A into IR 1, is also differentia
ble at each point of A. Then show that all second partial derivatives off exist at 
each point of A and that 

for all i, j = 1, 2, ... , N. 

9. Prove Theorem 7.13. 
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10. Suppose f and g are functions from IRN into IRM. We denote by dN and dM Euclidean 
distance in IRN and IRM, respectively. We say that f and g are tangent at a point 
a E IRN if and only if 

lim dM(f(x), g(x)) = O. 
x-+a dN(x, a) 

Show that iff is tangent to a linear function L: IRN --. IRM at a point a, then there 
can be only one such. [Hint: Write L as a system of linear equations and follow 
the proof of Theorem 7.9.] 

11. (a) Let f: IRN--. IRM be given. Using the result of Problem 10, define the derivative 
off at a point a. 

(b) Let the components off be denoted by fl, f 2, ... ,JM. Iff is differentiable at 
a, show that all partial derivatives of Jl, jl, ... , JM exist at the point a. 

12. Let L: IRN --.IRM be a linear function. Show that L = (L 1 , L 2 , ••• , LM) where Li = 
c6 + Lf=tcixk, j = 1, 2, ... , M. 

13. Let A be a closed region in IRN. Suppose thatf: IRN--. IR1 is differentiable in a region 
containing A and that /has a maximum value at a point a E oA. Show that d.f ~ 0 
at the point a where n is the inward pointing unit normal to oA at the point a. 



CHAPTER 8 

Integration in ~N 

8.1. Volume in IRN 

In order to construct the theory of Riemann integration in IRN, we need to 
develop first a theory of volume for sets of points in IRN. This development is 
a straightforward generalization of the theory of area (Jordan content) given 
in Section 5.4. We shall outline the main steps of the the theory and leave the 
proofs of the theorems to the reader. We first recall the definitions of open 
and closed cells given earlier in Section 6.3. 

Definitions. Let a= (a1 , a2 , ... , aN) and b = (b1 , b2 , ... , bN) be points in IRN 
with a; < b; for i = 1, 2, ... , N. The set R = 1{ x : a; < X; < b;, i = 1, 2, ... , N} 
is called an open cell in IRN. A closed cell is the set { x : a; ~ X; ~ b;, i = 1, 2, ... , 
N}. If the relations 

b1 - a 1 = b2 - a2 = .. · = b" - a" 

hold, then the cell is called a hypercube. Note that for N = 2 an open cell is 
the interior of a rectangle, and for N = 3 an open cell is the interior of a 
rectangular parallelepiped. For N = 2 and 3, hypercubes are squares and 
cubes, respectively. 

Paralleling the theory given for N = 2, we divide all of IRN into closed 
hypercubes given by the inequalities 

k;- 1 k; 
--::>:::x.::>:::-2" ~ • ~ 2"' i = 1, 2, ... , N, (8.1) 

where the k;, i = 1, 2, ... , N, are integers. As we shall see below, the volume 
of each such hypercube is 1/2"N. 

194 
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LetS be a bounded set in IRN. We wish to define the volume of S. Suppose 
that Sis contained in an open cell R = { x : A; < X; < B;, i = 1, 2, ... , N} where, 
for convenience, A1 , ..• , AN, B1 , ... , BN are integers. R denotes the closed cell 
having the same "sides" as R. 

Definitions. Suppose that IRN is divided into hypercubes as given by Expression 
(8.1). Such a system of hypercubes divides IRN into a grid. Each such hypercube 
entirely contained in the point set S is called an inner cube for S of the nth 
grid. Hypercubes which contain at least one point of S but are not inner cubes 
are called boundary cubes. Hypercubes which contain no points of S are called 
exterior cubes. 

A hypercube which has each edge of length 1 contains (2n)N = 2Nn hyper
cubes of the nth grid. Therefore the closed cell R containing S has 

2Nn(B1 - A 1}(Bz- Az} ... (BN- AN) 

hypercubes of the nth grid. 
We define the quantities 

v,.- (S) = 2-Nn times the number of inner cubes for S, 
v,.+(S) = v,.-(S) + 2-Nn times the number of boundary cubes for S. 

The following lemma is the direct analog of Lemma 5.3. 

Lemma 8.1. Let R = {x: A;< X;< B;, i = 1, 2, ... , N} be an open cell where 
A;, B;, i = 1, 2, ... , N, are integers. Suppose that S c R. Then, for every 
subdivision ofiRN into hypercubes given by (8.1), all inner cubes and all boundary 
cubes of S are contained in R. 

Theorem 8.1. Suppose that RandS are as in Lemma 8.1. Then 

(i) o:::;; v,.-(s):::;; v,.+(s):::;; (B1 - A 1 )(B2 - A2 ) ••• (BN- AN); 
(ii) v,.- (S) :::;; V,.~1 (S) for each n; 

(iii) V,.~ 1 (S) :::;; v,.+ (S) for each n; 
(iv) the sequences {V,.-(S)}, {V,.+(S)} tend to limits as n--. oo. If the limits 

are denoted by 

v- (S) = lim v,.- (S) and v+ (S) = lim v,.+ (S), 

then 
N 

0:::;; v-(S):::;; v+(S):::;; TI (B;- A;); 
i=l 

(v) the quantities v,.- (S), v,.+ (S), v- (S), v+ (S) are independent of R. 

Note that Theorem 5.19 is exactly the same as Theorem 8.1 for the case 
N = 2. The proof of Theorem 8.1 parallels that of Theorem 5.19 and is left to 
the reader. 
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Definitions. The number v- (S) is called the inner volume of S and the number 
v+ (S) is called the outer volume of S. A set of points S is said to have volume 
if and only if v- (S) = v+ (S). The volume of S, denoted V(S) (sometimes 
denoted VN(S) if we wish to emphasize the number of dimensions) is this 
common value. A set of points in IRN which has a volume is called a figure. 

Theorem 8.2. Let sl and s2 be bounded sets in RN. Then 

(i) if S1 is contained in S2 , then v- (S1 ) ~ v- (S2) and v+ (Stl ~ v+ (S2); 
(ii) v+ (Stu S2) ~ v+ (St) + v+ (S2); 

(iii) if sl and s2 have no common interior points, then 

v- (St u S2) ~ v- (St) + v- (S2); 

(iv) if S1 and S2 are figures and if S1 and S2 have no common interior points, 
then sl u s2 is a figure and 

V(S1 u S2) = V(S1 ) + V(S2); 

(v) the open cell R = {x: a1 < x1 < b1, i = 1, 2, ... , N} is a figure and 
N 

V(R) = 0 (b1 - a1). 
i=l 

Also, R is a figure and V(R) = V(R). 

The statement of Theorem 8.2 is the same as Theorem 5.20 for N = 2, and 
the proofs are similar. 

Theorem 8.3. Suppose that sl and s2 are figures in RN. Then sl u s2 is a figure. 
Also, S1 n S2 and S1 - S2 are figures. The boundary of any figure has volume 
zero. 

The proof of Theorem 8.3 follows in precise detail the proof of Theorem 
5.21 and is left to the reader. Theorems 8.2 and 8.3 are easily extended to the 
case where sl' S2, ... ' sk is any finite collection of sets in IRN. 

PROBLEMS 

1. Give an example of a bounded set s in IRN for which v- (S) < v+ (S). 

2. Consider the open cell R = {x: a1 < x1 < b1} in which a 1 , a2 , •• • , aN, b1 , b2 , ••• , bN 
are irrational numbers. Show that v,.- (R) < v,.+ (R) for every n. 

3. Prove Lemma 8.1. Is the same result true ifthe {A1} and {B1} are rational numbers 
provided that the grid given by the inequalities (8.1) has n sufficiently large? 

4. Give an example of a nonempty bounded set S in IRN with the property that 
v,.- (S) = v,.+ (S) for every n. 

5. Prove Theorem 8.1. 
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6. State and prove for sets in IRN the analog of Lemma 5.3 of Section 5.4. 

7. Give an example oftwo sets sl and s2 in IRN such that neither sl nor s2 is a figure 
but S1 u S2 is a figure and S1 n S2 is a figure. Is it possible that S1 - S2 is a figure? 

8. Prove Theorem 8.2. 

9. Prove Theorem 8.3. 

10. Show that if Sl, S2, ... , sk are figures in IRN, then sl u s2 u ... u sk and sl n s2 n 
... n sk are figures. If sl, ... , sk, ... is an infinite collection of figures, is it true that 
U::';1 s. is a figure? 

8.2. The Darboux Integral in ~N 

The development of the theory of integration in ~N for N ~ 2 parallels the 
one-dimensional case given in Section 5.1. For functions defined on an interval 
I in ~1, we formed upper and lower sums by dividing I into a number of 
subintervals. In ~N we begin with a figure F, i.e., a bounded region which has 
volume and, in order to form upper and lower sums, we divide F into a number 
of subfigures. These subfigures are the generalizations of the subintervals in 
~1, and the limits of the upper and lower sums as the number of subfigures 
tends to infinity yield upper and lower integrals. 

Definition. Let F be a bounded set in ~N which is a figure. A subdivision of F 
is a finite collection of figures, {F1, F2 , ••• , F11 }, no two of which have common 
interior points and whose union is F. That is, 

F = F1 u F2 u · · · u F11 , Int(F;) n Int(Fj) = 0 for i =F j. 

We denote such a subdivision by the single letter~-

Let D be a set in ~N containing F and suppose that f: D--+ ~1 is bounded 
on F. Let ~ be a subdivision ofF and set 

Mi = sup f on F;, mi = inf f on Fi. 

Definitions. The upper sum off with respect to the subdivision ~ is defined by 
the formula 

II 

s+ (f, ~) = I Mi V(Fi), 
j;l 

where V(Fi) is the volume in ~N of the figure Fi. Similarly, the lower sum off 
is defined by 

II 

s_ (f, ~) = L mi V(F;). 
j;l 

Let~ be a subdivision of a figure F. Then~', another subdivision ofF, is 
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F 

A,: a subdivision ofF A2 : a subdivision of F 

F 

A': the common refinement of A1 and A2 

Figure 8.1 

called a refinement of L\ if and only if every figure of L\' is entirely contained 
in one of the figures of L\. Suppose that L\1 = {F1, F2 , ••• , Fn} and L\2 = { G1, 
G2 , .•• , Gm} are two subdivisions of F. We say that L\', the subdivision consist
ing of all nonempty figures of the form Fi n Gi, i = 1, 2, ... , n, j = 1, 2, ... , m, 
is the common refmement of L\1 and L\2 • Note that L\' is a refinement of both 
L\1 and L\2 (see Figure 8.1). 

Theorem 8.4. Let F be a figure in ~Nand suppose that f: F-+ ~1 is bounded 
on F. 

(a) If m ~ f(x) ~ M for all x e F and if L\ is any subdivision ofF, then 

mV(F) ~ S_(f, L\) ~ s+(J, L\) ~ MV(F). 

(b) If A' is a refinement of L\, then 

s_ (f, L\) ~ s_ (f, L\') and s+ (f, L\') ~ s+ (f, L\). 

(c) If L\1 and L\2 are any two subdivisions ofF, then 

s_ (f. L\d ~ s+ (f. L\2). 

PROOF 
(a) The proof of Part (a) is identical to the proof of Part (a) in Theorem 5.1, 

the same theorem for functions from ~1 into ~1 • 
(b) Let L\' = {F~, ... , F,;.} be a refinement of L\ = {F1 , F2 , ••• , Fn}· We de

note by F~, F2, ... , F~ the figures of L\' contained in F1 • Then, using the symbols 

m1 = inf f in F1 and m~ = inf f in F[, i = 1, 2, ... , k, 

we have immediately m1 ~ m;, i = 1, 2, ... , k, since each F[ is a subset of F1 • 
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Because V(Fd = V(FD + · · · + V(Fk), we have 

m1 V(Fd ::s:;; mJ.(FD + · · · + m1 V(Fk). (8.2) 

The same type of inequality as (8.2) holds for F2 , F3 , ..• , F". Summing these 
inequalities, we get S_ (f, ~) ::s:;; S_ (f, ~'). The proof that s+ (f, ~') ::s:;; s+ (f, ~) 
is similar. 

(c) If ~1 and ~2 are two subdivisions, let~· denote the common refinement. 
Then, from Parts (a) and (b), it follows that 

s_(f, ~1) ::s:;; s_(f, ~') ::s:;; s+(f, ~') ::s:;; s+(f, ~2). o 

Definitions. Let F be a figure in ~Nand suppose that f: F-+ ~1 is bounded 
on F. The upper integral off is defined by 

L f dv = g.I.b. s+ (f. ~). 
where the greatest lower bound is taken over all subdivisions~ of F. The lower 
integral off is L f dV = l.u.b. S_(f, ~). 
where the least upper bound is taken over all possible subdivisions ~ if F. If 

LfdV= LfdV, 

then we say that f is Darboux integrable, or just integrable, on F and we 
designate the common value by 

LfdV. 

When we wish to emphasize that the integral is N-dimensional, we write 

LfdVN. 

The following elementary results for integrals in ~N are the direct analogs 
of the corresponding theorems given in Chapter 5 for functions from ~1 into 
~1 • The proofs are the same except for the necessary alterations from intervals 
in ~ 1 to figures in ~N. 

Theorem 8.5. Let F be a figure in ~N. Let f, f 1 , f 2 be functions from F into ~1 

which are bounded. 

(a) If m ::s:;; f(x) ::s:;; M for x E F, then 

m V(F) ::s:;; L f dV ::s:;; If dV ::s:;; MV(F). 
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(b) If k is a positive number and g = kf, then 
- -t g dV = k t f dV and t g dV = k t f dV. 

If k is negative, then 

tgdV= k tfdV and 

(c) The following inequalities hold: 

L U1 + fz) dV ~ L f1 dV + L fz dV; 

I U1 + fz) dV ~ I f1 dV + I f 2 dV. 

(d) If f 1 (x) ~ f 2 (x) for all x E F, then 
- -t f1 (x) dV ~ t f 2(x) dV, t f1(x) dV ~ t f 2(x) dV. 

- -

(e) Suppose G is another figure in ~N such that F and G have no common interior 
points. Iff is defined and bounded on F u G, then 

I f dV = I f dV + I f dV; 
FuG F G 

- - -

I- f dV = I- f dV + I- f dV. 
FuG F G 

If the functions considered in Theorem 8.5 are Darboux integrable, then 
Formulas (a)-( e) of that theorem are modified as in the Corollary to Theorem 
5.3. 

Theorem 8.6. Let F be a figure in ~Nand suppose that f: F--. ~1 is bounded. 

(a) f is Darboux integrable on F if and only if for each B > 0 there is a 
subdivision .::\ of F such that 

s+ (f, .::\) - s_ (f, .::\) < ~-:. 

(b) Iff is uniformly continuous on F, then f is Darboux integrable on F. 
(c) Iff is Darboux integrable on F, then lfl is also. 
(d) If f 1, f 2 are each Darboux integrable on F, then f 1 · fz is also. 
(e) Iff is Darboux integrable on F and His a figure contained in F, then f is 

Darboux integrable on H. 

The proof of Theorem 8.6 follows the lines of the analogous theorem in ~ 1. 

For positive functions from an interval I in ~1 to ~ 1 , the Darboux integral 
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gives a formula for finding the area under a curve. IfF is a figure in IRN, N ~ 2, 
and iff: F-+ IR 1 is a nonnegative function, then the Darboux integral off 
gives theN + !-dimensional volume "under the hypersurface f" Theorem 8.8 
below states the precise result. (See also Problems 11 and 12 in Section 5.4.) 

The next theorem, which is used in the proof of Theorem 8.8, states that 
the volume of the direct product F x G of two figures F and G is the product 
of the volumes of F and G. This fact generalizes the simple formula which 
states that the volume of a rectangular box in IRN is the product of the lengths 
of the N one-dimensional edges of the box. Similarly, the volume of a right 
circular cylinder in IR 3 is the product of the area of the base (a circular disk 
in IR 2 ) and the height of the cylinder (length in IR 1 of the generator of the 
cylinder). 

Theorem 8.7. Let F be a figure in IRN and G a figure in IRM. Form the set Bin 
IRN+M given by B = { (x, y): x E F, y E G}. Then B is a figure and 

VN+M(B) = VN(F)· VM(G). (8.3) 

SKETCH OF PRooF. Divide the space IRN+M into hypercubes of side 2-". Then 
F is divided into hypercubes (N -dimensional) and G is divided into hypercubes 
(M -dimensional). Each inner hypercube of B is the direct product of an inner 
hypercube ofF and one of G. Thus the totality of inner hypercubes of B is the 
product of the number of inner hypercubes of F with the number of inner 
hypercubes of G. Thus we have 

v,.-(B) = v,.-(F)· v,.-(G). 

Letting n -+ oo, we find v- (B) = v- (F) v- (G). A similar argument holds for 
outer volume. Since F and G are figures, the result follows. D 

Theorem 8.8. Let F be a figure in IRN and suppose that f: F-+ IR 1 is bounded 
on F. Let c be a constant such that c < f(x) for all x E F. Define the sets in IRN+l 

(a) Then 

G1 = { (x, y): x E F, y E IR 1 and c ~ y < f(x)}, 

G2 ={(x,y):xEF, yEIR 1 and c~y~f(x)}. 

L [f(x)- c] dVN = vN++1 (G2 ) ~ v;+1 (G1 ). 

(b) Suppose that f and g: F-+ R 1 are integrable on F and that f(x) ~ g(x) for 
all x E F. Define the set in IRN+l 

G= {(x,y):xEF and f(x)~y~g(x)}. 
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Figure 8.2. A set Gin IRN+l. 

Then G is a figure in IRN+l and 

VN+l(G) = L [g(x)- f(x)] dVN. 

PROOF. Since G2 ::J G1 , the inequalities in Part (a) are immediate. The remain
der of Part (a) follows from the definition of upper and lower Darboux 
integrals and the definition of inner and outer volume in IRN+l. 

Theorem 8. 7 implies the result in Part (b) since each element of volume in 
VN+1 (G) is the product of anN-dimensional hypercube and a one-dimensional 
length (see Figure 8.2). D 

PROBLEMS 

1. Let F be a figure in IRN. Give an example of a function f: F--+ IRN such that f is 

bounded on F and IFf dV # JFI dV. 

2. Let F be a figure in IRN and suppose that f: F--+ IR1 is continuous on F. Let L\ be 
a subdivision of F. Suppose that S_ (f, L\) = S_ (f, L\') for every refinement L\' of L\. 
What can be concluded about the function f? 

3. Write a proof of Theorem 8.4, Part (a). 

4. Suppose that F is a figure in IRN and that f: F--+ IR1 is uniformly continuous on 
F. In IRN+l define the set A= {(x, y): x e F, y = f(x)}. Show that VN+ 1(A) = 0. 

5. Prove the analog of Lemma 5.1 for functions f from IRN into IR 1. 

6. Suppose that F is a figure in IRN and that f is integrable over F. Show that 

II f(x) dVI ~ L lf(x)l dV. 
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7. Prove Theorem 8.5. 

8. (a) Define 

F = {(x1 , x2): 0 ~xi+ x~ ~ 1 }, G = {(x3 , x4 ): 0 ~ x3 ~ 1, 0 ~ x4 ~ 1 }. 

Define in IR4 the set B = F x G. Show how Theorem 8.7 can be used to find 
V(B). 

(b) Let F1 be the unit ball in IRM and G1 the unit hypercube in IRN. Find VM+N(B) 
where B = F1 x G1 • 

9. (a) Let F be a figure in IRN and suppose that f: F-+ IR 1 is uniformly continuous 
on F. Show that f is Darboux integrable on F (Theorem 8.6, Part (b)). 

(b) Prove Theorem 8.6, Part (c). 
(c) Prove Theorem 8.6, Part (d). 
(d) Prove Theorem 8.6, Part (e). 

10. Let F be a figure in IRN with V(F) > 0 and suppose that f: F-+ IR 1 is continuous 
on F. Suppose that for every continuous function g: F-+ IR1 we have JF fg dV = 0. 
Prove that f = 0 on F. 

11. Write a complete proof of Theorem 8.7. 

12. Let F be a figure and suppose that f: F-+ IR 1 is integrable on F but not nonnega
tive. Interpret geometrically JFf dV and JF 1!1 dV. 

13. (a) Write a complete proof of Theorem 8.8(a). 
(b) Write a complete proof of Theorem 8.8(b). 

14. Use Formula (8.3) of Theorem 8. 7 to find the volume in IR 5 of the figure 

8.3. The Riemann Integral in ~N 

The method of extending the Riemann integral from IR 1 to JRN is similar to 
the extension of the Darboux integral described in Section 8.2. 

Definitions. Let A be a set in a metric space S with metric d. We define the 
diameter of A as the sup d(x, y) where the supremum is taken over all x, y in 
A. The notation diam A is used for the diameter of A. 

Suppose that F is a figure in JRN and that A= {F1 , F2, •.. , Fn} is a sub
division of F. The mesh of A, denoted IIAII, is the maximum of the diameters 
of F1o F2 , ••• , Fn. 

Definition. Let f be a function from F, a figure in JRN, into IR 1• Then f is 
Riemann integrable on F if and only if there is a number L with the following 
property: for each e > 0 there is a () > 0 such that if A is any subdivision ofF 
with II All <(),and xi e Fi, i = 1, 2, ... , n, then 

I it /(xi) VN(fi)- Ll <e. 
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This inequality must hold no matter how the xi are chosen in the Pi. The 
number L is called the Riemann integral off over F, and we use the symbol 

LfdV 
for this value. 

Theorem 8.9. The Riemann integral of a function is unique. 

The proof is a simple consequence of the theorem on uniqueness of limits 
(Theorem 2.1) and is left to the reader. 

Definition. A figure Fin RN is regular if and only if for every e > 0, F possesses 
a subdivision {F1 , F2 , ••• , Fn} with mesh II All < e and such that VN(F1) > 0, 
i = 1, 2, ... , n. 

Remarks. We recall that in R1 the Riemann integral of a function f is 
unaffected if the value off is changed at a finite number of points. Similarly, 
in RN the Riemann integral of a function f may be unaffected if the value of 
f is changed on certain sets which have N-dimensional volume zero. For 
example, consider the figure F consisting of the disk in R2 with a protruding 
line segment, as shown in Figure 8.3. The integral of a function f over F is 
unaffected by a change in the value off on this protruding line segment. The 
figure F is not regular since a subdivision with mesh size smaller than the 
length of the protruding line segment must have at least one Pi with zero 
2-dimensional area. For regular figures we have the following analog of 
Theorem 5.10. 

Theorem 8.10. Let F be a regular figure in RN and suppose that f: F-+ R1 is 
Riemann integrable on F. Then f is bounded on F. 

PRooF. Let L be the Riemann integral off on F. From the definition of the 
integral, there is a {J > 0 such that for any subdivision {Ph F2 , ••• , Fn} with 
mesh IIAII < {J and for any xi e F;, we have (if we take e = 1) 

lit f(xi)V(Fi)- Ll < 1. 

Figure 8.3. F includes a protruding line segment. 
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Therefore, 

I 1t f(x 1) V(F1) I ~ 1 + ILl. (8.4) 

Suppose that {F1 , F2 , ••• , Fn} is a particular subdivision in which V(F1) > 0 
for every i. Let x 1 be a point in F1 • Then from Inequality (8.4) we obtain 

n 

lf(x1 )I V(Fd ~ 1 + ILl + L lf(x1)1 V(F;), 
i=2 

or 

(8.5) 

Since x 1 is any point in F1 , and since x2 , x3, .•• , x" may be kept fixed as x 1 

varies over F1, Inequality (8.5) shows that f is bounded on F1 • Similarly, f is 
bounded on F2 , F3 , ••• , F" and so f is bounded on F. 0 

We recall that in IR 1 the Darboux and Riemann integrals are the same. The 
next two theorems state that the same result holds for integrals in IRN. 

Theorem 8.11. Let F be a figure in IRN and suppose that f: F-+ IR 1 is Riemann 
integrable on F. Then f is Darboux integrable on F and the two integrals are 
equal. 

The proof is similar to the proof of Theorem 5.11 for functions on IR 1 and 
is omitted. 

The converse of Theorem 8.11 is contained in the following result. 

Theorem 8.12. Let F be figure in IRN and suppose that f: F-+ IR1 is bounded on 
F. Then 

(a) for each 8 > 0 there is a {J > 0 such that 

s+(J, il) < [ f dV + 8 and S_(J, il) > L f dV- 8 (8.6) 

for every subdivision of mesh llilll < li; 
(b) iff is Darboux integrable on F, it is Riemann integrable on F and the 

integrals are equal. 

PROOF. Observe that (b) is an immediate consequence of (a) since each Rie
mann sum is between S_(f, il) and s+(f, il). Hence ifJFf dV = JFf dV, this 
value is also the value of the Riemann integral. -

We shall prove the first inequality in (8.6), the proof of the second being 
similar. 

Since f is bounded, there is a number M such that lf(x)l ~ M for all x e F. 
Let 8 > 0 be given. According to the definition of upper Darboux integral, 
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Figure 8.4. Volume ofF; - G; is small. 

there is a subdivision L\0 = {F1 , F2 , ••• , Fm} such that 

+ f e S (f, L\0 ) < F f dV + ·2" (8.7) 

Define F/0> to be the set of interior points of F;. It may happen that F/0> is 
empty for some values of i. For each F/0 > which is not empty, we select a closed 
figure G; contained in F/0 > such that 

e 
V(F;- G;) < 4Mm' i = 1, 2, ... , m. 

See Figure 8.4 where such a selection is shown with m = 4 for a figure in IR2 . 

It is not difficult to verify that such closed figures G1 , G2 , ••• , Gm can always 
be found. For example, each G; may be chosen as the union of closed hyper
cubes interior to F; for a sufficiently small grid size. 

Since each set G; is closed and is contained in F/0 >, there is a positive number 
{> such that every ball B(x, f>) with x in some G; has the property that B(x, f>) 
is contained in the corresponding set F/0 >. Let L\ be any subdivision with mesh 
less than f>. We shall show that the first inequality in (8.6) holds for this 
subdivision. 

We separate the figures of L\ into two classes: 11 , 12 , ••• , 1" are those figures 
of L\ containing points of some G;; K 1 , K 2 , ..• , Kq are the remaining figures 
of L\. 

Denote by L\' the common refinement of L\ and L\0 • Because of the manner 
in which we chose f>, each 1; is contained entirely in some F~0>. Therefore, 11 , 

12 , ••• , 1" are figures in the refinement S. The remaining figures of L\' are 
composed of the sets K; n F), i = 1, 2, ... , q; j = 1, 2, ... , m. We have the 
inequality 

~ m e e 
L V(Kk) < L V(F;- G;) < m·-- = -. 
k=t i=t 4Mm 4M 

We introduce the notation 

M; = sup f(x), Mi = sup f(x), M;i = sup f(x). 
xeJ1 xeK; xeKinFJ 
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Using the definitions of s+(f, Ll) and s+(f, Ll'), we find 

n q 

s+ (f, .ll) = I M; V(J;) + I M; V(K;), 
i=l i=l 

n q m 

s+ (f, Ll') = I M; V(J;) + I I Mij V(K; n FJ). 
i=l i=l j=l 

Now it is clear that V(K;) = Lj=1 V(K; n Fj). Therefore, by subtraction, it 
follows that 

q m 

s+(f,.ll)-s+(f,.ll')= L I (M;-M;j)V(K;nFj) 
i=l j=l 

q m 

:::; 2M L L V(K;nFj) 
i=l j=l 

q e e 
:::; 2M L V(K;) < 2M·~4 = -2. (8.8) 

i=l M 

According to Part (b) of Theorem 8.4, we have 

s+ (f, .ll') :::; s+ (f, Llo). 

Combining this fact with Inequalities (8.7) and (8.8), we conclude that 

s+ (f, Ll) < t f dV + e, 

which is the first inequality in Part (a) of the Theorem. D 

The following result forms the basis for interchanging the order of integra
tion in multiple integrals and for evaluating them. 

Theorem 8.13. Let F be a figure in IRM and G a figure in IRN. Suppose that f is 
defined and bounded on the set F x G which is in IRM+N. Then 

- - -

LxG f dVM+N ~ L [L f dVN J dVM; 
- - -

LxG f dVM+N ~ t [t f dVM J dVN; 

LxG f dVM+N:::; L [L f dVN J dVM; 
- - -

LxG f dVM+N:::; t [t f dVM J dVN. 
- - -

PRooF. Since the proofs of all the inequalities are similar, we shall prove only 
the first one. Let e > 0 be given. Then there is a tJ > 0 such that if Ll is any 
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subdivision ofF x G with mesh less than (), we have 

s+ (f, Ll) < f- f dVM+N + e. 
FxG 

8. Integration in IRN 

(8.9) 

Now let { F1 , F2 , ... , Fm} and { Gto G2 , ••• , Gn} be subdivisions ofF and G, 

respectively, each with mesh size less than ()j.J2. Then the subdivision of 
F x G consisting of Fi x Gi, i = 1, 2, ... , m; j = 1, 2, ... , n, is a subdivision of 
F x G with mesh less than() (see Theorem 8.7). We define 

Mii = sup f(x, y) for (x, y) E Fi x Gi. 

Then, using Theorem 8. 7, we find 

m n m n 

s+(f,Ll)= L. L. MijvM+N(Fi x Gj)= L. L. MijVM(FJVN(GJ 
i=l j=l i=l j=l 

For each x E Fi, we have 

We now define 

and we see that 

it Mii VN(G) ~ L f(x, y) dVN. 

n 

Mi = L. Mij VN(Gj), 
j=l 

Combining this inequality with (8.9) and observing that e is arbitrary, we 
obtain the desired result. D 

The customary theorems on the equality of multiple integrals and iterated 
integrals are a consequence of Theorem 8.13. For example, if a function f is 
defined in a figure B in IR 2, we extend the definition off to a rectangle R in 
IR 2 which contains B by setting! = 0 for (x, y) outside of B. Thenf is integrable 
over B if and only if it is integrable over R, and the two integrals are equal. 
Since R is the product of two intervals in !Rl, we may apply Theorem 8.13. 
More generally, we have the following result. 

Corollary to Theorem 8.13. Suppose that F is a figure in IRM and that Gx is a 

figure in IRN for each x E F. Define B = {(x, y): x E F, y E Gxfor each such x}. 
Let f: B -+ IR 1 be integrable over B and suppose that f is integrable over Gx for 
each x E F. Then 

~(x) = f f(x, y) dVN 
Gx 
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--;-------~------------~-------x 
0 a F b 

Figure 8.5. B = { (x, y) : a ~ x ~ b, y e G,J 

is integrable over F and 

L f(x, y) dVM+N = I [L" f(x, y) dVN J dVM. 

Remark. Figure 8.5 shows a simple illustration ofthe corollary for functions 
on IR2• LetB = {(x, y): a~ x ~ b,g(x) ~ y ~ h(x)}. ThenF = {x: a~ x ~ b} 
and Gx = {y: g(x) ~ y ~ h(x) for each x}. The corollary states that 

j f(x, y) dA = f" [fh<xl f(x, y) dy] dx. 
Js a g(x) 

PROBLEMS 

1. Prove that the Riemann integral of a function in IRN is unique (Theorem 8.9). 

2. Show that the union of two regular figures is regular. Give examples to show that 
the intersection and difference of regular figures may not be regular. 

3. Suppose that F is a figure in IRN for N ~ 2 and that/: F-+ IR1 is Riemann integrable 
on F. Show that f may not be bounded on F. (Compare with Theorem 8.10.) 

4. Let f be a nonnegative unbounded function defined on a figure F in IRN into IR1• 

Define 

f. = {! ifl/1 ~ n, 
• 0 ifl/1 > n, 

and suppose that f.. is Riemann integrable for each n. Define the Riemann integral 
for unbounded functions by the formula JF f dV = lim .... "' JF f.. dV when the limit 
exists. Lettingf(x, y) = 1/(x2 + y2 )" and F = {(x, y): 0 ~ x2 + y2 ~ 1} in IR2, show 
that JFf(x, y) dVexists for a< 1 and that it does not for a~ 1. 
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5. Let F be a figure in IRN. Show that iff: F-+ IR1 is Riemann integrable then it is 
Darboux integrable (Theorem 8.11). 

6. Suppose f is defined in the squareS = { (x, y): 0 ~ x ~ 1, 0 ~ y ~ 1} by the formula 

f ) _ {1 ifxisirrational, 
(x, Y - 4 3 "f · · 1 y 1 x 1s ratmna . 

(a) Show that JA<JAf(x, y) dy) dx exists and has the value 1. 
(b) Show that Jsf(x, y) dV does not exist. 

7. Suppose that in the square S = { (x, y): 0 ~ x ~ 1, 0 ~ y ~ 1} we define the set A 
as the set of points (x, y) such that x and y are rational and that, when they are 
represented in the form of x = p.fq1 , y = p2/q2 (lowest terms), then q1 = q2 • Sup
pose that f: S-+ IR1 is given by 

f( ) = {0 if(x, y) e A, 
x,y 1 if(x,y)eS-A. 

(a) Show that JA<JAf(x, y) dy) dx and JA<JAf(x, y) dx) dy, both exist and have the 
value 1. 

(b) Show that Jsf(x, y) dV does not exist. 

8. Write a proof of the Corollary to Theorem 8.13. 

9. Let F be a regular figure in IRN. Suppose f: F-+ IR1 and g: F-+ IR1 are Riemann 
integrable on F. Show thatfg if Riemann integrable on F. 



CHAPTER 9 

Infinite Sequences and 
Infinite Series 

9.1. Tests for Convergence and Divergence 

It is customary to use expressions such as 
00 

u1 + u2 + ... + Un + . . . and L Un 
n=l 

(9.1) 

to represent infinite series. The u; are called the terms of the series, and the 
quantities 

n = 1, 2, ... , 

are called the partial sums of the series. The symbols in (9.1) not only define 
an infinite series but also are used as an expression for the sum of the series 
when it converges. To avoid this ambiguity we define an infinite series in terms 
of ordered pairs. 

Definitions. An infinite series is an ordered pair ( { un}, { sn}) of infinite sequences 
in which sn = u1 + u2 + · · · + un for each n. The un are called the terms of the 
series and the sn are called the partial sums. If there is a number s such that 
sn-+ s as n-+ oo, we say the series is convergent and that the sum of the series 
iss. If the s" do not tend to a limit we say that the series is divergent. 

It is clear that an infinite series is uniquely determined by the sequence { un} 
of its terms. There is almost never any confusion in using the symbols in (9.1) 
for an infinite series. While the definition in terms of ordered pairs is sat
isfactory from the logical point of view, it does require a cumbersome nota
tion. Rather than have unwieldy proofs which may obscure their essential 

211 
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features, we shall use the standard symbols of u1 + u2 + · · · + un + · · · and 
L~=1 un to denote infinite series. The context will always show whether the 
expression represents the series itself or the sum of the terms. 

Theorem 9.1. If the series L~= 1 un converges, then un--+ 0 as n--+ oo. 

PROOF. For all n > 1, we have un = sn- sn_1 .1f s denotes the sum of the series, 
then sn--+ s and sn_1 --+ s as n--+ oo. Hence un--+ s - s = 0 as n--+ oo. 0 

Remarks. If the terms un of an infinite series tend to zero, it does not 
necessarily follow that the series L~=1 un converges. See the Corollary to 
Theorem 9.5 which illustrates this point. 

Let 
U1 + Uz + ... + Un + ... 

be a given series. Then a new series may be obtained by deleting a finite number 
of terms at the beginning. It is clear that the new series will be convergent if 
and only if the original series is. 

Theorem 9.2. Let L~=1 un, L~=1 vn be given series and let c -=!= 0 be a constant. 

(a) If L~=1 un, L~=1 Vn are convergent, then L~=1 (un + vn), L~=1 (un - vn), and 
L~=1 cun are convergent series. Also, 

00 00 00 00 00 

L (un ± Vn) = L Un ± L Vn, L cun = C L Un. 
n=1 n=1 n=1 n=1 n=1 

(b) If L~=1 un diverges, then L~=1 cun diverges. 

PROOF. For each positive integer n, we have 

n n n 
L (uk ± vk) = L uk ± L vk, 

k=1 k=1 k=1 

Then Part (a) follows from the theorems on limits. (See Section 2.5.) To prove 
Part (b), we have only to observe that if L~=1 cun converges, then so does 
L~=1 (1/c)(cun) = L~= 1 un. 0 

A series of the form 

a + ar + ar2 + · · · + ar" + · · · 

is called a geometric series. The number r is the common ratio. 

Theorem 9.3. A geometric series with a-=!= 0 converges if lrl < 1 and diverges if 
lrl ~ 1. In the convergent case, we have 

oo a L arn-1 = --. 
n=1 1- r 
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PROOF. We verify easily that for each positive integer n 

a arn 
sn = a + ar + 0 0 0 + arn-1 = -- - --. 

1-r 1-r 

If lrl < 1, then rn-+ 0 as n-+ oo (see Section 2.5, Problem 6). Hence 
sn-+ a/(1 - r). If lrl ;;,:: 1, then undoes not tend to zero. According to Theorem 
9.1, the series cannot converge. D 

Theorem 9.4 (Comparison test). Suppose that un ;;,:: 0 for all n. 

(a) If un ~ an for all n and L~=1 an converges, then L~=1 un converges and 
L~=1 Un ~ L~=1 an. 

(b) Let an ;;,:: 0 for all n. If L~= 1 an diverges and un;;,:: an for all n, then L~1 un 
diverges. 

The proof is left to the reader. (See Problems 11 and 12 at the end of this 
section.) 

Let f be continuous on [a, oo). We define 

Joo f(x) dx = lim fb f(x) dx (9.2) 
a b-++oo a 

when the limit on the right exists. The term improper integral is used when 
the range of integration is infinite. We say the improper integral converges 
when the limit in (9.2) exists; otherwise the integral diverges. 

Theorem 9.5 (Integral test). Suppose that f is continuous, nonnegative, and non
increasing on [1, oo ). Suppose that L~=1 un is a series with un = f(n), n = 1, 2, ... 
Then 

(a) L~=1 un converges if Sf f(x) dx converges; and 

(b) L~=1 un diverges if Sf f(x) dx diverges. 

PROOF. Since f is positive and nonincreasing, we have (see Figure 9.1) for n ;;,:: 2, 

I u1 ~ In f(x) dx ~ nf u1. 
}=2 1 j=1 

We define 

F(X) = Ix f(x) dx. 

If this integral converges, then F(X) is a nondecreasing function which tends 
to a limit, and so F(n) is a bounded nondecreasing sequence. Thus denoting 
sn = L}=2 u1, we see that sn ~ F(n), and sn tends to a limit. Part (a) is now 
established. If the integral diverges, then F(X)-+ +oo as X-+ oo. Therefore 
F(n)-+ +oo. Since F(n) ~ LJ:~i u1, we conclude that the series diverges. D 
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y 

Figure 9.1. The integral test for convergence. 

Corollary to Theorem 9.5. The series 

00 1 

I"' n=l n 

known as the p-series, converges if p > 1 and diverges if p ~ 1. 

The proof of the Corollary is an immediate consequence of the integral test 
with f(x) = 1/xP. The details are left to the reader. For 0 < p ~ 1, the terms 
of the p-series tend to zero as n -+ oo although the series diverges. This fact 
shows that the converse of Theorem 9.1 is false. The hypothesis that un-+ 0 as 
n -+ oo does not imply the convergence of L~=l un. 

EXAMPLE. Test the series 
00 1 

n~l (n + 2) log(n + 2) 

for convergence or divergence. 

Solution. We define f(x) = 1/(x + 2) log(x + 2) and observe that f is positive 
and nonincreasing with f(n) = 1/(n + 2) log(n + 2). We have 

r (x + 2) ~:g(x + 2) = f:+ 2 
u l~: u 

= fa+ 2 d(log u) 

3 log u 

= log(log(a + 2)] - log log 3. 

Since log [log( a+ 2)]-+ +oo as a-+ +oo, the integral diverges. Therefore the 
series does. 0 
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PROBLEMS 

In each of Problems 1 through 10 test for convergence or divergence. 

0() 1 
t L

•=1P 

0() 1 
3. L--

•=1 n(n + 2) 

ao n + 1 
5. L -3-

•=1 n 

~ 2n + 3 
7. L. --3-

•=1 n 

ao n 
9. L • 

•=1 e 

0() 1 
2. L
•=1~ 

0() 1 
4 L-

• •=1 n·2" 

0() 1 
6. L--

•=1 2n + 3 

8 ~log n 
0 L. 3/2 

•=1 n 

ao nP 
10. L -, p > 0 constant 

•=1 n! 
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11. Prove Theorem 9.4(a). [Hint: Use the fact that a bounded, nondecreasing sequence 
tends to a limit (Axiom of continuity).] 

12. Prove Theorem 9.4(b). 

13. For what values of p does the series L::'=1 log njnP converge? 

14. For what values of p does the series L::'=2 (log n)Pjn converge? 

15. Prove the Corollary to Theorem 9.5. 

16. Prove the Limit comparison theorem: 
Suppose that a. ~ 0, b. ~ 0, n = 1, 2, ... , and that 

lim~=L>O. 
n~oo b,. 

Then either L::'=1 a. and L::'=1 b. both converge on both diverge. [Hint. For suffi
ciently large n, we have tL < aJb. < !L. Now use the comparison test (Theorem 
9.4) and the fact that the early terms of a series do not affect convergence.] 

17. Use the result of Problem 16 to test for convergence: 

ao 2n2 + n + 2 
L 3 · 

•=1 5n + 3n 
Take 

2n2 + n + 2 
a = ----::::---.--------::,-----
• 5n3 + 3n ' 

1 
b.=-. 

n 

18. Use the result of Problem 16 to test for convergence: 

Take 

a.= .,Yn2 + 5' 

1 
b.= liJ• 

n 
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9.2. Series of Positive and Negative Terms; 
Power Series 

When all the terms of a series are nonnegative, the Comparison test (Theorem 
9.4) is a useful tool for testing the convergence or divergence of an infinite 
series. (See also the Limit comparison test in Problem 16 at the end of Section 
9.1.) We now show that the same test may be used when a series has both 
positive and negative terms. 

Definition. A series L:'=1 un which is such that L:'=1 1unl converges is said to 
be absolutely convergent. However, ifL:'=1 un converges and L:'=1 lunl diverges, 
then the series L:'=1 un is said to be conditionally convergent. 

The following theorem shows that if a series is absolutely convergent, then 
the series itself converges. 

Theorem 9.6. If L:'=1 lunl converges, then L:'=1 un converges and 

IJ1 Unl ~ J 1 lunl· 

PROOF. For n = 1, 2, ... , we define 

Then we have 

and 

lunl + Un 
Vn = 2 

0 ~ Vn ~ lunl, 0 ~ Wn ~ lunl· 

Both L:'=1 vn and L:'=1 wn converge by the Comparison test (Theorem 9.4). 
Therefore L:'=1 (vn - wn) = L:;,1 un converges. Also, 

~n~l Unl = IJ1 (vn- Wn)l ~ n~l (vn + wn) = Jl lunl· D 

Remark. A series may be conditionally convergent and not absolutely 
convergent. The next theorem shows that L:'=1 ( -1r(1/n) is convergent. 
However, the series L:'=1 1/n, a p-series with p = 1, is divergent; hence 
L:'=1 ( -1r(1/n) is a conditionally convergent series. 

Theorem 9.7 (Alternating series theorem). Suppose that the numbers un, n = 1, 
2, ... , satisfy the conditions: 

(i) the un are alternately positive and negative; 
(ii) lun+ll < lunl for every n; and 

(iii) limn->oo Un = 0. 
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Then L:'=1 un is convergent. Furthermore, if the sum is denoted by s, then s lies 
between the partial sums sn and sn+l for each n. 

PROOF. Assume that u1 is positive. If not, consider the series beginning with 
u2 , since discarding one term does not affect convergence. With u1 > 0, we 
have clearly 

u2n-l > 0 and u2n < 0 for all n. 

We now write 

Since by (ii) above I u2k I < u2k-l for each k, each term in parenthesis is positive, 
and so s2 n increases with n. Also, 

S2n = U1 + (u2 + U3) + (u4 +Us)+··· + (u2n-2 + U2n-1) + U2n· 

The terms in parentheses are negative and u2 n < 0. Therefore s2n < u1 for all 
n. Hence s2 n is a bounded, increasing sequence and therefore convergent to a 
number, say s; also, s2n ~ s for each n. By observing that s2n-l = s2n - u2n, 
we have s 2n-l > s2n for all n. In particular s 2n-l > s 2 = u1 + u2 and so s 2n-l 

is bounded from below. Also, 

S2n+l = S2n-1 + (u2n + U2n+l) < S2n-1· 

Therefore s 2n+l is a decreasing sequence which tends to a limit. Since u2n -+ 0 
as n -+ oo, we see that s2n and s 2n+l tend to the same limit s. Because s 2n-l is 
decreasing, it follows that s2n-l ~ s for every n. Thus s ~ sP for odd p and 
s ~ sP for even p. 0 

The next test is one of the most useful for deciding absolute convergence 
of series. 

Theorem 9.8 (Ratio test). Suppose that un =F 0, n = 1, 2, ... , and that 

I. I Un+l I I Un+l I tm -- = p or -- -+ +oo 
n-+oo un un 

as n-+ oo. 

Then 

(i) if p < 1, the series L:'=1 un converges absolutely; 
(ii) if p > 1 or lun+l/unl-+ +oo as n-+ oo, the series diverges; 

(iii) if p = 1, the test gives no information. 

PROOF 

(i) Suppose that p < 1. Choose any p' such that p < p' < 1. Since lun+dunl 
converges top, there exists an integer N such that lun+llunl < p' for all n ~ N. 
That is, 
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By induction, we have 

lunl ~ (p')n-NiuNI for all n ~ N. 

The series L::"=Niunl converges by the Comparison test, using the geometric 
series L::"=o (p')n. The original series converges absolutely since the addition 
of the finite sum L~:li unl does not affect convergence. 

(ii) If p > 1 or lun+l/unl-+ +oo, then there is an integer N such that 
lun+dunl > 1 for all n ~ N. Then lunl > iuNI for all n ~ N. Hence undoes not 
approach zero as n-+ oo. By Theorem 9.1 the series cannot converge. 

(iii) The p-series for all values of p yields the limit p = 1. Since the p
series converges for p > 1 and diverges for p ~ 1, the Ratio test can yield no 
information when p = 1. D 

EXAMPLE 1. Test for conditional and absolute convergence: 

oo ( -1)nn 
L-n=l 3n . 

Solution. We use the Ratio test. Set un = ( -1)nn/3n. Then 

Therefore 

li I Un+l 1- 1 _ m - ---p. 
n-+oo Un 3 

The series converges absolutely. 

The next theorem provides a useful test for many series. 

Theorem 9.9 (Root test). Let L::"=1 un be a series with either 

Then 
(i) if p < 1, the series L::"=1 Un converges absolutely; 

(ii) if p > 1, or if lunl 11n-+ +oo, the series diverges; 
(iii) if p = 1, the test gives no information. 

PROOF 

D 

(i) Suppose p < 1: choose e > 0 so small that p + e < 1 as well. Since 
lunl 11n-+ p, it follows that lunl 11n < p + e for all n ~ N if N is sufficiently large. 
Therefore lunl < (p + e)n for all n ~ N. We observe that 

00 

L (p + e)n 
n=l 
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is a convergent geometric series since p + e < 1. The Comparison test 
(Theorem 9.4) shows that L:'=1 1unl converges. Hence (i) is established. 

(ii) Suppose p > 1 or lunl 11"-+ +oo. Choose e > 0 so small that (p- e)> 1. 
Therefore in Case (ii) p- e < lun1 1'" for all sufficiently large n. We conclude 
that 

n-+oo 

and hence both L:'=t lunl and L:'=t u" are divergent series. 

EXAMPLE 2. Test for convergence: 

Solution. We have 

00 1 
L -(1 )". n=2 og n 

1 
lunl 11" = ---+ 0 as n-+ 00. 

log n 

D 

The series converges by the Root test. D 

A power series is a series of the form 

c0 + c1(x- a)+ c2(x- af + ··· + c"(x- a)"+···, 

in which a and c;, i = 0, 1, 2, ... , are constants. If a particular value is given 
to x, then the above expression is an infinite series of numbers which can be 
examined for convergence or divergence. For those values of x in IR 1 which 
yield a convergent power series, a function is defined whose range is the actual 
sum of the series. Denoting this function by f, we write 

00 

f: x-+ L c0 (x - a)". 
n=O 

It will be established later that most of the elementary functions such as the 
trigonometric, logarithmic, and exponential functions have power series ex
pansions. In fact, power series may be used for the definition of many of the 
functions studied thus far. For example, the function log x may be defined by 
a power series rather than by an integral, as in Section 5.3. If a power series 
definition is used, the various properties of functions, such as those given in 
Theorems 5.14 and 5.15 are usually more difficult to establish. 

We first state a lemma and then prove two theorems which establish the 
basic properties of power series. 

Lemma 9.1. If the series L:'=t u" converges, then there is a number M such that 
lunl ~ M for all n. 

The proof is left to the reader. (See Problem 28 at the end of the Section.) 
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Theorem 9.10.Jf the series L~=o cn(x- a)n converges for x = x1 where x1 #a, 
then the series converges absolutely for all x such that lx- al < lx1 - al. 
Furthermore, there is a number M such that 

lcn(x- a)nl:::;; Mc~1 -=_ ~J for lx- al:::;; lx1 - al and for all n. 

(9.3) 

PROOF. By Lemma 9.1 there is a number M such that 

lcn(X 1 - a)nl :::;; M for all n. 

Then (9.3) follows since 

I (x- a)n I lx- aln 
lcn(x- a)nl = lcn(Xl - atl· ( t :::;; M I ,n· x1 - a x1 - a 

We deduce the convergence of the series at lx- al by comparison with the 
geometric series, the terms of which are the right side of the inequality in 

~~ 0 

Theorem 9.11. Let L~=o cn(x - at be a given power series. Then either 

(i) the series converges only for x = a; or 
(ii) the series converges for all values of x; or 

(iii) there is a number R such that the series converges for lx- al < R and 
diverges for lx- al > R. 

PROOF. There are simple examples of series which show that (i) and (ii) may 
happen. To prove (iii), suppose there is a number x1 #a for which the series 
converges and a number x 2 #a for which it diverges. By Theorem 9.10 we 
must have lx1 - al :::;; lx2 - al, for if lx2 - al < lx 1 - al the series would 
converge for x = x 2 • Define the setS of real numbers 

S = {p: the series converges for lx- al < p}, 

and denote R =supS. Now suppose lx'- al < R. Then there is apES such 
that lx'- al < p < R. By Theorem 9.10, the series converges for x = x'. 
Hence the series converges for all x such that lx- al < R. Now suppose 
that lx"- al = p' > R. If the series converges for x" then p' E Sand we con
tradict the fact that R = supS. Therefore the series diverges for lx- al > R, 
completing the proof. 0 

EXAMPLE 3. Find the values of x for which the series 

oo ( -1)n(x _ l)n 

n~l 2nn2 

converges. 
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Solution. We apply the Ratio test: 

I Un+ll 1 n2 

U:: =21x-11(n+ 1)2 

and 

l . lun+11_11 11 1m-- --X- . 
n-+oo Un 2 

Therefore the series converges for tlx- 11 < 1 or for -1 < x < 3. By noting 
that for x = -1 and x = 3, the series is a p-series1 with p = 2, we conclude 
that the series converges for all x in the interval - 1 ::::; x ::::; 3 and it diverges 
for all other values of x. 0 

PROBLEMS 

In each of Problems 1 through 16, test the series for convergence or divergence. 
If the series is convergent, determine whether it is absolutely or conditionally 
convergent. 

00 ( -1)"- 1 (10)" 
1. L I 

•=1 n. 

oo ( -1)"-1(n- 1) 
3. I ----,2.--------:---

•=1 n + 1 

00 ( -1 )"(4/3)" 
5. I 4 

•=1 n 

~(-1)"(n+1) 
7. L.... 

n=l v/n 
oo ( -1)"(2n2 - 3n + 2) 

9. I 3 
•=1 n 

oo ( -1)"+1 log(n + 1) 
11. I -'----'-----------=:-'---------'-

·=1 n + 1 

00 (- 2)" 
13. I -3-

•=1 n 
00 

15. I ( -1)"r" 
n=l 

oo ( -1)•-1n! 
2. I -----:-c:-::-:-::---

·=1 (10)" 

oo (-1r1 

4. I -:-----=-= 
•=1 n(n - 1/2) 

6. I ( -1)•-1n! 
•=1 1· 3 · 5 · · · (2n- 1) 

oo (-1)"·2·4-6-··2n 
8. I -:-------c---=-

•=1 1-4- 7 · · · (3n - 2) 

00 (-1)"+1 
10. I --,..-----,

•=1 (n + 1) log(n + 1) 

00 ( -1r1 log n 
12. I 2 

•=1 n 

oo n' 
14. I,; 

•=1 e 

16. I --oo( n )" 
•=1 2n + 1 

In each of Problems 17 through 24, find all the values of x for which the given 
power series converges. 

00 

17. L(n+1)x" 
n=O 

00 (x - 2)" 
18. I-

n=l v/n 
1 Actually, for x = 3 the absolute values of the terms form a p-series. 
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00 (3/2)"x" 
19. I:--

.~o n + 1 

00 n!(x - 3)" 
2t I: -:--::---'----:-=-----'----:-:-

.~, 1. 3 ... (2n _ 1) 

23_ f log(n + 1)2"(x + 1)" 

.~, n + 1 

9. Infinite Sequences and Infinite Series 

00 n(x + 2)" 
2o. I: ------=-=-------

.~, 2" 

oo (2n 2 + 2n + 1)x" 
22. "' 3 .f-o 2"(n + 1) 

00 ( -1 r' (log n)2"x" 
24. I: . 2 

.~, 3 n 

25. Ifi;::"~ 1 u. is a convergent series of positive terms, show that I:::"~ 1 u: is convergent 
for every p > 1. 

26. Find the interval of convergence of the binomial series 

~ m(m-1) ... (m-n+l) 
1 + L. x" 

.~, n! 
m a constant. 

*27. Let I;::"~ 1 u. be a conditionally convergent series with terms satisfying the condi
tions of Theorem 9.7. Let A be any real number. Show that by rearranging the 
terms of the series, the sum will be a number in the interval (A - 1, A + 1). 

28. Prove Lemma 9.1. [Hint: Use Theorem 9.1 and the fact that a finite number of 
terms has (at least) one which is largest in absolute value.] 

29. Give examples of Cases (i) and (ii) in Theorem 9.11. 

9.3. Uniform Convergence of Sequences 

Let {!.} be a sequence of functions with each function having a domain 
containing an interval I of IR 1 and with range in IR 1. The convergence of such 
a sequence may be examined at each value x in I. The concept of uniform 
convergence, one which determines the nature of the convergence of the 
sequence for all x in I, has many applications in analysis. Of special interest 
is Theorem 9.13 which states that if all the f. are continuous then the limit 
function must be also. 

Definition. We say the sequence {f.} converges uniformly on the interval I to 
the function f if and only if for each 6 > 0 there is a number N independent of 

x such that 

lf.(x) - f(x)i < 6 for all x e I and all n > N. (9.4) 

Uniform convergence differs from ordinary pointwise convergence in that 
the integer N does not depend on x, although naturally it depends on 6. 

The geometric meaning of uniform convergence is illustrated in Figure 9.2. 
Condition (9.4) states that if 6 is any positive number, then for n > N the graph 
of y = f.(x) lies entirely below the graph of f(x) + 6 and entirely above the 
graph of f(x) - 6. 
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y 

y=f(x)+e 

y =f.(x) 

y = f(x) 

y =f(x)-e 

0 

Figure 9.2. Illustrating uniform convergence. 

It can happen that a sequence {.f..(x)} converges to f(x) for each x on an 
interval I but that the convergence is not uniform. For example, consider the 
functions 

l={x:O:::;x:::;l}. 

The graphs of fn for n = 1, 2, 3, 4 are shown in Figure 9.3. If x =I 0, we write 

2x/n 
fix) = x2 + (1/n2) 

--~----------------------~L----------+ X 
0 

Figure 9.3. Illustrating nonuniform convergence to f(x) = 0. 
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and observe that fn(x) -+ 0 for each x > 0. Moreover, f,.(O) = 0 for all n. Hence, 
setting f(x) = 0 on I, we conclude that fn(x)-+ f(x) for all x on I. 

Taking the derivative off,., we find 

, 2n(1 - n2x 2) 
f,.(x) = (1 + n2x2)2 . 

Therefore fn has a maximum at x = 1/n with f,.(1/n) = 1. Thus if e < 1, there 
is no number N such that 1/n(x)- f(x)l < e for all n >Nand all x on I; in 
particular 1/n(l/n) - /(1/n)l = 1 for all n. 

The definition of uniform convergence is seldom a practical method for 
deciding whether or not a specific sequence converges uniformly. The next 
theorem gives a useful and simple criterion for uniform convergence. 

Theorem 9.12. Suppose that fn, n = 1, 2, 3 ... , and f are continuous on I = 
{x: a~ x ~ b}. Then the sequence fn converges uniformly to f on I if and only 
if the maximum value en of lfn(x) - f(x)l converges to zero as n-+ oo. 

PROOF 

(a) First, suppose the convergence is uniform. Let e > 0 be given. Then 
there is an N such that lf,.(x) - f(x)l < e for all n > N and all x on I. Since 
lf,.(x) - f(x)l is continuous on I, it takes on its maximum value at some point 
Xn. Then en = 1/n(xn) - f(xn)l. Hence en < e for all n > N. Since there is an N 
for each e > 0, it follows that en-+ 0 as n-+ oo. 

(b) Suppose that en-+ 0 as n-+ oo. Then for each e > 0 there is anN such 
that en < e for all n > N. But, then, since en is the maximum of lf,.(x)- f(x)l, 
we have 1/n(x) - f(x)l ~ en < e for all n > N and all x on I. 0 

EXAMPLE. Given the sequence 

n = 1, 2, ... , 

show that f,.(x)-+ 0 for each x on I = { x: 0 ~ x ~ 1} and determine whether 
or not the convergence is uniform. 

Solution. Since f,.(O) = 0 for each n, we have fn(O)-+ 0 as n-+ oo. For x > 0, we 
divide numerator and denominator by n2 and find 

x/Jn 
fn(x) = x2 + (1jn2)' 

and it is evident that f,.(x)-+ 0 as n-+ oo. Taking the derivative, we obtain 

, n312(1 _ n2x2) 
f,. (x) = (1 + n2x2)2 

It is clear that J:(x) = 0 for x = 1/n; also fn(ljn) = Jn/2. Therefore en = 
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fn(l/n) does not converge to 0 as n --+ oo and hence the convergence of fn is not 
uniform. D 

Although Theorem 9.12 is useful it cannot be applied unless the limit 
function f is known. 

The importance of uniform convergence with regard to continuous func
tions is illustrated in the next theorem. 

Theorem 9.13. Suppose that !,, n = 1, 2, ... , is a sequence of continuous 
functions on an interval I and that {!,} converges uniformly to f on I. Then f 
is continuous on I. 

PROOF. Suppose e > 0 is given. Then there is an N such that 

e 
1/,(x) - f(x)l < 3 for all x on I and all n > N. (9.5) 

Let x 0 be any point in I. Since fN+l is continuous on I, there is a lJ > 0 such that 

e 
lfN+l (x)- fN+l (x0 )1 < 3 for all x E I such that lx- x0 1 < /J. (9.6) 

Also, by means of (9.5) and (9.6) we find 

lf(x) - f(xo)l ::::; lf(x) - fN+l (x)l + lfN+l (x) - fN+l (xo)l 

e e e 
+ lfN+l(xo)- f(xo)l < 3 + 3 + 3 = e, 

which is valid for all x on I such that lx- x0 1 < /J. Thus f is continuous at 
x 0 , an arbitrary point of I. D 

The next result shows that a uniformly convergent sequence of continuous 
functions may be integrated term-by-term. 

Theorem 9.14 (Integration of uniformly convergent sequences). Suppose that 
each fn, n = 1, 2, ... , is continuous on the bounded interval I and that {fn} 
converges uniformly to f on I. Let c E I and define 

Fn(X) = lx fn(t) dt. 

Then f is continuous on I and Fn converges uniformly to the function 

F(x) = lx f(t) dt. 

PROOF. That f is continuous on I follows from Theorem 9.13. Let L be the 
length of I. For any e > 0 it follows from the uniform convergence of Un} that 
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there is an N such that 
8 

l.f..(t) - f(t)l <I for all n > N and all t on I. 

We conclude that 

IFn(x) - F(x)l = If' [.f..(t) - f(t)] dt I 
~ 1 f." l.f..(t) - f(t)l dt 1 

8 
~-lx-cl ~8 

L 

for all n >Nand all x e I. Hence {Fn} converges uniformly on I. 0 

The next theorem illustrates when we can draw conclusions about the 
term-by-term differentiation of convergent sequences. 

Theorem 9.15. Suppose that {f..} is a sequence of functions each having one 
continuous derivative on an open interval I. Suppose that .f..(x) converges to 
f(x) for each x on I and that the sequence J: converges uniformly tog on I. 
Then g is continuous on I and f'(x) = g(x) for all x on I. 

PROOF. That g is continuous on I follows from Theorem 9.13. Let c be any 
point on I. For each n and each x on I, we have 

f." f:(t) dt = .f..(x) - .f..(c). 

Since {!:} converges uniformly tog and .f..(x) converges to f(x) for each x on 
I, we may apply Theorem 9.14 to get 

f." g(t) dt = f(x)- f(c). (9.7) 

The result follows by differentiating (9. 7). 0 

Many of the results on uniform convergence of sequences of functions from 
R1 to R1 generalize directly to functions defined on a set A in a metric space 
Sand with range in R1• 

Definition. Let A be a set in a metric space S and suppose that f..: S-+ R1, 

n = 1, 2, ... , is a sequence offunctions. The sequence {f..} converges uniformly 
on A to a function f: A -+ R1 if and only if for every 8 > 0 there is a number 
N such that 

l.f..(x) - f(x)l < 8 for all x e A and all n > N. 

The next theorem is an extension of Theorem 9.13. 
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Theorem 9.16. Suppose that each f, is continuous on a set A in a metric space 
S where f,: S-+ IR1• If {f,} converges uniformly to f on A, then f is continuous 
on A. 

The proof is similar to the proof of Theorem 9.13 and is left to the reader. 
Theorem 9.14 has a generalization to functions defined inN-dimensional 

Euclidean space. 

Theorem 9.17. Let F be a closed figure in IRN and suppose that f,: F-+ ~Rl, 
n = 1, 2, ... , is a sequence of continuous functions which converges uniformly 
to f on the figure F. Then f is continuous on F and 

f f dVN = lim r f, dVN. 
F n-ex> JF 

The proofis similar to the proof of Theorem 9.14 and is left to the reader. 
Let {f,} be a sequence defined on a bounded open set Gin IRN with range 

in IR1• Writingfn(x1, x 2 , ••• , xN) for the value off, at(x1 , x 2 , ••• , xN), we recall 
that 

are symbols for the partial derivative off, with respect to xk. 

Theorem 9.18. Let k be an integer such that 1 ~ k ~ N. Suppose that for each 
n, the functions f,: G-+ IR1 and fn.k are continuous on G, a bounded open set in 
IRN. Suppose that Un(x)} converges to f(x) for each x e G and that Un.d 
converges uniformly to a function g on G. Then g is continuous on G and 

fk(x) = g(x) for all x e G. 

The proof is almost identical to the proof of Theorem 9.15 and is omitted. 
If a sequence of continuous functions {fn} converges at every point to a 

continuous function f, it is not necessarily true that 

f f,dV-+ f f dV as n -+ oo. 

Simple convergence at every point is not sufficient as the following example 
shows. We form the sequence (for n = 2, 3, 4, ... ) 

f,: X-+ 

0, 

1 
0 ~X~-, 

n 
1 2 
-~X~-, 
n n 
2 
-~x~l. 
n 
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y 

4 n=4 

/ 4 (x) 

3 n=3 

j,(x) 

2 n=2 

0 2 

Figure 9.4. f. converges to f but J~ f. does not converge tog f. 

It is easy to see (Figure 9.4) that f.(x) -+ f(x) = 0 for each x E I = 
{x: 0::::;; x::::;; 1}, but that 

1 = I1 
f,(x) dx + L1 

f(x) dx = 0. 

Theorems 9.16, 9.17, and 9.18 may be generalized to sequences of functions 
with domain in a metric space (S1, dd and range in another metric space 
(S2 , d2 ). See Problem 19 at the end of this section. 

PROBLEMS 

In each of Problems 1 through 10 show that the sequence {f,(x)} converges 
to f(x) for each x on I and determine whether or not the convergence is 
uniform. 

2x 
l.f.:x-+--, f(x):=O, I={x:O~x~1}. 

1 + nx 

cos nx 
2. f.: X-+ Jn , f(x) := 0, I= {x: 0 ~X~ 1}. 

n3x 
3. f.: X-+ -1 - 4-, f(x) := 0, I= {x: 0 ~X~ 1}. 

+nx 
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n3x 
4. f.:x-+ 4 2 , f(x)::O, I={x:a.;;;x< oo,a>O}. 

1 + n x 

nx2 
5.f.:x-+--, f(x)=x, I={x:O.;;;x.;;;1}. 

1 + nx 

1 1 
6. f.: x-+ ;: + -cos(1/nx), f(x) = 1/Jx, I= {x: 0 < x,:;;; 2} . 

..,;x n 

sin nx 
7. f.: x-+ --, f(x) = 0, I= {x: 0 < x < oo }. 

2nx 

8. f.: x-+ x"(1- x)Jn, f(x) = 0, I= {x: 0,:;;; x.:;; 1}. 

1 - x• 
9. f.: X-+--, 

1-x 

10. f.: x-+ nxe-""'\ 

f(x)=-1-, I={x:-~.;;;x.;;;~}· 
1-x 2 2 

f(x) = 0, I= {x: 0,:;;; x,:;;; 1}. 
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11. Show that the sequence f.: x-+ x" converges for each x E I = { x: 0 ,:;;; x ,:;;; 1} but 
that the convergence is not uniform. 

12. Given that J.(x) = (n + 2)(n + 1)x"(1 - x) and that f(x) = 0 for x on I= 
{ x: 0 ,:;;; x ,:;;; 1 }. Show that f.(x)-+ f(x) as n-+ oo for each x E I. Determine whether 
or not J~J.(x) dx-+ J5f(x) dx as n-+ oo. 

13. Prove Theorem 9.16. 

14. Prove Theorem 9.17. 

15. Prove Theorem 9.18. 

16. Give an example of a sequence of functions {f.} defined on the set A = 
{ (x, y): 0 ,:;;; x .:;; 1, 0 .:;; y ,:;;; 1} such that f. converges to a function fat each point 
(x, y) E A but JAJ.(x, y) dV + JAf(x, y) dV. 

17. Suppose that {f.} converges uniformly to f and {g.} converges uniformly tog on 
a set A in a metric space S. Show that {f. + g.} converges uniformly to f + g. 

18. (a) Suppose {!.} and {g.} are bounded sequences each of which converges uni
formly on a set A in a metric space S to functions f and g, respectively. Show 
that the sequence {f.g.} converges uniformly to fg on A. 

(b) Give an example of sequences {f.} and {g.} which converge uniformly but are 
such that {f.g.} does not converge uniformly. 

19. Formulate a definition of uniform convergence of a sequence {!.} of mappings 
from a set A in a metric space (S1 , dd into a metric space (S2 , d2 ). Prove that if {f.} 
are continuous and converge uniformly to a mapping f, then f is continuous. 

20. Prove the following generalization of Theorem 9.17. Suppose that F is a figure in 
IRN and that f.: F-+ IR 1 is integrable on F for n = 1, 2, ... If {f.} converges 
uniformly to f on F, then f is integrable over F and 

r fdVN =lim r f.dVN. J F n-oo J F 

[Hint: First prove that f is integrable.] 
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9.4. Uniform Convergence of Series; Power Series 

Let uk(x), k = 1, 2, ... , be functions defined on a set A in a metric spaceS with 
range in IR 1 . 

Definition. The infinite series L;;"=1 uk(x) has the partial sums sn(x) = 
Lk=l uk(x). The series is said to converge uniformly on a set A to a functions 
if and only if the sequence of partial sums {sn} converges uniformly to son 
the set A. 

The above definition shows that theorems on uniform convergence of 
infinite series may be reduced to corresponding results for uniform conver
gence of sequences. 

Theorem 9.19 (Analog of Theorem 9.13). Suppose that un, n = 1, 2, ... , are 

continuous on a set A in a metric spaceS and that L::"=1 un(x) converges uniformly 

on A to a function s(x). Then s is continuous on A. 

The next theorem is the analog for series of a generalization of Theorem 
9.14. In this connection see Problem 20 of Section 9.3. 

Theorem 9.20 (Term-by-term integration of infinite series) 

(a) Let un(x), n = 1, 2, ... , be functions whose domain is a bounded interval I 

in IR1 with range in IR 1 • Suppose that each un is integrable on I and that 

L::"=1 un(x) converges uniformly on I to s(x). Then s is integrable on I. If c 
is in I and Un, S are defined by 

Un(x) = Lx un(t) dt, S(x) = Lx s(t) dt, 

then L::"=1 Un(x) converges uniformly to S(x) on I. 
(b) (See Theorem 9.17.) Let un(x), n = 1, 2, ... , be defined on a figure Fin IRN 

with range in IR 1 . Suppose that each un is integrable on F and that L::"=1 un(x) 

converges uniformly on F to s(x). Then sis integrable on F and 

f I Un dVN = I S dVN. 
n=l F F 

The next result is the analog for series of Theorem 9.18. 

Theorem 9.21 (Term-by-term differentiation of infinite series). Let k be an 

integer with 1 ~ k ~ N. Suppose that un and un,k• n = 1, 2, ... , are continuous 
functions defined on an open set G in IRN (range in IR 1 ). Suppose that the series 

L::"=1 un(x) converges for each x E G to s(x) and that the series L~1 un,k(x) 
converges uniformly on G to t(x). Then 

s,k(x) = t(x) for all x in G. 
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The proofs of Theorems 9.19, 9.20, and 9.21 are similar to the proofs ofthe 
corresponding theorems for infinite sequences. 

The following theorem gives a useful indirect test for uniform convergence. 
It is important to observe that the test can be applied without any knowledge 
of the sum of the series. 

Theorem 9.22 (Weierstrass M-test). Let un(x), n = 1, 2, ... , be defined on a set 
A in a metric spaceS with range in IR 1• Suppose that lun(x)l ~ Mn for all nand 
for all x e A. Suppose that the series of constants L:'=1 Mn converges. Then 
L:'=1 un(x) and L:'=1 lun(x)l converge uniformly on A. 

PRooF. By the Comparison test (Theorem 9.4) we know that L:'=1 1un(x)l 
converges for each x. Set 

n oo 

tn(x) = L luk(x)l and t(x) = L luk(x)l. 
k=l k=l 

From Theorem 9.6 it follows that L:'=1 un(x) converges. Set 

n 00 

sn(x) = L uk(x), s(x) = L uk(x). 
k=l k=l 

Then 

00 

~ L luk(x)l = lt(x)- tn(x)l 
k=n+l 

We define s = Lk=l Mk> sn = I;;=l Mk. Then Lk=n+l Mk = s - Sn; since 
S - Sn -+ 0 as n -+ oo independently of x, we conclude that the convergence 
of {sn} and {tn} are uniform. D 

The next theorem on the uniform convergence of power series is a direct 
consequence ofthe Weierstrass M-test. 

Theorem 9.23. Suppose that the series L:'=o cn(x - a)" converges for x = x1 with 
x 1 =F a. Then the series converges uniformly on I = { x: a - h ~ x ~ a + h} 
for each h < lx1 - al. Also, there is a number M such that 

lcn(x- a)" I ~ M · (lx
1 
~ aY (9.8) 

for 
lx- al ~ h < lx1 - al. 

PROOF. Inequality (9.8) is a direct consequence of the inequality stated in 
Theorem 9.10. The series L:'=o M(h/lx1 - al)" is a geometric series of con-
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stants which converges. Therefore the uniform convergence of'L~=o cix- at 
follows from the Weierstrass M-test. D 

Remarks 
(i) The number h in Theorem 9.23 must be strictly less than lx1 - ai in 

order that the series converge uniformly on I. To see this consider the series 

oo (-1)nxn 
I~~ 
n=l n 

which converges for x = 1 but diverges for x = -1. If this series were to 
converge uniformly for lxl < 1, then it would converge uniformly for lxl :::; 1. 
(The reader may establish this fact.) 

(ii) If the series in Theorem 9.23 converges absolutely for x = Xt. then 
we may choose h = lx1 - ai and the series converges uniformly on I= 
{x: lx- ai:::; lx1 - aj}. To see this we observe that for lx- ai :::; lx 1 - ai, we 
have 

EXAMPLE 1. Given the series 

00 

L (n + 1)xn, (9.9) 
n=O 

find all values of h such that the series converges uniformly on I = {x: I xi :::; h }. 

Solution, For lxl :::; h, we have l(n + 1)xnl :::; (n + 1)hn. By the Ratio test, the 
series L~=o (n + l)hn converges when h < 1. Therefore the series (9.9) con
verges uniformly on I= {x: lxl :::; h} if h < 1. The series (9.9) does not con
verge for x = ± 1, and hence there is uniform convergence if and only if h < 1. 

D 

EXAMPLE 2. Given series 

(9.10) 

findallvaluesofhsuchthattheseriesconvergesuniformlyoni = {x: lxl:::; h}. 

Solution. For lxl :::; h, we have lxn/n2 1 :::; hn/n2• The p-series L~=1 1/n2 con
verges and, by the Comparison test, the series L~=l hnjn2 converges if h:::; 1. 
By the Ratio test, the series (9.1 0) diverges if x > 1. We conclude that the series 
(9.10) converges uniformly on I= {x: lxl:::; 1}. D 

Lemma 9.2. Suppose that the series 

00 

f(x) = L cn(x - a)n (9.11) 
n=O 

converges for ix- ai < R with R > 0. Then f and f' are continuous on 
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lx- a!< Rand 

co 

f'(x) = L ncn{x - a)"-1 for lx - a! < R. (9.12) 
n=1 

PROOF. Choose x1 such that lx1 - al < R and then choose h so that 
0 < h < lx1 - a!. By Theorem 9.23, the series (9.11) converges uniformly on 
I= {x: lx- al ~ h}, and there is a number M such that 

lc,.(x - a)" I ~ M Cx
1 
~ a!)" for lx - a! ~ h. 

According to Theorem 9.19, the function f is continuous on I. Also, we find 

I ( )n-11 I lh"-1 nM( h )" nc, x - a ~ n c, ~ h lxt ~ ai = u,.. 

From the Ratio test, the series L::"=1 u, converges, so that the series (9.12) 
converges uniformly on I. Hence by Theorem 9.19, the function f' is con
tinuous on I. Since h may be chosen as any positive number less than R, we 
conclude that f and f' are continuous for lx- a! < R. 0 

With the aid of the above lemma, we obtain the following theorem on 
term-by-term differentiation and integration of power series. 

Theorem 9.24. Let f be given by 

co 

f(x) = L c,.(x - a)" for lx - a! < R with R > 0. (9.13) 
n=O 

(i) Then f possesses derivatives of all orders. For each positive integer m, the 
derivative pm>(x) is given for lx- a! < R by the term-by-term differentia
tion of (9.13) m times. 

(ii) IfF is defined for lx - a! < R by 

F(x) = f.."' f(t) dt, 

then F is given by the series obtained by term-by-term integration of the 
series (9.13). 

(iii) The constants c,. are given by 

J!">(a) 
c,.=--,-. 

n. 
(9.14) 

PRooF. The proof of(i) is obtained by induction using Lemma 9.2. We obtain 
(ii) by application of Theorem 9.20. To establish (iii) differentiate the series 
(9.13) n times and set x =a in the resulting expression for j<">(x). 0 
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Combining expressions (9.13) and (9.14), we see that any function f defined 
by a power series with R > 0 has the form 

f(x) = f pn>~a) (x - a)". 
n=O n. 

(9.15) 

A function that has continuous derivatives of all orders in the neighbor
hood of some point is said to be infinitely differentiable. It may happen that 
a function f is infinitely differentiable at some point a but is not representable 
by a power series such as (9.15). An example of such an f is given by 

{
e-ltx> if X -:1- 0, 

f: X-+ 0 if X = 0. 

By differentiation, we find that for x -:1- 0 

f'(x) = 2x-Je-ltx>, 

f"(x) = x-6 (4 - 6x2 )e-lfx>, 

f<">(x) = x- 3"Pn(x)e-ltx>, 

where Pn is a polynomial. By l'Hopital's rule, it is not hard to verify that 
J<">(x)-+ 0 as x-+ 0 for n = 1, 2, ... Therefore by Theorem 4.15, we know that 
J<">(O) = 0 for every n, and so f has continuous derivatives of all orders in a 
neighborhood of 0. The series (9.15) for f is identically zero, but the function 

f is not, and therefore the power series with a = 0 does not represent the 
function. 

Definitions. Let f: I-+ IR 1 be infinitely differentiable at a point a e I and 
suppose that the series (9.15) has a positive radius of convergence. Then f is 
said to be analytic at a. A function f is analytic on a domain if and only if it 
is analytic at each point of its domain. 

A function must have properties in addition to infinite differentiability in 
order to be representable by a power series and therefore analytic. The 
principal tool for establishing the validity of power series expansions is given 

by Taylor's theorem with remainder. 

Theorem 9.25 (Taylor's theorem with remainder). Suppose that f and its first 
n derivatives are continuous on an interval containing I= {x: a:::;;; x:::;;; b}. Sup
pose that f(n+ll(x) exists for each X between a and b. Then there is a e with 
a < e < b such that 

n fUl(a) . 
f(b) = .L -.1-(b- a)'+ Rn, 

]=0 J. 
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where 

PROOF. We define Rn by the equation 

that is, 

n J'-il(a) 
f(b) = L -.1-(b - a)l + Rn, 

j=O J. 

Rn = f(b) - f. JU~(a) (b - a)l. 
j=O j! 
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(9.16) 

We wish to find the form R" takes. For this purpose define; for x on I by the 
formula 

n JW(x) (b _ x)n+1 
,P(x) = f(b)- L -.1-(b- x)l- R"(b )"+1· 

J=O 1· -a 

Then; is continuous on I and ,P'(x) exists for each x between a and b. A simple 
calculation shows that ,P(a) = ,P(b) = 0. By Rolle's theorem there is a number 
e with a< e < b such that ,P'(e) = 0. We compute 

n J<·il(x) n JU+ll(x) 
,P'(x) = -f'(x) + L . (b- x)i-1 - L . (b- x)l 

j=1 (J - 1)! }=1 jl 

(b- x)" 
+ (n + 1)R"(b- a)n+1. 

Replacing j by j - 1 in the second sum above, we find 

,P'(x) = -f'(x) + f'(x) + f. ~W(x) (b- x)l-1 - f. ~W(x) (b- x)l-1 
j=2 (J - 1)! j=2 (J - 1)! 

pn+1>(x) n (b - x)" 
- n! (b- x) + (n + 1)R"(b- a)n+1 

= 
(n + 1)(b - x)" [j<"+1>(x)(b - ar+1 _ R J 

(b- a)"+1 (n + 1)! " · 

The formula for Rn given in (9.16) is obtained by setting x = e in the above 
expression and using the fact that ,P'(e) = 0. 0 

Remark. In the proof of Theorem 9.25 we assumed that a < b. However, 
the argument is unchanged if b <a, and hence (9.16) holds for any a, b 
contained in the interval where the hypotheses of the theorem are valid. 

Using Theorem 9.25 we can now establish the validity of the Taylor 
expansion for many of the functions studied in elementary calculus. 
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Theorem 9.26. For any values of a and x, the expansion 

oo (x- a)" 
e"' = ea I: ---,---

n=o n! 

is valid. 

(9.17) 

PRooF. We apply Taylor's theorem to f(x) = e"'. We have J<">(x) = e"' for 
n = 1, 2, ... , and, setting b = x in (9.16), we find 

n (x- a)i 
e"' = ea L ., + Rn(a, x), 

j=O J. 

e~(x- a)n+l 
Rn = (n + 1)! ' 

where e is between a and X. If X > a, then a < e < X and SO e~ < e"'; if X < a, 
then X < e < a and e~ < ea. Hence 

lx - aln+l {e"' if x ~ a, 
Rn(a, x) ~ C(a, x) ( 1)1 where C(a, x) = a .f (9.18) 

n+. e 1x~a. 

Note that C(a, x) is independent of n. By the Ratio test, the series in (9.17) 
converges for all x. The form of Rn in (9.18) shows that Rn-+ 0 as n-+ oo. 
Therefore the series (9.17) converges toe"' for each x and a. 0 

Lemma 9.3. If f(x) = sin x, then J<">(x) = sin(x + kn/2). If f(x) = cos x, then 
J<">(x) = cos(x + kn/2). 

These facts are easily proved by induction. 

Theorem 9.27. For all a and x the following expansions are valid: 

. ~ sin( a + nn/2) ( )" 
smx= L.. 1 x-a, 

n=O n. 

~ cos( a + nn/2) ( \II 
COS X = L.. I X - a1 • 

n=O n. 

The proof is left to the reader. 

Theorem 9.28. The following expansions are valid for lxl < 1: 

00 ( 1)n+l x" 
log(1 + x) = L - , 

n=l n 

oo ( -1)"-lxln-1 
arctanx= L 2 1 . 

n=l n-

The proof is left to the reader. 
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Theorem 9.29 (Simple substitutions in power series) 

(a) If f(u) = L~=o cn(u- b)n for iu- bi < R with R > 0, and if b = kc + d 
with k "1: 0, then 

oo R 
f(kx +d)= L cnkn(x- ct for ix- cl < -ki" 

n=O I 

(b) If f(u) = L~=ocn(u- b)n for iu- bi < R, then for every fixed positive 
integer k, 

00 

f[(x- c)k + b] = L cn(x- c)kn for ix- cl < R 11k. 
n=O 

PROOF 
(a) If u = kx + d and b = kc + d, then u - b = k(x - c) and cn(u - W = 

cnkn(x- ct. Also, iu- bi < R if and only if lx- cl < R/iki. 
(b) To prove Part (b) observe that the appropriate substitution is u- b = 

(x- c)k. 0 

A useful special case of Part (b) in Theorem 9.29 occurs when b = c = 0. 
Then we find that 

00 

f(xk) = L cnxkn. 
n=O 

For example, from (9.17) we see that 

valid for all x. 
In many applications of Taylor's theorem with remainder, it is important 

to obtain specific bounds on the remainder term. The following theorem which 
gives the remainder Rn in an integral form is often useful in obtaining precise 
estimates. 

Theorem 9.30 (Taylor's theorem with integral form of the remainder). Suppose 
that f and its derivatives of order up to n + 1 are continuous on an interval I 
containing a. Then for each x E I, 

n j<J1(a)(x - a)i 
f(x) = .L .1 + Rn(a, x), 

J=O ). 
(9.19) 

where 

(9.20) 
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PRooF. For each x e /, by integrating a derivative, we have 

f(x) = f(a);+ f.."' f'(t) dt. 

We integrate by parts in the above integral by setting 

u = f'(t), 

du = f"(t) dt, 

v = -(x- t), 

dv = dt. 

We obtain 

f(x) = f(a) - [(x - t)f'(t)J: + f.."' (x - t)f"(t) dt 

= f(a) + f'(a)(x - a) + f.."' (x - t)f"(t) dt. 

We repeat the integration by parts in the integral above by setting 

u = f"(t), 
(x- t)2 

v = - -'---::-2 .....:._, 

du = f"'(t) dt, dv = (x - t) dt. 

The result is 

f(x) = f(a) + f'(a) (x - a) + f"(a) (x - a)2 + f"' f"'(t) (x - t)2 dt 
1! 2! a 2! • 

We repeat the process and apply mathematical induction in the general case 
to obtain Formulas (9.19) and (9.20). D 

The "binomial formula" usually stated without proof in elementary courses 
is a direct corollary to Taylor's theorem. 

Theorem 9.31 (Binomial series theorem). For each me lll1, the following for
mula holds: 

(1 + x)• = 1 + f m(m- 1) ... ~m- n + 1) x" for ixi < 1. (9.21) 
n=l n. 

PROOF. We apply Theorem 9.30 with a = 0 and f(x) = (1 + x)•. The result is 

(1 )m _ 1 ~ m(m - 1) ... (m - n + 1) n R (O \ 
+ X - + L.. I X + k , x, 

n=l n. 

where 

("' (x- t)" k m " 1 
R~;(O, x) = Jo k! m(m- 1) ... (m- )(1 + t) -- dt. 
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We wish to show that Rk -+ 0 ask -+ oo if I xI < 1. For this purpose we define 

C ( ) = {(1 + x)m-l if m ~ 1, x ~ 0, or m ~ 1, x ~ 0, 
m x 1 if m ~ 1, x ~ 0, or m ~ 1, x ~ 0. 
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Then we notice at once that (1 + tt-1 ~ Cm(x) for all t between 0 and x. 
Therefore 

lm(m- 1) ... (m- k)l fx lx- tlk 
IRk(O, x)l ~ Cm(x) k! o 1 + t dt. 

We define 

( ) = C ( )lm(m- 1) ... (m- k)ll lk+l 
Uk X m X k! X , 

and set t = xs in the above integral. Hence 

fl (1-s)k 
IRt(O, x)l ~ uk(x) o (1 + xs)kds. 

This last integral is bounded by 1 for each x such that -1 ~ x ~ 1, and hence 
IRk(O, x)l ~ uk(x). By the Ratio test it is not difficult to verify that the series 
L~=o uk(x) converges for lxl < 1. Therefore uk(x)-+ 0 as k-+ oo, and so 
Rk(O, x)-+ 0 for lxl < 1 and all m. 0 

Remarks 

(i) If m is a positive integer then clearly the series (9.21) is finite, consisting 
of exactly m + 1 nonzero terms. 

(ii) It is important to use the integral form for Rk in Theorem 9.31. If the 
form of Rk given in Theorem 9.25 is used, we find that 

Rk(O, x) = m(m- 1)~;. (m- k) (1 + e)m-k-lxk 

with e between 0 and X. If X is between - 1 and - 1/2 the best that Can be said is 

IR (O )I~ C ( )m(m- 1) ... (m- k)(_x_)k 
k 'X """ m X k! 1 - lxl · 

The right side does not tend to 0 as k-+ oo. 

PROBLEMS 

In each of Problems 1 through 10, determine the values of h for which the 
given series converges uniformly on the interval/. 

00 xn 
1. L -, I= {x: lxl ~ h}. 

n=l n 
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00 xn 
2. L nl:' I = {x: lxl ~ h}. 

n=l .j n 
00 

3. :L n(x- 1r. I= {x: lx- 11 ~ h}. 
n=l 

oo (5xr 
4. L - 1 , I= {x: lxl ~ h}. 

n=O n. 

oo ( -1r2nxn 
5. L 3n( 1), I= {x: lxl ~ h}. 

n=O n + 
oo (n!)2(x - 1r 

6. L , I= {x: lx- 11 ~ h}. 
n=o (2n)! 

00 xn 
1. L ( 1)1 ( 1)' I= {x: lxl ~ h}. 

n=l n + og n + 
00 (log n)2nxn 

8. L .Jn , I= {x: lxl ~ h}. 
n=l 3nn n 

00 

9. L xn(1 - x), I= {x: lxl ~ h}. 
n=l 

oo x2 
10. L .Jn' I= {x: lxl ~ h}. 

n=l (1 + nx2 ) n 
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11. Given that L:'=1 lanl converges, show that L:'=1 an cos nx converges uniformly for 
all x. 

12. Given that L:'=1 nlbnl converges. Let f(x) = }::'=1 bn sin nx. Show that f'(x) = 
L:'=1 nbn cos nx and that both series converge uniformly for all x. 

13. Show that if}::'=o cn(x - a)n converges uniformly for lx - al < h, then it converges 
uniformly for lx- al ~h. 

14. Prove Theorem 9.19. 

15. Prove Theorem 9.20. 

16. Prove Theorem 9.21. 

17. Let 

_ {e-1'"
2 if x #< 0, 

f(x) - 0 if x = 0. 

Verify by l'H6pital's rule that pn>(x)-+ 0 as x-+ 0 for each n = 1, 2, .... 

18. Prove Lemma 9.3. 

19. Prove Theorem 9.27. 

20. Prove Theorem 9.28. 

21. Use induction on n to write a complete proof of Theorem 9.30. 
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In each of Problems 22 through 29 find the Taylor expansion about a = 0 and 
prove its validity. 

22. f: X-+ (1 - x2r1/2. 

24. f: x-+ (1 - x)-2• 

26. f: x-+ arcsin x. 

28. f: x-+ arctan(x2 ). 

23. f: x-+ (1 + x2)-112. 

25. f: x-+ (1 - x)- 3• 

27. f: X-+ (1 - x 2r 3. 

29. f: x-+ arcsin(x3 ). 

In each of Problems 30 through 35, compute f(x) to five decimals of accuracy. 
Use Taylor's theorem to guarantee the result. 

32. log(0.9). 

34. (15)1'4• 

31. sin(0.5). 

33. (0.94)J3. 

35. (63)1' 6• 

In each of Problems 36 through 38 compute the integral to five decimals of 
accuracy. 

11/2 
36. Jo exp(x2 ) dx. 3 11 1- COS X d 

7. x. 
o X 

38. . fo.3 dx 

0 y'1+7 

9.5. Unordered Sums2 

Consider the double sequence 

u_ = cosmG). m, n = 1, 2, ... 

There is no natural way to obtain the limit of such a sequence as both m and 
n tend to infinity. It is easy to verify that 

lim [ lim cosm (~)] = 0 and lim [lim cosm (~)] = 1. 
n-+oo m-+oo n m-+oo n-+oo n 

It also may happen that other limiting values result if m and n tend to infinity 
simultaneously and in such a way that they bear a specific relationship to each 
other. The situation becomes even more complicated for triple sequences, 
quadruple sequences, and so forth. 

Rather than discuss multiple sequences on a case-by-case basis, we shall 
develop a single comprehensive theory, one which unifies the treatment of 
convergence questions for all multiple sequences and series. 

2 Sections 9.5, 9.6, and 9. 7 may be omitted without loss of continuity. 
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(m, n) 

• 

(1, I) (2, I) (2, 2) 

• • • 
--~-------------------+m 

0 

Figure 9.5. A set Sin IR 2• 

We consider functions defined from a setS into ~ 1 . Usually we shall think 
of S as a lattice in ~2, ~3 or ~N consisting of the points which have integer 
coordinates. For example, S might be all number pairs (m, n) where m and n 
are positive integers (Figure 9.5); or, S may be all number triples of the form 
(l, m, n) where l, m and n are nonnegative integers. We shall also consider sets 
S which consist of a finite number of elements, such as the set (Figure 9.6) 
S = { (m, n): 1 ~ m ~ 4, 2 ~ n ~ 5, m, n integers}. However, Sis not restricted 
to points on a lattice. The statements in this section remain valid for arbitrary 
sets S, countable or uncountable. 

Definition. LetS be a finite set and suppose f: S ~ ~1 is a given function. We 
define the sum of the values of f(p) asp ranges over S to be the quantity 

n 

I f(P;) 
i=1 

where p1 , ••• , Pn is any arrangement of the elements of S. Since the number of 

n 

6 • • • • • 
5 + + + + • 
4 + + + + • 
3 + + + + • 
2 + + + + • 

• • • • • 
m 

0 2 3 4 5 

Figure 9.6. A finite set S. 



9.5. Unordered Sums 243 

terms in the sum is finite, the value of the sum does not depend on the ordering 
of the elements of S. We also denote this sum by 

I f(p). (9.22) 
peS 

In the most common situations the function f is designated by means of 
subscripts. For example, if { umn}, m = 1, 2, 3; n = 1, 2, ... , 7, are real numbers, 
then f is the function with domain S = { (m, n): 1 ~ m ~ 3, 1 ~ n ~ 7} and 
with values umn in IR 1 • We write 

3 7 

L L Umn 
m=l n=l 

instead of the sum (9.22). 

Definition. Let S be an infinite set and suppose that f: S--+ IR 1 is a given 
function. We say that f has the sums overS if and only iffor every e > 0 there 
is a finite subset S' of S such that 

~P~ .. f(p)- sl < e 

for every finite subsetS" of S which contains S'. We also say that f has a sum 
over S, without indicating the value s. 

Remarks 
(i) The subset S' in the definition depends, in general, on the value of e. 

(ii) We shall use the symbol 

I f(p) (9.23) 
peS 

to denote the sum over a finite or an infinite set S. 
(iii) There is a strong inclination to compare the above definition with the 

definition of convergence of an infinite series: for every e > 0 there is an integer 
n such that IL~=l an- sl < e for every integer m > n. We might compare the 
set 1, 2, ... , n to S' and the set 1, 2, ... , m to S". However, in defining the sum 
over a set S, nothing is said about how the finite set S' is chosen; it is not 
necessarily the first n integers if, say, S is the collection of natural numbers. 
The definition given for a sum overS allows us to choose a finite set of elements 
arbitrarily in the collectionS. For this reason we refer to (9.23) as an unordered 
sum. 

The next theorem shows that the sum over an infinite set can have at most 
one values. 

Theorem 9.32. Let S be an irifinite set and suppose that f: S--+ IR 1 is a given 

function. Then f can have at most one sum s over S. 
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PROOF. Assume thatfhas two sums s1, s2 overS with s1 < s2 • We shall reach 
a contradiction. We set e = !(s2 - s1). Then there are finite sets S~, s; such that 

~p~" f(p)- s11 < e and IJ;./(P)- s2 1 < e 

for all finite sets S", S" such that S~ c S" and s; c S". LetS* be any finite set 
which contains S~ us;. Then 

L f(p) < s1 + e and s2 - e < L f(p) 
peS* peS* 

for this set S*. We conclude that s2 - e < s1 + e, which, according to the 
definition of e, is impossible. 0 

Theorem 9.33. Suppose that f 1 and f 2 each has a sum over a setS and that c1 , 

c2 are real numbers. Then c1f 1 + c2 f 2 has a sum overS, and 

L (ctfl(p) + Czfz(p)) = C1 L f1(p) + Cz L fz(p). 
pES peS peS 

PROOF. Let B > 0 be given. Then there are finite sets s~' s; such that 

I L J;(p)- Lh(P)I< 1 I~ I I for i=1,2, 
peS" pes + C1 + Cz 

where S" is any finite set containing S~ and s;. We setS'= S~ us;. Then we 
have for such S" containing S' 

~p~" (ctf1 + czfz)- (cl p~sf1 + Cz p~s fz )I~ it led ~p~" !;(p)- p~s!;(p)l 
(lcll+lczl)e 0 < <B. 

1 + lc1l + lczl 

Corollary. Suppose that f 1 , f 2 , ... , fn each has a sum overS and that c1 , c2 , ... , 

en E IR 1. Then ctf1 + c2 f 2 + .. · + cnfn has a sum and 
n 

L (ctfl + Czfz + "· + cnfn) = L C; L !;. 
pES i=l peS 

We now show that iff: S--+ IR1 has a sum overS, then the sum off over 
every finite subset of S is uniformly bounded. 

Theorem 9.34. Suppose that Sis infinite and f: S--+ IR 1 has a sum overS. Then 

there is a number M such that 

~P~.f(p)l ~ M 

for every finite set S' contained in S. 
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S"=SUS' 

Figure 9.7 

PRooF. Lets= Lpesf(p) and choose 8 = 1. Then there is a finite setS' such 
that 

for every finite setS" which contains S'. From (9.24) we have 

~P~ .. f(p)l < 1 +lsi. 

(9.24) 

(9.25) 

Now suppose that Sis any finite subset of S. Define S" = SuS' and observe 
that (9.25) is valid for this setS". Also, 

S = (S u S') - (S' - S) 

(see Figure 9.7). We denote A = Lpes· lf(p)l. Therefore 

L. f(p) = L. f(p) - L. f(p) 
peS peS" peS'-S 

and 

I p~s f(p) I ~ I P~" f(p) I + P~' lf(p)l ~ 1 + lsi + A. 

We choose M = 1 +lsi+ A, and since Sis an arbitrary finite set, the result 
follows. 0 

Theorem 9.35. Let f: S-+ IR1 be given and suppose that f(p) ~ 0 for all peS. 
Then f has a sum overS if and only if Lpes· f(p) is uniformly bounded for all 
finite sets S' contained in S. 

PROOF. If f has a sum over S, then the uniform boundedness results from 
Theorem 9.33. Now suppose the finite sums are uniformly bounded. We define 

A = sup L, f(p), 
S* peS* 

(9.26) 

where the supremum is taken over all finite sets S* contained in S. Let 8 > 0 
be given. From the definition of supremum, there is a finite set S' such that 
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LpeS' f(p) > A - 8. Since f(p) ~ 0, we then have 

A ~ L f(p) > A - 8 
peS" 

(9.27) 

for every finite setS" containing S'. Since 8 is arbitrary the result follows. D 

From (9.26) and (9.27) in the above proof it is clear that when f has a sum 
over S, it is given by the number 

L f(p) =A. 
peS 

Corollary. Let f: S-+ ~1 , g: S-+ ~1 be such that 0 ~ f(p) ~ g(p) for all peS. 
If g has a sum over S, then f does also and 

I f<P> ~ I g(p). 
peS peS 

EXAMPLE 1. Let S be the set of pairs of all positive integers (m, n), 
m, n = 1, 2, .... We define f: S-+ ~ 1 by f(m, n) = ljm2n2• Show that f has a 
sum overS. 

Solution. LetS' be any finite subset of Sand denote by m' and n' the largest 
integers in S'. Then 

1 m' n' 1 
I 22~ I Lzz· 

(m,n)eS' m n m=1 n=1 m n 

Since the series L:'=1 1jn2 is convergent (in fact, to the value n2 /6), we find 

1 1t4 

L -~-=A 
(m,n)eS' m2n2 36 

for all finite sets S'. Thus the finite sums are uniformly bounded and, according 
to Theorem 9.35, f has a sum over S. D 

EXAMPLE 2. Let S be as in Example 1, and define f: S-+ ~1 by f(m, n) = 
1/(m4 + n4 ). Show that f has a sum over S. 

Solution. We have 2m2n2 ~ m4 + n4 or 1/(m4 + n4 ) ~ 1/(2m2n2 ) for all m 
and n. Set g(m, n) = 1j2m2n2 and, by Example 1, g has a sum over S. We 
now employ the Corollary to Theorem 9.35 to conclude that f has a sum 
~£ D 

Definitions. Let f: s-+ ~1 be given. Define the sets s+ = {p: pEs, f(p) ~ 0}; 
s- {p: pEs, f(p) < 0}. Also, denote f+(p) = Hlf(p)l + f(p)] and f-(p) = 

Hlf(P)I - f(p)]. 

From these definitions, it follows at once that 

0 ~ f+(p) ~ lf(p)l, 

f+ + f- = lfl, 

0 ~ f-(p) ~ lf(p)l, 
f+ -f- =f 
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Also, 
f+(p) = f(p) on s+, 

f-(p) = f(p) on s-, 

f-(p)=O ons+, 

f+(p)=O ons-. 
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In the study of infinite series of positive and negative terms, we saw in 
Theorem 9.6 that if a series converges absolutely then it converges con
ditionally. On the other hand, there are series which are conditionally 
convergent but not absolutely convergent. The series L:'=1 ( -1)"/n is such 
an example. The definition we have chosen for convergence of unordered sums 
is much stronger than the one selected for ordinary series. In fact, the next 
theorem shows that a function f has a sum over a set S if and only if the 
absolute value off has a sum overS. We shall see later in this section that 
convergence of an unordered sum reduces, in the case of a series such as 
L:'=1 a11 , to a type of convergence called unconditional, that is, a series which 
has the property that every possible rearrangement of the terms of the series 
yields a convergent series with the same sum. Unconditional convergence 
and absolute convergence are equivalent for single and multiple series of 
numbers. 

Theorem 9.36. f has a sum overS if and only if 1/1 has a sum overS. When 
these sums over S exist, then 

I p~S f(p) I ~ p~S lf(p)l. (9.28) 

PROOF. Suppose 1/1 has a sum overS. Then, by the Corollary to Theorem 
9.35, j+ and f- have sums overS. Using Theorem 9.33, we find 

L t<P> = L t+<P> - L t-<P>. 
peS peS peS 

L lf<P>I = L t+<P> - L t-<P>. 
peS peS peS 

so that (9.28) holds. 
Now suppose thatfhas a sum overS. If we suppose thatf+ does not have 

a sum over S then, according to Theorem 9.34, for any number M there is a 
finite subsetS' such that Lpes· f+(p) > M. Since f+(p) = 0 on s-, we have 

M < L f+(p) = L f+(p) = L j+(p) 
peS' pes·-s- peS'"s+ 

L t<P>· 
peS'ns+ 

Since M is arbitrary, Theorem 9.34 shows that f does not have a sum overS. 
Our supposition is false and we conclude that f+ must have a sum over S. 
Consequently, f- = j+ - f also has a sum overS and, fmally, 1/1 = f+ + /
has a sum over S. 0 

The proof of the following simple lemma is left to the reader. 
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Lemma 9.4. Suppose that f: S-+ IR 1 has a sum overS. If U is any set contained 
in S, then f has a sum over U. 

In problems involving infinite series, it is frequently useful to change the 
setS over which the sum is calculated. For example the two series 

clearly have the same sum. The first sum is over the set { 1, 2, ... } and the 
second is over the set {0, 1, 2, ... }. When such a change from one series to 
another is made, the quantity being summed must be changed accordingly. 
In the above case the term 1/n2 is transformed to 1/(n + 1)2 . The next theorem 
shows that such changes are justified under quite general circumstances. 

Theorem 9.37. Let S0 and S1 be sets and T: S0 -+ S1 a one-to-one mapping of S0 

onto S1 . Suppose that f has a sum over S0 and that g: S1 -+ IR 1 is defined for 
each q E S1 by the formula g(q) = f(p) with T(p) = q. Then g has a sum over S1 

and 
I: g(q) = I: f(p). 

qeS1 peSo 

PROOF. Let the sum off over S0 be denoted by s. Then for every e > 0 there 
is a finite set S~ c: S0 such that 

I L .. f(p)-sl<e 
peS0 

for every finite setS~ containing S~. We denote SJ. = T(S~), sr = T(S~). Then 
by the definition of g, we have 

I L .. g(q)- sl < e 
qeS1 

for every finite set S~ containing s;,. Hence Lqes, g(q) = s. D 

We recall that the symbol N is used to denote the set of all positive integers. 
We also use the symbol N0 to designate the set of all nonnegative integers, 
i.e. N0 = N u {0}. 

Theorem 9.38. Let f: N-+ IR 1 be given. For each n EN, we let an= f(n). Then 

f has a sum over N if and only if L~=l an converges absolutely. Also, the sums 
are equal: 00 

L an= L an. 
ne N n=l 

PROOF. Suppose thatfhas a sum over N. Then lfl,J+, andf- also have sums 
over N. Lets+ = Lne N a: where a: =!(I ani +an), and suppose that e > 0 is 
given. Then there is a finite set N' such that 

s+ - e < L a: ~ s+. 
neN' 
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We let n' be the largest number inN'. Then 

n" 
s+ - e < L a; :::;;; s+ 

n=l 
for all n" ~ n'. Thus L:'=1 a; converges. Similarly L:'=1 a;; converges where 
a;; = !(la,.l- a,.). We conclude that L:'=1 la,.l = L:'=1 (a; +a;;) converges. 

Now suppose that L:'=1 la,.l converges to s. Let N' be any finite subset of 
1\1 with largest number n'. Then 

n' 

L Ia,. I :::;;; L Ia,. I :::;;; s. 
neN' n=l 

Hence If I has a sum over 1\1, and by Theorem 9.36, so does f. D 

Corollary. Suppose that the sequence L:'=1 a,. is absolutely convergent. Let {k,.} 
be any sequence of positive integers. Then L:'=1 ak" is convergent. If the set { k,.} 
consists of all of N, then 

00 00 

L ak" =La,.. n=l n=l 
If an infinite series has the property that every reordering of the terms yields 

a convergent series, then we say that the series is unconditionally convergent. 
The above Corollary shows that for the set 1\1, unconditional convergence and 
absolute convergence are equivalent. On the other hand, if a series is only 
conditionally convergent, then a reordering ofthe terms may yield a divergent 
series, as the following example shows. 

EXAMPLE 3. Let f: 1\1 -+ IR 1 be given by f(n) = ( -1)"/n. Show that f does not 
have a sum over 1\1. 

Solution. This fact is a direct result of Theorem 9.38 since the series 
L:'=1 ( -1)"/n is not absolutely convergent. We know that the two series 

00 1 
L-n=l 2n 

and 
00 -1 
L-n=l 2n- 1' 

being harmonic series, are divergent. Let r be any real number. Then by 
selecting terms first from the series with even-numbered denominators, then 
from the series with odd-numbered denominators, then from the even
numbered ones, and so forth, it is possible to obtain a rearrangement off so 
that the sum of the rearranged series is r. The details of this process are left to 
the reader. See Problem 11 at the end of this section and the hint given there. 

D 

PROBLEMS 

1. LetS be the set of all integers, positive, negative and zero. We define f: S-+ IR1 so 
that f(n) = n/21"1. Show that f has a sum over S. 
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2. LetS be defined as in Problem 1. Supposethatg: S-+ IR 1 is given by g(n) = Jjnl;en. 
Does g have a sum overS? 

3. LetS= {x: xis rational, 0 < x < 1}. Letf: S-+ IR 1 be given by the formula 

!(~) =~ 
where p, q are integers reduced to lowest terms of the rational number r = pjq. 
Does f have a sum over S? 

4. Let S = { (m, n): m, n integers, 0 < m < oo, 0 < n < oo }. Define f: S-+ IR 1 so that 
f(m, n) = 1/m312n512• Show that f has a sum overS. 

5. LetS be defined as in Problem 4. If g: S-+ IR1 is given by g(m, n) = 1/mn3, does g 
have a sum over S? 

6. LetS= {(l, m, n): l, m, n integers, 0 < l < oo, 0 < m < oo, 0 < n < oo}. Define 
f: S-+ IR 1 by the formula f(l, m, n) = 1/(18 + 2m8 + n8 ). Show that f has a sum 
overS. 

7. LetS= {(m, n): m, n integers, 0 < m < oo, 0 < n < oo, m * n}. Define f: S-+ IR1 

by the formula f(m, n) = 1/(m2 - n2 ). Show that f does not have a sum over S. 

8. Prove Lemma 9.4. 

9. Let S0 and S1 be sets and T: S0 -+ S1 a mapping of S0 onto S1 . Let f: S0 -+ IR 1 have 
a sum over S0 • For each q e S1 , choose a single element p of the set {T-1(q)} and 
define the function g: S1 -+ IR1 by the formula g(q) = f(p). Show that g has a sum 
over sl. 

10. Write out a complete proof of the Corollary to Theorem 9.38. 

11. Suppose that L:'=t an is conditionally convergent. Let r be any real number. Show 
that there is a rearrangement L:'=t bn of the infinite series L:'=t an such that 
L:'=t bn = r. [Hint: Divide the terms of the series L:'=t an into terms a~ and a; in 
which a~ ~ 0 and a; < 0. Then each of the series L:'=t a~ and L:'=t a; must diverge. 
(Otherwise the original series would be absolutely convergent). Assume that the 
terms are rearranged so that a~+t :E;; a~ and - a;+t :E;; -a; for each n. Clearly a~ -+ 0 
and a; -+ 0 as n -+ oo as otherwise the original series would be divergent. Now 
choose enough terms of the first sequence so that r is just exceeded. Then choose 
enough terms of the second series so that the total sum falls just below r. Then 
choose terms of the first series to exceed r and continue. Show that this process 
must yield a sequence converging tor.] 

9.6. The Comparison Test for Unordered Sums; 
Uniform Convergence 

We learned in the study of the convergence of series that the comparison test 
is one of the most useful for deciding both convergence and divergence. The 
following analog for unordered sums is a useful test in many situations. 
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Theorem 9.39 (Comparison test). Let f: S-+ IR 1 and F: S-+ IR 1 be given. 

(i) IfF hasasumover Sand lf(p)l ~ IF(p)lforallp e S, thenfhasasumoverS. 
(ii) IfF does not have a sum overS and lf(p)l ~ IF(p)l for all peS, thenf does 

not have a sum overS. 

The proof is left to the reader (see Theorem 9.4). 

EXAMPLE 1. Set S = { (m, n): m, n integers 0 < m < oo, 0 < n < oo} be given. 
Show that f(m, n) = ( -1)m+n/(m3 + n3 ) has a sum overS. 

Solution. We observe that 2m3'2n3' 2 ~ (m3 + n3 ) for all (m, n) e S. We define 

F(m, n) = 1/m3'2n3' 2, and it is clear that :L:=l L:'=1 1/m3'2n312 converges (two 
p-series with p = 3/2). Therefore L(m,n)esF(m, n) converges. Since lf(m, n)l ~ 
IF(m, n)l for all (m, n) e S, the result follows. D 

EXAMPLE 2. Let S be as in Example 1. Show that f(m, n) = 1/(m2 + n2 ) does 
not have a sum over S. 

Solution. We define 

{ 

1 
2n2 

F(m, n) = _ 1_ 

2m2 

for m ~ n, 

for m > n. 

Then, clearly f(m, n) ~ F(m, n) > 0 for all m, n. Let Sn' = {(m, n): 0 < m ~ n', 
0 < n ~ n', m, n integers}. Then 

n' n' 1 n' 1 
L F(m, n) > L L 2 = n' L 2 

(m,n)eSn' n=l m=l n n=l n 
n' 1 

>I-. 
n=l n 

Thus, if M is any positive number, we can choose n' so large that 

L F(m, n) > M. 
(m,n)eSn' 

Therefore F does not have a sum overS and, by the Comparison test, neither 

~~ D 

The next two theorems are almost direct consequences of results already 
established. We leave the details of the proofs to the reader. 

Theorem 9.40. Iff: S-+ IR 1 and g: S-+ IR 1 have sums over S, and f(p) ~ g(p) 
for all p e S, then 

I f(p) ~ I g(p). 
peS peS 
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Theorem 9.41 (Sandwiching theorem). Let f: S--+ lll 1 , g: S--+ lll1, and h: S--+ lll 1 

be given. Suppose that f and h each has a sum overS and that f(p) ~ g(p) ~ h(p) 
for all p e S. Then g has a sum over S. 

Although the sets S may be quite arbitrary, we now show that iff has a 
sum over S then the set of points of S where f does not vanish is severely 
restricted. 

Theorem 9.42. Suppose that f: S --+ lll1 has a sum over S. Let S* = {p e S: 
f(p) =I 0}. Then S* is countable. 

PROOF. For n = 2, 3, ... , define 

Sn = {p E S: ~ ~ lf(p)l < n ~ 1}. 

The reader may complete the proof by showing that S* = U:'=2 Sn and that 
each S" must be a finite set. D 

Let A be a set in a metric space T and suppose that S is an arbitrary set. 
Let f be defined for x e A and peS with values in lll1; that is, f: A x S--+ lll1• 

We write f(x; p) for the function values off For each x in A, the function f 
may or may not have a sum over S; when f has a sum, we denote it by s(x). 
For unordered sums we make the following definition, one which corresponds 
to uniform convergence for infinite series. 

Definition. Let f: A x S--+ lll1 be given. We say that f has a sum uniformly on 
A over S if and only iff has a sum over S for each x e A and, for every 8 > 0 
there is a finite set S' contained in S such that 

~P~" f(x; p)- s(x)l < 8 

for every finite set S" containing S'; furthermore the set S' is independent of x. 
When the set A is clearly understood we say briefly that f has a sum uniformly 
overS. 

The next result, an extension of Theorem 9.19, shows that if an unordered 
sum has all continuous terms and if the "convergence" is uniform, then the 
sum is a continuous function. 

Theorem 9.43. Suppose that for each p in S, the function f: A x S--+ lll1 is 
continuous on the set A in the metric space T. Suppose that f has a sum uniformly 
overS. Then the function s(x) defined by 

s(x) = L f(x; p), xeA, 
peS 

is continuous on A. 



9.6. The Comparison Test for Unordered Sums; Uniform Convergence 253 

PROOF. Let x0 e A and 6 > 0 be given. We wish to show that sis continuous 
at x0 • By hypothesis, there is a finite setS' such that 

I L f(x0 ; p)- s(x0 )1 < -3
8 and I L f(x; p)- s(x)l < -3

8 

peS" peS" 

for any finite set S" containing S'. We fix S" and write 

ls(x) - s(x0 )1 :lS; I s(x) - p~" f(x; p) I + I p~" [f(x; p) - f(xo; p)] I 

+ I p~" f(xo; p)- s(x0 )1. 

Now the hypothesis that f is continuous is employed to yield the result. D 

The proof of Theorem 9.43 should be compared to the proof of Theorem 
9.13. 

Theorem 9.44 

(a) (Term-by-term integration of an unordered sum). Let I= {x: a :lS; x :lS; b} 
be a finite interval, and suppose that f: I x S-+ ~1 has a sum on I uniformly 
overS. Suppose that for each p E S, the function f is integrable on I. Define 

s(x) = LPesf(x; p). Then s(x) is integrable on I and 

fb s(x) dx = L fb f(x; p) dx. 
a peS a 

(b) Let F be a figure in ~1 and suppose that f: F x S-+ ~1 is integrable over 
F and has a sum uniformly overS, denoted by s(x). Then s is integrable over 
Fand 

f s dVN = L f f(x; p) dVN. 
F peS F 

The proofs of Parts (a) and (b) are similar to the proofs of Theorems 9.14 
and 9.17, respectively, and are left to the reader. 

The next theorem shows when unordered sums may be differentiated 
term-by-term. 

Theorem 9.45. Let G be an open set in ~Nand suppose that f: G x S-+ ~ 1 is 
continuous and has partial derivatives f.k(x; p), k = 1, 2, ... , N, which are 
continuous in G. Suppose that f(x; p) has a sum over S denoted by s(x), and that 
f.k(x; p) has a sum uniformly over S denoted by t(x). Then 

s,k(x) = t(x) for all x E G. 

The proof is similar to that of Theorem 9.15. 
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Theorem 9.46 (Weierstrass M-test). Let A be a set in a metric space T and 
suppose that u: A x S-+ IR1 satisfies iu(x; p)l ~ f(p) for each peS. If f(p) has 
a sum overS, then u(x; p) and iu(x; p)l each has a sum uniformly on A overS. 

The proof is similar to that of Theorem 9.22 and is left to the reader. 

PROBLEMS 

1. Let S = { (m, n): m, n integers, 0 < m < oo, 0 < n < oo }. Given f(m, n) = 
1/(m512 + n512 ), show that f has a sum overS. 

2. Let S be as in Problem 1 and define f(m, n) = 1/(m + n3 ). Show that f does not 
have a sum over S. 

3. Let S = {(l, m, n): l, m, n integers, 0 < l < oo, 0 < m < oo, 0 < n < oo}. Define 
f(l, m, n) = 1/W + m2 + n4 ). Does f have a sum over S? 

4. Prove Theorem 9.39. 

5. Prove Theorem 9.40. 

6. Prove Theorem 9.41. 

7. Complete the proof of Theorem 9.42. 

8. LetS= {x: 0 < x < 1} and suppose that/: S -+IR1 has a range which contains the 
set A = { x: 0 < x < 1, xis rational}. Show that f does not have a sum overS. 

9. Let I= {x: a~ x ~ b} with 0 <a< b < 1 and S = {n: -oo < n < oo, n an in
teger #- 0}. Suppose that f: I x S-+ IR1 is given by f(x; n) = x"fn. Does f have a 
sum uniformly on I over S? 

10. Let A = { (x, y): a ~ x ~ b, c ~ x ~ d} with 0 < a < b < 1, 0 < c < d < 1, and let 
S = {(m, n): m, n integers -oo < m < oo, -oo < n < oo, m #- 0, n #- 0}. Defme 
f: A x S -+IR1 by f(x, y; m, n) = xmy•jm2n2 • Does f have a sum uniformly on A 
overS? 

11. Prove Theorem 9.44(a). 

12. Prove Theorem 9.44(b). 

13. Let S = {n: n an integer, +oo < n < oo} and let I= {x: 0 ~ x < oo}. Defme 
f(x, n) = e-""'/(1 + n4 ). Can the unordered sum Lnesf(x, n) be differentiated term
by-term? 

14. Prove Theorem 9.45. 

15. Prove Theorem 9.46. 

9.7. Multiple Sequences and Series 

In Section 9.5 we introduced double sequences informally, and we showed 
how they are related to unordered sums. In this section we shall treat conver
gence problems for multiple sequences and series. 
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Definitions. We denote the collection of all pairs of positive integers by N x N, 
and the collection of all pairs of nonnegative integers by N0 x N0 . A double 
sequence is a function u from N0 x N0 into IR 1 • The values of u are denoted 
by u(m, n), m, n = 0, 1, 2, ... , or, more customarily, by umn· Sometimes the 
domain of a double sequence is N x Nor a subset of N x N. We say a double 
sequence converges to a as (m, n) tends to infinity if and only if for every 8 > 0 
there is a positive integer P such that lumn- al < 8 for all (m, n) such that 
m > P and n > P. We write {umn}-+ a as (m, n)-+ oo. 

In analogy with the formal definition of an infinite series given in Section 
9.1, we define a double series formally as an ordered pair ({umn}, {smn}) of 
double sequences such that 

m n 

Smn = L L uij. 
i=O j=O 

The umn• m, n = 0, 1, 2, ... , are called the terms of the double series ( { umn}, 
{ smn} ), and the smn are called its partial sums. The double series is said to be 
convergent if and only if there is a numbers such that Smn-+ s as (m, n)-+ oo. 
Otherwise, the double series is divergent. We will most often write a double 
series in the form 

00 

L uii 
i,j=O 

rather than use the ordered pair symbol. 

The following theorem is a direct consequence of the definition of conver
gence and the theorems on limits. 

Theorem 9.47 

(a) If the double series L::.n=o umn• L::;',n=o vmn are both convergent and c and d 
are any numbers, then the series L::.n=o (cumn + dvmn) is convergent and 

00 00 00 

L (cumn + dvmn) = c L umn + d L Vmn· 
m,n=O m,n=O m,n=O 

(b) If the series L::;',n=o Umn is divergent and if c =I= 0, then L::;',n=o cumn is 
divergent. 

The next theorem shows the relationship between the convergence of a 
double series and an unordered sum. 

Theorem 9.48. Suppose that the terms umn of a double sequence u: No X No-+ 
IR 1 are all nonnegative. Then the double series L::.n=o umn is convergent if and 
only if the function u has a sum overS= N 0 x N 0 • Furthermore, 

00 

L Umn = L umn· (9.29) 
m,n=O (m,n)eS 
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PROOF 
(a) Suppose that u has a sum over S which we denote by s. Let e > 0 be 

given. Then there is a finite subset S' of S such that 

L Umn>S-6. 
(m,n)eS' 

Let P be a positive integer such that P > m and P > n for all (m, n) E S'. Since 
uii ~ 0 for all i, j, it follows that 

s-e< L Umn 
(m,n)eS' 
mo no 

~ :L :L uij 
i=l j=l 

= Smono ifmo ~ p and no~ P. 

Therefore s - e ~ smono ~ s and so the double series converges. 
(b) Suppose the double series converges to a sum s. Let S' be any finite 

subset of S and let e > 0 be given. Then there is a positive integer P such that 
P ~ m and P ~ n for (m, n) E S', and furthermore the inequality lsmn- sl < e 
holds whenever m ~ P and n ~ P. Hence 

p p 

L Umn ~ L L Umn = spp ~ s + e. 
(m,n)eS' m=l n=l 

Since e and S' are arbitrary, u has a sum over S and its value is s. D 

It is clear that corresponding to Theorems 9.47 and 9.48 there are theorems 
for triple series, quadruple series and, in fact, for multiple series of any order. 

Theorem 9.49. Let u: N0 x N0 -+ IR 1 be given and suppose that its terms are 
Umn· Then the double series L~.n=O Umn is absolutely convergent if and only if 
the function u has a sum over S = N0 x N0 • In the case of convergence, 
Equation (9.29) holds. 

The above theorem is a direct consequence of Theorem 9.48 and the related 
theorems on unordered sums. We leave the details of the proof to the reader. 
Theorems 9.48 and 9.49 make the theory of absolutely convergent double 
series a special case of the theory of unordered sums given in Section 9.6. The 
next result is a special case of a general theorem on unordered sums (Theorem 
9.51 below). 

Theorem 9.50. Let u: N0 x N0 -+ IR 1 be given with its terms denoted by umn· 
Suppose that L~.n=o umn is absolutely convergent. Then the single series 

is absolutely convergent for each m = 0, 1, 2, ... , and the series L~=o Umn is 
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absolutely convergent for each n = 0, 1, 2, .... If we define 
00 

v, = L umn• W, = L Umn 
m=O m+n=r 

then the series L:::=o Um, L;:'=o V,, L~o W, are all absolutely convergent and 
have the same value as L;::,n=o Umn· 

PROOF. We first show that L;:'=o umn is convergent for each m when umn ~ 0. 
By Theorem 9.49, we know that u has a sum overS= N 0 x N 0 • Since the 
partial sum L~=o umn is a finite subset of S, these partial sums are uniformly 
bounded. Hence the series is convergent for each m. Now consider the partial 
sum L;:=o Um. For any e > 0 and any positive number M, there is an integer 
P such that 

p 00 

L Umn > L Umn - ej M. 
n=O n=O 

Hence for any positive integer M, it follows that 

M M oo M P 

L um = L L Umn < L L Umn + e. 
m=O m=O n=O m=O n=O 

Since u has a sum overS, we conclude that the series L:::=o Um converges. Now 
for any e > 0 there is a finite set S' c S such that 

L umn> L Umn-e. 
(m,n)eS (m,n)eS' 

Also, there is an integer M' which we can take larger than the greatest value 
of min S', such that 

oo M' M' oo 

L um > L um = L L umn > L Umn - e. 
m=O m=O m=O n=O (m,n)eS' 

Since e is arbitrary it follows that L:::=o um = L:::.n=O Umn· We treat the case 
where umn may be positive or negative by using the hypothesis of absolute 
convergence and separating the terms of the series into positive and negative 
parts. As in previous proofs, we apply the above argument to each of the series 
obtained in this way. The proofs for L;:'=o V,, L~o W, are similar. 0 

Theorem 9.50 is a special case of a general theorem on unordered sums 
which may be considered as a generalized associative law. This result allows 
us to extend the above theorem to multiple series of any order. 

Theorem 9.51. Let S' be a set. To every x in S' we associate a set denoted Sx. 
Define S = {(x, y): xES', y E Sx}· Suppose that f: S--+ ~1 has a sum overS. 
Then f has a sum over Sxfor each xES'. If we define g(x) = Lyesxf(x, y), then 
g has a sum over S' and 

L g(x) = L [ L f(x, y)J = L f(x, y). 
xeS' xeS' yeSx (x,y)eS 
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The proof follows the pattern of the proof of Theorem 9.50, and we leave 
the details to the reader. 

We illustrate Theorem 9.51 with an example in triple series. LetS' = N x N 
and for each xeS', let S"' = N0 • Then S = N x N x N0 • Suppose f: S-+ R1 

has a sum overS; we denote the terms off by u1mn• (I, m, n) e S. Theorem 9.51 
then shows that 

00 

g(x) = L f(x, y) = L Ulmn 
yeS, n=O 

is convergent for all (I, m) e S'. Also, if we denote the terms of g(x) by v1m, 

(I, m) e S', then 
00 00 00 

L v,m = L L u,""' = L Ulmn· 
l,m=l l,m=l n=O (l,m,n)eS 

The next theorem is a partial converse of Theorem 9.51. 

Theorem 9.52. Suppose that S', S, and S"' are as in Theorem 9.51. Let f: S-+ R1 

be given. Suppose that f has a sum over S"' for each xeS'. Define g(x) = 
Lyes, lf(x, y)l and suppose that g has a sum overS'. Then f has a sum overS. 

We leave the proof of this and the following result to the reader. 

Theorem 9.53 (Multiplication of unordered sums). Let f: S'-+ lll1 and 
g: S"-+ lll1 be given. Define S = S' x S" and h(x, y) = f(x) · g(y) for xeS', 
yeS". Suppose that f has a sum overS' and g has a sum overS". Then h has a 
sum over S and 

I h(x, Y> = [I f(x>]·[ I g(y>]· 
(x,y)eS xeS' yeS" 

We now show how the theorems of this section may be used to establish 
rules for the multiplication of power series. Suppose the series 

f(x) = a0 + a1 x + · · · + anx" + · · ·, 

g(x) = b0 + b1x + · · · + bnx" + · · ·, 

are convergent for lxl < R. Without considering questions of convergence, we 
multiply the two series by following the rules for the multiplication of poly
nomials. The result is 

b0 f(x) = a0 b0 + a 1 b0 x + · · · + an box" + · · ·, 

b1xf(x) 

bnx"f(x) = 

Adding, we obtain the series 

a0 b0 + (a0 b1 + a1 b0 )x + · · · + (a0 bn + a1 bn-l + · · · + anb0 )x" + · · · . 
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In summation notation, the product becomes 

oo oo aooo 

L a1x 1 L b1xi = L L a1b1xi+i. 
1=0 j=O i=O j=O 

Setting i + j = n and collecting terms, we obtain for the right side 

f ( f ak.bn-k.) x". 
11=0 k.=O 

We shall show that the above expansion actually represents f(x) · g(x). 

Definition. Let L~o a1(x - c)1 and Lj;.o b1(x - c)i be given power series. Then 
the series 

Jo Cto a,.b,_,.) (x - c)" (9.30) 

is called the Cauchy product of the two given series. 

Theorem 9.54. Suppose that the series 
CIO CIO 

f(x) = L c.,(x - c)", 
11=0 

g(x) = L d.,(x - c)", 
11"'0 

converge for lx - cl < R with R > 0. Then for lx- cl < R the product 
f(x) · g(x) is given by the Cauchy product of the two series. 

PROOF. Since the two given series are absolutely convergent for lx- cl < R, 
it follows that 

f(x) = L c1(x - c)1, g(x) = L d1(x - c)i. 
leNo jeNo 

In Theorem 9.53, we takeS' = N0 and S" = N0 • Then the function his defined 
for (i, j) e N0 x N0 by hii = c1d1(x- c)i+i. Hence for each fixed x such that 
lx - cl < R, we have 

f(x) · g(x) = L c1d1(x - c)l+i. 
(l,j)e No x No 

Now for each n e N0 ,define S., = {(i, j) e N0 x N0 : i + j = n}. Then from the 
generalized associative law (Theorem 9.51) we find that the function 

u,(x) = L c1d1(x - c)" 
(l,j)eSn 

has a sum over .N0 • Therefore 

f(x) · g(x) = L ( L c1d1) (x - c)" 
11e No (l,j)eSn 

for lx - al < R. This formula is of the form (9.30). D 

Suppose that g is represented by a power series for lx- cl < R. Then it is 
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a consequence of Theorem 9.54 that if b is any real number, the expression 
[g(x)- b]" is given for lx- cl < R by the power series obtained by using the 
series for g and computing successive Cauchy products. In this way we get a 
convergent power series expansion for the composition of two function. If 

00 

f(x) = L a"(x- b)" for lx- bi < R 0 with R 0 > 0, 
n=O 

then we form the series 

f(g) = L a"(g - b)". (9.31) 
ne No 

We now substitute successive Cauchy products for [g(x) - b ]"into (9.31). The 
resulting series converges provided that lg(c)- bl < R0 , and that lx- cl is 
sufficiently small. Thus f[g(x)] may be represented by a convergent power 
series in (x - c). 

Theorem 9.53 is useful for the extension to multinomial series of the results 
on double series. 

If the terms umn of a double series are of the form cmn(x - a)m(y - b)" where 
cmn• a, b, x, yare in IR 1 then we call 

00 

L Cmn(x - a)m(y - b)" 
m,n=O 

a double power series. Triple, quadruple, and n-tuple power series are defined 
similarly. The proofs of the next two theorems follow directly from previous 
results on convergence. 

Theorem 9.55. Suppose that the double power series L~.n=o cmnxmy" con

verges absolutely for x = x 1 , y = y1 , and that x 1 =I= 0, y1 =I= 0. DefineR= 

{(x,y): lxl ~ lx1 I,IYI ~ IY1 1}. ThentheseriesisabsolutelyconvergentonR,and 
the function with terms cmnxmy" has a sum uniformly on Rover N0 x N 0 . 

We may make the substitution x = x' - a andy = y' - bin Theorem 9.55 
to obtain the analogous result for general double power series. 

Theorem 9.56 (Term-by-term differentiation of double power series). Suppose 

that the double power series 

00 

f(x, y) = L Cmn(x - a)m(y - b)" (9.32) 
m,n=O 

is absolutely convergent on S = {(x, y): lx- al < r, IY- bi < s}. Then f has 

partial derivatives of all orders on S. These derivatives may be obtained by 
differentiating the series (9.32) term by term. Each differentiated series is ab

solutely convergent on S. In particular, 

1

1 am+nf I 

cmn = -, -, --;nn 
m.n. ox oy x=a,y=b 



9.7. Multiple Sequences and Series 261 

EXAMPLE 1. Find the terms of the double power series expansion to degree 3 
where f(x, y) = exy, a = 1 b = 0. 

Solution. We have f(1, 0) = 1. By computation, fx(1, 0) = 0, !,(1, 0) = 1, 
.fxx{1, 0) = 0, fxy(1, 0) = 1, Jyy(1, 0) = 1, fxxx(l, 0) = fxxy(1, 0) = 0, fxyy(1, 0) = 
2, j,yy(1, 0) = 1. Therefore 

1 1 
exy = 1 + y + (x- 1)y +- y2 + (x- 1)y2 +-y3 + · · ·. D 

2! 3! 

EXAMPLE 2. Show that for all x, y, 

oo (x + y)k ( oo xm)( oo x") 
kf:o k! = m'l;o m! .f:o n! ' 

and hence that ex+y = exey. 

Solution. According to Theorem 9.53, we have for all x, y, 

( 
oo xm) ( oo y") oo xmyn L:- L:- = L: -. 

m=O m! n=O n! m,n=O m!n! 

Now we employ Theorem 9.50 to obtain (by setting n = p - m) 

00 xmyn 00 p xmyp-m 

m,~o m!n! = pf:O m'l;o m!(p- m)! 

= f (x + YY_ 
p=O p! 

D 

PROBLEMS 

In each of Problems 1 through 6, find the terms up to degree 3 of the double 
series expansion (9.32) of f(x, y) as given. Take a = b = 0 in all cases. 

1. f(x, y) = ex cos y 

3. f(x, y) = e-x sec y 

5. f(x, y) = cos(xy) 

2. f(x, y) = (1 -X - 2y + x 2 f 1 

4. f(x, y) = e-lx log(1 + y) 

6. f(x, y) = (1 + x + yfl/2 

7. State and prove the analogue of Theorem 9.47 for triple series. 

8. Let s = N X N and suppose that u: s-+ ~ 1 is given by umn = 1/mn4 . Show that 
the double series L::;,n=l 1/mn4 is not convergent and hence that u does not have 
a sum overS. 

9. Prove Theorem 9.49. 

10. Write the details of the proof of Theorem 9.50 for W,: = Lm+n=r umn· 

11. Prove Theorem 9.51. Then letS'= Nand Sx = N x N for all x, and show that a 
theorem analogous to Theorem 9.50 can be derived for triple series. 



262 9. Infinite Sequences and Infinite Series 

12. Let 7l. denote the set of all integers: positive, negative, and zero. Apply Theorem 
9.51 with S' = ~0 and Sx = 7l. for all x. Show how a theorem on convergence of 
"double series" of the form L~;o L.% -oo umn may be obtained. 

13. Prove Theorem 9.52. 

14. Suppose that in Theorem 9.52 we choose S' = ~. Sx = ~- We define f(m, n) = 
( -1)m+n;(m2 + n2 ). Are the hypotheses of the theorem satisfied? 

15. Prove Theorem 9.53. 

16. Use Theorem 9.53 to obtain a double power series expansion of ex cosy about 
(0, 0). 

17. Prove Theorem 9.55. 

18. State and prove a theorem on the term-by-term integration of double power series. 

19. Prove Theorem 9.56. 

20. Use power series expansions to show that cos(x + y) = cos x cosy - sin x sin y. 



CHAPTER 10 

Fourier Series 

10.1. Expansions of Periodic Functions 

In the study of power series in Chapter 9, we saw that an analytic function f 
can be represented by a power series 

co 

f(x) = L cn(x - a)" (10.1) 
n=O 

for all values of x within the radius of convergence of the series. We recall that 
fhas derivatives of all orders and that the coefficients en in (10.1) are given by 
j<"l(a)/n!. In this chapter we shall be interested in series expansions offunctions 
which may not be smooth. That is, we shall consider functions which may have 
only a finite number of derivatives at some points and which may be discon
tinuous at others. Of course, in such cases it is not possible to have expansions 
in powers of (x- a) such as (10.1). To obtain representations of unsmooth 
functions we turn to expansions in terms of trigonometric functions such as 

1, cos x, cos 2x, ... , cos nx, ... , 

sin x, sin 2x, ... , sin nx, ... . 

A trigonometric series is one of the form 

1 co 

2 a0 + n~l (an cos nx + bn sin nx) (10.2) 

in which the coefficients {an} and {bn} are constants. Let f be a real-valued 
function defined on I = {x: -n ~ x ~ n}. The coefficients an and bn, n = 0, 1, 
2 ... , are to be determined in such a way that f is represented by (10.2). To do 
so we make use of the so-called orthogonality relations of the trigonometric 
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functions: 

I:, cos mx cos nx dx = I:, sin mx sin nx dx = { ~ 
and 

10. Fourier Series 

ifm = n, 

ifm =I= n, 

I:, cos mx sin nx dx = 0 form, n = 1, 2, .... 

These are easily verified by elementary methods of integration. With the help 
of these formulas, explicit expressions will be found for the coefficients an, bn 

in a trigonometric expansion such as (10.2). 

Theorem 10.1. Let f be continuous on I= {x: -n :::::; x:::::; n}. Suppose that the 

series 

i + ntl (an cos nx + bn sin nx) 

converges uniformly to f for all x E J. Then 

1 I" an=- f(t) cos nt dt, 
1t -n 

n = 0, 1, 2, ... , 

1 I" bn =- f(t)sinntdt, 
1t _, 

n = 1, 2, .... 

PROOF. We define the partial sums 

1 k 

sk(x) = 2 a0 + m"l;l (am cos mx + bm sin mx). 

(10.3) 

(10.4) 

(10.5) 

Since the sequence sk(x) converges uniformly to f(x), it follows that 
sk(x) cos nx converges uniformly to f(x) cos nx ask-+ oo for each fixed n. We 
merely observe that 

lsk(x) cos nx- f(x) cos nxl = lsk(x)- f(x)l·lcos nxl :::::; lsk(x)- f(x)l. 

Similarly, sk sin nx converges uniformly to f(x) sin nx for each fixed n. 

Therefore, for each fixed n 

a oo 

f(x) cos nx = 2° cos nx + m"l;l (am cos mx cos nx + bm sin mx cos nx). 

This uniformly convergent series may be integrated term-by-term between -n 
and n to yield 

I:, f(x) cos nx dx = nan. 

Similarly, by repeating the argument for f(x) sin nx, we get Formula (10.5). 
0 
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The numbers an and bn are called the Fourier coefficients off When the an 
and bn are given by (10.4) and (10.5), the trigonometrics series (10.3) is called 
the Fourier series of the function f. 

Let f be any integrable function defined on I= {x: -n ~ x ~ n}. Then 
the coefficients an and bn may be computed according to (10.4) and (10.5). 
However, there is no assurance that the Fourier series (10.3) will converge to 
f iff is an arbitrary integrable function. In general, we write 

1 00 

f(x) "'2a0 + nf:1 (an cos nx + bn sin nx) 

to indicate that the series on the right may or may not converge to fat some 
points x e I. One of the central problems in the study of Fourier series 
concerns the identification of large classes of functions with the property that 
the Fourier series of these functions actually converge to the appropriate 
values. 

Definition. A function f defined on I = { x: a ~ x ~ b} is said to be piecewise 
continuous on I if and only if (i) there is a subdivision 

a = x0 < x 1 < x 2 < · · · < Xn = b 

such that f is continuous on each subinterval Ik = { x: xk_1 < x < xk}, and (ii) 
at each ofthe subdivision points x 0 , x 1 , ••• , xn both one-sided limits off exist. 

Thus, a piecewise continuous function has a finite number of points of 
discontinuity which occur at x 0 , x 1 , ..• , xn. At each such point the limits 

lim f(x) and lim f(x) 
x-+xk- .x-+xk + 

exist, and we denote them by f(xk -) and f(xk + ), respectively. The quantity 
f(xk +) - f(xk -)is called the jump off at xk. The coefficients an and bn, given 
by integrals, are unaffected if the values off are changed at any finite number 
of points. Hence, two functions / 1 and / 2 which differ only at a finite number 
of points have the same Fourier series. Let f be a given piecewise continuous 
function. We say that f is standardized if its values at points of discontinuity 
are given by 

Standardizing a piecewise continuous function does not change the Fourier 
coefficients. See Figure 10.1 for an example of a standardized function. For 
convenience in the study of Fourier series we shall usually assume that 
piecewise continuous functions have been standardized. 

Definitions. A function f is piecewise smooth on I = { x: a ~ x ~ b} if and only 
if (i) f is piecewise continuous, and (ii) f' exists and is piecewise continuous 
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Figure 10.1. A standardized function. 

on each subinterval I,.= {x: X~c-1 < x < x,.}, k = 1, 2, ... , n. A function f is 
called smooth on I if and only iff and f' are continuous on I. 

We postpone to Section 10.3 questions of convergence of Fourier series 
and consider now the formal process of determining the Fourier series for a 
variety of functions. Let f be a piecewise continuous function on I = { x: 
-1t ::s;; x ::s;; 1t}. The periodic extension j off is defined by the formula 

j(x) = f.l:_(x) for -1t ::s;; x < 1t, 
l/(x - 21t) for x e lll1• 

Then we standardize j at -1t, 1t and all other points of discontinuity to that 
j is defined for -oo < x < oo. 

EXAMPLE 1. Find the Fourier series of the function 

f(x) = x, x e I= {x: -1t ::s;; x ::s;; 1t}. 

Solution. We form j, the periodic extension off, and we standardize j (see 
Figure 10.2). From (10.4) and (10.5), we find 

1 J" an=- xcosnxdx, 1 J" bn=- xsinnxdx. 
1t - .. 1t - .. 

Integrating by parts, we obtain a0 = 0 and 

bn = (-1r-1 ~, n = 1, 2, .... 
n 

Therefore 

[ . sin 2x sin 3x J f(x)-2 smx--y-+-3--··· , -1t <X< 1t. 

The series on the right represents j for all values of x. We shall see later that 
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y 

311" 

/ 
Figure 10.2. The periodic extension of f(x) = x, -'It :E;; x :E;; 'lt. 

the series actually converges to x for -11: < x < 11:, and clearly the series has 
the value 0 for x = ± 11:. 0 

In computing Fourier coefficients, we may frequently save labor by using 
the integration properties of even and odd functions. A function f is said to 
be even if 

f(-x) = f(x) 

for all x. Note that cos nx is an even function for every n. A function g is odd if 

g( -x) = -g(x) 

for all x. The functions sin nx are odd for all n. If c is any number, and iff is 
even and g is odd, then 

f. f(x) dx = 2 J: f(x) dx, f. g(x) dx = 0. 

The product of two even functions is even, the product of two odd functions 
is even, and the product of an even an odd function is odd. 

We observe in Example 1 that f(x) = x is odd. Therefore f(x) cos nx is odd 
and so we can conclude without computation that a. = 0 for all n. 

EXAMPLE 2. Find the Fourier series for the function 

f(x) = lxl, X E J = {x: -11: ~X~ 11:}. 

Solution. We form the periodic extension off as shown in Figure 10.3. Since 
f is even, the functions f(x) sin nx are odd. Hence b. = 0 for all n. Also, a0 = 11: 

and 

2i"' 2i"' a. = - f(x) cos nx dx = - x cos nx dx. 
11: 0 11: 0 
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y 

Figure 10.3. The periodic extension of f(x) = lxl, -n :E; x :E; n. 

Integrating by parts, we find { _ 4 
2 2 n = 2k + 1, 

a =-[cos mr: -1] = -[(-1)" -1] = (2k + Wn' 
n n2 n n2 n 

0, n = 2k + 2, 

fork = 0, 1, 2, .... Therefore the Fourier series for f is given by 

lxl- ~_~[cos x +cos 3x + ... 
2 1t 12 32 

cos(2k + 1)x J 
+ (2k + W + . . . ' -11: ~ X ~ 11:. 

Assuming for the moment that the above series actually converges to lxl, we 
set x = 0 and obtain the remarkable formula 

1 2 [1 1 1 1 J 871: = 12 + 32 + 52 + 72 + . . . . 

This formula is correct and may actually be used to compute n to any desired 
degree of accuracy. However, vastly superior series expansions are available 
for calculating n numerically. 0 

PROBLEMS 

In each of Problems 1 though 10, find the Fourier series for the given function f 

1. f(x) = {~ 

2. f(x) = {~ 

forx e 11 = {x: -n :E; x < 0}, 

for x e 12 = {x: 0 :E; x :E; n}. 

for x e 11 = {x: -n :E; x < n/2}, 

for x e 12 = {x: n/2 :E; x :E; n}. 

3. f(x) = x2 for x e I= {x: -n :E; x :E; n}. 



10.1. Expansions of Periodic Functions 

4. f(x) = {0 forx e I 1 = {x: -7t ~ x < 0}, 
x for x e I 2 = {x: 0 ~ x ~ n}. 

5. f(x) = Ieos xi for x e I= {x: -7t ~ x ~ n}. 

6. f(x) = x3 for x e I= {x: -7t ~ x ~ n}. 

7. f(x) = e2x for x e I= {x: -7t ~ x ~ n}. 

8. f(x) = { 0. 
smx 

forx e I 1 = {x: -7t ~ x < 0}, 
for x e I 2 = {x: 0 ~ x ~ n}. 

9. f(x) = sin2 x for x e I= {x: -7t ~ x ~ n}. 

10. f(x) = x sin x for x e I= {x: -7t ~ x ~ n}. 

1l.f(x)={-1 forxei1 ={x:-n~x~O}, 
1 forxei2 ={x:O<x~n}. 

12. f(x) = x3 for xei = {x: -7t ~ x < n}. 

13. f(x) = cos3 x for x e I= {x: -7t < x < n}. 

14. f(x) = sin2 2x for x e I = {x: -n < x < n}. 

15 G. f( { cosx forxei1 ={x: -n<x~O}, . 1ven x) = 
-cos x for x e I 2 = {x: 0 < x ~ n}. 

Sketch j, the periodic extension off, for x in I 3 = { x: - 3n ~ x ~ 3n}. 
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16. Givenf(x) = x + sinxfor xei = {x: -7t < x ~ n}. Sketchj, the periodic exten
sion off, for x in I 1 = {x: -37t ~ x < 3n}. 

17. Verify the formulas 

fn fn {1t ifm = n, 
-n cos mx cos nx dx = -n sin mx sin nx dx = 0 ifm # n. 

18. (a) Find the Fourier series for 

{ -n/4 forxei1 ={x:-n~x<0}, 
f(x) = n/4 & I { 0 "' "' } 10r X E 2 = x: 0::::: X 0::::: 1t . 

(b) Assuming the series in Part (a) converges to f (as standardized), show that 
1t 1 1 1 

(i) 4 = 1 - 3 + 5 - 7 + .... 
.. 1t 1 1 1 1 1 

(u) 3 = 1 + 5 - 7 - TI + 13 + 17 - ... · 

(iii) J3 1t = 1 - ~ + ~ - _!__ + _!__ - _!__ + .... 
6 5 7 11 13 17 

19. (a) Find the Fourier series for 

f(x) = x + x2 for x e I= {x: -n ~ x ~ n}. 

(b) Assuming the series in Part (a) converges to f (as standardized), show that 
n2/6 = L~=t1/n2. 
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1 0.2. Sine Series and Cosine Series; 
Change of Interval 

10. Fourier Series 

Suppose that we wish to find the Fourier series of a function f which has 
domain J = {x: 0 ::>;; x ::>;; n}. Since the Fourier coefficients an and bn are given 
in terms of integrals from -n to n, we must somehow change the domain of 
f to I= {x: -n:::;;; x ::>;; n}. We can do this simply by defining/ arbitrarily on 
the subinterval I' = { x: -n ::>;; x < 0}. Since we are interested in f only on J, 
properties of convergence of the series on I' are irrelevant. For example, we 
may set f = 0 on I'. However, one choice which is useful for many purposes 
consists in defining f as an even function on I. Since bn = 0, n = 1, 2, ... , for 
even functions, the Fourier series will have cosine terms only. We call such a 
series a cosine series and, as the original function has domain J, the Fourier 
expansion is called a half-range series. 

A function f defined on J may be extended to I as an odd function. Then 
an= 0 for n = 0, 1, 2, ... , and the resulting series is called a sine series. We 
illustrate the process of obtaining cosine and sine series with two examples. 

EXAMPLE 1. Given the function 

f(x) = {0
1 

for I 1 = {x: 0 ::>;; x < n/2}, 
for I2 = {x: n/2 ::>;; x ::>;; n}, 

find the cosine series for f 
Solution. We extend f as an even function, as shown in Figure 10.4. Then the 
function is standardized so that j(n/2) = j(3n/2) = j( -n/2) = !. Since j is 
even, we have bn = 0, n = 1, 2, ... Also, 

2f" an = - f(x) cos nx dx, 
1t 0 

n = 0, 1, 2, .... 

y 

0 0 0 0 

• • I • • 2 

X 

311' -11' 11' 0 11' 11' 311' -2 -2 2 T 

Figure 10.4. Extension as an even function. 
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Figure 10.5. Extension as an odd function. 

A simple calculation yields 

a0 = 1, 

an = ~I" cos nx dx = { ~( -1)k+l 
n "12 (2k + 1)n 

if n is even, 

if n = 2k + 1, k = 0, 1, 2, .... 

Therefore 

j(x),.., ~_~[cos x _cos 3x +cos 5x _ .. ·] 
2n 1 3 5 ' 

EXAMPLE 2. Find the sine series for the function f for Example 1. 
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D 

Solution. We extend f as an odd function as shown in Figure 10.5. The 
standardized function has j( -3n/2) = j(n/2) = · · · = t. j( -n) = j(n) = 
· · · = 0, and j( -n/2) = j(3nj2) = · · · = -t. Then an = 0 for n = 0, 1, 2, ... and 

Hence 

2f" 2f" bn =- f(x) sin nx dx =- sin nx dx. 
1t 0 1t Jt/2 

nn l 2 

b = 
n 2 

-[( -1)k- 1] 
kn 

ifn is odd, 

ifn = 2k and k = 1, 2, .... 
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Therefore 

ji-( ) 2 [sin x 2 sin 2x sin 3x sin 5x 
X,..._ --- --+--+--

1t 1 2 3 5 

2 sin 6x sin 7x J 
- 6 + - 7- + "· for X E I 1 U I 2 • D 

Iff is a piecewise smooth function defined on an interval J = { x: c - 1t < 
x < c + 1t }, we may form the periodic extension off and compute the Fourier 
coefficients {an} and {bn} according to Formulas (10.4) and (10.5). It is clear 
that since the trigonometric functions have period 21t, these coefficients are 
also given by 

1 J<+K an = - f(x) cos nx dx, 
1t .-.. 

1 J<+K bn = - f(x) sin nx dx. 
1t .-.. 

EXAMPLE3. Givenf(x) = xfor x e I= {x: 0 ~ x ~ 21t},find the Fourier series 
for f. 
Solution. We extend f to be periodic and standardized, as shown in Figure 
10.6. We compute the coefficients 

1 ill< a0 = - x dx = 21t, 
1t 0 

1 i2" an=- xcosnxdx=O, 
1t 0 

n = 1, 2, .... 

Also, 

1 i2" 2 bn =- x sin nx dx = --, 
1t o n 

n = 1, 2, .... 

y 

/ 
• • 

-w 3w 

Figure 10.6. Periodic extension of f(x) = x, 0 ~ x ~ 2n. 
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Therefore 

2 f sinnx 
X"'1t- L.. --

n=l n 
for 0 < x < 2n. D 

A function f which is piecewise smooth on an interval I = { x: - L ~ x ~ L} 
for some number L > 0 can be represented by a modified Fourier series. We 
introduce a change of variable and define y and g(y) by the relations 

nx 
Y=y• f(x) = !(L:) = g(y) = o(~)· 

The transformation maps I onto I'= {x: -n ~ x ~ n}, and then g is a piece
wise smooth function on I'. Therefore 

a oo 

g(y) "' 2° + nf:,l (an cos ny + bn sin ny), y E J', (10.6) 

with 

1 I" an = - g(y) cos ny dy, 
1t -, 

1 I" bn = - g(y) sin ny dy. 
1t _, 

Returning to the variable x and the function f, we get the formulas for the 
coefficients an, bn ofthe modified series which correspond to those in Theorem 
10.1: 

1 IL nnx 
an= L -L f(x) cosy dx, 

1 IL . nnx bn =- f(x) sm- dx. 
L -L L 

Series (10.6) becomes 

a0 f ( nnx . nnx) 
f(x) "'2 + nf-l an cosy+ bn smy , x E I. 

EXAMPLE 4. Given 

f(x) = {x + 1 for x E I 1 = {x: -1 ~ x < 0}, 
x-1 forxei2 ={x:O~x~1}, 

find the Fourier series off on I= I 1 u I 2 • 

Solution. The graph of the (standardized) periodic extension off is shown in 
Figure 10.7. Observe that f is odd and so an= 0 for n = 0, 1, 2, ... Also, 

f l 2 
bn = 2 (x - 1) sin nnx dx = --, 

o nn 
n = 1, 2, .... 

We find 
2 00 sin nnx 

f(x)"' -- L -- for x E I. 
1t n=l n 

D 
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Figure 10.7. A standardized periodic extension. 

PROBLEMS 

In each of Problems 1 through 4 expand each function f in a cosine series. 
Sketch the standardized extension off 

1. f(x) = {1 forx E I 1 = {x: 0 ~ x < n/2}, 
0 forx E I2 = {x: n/2 ~ x ~ n}. 

2. f(x) =sin x for x E I= {x: 0 ~ x ~ n}. 

3. f(x) = x for x E I= {x: 0 ~ x ~ n}. 

4. f(x) = x3 for x E I= {x: 0 ~ x ~ n}. 

In each of Problems 5 through 8 expand each function fin a sine series. Sketch 
the standardized extension off 

f ) { 1 for x E I 1 = {x: 0 ~ x < n/2}, 
5. (x = 

-1 for x E I2 = {x: n/2 ~ x ~ n}. 

6. f(x) =cos x for x E I= {x: 0 ~ x ~ n}. 

7. f(x) = x for x E I= {x: 0 ~ x ~ n}. 

8. f(x) = x3 for x E I= {x: 0 ~ x ~ n}. 

In each of Problems 9 through 12 find the Fourier series of the function f on 
the interval I= {x: -L < x < L}. 

f { 1 forxei1 ={x:-2~x<0}, 
9. (x) = 

-1 for x E I 2 = {x: 0 ~ x ~ 2}. 

{0 for x E I 1 = {x: -2 ~ x < 0}, 
10. f(x) = x 

for x E I 2 = {x: 0 ~ x ~ 2}. 

11.f(x)=x2 forxEI={x:-1~x~1}. 
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12. f(x) = 1 -lxl for x e I= {x: -1 ~ x ~ 1}. 

13. Suppose/is an odd function for x e I= {x: -L < x < L}. In addition, suppose 
f(L- x) = f(x) for x e I. Prove that the Fourier coefficients bn = 0 for all even n. 

14. Suppose f is an odd function for x e I= {x: -L < x < L}, and that f(L- x) = 
- f(x) for x e I. Prove that the Fourier coefficients bn = 0 for all odd n. 

10.3. Convergence Theorems 

It is important to establish simple criteria which determine when a Fourier 
series converges. In this section we show how to obtain large classes of 
functions with the property that for each value of x in the domain of a function 
J, the Fourier series converges to f(x). 

Before establishing the next result which is useful throughout the study of 
Fourier series, we exhibit two simple facts about integrals. The first states that 
there are functions f which are not integrable but are such that j2 is integrable. 
To see this we set I= {x: 0 ~ x ~ 1} and define 

{ 1 if x e I and xis rational, 
f(x)= -1 ifxeiandxisirrational. 

Then every upper Darboux sum is 1 and every lower Darboux sum is - 1. 
Thus f is not integrable. On the other hand, f 2(x) = 1 for all x e I, and j2 is 
integrable. The second fact states that iff is integrable on I = { x: a ~ x ~ b }, 
then f 2 is also integrable. To see this we observe that f is bounded on I and 
define M to be the l.u.b . ., 61 f(x). Then using Darboux sums with the usual 
notation 

n 

s+(jl, A)- s-(p, A)= :L (Ml- m~)A1x 
i=l 

n 

= L (M1 + m1)(M1 - m1)A1x 
i=l 

n 

~2M L (M1 - m1)A1x. 
i=l 

Since f is integrable on I, the sum on the right tends to zero as n -+ oo and 
IIAII-+ 0. Hence j2 is integrable. 

We note at this point that in the study ofintegrals for unbounded functions 
which we take up in Chapter 11, it may happen that a function f (unbounded) 
may be integrable while j2 is not integrable. 

Theorem 10.2 (Bessel's inequality). Suppose that f is integrable on I = { x: 
-n ~ x ~ n}. Let 
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be the Fourier series off Then 

(Bessel's inequality). (10.7) 

PROOF. Denote the nth partial sum of the Fourier series by sn(x); that is, 

1 n 

sn(x) = l a0 + k~1 (ak cos kx + bk sin kx). 

Now write 

J: .. [f(t) - sn(t)] 2 dt = J: .. j2(t) dt - 2 J: .. f(t)sn(t) dt + J:,. s;(t) dt. (10.8) 

From the definition of the Fourier coefficients, it follows that 

(10.9) 

Also, by multiplying out the terms of s;(t) and taking into account the 
orthogonality relations of the trigonometric functions, we verify that 

J: .. s;(t) dt = J: .. f(t)sn(t) dt. (10.10) 

Therefore (10.8), (10.9), and (10.10) may be combined to give 

0 ~ J: .. [f(t)- sn(t)] 2 dt = J: .. j2(t) dt -nHa~ + kt1 (af + bl)}. (10.11) 

Since j2 is integrable we may let n tend to infinity in (10.11) and obtain 

1 2 ~ 2 2 1 J" 2 lao + kf-1 (ak + bd ~ n _, f (t) dt < 00. D 

Bessel's inequality shows that an and bn tend to zero as n -+ oo for any 
function whose square is integrable on I= {x: -n ~ x ~ n}. 

An expression which occurs frequently in the study of convergence of 
Fourier series is the Dirichlet kernel Dn defined by 

sin(n + t)x 
Dn: X-+ 2 • 1 . 

sm2x 

By using the trigonometric identity 

2 sin tx cos kx = sin(k + t)x + sin(k - t)x, 

it is easy to verify that 

1 n sin(n + t)x 
-2 + L cos kx = 2 . 1 = Dn(x). 

k=1 sm 2x 
(10.12) 
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Thus the Dirichlet kernel has the following properties: 

(i) Dn(x) is an even function of x. 
(ii) J~, Dn(x) dx = n. 

(iii) Dn has period 2n. 

277 

Lemma 10.1. Suppose that sn is the nth partial sum of the Fourier series of a 
piecewise continuous function f with period 2n. Then 

1 1 f" sn(x)- 2 [f(x +) + f(x- )] = n 
0 

[f(x + u)- f(x + )]Dn(u) du 

1 f" + - [f(x - u) - f(x - )JDn(u) du. (10.13) 
1t 0 

PRooF. Since sn(x) = !a0 + L~=1 (ak cos kx + bk sin kx), we may insert the 
formulas for ak and bk to get 

1 I" [1 n J sn(x) = - f(t) -2 + ~ (cos kt cos kx + sin kt sin kx) dt 
1t -x k-1 

1 I" [1 n J = - f(t) -2 + ~ cos k(t - x) dt. 
1t -x k-1 

We set t = x + u in the above integral, obtaining 

1 I"-x [1 n J 1 I"-x sn(x) = n -x-x f(x + u) 2 + k~1 cos ku du = n -x-x f(x + u)Dn(u) du. 

Since Dn and fare periodic with period 2n, the interval of integration may be 
changed to I= {u: -n < u < n}. Therefore 

sn(x) = ! Io f(x + v)Dn(v) dv + ! J" f(x + u)Dn(u) du. 
1t - 1t 0 

We replace v by -u in the first integral (recalling that Dn( -v) = Dn(v)), and 
hence 

1 f" sn(x) = - [f(x + u) + f(x - u)]Dn(u) du. 
1t 0 

Then taking Property (ii) of Dn into account, we obtain (10.13). D 

Theorem 10.3. Suppose that f is piecewise smooth, standardized, and periodic 
with period 2n. Then the Fourier series off converges to f(x) for each x. 

PRooF. For each value of x, we shall show that sn(x) - f(x)-+ 0 as n-+ oo. We 
write (10.13) of Lemma 10.1 in the form 

1 f" sn(x) - f(x) = - [f(x + u) - f(x + )JDn(u) du 
1t 0 
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1 J" + - [f(x - u) - f(x - )]Dn(u) du 
1t 0 

= Sn(x) + T,(x). 

From the definition of Dn(u), it follows that 

1 J" f(x - u) - f(x -) . ( 1) 
T,(x) = - 2 . 1 sm n + -2 u du 

n o sm 2u 

1 J" f(x- u)- f(x- )( . 1 . 1 ) = - 2 . 1. sm nu cos -2 u + cos nu sm -2 u du. 
n o sm 2 u 

(10.14) 

Define g1 and g2 by the formulas 

f(x- u)- f(x-) 1 
g1(x,u)= 2 . 1 cos-2 u, 

sm2u 

g2 (x, u) = !(f(x - u) - f(x - }). 

Then g 1 and g 2 are piecewise smooth except possibly for g 1 at u = 0. However, 
l'Hopital's rule, shows that 

g1(x, 0 +) =- f'(x -}, 

and so g1 is piecewise smooth everywhere. We now write (10.14) in the form 

1 J" T,(x) =- (g1(x, u) sin nu + g2 (x, u) cos nu) du, 
1t 0 

and we see that the right side is the nth Fourier coefficient of the sine series 
for tg 1 plus the nth coefficient of the cosine series for !g2 • According to Bessel's 
inequality, these coefficients tend to 0 as n-+ oo. Hence T,(x)-+ 0 as n-+ oo. 
Similarly, Sn(x)-+ 0 as n-+ 00. 0 

A criterion for convergence which is less restrictive than Theorem 10.3 can 
be obtained with the aid of the following lemma, which has a number of 
important applications. 

Theorem 10.4 (Riemann-Lebesgue lemma). Let f be defined on I= 
{x: -n::::;; x::::;; n}, and suppose that lfl is integrable on I. Let {an}, {bn} be 
the Fourier coefficients of f. Then an, bn-+ 0 as n-+ oo. 

PRooF. The main consideration occurs when lfl is integrable in an improper 
sense. 1 (Otherwise j2 is also integrable and Bessel's inequality yields the 
result.) 

1 For a discussion of improper integrals see Section 11.2. See, also, the example before Theorem 
10.2. 
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For any positive number N we define 

}; (x) = {f(x) if lf(x)l ~ N, 
N 0 if lf(x)l > N. 

Then from the definition of an improper integral, for any e > 0, there is an N 
sufficiently large so that 

I" 1 
_, lf(x)- fN(x)l dx < 2e. 

Since lfN(x)l is bounded by Nit follows that 

J:,. lfN(xW dx ~ N J:,. lfN(x)l dx ~ N J:,. lf(x)l dx < oo. 

Therefore by Bessel's inequality the Fourier coefficients for fN(x) tend to 0 as 
n ..... oo. That is, for any e > 0, there is an n0 such that 

I J:,. fN(x) cos nx dxl < ~e, I J:,. fN(x) sin nx dxl < ~e for n > n0 • 

Consequently, for n > n0 and N sufficiently large 

I J:,. f(x) cos nx dxl 

~ I J:,. fN(x) cos nx dx I + I J:,. (f(x) - fN(x)) cos nx dx I 

1 I" 1 1 ~ 2 e + _, lf(x)- fN(x)l·lcos nxl dx < 2 e + 2 e =e. 

The result for the sine coefficients is obtained in the same way. D 

With the aid ofthe Riemann-Lebesgue lemma we establish the following 
criterion for convergence of Fourier series which is somewhat more general 
than Theorem 10.3. 

Theorem 10.5 (Dini's test). Suppose that f is standardized, periodic with period 
2n, and that the integrals 

I" lf(x + ~) ~ f(x +)I du, 
_, sm 2u I" lf(x- ~) ~ f(x- )I du, (10.15) 

_, sm 2 u 

are finite for some value of s. Then the Fourier series off converges to f(x). 

PROOF. We repeat the proof of Theorem 10.3 until Equation (10.14). Then 
because the integrals in (10.15) are finite we can apply the Riemann-Lebesgue 
lemma to the functions g1 and g2 defined in the proof of Theorem 10.3. Since 
f is assumed standardized, we conclude that f(x) - six) ..... 0 as n ..... oo. D 
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Remarks 

(i) Since the quantity l(sin !u)/ul is bounded, the Conditions (10.15) may be 
replaced by 

I~, lf(x + u) u- f(x +)I du < oo, 

I~, lf(x- u) u- f(x- )I du < oo. 
(10.16) 

(ii) It is important to have simple criteria on f itself, rather than a condition 
such as (10.16) which is usually difficult to verify. Observe that iff has a 
bounded derivative, then the integrals in (10.16) are certainly finite, in fact 
bounded by 

2n max lf'(x)l. 

(iii) A function is Holder continuous if and only if for each x, there are constants 
M and IX with 0 < IX ~ 1 such that 

lf(x) - f(y)l ~ Mix - Yl'" 

for all y in I= {y: -n ~ y ~ n}. Iff is Holder continuous, then the 
integrals in ( 10.16) are bounded by an integral of the form 

A I~, lul'"-1 du. 

Such an integral is finite so long as IX is positive, and we note that any 
HOlder continuous function satisfies Condition (10.16). 

It is useful to know when Fourier series can be differentiated and integrated 
term by term. For this purpose the following lemma is useful. 

Lemma 10.2. Suppose that f has period 2n and is piecewise smooth. Then its 
Fourier coefficients an, bn, n = 1, 2, ... , satisfy the inequalities 

c c 
I ani ~ -, Ibn I ~ -, n = 1, 2, ... , 

n n 

where C is a constant which depends only on f 

PROOF. Suppose the jumps off occur at -n = x0 < x1 < · · · < x,_1 < x, = n. 
Then 

1 J" 1 r fx' an= n -n f(t) cos nt dt = n i~ x,_, f(t) cos nt dt. 

We may integrate by parts, and obtain 

_ 1 f [f(t) sin nt]x' 1 f 1 fx' f'( ) . d an - - L... - - L... - X Sin nt t. 
1ti=1 n x,_, 1ti=1n x,_, 



10.3. Convergence Theorems 281 

Since f and f' are bounded, we obtain at once the estimate for a,.. The result 
for b,. is similar. 0 

Corollary. Suppose that f and its first p - 2 derivatives are periodic with period 
2n, and f<p- 1) is piecewise smooth. Then the Fourier coefficients a,., b,. off satisfy 
the inequalities 

n = 1, 2, ... , 

where C does not depend on n. 

To establish the Corollary we follow the method in the proof of Lemma 
10.2, integrating by parts p times. The Corollary shows that the more deriva
tives a function possesses, the more rapidly its Fourier series converges. 

Theorem 10.6 (Term-by-term differentiation of Fourier series). Suppose that f 
is continuous everywhere and periodic with period 2n. Suppose that f' is piece
wise smooth and standardized. Then 

(i) The series obtained by dif.ferentiating the Fourier series for f term by term 
converges at every point to f'(x). 

(ii) The Fourier series off converges uniformly to f(x) for all x. 

PROOF. Let the jumps off' occur at -n = x0 < x 1 < · · · < x,_1 < x, = n. 
Define 

g(x) = J: .. f'(t) dt 

and observe that g is continuous. Also, since g' - f' = 0 for x;_1 < x < X;, 

i = 1, 2, ... , r, the function g - f must be constant on each subinterval. Since 
g and fare both continuous, g - f is identically constant. Denote the Fourier 
coefficients off' by A,., B,.. For n = 1, 2, ... , we write 

1 r Ix' 
a,.= lt i~ X;- I f(t) COS nt dt. 

We integrate by parts, obtaining 

1 f f(x;) sin nx; - f(x;-d sin nx;-1 1 f Ix' f'( ) . d 
a,. = - L.. - - L.. t sm nt t 

1t i=1 n nn i=1 x,_, 

-1 f" f'() . d B,. =- t sm nt t = --. 
nn _, n 

Similarly, we find 

b =A,. 
n n 
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Differentiation of the series 

1 00 

f(x) = 2 ao + nf:l (an cos nx + bn sin nx), 

term by term yields the Fourier series for f'. The fact that the Fourier series 
for f' converges follows from Theorem 10.3. 

To show that the Fourier series for f converges uniformly, we apply the 
Corollary to Lemma 10.2 to obtain 

l oo I oo1 nf:1 an cos nx + bn sin nx ~ 2C nf:1 n2 • 

Since the series of constants on the right converges, the Fourier series con
verges uniformly. D 

Theorem 10.7 (Term-by-term integration of Fourier series). Suppose that f is 
piecewise smooth everywhere and periodic with period 2n. Assume that the 
Fourier coefficient a0 is zero, and define 

F(x) = f~" f(t) dt. 

Then the Fourier series for F is obtained by integrating term by term the Fourier 
series for J, except for the constant term A 0 which is given by 

1 I" A 0 = -- xf(x) dx. 
1t _, 

PRooF. The condition a0 = 0 is required in order that F have period 2n. The 
relationship between the Fourier series for F and that for f now follows from 
Theorem 10.6. To find A0 , observe that 

1 I" 1 I" =- (n- t)f(t) dt = -- tf(t) dt. 
1t _, 1t _, 

D 

Remarks 

(i) If a function f does not have the property that a0 = 0, we define g(x) = 
f(x)- !a0 , to which Theorem 10.7 will apply. 

(ii) Theorem 10.7 does not require the uniform convergence of the derivative 
series F'(x) = f(x). In general, integrated series will have better rates of 
convergence than the series itself. 
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EXAMPLE. In Example 1 of Section 10.1, we established the expansion 

1', ) _ _ 2 ~ ( -1r-1 sin nx { } 
J (x - x - L. , x e I = x: -11: < x < n . 

n=1 n 

Use this result to find the Fourier series for F: x-+ x2 on/. 

Solution. We have a0 = 0 in the expansion off and the function is piecewise 
smooth everywhere. Therefore Theorem 10.7 applies. Set 

Fi(x) = 4 f. ( -1)"-1 sin nx 
n=1 n 

where F1(x) = x2 - n2• Then 

F( ) - n2 4 ~ ( -1 r cos nx 
X-3+ L. 2 • 

n=1 n 
D 

PROBLEMS 

1. Find the Fourier expansion off: x-+ (1/3)(n2x- x3 ) on I= {x: -n ~ x ~ n} 
and show that L:'=1 n-6 = n6f945. 

2. Use Theorem 10.7 to find the Fourier expansion for f: x-+ lxl on I= {x: -n ~ 
x ~ n}. 

3. Find the Fourier expansion for f given by 

f { t(x2 - 7tX), 0 ~ X ~ 7t, 
. X-+ 
· -!(x2 + nx), -n ~ x ~ 0. 

4. Using the result of Problem 1, find the Fourier series off: x-+ (1/12)(n2 - x2 ) 2 

on I= {x: -n ~ x ~ n}. 

5. Find the Fourier series of the functions f and F given by 

F:x-+ 

f: x-+ I sin xl, -7t ~X~ 7t, 

{ 

-1 +cos x- ~x for I1 = {x: -n ~ x ~ 0}, 

2 
1 -cos x- -x for I 2 = {x: 0 ~ x ~ n}. 

7t 

6. Find the Fourier series for f given by 

{ 

-(n + x) for I1 = {x: -n ~ x ~ -!n}, 

f: x-+ x for I 2 = {x: -!n ~ x ~ !n}, 

n - x for I3 = {x: !n ~ x ~ n}. 

7. Suppose that f, periodic with period 2n, possesses continuous derivatives of all 
orders for -oo < x < oo. Let an, bn be the Fourier coefficients off What can be 
said about the ratios anfnk, bnfnk as n -+ oo where k is a positive integer? 
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8. Given the function f: x-+ xlxl for x e I= {x: -n < x < n}. How many con
tinuous derivatives does f have on I? 

9. Sketch the graph of D.(x) for n = 4 and x e I= {x: -n < x < n}. 

10. Find the value of lim.~oo f~16 D.(x) dx. 

11. Find the maximum value of D.(x) for x e I= {x: -7t < x < n}. 

12. Given 

f ) {0 for x e I 1 = {x: -n < x < 0}, 
(x = 

sinx forxei2 ={x:O<x<n}. 

(a) Find the Fourier series for f. 
(b) By integrating the result in (a) obtain the Fourier series for 

( ) {0 for x e I 1, 
F X= 

1-cosx forxei2 • 



CHAPTER 11 

Functions Defined by Integrals; 
Improper Integrals 

11.1. The Derivative of a Function Defined 
by an Integral; the Leibniz Rule 

The solutions of problems in differential equations, especially those which 
arise in physics and engineering, are frequently given in terms of integrals. 
Most often either the integrand of the integral representing the solution is 
unbounded or the domain of integration is an unbounded set. In this chapter 
we develop rules for deciding when it is possible to interchange the processes 
of differentiation and integration-commonly known as differentiation under 
the integral sign. When the integrand becomes infinite at one or more points 
or when the interval of integration is infinite, a study of the convergence of 
the integral is needed in order to determine whether or not the differentiation 
process is allowable. We establish the required theorems for bounded func
tions and domains in this section and treat the unbounded case in Sections 
11.2 and 11.3. 

Let f be a function with domain a rectangle R = { (x, t): a ~ x ~ b, 
c ~ t ~ d} in IR 2 and with range in IR 1. Let I be the interval {x: a~ x ~ b} 
and form the function rP: I --+ IR 1 by the formula 

rP(x) = r f(x, t) dt. (11.1) 

We now seek conditions under which we can obtain the derivative rP' by 
differentiation of the integrand in (11.1). The basic formula is given in the 
following result. 

285 
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Theorem 11.1 (Leibniz's rule). Suppose that f and f 1 are continuous on the 
rectangle Rand that f/J is defined by (11.1). Then 

f/J'(x)= rf1(x,t)dt, a<x<b. (11.2) 

PROOF. Form the difference quotient 

f/J(x + h) - f/J(x) = ~fd [f(x + h, t) - f(x, t)] dt. 
h h c 

Observing that 

f x+h 
f(x + h, t)- f(x, t) = x f. 1(z, t) dz, 

we have 

f/J(x + hh- f/J(x) = ~f J:+h f.1(z, t) dz dt. (11.3) 

Since !, 1 is continuous on the closed, bounded set R, it is uniformly continuous 
there. Hence, if e > 0 is given, there is a {> > 0 such that 

e 
lf.1(z, t)- !, 1(x, t)l < d _ c 

for all t such that c ~ t ~ d and all z such that lz- xl < J. We now use the 
artifice 

fd 1fd fx+h 
c f.1(x,t)dt=h c x f. 1(x,t)dzdt, (11.4) 

which is valid because z is absent in the integrand on the right. Subtracting 
(11.4) from (11.3), we find 

if/J(x + h- f/J(x)- r f.1(x, t) dti 

=If U Ix+h [f. 1 (z, t)- f. 1 (x, t)] dz} dt,. (11.5) 

Now if I hi is so small that lz- xl < {> in the integrand on the right side of 
(11.5), it follows that 

if/J(x + hh- f/J(x)- r f.1(x, t) dti 

~ fd ~~ fx+h _e_ dzi dt = _e_·(d- c)= e. 
c h x d-e d-e 

Since e is arbitrary, the left side of the above inequality tends to 0 as h ~ 0. 
Formula (11.2) is the result. D 
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If the function fin ( 11.1) can be integrated explicitly with respect to t, then 
finding the derivative of~ is a straightforward computation. However, there 
are situations in which f cannot be integrated, but !, 1 can. The next example 
illustrates this point. 

EXAMPLE 1. Define f: IR2 -+ IR 1 by 

f . ( ) {(sin xt)/t 
• X, t -+ 

X 

Find ~' where ~(x) = J012 f(x, t) dt. 

Solution. We have 

fort# 0, 

fort= 0. 

l. sin xt 1. sin(xt) 1 lm--=X lm--=x· =X 
, .... o t , .... o (xt) ' 

and so f is continuous on A= {(x, t): -oo < x < oo, 0 ~ t ~ n/2}. Also, 

f ( ) = {cos xt for t # 0, 
• 1 x, t 1 for t = 0. 

Hence !, 1 is continuous on A. We apply Leibniz's rule and find 

"''( ) f"'2 d sin(n/2)x 
'f' X = COS Xt t = , X # 0, 

0 X 

and so ~'(0) = n/2. Observe that the expression for ~(x) cannot be integrated. 
0 

We now take up an important extension of Leibniz's rule. Suppose that f 
is defined as before and, setting I= {x: a~ x ~ b} and J = {t: c ~ t ~ d}, let 
h0 and h1 be two given functions with domain on I and range on J. Suppose 
that.~: I-+ IR 1 is defined by 

ih1(x) 

~(x) = f(x, t) dt. 
ho(x) 

We now develop a formula for~'. To do so we consider a function F: IR 3 -+ IR1 

defined by 

F(x, y, z) = lz f(x, t) dt. (11.6) 

Theorem 11.2. Suppose that f and !, 1 are continuous on R = { (x, t): a ~ x ~ b, 
c ~ t ~ d} and that F is defined by (11.6) with x on I andy, z on J. Then 

F, 1 = lz !, 1(x, t) dt, F, 2 = - f(x, y), F, 3 = f(x, z). (11.7) 

PROOF. The first formula in (11.7) is Theorem 11.1. The second and third 
formulas hold because of the Fundamental theorem of calculus. 0 
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Theorem 11.3 (General Leibniz rule). Suppose that f and f. 1 are continuous on 
R = { (x, t): a ~ x ~ b, c ~ t ~ d} and that h0 and h1 both have a continuous 
first derivative on I with range on J. If t/J: I -+ R1 is defined by 

ih1(x) 

t/J(x) = f(x, t) dt, 
h0 (x) 

then ih1(x) 

t/J'(x) = f[x, h1 (x)]h~(x)- f[x, h0 (x)]h0(x) + f. 1(x, t) dt. (11.8) 
ho(x) 

PRooF. Referring to F defined in (11.6), we see that t/J(x) = F(x, h0 (x), h1 (x)). 
We apply the Chain rule for finding t/J' and obtain 

t/J'(x) = F,1 + F,2ho(x) + F,3h~(x). 
Now, inserting the values of F, 1 and F, 2 and F, 3 from (11.7)withy = h0 (x)and 
z = h1 (x), we get the General Leibniz rule (11.8). 0 

EXAMPLE 2. Given t/J: x-+ J:2 
arctan (:2) dt, find t/J'. 

Solution. We have 

~(arctan_!_) = -~. 
ox x2 t2 + x4 

Using the General Leibniz rule (11.8), we obtain 

Jx 2 2tx 
t/J'(x) =(arctan 1)(2x) - -2--4 dt. 

o t +X 

Setting t = x 2u in the integral on the right, we get 

t/J'(x) = nx- x fl 2u du = x(~ -log 2). 
2 0 1 + u2 2 

EXAMPLE 3. Given 

rlogx sin xt 
F: (x, y)-+ J, t(1 + y) dt, 

find F, 1 • 

Solution. Using the General Leibniz rule (11.8), we find 

F _ sin(x log x) flogx cos xt d 
1- + -- t 

· (1 + y)(log x) , 1 + y 

sin(x log x) sin(x log x) sin(xy) 
= (1 + y)(log x) + (1 + y)x - (1 + y)x' 

0 

0 
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PROBLEMS 

In each of Problems 1 through 12, find t;'. 

f1 sin xt 
1. ,P: X -+ -1- dt. 

0 + t 

3. ,P: x -+ L1 
f(x, t) dt where 

4. ,P: x-+ f'' cos(t2)1lt. 

6. ,P: X-+ reX tan(xt) dt. J •• 

f" cos xt 
8. ,P: X-+ -- dt. 

1</2 t 

fro dt 
10. ,P: X-+ --. 

xm X+ t 

2. ,P:x-+f
2 ~dt. 

1 1 + xt 

{
(t"' -1)flog t fort+ 0, 1, 

f: (x, t)-+ 0 fort = 0, 

x fort= 1. 

5. ,P: x-+ f"' sin(xt) dt. J.,. 
f1+x2 -t 

7. ,P: x -+ -1 e dt. 
con + xt 

ix sin xt 
9. ,P: X -+ -- dt. 

.,2 t 

f1 xt 
11. ,P:x-+ dt, 

o ../1- x 2 t2 

12. ,P: x-+ J: log(1 - 2x cost+ x2 ) dt, lxl < 1. 

lxl < 1. 

In each of Problems 13 through 15, compute the indicated partial derivative. 

f"'' 1 13. ,P: (x, y)-+ J, te'" dt; compute ,P, 1 • 

fx2 { ~ sin2(xt), t #- 0, 
14. ,P: (x, z)-+ •' f(x, t) dt where f: (x, t)-+ t compute ,P, 1 • 

0, t =0; 

16. Show that if m and n are positive integers, then 

r1 m! Jo t"(log t)"' dt = ( -1)"' (n + 1).,+1 · 

[Hint: Differentiate JA x" dx with respect to nand use induction.] 

17. Given fh1(x,y) 

F: (x, y)-+ f(x, y, t) dt, 
hc(x,y) 

find formulas for F. 1, F. 2 • 

18. Suppose that the equation 

J,h1(x) 

f(x, y, t) dt = 0, 
ho(Y) 



290 11. Functions Defined by Integrals; Improper Integrals 

which is a relation between x and y, actually defines y as a function of x. If we 
write y = ;(x) for this function, find ;•. 

19. Given 

fg1(x,y,z) 

rp(x, y, z) = f(x, y, z, t) dt, 
9o(x,y,z) 

find a formula for fll, 3 • 

11.2. Convergence and Divergence of 
Improper Integrals 

Suppose that a real-valued function f is defined on the half-open interval I = 
{x: a~ x < b} and that for each c e /,the integral 

J: f(x) dx 

exists (see Figure 11.1). We are interested in functions f which are unbounded 
in a neighborhood of b. For example, the function f: X -+ (1 - xt1 with 
domain J = { x: 0 ~ x < 1} is unbounded and has the integral 

t (1- x)-1 dx = -log(1- c) force J. 

As c tends to 1, the value ofthe integral tends to +oo. On the other hand, for 
the unbounded function g: X -+ (1 - xrl/l defined on J, We find 

t (1 - xt112 dx = 2 - 2Jl=C for C E J. 

y 

____ _, ______ ~----------------~----~--•x 
0 a c 

Figure 11.1. Integrating an unbounded function. 
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Observe that this integral has the finite limiting value 2 as c -+ 1. With these 
examples in mind we define an improper integral. 

Definitions. Suppose that f is integrable for each number c in the half-open 
interval I= {x: a~ x < b}. The integral r f(x)dx 

is convergent if 

!~~ f f(x)dx 

exists. If the limit does not exist the integral is divergent. Iff is bounded on 
an interval J = {x: a~ x ~ b} except in a neighborhood of an interior point 
de J, then f!f(x) dx is convergent if both limits 

.!~~- f' f(x) dx and .!~~\ J.: f(x) dx 

exist. Otherwise the integral is divergent. 
If a function/ is unbounded at several points on an interval I of integration, 

we decompose the integral into a sum of integrals in which each integral has 
one endpoint where the function is unbounded. If all the limits of the separate 
integrals exist, we say the integral is convergent on I; otherwise it is divergent 
on I. 

EXAMPLE 1. Show that the integrals f!(b - xP' dx and f!(x - a)-.P dx con
verge for p < 1 and diverge for p ~ 1. 

Solution. For a < c < b and p =!- 1 we have 

f• (b- x)1-p]c = (b- a)1-p _ (b- c)1-p . 
.. (b - x)-.P dx = 

1-p .. 1-p 1-p 

For p < 1, the expression on the right tends to (b- a)1-P/(1 - p) as c-+ b-. 
For p > 1, there is no limit. The case p = 1 yields log(b - a) - log(b - c), 
which has no limit as c-+ b-. The analysis for f!(x - a)-.P dx is the same. D 

When the integral of an unbounded function is convergent we say the 
integral exists in an improper sense or that the improper integral exists. 

In analogy with the convergence of infinite series, it is important to establish 
criteria which determine when improper integrals exist. The following result, 
the Comparison test, is a basic tool in determining when integrals converge 
and diverge. 

Theorem 11.4 (Comparison test). Suppose that f is continuous on the half-open 
interval I= {x: a~ x < b} and thatO ~ lf(x)l ~ g(x)for all x e I. If f!g(x) dx 
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converges, then J!f(x) dx converges and 

I J: f(x) dx I ~ Lb g(x) dx. 

PROOF. First suppose that f(x) ~ 0 on I and define 

F: X -+ L" f(t) dt, G: X-+ f' g(t) dt. 

Then F and G are nondecreasing on I and, by hypothesis, G(x) tends to a 
limit, say M, as x-+ b-. Since F(x) ~ G(x) ~ M on I, we find from the Axiom 
of continuity that F(x) tends to a limit as x-+ b-. 

Iff is not always nonnegative, define 

f ( ) = lf(x)l + f(x) 
1 X 2 ' 

f ( ) = lf(x)l - f(x) 
2 X 2 . 

Then f 1 and f 2 are continuous on I and nonnegative there. Moreover, 

From the prooffor nonnegative functions, the integrals J!f1(x) dx, J!f2 (x) dx 
exist; using the Theorem on the limit of a sum, we see that J!lf(x)l dx and 
J!f(x) dx exist. Finally, 

As a corollary, we have the following comparison test for divergence. 

Theorem 11.5. Suppose that f and g are continuous on the half-open interval I = 
{x: a~ x < b} and that 0 ~ g(x) ~ f(x) for each x e I. If J!g(x) dx diverges, 
then J!f(x) dx diverges. 

PROOF. If J!f(x) dx were convergent then, by Theorem 11.4, J!g(x) dx would 
converge, contrary to the hypothesis. D 

EXAMPLE 2. Test for convergence or divergence: 

(1 -J~=x=P= dx, Jo 1- x2 
P>O. 

Solution. We shall compare f: x-+ xflj~ with g: x-+ 1/~. We 
have 

xfl xfl 
~== = --;====== 
~ j(l-x)(1 +x) 

~g(x). 
yL.,..X 
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Since xfl ~ J1+x for 0 ~ x ~ 1, it follows that 1/(x)l ~ g(x). By Example 1 
we know that g 1/~ dx is convergent, and so the original integral 
converges. 0 

We now take up the convergence of integrals in which the integrand is 
bounded but where the interval of integration is unbounded. 

Definitions. Let f be defined on I= {x: a~ x < +oo} and suppose that 
J~f(x) dx exists for each c e /.Define 

I +oo Ic 
a f(x) dx = .~~co a f(x) dx 

whenever the limit on the right exists. In such cases, we say the integral 
converges; when the limit does not exist we say the integral diverges. Iff is 
definedonJ = {x: -oo < x < +oo}wemayconsiderexpressionsoftheform 

J:: f(x)dx 

which are determined in terms of two limits, one tending to +oo and the other 
to -oo. Let d be any point in J. Define 

f+oo Id Ic2 
-co f(x) dx = •• ~~co c, f(x) dx + •2~~00 d f(x) dx (11.9) 

whenever both limits on the right exist. It is a simple matter to see that iff is 
integrable for every finite interval of J, then the values of the limits in (11.9) 
do not depend on the choice of the point d. 

To illustrate the convergence and divergence properties of integrals when 
the path of integration is infinite, we show that 

I+oo 
a x-p dx, a >0, 

converges for p > 1 and diverges for p ~ 1. To see this, observe that (p =F 1) 

Ic 1 
x-p dx = --[c1-p- a1-P]. 

a 1- p 

For p > 1, the right side tends to (1/(p- 1)) a 1 -p as c--+ +oo, while for p < 1 
there is no limit. By the same argument the case p = 1 yields divergence. 
Similarly, the integral 

foo lxl-p dx, b <0, 

converges for p > 1 and diverges for p ~ 1. In analogy with the Comparison 
test for integrals over a finite path of integration, we state the following result. 
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Corollary. For continuous functions f and g defined on the interval I = { x: a ~ 
x < + 00} Theorems 11.4 and 11.5 are valid with respect to integrals J;oo f(x) dx 
and s;oo g(x) dx. 

EXAMPLE 3. Test for convergence: 

f+oo 1 JXJ/2 dx. 
1 +x 

Solution. For x ~ 1, observe that 

JX JX_1_ 
1 + xJ/2 ~ 2x312 - 2x = g(x). 

However Jt00 (1/2x) dx diverges and so the integral is divergent. 

EXAMPLE 4. Test for convergence: 

Solution. Consider 

f+oo 
xe-x2 dx. 

-oo 

A = J: xe-x2 dx 

and set u = x2, du = 2x dx. Then 

1 rc2 1 1 
A=2Jo e-"du=2-2e-c>, 

and A-+! as c-+ +oo. Since the integrand is an odd function we see that 

fo xe-x2 dx-+ _! 
-d 2 

and the original integral is convergent. 

as d-+ +oo, 

D 

D 

It is clear that the convergence of integrals with unbounded integrands and 
over an infinite interval may be treated by combining Theorem 11.4 and the 
Corollary. The next example illustrates the method. 

EXAMPLE 5. Test for convergence: 

i+oo e-x 
r:dx. 

0 yX 

Solution. Because the integrand is unbounded near x = 0 we decompose the 
problem into two parts: 

i 1 e-x 
-dx 

oJX and f+oo e-x 
r:dx. 

1 yX 
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In the first integral we have e-x;Jx ~ 1/Jx, and the integral converges by 

the Comparison test. In the second integral we have e-x;Jx ~e-x, and once 
again the Comparison test yields the result since Jioo e-x dx is convergent. 
Hence, the original integral converges. 0 

PROBLEMS 

In each of Problems 1 through 12 test for convergence or divergence. 

f+oo dx 
1. 1 (x + 2)~· 

r+oo dx 
3. Jo Jl+?. 

5. . f1 dx 

-1Ji=7 

f3 ~ 
7. -1 -dx. 

1 ogx 

r+oo 
11. Jo e-" sin x dx. 

2. . 11 dx 

0 J1=7 
r+oo X dx 

4. Jo Ji+7. 

in/2 ~ 
6. -.-dx. 

o SID X 

f+oo (arctan x)2 

8. 2 dx. 
0 1+x 

11 dx 
10. c-::z· 

o v x- x2 

in sin X 
12. r: dx. 

o XyX 

13. Show that H"' x- 1(log xrP dx converges for p > 1 and diverges for p ~ 1. 

14. Assume f is continuous on I = { x: 2 ~ x < + oo} and limx~ +oo x(log x)2 f(x) = A 
and A # 0. Prove that Ji"' f(x) dx is convergent. 

11.3. The Derivative of Functions Defined by 
Improper Integrals; the Gamma Function 

We consider the integral 

which we shall show is convergent for x > 0. Since the integrand is unbounded 
near zero when xis between 0 and 1, the integral may be split into two parts: 

I+oo t"-le-1 dt = Il t"-le-1 dt + I+oo t"-le-1 dt = /1 + 12. 

In the first integral on the right, we use the inequality 

t"-1e-1 ~ t"-1 for x > 0 and 0 < t ~ 1. 
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The integral f5 tx-1 dt converges for x > 0 and so / 1 does also. As for 12 , an 
estimate for the integrand is obtained first by writing 

and then estimating the function 

f: t __. tx+1e-'. 

We find f'(t) = txe-'(x + 1 - t), and f has a maximum when t = x + 1. This 
maximum value is f(x + 1) = (x + 1f+1 e-<x+11. Therefore 

~ (x + 1f+1e-<x+11 - dt J+oo 1 

1 t2 

= (x + 1f+1e-<x+1J. 

Hence / 2 is convergent for each fixed x > - 1. 

Definition. For x > 0 the Gamma function, denoted r(x), is defined by the 
formula 

The recursion formula 
r(x + 1) = xr(x), (11.10) 

one of the most important properties of the Gamma function, is derived by 
means of an integration by parts. To see this, we write 

J: txe-1 dt = [tx( -e-')]0 + x J: tx-1 e-1 dt. 

Now letting c--. +oo we obtain (11.10). 

It is easy to verify that r(1) = 1, and consequently that r(n + 1) = n! for 
positive integers n. Note that the Gamma function is a smooth extension to 
the positive real numbers of the factorial function which is defined only for 
the natural numbers. 

Leibniz's rule for differentiation of integrals was established for proper 
integrals. We require a more detailed study to establish similar formulas when 
the path of integration is infinite or when the integrand is unbounded. 

Let R = { (x, t): a ~ x ~ b, c ~ t < d} be a rectangle which does not con
tain its "upper'' side. Suppose that F: R--. ~ 1 is continuous and that 

lim F(x, t) 
t-+d-

exists for each x e I= {x: a~ x ~ b}. We denote the limit above by f(x). 



11.3. The Derivative of Functions Defined by Improper Integrals 297 

d ---r--
J. 

d-{j ___ L __ 
R 

c -------1----------i 

0 a b X 

Figure 11.2. F(x, t) -+ f(x) as {J -+ 0. 

Defmition. The function F(x, t) tends to f(x) uniformly on I as t-+ d - if and 
only if for every 6 > 0 there is a {) > 0 such that 

IF(x, t) - f(x)l < 6 (11.11) 

for all tin the interval J6 = {t: d- {) < t < d} and all x e I (see Figure 11.2). 
The quantity{) depends on 6 but not on x. We also say that F converges to f 
uniformly as t tends to d -. The rectangle R may be replaced by the infinite 
stripS = { (x, t): a ~ x ~ b, c ~ t < oo }. The definition of uniform limit (also 
called uniform convergence) is then modified by stating that for every 6 > 0 
there is a number T depending on 6 such that (11.11) holds for all t > T and 
all x on I. The number T depends on 6 but not on x. 

The next two theorems are the basis for Leibniz's rule for improper integrals. 

Theorem 11.6. Suppose that F: R-+ R1 is continuous on I for each t e J = 
{t: c ~ t < d}, and that F(x, t)-+ ,P(x) uniformly on I as t-+ d-. Then ,P 
is continuous on I. The same result holds if J is the half-infinite interval 
{t: c ~ t < +oo} and t-+ +oo. 

PRooF. Let x 1 , x 2 be in I. We have 

,P(x1)- ,P(x2) = ,P(x1)- F(xl> t) + F(x1 , t)- F(x2 , t) + F(x2 , t)- ,P(x2) 

and 

I,P(xd - ,P(x2)l ~ i,P(xd - F(xl> t)l 

+ IF(xl, t)- F(x2 , t)l + IF(x2, t)- ,P(x2)l. 
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Since F tends to <P uniformly it follows that for any e > 0 the first and third 
terms on the right can be made less than e/3 fort sufficiently close to d. If x 1 

and x 2 are sufficiently close, the continuity of F assures us that the middle 
term is less than e/3. Hence <P is continuous. 0 

Theorem 11.7. Suppose that the hypotheses of Theorem 11.6 hold and that F, 1 

is continuous on I for each t E J. IfF, 1 (x, t) --+ t/J(x) uniformly on I as t --+ d -
or as t--+ +oo, then t/J(x) = <P'(x) on I. 

PROOF. Let ex be any point of I. Then 

f' F, 1 (~, t) d~ = F(x, t)- F(cx, t). 

Since F, 1 converges uniformly to t/J(x), it follows that 

Lx t/1(~) d~ = t~~ Lx F, 1 (~, t) d~ = t~~ [F(x, t) - F(cx, t)]. 

Hence 
Lx t/1(~) d~ = <P(x) - <P(cx). 

We differentiate the left side with respect to x, and the result is t/J(x) = <P'(x) 
for any x E I. 0 

Leibniz's rule for improper integrals is a direct consequence of Theorems 
11.6 and 11.7. We first state a corollary of Theorem 11.6. 

Theorem 11.8. Suppose that f: R--+ IR 1 is continuous on R. Define 

F(x, t) = f f(x, r) dr. 

If the improper integral 

<P(x) = r f(x, r) dr 

exists for all x E I, and if limt .... d- F(x, t) = <P(x) exists uniformly for x E I, then 
<Pis continuous on I. The same result holds if J = {t: c ~ t < 15} is replaced by 
the interval {t: c ~ t < +oo} and t--+ d- is replaced by t--+ +oo. 

Theorem 11.9 (Leibniz's rule for improper integrals). Suppose that the hypo
theses of Theorem 11.8 hold and that f 1 is continuous on R. IfF, 1 converges to 
t/1 as t--+ d- (or t--+ +oo) uniformly in x, then 

t/J(x)=<P'(x)= 1d f 1 (x,r)dr 
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or, if dis replaced by +oo, 

f+oo 

t/J(x) = ¢/(x) = c f 1 (x, -r) d-r. 

PROOF. According to Leibniz's rule (Theorem 11.1), for each t < d, we have 

F, 1(x,t)= ff 1 (x,-r)d-r. 

Now the result follows from Theorem 11.7. D 

EXAMPLE 1. Let t/J: x ~ J;joo e-xt dt be given. Show that t/J and t/J' are continuous 
for x > 0 and that 

t/J'(x) = I+oo - te-xt dt. (11.12) 

Solution. Define It 1 _e-xt 
F: (x, t) ~ e-x• ds = . 

0 X 

Hence, 
1 - e-xt - xte-xt 

F,1 = ----x,.-2 __ _ 

As t ~ +oo, we have F ~ 1/x and F, 1 ~ -1/x2 • To show that the convergence 
is uniform, we observe that for h > 0, 

I 11 -xt -ht 
F(x, t) - x = ex < T for all x ~ h, 

I ( 1 )I e-xt(1 + xt) e-ht(l + ht) f 
F, 1 (x, t) - - x 2 = x2 ~ h2 or x ~ h. 

Therefore the convergence is uniform on any interval x ~ h for h positive. 
Applying Leibniz's rule for improper integrals, we obtain (11.12). D 

The next theorem, a comparison test, shows the utility of Leibniz's rule in 
cases where the integrals cannot be evaluated directly. 

Theorem 11.10 

(i) Suppose that f is continuous on the rectangle 

R = { (x, t): a ~ x ~ b, c ~ t < d} 

and that if(x, t)l ~ g(t) on R. If J~ g(t) dt converges, then the improper 
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integral 

£P(x) = r f(x, t) dt 

is defined for each x on I = {x: a~ x ~ b} and rP is continuous on I. 
(ii) Suppose that !, 1 is continuous on R and that 1!, 1 (x, t)l ~ h(t) on R. If 

f: h(t) dt converges, then 

£P'(x) = r f.l(x, t) dt (11.13) 

for each x in the interior of I. That is, Leibniz's rule holds. The same results 

hold if dis replaced by +oo and t tends to +oo. 

PROOF. (i) The existence of £P(x) on I follows from the Comparison test. We 
define 

F: (x, t)-+ f f(x, t) dt. 

Then 

I£P(x)- F(x, t)l =I r f(x, t) dtl ~ r g(t) dt. (11.14) 

Since the integral on the right in (11.14) is convergent, it follows that for every 
e > 0, the value of If: g(t) dtl is less thane provided tis sufficiently close to d. 

Therefore 
1£P(x)- F(x, t)l-+ 0 as t-+ a-, 

uniformly for x on I. Hence £P is continuous. 
(ii) To prove (ii), observe that 

If f.l(x. t) dtl ~ r h(t) dt-+ o as t-+ a-. 

The convergence is uniform and (11.13) is established. 

Definition. Define R = { (x, t): a ~ x ~ b, c ~ t < d} and 

F(x, t) = f f(x, t) dt for (x, t) E R, 

£P(x) = r f(x, t) dt for X E I= {x: a~ X~ b}. 

0 

(11.15) 

If F(x, t) -+ £P(x) uniformly for x on I as t-+ a-, we say the improper integral 
(11.15) converges uniformly for x on I. The same definition is used if d = +oo. 
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EXAMPLE 2. Show that the improper integral 

tfo(x) = J+oo ~ dt 
1 x2 + t2 

(11.16) 

converges uniformly for -oo < x < +oo. 

Solution. For all x and all t;:;?; 1, we have the estimate 

I sin t I 1 
x2 + t2 :::;; ?· 

Since Ji00 (1/t2 ) dt converges, we apply Theorem 11.10 to conclude that the 
integral (11.16) converges uniformly for all x. D 

EXAMPLE 3. Given the integral 

i+oo e-xt- e-t 
tfo(x) = dt, 

0 t 
(11.17) 

and I = { x: a :::;; x :::;; b} with a > 0. Show that the integral (11.17) and the 
integral obtained from (11.17) by differentiating the integrand with respect to 
x both converge uniformly for x on I. Use these results to evaluate tfo(x). 

Solution. We set f(x, t) =(e-xt- e-t)/t and obtain 

{
e-at if a :::;; 1, 

f. 1 (x, t) = -e-xt, lf. 1 (x, t)l:::;; e-t if 1 <a. 

We write the last inequality more compactly: 

lf. 1 (x, t)l :::;; e-ht where h = min( a, 1). 

Now the Mean-value theorem applied to e-xt/t as a function of x yields 

~e-xt~ e-t~ = e-~tl1- xi for 0:::;; t:::;; 1, 

where ~ is between 1 and x. Also, 

I e-xt- e-t~ -ht 
:::;;e 

t 

Therefore integral ( 11.17) and the integral 

for t;:;?; 1. 

I+oo f.1 (x, t) dt 

converge uniformly for x on I. Using Leibniz's rule, we get 

tfo'(x) = lo+oo -e-xt dt = lim _e-_xt]t 
J1 t-++oo X 0 

1 

X 



302 11. Functions Defined by Integrals; Improper Integrals 

Integrating rP'(x) = -1/x, we obtain rP(x) = C - log x. To determine C, we 
have f+oo -t -t e -e 

rP(l) = dt = 0, 
0 t 

and so f+oo -xt -t e - e 
rP(x) = -log x = dt. 

0 t 
D 

PROBLEMS 

In each of Problems 1 through 8, show that the integrals for rP and rP' converge 
uniformly on the given interval. Find rP' by Leibniz's rule. 

f+oo e-xt 

1. </J: X--+ -1- dt, 
0 +t 

I = {x: 0 < a~ x ~ b}. 

2. </J: X ...... L1 
C 1'2e"' dt, I={x: -A~x~A}. 

f+oo cos xt 
3. </J: X--+ --3 dt, 

0 1 + t 
I={x: -A~x~A}. 

f+oo -t 

4. </J: x--+ -1 e dt, 
0 + xt 

I= {x: 0 ~ x ~a}. 

5. </J: X--+ f C 1 sin(xt)(Jog t) dt, I= {x: -a~ x ~a}. 

i 1 (log t)2 
6. </J: X --+ -1-- dt, 

0 + xt 
I= {x: -1 <a~ x ~ b}. 

f1 dt 
7. </J: X--+ ;-,--:• 

o (1 + xt)y 1 - t 
I = {x: -1 <a ~ x ~ b}. 

f+oo sin xt 
8. </J: X --+ 2 dt, 

0 t(1 + t ) 
I= {x: -a~ x ~a}. 

9. Use the fact that JA t" dt = (x + 1)-1, x > -1, to deduce that 

10. Use the fact that 

to show that 

f t"( -Jog t)'" dt = (x +m;)m+l, X> -1. 

f+oo t"-1 1t 

--dt=--
0 1 + t sin nx' 

i +oo t"-1 log t 
--,---dt = 

0 1 + t 

0 <X< 1, 
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11. Verify that 

-r(x) = tx-1(log tre-• dt. d" f+oo 
dx" 0 

12. If ,Pis given by ,P: x-+ J600 (1 + t)-1e-x• dt, show that ,P(x)- ,P'(x) = 1/x. 

13. Given 

f
+oo e-xt 

f/J: X -+ -1 2 dt, 
0 + t 

show that ,P(x) + ,P"(x) = 1/x. 

14. Find ,P' by Leibniz's rule, given that 

,P: X-+ I+oo t-1e-1(1 -cos xt) dt. 

Find an explicit expression for ,P. 

15. Given 11 tx- 1 
f/J: X -+ -1-- dt, 

0 og t 
x e I = { -1 < a ~ x < +oo }. 

Find ,P' by Leibniz's rule and obtain an explicit expression for ,P. 

16. Given 

,P: x-+ I+oo C 2e-'(l -cos xt) dt. 

Find ,P' and ,P" by Leibniz's rule and then obtain explicit expressions for ,P' and ,P. 
Justify the process. 

17. Verify that ,P(x) = Jtoo e-xr dt = 1/x, and show that 

,p!nl(x) = ( -1)" I+oo t"e-x• dt = ( -l)"n!x_"_\ 

18. Verify the formula 

and show that 
r+oo dt - (2n)! -n-(1/2) 

J o (t2 + x)"+1 - 22"(n!)2 x 

19. Given the Legendre polynomial P"(x) defined by 

Pn(X) = ( -1)" f+oo e-••(1-x•) d""(e-x•r•) dt, 
n!Jn -co dx 

show that 
d d 

x dx P"(x) - dx Pn-1 (x) = nP"(x). 

20. Define B(x, y) = g tx-1(1 - w-1 dt, 0 <X< 00,0 < y < 00. 
(a) Show that B(x, y) = B(y, x). 
(b) Find B(2, 2) and B(4, 3). 

x>O. 
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21. Let f(x, y) = (e-"' sin x)/x for x # 0 and f(O, y) = 1. 
(a) Show that f. 2 (x, y) is continuous everywhere. We define 

ioo sinx 
G(y) = e-xy __ dx for y > 0. 

0 X 

(b) Find G'(y) and show that G'(y) = -1/(1 + y2 ). [Hint: Integrate by parts 
twice.] 

(c) Show that G(y) = n/2 - arctan y, y > 0 and conclude that 

22. Define 

ioo sin x n 
--dx=-. 

o X 2 

ioo sin xy 
f(y) = 2 1 dx for y > 0. 

0 x(x + ) 

Showthatfsatisfiestheequationf"(y) = f(y)- n/2. Verifythatf(y) = !n(1- e-'). 



CHAPTER 12 

The Riemann-Stieltjes Integral 
and Functions of 
Bounded Variation 

12.1. Functions of Bounded Variation 

In earlier chapters we developed the basic properties of functions on IR 1 and 
IRN. Of particular interest are conditions which determine when functions are 
continuous, differentiable of any order, analytic, and integrable. There are 
many problems, especially in the applications to physical sciences, in which 
we require more precise information than we have obtained so far about the 
behavior of functions. In the simplest case of functions from IR 1 to IR\ it is 
useful, for example, to be able to measure how rapidly a function oscillates. 
However, the oscillatory character of a function is not easily determined from 
its continuity or differentiability properties. For this reason, we introduce the 
notion of the variation of a function, defined below. This quantity turns out 
to be useful for problems in physics, engineering, probability theory, Fourier 
series, and so forth. In this section we establish the principal theorems con
cerning the variation of a function on IR 1 and in Section 12.2 we show that 
this concept can be used to define an important extension of the Riemann 
integral, one which enlarges substantially the class of functions which can be 
integrated. 

Definitions. Let I= {x: a~ x ~ b} be an interval and f: I-+ IR 1 a given 
function. The variation off over I, denoted v;,b f, is the quantity 

n 

v;,b f =sup L if(x;)- f(x;-1)\, 
i=l 

where the supremum is taken over all possible subdivisions a= x0 < 
x1 < · · · < xn = b of I. If the number v;,b f is finite we say f is of bounded 
variation on I. Iff is not of bounded variation, we write v;,b f = +oo. 

305 
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We begin by establishing several of the fundamental properties of the 
variation of a function. If the function f is kept fixed, then V.," f depends only 
on the interval I= {x: a::::; x::::; b}. The following Theorem shows that the 
variation is additive on intervals. This result (as well as the proof) is similar 
to the corresponding theorem for integrals, Theorem 5.3(d). 

Theorem 12.1. Let f: I-+ IR 1 be given and suppose that c E I. Then 

v: f = v,.c f + Ycb f 

PROOF 

(12.1) 

(a) We first show that V,.b f::::; v,.c f + Ycb f We may suppose that both terms 
on the right are finite. Let A: a = x0 < x1 < · · · < xn = b be any subdivision. 
We form the subdivision A' by introducing the additional point c which falls 
between xk_1 and xk, say. Then 

k-1 
L lf(x;) - f(x;-dl + If( c) - f(xk-dl ::::; v,.c f, 
i=1 

n 

L lf(x;)- f(x;-dl + lf(xk)- f(c)l ::::; Ycb f 
i=k+1 

From the inequality lf(xk)- f(xk-dl::::; lf(xk)- f(c)l + lf(c)- f(xk-1)1, it 
follows that 

n 

L lf(x;)-f(x;-dl::::; Yacf+ Ycbf 
i=1 

Since the subdivision A is arbitrary, we obtain V,.b f ::::; v,.c f + Ycb f. 
(b) We now show that V,.b f ~ v,.c f + Ycb f If V,.b f = +oo, then the inequality 

clearly holds. If v,.c f = +oo, then for every positive number N there is a 
subdivision a= x 0 < x1 < · · · < xk = c such that I:=1lf(x;)- f(x;-1)1 > N. 
Then a= x0 < x1 < · · · < xk < xk+1 = b is a subdivision of I so that 

k 

Yab f ~ L lf(x;)- f(x;-dl + lf(b)- f(xk)l > N. 
i=1 

Since N is arbitrary, it follows that V,.b f = +oo. Similarly, if Ycb f = +oo, then 
V,.b f = +oo. Hence we may assume that v,.c f and Ycb fare both finite. Now 
let e > 0 be given. From the definition of supremum, there is a subdivision 

A1 : a= x 0 < x 1 < · ·· < xk = c 

such that 
k 1 
;~ lf(x;)- f(x;-dl > Yacf- 2e. 

Similarly, there is a subdivision A2 : c = xk < xk+1 • • • < x" = b such that 

n 1 
i=t;_1 lf(x;)- f(x;-dl > Ycb f- 2e. 
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Therefore 
n 

v;,b f ~ L lf(x;) - f(x;-dl > v;,c f + ~b f- e. 
i=l 

Since e is arbitrary, the result follows. D 

EXAMPLE 1. Suppose thatfis a nondecreasingfunction on I= {x: a~ x ~ b}. 
Show that v;,x f = f(x) - f(a) for x E I. 

Solution. Let x be in I and let L\ be a subdivision a= x 0 < x 1 < · · · < Xn-l < 
Xn = x. We have 

n n 

L lf(x;) - f(x;-dl = L [f(x;) - f(x;-d] = f(x) - f(a), 
i=l i=l 

the first equality holding because f is nondecreasing, and the second because 
all the terms except the first and last cancel. Since the above equalities 
hold for every subdivision, they hold also for the supremum. Hence v;,x f = 

M-M D 

By the same argument we show easily that iff is nonincreasing on I, then 
v;,x f = f(a) - f(x). 

Figure 12.1(a) shows a typical function of bounded variation, while Figure 
12.1(b) shows the variation off on the interval [a, x] for x between a and b. 
We observe that v;,x f is always an increasing (nondecreasing) positive function 
ofx. 

EXAMPLE 2. Given the function 

f { sin(n/x) forO< x ~ 1, 
. X-+ 
· 0 forx = 0. 

Show that V01 f = +oo (see Figure 12.2). 

y 

0 

I 
I 
I 

I I I 
I I I 
I I I 
I I I 
I 

~ ~ I~: 
, I , 

a b 

Figure 12.l(a). f, a function of bounded variation. 

X 
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y 

0 a c X 

Figure 12.1(b). V,,X f, the variation off 

Solution. Choose the particular subdivision a= 0, x1 = 2/(2n + 1), x 2 = 2/ 
(2n- 1), ... , xn-l = 2/3, xn = 1. Then a computation shows that 

n 

V01/ ~ L lf(xk)- f(xk-1)1 = 2n. 
k=l 

Since n may be arbitrary large, Vl f = +oo. D 

EXAMPLE 3. Suppose that f is continuous on I= {x: a~ x ~ b} and f' is 
bounded on I. Show that f is of bounded variation. 

y 

Figure 12.2. y = sin(:n:/x), 0 < x ~ 1. 
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Solution. If If' I :::;:; M on I, we may apply the Mean-value theorem to obtain 
lf(xk)- f(xk-dl :::;:; Mlxk- xk-1 1 for any two points xk_ 1 , xk of I. Therefore, 
for any subdivision A, 

n n 

L lf(xk) - f(xk-dl :::;:; M L lxk - xk-1l = M(b - a). 
k=1 k=1 

Hence V..b f:::;:; M(b - a). D 

The above example gives us an easy sufficient condition for determining 
when a function is of bounded variation. Since functions may be of bounded 
variation without being continuous (see Figure 12.1) the set of functions with 
finite variation is much larger than the set having a bounded first derivative. 

We now prove a convergence theorem for sequences of functions whose 
variations on an interval are uniformly bounded. For this purpose we establish 
several properties of functions of bounded variation as well as a "diagonal 
process" for convergence. 

Lemma 12.1. Let f be given on I= {x: a:::;:; x:::;:; b}, and define cp(x) = v.,x f If 
x1, x 2 are any points of I, then Vx~2 f = cp(x2 )- cp(xd and 

V-.:~2 f;;?!: lf(x2) - f(xdl. 

The function cp is nondecreasing. 

The formula V,~2 f = cp(x2 ) - cp(xd is a restatement of (12.1) in Theorem 
12.1. The remainder of the proof is obvious from the definition of variation. 

D 

Theorem 12.2. Suppose that f is of bounded variation on I= {x: a:::;:; x:::;:; b}. 
Iff is continuous on the left at b, then cp(x) = v.,x f is continuous on the left at 
b. Similarly, iff is continuous on the right at a, then cp is also. Iff is continuous 
at any point of I, then cp is continuous at that point. 

PRooF. We prove the first statement, the others being similar. Let 8 > 0 be 
given. Then there is a subdivision A: a = x0 < x 1 < · · · < xn = b such that 

n 1 
V..b f < ;~ lf(x;)- f(x;-dl + 28. (12.2) 

By inserting an additional point, if necessary, we may suppose (because f is 
continuous on the left) that lf(b) - f(xn-dl < k Then for xn-1 :::;:; x :::;:; b, it 
follows from Lemma 12.1 that 

cp(x);;?!: cp(Xn-d = v.,xn-tf 

n-1 n 1 
;;?!: ;~ lf(x;)- f(x;-dl > ;~ lf(x;)- f(x;-dl- 28. 



310 12. The Riemann-Stieltjes Integral and Functions of Bounded Variation 

Therefore, taking (12.2) into account, 

<p(x) > V.t f- e = <p(b) - e. 

Since e is arbitrary and <p is nondecreasing the result follows. D 

The next theorem exhibits an important relationship between monotone 
functions and functions of bounded variation. It shows that every function of 
bounded variation is the difference of two nondecreasing functions. 

Theorem 12.3. Suppose that f is of bounded variation on I= {x: a~ x ~ b}. 
Then there are nondecreasing functions g and h on I such that 

f(x) = g(x) - h(x) for x E I, (12.3) 

and v,.x f = g(x) + h(x)- f(a) for x E I. Moreover, iff is continuous on the left 

at any point c E I, then g and hare also. Similarly, g and hare continuous on 
the right wherever f is. 

PROOF. Choose 

g(x) = t(f(a) + v,.x f + f(x)], h(x) = t(f(a) + v,.x f- f(x)]. (12.4) 

To show that g is nondecreasing, observe that 2g(x2)- 2g(x 1 ) = V,~2 f + 
f(x 2)- f(xd. From Lemma 12.1 we have V,~2 f ~ lf(x2)- f(x 1 )1 and so 
g(x2 ) ~ g(xd. The proof for his similar. 

Suppose that f is continuous on the left or right at c. Then so is <p where 
<p(x) = v,.x f. The continuity result follows directly from Theorem 12.2 and the 
explicit formulas for g and h. D 

Remarks. The decomposition off given by (12.3) and (12.4) is not unique. 
If 1/J is any nondecreasing function on I, we also have the decomposition 
f = (g + t/1) - (h + t/1). In fact, if t/1 is strictly increasing, then this decomposi
tion off is the difference of two strictly increasing functions. 

Theorem 12.4. Iff is nondecreasing on I= {x: a~ x ~ b}, then the points of 
discontinuity off are at most a countable set. (This result is stated without proof 

in Section 6.3, which discusses countable sets on the line. See Theorem 6.16.) 

PROOF. For each point c in the interior of I, we know that limx ..... c+ f(x) = f(c +) 
and limx ..... c- f(x) = f(c-) both exist. (See Theorem 3.7.) Since f is non
decreasing, it is clear that f(c +) ~ f(c -) for each number c. Let k be any 
positive real number. Define the set 

Ek = {x E I :f(x +)- f(x-) ~ k}. 

Since f is a bounded monotone function, Ek is a finite set. The set E = 
U_f;1 E 112 j is countable and contains all the points of discontinuity off D 
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Corollary. Iff is of bounded variation on I= {x: a~ x ~ b}, then the points 
of discontinuity form at most a countable set. 

A method for obtaining convergent subsequences of a given sequence, 
known as the Cantor diagonal process, is a widely used and important tool of 
analysis. Although we shall employ it here only for functions from IR 1 to IR\ 
we prove the result for general mappings from one metric space to another. 

Theorem 12.5 (Cantor's diagonal process). Let X and Y be sets in a metric space 
with Y compact. For n = 1, 2, ... , let fn: X --+ Y be given mappings. Suppose that 
S = {x1 , x2, ... , xn, ... } is a countable subset of X. Then there is a subsequence 
{gn} of Un} such that {gn} converges at every point of S. 

PROOF. The sequence {fn(xd} of Y has a convergent subsequence because Y 
is compact. Call this convergent subsequence {!1n} and suppose f 1n(x1)--+ Y1 

as n--+ oo. Because Y is compact the sequence {!1n(x2)} of Y has a convergent 
subsequence. Call this subsequence {f2n} and suppose f 2n(x2)--+ y2 as n--+ oo. 
Note that f 2n, being a subsequence of f 1n, is such that f 2n(x1)--+ y 1 as n--+ oo. 
We continue taking subsequences so that {fkn} converges to Jt, y2, ... , Yk at 
x1, x2, ... , xk, respectively. 

Now consider the diagonal sequence Unn} and let xP E S. The sequence 
{fpn} converges at Xr Form > p, the sequence Umm} forms a subsequence of 
{fpn} and so also is convergent at Xr Hence by choosing gn = fnn we obtain 
the desired result. D 

Let f be a monotone function defined on an interval I. A set of points A is 
dense in an interval I if the closure of A contains I. The next result shows that 
if a sequence of monotone functions converges to f on a dense set in I, it also 
converges at every point of I where f is continuous. 

Theorem 12.6. Suppose that f andfn, n = 1, 2, ... , are nondecreasing functions 
from I= {x: a~ x ~ b} to IR 1. Let S be a dense set in I and suppose that 
fn(x)--+ f(x) for each xES. If x0 is a point in the interior of I such that f is 
continuous at x0 , then fn(x0 )--+ f(x0 ). 

PROOF. Let x0 be a point in the interior of I such that f is continuous at x0 . 

From the definition of continuity, for every e > 0 there is a J > 0 such that 

lf(x)- f(x0 )! < h for !x- x0 ! <b. 

Of course, J is chosen so small that the interval!x- x0 ! < J is contained in 
I. Since Sis dense in I, there are points x 1 and x2 inS with x0 - J < x 1 < x0 

andx0 < x2 < x0 + J.(SeeFigure 12.3.)Becausefisnondecreasingwehave 

f(xo) - !e ~ f(xd ~ f(xo) ~ f(x2) ~ f(xo) + !e. (12.5) 

From the fact that x 1 , x2 E Sand {i,} converges for all xES, there is an integer 
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xo + 6 

Figure 12.3 

N such that 

lfn(xl)- f(xdl < tB and IJ..(x2)- f(x2)1 < tB (12.6) 

for all n > N. For each n, we have f,(xd ::::;; fn(x0 ) ::::;; J..(x2 ) and this fact is now 
combined with (12.5) and (12.6) to yield 

f(xo)- B::::;; f(xd- tB < fn(xd::::;; fn(xo) 

B 
::::;; fn(x2) < f(x2) + 2 ::::;; f(xo) + B. 

Therefore lfn(x0 ) - f(x0 )1 < B. That is, fn converges to fat x 0 • 0 

Remarks. By Theorem 12.4 we know that the points of discontinuity off 
in Theorem 12.6 are at most countable. Therefore the points of convergence 
of a nondecreasing sequence as in the above theorem consists of all of I except 
for at most a countable set. Because of Theorem 12.3 on decomposition, a 
theorem analogous to Theorem 12.6 holds for functions of bounded variation. 

Since there are countable dense sets in every interval (for example, the 
rational numbers), the Cantor diagonal process may be combined with Theo
rem 12.6 to yield subsequences which converge throughout the interval. The 
principal result in this direction, known as Helly's theorem, merely requires 
that the functions fn and their total variation, i.e., the quantity V,.b fn, remain 
uniformly bounded. 

Theorem 12.7 (Helly's theorem). Let f,, n = 1, 2, ... , be functions of bounded 
variation on I= {x: a::::;; x::::;; b}. Suppose that the functions and their total 
variations are uniformly bounded. That is, there are constants Land M such that 

lfn(x)l ::::;; L and V,.b f.. ::::;; M for all x, n. 

Then there is a subsequence {gn} of {f..} which converges at every point of I to 
a function f. Furthermore, V,.b f ::::;; M. 

PROOF. Define gn = t[J,(a) + V,." fn + fn(x)], hn = Hfn(a) + V,." f.. - f,(x)] as 
in (12.4); then gn, h" are nondecreasing and uniformly bounded. Therefore it 
is sufficient to prove the theorem for nondecreasing functions f... Let S = 
{x1 , x 2 , .•• }be a countable dense subset of I which contains a and b. Since 
the interval J = { x: - L::::;; x ::::;; L} is a compact subset of IR 1, we may employ 
the Cantor diagonal process. Hence there is a subsequence {Hn} of{!..} such 
that Hn(x;) --+ Y; as n --+ oo for each X; E S. The functions Hn are nondecreasing 
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and therefore for every n we have Hn(x;) ~ Hn(xi) if X; < xi. It follows that 
yP ~ yq whenever xP < Xq for xP, Xq e S. Define 

/ 0(x) = sup Yp for x E I, xP E S. 
Xp:S;;X 

The function fo is nondecreasing since, for z < w, the points in S less than z 
form a subset of the points inS which are less than w. Also, for xP e S, we have 
Hn(xp) ..-. f 0 (xp) = Yp· From Theorem 12.6 it follows that Hn(x) ..-. f 0 (x) at any 
point x where fo is continuous. Since fo is continuous except at possibly a 
countable set Tin I, there is a further subsequence {Gn} of {Hn} which 
converges at each point ofT and continues to converge at the remaining points 
of I. Let f denote the limit function of { Gn}· 

Let a = xb < x~ < x~ < · · · < xl. = b be any subdivision of I. Then 

k k 

L lf(x;)- f(x;_t)l =lim L IGn(x;)- Gn(x;_1)1 ~ M, 
i=l n-oo i=l 

since for each n, we have Vab gn ~ M. Hence Vab f ~ M. 0 

The next result gives a sufficient condition for determining when a function 
is of bounded variation, and also a method for computing its variation (see 
Example 3). 

Theorem 12.8. Suppose that f and f' are continuous on an interval I = 

{x: a~ x ~ b}. Then f is of bounded variation on I and 

Vab f = r lf'(x)l dx. 

PRooF. The first part of the Theorem was established in Example 3 earlier. 
Let A: a= x0 < x 1 < · · · < xn = b be any subdivision. Then by the Mean
value theorem, there are numbers ~; such that X;_1 ~ ~i ~ X; with 

n n 

L lf(x;)- f(x;-1)1 = L lf'(~;)l·lx;- X;-1l· 
i=1 i=1 

Let e > 0 be given. From the definition of integral, there is a (> > 0 such that 

lit lf'(OIIx;- X;-11-r lf'(x)l dxl < ~e 
for every subdivision with mesh less than (>. Now we use the definition of 
bounded variation to assert that for the above e, there is a subdivision 
A0 : a= z0 < z1 < · · · < Zm = b such that 

b ~ b 1 Va f ~ ;ft lf(z;)- f(z;-1)1 > Va f- 2e. 

Let A1 : a = xb < x~ < · · · < x~ = b, be the common refinement of A and A0 . 
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Then A1 has mesh less than /J. Hence 

p m 1 v: f ~ ;~ lf(x;)- f(xi-t)l ~ i~ lf(z;)- f(z;-dl > ~b f- 2B 

and 

~i~ if(x;)- f(xj_t)l-r lf'(x)l dxl <~B. 
Combining these inequalities, we obtain 

I ~b f-r lf'(x)l dxl <B. 

Since B is arbitrary, the result follows. D 

Remark. A function f may be of bounded variation without having a 
bounded derivative. For example, the function f: x-+ x 213 on I= {x: 0 ~ 
x ~ 1} is continuous and increasing on I. Hence it is of bounded variation. 
However, f' is unbounded at the origin. 

PROBLEMS 

1. Suppose that f is of bounded variation on I= {x: a~ x ~ b}. Show that f is 
bounded on I. In fact, show that lf(x)l ~ If( a) I + V,b f. 

2. Suppose that f and g are of bounded variation on I = { x: a ~ x ~ b}. Show that 
f- g and fg are functions of bounded variation. 

3. Given f(x) = sin2 x for x e I= {x: 0 ~ x ~ n}. Find Vo" f. 

4. Given f(x) = x3 - 3x + 4 for x e I= {x: 0 ~ x ~ 2}. Find V02 f. 

5. Given 

Find V03 f. 

{ 
1 for 0 ~ x < 1, 

f(x) = ! for 1 ~ x < 2, 

2 for 2 ~ x ~ 3. 

6. Let I;= {x: i- 1 ~ x < i}, i = 1, 2, ... , n. Let f(x) = c; for x e I; and f(n) =c. 
where each c; is a constant. Find Vo" f. 

7. Show that the function 
f {x sin(1/x) for x # 0, 

: x --+ 0 for x = 0, 

is not of bounded variation on I = {x: 0 ~ x ~ 1 }. However, prove that 

{x2 sin(1/x) for x # 0, 
g: X-> 0 

forx = 0, 

is of bounded variation on I. 
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8. Find those values of IX and p for which the function 

f {x« sin(x-11) for x * 0, 
:X-+ 

0 forx = 0, 

is of bounded variation on I= {x: 0 ~ x ~ 1}. 

9. Let f and g be functions of bounded variation on I = { x: a ~ x ~ b }. Show that 

V.,b(f + g) ~ v..b f + v..b g, 

k a constant. 

10. Let .1: a= x 0 < x1 < · · · < x. = b be a subdivision of I= {x: a~ x ~ b} and 
suppose f is defined on I. Then Li'=1 [(x;- X;-d2 + (f(x;)- f(x;-df] 112 is the 
length of the inscribed polygonal arc off We define the length off on I, denoted 
L!f, by the formula 

• 
L!f =sup L [(x;- X;-1)2 + (f(x;)- f(x;-1))2]112, 

i=l 

where the supremum is taken over all possible subdivisions. 
(a) Show that for any function j, the inequalities 

V.,b f + (b- a)~ L!f ~ [(V.,b f)2 + (b- a)2]1f2 

hold. Hence conclude that a function is of bounded variation if and only if it 
has finite length. 

(b) Show that if a< c < b then 

L!f = L~f + L~f 

[Hint: Follow the proof of Theorem 12.1.] 

11. A function f defined on I = { x: a ~ x ~ b} is said to satisfy a uniform Holder 
condition with exponent IX if there is a number M such that 

lf(xd- j(x2)l ~ M ·lx1 - x2l« for all x1, x 2 e I. 

(a) Iff satisfies a uniform Holder condition with IX = 1 show that f is of bounded 
variation. 

(b) Give an example of a function which satisfies a uniform Holder condition with 
0 < IX < 1 and which is not of bounded variation. 

12. Compute VO' f for f(x) = x•e-x on I = {x: 0 ~ x ~ a}, where a> n > 0. 

13. Complete the proof of Lemma 12.1. 

14. Complete the proof of Theorem 12.2. 

15. Show that iff is continuous and has a finite number of maxima and minima on 
an interval I= {x: a~ x ~ b}, thenfis of bounded variation on I. Conclude that 
every polynomial function is of bounded variation on every finite interval. 

16. Suppose thatfis of bounded variation on I= {x: a~ x ~ b}. Iflf(x)l ~ c > Ofor 
all x e I where cis a constant, show that g(x) = 1/f(x) is of bounded variation on I. 
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12.2. The Riemann-Stieltjes Integral 

We introduce a generalization of the Riemann integral, one in which a function 
f is integrated with respect to a second function g. If g(x) = x then the 
generalized integral reduces to the Riemann integral. This new integral, called 
the Riemann-Stieltjes integral, has many applications not only in various 
branches of mathematics, but in physics and engineering as well. By choosing 
the function g appropriately we shall see that the Riemann-Stieltjes integral 
allows us to represent discrete as well as continuous processes in terms 
of integrals. This possibility yields applications to probability theory and 
statistics. 

Definitions.Letfandgbefunctionsfromi = {x: a~ x ~ b}into~ 1.Suppose 
that there is a number A such that for each e > 0 there is a (j > 0 for which 

~;~ f(C;)[g(x;)- g(x;-1)]- AI< e (12.7) 

for every subdivision A of mesh size less than {J and for every sequence { 0 
with x;_1 ~(;~X;, i = 1, 2, ... , n. Then we say thatfis integrable with respect 
tog on I. We also say that the integral exists in the Riemann-Stieltjes sense. 
The number A is called the R-S integral off with respect tog and we write 

A = r f dg = r f(x) dg(x). 

As in the case of a Riemann integral, it is a simple matter to show that when 
the number A exists it is unique. Furthermore, when g(x) = x, the sum in (12. 7) 
is a Riemann sum and the R -S integral reduces to the Riemann integral as 
described in Chapter 5. 

It is important to observe that the R-S integral may exist when g is not 
continuous. For example, with I = { x: 0 ~ x ~ 1} let f(x) = 1 on I, 

g(x) = {0 for ? ~ x < t, 
1 for 2 ~ x ~ 1. 

The quantity Li=d(C;)[g(x;)- g(x;-d] reduces to Li=1 [g(x;)- g(x;-d]. 
However, all these terms are zero except for the subinterval which contains 
x = t. In any case, the terms of the sum "telescope" so that its value is 
g(1)- g(O) = 1. Therefore, for every subdivision the Riemann-Stieltjes sum 
has the value 1, and this is the value of the R-S integral. 

The R-S integral may not exist iff has a single point of discontinuity 
provided that the function g is also discontinuous at the same point. For 
example, with I = { x: 0 ~ x ~ 1} define 

f(x) = {1 for ? ~ x < t, 
2 for 2 ~ x ~ 1, 

( ) _ {0 for 0 ~ x < t, 
g X - 1 

1 for 2 ~ x ~ 1. 
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The quantity L7=tf((;)[g(x;)- g(x;_1 )] reduces to the single term which 
corresponds to the subinterval containing x = t. That is, we have one term 
of the form 

f((k)[g(xk)- g(xk-d] 

where xk-l ~ t ~ xk and xk-l ~ (k ~ xk. Then g(xk)- g(xk_1 ) = 1, but the 
value of f((k) will be 1 or 2 depending on whether (k is chosen less than tor 
greater than or equal tot. Since these two choices may be made regardless of 
the mesh of the subdivision, the R-S integral does not exist. 

The R-S integral has properties of additivity and homogeneity similar to 
those of the Riemann integral. These are stated in the next theorem, and we 
leave the proof of the reader. 

Theorem 12.9 

(a) Suppose that J:f dg 1 and J:f dg 2 both exist. Define g = g 1 + g2 • Then f is 
integrable with respect to g and r fdg= r fdgl + r fdgz. 

(b) Suppose that J:f1 dg and J:f2 dg both exist. Define f = f1 + f 2 • Then f is 
integrable with respect to g and r f dg = r ft dg + r fz dg. 

(c) Suppose that J!f dg exists and that cis a constant. Then 

r (cf)dg=c r fdg. 

(d) Suppose a < c < b. Assume that not both f and g are discontinuous at c. If 
J~f dg and J~f dg exist, then J!f dg exists and 

r f dg = r f dg + r f dg. 

The next theorem shows that if g is smooth, then the R-S integral is 
reducible to an ordinary Riemann integral. This reduction is useful for the 
calculation of Riemann-Stieltjes integrals. We show later (Theorem 12.16) 
that the R-S integral exists for much larger classes offunctions. 

Theorem 12.10. Suppose that f, g, and g' are continuous on the interval I = 
{x: a~ x ~ b}. Then J!f dg exists and r f dg = r f(x)g'(x) dx. (12.8) 
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PROOF. Let e > 0 be given. We wish to show that 

I it f(C;)[g(x;)- g(X;-1)]-r f(x)g'(x) dxl < e (12.9) 

provided that the mesh of the subdivision is sufficiently small. We apply the 
Mean-value theorem to the Riemann-Stieltjes sum in (12.9) getting 

n n 

L f(C;)[g(x;)- g(x;-1)] = L f(C;)g'('f;)(x;- X;-1) (12.10) 
i=1 i=1 

where x1_ 1 ~ 'I; ~ x1• The sum on the right would be a Riemann sum if 'I; 
where equal to C1• We show that for subdivisions with sufficiently small mesh 
this sum is close to a Riemann sum. Let M denote the maximum of lf(x)l on 
I. Since g' is continuous on I, it is uniformly continuous there. Hence there is 
a {J > 0 such that for 1'1 - 'l;l < {J it follows that 

(12.11) 

From the definition of Riemann integral there is a subdivision with mesh so 
small (and less than {J) that 

I,~ f(C;)g'(C;)(X;- X;-1)- r f(x)g'(x) dxl <~e. (12.12) 

By means of(12.11), we have 

~~~ /(C;)[g'('l;)- g'(C;)](x;- xi-1)1 

N I e I 1 < ~~ M 2M(b- a) (x;- X;-1) = 2e. (12.13) 

From (12.12) and (12.13), for any C1, 'I; such that x1_ 1 ~ C1 ~ x1 and x1_ 1 ~ 
'I; ~ x1, we get the inequality 

l.t f(C;)g'('f;)(x; - X;-d - fb f(x)g'(x) dx I < e. 
•-1 a 

Now taking (12.9) and (12.10) into account, we get the desired result. 0 

EXAMPLE 1. Find the value of 

J:1 x
5 d(lxl 3 ). 

Solution. Consider the integrals J~1 x 5 d(- x3 ) and J~ x 5 d(x3 ). According to 
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Theorem 12.10, we have 

x 5 d(-x 3 )= -3 x7 dx= --x8 =-fo fo 3 Jo 3 

-1 -1 8 -1 8 

e x 5 d(x 3 ) = 3 e X 7 dx = ~x8]2 
= 96. Jo Jo 8 o 

Now Property (d) of Theorem 12.9 yields 

J:1 
x 5(dlxl 3 ) = ~ + 96. 0 

The next theorem shows how to change variables in R -S integrals, a result 

which is useful when actually performing integrations. This is the analogue of 

Theorem 5.13, the change of variables formula for Riemann integrals. 

Theorem 12.11. Suppose that f is integrable with respect to g on I = { x: a ~ 

x ~ b}. Let x = x(u) be a continuous, increasing function on J = {u: c ~ 

u ~ d} with x(c) = a and x(d) = b. Define 

F(u) = f[x(u)] and G(u) = g[x(u)]. 

Then F is integrable with respect to G on J, and r F(u) dG(u) = r f(x) dg(x). (12.14) 

If x(u) is continuous and decreasing on J with x(c) =band x(d) =a, then r F(u) dG(u) = - r f(x) dg(x). (12.15) 

PROOF. Let e > 0 be given. From the definition ofR-S integral, there is a{> > 0 

such that 

(12.16) 

for all subdivisions A: a = x0 < x1 < · · · < xn = b with mesh less than {> and 

any {(;}in which x;_1 ~ '; ~ X;. Since xis (uniformly) continuous on J, there 
is a {>1 such that lx(u')- x(u")l < {> whenever lu'- u"l < {>1 • Consider the 

subdivision A1 : c = u0 < u1 < · · · < un = d of J with mesh less than {>1 . Let '1; 
be such that u;_1 ~ '1; ~ u; for i = 1, 2, ... , n. Since x(u) is increasing on J, 

denote x(u;) = x; and x(l'f;) = ';· Then the subdivision A of I has mesh less 

than {> and X;_1 ~ '; ~ X; for i = 1, 2, ... , n. Therefore 

n n 

L F(l'f;)[G(u;)- G(u;-d] = L f(,;)[g(x;)- g(x;-d]. 
1=1 i=1 
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Taking into account the definition of the R-S integral, (12.7), we see that the 
integrals in (12.14) are equal. 

If x(u) is decreasing on J, let x(u;) = x,_;, x('l;) = ,,+1-;. Then 
, , 
L F('l;)[G(u;)- G(u;-1)] = L /(,,+1-;)[g(x,_;)- g(x,+1-;)]. 
~1 ~1 

Setting k = n + 1 - i, i = 1, 2, ... , n, we find the sum on the right is 
, 

- L f(,k)[g(xk)- g(xk-1)]. 
k=1 

Then (12.16) shows that the integrals in (12.15) are equal. D 

The next result is a generalization of the customary integration by parts 
formula studied in calculus. Formula (12.17) below is most useful for the actual 
computation ofR -S integrals. It also shows that if either of the integrals J!f dg 
or J! g df exists then the other one does. 

Theorem 12.12 (Integration by parts). I/ J!f dg exists, then so does J!g df and r g df = g(b)f(b) - g(a)f(a) - r f dg. (12.17) 

PRooF. Let 8 > 0 be given. From the definition of R -S integral, there is a 
{l > 0 such that 

'
.t f(W[g(x;)- g(xi-1)]- fb f dg' < 8 
•-1 a 

(12.18) 

for any subdivision 11': a= x0 < x~ < · · · < x:., = b of mesh less than {land 
any '; with x;_1 ::;:; ';::;:; x;. Let ~ = !~' and choose a subdivision 11: a= 
x0 < x 1 < · · · < x,. = b of mesh less than ~ and points 'i such that X;-1 ::;:; 'i ::;:; X;, i = 1, 2, ... , n. We further select ' 0 = a and ,,+1 = b. Then we observe 
that a= ' 0 ::;:; ' 1 ::;:; .. • ::;:; ,, ::;:; ,,+1 = b is a subdivision with mesh size less 
than~·. and furthermore ';-1 ::;:; X;-1 ::;:; 'i• i = 1, 2, ... , n + 1. 

Therefore 
, 
L g(,;)[f(x;)- f(x;-1)] 
i=1 

n+1 
= L g(';-df(x;-1) + g(a)f(a) - g(a)f(a) 

i=2 

, 
- L g(,;)/(X;-1)- g(b)f(b) + g(b)f(b) 

i=1 
n+1 n+1 

= L g(';-1)f(x;-1)- g(a)f(a)- L g(,;)/(x;-1) + g(b)f(b) 
i=1 i=1 
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or 
n 

L g((;)[f(x;) - f(x;-d] = g(b)f(b) - g(a)f(a) 
i=l 

n+l 

- L f(x;-l)[g((;)- g((;-1 )]. (12.19) 
i=l 

The sum on the right is an R-S sum which satisfies (12.18). Hence the right 
side of (12.19) differs from the right side of (12.17) by less than e. But the left 
side of (12.19) is the R-S sum for the left side of (12.17). The result follows 
since e is arbitrary. D 

We shall show below that if fis continuous and g of bounded variation on 
an interval I= {x: a~ x ~ b}, then f:J dg exists. Theorem 12.12 shows that 
if the hypotheses on f and g are reversed, the R -S integral will still exist. 

EXAMPLE 2. Let f be any function with a continuous derivative on I = 

{x: a~ x ~ b}.Leta = a0 < a 1 <···<aN= bbeanyfinitesequenceofnum
bers, and define 

g(x) = {c; for a;_1 < x ~ a;, 
c0 for x =a, 

where c0 , c 1 , •.. , eN are any constants. Show that 

i = 1, 2, ... , N, 

fb N-1 

a g(x)f'(x) dx = CNj(b)- Cof(a)- ifo f(a;)(ci+l - c;). 

Solution. For the subinterval I;= {x: a;_1 ~ x ~a;}, we have 

1:~. f(x) dg(x) = f(a;_1)(c;- C;-1), 

(12.20) 

which can be seen by considering the R-S sum and proceeding to the limit. 
Property (d) of Theorem 12.9 yields r f dg = ~t: f(a;)(ci+l - c;). 

Now we employ integration by parts to obtain f: g df. Observe that Theorem 
12.10 can be proved when the integrand fin Theorem 12.10 is a step function 
and, applying the result to f~ g df, we obtain (12.20). D 

We recall that any function of bounded variation may be represented as 
the difference of two monotone functions. Therefore if the existence of the R -S 
integral f~f dg when f is continuous and g is nondecreasing is established, it 
follows that the R -S integral exists when f is continuous and g is of bounded 
variation. To establish the existence of the R -S integral for as large a class as 
possible, we shall employ the method ofDarboux described in Chapter 5. We 
begin by defining upper and lower Darboux-Stieltjes sums and integrals. 
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Definitions. Suppose that f and g are defined on I= {x: a~ x ~ b} and g is 
nondecreasing on I. Let~: a= x0 < x 1 < · · · < x" = b be a subdivision of I. 
Define ~;g = g(x;) - g(x;_1 ), i = 1, 2, ... , n. Note that ~;g ~ 0 for all i; also set 

M; = sup f(x), m; = inf f(x). 

Define the upper and lower Darboux-Stieltjes sums 

n n 

s+ (J, g, ~) = 2: M;~;g, s_ u. g, ~> = 2: m;~;g. 
i=1 i=1 

Since g is nondecreasing, observe that the numbers I; = ~;g = g(x;) -
g(x;_1 ) are nonnegative and that Li=t ~;g = g(b)- g(a). Thus {I;} form a 
subdivision A of the interval g(b) - g(a), and if~' is a refinement of~. then 
there is induced a corresponding refinement A' of A. 

The next result is completely analogous to Theorem 5.1 concerning Darboux 
sums, and we leave the proof to the reader. 

Lemma 12.2. Suppose that f and g are defined on I= {x: a~ x ~ b} and g is 
nondecreasing on I. 

(a) If m ~ f(x) ~ M on I and ~ is any subdivision, then 

m[g(b)- g(a)] ~ S_(f, g, ~) ~ s+(J, g, ~) ~ M[g(b)- g(a)]. 

(b) If~, is a refinement of~. then 

s_ (J, g, ~') ~ s_ (f, g, ~) and s+ (f, g, ~') ~ s+ (f, g, ~). 

(c) If ~ 1 and ~2 are any subdivisions of I, then 

Definitions. The upper and lower Darboux-Stieltjes integrals are given by r f dg = inf s+ (f, g, ~) for all subdivisions ~ of I. 

r f dg = sup S_ (f, g, ~) for all subdivisions ~ of I. 

These integrals are defined for all functions f on I and all functions g which 
are nondecreasing on I. If r fdg= r fdg (12.21) 

we say f is integrable with respect tog on I (in the Darboux-Stieltjes sense). 
The integral is the common value (12.21). 

The following elementary properties of upper and lower Darboux -Stieltjes 
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integrals are similar to the corresponding ones for upper and lower Darboux 
integrals given in Chapter 5. 

Theorem 11.13. Suppose that J, / 1 , and f 2 are bounded on the interval I = 
{x: a~ x ~ b} and that g is nondecreasing on I. 

(a) If m ~ f(x) ~ M on I, then 

m[g(b)- g(a)] ~ f f dg ~ f f dg ~ M[g(b) - g(a)]. 

(b) If / 1 (x) ~ / 2 (x) for x e I, then 

J.b /1 dg ~ J: fz dg and 

(c) Suppose that a < c < b. Then 

J: f dg + 1b f dg = J .. b f dg, 1 f dg + r f dg = rb f dg. 

(d) I~! dgand I~! dg both exist if and only if I~! dgexists. In this case, we have 

J: f dg + r f dg = r f dg. 

The proof of Theorem 12.13 is similar to the proof of the corresponding 
results for Riemann integrals as described in Theorems 5.2 and 5.3. We leave 
the details to the reader. 

Theorem 11.14. Suppose that f is continuous on I= {x: a~ x ~ b} and that g 
is nondecreasing on I. Then the Riemann-Stieltjes integral I~! dg exists. 

PRooF. Since f is uniformly continuous on I, for every 6 > 0 there is a o > 0 
such that 

6 

lf(x) - f(y)l < 2[1 + g(b) _ g(a)] 

whenever lx - Yi < o. Let 4: a = x0 < x 1 < · · · < x" = b be a subdivision of 
I with mesh less than o. Define I1 = { x: x1_ 1 ~ x ~ x1}. Since f is continuous 
on each I1, there are numbers '71 and C1 on I1 such that m1 = /('71) and M1 = f(C1). 

Then we have 

n 6 1 
~ ~~ 2[1 + g(b)- g(a)] 41g < 26' 

Since 6 is arbitrary it follows that the Darboux -Stieltjes integral denoted 
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(D-S) J!f dg exists. Now let e; be any point in I;. From the fact that the 
Darboux-Stieltjes integral is between s+ and S_, we find 

(D-S) r f dg- e < S_(f, g, ~) 

n 

~ L f((;)~;g = s+ <J. g, ~> 
i=l 

< (D-S) r f dg + e. 

Since Li=d(e;)~;g tends to (D-S) J!f dg as e-+ 0, the (R-S) integral exists 
and, in fact, is equal to the (D-S) integral. 0 

Corollary. Suppose that f is continuous on I= {x: a~ x ~ b} and that g is of 
bounded variation on I. Then the Riemann-Stieltjes integral J!f dg exists. 

We give an example of functions f and g such that f is not Riemann 
integrable on an interval I but J f dg exists on that interval. To see this, we 
define 

{
0 for x = 0, 

f(x) = 1/x for 0 < x < 1, 
1 for 1 ~ x ~ 2, 

g(x) = {1 for 0 ~ x ~ 1, 
x for 1 < x ~ 2. 

Then clearly J~f(x) dx does not exist since f(x) = 1/x is not integrable for 
0 < x < 1. However, by considering Riemann-Stieltjes sums, we find that all 
such sums vanish for 0 ~ x ~ 1. Hence 

The next result gives an important basic upper bound for the value of any 
R-S integral. 

Theorem 12.15. Suppose that f is continuous on I= {x: a~ x ~ b} and that g 
is of bounded variation on I. Let M = maxxei lf(x)l. Then 

Iff dgl ~ MV,.bg. 

The proof is a direct consequence of the definition of the (R -S) integral and 
the Corollary to Theorem 12.14. We leave the details to the reader. 

Suppose that {fn} and {gn} are sequences of functions which converge to 
functions f and g for all x on an interval I= {x: a~ x ~ b}. We wish to 
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establish conditions which guarantee that J:!,. dg" converges to J:J dg. For 
this purpose we prove the next technical result. 

Lemma 12.3. Suppose that f is continuous and g is of bounded variation on 
I= {x: a~ x ~ b}. Let A: a= x0 < x1 < · · · < x" = b be a subdivision of 
mesh less than ~- Define 

w(J, ~) = sup lf(x) - f(y)l for all x, y with lx - yl < ~-

Suppose that(; is in the interval I; = { x: X;_1 ~ x ~ x;} fori = 1, 2, ... , n. Then 

PROOF. We may write 

fb J dg = .t fx; J dg 
a r-l Xi-1 

and 

Therefore 

it f((;)A;g-r f dg =it f:~. [f((;)- f(x)] dg. 

If the mesh of A is less than ~. then for (; and x in I;, it follows that 

If((;) - f(x)l ~ w(J, ~), 
and so 

lit f((;)A;g- r f dgl ~it If:~. [f((;)- f(x)] dgl 

n 

~ w(J, ~) L Yx~~' g = w(J, ~) V,.b g. D 
i=l 

The next theorem shows that for uniformly convergent sequences {fn} and 
for functions {gn} of uniformly bounded variation which tend to a limit on a 
dense set of points, the passage to the limit extends through Riemann-Stieltjes 
integrals. 

Theorem 12.16. Suppose that !,., n = 1, 2, ... , are continuous and !,. -+ f as 
n-+ oo uniformly on I= {x: a~ x ~ b}. Suppose that 9n and g are of bounded 
variation with Va" g ~ L and V,.b 9n ~ L for all n. Let S be any dense set of points 
on I which contains a and b. If 9n -+ g on S, then 

lim fb fn dgn = fb J dg. 
n-+oo a a 
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PROOF. Let en= maxxei 1/n(x)- f(x)l. Then from Theorem 12.15, we have 

1 r (/, -f) dgn 1 :::;;; en v..b gn :::;;; enL. 

Observe that en-+ 0 as n-+ oo. Therefore 

1 r /, dgn - r 1 dg 1 = 1 r (fn - f) dgn + r f(dgn - dg) 1 

:::;;; enL + I r f dgn - r f dg I· 
We shall show that the second term on the right tends to zero as n-+ oo. Let 
e > 0 be given. Choose b > 0 so small that w(f, b) < ej3L. Next select a 
subdivision Ll: a = x0 < x 1 < · · · < xk = b of mesh less than b and with all 
subdivision points in S. From Lemma 12.3, we find 

I it /((i) [gn(xi) - gn(Xi-d] - r f dgn I < 3~. L = i· (12.22) 

Also, by the same reasoning 

lit /((i)[g(x;)- g(xi-1)]-r f dgl <~e. (12.23) 

We now use the fact that gn-+ g on the dense set S. For each i there is an 
integer N such that 

lit /((;){[gn(Xi)- gn(Xi-1)]- [g(xi)- g(xi_1)]}1 < i (12.24) 

for all n > N. The result follows by inserting the three inequalities (12.22), 
(12.23), and (12.24) in the "triangle" inequality 

1 r 1 dgn - r 1 dg 1 

:::;;; I fb f dgn - .t /((;) [gn(Xi)- gn{xi-1)] I 
a •-1 

I k fb I e e e + i~ f((;)[g(xi)- g(Xi-d]- a f dg < 3 + 3 + 3 =e. D 

EXAMPLE 3. Let /, = 1 - (1/n) sin nx, gn = 1 + xn, n = 1, 2, ... Show that 
JA/n dgn-+ 1 as n-+ 00. 
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Solution. We observe that f,. -+ 1 uniformly on I = { x: 0 ~ x ~ 1} and that g" 
tends to the function 

g(x) = {1 for 0 ~ x < 1, 
2 for x = 1. 

Therefore the hypotheses of Theorem 12.16 are satisfied. Since J~ 1 dg = 1, the 
result follows. D 

PROBLEMS 

1. (a) Let a< c1 < c2 < · · · < c" < b be any points of I= {x: a~ x ~ b}. Suppose 
that 

{
1 for x 'i' c;. i = 1, 2, ... , n, 

g(x) = . 
d; for x = c;. 1 = 1, 2, ... , n, 

where d; is a constant for each i. 
Suppose that f is continuous on I. Find an expression for J: f dg. 

(b) Work Part (a) if a= c1 < c2 < · · · < c" = b. [Hint: First do Part (a) with 
a= c1 < c2 = b.] 

2. Let g(x) = sin x for 0 ~ x ~ 7t. Find the value of J0 x dg. 

3. Let g(x) = el"l for -1 ~ x ~ 1. Find the value of g1 x dg. 

4. Let g(x) = k for k - 1 < x ~ k, k = 1, 2, 3, .... Find the value of Jt x dg. 

5. Show that with g as in Problem 4, H g dg does not exist. 

6. Prove Theorem 12.9. 

7. Use Theorem 12.11 to evaluate J{" cos(u2)d(cos(u2 )). 

8. Show that if f and g have a common point of discontinuity on an interval 
I= {x: a~ x ~ b}, then J:J dg cannot exist. 

9. Suppose that f = c on I= {x: a~ x ~ b} where c is any constant. If g is of 
bounded variation on I, use integration by parts (Theorem 12.12) to show that 
J:f dg = c[g(b) - g(a)]. 

10. Let [x] denote the largest integer less than or equal to the number x. Find the 
value of J~(x2 + 1)d([x]). 

11. With [x] defined as in Problem 10, show that 

fn [x] -1 " 1 
-----r+f dx = t( r-1) + L :r• 

1 X n i=1 I 

Use the R-S integral. 

12. Same as Problem 11 for 

f2" 2[!xJ - [x] _ 1 2n ( -1)i 
r+l dx - - L -.,-. 

1 X t i=1 I 
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13. Suppose that fn, f, gn, g satisfy the hypotheses of Theorem 12.16. Under what 
circumstances is it true that 

lim fb gn df. --+ fb g df? 
n_,.oo a a 

14. Prove Lemma 12.2. 

15. Prove Theorem 12.13. 

16. Let f be continuous and g of bounded variation on I = { x: a ~ x < oo}. Define 
J~ f dg = limx-oo J~ f dg when the limit exists. Show that iff is bounded on I and 
g(x) = 1/k2 fork - 1 ~ x < k, k = 1, 2, ... , then 

foo oo [ 1 1 J 
1 f dg = - k~l f(k + 1) (k + w - (k + 2)2 • 

17. Use the function g(x) = b,. for k - 1 < x ~ k, k = 1, 2, ... , b,. constant, and the 
definition of integral over a half-infinite interval, as in Problem 16, to show that 
any infinite series Lt=l ak may be represented as a Riemann-Stieltjes integral. 

18. Prove Theorem 12.15. 

19. Let f.(x) = nxj(l + n3 x2 ) and gn(x) = xn on I = { x: 0 ~ x ~ 1 }. Show that 
limn-oo JAJ.(x) dgn(x) exists and find its value. 

20. Let 
f( ) = {1 if xis rational, 

x 0 if xis irrational, 

and let g(x) be any nonconstant, nondecreasing function on I= {x: 0 ~ x ~ 1}. 
Show that JAJ dg does not exist. 

21. Letfbe continuous and g nondecreasing on I= {x: 0 ~ x ~ b}. Prove the Mean
value theorem: r f(x) dg(x) = f(C) r dg(x), 

where C is some point of I. [Hint: Use Property (a) of Theorem 12.13, and the 
Intermediate-value theorem applied to the function f] 

22. Suppose thatf and g are continuous on I= {x: a~ x ~ b}. Define h(x) = J~g(t) dt. 
Show that r f dh = r f(x)g(x) dx. 



CHAPTER 13 

Contraction Mappings, 
Newton's Method, and 
Differential Equations 

13.1. A Fixed Point Theorem and Newton's Method 

The main result of this section is a simple theorem which proves to be useful 
in the solution of algebraic and differential equations. It will also be used to 
prove the important Implicit function theorem in Chapter 14. 

We first recall the definition of a Cauchy sequence in a metric spaceS (see 
Chapter 6). A sequence of points {p,.} in S is called a Cauchy sequence if and 
only if for every 8 > 0 there is an integer N such that d(pm, p,) < 8 whenever 
m, n > N. We also recall Theorem 6.22 in Chapter 6 which states that every 
convergent sequence in a metric space is a Cauchy sequence. Since not every 
Cauchy sequence in a metric space is convergent, we introduce the following 
class of metric spaces. 

Definition. A metric space S is said to be complete if and only if every Cauchy 
sequence inS converges to a point inS. 

We observe that a compact metric space is always complete (Theorem 6.23). 
Although the space IR 1 is not compact it is complete, as was established in 
Theorem 3.14. With the aid of this result we now show that all the Euclidean 
spaces are complete. 

Theorem 13.1. For every positive integer N, the space IRN is complete. 

PROOF. We already showed that IR 1 is complete. Let N ~ 2. Let x1 , x2 , ... , 

x,, ... be a Cauchy sequence in IRN. With the notation x, = (x~, x;, ... , x:), 

329 
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the distance between the points xm and x,. is 

[ 
N ]1/2 

d(xm, x,.) = .L (x~ - x!)2 . 
•=1 

Fix j and observe that for each j = 1, 2, ... , N, 
N 

L (x~- x!)2 ;;;l!: (x!- x~)2. 
i=1 

Hence for each fixed j with 1 ~ j ~ N the sequence { x~} is a Cauchy sequence 
in IR1 and thus converges to a limit which is denoted x6. We conclude that 
x,. -+ x 0 where x 0 = (x~, x~, ... , xg}. The space IRN is complete. D 

Definition. Let f be a mapping from a metric space S into S. A point x 0 in S 
is called a fixed point of the mapping f if f(x0) = x 0 • 

We now show that certain classes of mappings from a complete metric 
space into itself always have a fixed point. 

Theorem 13.2 (A fixed point theorem). Suppose that f is a mapping on a 
complete metric space S into S such that 

d(f(x), f(y)) ~ k d(x, y) (13.1) 

for all x, y in S with 0 < k < 1. Then the mapping has a unique fixed point. 
That is, there is a unique point x 0 e S such that f(x0) = x 0 • Moreover, if x1 is 
any element of S, and the sequence {x,.} is defined by setting x,.+1 = f(x,.), 
n = 1, 2, ... , then x,. converges to x 0 • 

PROOF. Start with any x 1 in S and set x,.+1 = f(x,.), n = 1, 2, .... Then 
d(x2, x3) = d(f(xd, f(x2)) ~ kd(x1, x2). Continuing, 

d(x3, x4) = d(f(x2), f(x3)) ~ kd(x2, x3) ~ k2d(x 1, x2). 

In general, 
d(x,., x,.+d ~ k"-1d(x 1, x2 ) for n = 1, 2,.... (13.2) 

Let m, n be any positive integers with m > n. Then by the triangle inequality 
in a metric space, 

d(x,., Xm) ~ d(x,., Xn+1) + d(xn+l• Xn+2) + · · · + d(Xm-1• Xm). 

Applying inequality (13.2) to each term on the right, we obtain 

d(x,., Xm) ~ d(x1, x2)[kn-1 + k" + ... + km-2] 

= d(x1, x2)k"-1[1 + k + ··· + km-n-1]. 

Since L.i=o ki = 1/(1 - k), we find 

d(x,., xm) < d(x 1, x2)k"-11 ~ k. 
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Now let 6 > 0 be given. Since 0 < k < 1, the right side tends to 0 as n -+ oo. 
Therefore there is an N such that the right side is less than 6 for all n > N. 
Thus {x,.} is a Cauchy sequence. Let x0 be the limit of {x,.}. By (13.1), we know 
that f is continuous on S and so f(x,) -+ f(x 0 ) as n -+ oo. Since x,.+1 -+ x 0 and 
x,.+1 = f(x,), it follows that f(x 0 ) = x 0 • 

To establish the uniqueness ofthe point x0 , suppose there is a point x' such 
that x' = f(x'). Using (13.1), we find that 

d(x0 , x') = d[f(x0 ), f(x')] ~ kd(x0 , x'). 

Since 0 < k < 1, it is clear that d(x0 , x') = 0, and so x 0 = x'. D 

A mapping f which satisfies (13.1) with 0 < k < 1 is called a contraction 
mapping. 

Corollary.Let I= {x: a ~ x ~ b} be an interval in IR. 1 and suppose thatf: I-+ I 
is a differentiable function at each interior point of I with lf'(x)l ~ k, 0 < k < 1 
for each x. Then there is a unique point x0 of I such that f(x0 ) = x 0 • 

We leave the proof to the reader. 

EXAMPLE 1. Let/ = { x: a ~ x ~ b} be an interval and suppose that f is differ
entiable on I with f(a) and -f(b) contained in the interval J = {x: 0 ~ x ~ 
b- a}. Furthermore, suppose that there are numbers k and k' such that 
-1 < k' ~ f'(x) ~ k < 0 for all x e I. Show that there is an x0 e I such that 
f(x0 ) = 0 and prove that for any x 1 e I, the iteration x,.+1 = f(x,), n = 1, 2, ... 
converges to x0 • 

Solution. Set g(x) = f(x) + x. Then, by hypothesis, g(a) e I, g(b) e I, and, since 
g'(x) = 1 + f'(x), it follows that g is an increasing function on I. Hence g maps 
I into I. Also, g(x) - g(y) = x - y + f(x) - f(y) and, applying the Mean
value Theorem, we find 

lg(x) - g(y)l = l(x - y)(1 + f'(O)I 

with a < C < b. Thus 
lg(x)- g(y)l ~ (1 + k)lx- yl, 

and from Theorem 13.2 it follows that there is an x 0 such that g(x0 ) = x 0 • 

Therefore x 0 + f(x 0 ) = x 0 and f(x0 ) = 0. D 

Remarks. The above example shows that for any differentiable function J, 
if f(a) and f(b) are of opposite sign and if the derivative off is small (but 
bounded away from zero) then the zero off which must exist between a and 
b may always be found by a simple iteration method. There are many iteration 
methods for finding the zeros of functions on an interval. We now describe a 
method of wide applicability, especially when the first derivative of the func
tion is large in the neighborhood of the zero. 
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y 

0 a 

Newton's method 

b 

y =[(x) 

Y =[(Xn) + f'(xn) (x -x.) 

Figure 13.1. Newton's method. 

Let f be a twice differentiable function on I = { x: a ::::; x ::::; b} with f(a) > 0 
and f(b) < 0. Then there is an x 0 E I such that f(x0 ) = 0. Newton's method 
consists of an iteration process which converges to x0 , one of the zeros off 
in I. We assume that there is a positive number M such that lf'(x)l ~ 1/M 
and lf"(x)l ::::; 2M for all x E I. Let x1 be any point in I. We define a sequence 
{xn} by the formula, known as Newton's method, 

f(xn) 
Xn+l = Xn - J'(xn)' n = 1, 2, .... (13.3) 

The determination of xn+l from xn is shown geometrically in Figure 13.1. The 
tangent line to the graph of y = f(x) is constructed at the point (xn, f(xn)). The 
point where this line intersects the x axis is xn+l· To show that the sequence 
{ xn} converges to x0 , first observe that 

lxn+l- xnl::::; MIJ(xn)l. 

Next, apply Taylor's theorem with remainder to fat xn+l, getting 

f(xn+d = f(xn) + f'(xn)(xn+l - Xn) + !J"(()(xn+l - Xn)2• 

Because of (13.3) the first two terms on the right cancel, and so 

IJ(xn+l)l::::; Mlxn+l- Xnl 2• 

(13.4) 

(13.5) 

By means of(13.4) and (13.5), it is not difficult to show by induction that {xn} 
is a convergent sequence provided lf(xdl and M are less than 1. Hence it 
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follows from (13.5) that f(xn)-+ 0 as n-+ oo. In terms of the Fixed point 
theorem, we define the function 

1 
F(x) = x - f'(x/(x); 

then Newton's method consists of forming xn+t = F(xn), n = 1, 2, ... , and 
concluding from the convergence of the sequence that there is a fixed point 
x0 such that F(x0 ) = x0 • The existence of such a point in general does not 
follow from Theorem 13.2 since the range ofF is not necessarily contained in 
its domain and so we may not have a mapping of a complete metric space I 
into itself. 

EXAMPLE 2. Find a positive root of the equation 2x4 + 2x3 - 3x2 - 5x -
5 = 0 with an accuracy of three decimal places. 

Solution. We construct a table of values of f(x) = 2x4 + 2x3 - 3x2 - 5x - 5 
and obtain 

f;x) ~-~ ~-~ ~2~ I· 
Thus there is a positive root x0 between x = 1 and x = 2. We choose x1 = 1.6 
as a first approximation and apply Newton's method. We calculate f'(x) = 
8x3 + 6x2 - 6x - 5. Then, according to Formula (13.3) we have 

f(l.6) 0.6193 
x2 = 1.6- f'(l.6) = 1.6- 33.528 = 1.5815. 

The next approximation yields 

f(x 2 ) 0.114 
x3 = x 2 - f'(x2 ) = 1.5815 - 32.1623 = 1.5780. 

y 

Y = f(x1 ) + f'(x1)(x- x,) 

Figure 13.2. Newton's method fails because x1 is not close to x0 • 
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Continuing, we find 
f(x3) 

x4 = x3 - f'(x
3

) = 1.5780 + 0.0031 = 1.5811. 

The root, accurate to three decimal places is 1.581. 0 

Newton's method may fail if the first approximation x1 is not sufficiently 
close to the root x0 or if the slope off at x1 is not sufficiently large. Figure 
13.2 illustrates how the second approximation, x2 , may be further from the 
root than the first approximation, x1 . 

PROBLEMS 

1. Find the positive root of 2x4 - 3x2 - 5 = 0 with an accuracy of three decimal 
places. 

2. Find the positive root of 3x3 + 6x2 - 7x- 14 = 0 with an accuracy of three 
decimal places. 

3. Find the negative root of x4 - 2x3 - 3x2 - 2x - 4 = 0 with an accuracy of two 
decimal places. 

4. Find the root of x - cos x = 0, 0 ~ x ~ n/2 with an accuracy of two decimal 
places. 

5. Find all the roots of 3x3 + x 2 - 11x + 6 = 0 with an accuracy of two decimal 
places. 

6. Find the positive root of 3x3 + 16x2 - 8x- 16 = 0 with an accuracy of four 
decimal places. 

7. Given f: x -+ (1/4)(1 - x - (1/10)x5 ) defined on I = { x: 0 ~ x ~ 1 }. By applying 
the Fixed point theorem to g(x) = f(x) + x, show that f has a zero in I. Set up an 
iteration process and find the first three terms. 

8. Consider the function f: x -+ jl+? defined on I = { x: 0 ~ x < oo}. Show that 
lf(x)- f(y)l < lx- yl for all x of. y and that f does not have a fixed point. 
Conclude that Theorem 13.2 is false if k = 1. 

9. Prove the Corollary to Theorem 13.2. 

10. Let f: (x, y)-+ (x', y') be a function from IR2 to IR2 defined by 

x' =ix +h-2, 
y' =!x-h+ 3. 

Use Theorem 13.2 to show that f has a fixed point. 

11. Let f: (x, y)-+ (x', y') be a function from IR2 to IR2 defined by 

x' = 1 sin x- 1 cosy+ 2, 

y' = i cos x + t sin y - 1. 

Use Theorem 13.2 to show that f has a fixed point. 
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12. Let f be a mapping of a complete metric space S into S, and suppose that 
j2 = f of satisfies the conditions of Theorem 13.2. Show that fhas a unique fixed 
point. 

13. Use Newton's method to find to three decimal places the root of e-x- 5x = 0 on 
the interval I= {x: 0 ~ x ~ 1}. 

14. Complete the details of the induction in the proof of convergence of Newton's 
method. 

15. Suppose that an iteration, similar to Newton's method, is used according to the 
formula 

f(x.) 
Xn+l = x.- f'(xd' n = 1, 2, .... 

State and prove a theorem which establishes convergence of this method. 

13.2. Application of the Fixed Point Theorem 
to Differential Equations 

Let D be an open set in IR 2 and suppose that f: D--+ IR 1 is continuous. We 
now investigate the problem of determining solutions in D of the first order 
differential equation 

dy 
dx = f(x, y) (13.6) 

by means of the fixed point theorem of Section 13.1. 

Definitions. Let P(x0 , y0 } be a point of D. A function y = qJ(x) is a solution of 
the initial value problem of (13.6) if and only if qJ'(x) = f(x, qJ(x)) for x in some 
interval I= {x: x0 - h < x < x 0 + h} and if qJ satisfies the initial condition 
Yo= qJ(Xo). 

We shall show that when f satisfies certain smoothness conditions, a 
solution to the initial value problem exists and is unique. Since the method 
employs the Fixed point theorem of Section 1, the solution may always be 
found by an iteration technique. 

Definitions. LetS be a metric space and suppose thatf: S--+ IR 1 and g: S--+ IR 1 

are bounded continuous functions on S. We define the distance between f and 
gby 

d(f, g) = sup lf(x) - g(x)\. (13.7) 
xeS 

It is easy to verify that the collection of all bounded continuous functions from 
S to IR 1 forms a metric space with the distance function given by (13.7). We 
denote this space by C(S). 
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Theorem 13.3. Let S be a metric space and C(S) the metric space of bounded 
continuous functions on S. Let {f,} be a sequence of elements of C(S). Then 
f,--+ fin C(S) as n--+ oo if and only iff,--+ f uniformly on S as n--+ oo. 

PRooF. Suppose f, converges to f uniformly on S. Thus, suppose that for every 
e > 0 there is an integer n0 such that 

lfn(x) - f(x)l < e for all n > n0 , 

and the number n0 is independent of x E S. Consequently, 

sup lfn(x) - f(x)l ~ e for n > n0 , 
xeS 

and we conclude that d(f,, f)--+ 0 as n--+ oo. That is, fn converges to fin C(S). 
The converse is obtained by reversing the steps in the argument. D 

We leave to the reader the proof of the next two theorems. 

Theorem 13.4. If S is any metric space, the space C(S) is complete. 

Theorem 13.5. Let S be a complete metric space and A a closed subset of S. Then 
A, considered as a metric space, is complete. 

Remarks. LetS be a metric space and suppose thatf: S--+ IRN and g: S--+ IRN 
are bounded continuous functions on S. That is, f and g have the form 
f = (f, f2, ... ,JN), g = (gl, g2, ... , gN) where /;, gi, i = 1, 2, ... , N, are 
bounded continuous functions from S into IR 1• If we define lf(x)- g(xW = 
l:f=1 1/;(x) - gi(xW, then the distance formula (13. 7) determines a metric space 
denoted CN (S). It is now a straightforward matter to establish the analog of 
Theorem 13.3 for the space CN(S). 

The next lemma enables us to reduce the problem of solving a differential 
equation to that of solving an integral equation. This reduction is used 
extensively in problems involving ordinary and partial differential equations. 

Lemma 13.1. Suppose that f: D--+ IR 1 is continuous, that qJ is defined and 
continuous on I = { x: x 0 - h < x < x 0 + h} to IR 1, and that (x0 , y0 ) E D with 
qJ(x0 ) =Yo· Then a necessary and sufficient condition that qJ be a solution of 

dqJ 
dx = f[x, ({J(x)] (13.8) 

on I is that qJ satisfy the integral equation 

qJ(x) = Yo + I: f[t, ({J(t)] dt for x E I. (13.9) 

PROOF. We integrate (13.8) between x 0 and x obtaining (13.9). Then the 
Fundamental theorem of calculus establishes the required equivalence. D 
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Definitions. Let F be defined on a setS in IR 1 with values in IR 1• We say that 
F satisfies a Lipschitz condition on S if and only if there is a constant M such 
that 

(13.10) 

for all values of x 1 , x 2 inS. The smallest number M for which (13.10) holds is 
called the Lipschitz constant. 

Iff has a bounded derivative on an interval I, then it satisfies a Lipschitz 
condition there. To see this, observe that by the Mean-value theorem there 
is a value' such that f(xd- f(x2) = f'(0(x 1 - x 2) for any x 1, x 2 E I. If 
1!'(01 ~ M for all' E I, then (13.10) clearly holds for the function f On the 
other hand, a function may satisfy a Lipschitz condition and not be differ
entiable at certain points of I. A function whose graph consists of several 
connected straight line segments illustrates this property. 

Theorem 13.6. Suppose that f: R-+ IR 1 is continuous where R is the rectangle 
R = {(x, y): lx- x01 < h, IY- Yo I~ k}, that lf(x, y)l ~ M0 for (x, y) E R, and 
that f satisfies a Lipschitz condition with respect to y, 

lf(x, Yd- f(x, Y2)l ~ MtiYt - Y2l 

whenever (x, yd and (x, y2 ) are in R. Then if 

M0 h ~ k and M 1 h < 1, 

there is a unique continuously differentiable function qJ defined on I = 
{x: x0 - h < x < x0 + h} for which 

dqJ 
I({J(x)- Yo I ~ k and dx = f[x, qJ(x)]. 

PROOF. According to Lemma 13.1 it suffices to find a solution of the integral 
equation 

qJ(x) = Yo + Ix f[t, ({J(t)] dt 
Xo 

(13.11) 

with I qJ(x) - Yo I ~ k for x E I. Let C(I) be the metric space of bounded 
continuous functions on I, and let E be the subset of C(I) for which 
I qJ(x) - Yo I ~ k.lf { ({Jn} is a sequence of functions in E which converges in C(I) 
to a function qJ0 , then the inequality 

1(/Jo- Yol ~ 1(/Jo- (/Jnl + I({Jn- Yol 

shows that ({Jo must also belong to E. Thus E is a closed subset of C(I) and, 
by Theorem 13.5, a complete metric space. We define a mapping TonE by 
the formula 

T(qJ) = t/1 where t/J(x) =Yo + Ix f[t, ({J(t)] dt, qJ E E. 
Xo 
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We have 

lt/J(x)- Yo I =I I: f[t, q>(t)] dtl ~ M0 Jx- x 0 1 < M0 h ~ k. 

Hence t/1 is in E and the mapping T takes the metric space E into itself. Now 
we show that Tis a contraction map. Let q>1, q>2 be in E and denote t/11 = T(q>1), 
t/12 = T(q>2 ). Then 

lt/12(x)- t/11(x)l =If~ {f[t, IP2(t)]- f[t, q>1(t)]} dtl 

~II: M111P2(t)-tp1(t)Jdtl 

tel 

Therefore d(t/12 , t/11) ~ M 1 hd(q>2 , tpt}. Since M 1 h < 1 by hypothesis, Theorem 
13.2 shows that the mapping T has a unique fixed point. That is, Equation 
(13.11) has a unique solution and the result is established. D 

Remarks. Iff is defined in an open set Din IR 2 and M0 , M1 of Theorem 
13.6 hold for all of D, then the solution q>, valid in a rectangle, can be extended 
throughout D. We observe that in the proof of Theorem 13.6, the size of h 
depends only on M0 , M1 and k and not on q>. Once a solution q> is found in 
a rectangle centered at (x0 , y0 ), we may take any other point on this solution 
curve, say (x 1 , yt) and solve the initial value problem in a new rectangle 
centered at (x1 , yt) (see Figure 13.3).11 is not difficult to show that in general 
this new solution will extend beyond the original one. By the uniqueness result, 
the solutions must coincide in the overlapping portions of the rectangles. 
Proceeding step by step we obtain a solution of the initial value problem 
throughout D. 

~--------h--------~ 

Figure 13.3. Extending a solution. 
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Theorem 13.6 has an immediate extension to solutions of the system of 
equations 

dy; 
dx = J;(x, Yt• Y2•. · ·, YN), i = 1, 2, ... , N. 

We consider mappings from I into RN and the corresponding space of func
tions CN(J) as described in the remarks following Theorem 13.5. We obtain 
an existence and uniqueness theorem for the initial value problem provided 
the J; are continuous and satisfy a Lipschitz condition with respect to each of 
the variables Yt• Y2• ... , YN· 

The uniqueness conclusion of Theorem 13.6 fails if we drop the hypothesis 
of a Lipschitz condition and merely assume that f is continuous. To see this, 
consider the equation 

dy = yl/3 
dx 

(13.12) 

in any open set containing (0, 0). Then it is clear that y = cp(x) = 0 is a solution 
to (13.12) which satisfies the initial condition cp(O) = 0. A second solution 
is given by y = cp(x) = (2x/3)3'2• It is not difficult to see that the function 
f(x, y) = y1!3 does not satisfy a Lipschitz condition in any open set which 
contains the point (0, 0). 

PROBLEMS 

1. Let S be a metric space. Show that the space C(S) is complete (Theorem 13.4). 

2. Let S be a complete metric space and A a closed subset of S. Show that A, 
considered as a metric space, is complete (Theorem 13.5). 

3. Prove Theorem 13.3 with the metric space CN(S) in place of the space C(S). 

4. Consider the integral equation 

cp(x) = g(x) + A. r K(x, y)cp(y) dy, 

where A. is a constant, g is continuous on I= {x: a :E;; x :E;; b}, and K is continuous 
on the squareS= {(x, y): a :E;; x :E;; b, a :E;; y :E;; b}. Define the mapping 1/1 = Tcp by 

1/1 = Tcp = g(x) + A. r K(x, y)cp(y) dy. 

Use the fixed point theorem to show that for sufficiently small values of A. there is 
a unique solution to the integral equation. 

5. Given the differential equation dyfdx = x 2 + y2 and the initial condition cp(O) = 1, 
use the method of reduction to an integral equation and successive approximation 
to find the first six terms in the Taylor expansion solution y = cp(x). 

6. In the proof of Theorem 13.6, write a complete proof of the statement that E is a 
closed subset of C(l). 
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7. Given the linear differential equation dyjdx = A(x)y + B(x), show that if A(x) and 
B(x) are bounded and integrable on I= {x: a~ x ~ b}, then the fixed point 
theorem yields a solution to the initial value problem on I. 

8. Given the second order linear equation 

d 2y dy 
dx 2 + A(x) dx + B(x)y + C(x) = 0. 

Let y 1 = y and y2 = dyjdx. Then the second order equation reduces to the pair of 
first order equations: 

dyz 
dx = -A(x)y2 - B(x)y 1 - C(x). 

If A, B, and Care continuous on I= {x: a~ x ~ b}, show that a theorem similar 
to Theorem 13.6 holds. 

9. Consider the system of differential equations 

dy; 
dx = J;(x, Yt, Yz, · · ·, YN), i = 1, 2, ... , N. 

State and prove the analog of Lemma 13.1 for such a system. 

(13.13) 

10. State and prove the analog of Theorem 13.6 for systems of the form (13.13). 



CHAPTER 14 

Implicit Function Theorems 
and Lagrange Multipliers 

14.1. The Implicit Function Theorem for 
a Single Equation 

Suppose we are given a relation in ~2 of the form 

F(x, y) = 0. (14.1) 

Then to each value of x there may correspond one or more values of y 
which satisfy (14.1)-or there may be no values of y which do so. If 
I= {x: x 0 - h < x < x 0 + h} is an interval such that for each x e I there is 
exactly one value of y satisfying (14.1), then we say that F(x, y) = 0 defines y 
as a function of x implicitly on I. Denoting this function by J, we have 
F[x, f(x)] = 0 for x on I. 

An Implicit function theorem is one which determines conditions under 
which a relation such as (14.1) defines y as a function of x or x as a function 
of y. The solution is a local one in the sense that the size of the interval I may 
be much smaller than the domain of the relation F. Figure 14.1 shows the 
graph of a relation such as (14.1). We see that F defines y as a function of x 
in a region about P, but not beyond the point Q. Furthermore, the relation 
does not yield y as a function of x in any region containing the point Q in its 
interior. 

The simplest example of an Implicit function theorem states that if F is 
smooth and if Pis a point at which F, 2 (that is, oFfoy) does not vanish, then 
it is possible to express y as a function of x in a region containing this point. 
More precisely we have the following result. 

Theorem 14.1. Suppose that F, F, 1 and F, 2 are continuous on an open set A in 
~2 containing the point P(x0 , y0 ), and suppose that 

F(xo, Yo) = 0, 

341 
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y 

Q 

F(x,y) = 0 

--~-----------------------------x 
0 

Figure 14.1 

(a) Then there are positive numbers h and k which determine a rectangle R 
contained in A (see Figure 14.2) given by 

R = {(x, y): lx- x0 1 < h, IY- Yol < k}, 

such that for each x in I= {x: lx- x0 1 < h} there is a unique number yin 
J = {y: IY- Yo I < k} which satisfies the equation F(x, y) = 0. The totality 
of the points (x, y) forms a function f whose domain contains I and whose 
range is in J. 

(b) The function f and its derivative f' are continuous on I. 

We shall give two proofs of Part (a), one which uses the elementary proper-

y 

Yo +k --------1---- ----F(x,y)>O 

I 
I 

Yo 

F(x,y) =0 
R 

Yo-k ----+---......... -----!1----F(x,y)<O 

I 
I 
I 

--4-------+-------~-----+-------x 
0 x0 -h xo x0 +h 

Figure 14.2 
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ties of continuous functions and the Intermediate-value theorem (Theorem 
3.3), and a second which employs the Fixed point theorem in Chapter 13 
(Theorem 13.2). 

FIRST PROOF OF PART (a). We assume F, 2 (x0 , y0 ) > 0; otherwise we replace F 
by - F and repeat the argument. Since F, 2 is continuous there is a (sufficiently 

small) squareS= {(x, y): Jx- x0 J ~ k, Jy- Yol ~ k} which is contained in A 
and on which F, 2 is positive. For each fixed value of x such that Jx- x0 J < k 
we see that F(x, y), considered as a function of y, is an increasing function. 
Since F(x0 , y0 ) = 0, it is clear that 

F(x0 , Yo + k) > 0 and F(x0 , Yo - k) < 0. 

Because F is continuous on S, there is a (sufficiently small) number h such that 

F(x, Yo+ k) > 0 on I= {x: Jx- x0 J < h} and F(x, y0 - k) < 0 on I. We fix a 
value of x in I and examine solutions of F(x, y) = 0 in the rectangle R (see 
Figure 14.2). Since F(x, Yo- k) is negative and F(x, y0 + k) is positive, there 
is a value yin R such that F(x, Y) = 0. Also, because F, 2 > 0, there is precisely 
one such value. The correspondence x -+ y is the function we seek, and we 

denote it by f D 

(b) To show that f is continuous at x0 let 8 > 0 be given and suppose that 
8 is smaller than k. Then we may construct a square s. with side 28 and center 
at (x0 , y0 ) as in the proof of Part (a). There is a value h' < h such that f is a 
function on I'= {x: Jx- x0 J < h'}. Therefore 

Jf(x)- f(x0 )l < 8 whenever Jx- x0 J < h', 

and f is continuous at x0 • At any other point x1 E I, we construct a square S1 

with center at (x 1 , f(x 1)) and repeat the above argument. 
To show that f' exists and is continuous we use the Fundamental lemma 

on differentiation (Theorem 7.2). Let x E I and choose a number p such that 
X+ p E I. Then 

F(x + p, f(x + p)) = 0 and F(x, f(x)) = 0. 

Writing f(x + p) = f +Nand using Theorem 7.2, we obtain 

[F,t(x, f)+ 8 1(p, Af)]p + [F, 2(x, f)+ 8 2 (p, Llf)]Af = 0 (14.2) 

where 8 1 and 8 2 tend to zero asp, Llf-+ 0. From the continuity off, which we 
established, it follows that N-+ 0 asp-+ 0. From (14.2) it is clear that 

N f(x + p) - f(x) 

p p 

F, 1 (x, f)+ 8 1 (p, Llf) 
F, 2 (x, f) + 8 2 (p, Llf) · 

Since the right side tends to a limit as p -+ 0, we see that 

f'(x) = 
F, 1(x, f) 

F,2(x, f)' 
(14.3) 

By hypothesis the right side of (14.3) is continuous, and so f' is also. D 



344 14. Implicit Function Theorems and Lagrange Multipliers 

SECOND PROOF OF PART (a). For fixed x in the rectangle R we consider the 
mapping 

T. F(x, y) 
xY = Y- F ( )' 

.2 Xo, Yo 

which takes a pointy in J into IR 1. We shall show that for hand k sufficiently 
small, the mapping takes J into J and has a fixed point. That is, there is a y 
such that T,.,y = y or, in other words, there is a y such that F(x, y) = 0. To 
accomplish this, we first write the mapping T,., in the more complicated form: 

~1(xo, Yo) 
T,.,y = Yo - F ( ) (x - x 0 ) 

.2 Xo, Yo 

1 
F ( )[F(x, y)- ~1(xo, YoHx- xo)- F,2(xo, YoHY- Yo)]. 

,2 Xo, Yo 

We define 

F 1(xo, Yo) c- -=':...::..-,--__:__'----"-:-
- ~2(xo, Yo>' 

1 
1/J(x, y) = ( ) [F(x, y) - F, 1 (x0 , y0 )(x - Xo) 

F,2 Xo, Yo 

- ~2(xo, YoHY- Yo)]. 

Then the mapping TxY can be written 

TxY = Yo - c(x - Xo) - 1/J(x, y). 

Since F(x0 , y0 ) = 0, we see that 

1/1.1 (xo, Yo) = 0, 

Because 1/1, 1 and 1/1. 2 are continuous we can take k so small that 

ll/l.2(x, y)l :;;;; t, 
for (x, y) in the square S = {(x, y): lx- x 0 1:;;;; k, IY- Yo I:;;;; k}. We now ex
pand 1/J(x, y) in a Taylor series in S about the point (x0 , y0 ) getting 

1/J(x, y) = 1/1.1(~, 17)(x- Xo) + 1/1.2(~, '1HY- Yo), 

Hence for h :;;;; k, we have the estimate in the rectangle R: 

11/J(x, y)l :;;;; !h + tk. 

(~, 17) E S. 

Next we show that if we reduce h sufficiently, the mapping T,., takes the interval 
(space) J into J. We have 

I T,.,y- Yo I :;;;; lc(x- Xo)l + 11/J(x, y)l 

:;;;; lclh + !h + !k = (! + lcl)h + tk. 

We choose h so small that(!+ lcl)h :;;;; k. Then T,.,y maps J into J for each x 
in I= {x: lx- x 0 1:;;;; h}. The mapping T,., is a contraction map; in fact, by the 
Mean-value theorem 
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We apply Theorem 13.2 and for each fixed x in I, there is a unique yin J such 
that F(x, y) = 0. That is, y is a function of x for (x, y) E R. D 

The Implicit function theorem has a number of generalizations and applica
tions. IfF is a function from IRN+1 to IR\ we may consider whether or not the 
relation F(x 1 , x 2 , ••• , xN, y) = 0 defines y as a function from IRN into IR 1• That 
is, we state conditions which show that y = f(x 1 , x 2 , ••• , xN). The proof of the 
following theorem is a straightforward extension of the proof of Theorem 14.1 
and we leave the details to the reader. 

Theorem 14.2. Suppose that F, F, 1 , F, 2 , ... , F,N+l are continuous on an open set 
A in IRN+ 1 containing the point P(x~, x~, ... , x~, y0 ). We use the notation 
x = (x 1, x 2 , ••• , xN), x 0 = (x~, x~, ... , x~) and suppose that 

(a) Then there are positive numbers hand k which determine a cell R contained 
in A given by 

R = {(x, y): lxi- x?l < h, i = 1, 2, ... , N, IY- y0 l < k}, 

such that for each x in theN-dimensional hypercube 

IN={x:lxi-x?l<h, i=1,2, ... ,N} 

there is a unique number y in the interval 

J={y:ly-y0 l<k} 

which satisfies the equation F(x, y) = 0. That is, y is a function of x which 
may be written y = f(x). The domain off contains IN and its range is in J. 

(b) The function f and its partial derivatives f. 1 ,f. 2 , ••• ,JN are continuous on IN. 

A special case of Theorem 14.1 is the Inverse function theorem which was 
established in Chapter 4 (Theorems 4.17 and 4.18). Iff is a function from IR 1 

to IR 1 , denoted y = f(x), we wish to decide when it is true that x may be 
expressed as a function of y. Set 

F(x, y) = y - f(x) = 0 

and, in order to apply Theorem 14.1, f' must be continuous and F, 1 = 
-f'(x) =F 0. We state the result in the following Corollary to Theorem 14.1. 

Corollary (Inverse function theorem). Suppose that f is defined on an open set 
A in IR 1 with values in IR 1 . Also assume that f' is continuous on A and that 
f(x 0 ) = y0 , f'(x0 ) =F 0. Then there is an interval I containing Yo such that the 
inverse function off, denoted f- 1, exists on I and has a continuous derivative 
there. Furthermore, the derivative (f-1 )' is given by the formula 

f -1( ))' . 1 
( y = f'(x)' (14.4) 

where y = f(x). 
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Since f- 1(f(x)) = x, we can use the Chain rule to obtain (14.4). However, 
(14.4) is also a consequence of Formula (14.3), with F(x, y) = y- f(x), and we 
find 

-1 I F,2 1 
(f (y)) = - F,1 = - -f'(x)" 

Observe that in Theorems 4.17 and 4.18 the inverse mapping is one-to-one 
over the entire interval in which f' does not vanish. 

EXAMPLE 1. Given the relation 

F(x, y) = y3 + 2x2y - x4 + 2x + 4y = 0, (14.5) 

show that this relation defines y as a function of x for all values of x in lll 1• 

Solution. We have 
F, 2 = 3y2 + 2x2 + 4, 

and so F, 2 > 0 for all x, y. Hence for each fixed x, the function F is an increasing 
function of y. Furthermore, from (14.5) it follows that F(x, y)-+ -oo as y-+ 
-oo and F(x, y)-+ +oo as y-+ +oo. Since F is continuous, for each fixed x 
there is exactly one value of y such that F(x, y) = 0. Applying Theorem 14.1, 
we conclude that there is a function f on lll 1 which is continuous and differen
tiable such that F[x, f(x)] = 0 for all x. 0 

EXAMPLE 2. Given the relation 

F(x, y) = x3 + y3 - 6xy = 0, (14.6) 

find the values of x for which the relation defines y as a function of x (on some 
interval) and find the values of y for which the relation defines x as a function 
of y (on some interval). 

Solution. The graph ofthe relation is shown in Figure 14.3. We see that 

F, 1 = 3x2 - 6y, F, 2 = 3y2 - 6x, 

and both partial derivatives vanish at (0, 0). We also observe that F, 2 = 0 when 
x = ty2, and substituting this value into the relation (14.6) we get x = 2.y4, 
y = 2~. The curve has a vertical tangent at this point, denoted P in Figure 
14.3. Hence y is expressible as a function of x in a neighborhood of all points 
on the curve except P and the origin 0. Similarly F, 1 = 0 yields the point Q 
with coordinates (2.y2, 2.y4). Then x is expressible as a function of yin a 
neighborhood of all points except Q and the origin 0. 0 

PROBLEMS 

In each of Problems 1 through 4 show that the relation F(x, y) = 0 yields y 
as a function of x in an interval I about x0 where F(x0 , y0 ) = 0. Denote the 
function by f and compute f'. 
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y 

Figure 14.3 

1. F(x, y) = y3 + y - x2 = 0; (x0 , y0 ) = (0, 0). 

2. F(x, y) = x 213 + y213 - 4 = 0; (x 0 , Yo)= (1, 3J3). 
3. F(x, y) = xy + 2 In x + 3 In y - 1 = 0; (x0 , y0 ) = (1, 1). 

4. F(x, y) = sin x + 2 cosy - t = 0; (x0 , y0 ) = (n/6, 3n/2). 

5. Give an example of a relation F(x, y) = 0 such that F(x0 , y0 ) = 0 and 
F, 2 (x0 , y0 ) = 0 at a point 0 = (x0 , y0 ), and yet y is expressible as a function of x 
in an interval about x 0 • 

In each of Problems 6 through 9 show that the relation F(x1, x 2 , y) = 0 yields 
y as a function of (x 1 , x2 ) in a neighborhood of the given point P(x~, xg, y0 ). 

Denoting this function by f, compute f. 1 and f. 2 at P. 

6. F(x 1 , x 2 , y) =xi+ x~ + y3 - 3x1 x 2y- 4 = 0; P(x?, x~, y0 ) = (1, 1, 2). 

7. F(x 1 , x 2 , y) = eY- y2 - xi- x~ = 0; P(x?, x~, y0 ) = (1, 0, 0). 

8. F(x 1 , x 2 , y) = x 1 + x 2 - y- cos(x 1x 2 y) = 0; P(x?, x~, y0 ) = (0, 0, -1). 

9. F(x 1 , x 2 , y) = x1 + x 2 + y- e"'"2Y = 0; P(x~, x~, y0 ) = (0, t, t). 
10. Prove Theorem 14.2. 

11. Suppose that F is a function from IR2 to IR 1 which we write y = F(x1 , x2 ). State 
hypotheses on F which imply that x 2 may be expressed as a function of x 1 andy 
(extension of the Inverse function theorem). Use Theorem 14.2. 
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12. Suppose that F(x, y, z) = 0 is such that the functions z = f(x, y), x = g(y, z), and 
y = h(z, x) all exist by the Implicit function theorem. Show that 

f.1·g,1·h,1 = -1. 

This formula is frequently written 

oz . ox. oy = -1. 
ox oy oz 

13. Find an example of a relation F(x1 , x 2 , y) = 0 and a point P(x?, xg, y0 ) such that 
P satisfies the relation, and F, 1(x?, xg, y0 ) = F, 2 (x~, xg, y0 ) = F, 3 (x~, xg, y0 ) = 0, 
yet y is a function of(xt. x 2 ) in a neighborhood of P. 

14. Suppose that the Implicit function theorem applies to F(x, y) = 0 so that y = f(x). 
Find a formula for f" in terms ofF and its partial derivatives. 

15. Suppose that the Implicit function theorem applies to F(x1 , x2 , y) = 0 so that 
y = f(x 1 , x 2 ). Find formulas for !, 1, 1 ; !, 1, 2 ; !, 2 , 2 in terms ofF and its partial 
derivatives. 

14.2. The Implicit Function Theorem for Systems 

We shall establish an extension of the Implicit function theorem of Section 
14.1 to systems of equations which define functions implicitly. A vector x in 
!Rm has components denoted (x1, x 2 , ••• , xm) and a vector yin !Rn will have its 
components denoted by (y1 , y2 , ... , Yn). An element in !Rm+n will be written 
(x, y). We consider vector functions from !Rm+n to !Rn and write F(x, y) for such 
a function. That is, F will have components 

F 2 (x, y), ... , P(x, y) 

with each pi a function from !Rm+n to IR 1. 

In order to establish the Implicit function theorem for systems we need 
several facts from linear algebra and a number of useful inequalities. We 
suppose the reader is familiar with the elements of linear algebra and in the 
next three lemmas we establish the needed inequalities. 

Definition. Let A be an m x n matrix with elements 

The norm of A, written I AI, is defined by 

IAI = L~ i~ (aj)2 J'2• 

Observe that for a vector, i.e., a 1 x n matrix, the norm is the Euclidean length 
of the vector. 
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Lemma 14.1. Let A be an m X n matrix, and suppose that ' = w' C2, ..• ' en) 
is a column vector (that is, an n x 1 matrix) with n components and that 

11 = (1'/1, 11 2, ••• , 1'/m) is a column vector with m components such that 

or equivalently 

i = 1, 2, ... , m. (14.7) 

Then 
(14.8) 

PROOF. For fixed i in (14.7) we square both sides and apply the Schwarz 
inequality (Section 6.1 ), getting 

Then (14.8) follows by summing on i and taking the square root. 0 

The next lemma shows that with the above norm for matrices (and vectors) 
we can obtain an inequality for the estimation of integrals which resembles 
the customary one for absolute values. 

Lemma 14.2. Let b: !Rm---+ !Rn be a continuous vector function on a bounded, 

closed figure H in !Rm. Suppose that C is the n x 1 column vector defined by 

C = L bdVm. 

That is, 

i = 1, 2, ... , n, 

where bi: !Rm---. IR 1, i = 1, 2, ... , n are the components of b. Then 

We apply Lemma 14.1 and note that since IA.I = 1 we obtain 

1(1 ~ L IA.IIbl dVm = L lbl dVm. 0 
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Definitions. Let G be an open set in !Rm+n and suppose that F: G --+ IR" is a 
vector function F(x, y) with continuous first partial derivatives. We define the 
n x m and then x n matrices VxF and VyF by the formulas 

_!__pt 
axl 

_!__pl 
axm 

_!__pl 
ayl 

~Ft 
ay" 

VxF= VyF = 

_!_pn 
axl 

_!_pn 
axm 

_!_pn 
ayl 

~F" 
ay" 

The Fixed point theorem of Chapter 13 will be used to establish the Implicit 
function theorem for systems. We note that in proving this theorem for a single 
equation we made essential use of the Mean-value theorem. The next lemma 
provides an appropriate generalization to systems of the Mean-value theorem. 

Lemma 14.3. Let G be an open set in !Rm+n and F: G --+ IR" a vector function 
with continuous first partial derivatives. Suppose that the straight line segment 
L joining (.X, y) and (x, y) isinG and that there are two positive constants M1 , 

M 2 such that 

IVxFI ~ M 1 and IVyFI ~ M2 

for all points (x, y) on the segment L. Then 

IF(x, y)- F(x, .Y)I ~ M1 ·lx- xl + M2 ·ly- .YI-

PROOF. Any point on the segment joining (x, y) to (x, y) has coordinates 
(x + t(x- x), y + t(y- y)) for 0 ~ t ~ 1. We define the vector function 

f(t) = F(x + t(x - x), .v + t(y - .vn 
and use the simple fact that 

f(1)- f(O) = Il f'(t) dt. 

Since f(1) = F(x, y), f(O) = F(x, y), it follows that 

F(x, y) - F(x, .Y) = f :t F(x + t(x- x), .v + t(y- .Y)) dt. 

Carrying out the differentiation with respect to t, and using the Chain rule, 
we find for each component Fi, 

I1 { ~ a . _ f a . _ } 
= ~ ~(F')(xi- xi)+ ~ ~(F')(.Yk- .Yd dt. 

0 j=l uxi k=l uyk 
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In matrix notation we write 

F(x, n - F(x, .Y) = t [VJ · (x - x) + vyF · Cv - .Y)J dt. 

From Lemma 14.2, it is clear that 

IF(x, y)- F(x, .Y)I ~ t [IVJI·Ix- xl + IVyFI·Iy- .YIJ dt 

~ M1 ·lx- xl + M2 ·I.Y- H 
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D 

For later use we next prove a simple proposition on nonsingular linear 
transformations. 

Lemma 14.4. Let B be an n x n matrix and suppose that IBI < 1. Define 
A = I - B where I is the n x n identity matrix. Then A is nonsingular. 

PROOF. Consider the mapping from IR" to IR" given by y =Ax, where x E IR", 
y E IR". We show that the mapping is 1-1 thereby implying that A is non
singular. Let x1, x 2 E IR"; we have 

and 

Therefore 

IAxl- Ax2l;;,: lx1- x2l -IBxl- Bx2l;;,: lx1- x2l -IBI·Ixl- x2l 

;;,: lx1- x21(1 -IBI). 

We conclude that if x1 =F x 2 then Ax1 =F Ax2 and so the mapping is 
one-to-one. D 

The next lemma, a special case of the Implicit function theorem for systems, 
contains the principal ingredients for the proof of the main theorem. We 
establish the result for functions F: IRm+n -+ IR" which have the form 

F(x, y) = y - Cx - 1/J(x, y) 

where C is a constant n x m matrix and t/1 is such that it and its first partial 
derivatives vanish at the origin. Note the relation of this form ofF with the 
second proof of the Implicit Function theorem for a single equation given in 
Theorem 14.1. Although the proof is lengthy, the reader will see that with the 
aid of the fixed point theorem of Chapter 13 and Lemma 14.3 the arguments 
proceed in a straightforward manner. 

Lemma 14.5. Let G be an open set in !Rm+n which contains the origin. Suppose 
that t/1: G -+ IR" is a continuous function with continuous first partial derivatives 
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in G and that 

t/1(0, 0) = 0, Vxt/1(0, 0) = 0, Vyt/1(0, 0) = 0. (14.9) 

Suppose that C is a constant n x m matrix, and define the function F: G -+ IR" 
by the formula 

F(x, y) = y - Cx - t/J(x, y). 

For any positive numbers rands, denoted by Bm(O, r) and B"(O, s) the balls in 
IRm and IR" with center at the origin and radii r and s, respectively. Then 

(a) There are (sufficiently small) positive numbers h and k with Bm(O, h) x 
Bn(O, k) in G and such that for each x E Bm(O, h) there is a unique element 
y E Bn(O, k) whereby 

F(x, y) = 0 or, equivalently, y = Cx + t/J(x, y). 

(b) If g denotes the function from Bm(O, h) to B"(O, k) given by these ordered 
pairs (x, y), then g is continuous on Bm(O, h) and all first partial derivatives 
of g are continuous on Bm(O, h). 

PROOF 

(a) Since G is open and t/1 is continuous on G, there is a positive number k 
such that the closed set B = Bm(O, k) x Bn(O, k) is contained in G with t/1 
continuous on B. Also, because of(14.9) and the fact that the partial derivatives 
of t/1 are continuous, k can be chosen so small that 

We fix x in Bm(O, k) and define the mapping T from B"(O, k) into IR" by the 
formula 1 

T(y) = Cx + t/J(x, y). (14.10) 

We apply Lemma 14.3 to t/J(x, y), getting for x E Bm(O, k), y E Bn(O, k) 

lt/J(x, y)l = lt/l(x, y)- t/1(0, 0)1 ~ maxiVxt/JI·Ix- 01 + maxiVyt/ll·ly- 01 

~ 11xl + 11yl. 

Therefore, for x E Bm(O, k), y E Bn(O, k) it follows that 

I T(y)l ~ I Cl·lxl + 11xl + 11YI· (14.11) 

Since C is a constant matrix there is a positive number M such that I Cl ~ M. 
Now choose a positive number h which satisfies the inequality h < k/(2M + 1). 
The mapping (14.10) will be restricted to those values of x in the ball Bm(O, h). 
Then, from (14.10), for each fixed x E Bm(O, h) andy E Bn(O, k) we have 

I T(y)l ~ (M + 1)h + 1k < 1k + 1k = k; 

1 In the second proof of Theorem 14.1 we denoted this mapping by TxY· 
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hence T maps Bn(O, k) into itself. Furthermore, for y 1 , y2 e Bn(O, k) we find 

I T(yl)- T(y2)l = ltfr(x, Y1)- tfr(x, Y2)l ~ tiY1- Y2i, 

where Lemma 14.3 is used for the last inequality. Thus the mapping T is 
a contraction and the Fixed point theorem of Chapter 13 (Theorem 13.2) 

can be applied. For each fixed x e Bm(O, k) there is a unique y e Bn(O, k) 
such that 

y = T(y) or y = Cx + tfr(x, y). 

That is, y is a function of x which we denote by g. Writing y = g(x), we 
observe that the equation F(x, g(x)) = 0 holds for all x e Bm(O, h). 

(b) We show that g is continuous. Let x 1, x2 e Bm(O, h) and y1 , y2 e Bn(O, k) 
be such that Y1 = g(x1), y2 = g(x2) or 

Y1 = Cx1 + tfr(xl, Y1) and Y2 = Cx2 + tfr(x2, Y2). 

Then 

We use Lemma 14.3 for the last term on the right, getting 

or 

Hence 
lg(x2)- g(x1)l ~(2M+ 1)1x2- x 1l, 

and g is continuous on Bm(O, h). 
We now show that the first partial derivatives of g exist and are continuous. 

Let the components of g be denoted by g1, g2, ••• , gn. We shall prove the result 
for a typical partial derivative (ojoxp)g; where 1 ~ p ~ m. In !Rm let eP denote 
the unit vector in the p-direction. That is, eP has components (ef, e~, ... , e!) 
where e& = 1 and ef = 0 for j -# p. Fix x in Bm(O, h) and choose a positive 
number t0 so small that the points x + teP lie in Bm(O, h) for all t such that 
It I~ t0. Now set x = x + teP and write 

g(x) = Cx + tfr(x, g(x)). 

The ith component of this equation reads 

m 

g;(x) = L cjxi + tfr;(x, g(x)) 
j=l 

where the cj are the components of the matrix C. Let l:lg; be defined by 

l:lg; = g;(x + teP) - g;(x). 

Then from the Fundamental lemma on differentiation (Theorem 7.2), it follows 
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that 
ag' a . 
- = c~ + !3 t/J'(x, g(x)) + e;(teP, llg) 

t ux, 

+ t [:.a t/J1(X, g(x)) + e:(teP, flg)J flg", 
k=l uyk t 

where e;(p, u) and e:(p, u) are continuous at (0, 0) and vanish there. Taking 
the definition of the vector eP into account, we can write the above expression 
in the form 

llg' m m a . m . 

-t- = j~ cJef + j~ axj 1/J'(x, g(x))ef + j~ ej(teP, llg)ef 

f [ a . -· Jag" + L.. !31/J'(X, g(x)) + e;(teP, flg) -
k=l uyk t 

(14.12) 

where ej(p, u), j = 1, 2, ... , m, are continuous at (0, 0) and vanish there. We 
define the matrices 

Al(t) = c + V,.t/J(x, g(x)) + e(teP, llg), 

A2(t) = V,t/J(x, g(x)) + e(teP, llg) 

where the components of e are ef and the components of e are =e;, i, k = 
1, 2, ... , n, j = 1, 2, ... , m. Then (14.12) can be written as the single vector 
equation 

(14.13) 

Define B = I - A2 where I is then x n unit matrix. Then (14.13) becomes 

Bllg = AleP. 
t 

(14.14) 

According to (14.9) we have IA2 (0)1 ::s::; !. Therefore, by Lemma 14.4 the matrix 
B(O) is nonsingular. Since g is continuous on .8,.(0, h), we know that llg -+ 0 
as t-+ 0. Therefore the matrices A1(t), A2(t), and B(t) are continuous at t = 0. 
Consequently B(t) is nonsingular fort sufficiently close to zero. We allow t to 
tend to zero in (14.14) and conclude that the limit of llgft exists; that is, 
(a;ax,)g 1 exists for every i and every p. The formula 

lim !lg = B-1(0)A1(0)eP 
t-+0 t 

shows that the partial derivatives are continuous functions of x. D 

Theorem 14.3 (Implicit function theorem for systems). Let G be an open set in 
!Rm+n containing the point (x, y). Suppose that F: G-+ !Rn is continuous and has 
continuous first partial derivatives in G. Suppose that 

F(x, y) = 0 and det V,F(x, y) =1= 0. 
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Then positive numbers h and k can be chosen so that: (a) the direct product of 
the closed balls Bm(x, h) and Bn(.y, k) with centers at x, y and radii h and k, 
respectively, isinG; and (b) hand k are such that for each x e Bm(x, h) there is 
a unique y e Bn(Y, k) satisfying F(x, y) = 0. Iff is the function from Bm(x, h) to 
Bn(Y, k) defined by these ordered pairs (x, y), then F(x, f(x)) = 0; furthermore, 
f and all its first partial derivatives are continuous on Bm(x, h). 

PROOF. We define the matrices 

B = VyF(x, y), 

and write F in the form 

F(x, y) =A ·(x- x) + B·(y- y) + f/J(x, y), (14.15) 

where ¢J is defined 2 by Equation (14.15). It is clear that ¢J has the properties 

f/J(x, .Y) = o, Vyf/J(x, .Y) = o. 
By hypothesis, Bis anonsingularmatrix. Wemultiply(14.15) by B-1, getting 

B-1 F = B-1 A· (x - x) + (y - y) + B-1¢J(x, y). 

Now we may apply Lemma 14.5 with B-1 Fin place ofF in that lemma, x - x 
in place of x; also, y- yin place of y, - B-1 A in place of C, and B-1¢J in place 
of 1/J. It is simple to verify that all the hypotheses of the lemma are fulfilled. 
The theorem follows for B-1 F. Since B-1 is a constant nonsingular matrix, 
the result holds for F. D 

Remarks. The first partial derivatives of the implicitly defined function f 
may be found by a direct computation in terms of partial derivatives of F. To 
see this suppose that F has components F 1, F 2, ... , pn and that f has 
components f 1, f 2, ••• , fn. We write 

(14.16) 

where Y; = Ji(x1 , x 2 , ••• , xm). To find the partial derivatives of p, we take the 
derivative of pi with respect to xP in (14.16), getting (by the Chain rule) 

oF; n oF; ap 
-+ I--=o, 
oxp k=1 oyk oxp 

i = 1, 2, ... , n, p = 1, 2, ... , m. (14.17) 

Treating ofkjoxP (for fixed p) as a set of n unknowns, we see that the above 
equations form an algebraic system of n equations in n unknowns in which, 
by hypothesis, the determinant of the coefficients does not vanish at (x, y). 
Therefore by Cramer's rule the system can always be solved uniquely. 

2 In the second proof of Theorem 14.1, the function qJ is defined by: F: 2{x0 , y 0 )1/J(x, y). 
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EXAMPLE 1. Let F(x, y) be a function from IR4 to IR2 given by 

F 1(x1> x2 , Yt> Y2) =X~ -X~ - Y~ + Y~ + 4, 

F 2 (xl> x 2 , y1 , y2 ) = 2x1x2 + x~- 2y~ + 3y~ + 8. 

Let P(x, y) = (2, -1, 2, 1). It is clear that F(x, y) = 0. Verify that 
det VyF(x, y) ::#; 0 and find the first partial derivatives of the function y = f(x) 
defined implicitly by F at the point P. 

Solution. We have 

oF1 

~= -3y~. 
uyl 

At P, we find 

Also, 

oF1 

~=2x1 , 
ux1 

Substituting the partial derivatives evaluated at Pin (14.17) and solving the 
resulting systems of two equations in two unknowns first with p = 1 and then 
with p = 2, we get 

ap 13 
oxl - 32' 

7 
oxl = 16' 

EXAMPLE 2. Given F: IR 5 -+ IR3 defined according to the formulas 

F 1(x 1 , x 2 , y 1 , y2 , y3 ) = x~ + 2x~ - 3y~ + 4YtY2- y~ + y~, 
F2 (xl> x 2 , Yt> Jl, y3 ) = x1 + 3x2 - 4x1x2 + 4y~- 2y~ + y~, 
F 3 (x 1 , x 2 , y 1 , y2 , y3 ) =X~ -X~ + 4y~ + 2y2 - 3y~. 

D 

Assume that P(x, y) is a point where F(x, y) = 0 and VyF is nonsingular. 
Denoting the implicit function by J, determine oJifoxi at P. 

Solution. According to (14.17) a straightforward computation yields 

of 1 of2 of3 

( -6y1 + 4Y2h- + (4y1 - 2Y2h- + 3y~~ = -2xl> 
ux 1 ux1 ux1 

of 1 ap of3 

8y1-- 4y2 - + 2y3 - = 4x2 - 1, 
oxl oxl oxl 

We solve this linear system of three equations in three unknowns by Cramer's 
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rule and obtain expressions for of1/ox 1 , oj2jox1 , ojljox1 • To find the partial 
derivatives off with respect to x2 we repeat the entire procedure, obtaining 
a similar linear system which can be solved by Cramer's rule. We leave the 
details to the reader. D 

Definition. Let G be an open set in ~m and suppose that F: G--.. ~n is a given 
vector function. The function F is of class Ck on G, where k is a nonnegative 
integer if and only ifF and all its partial derivatives up to and including those 
of order k are continuous on G. 

The Inverse function theorem which is a Corollary to Theorem 14.1 has a 
natural generalization for vector functions. 

Theorem 14.4 (Inverse function theorem). Let G be an open set in ~m containing 
the point x. Suppose that f: G--.. ~m is a function of class C1 and that 

:v = f(x), det VJJ(x) =F 0. 

Then there are positive numbers hand k such that the ball Bm(x, k) isinG and 
for each y e Bm(Y, h) there is a unique point x e Bm(x, k) with f(x) = y. If g is 
defined to be the inverse function determined by the ordered pairs (y, x) with the 
domain of g consisting of Bm(Y, h) and range of gin Bm(x, k), then g is a function 
of class C1• Furthermore, f[g(y)] = y for y E Bm(Y, h). 

PRooF. This theorem is a corollary of Theorem 14.3 in which 

F(y, x) = y - f(x). D 

Remarks. The Inverse function theorem for functions of one variable 
(Corollary to Theorem 14.1) has the property that the function is one-to-one 
over the entire domain in which the derivative does not vanish. In Theorem 
14.4, the condition det V,J =F 0 does not guarantee that the inverse (vector) 
function will be one-to-one over its domain. To see this consider the function 
f: ~2 --.. ~2 given by 

f l _ x2 x2 
- 1- 2• (14.18) 

with domain the annular ring G = {(x1 , x2 ): r1 <(xi+ x~) 112 < r2 } where r1 , 

r2 are positive numbers. A computation shows that 

V,J = (2x1 -2x2 ) 

2x2 2x1 ' 

and so det V,J = 4(xi + x~), which is positive in G. However, setting y = f(x), 
we see from (14.18) that there are two distinct values of x for each value of y. 
The inverse relation is a function in a sufficiently small ball of G, but if one 
considers the entire ring G there are two distinct values of x = (x1 , x2 ) in G 
which correspond to a given value of y = (y1 , Jl). 
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PROBLEMS 

In each of Problems 1 through 4 a function F and a point P are given. Verify 
that the Implicit function theorem is applicable. Denoting the implicitly 
defined function by f, find the values of all the first partial derivatives off 
at P. 

1. F = (F1, F2 ), P = (0, 0, 0, 0) where F 1 = 2x1 - 3x2 + y1 - y2 , and F2 = 
X1 + 2xz + Y1 + 2yz. 

2. F = (F\ F2 ), P = (0, 0, 0, 0) where F 1 = 2x1 - x 2 + 2y1 - y2 , and F2 = 
3x1 + 2x2 + Yt + Yz· 

3. F = (F1, F2 ), P = (3, -1, 2, 1) where F 1 = x 1 - 2x2 + y1 + y2 - 8, and F2 = 
xf - 2x~ - yf + y~ - 4. 

4. F = (F\ F2 ), P = (2, 1, -1, 2) where F 1 = xf - x~ + y1 y2 - y~ + 3, and F2 = 
X1 + x~ + YI + YtYz - 2. 

5. Suppose that x = (x1 , x2 ), y = (y1 , y2 ) and F: IR4 -> IR2 are such that F(x, y) = 0 
and the Implicit function theorem is applicable for all (x, y). Denoting the implicitly 
defined function by f, find a formula in terms of the first partial derivatives ofF 

for iJf 1jiJxl, iJf 1/0Xz, iJjljiJxl, iJf 2/0Xz. 

6. Suppose that F(x, y) = 0 where x = (x 1 , ... , xm) and y = (y1 , y2 ) and that the 
Implicit function theorem is applicable. Denoting the implicitly defined function 
by f, find iJfifiJxi, i = 1, 2, j = 1, 2, ... , m, in terms of the partial derivatives of F. 

7. Complete Example 2. 

8. Given F = (F\ F2 ) where F: IR2 -> IR2 and F 1 = e2x+y, F2 = (4x2 + 4xy + y2 + 
6x + 3y)2' 3 • Show that there is no value ofx for which the Implicit function theorem 
is applicable. Find a r~ation between F 1 and F 2• 

In each of Problems 9 through 12 a vector function/: IR 2 -+ IR 2 is given. Verify 
that the Inverse function theorem is applicable and find the inverse function g. 

10. y1 = 2x1 - 3x2 , y2 = x1 + 2x2 • 

11. y1 = xtf(1 + x 1 + x2 ), y2 = x2 /(1 + x 1 + x2 ), x1 + x 2 > -1. 

12. y1 = x1 cos(nx2 /2), y2 = x 1 sin(nx2 /2), x 1 > 0, -1 < x 2 < 1. 

13. Given the function f: IR 3 -> IR3 where f 1 = ex2 cos x1 , f 2 = ex2 sin x 1 , and f 3 = 
2- cos x3 . Find the points P(x 1 , x2 , x3 ) where the Inverse function theorem 
holds. 

14. Given the function f: IR 2 -> IR2 and suppose that the Inverse function theorem 
applies. We write x = g(y) for the inverse function. Find formulas for iJgijiJyi, 
i, j = 1, 2 in terms of partial derivatives of f 1 and p. Also find a formula for 
8291 ;ay~. 

15. Given F: IR4 -> IR2 and suppose that F(x, y) = 0 for all x = (x 1 , x2 ) and y = 
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(y 1 , y2 ). State conditions which guarantee that the equation 

oyl ox2 oy2 ox2 
--+--=0 
oxl oyl oxl oy2 

holds. 

14.3. Change of Variables in a Multiple Integral 

For functions of one variable, an integral ofthe form 

f f(x) dx 

can be transformed into 

f f[g(u)]g'(u) du 

by the "change of variable" x = g(u), dx = g'(u) du. Such transformations are 
useful in the actual evaluation of many integrals. The corresponding result for 
multiple integrals is more complicated and, in order to establish the appro
priate formula for such a change of variables, we employ several results in 
linear algebra. In this section we assume the reader is familiar with the basic 
facts concerning matrices and linear transformations. 

Definition. Let G be an open set in IRm and let f: G- IRm be a C1 function. 
That is,fhas componentsf\f2, ... ,fm andfi: G -IR 1 are C1 functions for 
i = 1, 2, ... , m. The Jacobian off is them x m matrix having the first partial 
derivative f.~ as the entry in the ith row and jth column, i, j = 1, 2, ... , m. We 
also use the terms Jacobian matrix and gradient, and we denote this matrix 
byVf 

In the next theorem we restate for vector functions the Fundamental lemma 
of differentiation (Part (a)) and the Chain rule (Part (b)). In Part (c) we give 
an extension to vector functions of Equation (14.4), the formula for the 
derivative of the inverse of a function. 

Theorem 14.5. Let G and G1 be open sets in IRm with x a point in G. Let f: G- G1 

be a C1 function and denote f = (f 1' j2' ... 'fm). 

(a) We have the formula (Fundamental Lemma of Differentiation) 

fi(x + h) - P(x) = VPCx)h + ei(h) 

m 

= I f.~hi + ei(h), i = 1, 2, ... , m, (14.19) 
j=l 
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where h = (h 1 , h2 , ••• , hm) and e(h) = (e1 (h), ... , em( h)) are vectors, and 
lim1h1-o e;(h)/lhl = 0. 

(b) Let g: G1 -+ !Rm be of class C1 and define F(x) = g[f(x)] for x E G. Then 
we have the Chain Rule: 

VF(x) = Vg[f(x)] · Vf(x). (14.20) 

(c) Suppose that f is one-to-one with det Vf(x) # 0 on G. Then the image 
f( G) = G0 is open and the inverse function g 1 = f-1 is one-to-one on G0 and 
of class C1 . Furthermore, 

Vg 1 [f(x)] = [Vf(x)]-1 with det([Vf(x)]-1 ) # 0 for x E G (14.21) 

or 

PROOF 

(a) Formula (14.19) follows directly from the Fundamental lemma of dif
ferentiation for functions in !Rm as given in Theorem 7.2. 

(b) Formula (14.20) is a consequence ofthe Chain rule for partial derivatives 
as stated in Theorem 7.3. Each component ofVF may be written (according 
to Theorem 7.3) 

m 

F,;j(x) = L g:k[f(x)] · !,~(x), 
j=1 

which is (14.20) precisely. 
(c) Since f is one-to-one, it is clear that f- 1 is a function. Let y E G0 where 

G0 is the image of G and suppose f(x) = y. From the Inverse function theorem, 
which is applicable since Vf(x) # 0, there are positive numbers h and k such 
that the ball B(x, k) is in G and also such that for each y E B(y, h) there is a 
unique x E B(x, k) with the property that f(x) = y. We define g 1 (y) to be the 
function given by the pairs (y, x). Then g1 is of class C1 on B(y, h) and the 
domain of g 1 contains B(y, h). Hence for each yin G0 , there is a ball with y 
as center which is also in G0 . We conclude that G0 is open. Formula (14.21) 
follows from (14.20) and the Inverse function theorem. D 

In establishing the change of variables formula we shall see that an essential 
step in the proof is the reduction of any C1 function f into the composition 
of a sequence of functions which have a somewhat simpler character. This 
process can be carried out whenever the Jacobian off does not vanish. 

Definition. Let (i1 , i2 , ••• , im) be a permutation of the numbers (1, 2, ... , m). 
A linear transformation r from !Rm into !Rm is simple if r has the form 

The next lemma is an immediate consequence of the above definition. 
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Lemma 14.6. The product of simple transformations is simple and the inverse 
of a simple transformation is simple. 

If / 1 and / 2 are functions on !Rm to !Rm such that the range of / 2 is in the 
domain of / 1, we use the notation / 1 o / 2 for the composition / 1 [f2(x)] of the 
two functions. 

The next lemma gives the precise reduction of a function on !Rm as the 
composition of functions each of which has an essentially simpler character. 

Lemma 14.7. Let G be an open set in !Rm, x E G, and let f: G--+ !Rm be a C1 

function with det Vf(x) =F 0. Then there is an open subset G1 of G containing x 
such that f can be written on G1 as the composition of m + 1 functions 

f =g og o· .. og m+1 m 1· (14.22) 

The first m functions g1, g2 , .•• , gm are each defined on an open set G; in !Rm 
with range on an open set in !Rm such that g;: G; --+ Gi+1, i = 1, 2, ... , m. Moreover, 
the components (gf, gf, ... , g;") of g; have the form 

g{(x 1 , X 2 , ••• , Xm) =xi for j =F i and gf = <pi(x1, x 2 , ••• , xm). (14.23) 

The functions <pi are determined in terms off and have the property that <p,ii > 0 
on G;. The function gm+1 is simple. 

PRooF. Since all the components except one in the definition of g; given by 
(14.23) are coordinate functions, a straightforward computation shows that 
the determinant of the matrix Vg;, denoted det Vg;, is equal to <"P,ii· We shall 
establish that <"P,;; is positive and so these determinants will all be positive. 

Since the Jacobian Vf(x) is nonsingular, there is a linear transformation r 1 

such that r 1 of has the property that all the principal minors of the Jacobian 
V(r 1 of) are positive at x. Define fo = r 1 of and denote the components of fo 
by (/01, fl, ... , / 0m). Next define m functions h1 , h2 , ••• , hm as follows: 

h; has components (fcf,fl, ... ,f~, xi+1, X;+ 2 , ••• , xm) 

fori= 1, 2, ... , m- 1. We set hm = f 0 . Since all the principal minors of V/0 

are positive, it is not difficult to see that each Vh;(x) is nonsingular and, in 
fact, det Vh;(x) > 0 for each i. According to Part (c) of Theorem 14.5 and the 
manner in which the h; are defined, for each i there is an open set H; on which 
det Vh;(x) > 0. Also, h; is one-to-one from H; onto an open set. Define 

G1 = H 1 n H2 n · · · n Hm. 

Now, define sets G2 , G3 , ••• , Gm+1 as follows: 

i = 1, 2, ... , m. 

Henceforth we restrict the domain of h1 , ... , hm to be G1 without relabeling 
the functions. Define 

i = 2, 3, ... , m. (14.24) 
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To define 9m+l consider the function inverse to t1o denoted t-1 which, like t 1 

is a linear function. Define 

9m+1 = t-1 restricted to Gm+l· 

We observe that each function g1 is a one-to-one mapping from G1 onto G1+1 , 

and that det Vgi(x) =I= 0 on G1• Also, 

9m+1 o 9m o • • • o 92 o 91 = 't"-1 ohm o h;;,:1 o hm-1 o h;;,:2 o • • • o h2 o h11 o h1 

= 't"-1 ohm 

=t-1or1of=f, 

and so (14.22) holds. 
Once we show that each function g1 has the form given by (14.23) the proof 

will be complete. Since 

91 = h1 = (fo\ x2, ... ' xm) 

it is clear that g1 has the proper form. Now g2 = h2 o h11 and since h11 = 
(fo-1,X2, ..• , Xm), h2 = (fl,fo2, X3, ... , Xm), We See that 

92 = (x1, fo2• x3, ... ' xm>· 

The argument for each g1 is similar. Since all the principal minors of Vf0 are 
positive, we know that fJ. 1 > 0 and, from the way we selected the vectors h1 

and g1 we conclude that (/J,ii = fJ. 1 > 0. D 

In Lemma 14.7 we express an arbitrary C1 function f as the composition 
of functions each of which is the identity in all components except one (plus 
a simple function). The one component which is not the identity, for example 
the ith, has the property that its partial derivative with respect to xi is positive 
on G1• 

The next step (Lemma 14.9) establishes the change of variables formula for 
a typical function which appears in such a decomposition. 

Lemma 14.8. Let G be a set in ~m and qJ: G--+ ~1 a bounded function such 
that i({J(x)- ({J(Y)I ~ e for all x, y e G. Define m = inf{qJ(x): x e G} and M = 
sup{ qJ(x): x e G}. Then 

M-m~e. 

The proof is left to the reader. 

Lemma 14.9. Let G be an open set in ~m and suppose that f: G --+ ~m is a one-to
one function of class C1• We denote the components off by (ul, u2, ... , um) and 
let k be a fixed integer between 1 and m. Suppose the u1 have the form 

u1(x1 , x2, ... , xm) =xi, the ith coordinate in ~m fori =I= k, 

uk = fk(x) with f.~(x) > 0 on G. 
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(a) IfF is a figure with F c G, then the set f(F) is a figure in Rm. 
(b) Denote f(G) by G1 and let K: G1 -+ R1 be uniformly continuous on G1 • Then 

the change of variables formula holds: 

r K[f(x)] IJ(x)l dVm = f K(u) dVm, where J(x) = det Vf(x). (14.25) JF /(F) 

PRooF 
(a) Let R be a closed cell in G with ai ~ xi ~ bi> i = 1, 2, ... , m (see Section 

8.1). Then the setS= f(R) is given by 

and 

We now employ the Corollary to Theorem 8.13 to conclude not only that S 
is a figure in Rm but that its volume, denoted V(S) = V[f(R)], is given by 

- fk(x 1 , ... , Xt-l• ak, xk+1 , .. • , xm)] dx 1 ... dxk_1dxk+ 1 ... dxm. 

The symbols a;,, bi mean that the integration with respect to each variable xi 
is between the limits ai and bi. Since the integrand above can be written as 

we find 

V(S) = L f.~(x) dVm, 

where dVm is the usual element of volume in Rm. From the way we defined f, 
a simple computation shows that IJ(x)l = f.~(x), and we conclude that 

V[f(R)] = L IJ(x)l dVm. 

Part (a) is now established when F is a cell. Next, let F be any figure such that 
F c G. For any positive integer n we may cover F with hypercubes of side 
2-", denoting by Fn- the collection ofinner hypercubes and by Fn+ the collection 
of inner and boundary hypercubes. From the Lebesgue lemma (Theorem 3.16 
and Theorem 6.27) which is valid in Rm it follows that there is a positive 
number p such that all members of Fn+ are entirely in G and, in fact are at least 
at distance p from the boundary of G. Since no two hypercubes of Fn+ have 
interior points in common, it follows that 

V[f(Fn+)] = f IJ(x)l dV, 
Fri 
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and a similar formula holds for Fn-. Denoting the inner and outer volume of 
f(F) by v- [f(F)] and v+ [f(F)], respectively, we find 

L;; IJ(x)l dV = V[f(Fn-n ~ v-[f(F)] 

~ v+[f(F)] ~ V[f(Fn+)] 

= ( IJ(x)l dV. 
JFri 

(14.26) 

Since f is of class C1, the function IJ(x)l is uniformly continuous on Fn+ for all 
sufficiently large n and hence bounded by a constant which we denote by M. 
Therefore, 

L.i-F IJ(x)l dV ~ MV(Fn+ - F). 

Since F is a figure, we let n -+ oo and these integrals tend to zero. Employing 
this fact in (14.26) we conclude that v- [f(F)] = v+ [f(F)], and so f(F) is a 
figure. Moreover, 

V[f(F)] = L IJ(x)l dV, 

that is, in addition to Part (a) we showed that Formula (14.25) holds in the 
special case K(x) = 1. 

(b) Let F be a figure such that F c G. Since f and IJI are continuous on F, 
a closed bounded set, they are uniformly continuous on F. Since, by hypo
thesis, K[f(x)] is uniformly continuous on G1 , we see that the function 
K[f(x)] ·IJ(x)l is uniformly continuous on F and hence integrable on F. We 
shall establish Formula (14.25) by approximating each of the integrals in 
(14.25) by a Riemann sum and then by showing that the two Riemann sums 
are arbitrarily close if the subdivision is sufficiently fine. Let 6 > 0 be given, 
and let A: {F1 , F2 , ••• , Fn} be a subdivision of F. Choose e1 e F1, i = 1, 2, ... , 
n. Then 

I 
1
t K[f(ei)] IJ(ei)l Vm(J'i)- L K[f(x)] IJ(x)l dVml < j-. (14.27) 

if the mesh II All is sufficiently small, say less than some number~- Similarly, 
if A1 : {F~, F2, ... , F~} is a subdivision of f(F) with 11.11 11 < 11 and withe; e F;, 
i = 1, 2, ... , n, then for sufficiently small ,, it follows that 

It K(e;)Vm(F;)- f K(u) dVml < -3
6

• 
•=1 /(F) 

(14.28) 

Let M = sup,ef(F) IK(u)l. Because of the uniform continuity off and IJI, we 
may choose~ so small that for all x', x" e F with lx'- x"l <~.we have 

lf(x') - f(x")l < 11 and IIJ(x')l - IJ(x")ll < JM;m(F) (14.29) 
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We now assume() is chosen in this way and that() is made smaller, if necessary, 
so that (14.27) holds. Select ~; = f(~i) and F[ = f(Fi), i = 1, 2, ... , n. Then 
L\1 : {F~, ... , F~} is a subdivision off(F), and from the first inequality in (14.29), 
we have IIL\ 1 11 < 'I· Thus (14.28) holds. Next denote by m; and M; the infimum 
and supremum of IJ(x)l on F;, respectively. Then from the proof of Part (a) 
and the Mean-value theorem for integrals, it follows that 

Vm(F[) = f IJ(x)l dVm = 11;1 Vm(Fi), JFl (14.30) 

whereiJilisanumbersuch thatm; :s;; IJ;I :s;; Mi. Wealsohavem; :s;; IJ(~i)l :s;; M; 
and so, by Lemma 14.8 and the second inequality in (14.29), we find 

We wish to estimate the difference of the Riemann sums 

I i~ K(~;} Vm(F[} - i~ K[f(~;)] IJ(~;)I Vm(Fi) I· 
Using (14.30) and the fact that~;= f(~i), we obtain for (14.32) 

I i~ K(W [IJ;I - IJ(~;)IJ Vm(Fi) I· 
Inserting (14.31) into this expression, we find that 

Combining (14.27), (14.28), and (14.33), we conclude that 

I r K[f(x)] IJ(x)l dVm- f K(u) dVml <B. 
JF /(F) 

Since B is arbitrary Formula (14.25) holds. 

(14.31) 

(14.32) 

(14.33) 

0 

Lemma 14.10.Supposethatf: G-+ G1 is simple. Then the conclusions of Lemma 
14.9 hold. 

PRooF. Iff is simple the image of any cell in G is a cell in G1 (perhaps with 
the sides arranged in a different order). Also, for f simple, we have IJ(x)l = 1, 
and lf(x')- f(x")l = lx'- x"l for any two points x', x" e G. The remaining 
details may be filled in by the reader. 0 

In Lemma 14.7 we showed how to express a function f as the composition 
of essentially simplerfunctions g1 , g2 , •• • , 9m· Then, in Lemmas 14.9 and 14.10 
we established the change of variables formula for these simpler functions. 
Now we show that the change of variables formula, (14.25), holds in general. 
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Theorem 14.6 (Change of variables formula). Let G be an open set in ~m and 
suppose that f: G-+ ~m is one-to-one and of class C1 with det Vf(x) # 0 on G. 
Let F be a closed bounded figure contained in G. Suppose that K: f(F)-+ ~1 is 
continuous on f(F). Then f(F) is a figure, K[f(x)] is continuous on F, and 

f K(u) dVm = f K[f(x)] ·IJ(x)l dVm, where J(x) = det Vf(x). (14.34) 
/(F) F 

PRooF. Let x0 be any point of G. Then, according to Lemma 14.7, there 
is an open set G1 with x0 e G1, G1 c G, and such that on G1 we have 
f = 9m+1 o 9m o · · · o g1 with the g1 satisfying all the conditions of Lemma 14.7. 
In Lemmas 14.9 and 14.10, we established the change of variables formula for 
each g1• 

Let F be a closed bounded figure in G1 and suppose K is continuous on 
f(F). The set f(F) is given by 

f(F) = 9m+l 0 9m 0 ''' 0 91(F). 

Applying Lemma 14.10 to the simple mapping 9m+1, we see that the set 
9m o 9m-1 o · · · o g1(F) is a figure. Define the function 

K 1(u) = K[gm+1(u)] ·idet Vgm+1(u)i. 

Then K 1 is continuous on gm o 9m-1 o · · · o g1(F) and 

f K(u) dVm = f K(u) dVm 
/(F) 9m+lo .. ·ogl(F) 

Next apply Lemma 14.9 to the mapping 9m· We define 

K 2 (u) = K 1 [gm(u)] ·ldet Vgm(u)l, 

(14.35) 

and we observe that 9m-1 o 9m-l o .. • o g1(F) is a figure with K 2 continuous 
on this set. Therefore from Lemma 14.9, we have 

f K(u) dVm = f K1(u) dVm = f K2(u) dVm. 
/(F) 9m0"•ogl(F) 9m-IO"·ogl(F) 

By substitution, we find 

K 2(u) = K 1 [gm(u)] ·idet Vgm(u)i 

= K[gm+l (gm(u))] ·idet Vgm+l [gm(u)]l·ldet Vgm(u)l. 

Set h2(u) = 9m+1 o gm(u) and then the above formula becomes 

K2(u) = K[h2(u)] ·ldet Vh2(u)l, 

where the Chain rule and the formula for the product of determinants have 
been used. We continue this process bydefininghp(u) = 9m+l o 9m o .. · o 9m-p+l• 
p = 2, 3, ... , m + 1, and Kp(u) = K[hp(u)]"idet Vhp(u)i. We arrive at the 
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formula 

I K(u) dVm = I K[hm(u)] ·ldet Vhm(u)l dVm 
9m+lo···og,(F) g,(F) 

= L K[hm+l(u)] ·ldet Vhm+ 1(u)l dVm 

= L K[f(u)] ·ldet Vf(u)l dVm, 

which is the desired result for a figure Fin G1 . 

To complete the proof, let F be any closed bounded figure in G and suppose 
that K is continuous on F. From the Lebesgue lemma (Theorems 3.16 and 
6.27), there is a number p such that any ball B(x, p) with center at a point 
ofF lies in some open set G1 • We subdivide F into a finite number of figures 
F1 , F2 , ••• ,F. such that each F; is contained in a single ball B(x, p). For 
i = 1, 2, ... , s, we have 

I K(u) dVm = I K[f(v)] ldet Vf(v)l dVm. 
/(F) F, 

The formula (14.34) 'follows by addition on i. 0 

EXAMPLE. Evaluate JF x1 dV2 (x) where F is the region bounded by the curves 
x 1 = -x~, x 1 = 2x2 - x~, and x 1 = 2- 2x2 - x~ (see Figure 14.4(a)). Intro
duce new variables (u 1 , u2 ) by 

f: x1 = u1 - !(u1 + u2 ) 2 , 

and use Theorem 14.6. 

(14.36) 

Solution. Figure 14.4 shows G, the image ofF in the (u 1 , u2 )-plane. Solving 
(14.36) for u1 , u2 in terms of x 1 , x2 , we get 

Xt = 2 - 2xz - x~ 
(a) (b) 

Figure 14.4. Changing variables from (x 1, x 2 ) to (u 1 , u2 ). 
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and so f is a one-to-one transformation of IR2 onto itself. The equations of the 
bounding curves of G are 

u1 = 0, 

The Jacobian off is 

det Vf = ~~- t(ul + u2) 

Therefore 

L X1 dV2(x) = L [ u1 - ~(u1 + u2)2 J · ~ dV2(u) 

D 

PROBLEMS 

In each of Problems 1 through 6 evaluate fF K(x1, x2 ) dV2 (x), where F is 
bounded by the curves whose equations are given. Perform the integration by 
introducing variables u1 , u2 as indicated. Draw a graph ofF and the corre
sponding region in the u1 , u2-plane. Find the inverse of each transformation. 

1. K(x 1, x2) = x1 x2. F is bounded by x2 = 3x1 , x1 = 3x2, and x1 + x 2 = 4. Map
ping: x1 = 3u1 + u2, x2 = u1 + 3u2. 

2. K(x1, x2) = x1 - x~. F is bounded by x2 = 2, x1 = x~ - x2, x1 = 2x2 + x~. Map
ping: x1 = 2u1 - u2 + (u1 + u2)2, x2 = u1 + u2. 

3. K(x1, x2) = x2.Fis bounded by x1 + x2 - x~ = 0,2x1 + x2 - 2x~ = 1,x1 - x~ = 
0. Mapping: x1 = u1 + (u2 - ud2, x2 = u2. 

4. K(x 1, x 2) =(xi+ x~r3 . F is bounded by xi + x~ = 2x1 , xi + x~ = 4x1 , xi+ 
X~= 2x2, xi+ X~= 6x2. Mapping: X1 = uif(ui + un, X2 = U2j(ui + un. 

5. K(x 1, x 2) = 4x1x2. F is bounded by x1 = x 2, x1 = -x2, (x 1 + x2f + x1 - x2 -
1 = 0. Mapping: x1 = t(u1 + u2), x2 = t( -u1 + u2). Assume x1 + x2 > 0. 

6. K (x 1 , x 2) = xi + x~. F is the region in the first quadrant bounded by xi - x~ = 1, 
xi- x~ = 2, x1 x2 = 1, x1 x2 = 2. The inverse mapping is: u1 =xi- x~, u2 = 
2x1 x2. 

7. Prove Lemma 14.8. 

8. Complete the proof of Lemma 14.10. 

9. Evaluate the integral 

L x 3 dV3(x) 

by changing to spherical coordinates: xl = p cos <p sine, x2 = p sin <p sine, x3 = 
p cos e, where F is the region determined by the inequalities 0 ~ xi + X~ ~ X~, 
0 ~ xi + x~ + x~ ~ 1, x3 ~ 0. 
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10. Write a proof of the Fundamental Lemma of Differentiation for vector functions 
(Theorem 14.5, Part (a)). 

11. Show that the product of simple transformations is simple and that the inverse of 
a simple transformation is simple (Lemma 14.6). 

12. Let g = (g1, g2 , ••• , gm) where gi = xi for j of. i; j = 1, 2, ... , m, and gi = qJ(x). Show 
that Vg = IP,;{see Lemma 14.7). 

13. Iff is of class C1 on a closed bounded region Gin IRm, show that det Vf is uniformly 
continuous on G. 

14.4. The Lagrange Multiplier Rule 

Let D be a region in ~m and suppose that f: D-+ ~1 is a C1 function. At any 
local maximum or minimum of f(x) = f(x 1, ••• , xm), we know that!,;= 0, 
i = 1, 2, ... , m. In many applications we wish to find the local maxima and 
minima of such a function f subject to certain constraints. These constraints 
are usually given by a set of equations such as 

(14.37) 

Equations (14.37) are called side conditions. Throughout we shall suppose 
that k is less than m. Otherwise, if there were say m side conditions, Equa
tions (14.37) when solved simultaneously might yield a unique solution x = 
(x1 , ••• , xm). Then this value when inserted in f would give a solution to the 
problem without further calculation. We reject the case k > m since there may 
be no solution to the system given by (14.37). We shall suppose that the 
functions qJ;: D-+ ~1, i = 1, 2, ... , k, are C1 functions, and furthermore that 
the k x m matrix 

( 
({J~\ (/),12 • i • (/),1m ) 

k k k 
(/),1 (/), 2 • • • (/J,m 

is of rank k. That is, we suppose that at least one of the k x k minors of the 
above matrix has determinant different from zero in D. Without loss of 
generality, we assume that the square matrix consisting of the first k columns 
has nonvanishing determinant in D. This may always be achieved by relabel
ing the variables. Then according to the Implicit function theorem, in the 
neighborhood of any point xeD we may solve for x1 , x2 , ••• , xk in terms of 
xk+l, ••• , xm. That is, there are functions g1, ••• , gk of class C1 such that 
Equations (14.37) can be written 

Xl = g1(Xk+1• ••• , Xm), X2 = g2(Xk+1• .•. , Xm), ••• , Xk = gk(Xk+1• ••• , Xm). 

(14.38) 
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A customary way of finding a local maximum or minimum off subject to 
the side Conditions (14.38) consists of the following procedure. First, solve the 
system given by (14.37) for x1, ... , xk and obtain Equations (14.38). We assume 
that this is valid throughout D. Second, insert the functions in (14.38) in f, 
obtaining a function of the variables xk+1, ... , xm given by 

H(xk+l• ... , xm) = f[g1(xk+1• ... , xm), 

Finally, find the local maxima and minima of H as a function of xk+1, ... , xm 
in the ordinary way. That is, compute 

k 

H · = "\' f .gi. + f · 
·' L... ,) ·' ·'' 

i = k + 1, ... , m, 
j=l 

and then find the solutions of the system of m - k equations 

H,;=O. 

(14.39) 

(14.40) 

The values of xk+1, ... , xm obtained in this way are inserted in (14.38) to yield 
values for x1, ... , xk. In this way we obtain the critical points off which also 
satisfy (14.37). Various second derivative tests may then be used to decide 
whether the critical points are local maxima, local minima, or neither. 

The method of Lagrange multipliers employs a simpler technique for achiev
ing the same purpose. The method is especially useful when it is difficult or 
not possible to solve the system given by (14.37) in order to obtain the 
functions g1, ... , gk given by (14.38). 

The Lagrange multiplier rule is frequently explained but seldom proved. 
In Theorem 14.7 below we establish the validity of this rule which we now 
describe. We introduce k new variables (or parameters), denoted by A. = 
(A.1, A.2, ... , A.k), and we form the function of m + k variables 

k 

F(x, A.) = F(x1, ... , Xm, A1, ... , A.d = f(x) + L Ai({Ji(x). 
j=l 

For this function F we compute the critical points when xis in D and A. in IRk 
without side conditions. That is, we find solutions to the m + k equations 
formed by all the first derivatives of F(x, A.): 

F,; = 0, i = 1, 2, ... , m, 

j = 1, 2, ... , k. (14.41) 

We shall show that the critical points given by solutions of(14.40) are among 
the solutions of the system given by (14.41). 

Suppose that f takes on its minimum at x0 , a point in the set D0 consisting 
of all points x in D where the side conditions (14.37) hold. Suppose there is a 
function g = (g1, g2 , ... , gm) from I= {t: -t0 < t < t0 } into !Rm which is of 
class C 1 and has the properties 

g(O) = x0 and ~i[g(t)] = 0 for j = 1, 2, ... , k; t e J. (14.42) 
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Then the function <1>: I -+ !Rm defined by 

<l>(t) = f[g(t)] (14.43) 

takes on its minimum at t = 0. Differentiating (14.42) and (14.43) with respect 
to t and setting t = 0, we get 

f. r/J!;(xo) dgi(O) = 0 and ,-~-ml f,;(xo) dgdit(O) = 0. 
i=l dt 

(14.44) 

Now let h = (h1 , h2 , ..• , hm) be any vector3 in Vm which is orthogonal to the 
k vectors (¢J.i1 (x0 ), r/J!2 (x0 ), ..• , r/J!m(x0 )), j = 1, 2, ... , k. That is, suppose that 

m 
L r/J,{(x0 )h; = 0 or V ¢Ji(x0 ) · h = 0, j = 1, 2, ... ' k. 
i=l 

From the Implicit function theorem, it follows that we may solve (14.37) for 
x 1, ... , xk in terms of xk+l, ... , xm, getting 

i = 1, 2, ... , k. 

If we denote x 0 = (x~, ... , x~) and define 

i() _ ,u'(xk+l + thk+l> ... , Xm + thm), i = 1, 2, ... , k, { 
. 0 0 

g t - 0 
X; + th;, i = k + 1, ... , m, 

then g = (g1 (t), ... , gm(t)) satisfies Conditions (14.42) and (14.44). We have 
thereby proved the following lemma. 

Lemma 14.11. Suppose that f, r/J\ r/J2, ..• , r/Jk are C1 functions on an open set D 
in !Rm containing a point x0 , that the vectors Vr/J 1 (x0 ), ..• , Vr/Jk(x0 ) are linearly 
independent, and that f takes on its minimum among all points of D0 at x0 , where 
D0 is the subset of Don which the side conditions (14.37) hold. If his any vector 
in vm orthogonal to v r/J1 (x0 ), ... ' v ¢Jk(x0 ), then 

Vf(x0 ) • h = 0. 

The next lemma, concerning a simple fact about vectors in Vm, is needed in 
the proof of the Lagrange multiplier rule. 

Lemma 14.12. Let b\ b2, .•. , bk be linearly independent vectors in the vector 
space Vm. Suppose that a is a vector in Vm with the property that a is orthogonal 
to any vector h which is orthogonal to all the bi. Then there are numbers -1 1 ,-12 , 

... , Ak such that 
k 

a= L A;bi. 
i=l 

That is, a is in the subspace spanned by b1, b2 , ••• , bk. 

3 In this argument we assume the reader is familiar with the customary m-dimensional vector 
space, denoted Vm. See Appendix 4. 
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PROOF. Let B be the subspace of vm spanned by b1, b2 , ••• ' bk. Then there are 
vectors ck+l, ck+ 2 , ••• ,em, such that the set b1, ... , b\ ck+l, ... ,em form a 
linearly independent set (basis) of vectors in Vm. Let h be any vector orthogonal 
to all the bi; then h will have components h1, ... , hm in terms of the above 
basis with h1 = h2 = · · · = hk = 0. The vector a with components (a1 , ... , am) 
and with the property a· h = 0 for all such h must have a;+l = ai+ 2 = · · · = 
am= 0. Therefore, a= L~=l a;bi. We set a; =A; to obtain the result. D 

Theorem 14.7 (Lagrange multiplier rule). Suppose that f, ,Pi, r/J2 , ..• , ,pk and x0 

satisfy the hypotheses of Lemma 14.11. Define 

k 

F(x, A.) = f(x) - L A.;r/Ji(x). 
i=l 

Then there are numbers A.?, A.~, ... , A.~ such that 

Fx,(x0 , A.0 ) = 0, i = 1, 2, ... , m, 

and 
j = 1, 2, ... , k. (14.45) 

PROOF. The Equations (14.45) are 

k 

Vf(x0 ) = L A.?V r/J 1(x0 ) and j = 1, 2, ... , k. 
1=1 

We set a= Vf(x0 ) and bi = V,Pi(x0 ). Then Lemma 14.11 and 14.12 combine 
to yield the result. D 

Remark. This theorem shows that the minimum (or maximum) off sub
ject to the side conditions r/J 1 = r/J 2 = · · · = ,pk = 0 is among the minima (or 
maxima) of the function F without any constraints. 

EXAMPLE. Find the maximum of the function x1 + 3x2 - 2x3 on the sphere 
xi+ X~+ X~= 14. 

Solution. Let F(x 1 , x 2 , x3 , A.)= x 1 + 3x2 - 2x3 + A.(xi + x~ + x~- 14). 
Then F. 1 = 1 + 2A.x1 , f'. 2 = 3 + 2A.x2 , f'. 3 = -2 + 2A.x3 , f'. 4 =xi+ x~ + 
x~ - 14. Setting f'.; = 0, i = 1, ... , 4, we obtain 

1 3 
xl = -2A.' Xz = -2A.' 

1 14 
14 = 4A.2" 

The solutions are (x 1 , x 2 , x3 , A.)= (1, 3, -2, -t) or ( -1, -3, 2, t). The first 
solution gives the maximum value of 14. D 

PROBLEMS 

In each of Problems 1 through 10 find the solution by the Lagrange multiplier 
rule. 
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1. Find the minimum value of xf + 3x~ + 2x~ subject to the condition 2x1 + 3x2 + 
4x3 -15 =0. 

2. Find the minimum value of2xf + x~ + 2x~, subject to the condition 2x1 + 3x2 -

2x3 - 13 = 0. 

3. Find the minimum value of xf + x~ + x~ subject to the conditions 2x1 + 2x2 + 
x3 + 9 = 0 and 2x1 - x 2 - 2x3 - 18 = 0. 

4. Find the minimum value of 4xf + 2x~ + 3x~ subject to the conditions x1 + 2x2 + 
3x3 - 9 = 0 and 4x1 - 2x2 + x3 + 19 = 0. 

5. Find the minimum value of xf + x~ + x~ + x~ subject to the condition 2x1 + 
x 2 - x3 - 2x4 - 5 = 0. 

6. Find the minimum value of xf + x~ + x~ + x~ subject to the conditions x 1 -

x 2 + x3 + x4 - 4 = 0 and x1 + x 2 - x3 + x4 + 6 = 0. 

7. Find the points on the curve 4xf + 4x1x2 + x~ = 25 which are nearest to the 
origin. 

8. Find the points on the curve 7xf + 6x1x2 + 2x~ = 25 which are nearest to the 
origin. 

9. Find the points on the curve xt + yt + 3x1y1 = 2 which are farthest from the 
origin. 

10. Let b1 , b2 , ••• , b,. be positive numbers. Find the maximum value ofL~=l b;x; subject 
to the side condition D=1 Xf = 1. 

11. (a) Find the maximum of the function xf · x~ · · · x: subject to the side condition 
D=lXf = 1. 

(b) IfL7=1 Xf = 1, show that (xfx~ ·· · x:)1'" ~ 1/n. 
(c) If a 1 , a2 , • • ·, a. are positive numbers, prove that 

[The geometric mean of n numbers is always less than or equal to the arithmetic 
mean.] 



CHAPTER 15 

Functions on Metric Spaces; 
Approximation 

15.1. Complete Metric Spaces 

We developed many of the basic properties of metric spaces in Chapter 6. A 
complete metric space was defined in Chapter 13 and we saw the importance 
of such spaces in the proof of the fundamental fixed point theorem (Theorem 
13.2). This theorem, which has many applications, was used to prove the 
existence of solutions of ordinary differential equations and the Implicit 
function theorem. We now discuss in more detail functions whose domain is 
a metric space, and we prove convergence and approximation theorems which 
are useful throughout analysis. 

We recall that a sequence of points {Pn} in a metric space Sis a Cauchy 
sequence if and only if for every e > 0 there is an integer N such that d(pm, Pn) < 
e whenever m, n > N. A complete metric space S is one with the property that 
every Cauchy sequence inS converges to a point inS. We remind the reader 
that Theorem 3.14 shows that IR 1 is a complete metric space and that Theorem 
13.1 establishes the completeness of IRN for every positive integer N. 

The notion of compactness, defined in Section 6.4, plays an essential part 
in the study of metric spaces. Repeating the definition, we say that a set A in 
a metric spaceS is compact if and only if each sequence of points {Pn} in A 
contains a subsequence which converges to a point in A. Taking into account 
the definitions of completeness and compactness, we see that Theorem 6.23 
implies that every compact metric space S is complete. Also, since a closed 
subset of a compact metric space is compact (Theorem 6.21), then such a 
subset, considered as a metric space in its own right, is complete. 

Let S be any metric space and fa bounded, continuous function on S into 
IR 1. The totality of all such functions f forms a metric space, denoted C(S), 

374 
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when we define the distance d between two such functions f and g by the 
formula 

d(f, g) = sup lf(x) - g(x)l. (15.1) 
xeS 

It is a simple matter to verify that d has all the properties of a metric on C(S). 
We conclude directly from Theorem 13.3 on the uniform convergence of 
sequences of continuous functions that for any metric spaceS, the space C(S) 
is complete. 

EXAMPLES. Let I= {x: a~ x ~ b} be a closed interval in IR 1. Then/, con
sidered as a metric space (with the metric of IR 1 ), is complete. On the other 
hand an open interval J = { x: a < x < b} is not a complete metric space since 
there are Cauchy sequences in J converging to a and b, two points which are 
not in the space. The collection of all rational numbers in IR 1 is an example 
of a metric space which is not complete, with respect to the metric of IR 1• Let 
0 be the function in C(S) which is identically zero, and define B(O, r) as the set 
of all functions f is C(S) such that d(f, 0) < r. That is, B(O, r) is the ball with 
center 0 and radius r. Then B(O, r) is a metric space which is not complete. 
However, the set of all functions f which satisfy d(f, 0) ~ r with d given by 
(15.1) does form a complete metric space. D 

Definitions. Let S be a metric space. We say that a set A in S is dense in S 
if and only if A= S. If A and B are sets in S, we say that A is dense in B if and 
only if A ::J B. We do not require that A be a subset of B. 

For example, letS be IR\ let A be all the rational numbers, and let B be all 
the irrational numbers. Since A= IR 1 we see that A ::J Band so A is dense in 
B. Note that A and Bare disjoint. 

Definition. Let S be a metric space and A a subset of S. We say that A is 
nowhere dense inS if and only if A contains no ball of S. For example, if Sis 
IR\ then any finite set of points is nowhere dense. A convergent sequence of 
points and the set of integer points in IR 1 are other examples of nowhere dense 
sets. It is important to observe that being dense and nowhere dense are not 
complementary properties. It is possible for a set to be neither dense nor 
nowhere dense. For example, any bounded open or closed interval in IR 1 is 
neither dense nor nowhere dense in IR 1. 

The next result, an equivalent formulation of the notion of a nowhere dense 
set, is useful in many applications. 

Theorem 15.1. A set A is nowhere dense in a metric space S if and only if every 
open ball B of S contains an open ball B1 which is disjoint with A. 
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PROOF 
(a) Suppose A is nowhere dense inS. Then A contains no ball of S. We shall 

show that every open ball B of S contains a ball B1 which is disjoint from A. 
Suppose this is not true. Then there must be a ball B0 of S such that every ball 
B1 in B0 contains points of A. Let p e B0 • Then every ball with pas center and 
radius sufficiently small is in B0 • All these balls have points of A and sop is a 
limit point of A. Since pis an arbitrary point of B0 , we have A:::;) B0 • We have 
contradicted the fact that A contains no ball of S, and (a) is proved. 

(b) If A is not nowhere dense, then A must contain a ball B. If there were 
a ball B1 in B disjoint with A, then no point of B1 could belong to A. Hence 
every ball in B contains of A, and (b) is proved. D 

Definitions. A set A is a metric space S is of the first category if and only if A 
is the union of a countable number of nowhere dense sets. A set C is of the 
second category if and only if C is not of the first category. 

EXAMPLES. Since the set in n;tN consisting of a single point is nowhere dense, 
we see that every countable set in n;tN is of the first category. Also, because the 
set of rational points in n;tN is countable and dense, it is possible to have dense 
sets of first category. In fact, if the entire space consists of the rational points, 
say of IR1, then every set is of the first category, and there are no sets of the 
second category. On the other hand, an isolated point in a metric space is an 
open set and in such cases a single point is of the second category. D 

No complete metric space can be of the first category as we show in the 
next theorem and its Corollary. 

Theorem 15.2. Let S be a complete metric space. Let C be the complement in S 
of a set of the first category. Then C is dense in S. 

PRooF. We shall show that every ball B of S must contain a point of C, 
implying that Cis dense in S. Define A = S - C. Then A is of the first category 
and consequently A = U:'=1 T, where T, is nowhere dense for every n. Let 
B0 = B(p0 , r0 ) be any ball in S with center p0 and radius r0 • We shall show 
thatB0 contains a point of C. Since T1 is nowhere dense, there is a ball B(p1 , r1 ) 

contained in B0 which is disjoint with T1 . We may take r1 so small that 
r1 < r0 /2, and also so that B(ph r1 ) c B0 • Since T2 is nowhere dense the ball 
B(p~> rd contains a ball B(p2 , r2 ) with r2 < rd2, so that B(p2 , r2 ) contains no 
point of T2 and B(p2 , r2 ) c B(p1 , rd. We continue in this way, obtaining a 
decreasing sequence of balls B(p", rn) = B" such that r" < rn-d2 and Ji" c Bn-l· 
Also, T, and B" have no points in common. For n ~ m, we see that d(pm, Pn) ~ 
rm < r0 /2m. Hence {Pn} is a Cauchy sequence. Since Sis complete, there is a 
point q e S such that Pn --+ q as n--+ oo. For each m, all the Pn are in Bm whenever 
n > m. We conclude that q e lim for every m and so q ¢ Tm for every m. Thus q 
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belongs to C and because q e B0 (p0 , r0 ), which is an arbitrary ball, the result 
is established. D 

Corollary. A complete metric space S is of the second category. 

PRooF. If S were of the first category its complement would be empty, con
tradictng Theorem 15.2. D 

By an argument similar to that used in Theorem 15.2, the next result known 
as the Baire Category Theorem is easily established. We omit the details. 

Theorem 15.3 (Baire category theorem). A nonempty open set in a complete 
metric space is of the second category. 

We recall that a mapping f from a metric space S1 with metric d1 to a metric 
space S2 with metric d2 is uniformly continuous on S1 if and only if for every 
e > 0, there is a b > 0 such that d2 (f(p), f(q)) < e whenever d1 (p, q) < b, and 
the number b depends only one and not on the particular points p and q. With 
the aid of Lemma 15.1 which follows it is not difficult to show that a function 
which is uniformly continuous on a set A in a metric space can be extended 
to A, the closure of A, in such a way that f remains uniformly continuous. 
Moreover, the extension is unique. 

Lemma 15.1. Suppose that A is a subset of a metric space S. 

(a) Then any point p e A- A is a limit point of A. 
(b) If p e A, then there exists a sequence { p,} c A such that p, --+ p as n --+ oo. 
(c) Suppose that f: A--+ S2 is uniformly continuous with S2 a metric space. If 

{p,} is a Cauchy sequence in A, then {f(p,)} is a Cauchy sequence in S2 • 

PROOF 

(a) Let A' be the set of limit points of A. Then by definition, A- A = 
{p: p e (Au A')- A}, and (a) is proved. 

(b) If peA- A, then p is a limit point of A and the result follows from 
Theorem 6.4. If p e A, we choose p, = p for all n. 

(c) Let e > 0 be given. From the uniform continuity, there is a b > 0 such 
that d2(f(p'), f(p")) < e whenever d1 (p', p") < b. Since {p,} is a Cauchy 
sequence, there is an integer N such that d1 (p,, Pm) < b for m, n > N. Hence 
d2 (f(p,), f(pm)) < e for n, m > N. Thus {f(p,)} is a Cauchy sequence. D 

Theorem 15.4. Let S1 , S2 be metric spaces and suppose that S2 is complete. Let 
A be a subset of S1 and f: A--+ S2 be a mapping which is uniformly continuous 
on A. Then there is a unique mapping f*: A--+ S2 which is uniformly continuous 
on A and such that f*(p) = f(p) for all peA. 
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PRooF. For p e A, we define f*(p) = f(p). If p e A- A, let {Pn} be a particular 
sequence of elements of A such that Pn -+ p as n -+ oo. Such a sequence exists 
according to Lemma 15.1. Since {Pn} is a Cauchy sequence, it follows from 
Lemma 15.1, Part (c), that {f(pn)} is a Cauchy sequence. Since S2 is complete, 
we define f*(p) to be the limit approached by the Cauchy sequence {f(pn) }. 
We show f* is uniformly continuous. Let e > 0 be given. Since f is uniformly 
continuous on A, there is a~> 0 such that if p', p" e A, then 

d2(f*(p'), f*(p")) < e/3 whenever d1 (p', p") < 2~. 

Now let q', q" e A with d1(q', q") <~-Let {p~}. {p;} be the particular Cauchy 
sequences described above such that p~ -+ q', p; -+ q" as n-+ oo and f*(p~) -+ 
f*(q'), f*(p;)-+ f*(q"). Then there is an integer N > 0 such that for n > N, 
we have 

and 
d2 [f*(p~), f*(p;)] < e/3. 

Therefore, for n sufficiently large, it follows that 

d2(f*(q'), f*(q")) < d2(f*(q'), f*(p~)) + d2(f*(p~). f*(p;)) 

+ d2(f*(p;), f*(q")) < e. 

Since q' and q" are arbitrary elements of A which are closer together than~. 
the uniform continuity is established. 

To show that f* is unique, let f** be uniformly continuous on A with the 
property that f**(p) = f(p) for p e A. Let p e A- A and suppose that {Pn} 
is any sequence in A such that Pn-+ pas n-+ oo. Then 

f**(p) = lim f**(Pn) = lim f(Pn) = lim f*(Pn) = f*(p). D 
n-+oo n-+oo n-+oo 

Among the mappings of one metric space into another, those which leave 
distances unchanged are of particular importance. Let f: S1 -+ 82 be a map
ping from the metric space S1 into the metric space S2 . Then f is an isometry 
if and only iff is one-to-one and d2(f(p),f(q)) = d1(p, q) for all p, q e S1 • 

Translations and rotations in Euclidean spaces are the simplest examples of 
isometries. More specifically, if f(x) = x + c with S1 = 82 = IR1 and c a con
stant, thenf is clearly an isometry. Also, with S1 = S2 = IR2, the rotation given 
by 

y1 = x1 cos (} + x 2 sin 9, y2 = -x1 sin(}+ x 2 cos 9, 

for any fixed 9, is an isometry. Geometrically, any mapping which is a "rigid 
motion" is an isometry. 

Theorem 15.5. Let S1, 82 be metric spaces and suppose that S1 is complete. Let 
f: S1 -+ 82 be an isometry. Then f(St) considered as a metric space is complete. 
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PROOF. Suppose {f(pn)} is a Cauchy sequence in S2 • Then because of the 
isometry, {Pn} is a Cauchy sequence in S1 . Let p be the limit of {Pn}· Since f 
is defined on all of S1, there is a point q E S2 such thatf(p) = q. Thenf(Pn) ~ q 
as n ~ oo and so every Cauchy sequence in f(S1 ) has a limit in f(S1 ). That is, 
f(S1) is complete. D 

For many purposes it is desirable to deal with complete metric spaces. In 
the next theorems we show that any metric spaceS can be embedded in a 
complete metric space S (Theorem 15. 7). That is, we can adjoin certain points 
to S so that every Cauchy sequence in the new space will have a limit. Also 
the distance functions in Swill coincide with that of S for all those points of 
S which are in S. 

Definition. Let S be a metric space with distance function d. Two Cauchy 
sequences {Pn} and {qn} are equivalent if and only if d(pn, qn) ~ 0 as n ~ oo. 
We write {Pn} ~ {qn} for such equivalent sequences. 

The next theorem consists of elementary statements about equivalent 
Cauchy sequences. 

Theorem 15.6. Let {Pn} and {qn} be Cauchy sequences in a metric spaceS. 

(a) The numbers d(pn, qn) tend to a limit as n ~ oo. 
(b) If {Pn} ~ {qn} and Pn ~pas n ~ 00, then qn ~pas n ~ 00. 

(c) If {p~}, {q~} are Cauchy sequences and {Pn} ~ {p~}, {qn} ~ {q~}, then 
limn--+oo d(pn, qn) = limn--+oo d(p~, q~). 

PROOF OF (a). From the triangle inequality, we have 

d(pn, qn) ~ d(pn, Pm) + d(pm, qm) + d(qm, qn) 

and, by interchanging m and n, we find 

ld(pn, qn)- d(pm, qm)l ~ d(pn, Pm) + d(qm, qn). 

That is, { d(pn, qn)} is a Cauchy sequence of real numbers. Therefore, it has a 
limit. D 

We leave the proofs of (b) and (c) to the reader. 

Definition. LetS be a metric space and suppose that {Pn} is a Cauchy sequence 
which does not converge to an element inS. The class of all Cauchy sequences 
inS which are equivalent to {Pn} is called an ideal element of S. 

For example, if Q is the space of all rational numbers in IR 1 with the usual 
distance function, then all Cauchy sequences which tend to a specific irrational 
number would form an ideal element of Q. Actually, we identify the particular 
irrational number with this ideal class and, in fact, we may define an irrational 
number in this way. LetS' denote the set of all ideal elements of a metric space 
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S. We define the spaceS as the union of SandS', and we shall show that Sis 
a complete metric space. For this purpose the distance function don Sis 
defined in the following way. For points p and q in S' there are Cauchy 
sequences {Pn}, {qn} inS which are in the equivalence classes determining p 
and q, respectively. These choices may be made arbitrarily in the definition of 
d. Let 

d(p, q) if p, q E S, 

lim d(p, qn) if pEs, q E S', 

d(p, q) = 
n-+oo 

lim d(pn, q) if pES', q E S, 
n-+oo 

lim d(pn, qn) if p, q E S'. 
n-+oo 

It is a simple matter to verify that the space S with the distance function d 
is a metric space. We leave this verification to the reader. Also, we see at once 
that the mapping of S into S which associates to each point of S the same 
point, considered as a point of S, is an isometry. Therefore an equivalence 
class of Cauchy sequences in S which converges to a point in S may be 
considered as an ideal element in S without loss of consistency. 

Theorem 15.7. The spaceS with distanced is a complete metric space. 

PROOF. Let {Pn} be a Cauchy sequence inS. We wish to show that there is a 
point pES such that d(p, Pn)-+ 0 as n-+ oo. For each Pn• there is, by definition, 
a Cauchy sequence inS, denoted { qkn}, such that d(pn, qkn)-+ 0 ask-+ oo. Let 
6n > 0 be a sequence tending to 0 as n-+ oo. From the double sequence {qkn} 
we can extract a subsequence q~ such that d(pn, q~) < 6n for all n. From the 
triangle inequality, it follows that 

(15.2) 

Since {Pn} is a Cauchy sequence, given 6 > 0, there is an N > 0 such that 
d(pn, Pm) < 6 form, n > N. We choose m and n so large that 6n, 6m < 6. Thus 
(15.2) shows that { q~} is a Cauchy sequence inS. Let p be the corresponding 
ideal element in S. Since 

J(p, Pn) ~ d(p, q~) + d(q~, Pn) < 26 for n > N, 

we conclude that Pn-+ pas n-+ oo. That is, Sis complete. 

PROBLEMS 

0 

1. LetS be a metric space and C(S) the collection of all bounded, continuous functions 
on S. Show that 

d(f, g) = sup Jf(x) - g(x)J 
xeS 

is a metric. Let M(S) be the totality of bounded functions on S. Is M(S) with the 
above metric a metric space? 
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2. Let x=(a1,a2 , ••• ,a., ... ) and y=(b1,b2 , ••• ,b., ... ) where {a.} and {b.} are 
bounded sequences of real numbers. Define 

d(x, y) = sup Ia. - b. I . 
• 

Show that the space S consisting of the totality of such bounded sequences with 
the distance defined above is a metric space. Is the metric space complete? 

3. Let A be the set of irrational numbers on the interval/= {x: 0 ~ x ~ 1}. Show 
that A is of the second category with respect to IR 1• 

4. Let P(x) = a.x• + a._1x"-1 + ·· · + a1x + a0 be a polynomial with integer coeffi
cients. Let A be the set of all roots of all such polynomials for n = 1, 2, ... and with 
all possible integer coefficients. Show that A is of category 1 in the complex plane. 
(The metric in C, the complex plane, is d(z1 , z2 ) = lz1 - z2 1 = [(x1 - x2 )2 + 
(y1 - y2)2r 12 where z1 = x 1 + iy1 , z2 = x 2 + iy2.) 

5. Let I= {x: 0 ~ x ~ 1} be the unit interval in IR 1 and let every x e I be represented 
in a ternary expansion: 

where each a; has the value 0, 1, or 2. Let A be the subset of I such that every point 
of A has only zeros or twos in its expansion. 
(a) Show that A is an uncountable set. 
(b) Show that A is nowhere dense in I. 

6. Write a detailed proof of the Baire category theorem (Theorem 15.3). 

7. Let I= {x: 0 ~ x ~ 1} be the unit interval with the metric of IR1• Find a set A in 
I and a continuous mapping/: A-+ IR1 such that the mapping cannot be extended 
to be continuous from A into IR1• That is, show that in Theorem 15.4 the hypothesis 
that f is uniformly continuous cannot be dropped. 

8. Let S1 , S2 be metric spaces and suppose that f: S1 -+ S2 is an isometry. Suppose 
that S2 is complete. Is the space f(S1) complete? Justify your statement. 

9. Prove Parts (b) and (c) of Theorem 15.6. 

10. Verify that the function d defined before Theorem 15.7 is a metric and hence that 
S is a metric space. 

11. Prove that the mapping of IR2 -+ IR2 given by 

is an isometry. 

y1 = X 1 cos fJ + x 2 sin fJ, 

y2 = -x1 sin fJ + x2 cos fJ, 

15.2. Convex Sets and Convex Functions 

The geometric developments in this section will be established for sets in an 
N-dimensional space. Unless otherwise noted, we shall suppose throughout 
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A convex set Not a convex set 

(a) (b) 

Figure 15.1 

that all sets are contained in IRN. However, many of the results given here are 
valid if IRN is replaced by an arbitrary linear space. 

Definition. A set S in IRN is convex if and only if every point on the straight 
line segment p1 p2 is inS whenever p1 and p2 are inS (see Figure 15.1). 

Theorem 15.8. The intersection of any family of convex sets is a convex set. 

We leave to the reader the proof of this simple fact. 

Theorem 15.9. If S is a convex set, then Sis convex. 

PROOF. Let p, q E S. Then there is a sequence {Pn} such that Pn E Sand Pn-+ p. 
Similarly, there is a sequence {qn} inS with qn-+ q. Since Sis convex, all the 
segments Pnqn are in S. Any point rn on the line segment Pnqn has the form 

That is, if Pn, qn have coordinates x;, y;, i = 1, 2, ... , N, respectively, then rn 
has coordinates A.x; + (1 - A.)y;", i = 1, 2, ... , N. As n-+ oo, the sequence {rn} 
tends to A.p + (1 - A.)q which is a point on pq. Consequently, pq must be inS. 

D 

Theorem 15.10. Suppose that Sis a convex set and p1 , p2 , ..• , Pk E S. Let A. 1, 

A.2 , ••• , A.k be nonnegative real numbers with A. 1 + A.2 + · · · + A.k = 1. Then the 
point A. 1p 1 + A.2 p2 + · · · + A.kpk is inS. 

PROOF. For two points, p1 and p2 , the theorem is merely the definition of 
convexity. We proceed by induction. Assume the result holds fork- 1 points. 
We wish to show that it holds fork points. Hence for f.J.; ~ 0, i = 1, 2, ... , k- 1 
and p.1 + · · · + f.J.k-l = 1, we have L;~,:} f.J.;P; E S. Therefore, by definition, 

(1 - A.k)(fJ.lPl + ... + fJ.k-lPk-d + AkPk E S. 

Choosing f.J.; = A.;/(1 - A.k), i = 1, 2, ... , k- 1, we obtain the result fork points. 
D 
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Definitions. Let a point x in IRN have coordinates x1 , x2 , ••• , xN. Then a 
hyperplane in IRN is the graph of an equation of the form 

N 

L aixi + b = 0 
i=l 

where the ai, b are real numbers and not all the ai are zero. By dividing the 
above equation by (Lf=1 af}112 we may assume without loss of generality that 
af + · · · + a~ = 1. Note that a hyperplane is a line if N = 2 and an ordinary 
plane if N = 3. A line l in IRN is the graph of the system of N equations 

l = {x: xi= x? + Ajt, i = 1, 2, ... , N, -oo < t < oo} (15.3) 

in which x0 = (x?, ... , x~) is a fixed point and the quantities A1 , ••• , AN (not 
all zero) are called the direction numbers of l. The real parameter t varies 
throughout IR 1• If we replace t by t/(AI + ·· · + A~)1'2 we may, without loss of 
generality assume that AI + · · · + A~ = 1, in which case we call the Ai the 
direction cosines of l. The equation of the hyperplane perpendicular to the line 
l given by (15.3) and passing through the point x1 = (xL x~, ... , x1) is 

N 

L Ai(xi- xf) = 0. (15.4) 
i=l 

Let A be any set in a metric space S. Then we recall that p is an interior 
point of A if there is a ball B in S with p as center which is contained in A. 

Theorem 15.11. Let S be a convex set in IRN which has no interior points. Then 
there is a hyperplane H which contains S. 

PROOF. Suppose that S does not lie in a hyperplane. Then there are N + 1 
points of S which are contained in no hyperplane. Let these points be denoted 
0, xl, x 2, ••• , xN where 0 is the origin of the coordinate system. Then the 
vectors from 0 to xi, i = 1, 2, ... , N are linearly independent. Since Sis convex, 
every point A1x 1 + · · · + ANXN is inS where 0:::;; Ai:::;; 1 and A. 1 + A.2 + · · · + 
A.N :::;; 1. Choose 

(15.5) 

with 0 < Ii < 1 for every i and I 1 + I2 + · · · + IN < 1. Then x is in S and 
every point near xhas the same representation with A.i near Ii for every i. That 
is, S contains a ball with x as center and sufficiently small radius. Thus xis 
an interior point. We conclude that if S has no interior points, it must lie in a 
hyperplane. D 

Theorem 15.12. Let S be a convex set in IRN which is not the entire space. Let 
s<OJ denote the set of interior points of s. Then for each point x0 E s - s<OJ there 
is a hyperplane H through x0 such that Sis in one of the two half-spaces bounded 
by H (see Figure 15.2). 
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Figure 15.2. Sis on one side of the hyperplane H. 

PROOF. Consider x0 e S- S(0 >. Since S is not the entire space, there is a 
sequence of points { xm} such that xm e !RN - Sand xm-+ x 0 as m-+ oo. Since 
Sis a closed set, for each xm there is a point ym e S such that xm is at least as 
close to ym as it is to any other point of S. In fact, ym = infyesd(y, xm), where 
d is distance in !RN (see Figure 15.3). Denote by Hm the hyperplane perpen
dicular to the line segment xmym and which passes through xm. If .A.m1• A.m2• 
... , AmN are the direction cosines of the line through xm and ym, then the 
equation of Hm is given by 

Hm = {x: .f Am;(X;- xi)= o}, 
•=1 

(15.6) 

where xm has coordinates xi, x~, ... , x;:;. Suppose there is a point zm e S on 
the opposite side of Hm from ym. By convexity, the entire segment ymzm is in 
S and in such a case ym is not the closest point of S to xm. Hence there is no 
such point zm, and Sis contained in the half space 

pm = {x: .f Am;(X;- xi)~ o}. 
•=1 

(15.7) 

Figure 15.3. Hm is perpendicular to the line segment xmym. 



15.2. Convex Sets and Convex Functions 385 

Since xm--+ x0 , there is a subsequence xmk --+ x0 such that A.mki --+ A.0;, i = 1, 2, 
... , N, as mk --+ oo. Of course A.~ 1 + · · · + A.~N = 1, and we form the hyperplane 
through x0 : 

H = {x: .f A.0;(X; - x?) = o}. 
•=1 

The hyperplanes Hk tend to H and since S c Pk , we have in the limit 
m m 

s c Po= {x: .f A.o;(X;- x?) ~ o}. 
•=1 

D 

We now study functions from IRN--+ IR 1 and, in particular, those functions 
which have certain convexity properties. We shall show (Theorem 15.17 
below) that a convex function is necessarily continuous at interior points of 
its domain. 

Definition. Let S be a convex set in IRN and let f: S--+ IR 1 be a real-valued 
function. We say that f is a convex function on S if and only if 

f[A.x1 + (1 - A.)x2] ~ .lf(x1) + (1 - A.)f(x2) 

for all x 1, x 2 e Sand for all A. such that 0 ~ A. ~ 1. Note that convex functions 
are not defined if the domain is not a convex set. 

Theorem 15.13. LetS be a convex set in IRN and suppose f: S--+ IR 1 is convex. 
Then the set G = { (x, y): xeS, y e IR1, y ~ f(x)} is a convex set in IRN+1• 

Conversely, if S and G are convex, then f is a convex function. 

The proof is a direct consequence of the definition of convex set and convex 
function, and we leave the details to the reader (see Figure 15.4). The set G is 
usually called the epigraph of the function f. 

The next three theorems describe simple properties of convex functions, 
ones which are useful not only in the proof of the continuity properties of 
convex functions but also in the applications given in Chapter 16. 

Theorem 15.14. Let !F = {!} be a family of convex real-valued functions 
defined on a convex setS in IRN. Suppose there is a function g: S--+ IR 1 such that 
f(x) ~ g(x) for all x e S and all f e !F. Define 

F(x) = sup f(x). 
fe-' 

Then F is a convex function on S. 

PRooF. Let e > 0 be given and suppose that x 1, x 2 are any points of S. 
From the definition of supremum there is a function f e !F such that 
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y 

I G: convex set : 
I in IRN+t 1 

I I 

Figure 15.4 

[: convex function 

S: convex set 
in IRN 

F[Ax 1 + (1 - A)x2 ] < f[Ax 1 + (1 - A)x2 ] +e. Since f is convex, we have 

F[Ax 1 + (1 - A)x2 ] < f[Ax 1 + (1 - A)x2 ] + e 

~ Af(x1 ) + (1 - A)f(x2 ) + e 

~ AF(x 1 ) + (1- A)F(x2 ) + e, 

The result follows because e is arbitrary. D 

Theorem 15.15. Let S be a convex set in IRN. Suppose that x 1, x2 , ••• , xm are 
points of S and A1, A2 , .•• , Am are nonnegative numbers with A1 + A2 + · · · + 
Am= 1. Iff: S--+ IR 1 is convex on S, then 

f(Al X1 + · · · + AmXm) ~ Ad(x 1) + · · · + Amf(xm). 

PROOF. We proceed by induction (see the proof of Theorem 15.10). Form= 2, 
the result is the statement of convexity of f Suppose the result holds for 
k = m- 1. We show that it holds fork= m. By the induction hypothesis it 
follows that 

f(J.l1X 1 + ··· + J.lm-lXm-l) ~ J.ld(x 1) + · ·· + J.lm-tf(xm-l) 

where J.l; ~ 0, f.lt + · · · + J.lm-l = 1. Choose J.l; = A;/(1 - Am), i = 1, 2, 
m- 1. Then 

f(Al X 1 + · · · + Amxm) 

= f[(1 - AmHf.lt x 1 + · · · + 1-lm-t xm-t) + AmxmJ 

... , 
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~ (1 - Am)f(p.1 x1 + · · · + P.m-1 xm-1) + Amf(xm) 

~ (1 - Am) [p.J(x1) + · · · + P.m-d(xm-1 )] + Amf(xm) 

~ Ad(x1) + · · · + Am_J(xm-1) + Amf(xm), 

and the induction is established. 
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0 

In some sense linear functions are the simplest convex functions. The next 
theorem establishes this fact. 

Theorem 15.16. Let S be a convex set in IRN. Let A = (aii) be an N x N matrix 
and b = (b1 , b2 , ••• , bN) a vector. Define the linear transformation T: IRN--+ IRN 
by y = Ax + b. Then 

(i) The set S' = T(S) is a convex set in IRN. 
(ii) Iff: S--+ IR 1 is a convex function and if A is nonsingular, then the function 

g: S'--+ IR1 defined by g(y) = f(x) = f[A - 1(y- b)] is a convex function. 
(iii) Any linear function y = A 1 x + b is convex on any convex domain. 

PROOF 

(i) Let x1, x 2 E S. Then Ax1 + (1 - A)x2 E S for 0 ~ A ~ 1. Because Tis linear, 
we have 

These equalities also establish (iii). 
(ii) Let y1, y2 E S'. Then, by definition, 

Since f is convex, we find 

g(Ay 1 + (1- A)y2 ) ~ )/[A-1(y1 - b)]+ (1- A)f[A-1(y2 - b)] 

= Ag(y1) + (1 - A)g(y2 ). 0 

Lemma 15.2. Let I= {x: a~ x ~ b} be any interval and f: I--+ IR 1 a convex 
function on I. Let x0 be given with a < x0 < b and define 

f(x0)- f(a) 
m = ----.---

x0- a 

Then f(x) ~ l(x) for x0 ~ x ~ b. 

l(x) = f(a) + m(x - a), X E I. 

PROOF. The result is obvious geometrically. The linear function l(x) is below 
f for x 0 ~ x ~ b (Figure 15.5). For the actual proof, observe first that f(x0 ) = 
l(x0 ). Let x be such that x0 ~ x ~ b. Then from the convexity off, we find 

f(x0 ) ~ (1 - A)f(a) + )/(x). 
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y 

/(x) 

--+------+------+------+-------x 
0 a b 

Figure 15.5 

Choose A. = (x0 - a)/(x - a). Then 1 - A. = (x - x 0 )/(x - a) and 

1 
f(x) ~ I [f(x0 ) - (1 - A.)f(a)] 

= f(a) + f(xo~ - f(a) (x - a) = l(x). 
x -a D 

The next technical lemma is essential for the proof that a convex function 
is smooth at interior points of its domain. 

Lemma 15.3. Let I= {x: x1 ~ x ~ x4 } be an interval and suppose that f: I--+ 
IR 1 is a convex function on I. Let x 2, x 3 be such that x 1 < x 2 < x 3 < x4 and 
define 

i, j = 1, 2, 3, 4, i =I j. 

Suppose that if(x)i ~ M on I and let~> 0 be given such that x1 + ~ ~ x 2 < 
x 3 ~ x4 - ~- Then 

(15.8) 

(15.9) 

PRooF. The geometric interpretation of (i) is shown in Figure 15.6, where mu 
is the slope of the line through (xi, f(x;)) and (xi, f(xi)). Because of the 
convexity of J, the line segment through x2 and x 3 lies above the graph off 
between x2 and x 3• That is, 

f(x 2 ) + m23(x- x2 ) ~ f(x) for x 2 ~ x ~ x 3• 

Also, by Lemma 15.2 with x1 =a, x2 = x0 , we have 

f(x) ~ f(x 1 ) + m12(x - x 1 ) for x ~ x 2• 

(15.10) 

(15.11) 
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Figure 15.6 

Combining (15.10) and (15.11) we find 

f(x 2 ) + m23(x- x2 ):;:::: f(x 1 ) + m12(x- x1 ), 

or 
m23(x- x2 ):;:::: m12(x- x1)- m12(x 2 - x1 ) = m12(x- x2 ). 
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That is, m23 :;:::: m12 • The proof that m 34 :;:::: m23 is the same. To establish (ii), 
observe that 

lf(x4 ) - f(x 3 )1 lf(x4 )1 + lf(x3 )1 2M 
m34 ~ 4 3 ~ 4 3 ~ -. lx - x I lx - x I () 

Similarly, m12 :;:::: -2M/b. Hence we find 

and 

or 

0 

Remark. Part (ii) of Lemma 15.3 shows that a convex function of one 
variable is continuous at every interior point of its interval of definition. 
Moreover, it satisfies a Lipschitz condition on every closed subinterval of the 
interior of its domain. In Theorem 15.17 we extend this result to functions 
defined on convex sets in ~N. 

Definitions. We denote by QN = {x: -1 ~xi~ 1, i = 1, 2, ... , N} a hypercube 
of side length 2 in ~N. A point ~ in ~N with coordinates ~ 1 , ~2 , ••. , ~N is called 
a lattice point of QN if every ~i has one of the values 0, 1, or -1. Thus the 
origin is a lattice point as are, for example, the points (1, 0, 0, ... , 0) and (0, 
-1, 0, 1, 0, 0, ... , 0). A hypercube is clearly a convex set. 
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Lemma 15.4. Suppose that f: QN-+ IR 1 is a convex function. Let M0 = 
maxlf(~)l for all lattice points~ e QN. Then lf(x)l ~ M for all x e QN where 
M= 3NM0 • 

PRooF. We proceed by induction on N. For N = 1, we note that Q1 is the 
interval I= {x: -1 ~ x ~ 1}. We first apply Lemma 15.2 with a= -1 and 
x0 = 0. Then 

f( -1) + [f(O)- f( -1)J(x + 1) ~ f(x) for 0 ~ x ~ 1. 

Also, since f is convex we have f(x) ~ (1- x)f(O) + xf(1) for 0 ~ x ~ 1. Set 
M0 = max[lf( -1)1, lf(O)I, lf(1)1]. Then for 0 ~ x ~ 1, it follows that f(x) is 
between the maximum of f(O) and f(1) and the minimum of f(O) and 2f(O) -
f( -1). That is, lf(x)l ~ 3M0 • The function g(y) = f( -x) yields to the same 
treatment for 0 ~ y ~ 1, and we conclude that lf(x)l ~ 3M0 for -1 ~ x ~ 1. 

Suppose now that the theorem is true for N = k; we wish to establish the 
result for k + 1. Let f be convex on Qk+1. Define <P;(x 1, x2, ... , xk) = f(x 1, x2, 
... , xk, i) fori = -1, 0, 1. Since <P; is convex on Qk it follows from the induction 
hypothesis that 

lf(x1, x2, ... , xk, i)l ~ 3k max lf(~1• ~2• ••• , ~k• i)l, (15.12) 
~ 

where the maximum is taken over all lattice points~ e Qk. Now the function 
f(x 1 , x2, ... , xk+1) is a convex function of xk+1 for each fixed x1, x2, ... , 
xk e Qk. We use the result for N = 1 and Inequality (15.12) to obtain 

0 

The next theorem establishes the fact that convex functions are continuous 
at interior points of their domain of definition. Inequality (15.13) shows that 
such functions satisfy a Lipschitz condition. 

Theorem 15.17. LetS be a convex set in !RN and suppose that f: S-+ IR 1 is a 
convex function. Then f is continuous on s<o>, the interior of S. Furthermore, if 
lf(x)l ~ MonS, then 

2M 
lf(x1)- f(x2 )1 ~ Tlx1 - x2 1 (15.13) 

where x1, x 2 are such that the balls B(x1, t5) and B(x2, t5) are in S. 

PROOF. Suppose that the interior of s is not empty. Let x 0 E s<o>. Then x0 is 
the center of a hypercube contained in s<o> (Theorem 15.11). Consequently, 
according to Lemma 15.4, there is a smaller hypercube with x0 as center on 
which f is bounded. We conclude that f is bounded on any compact subset 
K of s<o>. 

We first establish Inequality (15.13). Suppose that lf(x)l ~MonS and let 
x 1, x2 be interior points with B(x1, t5), B(x2, t5) inS. Let L be the line passing 
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through x1 and x 2• Then the intersection l = L n Sis a line segment (convex 
set). With .X any point on l, and using the notation .A.= (.A.1 , .A.2 , ••• , .A.N), we may 
write the parametric equations of l in the form 

x = X + At, .A.i + A~ + ' ' ' + A~ = 1. 

If t1 corresponds to x 1 and t2 to x2 , then all t such that t1 - o < t < t2 + o 
correspond to points of l, that is, to interior points of S. We define 

({J(t) = f(x + .A.t), 

Then I({J(t)l :s;; M on its domain. We apply Inequality (15.9) of Lemma 15.3 to 
obtain 

2 1 2M 2M 2 1 
lf(x ) - f(x )I= I({J(t2)- qJ(tdl :s;; --ylt2- ttl= --ylx - x 1. 

Since f is bounded on any compact subset of s<o>, we now employ (15.13) and 
conclude that f is continuous at each interior point of S. In fact, f satisfies a 
Lipschitz condition at each interior point. D 

Remark. Convex functions may be discontinuous at boundary points. To 
see this, with I = {x: 0 :s;; x :s;; 1 }, define f: I--+ ~1 so thatf(x) = x, 0 < x < 1, 
f(O) = 1, f(1) = 2. Then f is convex on I and discontinuous for x = 0, 1. 

If a convex function is differentiable at interior points, then we can obtain 
more specific information about hyperplanes of support of such a function. 
The next theorem gives the precise results. 

Theorem 15.18. LetS be a convex set in ~Nand suppose that f: S --+ ~ 1 is convex. 
Let x0 be an interior point of S. 

(i) Then there are real numbers a1 , a2 , ••• ,aN such that 
N 

f(x) ~ f(x0 ) + L a;(x; - x?), x E S. 
i=1 

(ii) Iff E C1 on s<O>, then 

of I a;=- . 
OX; x=xO 

(iii) Iff E C2 on s<o>, then the convexity off on s<OJ is equivalent to the inequality 

.t (~0~[ .I ).A.i.A.i~O forall.A.E~Nandallx0 ES<0>. 
&,J-1 UX1UXJ x=xO 

PROOF 

(i) Let G be the set in ~N+1 defined by G = {(x, y): xES, y E ~1 • y ~ f(x)}. 
Then G is a convex set and, setting y0 = f(x0 ), we see that (x0 , y0 ) E oG. 
Hence there is a hyperplane H0 in ~N+l passing through (x0 , y0 )with the 
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property that G lies entirely on one side of H0 . Since f is continuous, the 
point (x0 , y0 + 1) is an interior point of G. Thus H0 is not a "vertical" 
hyperplane and therefore is of the form 

N 

y = f(x0 ) + L a;(X; - x?). 
i=l 

The region G is above H0 • 0 

The proofs of (ii) and (iii) are obtained by expanding f in a Taylor series 
with remainder and using the result obtained in Part (i). The details are left 
to the reader. 

PROBLEMS 

1. Let A and B be convex, disjoint, closed, nonempty sets in ~N. Show that Au B 
can never be convex. 

2. Show that every convex polygon in ~2 is the intersection of a finite number of 
half-planes. 

3. Show directly (without using Theorem 15.11) that if a convex setS in ~2 has three 
points which do not lie on a line, then S must have interior points. 

4. Let f 1, f 2, ... , fP be convex functions defined on a convex set S in ~N. Let oc; ~ 0, 
i = 1, 2, ... , p be given numbers. Show that If=1 ocJ; is a convex function. Give an 
example to show that the conclusion may be false if any oc; is negative. 

*5. Let S be a convex region in ~2 with interior points and such that as has a unique 
tangent line at each point. Show that S can be inscribed in a square. 

6. Consider the family of conical regions in 3-space which satisfy inequalities of the 
form (ocx2 + {Jy 2 ) 112 ~ z, oc > 0, p > 0, constants. Show that the intersection of any 
number of such regions is a convex set. 

7. Let f, g be real-valued, nonnegative convex functions defined on an interval I c ~ 1• 

Find conditions on f and g such that f · g is convex. 

8. Prove Theorem 15.13. 

9. Given f(x) = L~=o anxn is a convergent series on I = { x: 0 ~ x ~ 1 }. If an ~ 0 for 
all n, show that f is convex on I. 

10. Let S be any set in ~N. The convex bull of S is the intersection of all convex 
sets which contain S. Show that the convex hull of S consists of all points of 
the form x = A.0x0 + · · · + A.kxk where X; E S and A.; ~ 0 for i = 0, 1, ... , k and 
A.1 + ... + A.k = 1. 

11. Show that if a set S in ~N is open, its convex hull is open (see Problem 10). 

12. A subset K of ~N is called a cone if, whenever x E K, then A.x E K for every A. ~ 0. 
Show that a cone K is convex if and only if x + y E K whenever x, y E K. Give an 
example of a nonconvex cone. Show that if K 1 and K 2 are cones in ~N, then 
K 1 11 K 2 and K 1 u K 2 are cones. If K 1 and K 2 are convex, under what conditions, 
does it follows that K 1 11 K 2 and K 1 u K 2 are convex cones? 
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13. Let K be a convex cone in ~N which contains an entire line I through the origin. 
If K also contains an interior point, show that K is either all of ~N or a half-space. 
(See Problem 12.) 

14. In the notation of Lemma 15.3 show that if f(x1) ~ f(x4), then m13 ~ m24. 

15. Prove Parts (ii) and (iii) of Theorem 15.18. 

16. Show that the intersection of any family (finite or infinite) of convex sets is a convex 
set (Theorem 15.8). 

17. LetS be a convex set in ~N which contains three points P, Q, R, not on a straight 
line. Show that the interior of the triangle with vertices P, Q, R lies in S. 

18. Let B(p0 , r) be a ball in ~N with center at p0 and radius r. Show that B is a convex 
set. 

19. In ~N, define the cylinder C = {(x1 , x 2 , •.• , xN): xi+ x~ + ··· + x~- 1 ~ 1, 0 ~ 
xN ~ 1 }. Show that Cis a convex set. 

20. In ~N, define A= {(x1 , x2, ... , xN): x~ ~xi+···+ x~_1 , -1 ~ xN ~ 1}. Show 
that A is not a convex set. 

21. Define in ~2 the set B = {(x1 , x2 ): xi+ x~ ~ 1}. Show that the function y = 
f(x) = axi + fJx~, a > 0, fJ > 0 defined in B is a convex function. 

22. In ~2 consider the squareS= {(x1, x2): 0 ~ x1 ~ 1, 0 ~ x2 ~ 1}. Show that the 
function y = g(x) = x 1 x2 is not convex in S. 

15.3. Arzela's Theorem; the Tietze Extension 
Theorem 

LetS be a metric space and !Fa family of functions from S into IR 1. In many 
applications we are given such a family and wish to extract from it a sequence 
offunctions fn: S-+ IR 1 which converges at every point pinS to some function 
f If Sis an arbitrary metric space and !F is, say, any collection of continuous 
functions, then not much can be said about convergent sequences in /F. 
However, if the members of !F have certain uniformity properties which we 
describe below and if S is restricted properly, then it is always possible to 
extract such convergent subsequences (Theorem 15.20 below). 

Definitions. A metric space S is separable if and only if S contains a countable 
dense set. It is easy to see that IRN is separable for every N. In fact, the rational 
points, that is, the points x:(x1,x2, ... ,xN) such that all xi are rational 
numbers form a countable dense set in IRN. 

We now show that large classes of metric spaces are separable. 

Theorem 15.19. A compact metric space S is separable. 
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PROOF. We recall Theorem 6.25 which states that for every~> 0, there is a 
finite number of points p1 , p2 , ••• , Pt (the number k depending on ~)such that 
S is contained in U~=l B(p;, ~). Consider the sequence ~ = 1, 1/2, 1/3, ... , 
1/n, ... , and the totality of points which are centers of the finite number of 
balls of radii 1/n which cover S. This set is countable and dense, as is readily 
verified. D 

Remark. We give an example of a space which is not separable. A sequence 
of real numbers x1 , x2 , ••• , xn, ... is bounded if there is a number M such that 
lx;l ~ M for all i. Denote such a sequence by x and consider the spaceS of all 
such elements x. It is not difficult to verify that the function 

d(x, y) =sup lx;- Y;l 
i 

(15.14) 

where x=(x1 , ... ,xn•···> and y=(y1 , ••• ,yn•···> is a metric on S. Now 
supposeS were separable. Then there would be a countable set {xm}, m = 1, 
2, ... ,which is dense inS. We write xm = (xf, xT, . .. , x::', ... ),and we con
struct the element y = (y1 , y2 , ••• , Yn• ... ) as follows: 

{ 1 ifxf ~ 0, 
Y; = -1 if xf > 0, i = 1, 2, .... 

According to (15.14) it is clear that d(xm, y) ~ 1 for every m. Thus {xm} is not 
dense and S cannot be separable. 

Definitions. LetS be a metric space and A a set inS. We denote by !Fa family 
of functions f: A-+ IR 1• For p0 e A, we say that !F is equicontinuous at p0 if 
and only if for every 8 > 0 there is a ~ > 0 such that 

lf(p)- f(Po)l < 8 (15.15) 

for all p e A n B(p0 , ~) and for all f in F. The family is equicontinuous on a 
set A if it is equicontinuous at each point of A. Clearly, each f in !F is 
continuous if !F is an equicontinuous family. It is important to note that given 
the number 8 the same valw.e {) yields (15.15) for all functions of the family. 

EXAMPLES. Let I= {x: 0 ~ x ~ 1} and consider the family !F ={in} where 
in(x) = xn for x e I. Then it is not difficult to verify that this family is equi
continuous at every point except x = 1. In any neighborhood of x = 1, the ~ 
required for a given 8 shrinks to zero as n tends to infinity (see Figure 15.7). 
Thus there is no single value of{) valid for all xn. On the other hand, the family 
!F = {in} given by in(x) = n sin(x/n) defined on J = { x: 0 ~ x < oo} is equi
continuous. To see this, we apply the Mean-value theorem and find that for 
any n there is an xn between x1 and x2 such that 

In sin(:1)- n sin(:2)1 ~ lcos(:)llx1 - x 2 l ~ Jx1 - x2 J. 

Hence for any 8 > 0 we may choose~ = 8 to obtain (15.15). 
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y 

Figure 15.7. An equicontinuous family except at x = 1. 

It is important to have simple criteria for determining when a family of 
functionsisequicontinuous. Let/= {x: a:::;; x:::;; b} andsuppose§"isafamily 
of functions f: I~ IR1. If all the functions are differentiable and the first 
derivative is bounded for all x E I and f E !IF, then the family is equicontinuous. 
To see this let lf'(x)l :::;; M for all x E I and all f E §". From the Mean-value 
theorem it follows at once that 

lf(xd- f(x2)1 :::;; lf'(OIIxl - x2l :::;; Mlx1 - Xzl· 

Choosing b = 6/M, we see that the definition of equicontinuity is satisfied. For 
a more general criterion see Problem 3 at the end of this section. 

Definition. Let§" be a family offunctions from a metric spaceS into IR1. The 
family§" is uniformly bounded if there is a number M > 0 such that lf(p)l :::;; M 
for all p E S and all f E §". 

We observe that it is possible for a family to be equicontinuous and not 
uniformly bounded or even bounded. Perhaps the simplest example is the 
sequence of functions fn(P) = n, for n = 1, 2, ... , and for all pin a metric space 
S. The functions fn(x) = (1/n)x for x E IR1 provide another example of an 
unbounded equicontinuous family as does the sequence f..(x) = n sin(x/n) 
given above. 

The next technical lemma is needed for the proof of the existence of 
convergent subsequences given in Theorem 15.20. 

Lemma 15.5. Let A be a compact set in a metric space S. Let §" be a family of 
functions from A into IR 1 which is equicontinuous and uniformly bounded on A. 
We set D = supp,qeA d(p, q). (Dis called the diameter of A.) We define 

K = sup lf(p) - f(q)i, fe§. 
p,qeA 
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y 

K 
l/l(x) 

l/l(x) = K for x ;;?> D. 

D 

Figure 15.8 

Then there is a function tjl: I-+ R1 where I= {x: 0 < x < oo} such that: 
(i) t/1 is nondecreasing; (ii) t/J(x) has the constant value K for all x ~ D; 
(iii) lf(p)- f(q)l ~ t/J(x) whenever d(p, q) ~ x,for allf E ~; (iv) limx ... o+ t/J(x) = 
0. (See Figure 15.8.) 

PRooF. We use (iii) to define t/J(x) = sup lf(p) - f(q)l where the supremum is 
taken for all p, q E A with d(p, q) ~ x, and for all f E ~- Since ~ is uniformly 
bounded, t/1 is well defined. Clearly t/1 is a nondecreasing function of x and so 
(i) holds. Since d(p, q) ~ D for all p, q E A, the function t/J(x) has exactly the 
value K for x ~ D. Thus (ii) is established. Property (iii) follows from the 
definition of t/J. To show (iv) holds, let 8 > 0 be given. Since ~ is equi
continuous, each point p E A is the center of a ball B(p, r) of radius r such that 
for any q E A is this ball, we have 

8 
lf(q) - f(p)l ~ 2 for all fe ~-

That fact that A is compact now allows us to use the Lebesgue lemma 
(Theorem 6.27). We conclude that there is a positive number() such that every 
ball B(q, fJ) with q E A must lie in a single one of the balls B(p, r) defined above. 
Suppose p0 , q0 are any points of A with d(p0 , q0 ) < fJ. Then p0 , q0 E B(p0 , fJ), 
and so p0, q0 E B(ji, f) for some ji and f. Therefore 

8 8 
lf(Po) - f(qo)l ~ lf(Po) - f(ji)l + lf(ji) - f(qo)l ~ 2 + 2 = 8 

for allfe ~-

Hence tjJ(fJ) < 8, and since 8 is arbitrary, limx ... o+ t/J(x) = 0. D 

One method of obtaining solutions of differential and integral equations 
consists of the following procedure. First, a family of functions is found which 
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approximate the solution. Next, it is shown that this family is equicontinuous 
and bounded. Then, with the aid of the next theorem (Arzela), a convergent 
subsequence is extracted from the family. Finally, the limit of the subsequence 
is shown to be the desired solution of the differential or integral equation. 

Theorem 15.20 (Arzela's theorem). Let S be a separable metric space, and 
suppose that J,.: S--. ~1, n = 1, 2, ... , form on San equicontinuous, uniformly 
bounded family §'. 

(i) Then there is a subsequence fk,, fk2 , ••• , fkn, ... of {J,.} which converges at 
each point of S to a continuous function f 

(ii) if the spaceS is compact, then the subsequence converges uniformly to f. 

PRooF 
(i) Let {Pn} = A be a countable, dense subset of S. Since the {J,.} are 

uniformly bounded, {J,.(pd} is a bounded set of real numbers and so has a 
convergent subsequence. Denote the subsequence by g11 (pd, g12(pd, ... , 
glk(pd, .... Consider {glk(p2 )}. This sequence of real numbers has a con
vergent subsequence which we denote by g21 (p2), g2 2(p2 ), ••• , g2t(P2), .... We 
continue the process. We now observe that the "diagonal sequence" of func
tions of g11 , g22 , .•• , gkk• ... converges for every Pn· We denote the limit 
function (defined on A) by f, and we simplify the notation by setting gkk = gk. 

Let p be any point of S and let e > 0 be given. From the equicontinuity of 
§',it follows that 

whenever d(p, q) < ll (15.16) 

for all k. Because A is dense in S, there is a q0 e A such that d(p, q0 ) < ll. We 
now show that the sequence {gt(P)} is a Cauchy sequence. We have 

igk(P) - g,(p)l ~ igk(p) - gk(qo)i + igk(qo) - g,(qo)l + lg,(qo) - g,(p)l. 

Because of(15.16), the first and third terms on the right are less than e/3. Also, 
there is an N > 0 such that lgt(q0 ) - g1(q0 )1 < e/3 if k, l > N (because gk 
converges at all points of A). Therefore {gk(p)} is a Cauchy sequence for all 
p e S. The limit function f is now defined on S and we show that it is 
continuous. Let p0 e Sande > 0 be given. From the equicontinuity, it follows 
that igk(P)- gt(Po)l ~ e whenever d(p, p0 ) < ll, and this holds for all k. How
ever, gt(P)--. f(p) and gt(P0 ) --. f(p0 ) as k --. oo. The inequality holds in the 
limit and f is continuous at p0 • 

(ii) We establish the uniform convergence when Sis compact. Let e > 0 be 
given. From Lemma 15.5 there is an x > 0 so small that 

f. 
lgn(p) - gn(q)l ~ 1/J(x) = 3 whenever d(p, q) ~ x, 

and this inequality holds for all n. Consider all balls of radius x in S. Since S 
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is compact, there is a finite number of such balls with centers say at p1, p2 , 

... , Pm such that U:"=t B(p;, x) ::> S. We know that limn .... oo gn(P;) = f(p;), i = 1, 
2, ... , m. Choose an N so large that 

for all n ~ N, i = 1, 2, ... , m. 

Let p be any point of S. Then pis in one of the covering balls, say B(p;, x). 
Consequently, 

provided that n > N. Since the choice of N does not depend on the point p 
chosen, the convergence is uniform. 

Since the space S is compact, the limit function f is uniformly continuous. 
D 

Remarks 
(i) If fF is a family of functions defined on a metric space S with range in 

JRN, equicontinuity may be defined in a way completely analogous to that given 
when N = 1. We simply interpret the quantity lf(p) - f(q)l to be the distance 
in JRN. The proofs of Lemma 15.5 and Arzela's theorem hold with the modi
fications required when replacing distance in IR 1 by distance in IRN. 

(ii) Let S be any compact, separable metric space and let C(S) be the space 
of continuous real-valued bounded functions on S. We define 

d(f, g) = sup lf(p) - g(p)l 
peS 

and it is easily verified that C(S) is a metric space. Then Arzela's theorem states 
that an equicontinuous, closed bounded set in the metric space C(S) is com
pact. If C(S, JRN) denotes the metric space of bounded continuous functions 
f: S ~ JRN, a similar statement holds on the compactness of bounded, equi
continuous sets. 

Let f: I~ IR 1 be a continuous function with I= {x: a~ x ~ b}. We may 
define 

{
f(a) for x <a, 

g(x) = f(x) for x e I, 

f(b) for x > b. 

Clearly, g is continuous on all of IR\ coincides with f for x e I, and 
maxxe R'lg(x)l = maxxei lf(x)l. This example is typical of the fact that con
tinuous functions defined on a closed subset of a metric space may be extended 
as a continuous function on the entire space in such a way that the supremum 
of the extended function does not exceed that of the original function. 
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p 

Figure 15.9 

In the above example it is essential that the interval I is closed. The function 
f(x) = 1/(x- a)(x- b) is continuous on J = {x: a < x < b}, and there is no 
way of extending fin a continuous manner beyond this open interval. 

Definition. Let A be a set in a metric space S. The distance of a point p from 
A, denoted d(p, A), is defined by the formula 

d(p, A) = inf d(p, q). 
qeA. 

The following useful lemma shows that the distance function we just defined 
is continuous on the entire metric space. 

Lemma 15.6. Let A be a set in a metric space S. Let qJ(p) denote the distance 
from p to A. Then qJ is continuous on S. In fact, i((J(p)- qJ(q)l ~ d(p, q) for p, 
q E S. (See Figure 15.9.) 

PROOF. For any e > 0 there is a point p0 E A such that qJ(p) > d(p, p0 ) -e. 
From the triangle inequality we find 

d(q, Po) ~ d(q, p) + d(p, Po) 

~ d(p, q) + qJ(p) + e. 

From the definition of qJ(q), we get 

qJ(q) ~ d(q, p0 ) ~ d(p, q) + qJ(p) + e, 

and therefore 
qJ(q) - qJ(p) ~ d(p, q) + e. 

Since e is arbitrary, it follows that qJ(q) - qJ(p) ~ d(p, q). Interchanging p and 
q, we get the result. D 

Lemma 15.7. Let A and B be disjoint closed sets in a metric space S. Then there 
is a continuous function 1/J: S-+ IR1 such that 1/J(p) = 0 for pEA, 1/J(p) = 1 for 
p E B, and 1/1 is between 0 and 1 for all p E S. 
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PROOF. Define 
d(p, A) 

1/J(p) = d(p, A)+ d(p, B)' 

and it is immediate that 1/J has the desired properties. 0 

Remark. Let a > 0 be any number. Then the function 

1/11 (p) = -a + 2ai/J(p) 

has the property that 1/11(p) = -a for pEA, 1/11(p) =a for p E Band 1/11 is 

between -a and a for all pES. Also, 1/11 is continuous on S. 

In Section 15.4 we establish several theorems which show that continuous 

functions may be approximated uniformly by sequences of smooth functions. 

In order to make such approximations it is important to be able to enlarge 

the domain of the continuous function. The next result gives the basic exten

sion theorem for continuous functions. 

Theorem 15.21 (Tietze extension theorem). Let A be a closed set in a 
metric space S and f: A--+ ~1 a continuous, bounded function. Define M = 
suppeAif(p)l. Then there is a continuous function g: S--+ ~1 such that g(p) = 
f(p) for pEA and lg(p)l :::;; M for all pES. 

PROOF. We shall obtain gas the limit of a sequence g1, g2, ... , gn, ... which 

will be determined by sequences f 1, f 2, ... , fn, ... and 1/J 1, 1/12, ... , 1/Jn, ... which 
we now define. We begin by setting f 1(p) = f(p) for pEA, and we define the 

sets 
A1 = {p: pEA and f 1(p):::;; -1M}, 

B1 = {p: pEA and f1(p);;.: 1M}. 

The sets A1, B1 are disjoint and closed. Now according to the Remark 

following Lemma 15.7, there is a function 1/11 (p), continuous on Sand such that 

1/11(p) = -1M on A1, 

1/11(p) = 1M on B1, 

11/11(P)I:::;; 1M on S. 

We define 

f2(p) = f1(p)- 1/11(p) for pEA. 

We show that lf2(p)l :::;; (2/3)M for pEA. To see this, let p E A1. Then f 2(p) = 

(1/3)M + f 1(p). But -M:::;; f 1(p):::;; -(1/3)M on this set. Hence l(f2(p)l:::;; 

(2/3)M. Now let p E B1. Then f 2(p) = f 1(p)- (1/3)M. From the definition of 

B1, we get lf2 (p)l:::;; M- (1/3)M = (2/3)M. Similarly, if pEA- A1 - B1, 
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then both/1 and 1/11 are bounded in absolute value by (1/3)M. Now we define 

A 2 = {p: peA and / 2 (p) ~ -i·jM}, 

B2 = {p: peA and / 2 (p) ~ i·jM}. 

The sets A 2 , B2 are disjoint and closed. In the same way as before, there is a 
function 1/12(p) such that 

1/12(p) = -i·jM on A2 , 

1/12(p) = i·iM on B2 , 

11/12(P)I ~ i·iM on S. 

We define 

and find 

Continuing in this manner, we define 

An= {p: peA and f,(p) ~ -i<i>"-1 M}, 

Bn = {p: p e A and J,(p) ~ i<1r1 M}. 

The function 1/Jn is defined in the analogous manner and furthermore 

11/ln<P>I ~ i<1r1 M, Pes. 

We define 
/,+1 (p) = f,(p) - 1/Jip). 

The condition 1/,+1 (p)l ~ (2/3)" M holds. Next we define 

gip) = 1/11(p) + ... + 1/Jip), pES, 

and we show that gn is a uniformly convergent sequence. In fact, form > n, it 
follows that 

lgm(P)- gn(P)I = 11/ln+1(P) + ···1/Jm(P)I 

~ U<t>" + · · · + (j)mJM 

~ i(i)"[l + j + · · · + (jr-"JM ~ (1)" M. 

The {gip)} form a Cauchy sequence and so converge uniformly to a con
tinuous function which we denote by g. We now show that g = f for peA. 
To see this, observe that 

n 

g" = 1/11 + ··· + "'" = L u;- !i+t> = !1- fn+1· 
i=1 

Since lfn+l (p)l ~ 2/3)" M, we know that /,+1 (p)-+ 0 as n-+ oo. Therefore gn -+ 
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g = !1 = f as n--+ oo. Also, 

lg(p)l ~ tM[l + ~ + (~)2 + · · ·] = M for all pES. 0 

PROBLEMS 

1. Let I = { x: 0 ::::;; x ::::;; 1} and consider the totality offunctions f: I -> IR 1 such that 
f is bounded. Denote this space by fJI and for f, g E fJI, let 

d(f, g) = sup lf(x) - g(x)l. 
xel 

Show that d(f,g) is a metric and that fJI is a metric space which is not separable. 

2. Let x = (c 1, c2 , ••• ,c., ... ) where the {c.} are real numbers such that c.-> 0 as 
n -> oo. Let '6'0 be the totality of all such sequences. Let y = (d 1 , d2 , ••. , dm, ... ) and 
for x, y E '6'0 define 

d(x, y) = sup lc;- d;l. 
1 ~i< 00 

Show that '6'0 is a metric space which is separable. [Hint: Consider the elements 
of'6'0 of the form(r1 , 0, 0, ... ),(r1 , r2 , 0, 0, ... ), etc., where r; are rational numbers.] 

3. Let S be a metric space and suppose that f: S-> IR 1 has the following property: 
there are positive numbers M, ex with 0 < ex ::::;; 1 such that 

lf(p)- f(q)l ::::;; M[d(p, q)]" 

for any two points p, q in S. Then we say f satisfies a Holder condition on S with 
constant M and exponent ex. Show that a family:!' of functions satisfying a Holder 
condition with constant M and exponent ex is equicontinuous. 

4. Let A be an open convex set in !RN and {f.} a sequence of functions f.: A -> IR1 

which are convex. Show that if {!.} converges at each point of A, then {!.} 
converges uniformly on each compact subset of A. 

5. Let A be an open convex set in !RN and {f.} a sequence of functions f.: A-> IR 1 

which are convex. Suppose that {f.} are uniformly bounded. Show that {f.} 
contains a convergent subsequence and that the subsequence converges uniformly 
on each compact subset of A. 

6. Let I= {x: a::::;; x < oo} and let:!' be a family of functions f: I-> IR 1 which are 
differentiable on I. Let M0 , M1 be constants such that lf(x)l ::::;; M0 , lf'(x)l ::::;; M1 

for all f E :!'. Is there always a subsequence of :!' which converges uniformly 
on I? 

7. Let A be a bounded convex set in !RN and suppose A(o) is not empty. Let{!.} be 
a sequence of functions f.: A-> IR 1 such that f. E C 1 for each nand lf.(x)l ::::;; M0 

for all x E A and IV f.(x)l ::::;; M 1 for all x EA. Then a subsequence of {f.} converges 
uniformly on A. 

8. Let I= {x: a::::;; x::::;; b} and S = {(x, y): a::::;; x::::;; b, a::::;; y::::;; b}, and suppose that 
K: S-> IR 1 is continuous on S. We set 

f(x) = r K(x, y)g(y) dy (15.17) 
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where f and g are real-valued functions defined on I. For any family of functions 
~. Equation (15.17) defines a family of functions !F. Show that if for all g e ~ we 
have jg(y)l ~ M for ally e I, then the family fF contains a uniformly convergent 
subsequence. 

9. Prove Arzela's theorem (Theorem 15.20) for functions defined on a separable 
metric space with range in IRN, N > 1. 

10. Give an example of a function defined on I= {x: a< x < b} with range in IR1 

which is continuous on I, bounded, and which cannot be extended as a continuous 
function to any larger set. i.e., show that the conclusion of Tietze's theorem does 
not hold. 

11. In Lemma 15.7, suppose that the sets A and Bare disjoint but not closed. Show 
that it may not be possible to find a function 1/1 with the stated properties. 

12. Let I= {x: a~ x < oo} and let f: I-+ IR1 be continuous but not necessarily 
bounded. Show that f can be extended to all IR1 as a continuous function. Prove 
the same result if the domain off is any closed set A c IR 1• 

13. In IR2 let S = {(x1 , x2 ): 0 ~ x 1 ~ 1, 0 ~ x 2 ~ 1}, and define f(x 1 , x2 ) = x1x2 for 
(x1 , x2 ) e S. Show explicitly how f can be extended to all of IR2 as a continuous 
function with no increase in the maximum of its absolute value. 

14. In IR3 let C = {(x1 , x 2 , x3): 0 ~ x 1 ~ 1, 0 ~ x 2 ~ 1, 0 ~ x3 ~ 1}, and definef(x) = 
x 1x2 x3 for x e C. Show explicitly how f can be extended to all of IR3 as a 
continuous function with no increase in the maximum of its absolute value. 

15.4. Approximations and the Stone
Weierstrass Theorem 

Let J, defined on an interval I= {x: a< x < b} with values in IR 1, have 
derivatives of all orders at a point c in/. We recall that f is analytic at c if and 
only iff can be expanded in a power series of the form 

f(x) = f Jl">~c) (x - c)", 
n=O n. 

(15.18) 

and this series has a positive radius of convergence. A function is analytic on 
a set A if it is analytic at each point of A. As we saw in Chapter 9, a function 
may possess derivatives of all orders (we say it is infinitely differentiable, and 
write f e C00 ) at a point and yet not be analytic at that point. To illustrate 
this fact consider the function 

f(x) = {e-1/x2, 
0, 

X #;0, 
X =0. 

It is not difficult to verify that JI">(O) = 0 for n = 1, 2, ... , and therefore the 
power series expansion (15.18) does not have a positive radius of convergence 
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y 

g(x) vanishes for -oo < x ,;;;; 0 and I ,;;;; x < +oo 

Figure 15.10 

when c = 0. However, clearly f is analytic for all x #- 0. We now define the 
functions g1 and g: 

e ' { 
-1jx2 

g1(x) = O, 
X> 0, 

X~ 0, 

and g(x) = g 1 (x)·g1(1- x). Then g(x) vanishes outside the unit interval I= 
{x: 0 < x < 1} and is positive on I (see Figure 15.10). We set 

M = L g(x)dx 

and define 

1 IX h(x) = M 
0 

g(t) dt. 

Then h E coo and h has the properties: h(x) = 0 for x ~ 0, h(x) = 1 for x ;;;;: 1 
and h(x) is nondecreasing (see Figure 15.11 ). Finally, we introduce the function 
k: ~ 1 ~ ~ 1 by the formula 

k(x) = {1- h(2x- 1) forx;;;;: 0, 
k(- x) for x ~ 0. 

Then we verify easily that k(x) is nonnegative everywhere, and 

k(x) = g for-t~ x ~ t, 
for x ;;;;: 1, and for x ~ - 1. 

y 

h(x) = 0 for -oo < x ,;;;; 0; h(x) = I for I ,;;;; x < +oo 

Figure 15.11 
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y 

-I 0 
k(x) is a coo function1 

Figure 15.12 

In fact, k is nondecreasing for x ~ 0 and nonincreasing fork~ 0 (see Figure 
15.12). The function k is analytic for all values of x except x = ± 1, ±t, at 
which points k is a coo function. Smooth functions which are equal to 1 in a 
neighborhood of some point and which vanish outside a larger neighborhood 
of the same point form a useful tool in the problem of approximation of 
continuous functions by classes of smooth functions. 

The above functions have counterparts in any number of dimensions. We 
define 

k2 (x, y) = k(x) · k(y) 

and obtain a function which has the value 1 on the square 

So={(x,y):-t~x~t. -t~Y~t}, 

which vanishes outside the square 

S1 = { (x, y): -1 ~ X ~ 1, -1 ~ y ~ 1 }, 

and is such that 0 ~ k2(x, y) ~ 1 for all (x, y). Furthermore, k2 has partial 
derivatives of all orders with respect to both x and y. In IRN, we set kN(x 1 , ••• , 

xN) = k(x1 )k(x2 ) ..• k(xN) and obtain a coo function which vanishes outside 
the hypercube of side 2, center at 0, and which has the value 1 on the hypercube 
of side 1, center at 0. 

For many purposes it is convenient to replace kN by a function of r = 
(Lf=1 x? )112 with the same essential properties. To do this we define <p1 (x 1 , x2 , 

... , xN) = k(r) for r > 0. Then with x = (x1 , x 2 , •.. , xN), the function <p1 (x) 
vanishes outside the unit ball B(O, 1) in IRN and has the value 1 inside the ball 
B(O, 1/2). We set 

M 0 =f <p1(x)dx 
B(0,1) 

and define 

<p(x) = <fJ1 (x). 
Mo 

Then <pis a coo function which vanishes outside B(O, 1) and has the property 
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f q>(x) dx = 1. 
B(0,1) 

(15.19) 

Definitions. A function q>: ~N __.. ~1 which is of class C''O, is nonnegative every
where, vanishes outside B(O, 1), and which satisfies (15.19) is called a mollifier. 
Let x be a point in ~Nand p a positive number. We define 

*( ) - q>(x/ p) q>p X - --N-. 
p 

We note that q>: vanishes outside the ball B(O, p) and has the property that 

f q>:(x) dx = 1. 
B(O,p) 

We also call q>: a mollifier or sometimes a modified mollifier. Suppose that 
f: ~N __.. ~1 is a continuous function. We define the mollified function, denoted 
f"'·P' or simply fP, by the formula 

fP = f<P.P(x) = f q>:(x- ~)f(~) d~. (15.20) 
n;!N 

The mollified functions fP are smooth and tend to f as p __.. 0, as we show 
in the next theorem. 

Theorem 15.22. Suppose that f: ~N __.. ~1 is continuous and q> is a mollifier on 
~N. Then for every p > 0, the function f"'.p is of class C"" on ~N and f<P.P 
converges uniformly to f on any compact subset of ~N asp __.. o+. 

PRooF. The formula for fPgiven by (15.20) shows that since q>:(x- ~)vanishes 

outside a ball of radius p with center at x, the integration is over a bounded 
region rather than over all of ~N. Therefore we may use the rule for differen
tiating under the integral sign given in Section 11.1, to deduce that fP has 
partial derivatives of all orders. 

Now let R > 0 be given. Since f is uniformly continuous on the closed ball 
B(O, R + 1), it follows that there is a nondecreasing function 1/J(p) defined on 
I = {p: 0 < p ~ 1} (see Lemma 15.5) such that 

1/J(p) __.. 0 as p __.. o+ and lf(x) - f(y)l ~ 1/J(Ix - yl) 

for all x, y e B(O, R + 1) whenever lx- yl ~ p ~ 1. Accordingly, if p < 1 and 

x e B(O, R), then 

lfp(x) - f(x)l = If q>:(x - ~) (f(~) - f(x)] d~ I 
B(x,p) 

~ I q>:(x - ~)If(~) - f(x)l d~ 
B(x,p) 

~ 1/J(p) f q>:(x - ~) d~. 
B(x,p) 
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The last inequality holds because I~ - xi ~ p. From the definition of <p:, the 
last integral on the right has the value 1, and so 

lfP(x) - f(x)l ~ 1/J(p) 

for all x E B(O, R). Thus fP tends to f uniformly on this ball, and since R is 
arbitrary, the result follows. D 

The next corollaries show that any continuous function on a compact set 
may be approximated uniformly by a sequence of coo functions. Moreover, if 
a function possesses derivatives, then the function and all its derivatives up to 
any finite order may be approximated uniformly by the same sequence. 

Corollary 1. Let A be a compact subset of IRN and suppose f: A-+ IR 1 is 
continuous on A. Let G be an open set in IRN containing A. Then there is a 
sequence {fn} such that fn is coo on G for each n and f, converges uniformly to 
fonA. 

PROOF. By the Tietze extension theorem (Theorem 15.21) there is a continuous 
function F: IRN-+ IR 1 such that F = f on A. Let Pn = 1/n and denote by F'P.Pn 
the mollifier of F. Then settingfn(x) = Ftp,pJx) for x E G, we use Theorem 15.22 
to conclude that fn -+ f uniformly on A. D 

Corollary 2. Suppose that in Corollary 1 the interior A<0 > of A is not empty and 
that f is of class Ck on A<0 >. Let Daf denote any partial derivative off not 
exceeding order k. Then the sequence fn in Corollary 1 may be chosen so that 
Daf, converges uniformly to Daf on each compact subset of A<0 >. 

PROOF. The function F in Corollary 1 has partial derivatives on A<0 >, and 
we set G0 = Da F. We form the mollified function G'P.Pn and it is clear that 
DaF'P•Pn = G'P.Pn for x E A<0 >. Then G'P.Pn-+ G0 as before. D 

In Corollaries 1 and 2 above we obtained sequences of coo functions in IRN 
which can be used to approximate an arbitrary continuous function to any 
desired degree of accuracy. If S is any compact metric space and if C(S) is the 
space of continuous functions from S into IR 1 with the usual metric, then we 
seek those subsets of C(S) which yield approximations to all elements of C(S). 
The basic property required of any approximating subset is that it "separate 
points" in S. 

Definitions. Let ffl be a subset of C(S) with the property that for each pair of 
distinct points p, q in S there is a function fin ffl such that f(p) 1= f(q). Then 
we say that the set ffl separates points inS. If ffl has the further property that 
for every pair of distinct points p, q E S and every pair of real numbers a, b 
there is a function f E ffl such that f(p) = a and f(q) = b, we say that ffl 
separates points in S and IR 1. 
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Lemma 15.8. Let f, g be in C(S) where Sis any metric space. Define h(p) = 
max(f(p), g(p)) and k(p) = min(f(p), g(p)) for all peS. Then h, k are members 
ofC(S). 

The proof of Lemma 15.8 depends on the fact that for any two real numbers 
a, b, the relations 

max(a, b) = i(a + b + Ia - bl), min(a, b) = i(a + b - Ia - bl) 

hold. We leave the details of the remainder of the proof to the reader. 

Theorem 15.23 (Stone approximation theorem). Let S be a compact metric 
space. Let !l' be a subset of C(S), the space of continuous functions from S into 
~1 , which separates points inS and ~1 . In addition, suppose that !l' has the 
property that max(.{, g) and min(.{, g) belong to !l' whenever f and g do. Then 
any Fe C(S) can be approximated uniformly on S by functions in !l'. 

PROOF. Let F e C(S) be given. Suppose p, q are inS and let a = F(p), b = F(q). 
Then, since !l' separates points inS and ~1, there is a function g = gpq in !l' 
such that 

Since g and F are continuous at q, for any e > 0 there is a neighborhood N(q) 
such that g(s) > b - te and F(s) < b + te for s e N(q). Hence 

g(s) > F(s)- e for s e N(q). (15.21) 

We fix p and obtain a function gpq and a neighborhood N(q) for each q e S. 
Since S is compact, there is a finite subset of such neighborhoods which covers 
S. We denote them 

With these neighborhoods we associated the functions 

each of which satisfies an inequality similar to (15.21). We now define 

hP = max(gpq, gpq,• ... , gpqJ· 

Then hP is in !l' and it follows from (15.21) that 

hp(s) > F(s) - e for all s e S. (15.22) 

From the way we defined hP, it follows that hp(p) = a since gpq, (p) = gpq2(p) = 
· · · = gpq)P) =a. Because hP and Fare continuous, there is a neighborhood 
N(p) such that 

hp(s) < F(s) + e for s e N(p). (15.23) 

We can find a function hP and a neighborhood N(p) for each point pinS and, 
because Sis compact, there is a finite subset N(pd, N(p2 ), ••• , N(pn) of such 
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neighborhoods which covers S. We set 

h = min(hp,, hP2 , ••• , hPJ 

and, by virtue of(15.22) and (15.23), it follows that 

h(s) > F(s) - e for all s E S, 

h(s) < F(s) + e for all s E S. 

409 

(15.24) 

That is, IF(s)- h(s)l < e for all s E S. Since e is arbitrary the result is 
established. 0 

Definition. Let d be a subset of C(S) such that for every two functions f, g in 
d: (i) a.f + pg Ed for all real numbers a., p; and (ii) f · g Ed. We then say that 
the set d forms an algebra of functions in C(S). 

If S is a compact metric space and d is any algebra of functions in C(S) 
which separates points of S and which contains the constant functions, then 
we shall show that d is dense in C(S). More precisely, we shall prove that 
every function fin C(S) can be approximated uniformly by polynomials fn 
where each fn is a polynomial in functions of d. To establish this result, known 
as the Stone-Weierstrass theorem, we employ two elementary facts con
cerning the functions I xI and Jl+X. The most important special case of this 
approximation theorem, due to Weierstrass, states that any real-valued 
continuous function defined on a closed interval I= {x: a~ x ~ b} can 
be approximated uniformly by polynomials. Equivalently, we say that the 
collection of polynomials is dense in the space C(I). 

Lemma 15.9. Let I = { x: -1 ~ x ~ 1 }, and let <p: I-+ ~ 1 be the function 
<p(x) = Jl+X. Then the series expansion 

( ) _ 1 1 ~ ( -1t(n + 1)(2n)! n+1 

(/J X - + 2 nf'o 22n[(n + 1)!]2 X 
(15.25) 

converges uniformly on I. Hence <p can be approximated uniformly on I by the 
polynomials consisting of the partial sums in (15.25). 

PROOF. The ratio test shows that the series converges at all interior points of 
I. To establish the uniform convergence on I, we use Stirling's formula 1 (valid 
for large n) 

n! "' e-<n+1>(n + l)n+(l/2 ) fo(l + o(1/n)) 

1 A proof of Stirling's formula may be found, for example, in Calculus by T.M. Apostol, Blaisdell, 
New York, p. 450. 
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and we find that for some constant K 

(n + 1)(2n)! K (n + 1)e-2"+1(2n + 1)2"+<112> 

22"[(n + 1)!]2 ~ .j2rc 22"e 2n 4(n + 2)2n+2 

Ke 5 

~ .j2rc(n + 2)3/2. 

Hence the series for <P is dominated by the series L~=1 K dn 3' 2 for all x on I, 
and so the convergence is uniform. D 

Remark. For an elementary proof of Lemma 15.9 (without use of Stirling's 
formula) see Problem 11 at the end of this section and the hint given there. 

Lemma 15.10.Let IM = {x: -M ~ x ~ M} and let 1/J: IM--+ IR 1 be the function 
1/J(x) = lxl- Then 1/1 can be approximated uniformly on IM by polynomials in x. 

PROOF. Let M = 1. Then we define t/J1 (x) = (1 + u)1'2 where u = x 2 - 1. By 
Lemma 15.9 the function (1 + u)1'2 may be approximated uniformly on I by 
polynomials. Since u is in I whenever x is in I, we can approximate t/11 by 
polynomials in x 2 - 1, that is, polynomials in x. For the general case, we write 
1/J(x) = Mt/11 (x/M), and the result follows. D 

Theorem 15.24 (Stone-Weierstrass theorem). LetS be a compact metric space 
and let d be an algebra in C(S) which separates points of S. Suppose that the 
function fo defined by f 0 (p) = 1 for all pES is in d. Then any function fin 
C(S) can be approximated uniformly on S by functions in d. 

PROOF. Let !£ be the subset of functions of C(S) which can be approximated 
uniformly by functions of d. We wish to show that!£= C(S). We shall show 
that!£ satisfies the hypothesis of Theorem 15.23. For this purpose we prove 
that d separates points inS and IR 1• Let a, bE IR\ and p, q E S with p-# q. 
There is an f E d such that f(p) -# f(q). Since f 0 (p) = f 0 (q) = 1, there are real 
numbers oc, f3 such that 

ocf(p) + f3fo(P) = a, ocf(q) + f3fo(q) = b. 

Hence the function h = ocf + f3f0 is in d and satisfies the conditions h(p) = a, 
h(q) =b. That is, d separate points inS and IR 1. We now show that for f and 
gin d, the functions max(.{, g) and min{f, g) are in .2. Let fEd be given. 
Then there is an M > 0 such that lf(p)l ~ M for all pES. According to 
Lemma 15.10 the function 1/J[f(p)] = lf(p)l can be approximated uniformly 
by polynomials in f Since d is an algebra, every polynomial in f is also in 
d and so 1/J can be approximated by polynomials in d. Let f and g be arbitrary 
elements of d. Then f + g and f- g are in d and If- gl can be approx
imated uniformly by elements of d. We know that 

max{f, g) = t{f + g + If- gl) and min{f, g) = t{f + g - If- gl). 
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Hence for any f and g in d, we conclude that max(f, g) and min(f, g) are in 
!e. Next, suppose that f and g are in !e. We show that max(!, g) and min(!, g) 
are in !e. To see this, choose sequences f,, gn, n = 1, 2, ... , of functions in .91 
which approximate f and g uniformly on S. Then Fn = max(fn, gn) and Gn = 
min(!", gn) are functions in !e. It is clear from the formula 

F" = max(!", g") = t(J, + g" + Jf, - g"J) 

and the similar formula for Gn that Fn --+max(!, g) and Gn --+min(!, g) as 
n--+ oo. Thus max(f, g) and min(!, g) are in !e whenever f and g are. 

Finally, let f be any element in C(S). According to Theorem 15.23, the 
function f can be approximated uniformly by elements of !e. Therefore given 
e > 0, there is a function f 1 in !e such that Jf(p) - f 1 (p)J < te for all peS. 
Moreover, there is a function f 2 in .91 such that \f1(p)- f 2 (p)J < h for all 
peS. We conclude that Jf(p)- f 2 (p)J < e for all pinS, and so !e = C(S). D 

Corollary (Weierstrass approximation theorem). LetS be a closed bounded set 
in !RN. Then any continuous function on S can be approximated uniformly on S 
by a polynomial in the coordinates x 1 , x 2 , ••• , xN. 

To establish the Corollary it is only necessary to show that the set of 
polynomials separates points of S. We leave the details to the reader. 

PROBLEMS 

1. Given the function f(x) = exp( -1/(x2 (1 - x)2 )) for x # 0, 1 and f(O) = f(1) = 0, 
show that J<"l(O) = J<">(1) = 0 for n = 1, 2, .... 

2. Let G be a bounded region in IRN with smooth boundary oG. To each x0 of G we 
can associate an infinitely differentiable mollifier cp(x) which vanishes outside some 
neighborhood of x 0 contained in G. Show that it is possible to obtain a partition 
of unity. That is, find k functions ljJ 1 , 1/12, ... , 1/Jk, each infinitely differentiable, each 
vanishing outside some neighborhood in G, and such that 1/11 (x) + · · · + 1/Jk(x) = 1 
for all x E G. [Hint: Use the Heine-Bore! theorem to obtain cp1, cp2, ... , cpk covering 
G and then set 1/J;(x) = (/J;(x)/D=t (/J;(x).] 

3. Prove Lemma 15.8. 

4. Show that the set P of all polynomials in x defined on I = { x: - 1 ~ x ~ 1} forms 
an algebra in C(I) which separates points in I and IR 1• However, show that 
P is not a subset of the type !£ described in the Stone approximation theorem 
(Theorem 15.23). 

5. Let I= {x: 0 ~ x ~ 1} be given and let !£ be the subset of C(I) consisting of all 
piecewise linear (continuous) functions. Show that !£ satisfies the hypotheses of 
Theorem 15.23. 

6. Show that Theorem 15.24 fails to hold if S is not compact. [Hint: Let I = 

{x: 0 ~ x < oo }, let d be the collection of all polynomials, and consider the 
function f(x) = ex.] 
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7. Let A be a hypercube in IRN. Show that the space C(A) is separable. [Hint: Consider 
the family of all polynomials in N variables which have rational coefficients.] 

8. Let I = { x: 0 ~ x ~ 1} be given and denote by !l' the collection of all members f 
in C(I) such that f(O) = 0. Is !l' dense in C(l)? 

9. Let I = { x: 0 < x ~ 1} and C(l) be given. Show that the conclusion of the Stone
Weierstrass theorem fails for the algebra JJI of all polynomials on I in spite of the 
fact that JJI satisfies the hypotheses of Theorem 15.24. 

10. Prove that it is not possible to have a mollifier in n;tN which is analytic everywhere. 

11. Employ the following technique to provide an elementary proof of Lemma 15.9: 
Define 

b =(1-!)(1-!)···(1--1 ) • 2 4 2n-2' 
n = 2,3, ... , 

and let a. = ( -1)"+1 b./2n. Show that the series (15.25) has the form 1 + tx + 
L::";2 a.x•. Use the fact thatlog(1 - x) ~ -xforO < x < 1 to obtain the inequality 

1( 1 1 ) 1 log b. ~ - 2 1 + 2 + · · · + n _ 1 ~ - 2log n. 

Finally show that b.~ 1/Jn, and consequently that la.l ~ 1/2n312• 

12. Let k3(x) = k(xdk(x2 )k(x3 ) where k is the function defined on page 404 and 
x = (x1 , x2 , x3 ) e IR 3. Descrjbe the set in IR3 where k is analytic and the set where 
k is coo but not analytic. 

13. Let rp(x, y) be a coo function for 0 ~ x ~ 1, 0 ~ y ~ 1 and suppose f(y) is defined 
for 0 ~ y ~ 1. What conditions must f satisfy in order that the function 

f.,(x) = I1 
rp(x, y)f(y) dy 

is coo for 0 ~ x ~ 1? 

14. Prove the Corollary to Theorem 15.24. 



CHAPTER 16 

Vector Field Theory; 
the Theorems of Green 
and Stokes 

16.1. Vector Functions on IR1 

--+ 
Let OP be the directed line segment in ~N having its base at the origin and 
its head at the point P = (1, 0, ... , 0). We define the unit vector e1 as the 
equivalence class of all directed line segments of length 1 which are parallel 

--+ 
to OP and directed similarly. By considering directed line segments from the 
origin to the points (0, 1, 0, ... , 0), (0, 0, 1, ... , 0), ... , (0, 0, ... , 0, 1), we obtain 
the set of unit vectors e~> e2, ... , eN. We denote by VN(~N) or simply VN the 
linear space formed by taking all linear combinations of these unit vectors 
with real scalars. That is, any vector " in VN is of the form 

11 = a 1e1 + a2 e2 + · · · + aNeN 

where the ai are real numbers. Addition of vectors and multiplication of 
vectors by scalars follow the usual rules for a linear space and are a direct 
generalization of the rules for vectors in two and three dimensions which the 
reader has encountered earlier. 1 The length of a vector, denoted 1111, is 

l11l =(a~+ a~+···+ a~) 1'2 . 

Let D be a subset of ~1 and suppose that / 1 , f 2, ... , fN are functions each 
of which is a mapping from D into ~1 • The mapping f: D--+ VN defined by 

teD, (16.1) 

defines f as a vector function from D into VN. 
Let f: D --+ VN be given and suppose that cis in VN. Then /(t) tends to c as 

1 Appendix 4 gives a brief introduction to vectors in N -dimensional Euclidean space. 

413 
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t tends to a if and only if 1/(t) - ci -+ 0 as t-+ a. We write 

lim f(t) = c, 
t-+a 

and observe that if c = c 1 e1 + · · · + cNeN, then f(t) -+ c if and only if .t;(t) -+ c;, 
i = 1, 2, ... , N, as t-+ a. 

Given f: D -+ VN, we define the derivative off at a by the formula 

! '( ) _ 1. f(a + h) - f(a) 
a-1m h . 

h-+0 

(16.2) 

Iff is given by (16.1), the f'(a) exists if and only if the ordinary derivatives 
/;'(a) exist fori= 1, 2, ... , N. We have the formula 

N 

f'(a) = L f/(a)e;. 
i=l 

--+ 
If Pis in IRN, we denote by v(OP) the vector in VN which has the directed 

--+ 
line segment OP as one of its representatives. In terms of such directed line 
segments, the derivative given by (16.2) has the geometric interpretation 
shown in Figure 16.1. 

In terms of a Cartesian coordinate system (x1 , x 2 , ... , xN) in IRN, the func
tion f is a mapping from D into IRN given by 

X;= /;(t), i = 1, 2, ... ' N, t E D. (16.3) 

If all the/; and/;' are continuous in a neighborhood of some point t0 in D, it 
may be possible to eliminate the parameter tin (16.3). If one of the numbers 
/;'(t0 ), i = 1, 2, ... , N, is different from zero, say /{(t0 ), then there is an interval 
t0 - h ~ t ~ t0 + h on which R does not vanish (assuming this interval is 
contained in D). In such a case, we may employ the Implicit function theorem 
to write 

t = gk(xk) with ft[gk(t)] = t 

in some neighborhood of t0 • Therefore, by substitution in (16.3), we find 

and the parameter t has been eliminated. 

r 

Figure 16.1. Geometric interpretation of the derivative. 
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not an arc 

(a) (b) 

Figure 16.2 

Let f be a continuous function from a closed interval I in ~1 into VN. If 
the mapping f: I --. VN is one-to-one, we say that the range off is an arc in 
VN (see Figure 16.2). In general, many functions with range in VN will have the 
same arc as an image. Each such function determines a parametric represen
tation of the arc in terms of a parameter t which takes on values in a domain 
I. The following lemma is needed to show the relationship between any two 
parameters which represent the same arc. 

Lemma 16.1. Let I be an interval in ~1, and suppose that S: I--. ~ 1 is a 
continuous function such that S(td ¥- S(t2 ) for t 1 ¥- t2 • That is, Sis one-to-one. 
Then S is strictly monotone on I. 

PROOF. Suppose that Sis not strictly monotone. Then there are two points t 1 , 

t 2 in I such that 

and, in addition, there are two points t3, t4 in I such that 

We define 

0 ~ s ~ 1, 

and clearly ({) is continuous since Sis. Moreover, ({)(0) > 0, ({)(1) < 0. Hence 
there is a value s such that ({)(S) = 0. That is, 

S[t2 + s(t4- t2)J = S[t1 + s(t3 - td]. 

On the other hand, t2 + s(t4 - t2) > t 1 + s(t3 - td for all sbetween 0 and 1 
and so we contradict the fact that Sis one-to-one. We conclude that Sis strictly 
monotone. D 

Theorem 16.1. Let I= {x: a~ x ~ b} and J = {x: c ~ x ~ d} be intervals of 
~1, and suppose that f: I--. VN, g: J--. VN are continuous functions which have 
the same arc C as image. Then there is a continuous monotone function S from 
I onto J such that 

f(t) = g[S(t)] fortE I. 
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PRooF. Since g is one-to-one and continuous, we may apply Part (d) of 
Theorem 6.42 to conclude that g-1 is a continuous map of the arc C onto the 
interval J. Since the composition of continuous functions is continuous, the 
functionS= g-1f is a one-to-one continuous map of I onto J. Lemma 16.1 
yields the final result. D 

Definitions. A path is a class of continuous functions from intervals in IR 1 into 
VN, any two of which are related as in Theorem 16.1. Any function in this class 
is called a parametric representation (or simply a representation) of the path. 
If every two representations in the class are related by an increasing S(t), as 
given in Theorem 16.1, then the path is said to be a directed path. A represen
tation I of a path will sometimes be identified with the path itself. That is, we 
write "let I be a path ... " when there is no danger of confusion. 

Remarks. The definitions of path and arc remain unchanged for functions 
with domain an interval of IR 1 and range in an arbitrary metric space. Since 
Theorem 6.42 holds for continuous functions with range in any metric space, 
the proof of Theorem 16.1 is unchanged in this more general setting. Similarly, 
the following results on the length of paths in VN could be extended to paths 
in any metric space. 

Definitions. Let 1: I -+ VN be a continuous function. We define the length of 
the path I by the formula 

II 

l(l) = sup L ll(ti) - l(ti-dl (16.4) 
i=l 

where the supremum is taken over all subdivisions 

~:a= t0 < t1 < ··· < t, = b of the interval I= {x: a~ x ~ b}. 

If l(l) is finite, we say the path is rectifiable. 

Remark. The length of a path f: I-+ V1 is given by the supremum of 
L7=1 lf(ti) - f(ti-dl where f: I-+ IR 1 is a continuous function. Recalling the 
definition of the total variation V,.b J, of a function defined on I = { x: a ~ 
x ~ b }, we see at once that l(l) = V,.b fin this case. 

The next result is similar to Theorems 12.1 and 12.2. 

Theorem 16.2 

(a) Let 1: I -+ VN be a path, and suppose that 

~: a = To < Tl < ... < T, = b 

is a subdivision of I. Define gk as the restriction of I to the interval Ik = 
{t: 1k-1 ~ t ~ T,.}. Then 

l(l) = l(gl) + l(gz) + ... + l(g,). 
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(b) Let IT= {t: a~ t ~ T} and define IT as the restriction of I to IT. Define 
s(T) = l(IT)· Then sis a continuous function for Ton I. 

The proof of Part (a) for N = 2 is similar to the proof of Theorem 12.1. 
Then the general result can be established by induction. We leave the details 
to the reader. The proof of Part (b) follows the procedure given in the proof 
of Theorem 12.2, and we again leave the details to the reader. 

Part (a) of Theorem 16.2 simply states that if a path is the union of disjoint 
subpaths, the total length is the sum of the lengths of the subpaths. 

The next result establishes the important fact that the length of an arc is 
independent of the parameter chosen to describe it. 

Theorem 16.3. Let I and g be parametric representations of the same arc C. Then 

l(l) = l(g). 

PROOF. LetS be the function obtained in Theorem 16.1. Set 

m m 

Lf = L ll(ti) - l(ti-dl. Lg = L lg(ti) - g(ti-1)1 (16.5) 
i=l i=l 

where L\: a= t0 < t1 < · · · < tm = b is a subdivision for I and L\': c = t 0 < 
t 1 < · · · < tm =dis the subdivision of g which we obtain by setting t 1 = S(t1) 

if S is an increasing function or by setting t 1 = S(tm_1) if S is a decreasing 
function. In the first case, we see that g(t1) = l(t1) for all i and in the second 
caseg(t1) = l(tm-J In both cases the sums L1 and Lg in (16.5) are equal. Hence 
~=~ D 

Theorem 16.4. Let 1: I-+ VN be a continuous function. Set 

l(t) = f1 (t)el + f2(t)e2 + · · · + fN(t)eN. 

Then the path I is rectifiable if and only if all the };, i = 1, 2, ... , N, are of 
bounded variation on I. 

PRooF. Let L\: a= t0 < t1 < · · · < tm = b be a subdivision of I. We have 

N 

1/i(tk> - t;<tk-dl ~ ll<tk> - l<tk-dl ~ L lt;<tk> - t;(tk-dl. 
i=l 

Therefore 
N v: t; ~ l(f) ~ L v: t;. D 

i=l 

When the parametric representation of an arc is sufficiently differentiable, 
methods of calculus can be used to compute the length, the tangent vector at 
any point, and other geometric quantities associated with a curve in IRN. 

Definitions. An arc r in IRN is said to be smooth if and only if r possesses a 
parametric representation I on some closed interval I = { x: a ~ x ~ b} such 
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that 1: I --+ VN is continuous and f' is uniformly continuous on the interior of 
I with the limits off' at a and b different from zero. An arc r in IRN is said to 
be piecewise smooth if and only if r has a parametric representation I on I 
such that (i) I is continuous on I and (ii) there is a subdivision a = T0 < T1 < 
· · · < T, = b of I such that for k = 1, 2, ... , n the restriction h of I to the 
subinterval Ik = {x: 'fi-1 ~ x ~ 'fi} is smooth. We do not assume that the 
right and left limits off' are equal at 'fi. If they are unequal at a particular 
T;, we suppose that the components are not proportional. A smooth path and 
a piecewise smooth path are defined similarly. 

Theorem 16.5 (Length of a piecewise smooth path). Let 1: I --+ VN be a piecewise 
smooth path such that I is smooth on the subintervals a = T0 < T1 < · · · < T, = 

b. Then the length 1(1) of the path, is given by 

fb n ITk 
l(l) = a lf'(t)l dt = k~l Tk-l 1/'(t)l dt. (16.6) 

PROOF. From Theorem 16.2 it is sufficient to prove the result for an interval 
I on which 1 is smooth. For this purpose, we introduce a subdivision of 
I: a= t 0 < t 1 < · · · < tm =b. Then the length of lis the supremum over all 
subdivisions of 

~ ~ ll(t;}- l(t;-dl .'-- ll(t;) - l(t;-dl = .'-- . _ . ·It; - t;-1l· 
•=1 •=1 t, t,-1 

Let 8 > 0 be given. From the definition of length of a path, there is a sub
division A: a = u1 < u2 < · · · < uP = b such that 

1 p 

1(1)- 48 < ;~ ll(u;)- l(u;_1) ~ 1(1). 

From the definition of integral, there is a {) > 0 such that if A1 : a = t0 < t 1 < 
· · · < tm = b is any subdivision of mesh less than{) and if ei E [ti-l• t;] for each 
i. then 

li~ 1/'(e;)l(t;- t;-d-r 1/'(x)l dxl < ~8. 
We may assume that A1 is a refinement of A. From the Mean-value theorem 
applied tO the COmponentS jl> f2, ... , fN of/, there are numbers eki in the 
interval (t;_1, t;) such that 

i = 1, 2, ... , m, k = 1, 2, ... , N. 

Set At; = t; - t;_1 and then 

(16.7) 

lffor each fixed i the numbers eki all have the same value, say e;. then the sum 
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on the right in (16.7) would be 
m 

L 1/'(e;)IL\t;, (16.8) 
i=l 

which is a Riemann sum. Then proceeding to the limit we get (16.6). Since/' 
is uniformly continuous on J, it is possible to show that the sum in (16.7) yields 
the same limit as the Riemann sum (16.8). This is known as Duhamel's 
principle. To establish this result, set ei:; = e 1;, k = 2, 3, ... , N, i = 1, 2, ... , m, 
and consider the quantity 

For each fixed k, the uniform continuity of R shows that the above sum tends 
to zero as the maximum of the L\t; tends to zero. We leave the remaining details 
to the reader. 0 

Suppose that f: IR 1 -+ VN is a smooth function; we define 

s(t) = J: 1/'(r)l dt. (16.9) 

Then s represents the "directed distance" along the curve r in IRN, where r is 
--"-+ 

the graph of the point P of the radius vector 0 P from the origin to a point P 
--+ 

in IRN. That is, r is the arc /(OP) (see Figure 16.1). Distance is measured from 
the point corresponding to f(a). By differentiating (16.9), we have s'(t0 ) = 
l/'(t0 )1 and the unit vector T(t0 ) is defined by 

T =/'(to)= /'(to) 
1/'1 s'(to) · 

The vector T is the unit tangent vector to r at each point of the curve. Since 
s is a monotone function oft we note that f and Tare functions of s. Then it 
follows that 

df = T. 
ds · 

For any two vectors c, d the scalar product c ·dis defined by the formula 

c· d = lclldl cos fJ 

where (} is the angle between two directed line segments representing the 
vectors c and d having the same point as base. If c and d have the represen
tations c = c1 e1 + .. · + cNeN, d = d1 e1 + .. · + dNeN, then 

c·d= c1 d1 + c2d2 + ... + cNdN. 

If c • d = 0, the vectors are said to be orthogonal 
We now suppose that/= ft(s)el + f2(s)e2 + ... + fN(s)eNisa C2 function. 
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That is, each component ,h(s) of I has a continuous second derivative. Then 
since T· T = 1 for all s, we may differentiate and obtain the relation 

T. d T + d T. T = 0 or T. ddTs = 0. 
ds ds 

Hence T and dTjds are orthogonal vectors. The scalar curvature " of r is 
defined by 

K= ~~~I· 
The quantity " measures the rate of change of the direction of r with respect 
to the arc length. We define the principal normal N to r as the unit vector in 
the direction of dTjds. We have 

dT 
ds = KN. 

The quantity R = 1/K is called the radius of curvature of r. 
If I is sufficiently differentiable, we may differentiate the relation N · N = 1 

and find that dNjds is orthogonal toN. We express dNjds in the form 

dN 
-= K2N1 + PT 
ds 

where N1 is a unit vector orthogonal to the subspace determined by T and N, 
and K 2 is called the second curvature of r. By differentiating the relation 
T· N = 0, we see that P = -K. We may continue this process by computing 
dNtfds and obtain N- 1 scalar curvatures K, K2 , ••• , "N-1 corresponding to 
theN- 1 normals N1, ... , NN_ 1 to the curve r. 

The above discussion is of greatest interest in ordinary Euclidean three
space. In this case the vector N1 is called the binormal and is usually denoted 
by B. The vectors T, N, and B form an orthonormal set of vectors at each 
point of r. This set is called the moving trihedral. The quantity K2 is usually 
designated by - r, and r is called the torsion of r. It is easy to verify that r = 0 
for a plane curve. We choose an orientation in three-space so that 

B=TxN 

where x denotes the usual vector product of two vectors in V3 . Differentiation 
of the above formula yields 

dB dT dN 
ds = ds x N + T x Ts = T x ( -rB- KT) = rN. 

We obtain in this way the Frenet formulas 

dT 
-= KN. 
ds ' 

dN 
-= -KT+rB 
ds ' 

dB 
ds = +rN. (16.10) 
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EXAMPLE. Given the function f: ~1 ....... v3 defined by 

f(t) = te1 + t2 e2 + ~t3 e3 , 

find T, N, B, K, and 1:. 
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Solution. We have f'(t) = e1 + 2te2 + 2t2 e3 • Therefore 1/'(t)l = (1 + 2t2) and 
s(t) = J~ 1/'(t)l dt = t + ~t3 , where distance is measured from t = 0. We 
compute 

Continuing the process, we obtain 

dT dT 
ds = dt(1 + 2t2t 1 = (1 + 2t2t 3 [ -4te1 + (2- 4t2 )e2 + 4te3 ]. 

Consequently, 

K = ~~~~ = (1 + 22t2)2 

and N = (1 + 2t2 t 1 [- 2te1 + (1 - 2t2 )e2 + 2te3 ]. To obtain B we compute 
dNjds = (dNjdt)(1 + 2t2t 1 and then formula dNjds = -KT- 1:B yields the 
torsion 1:. We leave the remaining details to the reader. D 

PROBLEMS 

1. Given f:IR 1 -+VN with f=(f1,f2 , .•. ,fN) and xi=/;(t)=ti, i= 1, 2, ... , N, 
eliminate the parameter by expressing x 1 , x 3 , ••. , xN in terms of x 2 • In what domain 
of IR 1 is this elimination valid? 

2. Let f(t): I-+ V2 be given by / 1 (t) = t 2 - t, / 2(t) = t 3 - 3t, with I = {t: -3 ~ 
t ~ 3}. Decide whether or not the path r in IR 2 represented by f is an arc. 

3. Let S be a metric space and let I, J be intervals of IR 1. Suppose that f: I-+ S and 
g: J -+ S are continuous functions which have the same arc Cas image. Prove that 
there is a continuous monotone function h: I-+ J such thatf(t) = g[h(t)] fortE/. 

4. Let S be a metric space and f: I -+ S a continuous function with I an interval of 
IR 1• Define the length of the path off State and prove the analog of Theorem 16.2 
for such a function f 

5. State and prove the analog of Theorem 16.3 for functions from an interval I in IR 1 

to a metric spaceS. 

6. Given/: I-+ V3 where I= {t: 0 ~ t ~ 2rr} and/=/1e1 + f 2e2 + / 3 e3 withft = 
3 cos t, f 2 = 3 sin t, f 3 = 2t, find the length of the arc represented by f 

7. Let/: I-+ V2 where/= {t:O ~ t ~ 1} and/=/1e1 + f 2e2 with/1 = t, and 

{
- 1 sin~ 

!2= Jt t' 

0, 

Decide whether or not f is rectifiable. 

t > 0, 

t = 0. 
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8. Complete the proof of Theorem 16.5. 

In each of Problems 9 through 12 find T, N, B, K, and t at the given value of 
t for the given function f: IR 1 -+ V3 • 

9. l(t) = e'[(cos t)e1 +(sin t)e2 + e3 ], t = 0. 

10. l(t) = (1/3)t3 e1 + 2te2 + (2/t)e3 , t = 2. 

11. l(t) = te1 + (3/2)t2 e2 + (3/2)t3 e3 , t = 2. 

12. l(t) = (t cos t)e1 + (t sin t)e2 + te3 , t = 0. 

13. Let 1: I--+ VN be the representation of a curve r in IRN. Suppose that I is a eN 
function. Let The the tangent vector and lets denote arc length. Then dTfds =~eN 
where N is orthogonal to T. Differentiate N with respect to s and obtain a unit 
vector N1 such that 

Differentiate N1 with respect to s and obtain a unit vector N2 such that 

dN1 
- = -K1 N + K2N2. 
ds 

Continue this process and obtain a sequence of N mutually orthogonal unit vectors 
T, N, N1 , ••• , NN_ 2 and the formulas 

dNk 
ds = -KkNk-1 + Kk+tNk+t• k = 2, 3, ... , N - 3. 

Finally, show that dNN_ 2jds = - "N- 2NN_ 3 • The quantities K, K1 , ••• , "N- 2 are 
called the curvatures of r. 

14. Given 1: I--+ v3 where I = { t: a ~ X ~ b} and suppose that I is a C3 function. 
(a) Prove that 

2 _ (f' X f") · (f' X f") 
" - 11'12 • 

(b) Prove that 
f'·(f" X f"') 

r = '--:--1 1::-'-, -x-1-=""'12--'-. 

In each of Problems 15 through 18 find the length of the given arc. 

15. l(t) = te 1 + !t2 e2 + !t3 e3 , I= {t: 0 ~ t ~ 2}. 

16. l(t) = te1 + tJ2t2 e2 + We3 , I= {t: 0 ~ t ~ 2}. 

17. l(t) = t cos te1 + t sin te2 + te3 , I= {t: 0 ~ t ~ n/2}. 

18. l(t) = te1 + log(sec t + tan t)e2 + log sec te3 , I= {t: 0 ~ t ~ n/4}. 

19. State and prove the analog of Theorem 16.1 when the range of I and g are in a 
metric space. 
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Figure 16.3. A vector field. 

16.2. Vector Functions and Fields on IRN 

In this section we develop the basic properties of differential and integral 
calculus for functions whose domain is a subset of ~M and whose range is in 
a vector space VN. We shall emphasize the coordinate-free character of the 
definitions and results, but we shall introduce coordinate systems and use 
them in proofs and computations whenever convenient. 

Definition. A vector function from a domain D in ~M into VN is a mapping 
f: D -+ VN. If the image is V1 (which we identify with ~1 in the natural way) 
then f is called a scalar function. Vector or scalar functions are often called 
vector or scalar fields. The term field is used because we frequently visualize 
a vector function as superimposed on ~M. At each point of the domain D of 
~M a representative directed line segment off is drawn with base at that point. 
We obtain a field of vectors (see Figure 16.3 where M = N = 2). 

Let f: D -+ VN be a vector function where D is a domain in ~M. An 
orthonormal basis for VN is a set of N unit vectors e1 , e2, ... ,eN such that 
ei· ei = 0 for i #- j, i, j = 1, 2, ... , N. Then for each point P ED, we may 
represent f by the formula 

N 

/(P) = L /;(P)ei (16.11) 
i=1 

where/;: D-+ ~1, i = 1, 2, ... , N, are scalar functions from D into ~1 • We can 
consider vector fields with domain in any space such as VM or EM (Euclidean 
space). Equation (16.11) illustrates what is meant in that case. We shall 
ordinarily assume that Dis in ~M. The function f is continuous at P if and 
only if each /;, i = 1, 2, ... , N, is continuous at P. We recall that the basic 
properties of functions from ~Minto ~1 were developed in Chapters 6, 7, and 
8. Properties developed there which involve linear processes are easily trans
ferred to functions f from ~M into VN. 

For simplicity we shall usually consider functions f from ~N into VN, 
although many of the results developed below are valid with only modest 
changes if the dimension of the domain off is different from that of its range. 

The definite integral of a vector function, defined below, is similar to the 
integral of a scalar function on ~N as given in Chapter 8. 



424 16. Vector Field Theory; the Theorems of Green and Stokes 

Definition. Let D be a domain in ~N and suppose that u: D --+ VN is a vector 
function. Let F be a figure in D. The function u is integrable over F if and only 
if there is a vector L in VN with the following property: for every e > 0, there 
is a~> 0 such that if A= {F1 , F2 , ••• , Fn} is any subdivision ofF with mesh 
less than ~ and p1 , p2 , ••• , Pn is any finite set of points with P; in F;, then 

I it u(p;) V(F;) - L I < e, 

where V(F;) is the volume ofF;. We call L the integral of u over F and we write 

L = L udV. 

If, for example, u is given in the form (16.11) so that 

N 

u(P) = L u;(P)e;, (16.12) 
i=1 

then it is clear that u is integrable over F if and only if each scalar function u; 
is integrable over F. Therefore if L exists it must be unique. In fact, if u is 
integrable and given by (16.12), we have 

f u dV = .f (J u; dv)e;. 
F &=1 F 

(16.13) 

Each coefficient on the right in (16.13) is an integral of a function from ~N into 
~1 as defined in Chapter 8. 

Let v be a vector in VN and denote by Pc;P a directed line segment in ~N 
which represents v. As usual, we use the notation v(p0 p} for this vector. 

Definitions. Let p0 be a point in ~N and let a be a unit vector in VN. Suppose 
that w: D --+ VN is a vector function with domain D in ~N. We define the 
directional derivative of win the direction a at p0 , denoted by D.w(p0 ), by the 
formula 

D ( ) 1. w(p)- w(p0 ) 
.w Po = tm h 

h-+0 

where the point p e D is chosen so that v(Pc;P) = ha (see Figure 16.4). The 
vector function w is continuously differentiable in D if and only if wand D.w 
are continuous on D for every unit vector a in VN. We write we C1(D). 

Figure 16.4 
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In order to derive formulas for computing directional derivatives we re
quire a coordinate system in IRN. When we write w(p), p E IRN we indicate the 
coordinate-free character of the function. If a Cartesian coordinate system 
(x 1 , x 2 , ... , xN) is introduced, then we write w(x 1 , x 2 , ... , xN) or w(x). If e1 , 

e2 , ••• , eN is an orthonormal basis in VN, we use coordinates to write 

N 

w(x) = ~ w;(x)e;, 
i=l 

where each of the scalar functions w;(x) is now expressed in terms of a 
coordinate system. Strictly speaking we should use different symbols for a 
function w when expressed in terms of a particular coordinate system as 
compared with w defined in a purely geometric manner. However, it will be 
clear from the context whenever coordinates are used. Furthermore, we omit 
the statement and proofs of the theorems which show, for example, that a 
vector function w has a directional derivative if and only if w has one is an 
arbitrary Cartesian coordinate system, that w is continuous if and only if w(x) 
is, and so forth. 

The following theorem establishes the formula for obtaining the directional 
derivative of scalar and vector fields. 

Theorem 16.6 

(i) Let a be a unit vector in VN. Suppose that w: D-+ IR 1 is a continuously 
differentiable scalar field with domain D c IRN. If a has the representation 
a= a1e1 + a2e2 + .. · + aNeN, then 

N OW 
D,w= ~~a;. 

i=l UX; 

(ii) If w: D-+ VN is a vector field and w = ~f=t w;e; then 

N N 

D,w = ~ D,w;e; = ~ w;,iaiei. 
i=l ~j=l 

(16.14) 

(16.15) 

PROOF. (i) If a is a unit vector in one of the coordinate directions, say xi, 
then (16.14) holds since D,w is the partial derivative with respect to xi. In 
the general case, we fix a point x 0 = (x?, ... , x2) and define 

cp(t) = w(x? + a1 t, ... , x2 + aNt). 

Then D,w(x0 ) is obtained by computing cp'(O) according to the Chain rule, 
Theorem 7.3. The proof of (ii) is an immediate consequence offormula (16.14) 
and the representation of win the form ~ w;e;. 0 

The next theorem shows that the directional derivative of a scalar function 
may be expressed in terms of the scalar product of the given direction a with 
a uniquely determined vector field. Observe that the result is independent of 
the coordinate system, although coordinates are used in the proof. 
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Theorem 16.7. Let f: D-+ IR 1 be a continuously differentiable scalar field with 
domain D in IRN. Then there is a unique vector field w: D-+ VN such that for 
each unit vector a e VN and for each p e D, the directional derivative off is given 
by the scalar product of a and w: 

D.f(p) = a· w(p). (16.16) 

If el> e2, ... , eN is an orthonormal set of unit vectors in VN, then w(x) may be 
computed by the formula 

N 

w(x) = L f.i(x)ei for each x e D. 
j=l 

PROOF. From Formula (16.14), we find 

N 

D.f(x) = L f.i(x)ai. 
j=l 

(16.17) 

(16.18) 

We now define w(x) by (16.17) and therefore the scalar product of wand a 
yields (16.18). To show uniqueness, assume that w' is another vector field 
satisfying (16.16). Then (w - w') ·a = 0 for all unit vectors a. If w - w' =I= 0, 
choose a to be the unit vector in the direction of w - w', in which case 
( w - w') · a = I w - w'l =I= 0, a contradiction. 0 

Definition. The vector w defined by (16.16) in Theorem 16.7 is called the 
gradient off and is denoted by grad f or Vf. 

Remark. Iff is a scalar field from IRN into IR 1, then in general f(p) = const. 
represents a hypersurface in IRN. At any point p, a vector a tangent to this 
hypersurface at p has the property that Lf=t f. 1(p) · a1 = 0 where a= Lf=t a1e1• 

We conclude that Vf is orthogonal to the hypersurface f(p) = constant at each 
point p on the hypersurface. 

EXAMPLE 1. Let et> e2 , e3 be an orthonormal set of vectors in V3(1R3). Given 
the scalar and vector functions 

f(xl, x2, x3) = x~ + x~ + x~- 3xtx2x3 

u(x1, x2, x 3) = (xf- x2 + x3)e1 + (2x2- 3x3)e2 + (xl + x 3)e3 

and the vector a= A.e1 + JJ.e2 + ve3, A.2 + J1.2 + v2 = 1, find Vf and D.u in 
terms of x 1, x 2 , x3 , et> e2 , e3 • 

Solution. According to (16.17), we find 

Vf = 3(xf- x2x 3 )e1 + 3(x~- x1x3 )e2 + 3(x~- x1x2)e3 • 

Employing (16.15), we obtain 

D.w = (2x1A.- Jl. + v)e1 + (2Jl.- 3v)e2 +(A.+ v)e3. 0 

Theorem 16.8. Suppose that f, g, and u are C1 scalar fields with domain D c IRN. 



16.2. Vector Functions and Fields on IRN 427 

Let h: IR 1 --+ IR 1 be a C 1 function with the range of u in the domain of h. Then 

V(f +g)= Vf + Vg, V(fg) = fVg + gVf, 

v G) = :2 (gVf - fV g) if g 1= 0, Vh(u) = h'(u)Vu. 

PROOF. We prove the second formula, the remaining proofs being left to the 
reader. Let e1, e2 , ••• , eN be an orthonormal set in VN. Then from the formula 
for V(fg) given by (16.17) it follows that 

N 

V(fg) = L (fg),iei. 
j=l 

Performing the differentiations, we find 

N 

V(fg) = L (fg,i + f.ig)ei = fVg + gVf D 
j=l 

The operator V carries a continuously differentiable scalar field from IRN 
to IR 1 into a continuous vector field from IRN to VN. In a Cartesian coordinate 
system, we may write V symbolically according to the formula 

N 0 
V= L-ei. 

j=l oxj 

However, the operator V has a significance independent of the coordinate 
system. Suppose that w is a vector field from IRN into VN which in coordinates 
may be written w = Lf=1 wiei. We define the operator V · w by the formula 

NOW· 
V·w=I-1, 

j=l oxj 

and we shall show that this operator, called the divergence operator, is inde
pendent of the coordinate system (Theorem 16.9 below). 

Definitions. The support of a scalar function f with domain D is the closure 
of the set of points p in D where f(p) 1= 0. If the support of a function is a 
compact subset of D, we say that f has compact support in D. Iff is a en 
function for some nonnegative integer n, with compact support, we use the 
symbol f E C~(D) to indicate this fact. 

Lemma 16.2. Let D be an open figure in !RN and suppose that f E CJ(D). Then 

L f.i(x) dV = 0, j = 1, 2, ... , N. 

PROOF. Let S be the set of compact support of f. Then f = 0 and Vf = 0 on 
D - S. Let R be any hypercube which contains i5 in its interior. We extend 
the definition off to be zero on R - D. Then integrating with respect to xi 
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first and the remaining N - 1 variables next, we find (in obvious notation) 

f f,j(x) dVN = f f,j(x) dVN = f [fbi f,j(x) dxi] dVN-1 
D R R' ai 

= f [f(bi, x') - f(ai, x')] dVN- 1 = 0. 
R' 

D 

The next lemma, useful in many branches of analysis, shows that a con
tinuous function f must vanish identically if the integral of the product off 
and all arbitrary smooth functions with compact support is always zero. 

Lemma 16.3. Let D be an open figure in IRN and suppose that the scalar function 
f is continuous on D. If 

L fgdVN = 0 for all g E CJ(D), (16.19) 

then f = 0 on D. 

PRooF. We prove the result by contradiction. Suppose there is an x0 ED such 
that f(x 0 ) ¥- 0. We may assume f(x 0 ) > 0, otherwise we consider - f Since f 
is continuous and D is open, there is a ball in D of radius 3r0 and center x0 

on which f > 0. Denoting distance from x0 by r, we define the function 

1 

g(x) = 

0 for r ~ 2r0 • 

It is easily verified that g(x) E CJ(D) with g(x) ~ 0. We have 

f fgdVN = f fgdV ~ f fgdV > 0, 
D B(x0 , 3r0 ) B(x0 , r 0 ) 

which contradicts (16.19). Hence f = 0 on D. D 

Remark. Lemma 16.3 remains valid if the functions gin formula (16.19) are 
restricted to the class C0(D). To see this merely replace g by its mollifier as 
defined in Chapter 15 and proceed with the same method of proof. 

We now show that the divergence operator is independent of the coordinate 
system. 

Theorem 16.9. Let D be an open figure in IRN and suppose that wE C 1(D) is a 
vector field. Then there is a unique scalar field v, continuous on D, such that for 
all u E CJ(D), we have 

L (uv + Vu· w) dV = 0. (16.20) 
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Furthermore, if e1 , e2 , ••• , eN is an orthonormal basis and if, for each point xeD, 
w is given by 

then 

N 

w(x) = L w1(x)e1, 
J=l 

N a 
v(x) = L ~ w1(x). 

j=l uXJ 
(16.21) 

PROOF. Suppose that w is given and that e1, ••• , eN is an orthonormal basis in 
some coordinate system. We define v by (16.21). Let u be any function in class 
CJ(D). Then, according to Lemma 16.2, 

f (uv + Vu · w) dV = f f (u ~a w1 + ~u w1) dV 
D D }=1 uXj uXj 

= f J ~a (uw1) dV = 0. 
j=l D uXj 

To show that vis unique, suppose that v' is another scalar field which satisfies 
(16.20). By subtraction we get 

L (v - v')udV = 0 for all u e CJ(D). 

Thus v' = v according to Lemma 16.3. 0 

Definition. The scalar field v determined by (16.20) in Theorem 16.9 and 
defined in any coordinate system by (16.21) is called the divergence of w. We 
use the notation v = div w or v = V · w. We note that vis determined in (16.20) 
without reference to a coordinate system, although (16.21) is used for actual 
computations. 

Theorem 16.10. Let D be a domain in ~N and suppose that w, w1 , w2 , ••• , Wn 

are C1 vector fields on D. Let f be a C1 scalar field on D and suppose that c1 , 

c2 , ••• , en are real numbers. Then 

(a) div(Lj=1 c1w) = Lj=1 c1 div w1. 

(b) div(fw) = f div w + Vf· w. 

We leave the proof to the reader. 

EXAMPLE 2. Suppose that the origin of a coordinate system is at the center of 
the earth and R is its radius. Denote by g the acceleration due to gr!!:Ytty at 
the surface of the earth. For points pin ~3 let r be the vector having Op as a 
representative, and set r = lrl. From classical physics it is known that the 
vector field of force due to gravity, denoted v(p) and called the gravitational 
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field of the earth, is given approximately by 

gR2 
v(p) = --3 r for r > R. 

r 

Show that div v(p) = 0 for r > R. 

Solution. We use Part (b) of Theorem 16.10 to obtain 

Next, we introduce the unit vectors e1 , e2 , e3 and obtain 

div r = 1 + 1 + 1 = 3, 

Using Theorem 16.8 and the above formulas, we find 

div v =-3gR2- (-3gR2)~-r = 0. 
r 3 r 4 r 

0 

The vector or cross product of two vectors in a three-dimensional vector 
space allows us to introduce a new differential operator acting on smooth 
vector fields. We shall define the operator without reference to a coordinate 
system although coordinates are used in all the customary computations. If 
e1 , e2 , e3 is any orthonormal basis for V3 we may construct the formal operator 

el e2 e3 

a a a 
Vxu= oxl ox2 OX3 

ul u2 u3 

= (ou3 _ ou2)e1 + (ou1 _ ou3)e2 + (ou2 _ ou1)e3. ox2 ox3 OX3 oxl oxl oxl (16.22) 

We note that if the symbol V is replaced by a vector v with components v1 , 

v2 , v3 and if the partial derivatives in (16.22) are replaced by these components, 
then we obtain the usual formula for the vector product of two vectors. 

Theorem 16.11. Let D be any set in IR 3 and let u e C1(D) be a vector field into 
V3 • Suppose that IR 3 is given one of its two possible orientations. Then there is 
a unique continuous vector field w from D into V3 such that 

div(u x a)= w·a (16.23) 

for every constant vector a. If e1 , e2 , e3 is any orthonormal basis of a coordinate 
system consistent with the orientation of IR 3, then the vector w is given by (16.22). 
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PROOF. With the orthonormal basis e1, e2, e3 given, we write a= a1e1 + 
a2e2 + a 3 e3 , u = u1e1 + u2e2 + u3e3 • The formula for the vector product 
yields 

u x a= (u2a3 - u3a2)e1 + (u3a1 - u1a3)e2 + (u 1a2 - u2a1)e3. 

Using (16.21) for the divergence formula, we find 

. ou2 ou3 ou3 ou1 ou1 ou2 
dtv(u x a)= a 3-- a2- + a1-- a 3 - + a2-- a1-. 

ox1 ox1 ox2 ox2 ox3 ox3 

If we denote by wl> w2 , w3 the coefficients in the right side of (16.22), then 

div(u x a)= w1a1 + w2 a2 + w3 a 3 • 

That is, div(u x a)= w·a where w = w1 e1 + w2 e2 + w3 e3 . The vector w is 
unique since if w' were another such vector we would have w ·a = w' ·a for 
all unit vectors a. This fact implies that w = w'. 0 

Definition. The vector win Theorem 16.11 is called the curl of u and is denoted 
by curl u and V x u. 

The elementary properties of the curl operator are given in the next theorem. 

Theorem 16.12. Let D be a domain in IR3 and suppose that u, v, u1 , .•. , un are 
C 1 vector fields from D into V3 . Let f be a C 1 scalar field on D and c 1 , ••• , en 
real numbers. Then 

(a) curl(Lj=1 ciui) = Lj=1 ci(curl ui). 
(b) curl(fu) = f curl u + Vf x u. 
(c) div(u x v) = v·curl u- u·curl v. 
(d) curl Vf = 0 provided that Vf E C1(D). 
(e) div curl v = 0 provided that v E C2(D). 

PRooF. We shall establish Part (b) and leave the remaining proofs to the 
reader. Letel>e2 ,e3 be an orthonormal basis and setu = u1e1 + u2 e2 + u3e3 • 

Then 

Therefore 

curl(fu) = f curl u + ( u3 ::2 - U2 ::J e1 

+ ( U1 ::3 - u3 ::J e2 + ( U2 0~1 - U1 a~J e3. (16.24) 

Recalling that Vf = (offoxde1 + (offox2)e2 + (offox3)e3 and using the 
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formula for the vector product, we see that (16.24) is precisely 

curl(fu) = f curl u + Vf x u. 0 

Remark. Part (d) in Theorem 16.12 states that if a vector u is the gradient 
of a scalar function J, that is if u = Vf, then curl u = 0. It is natural to ask 
whether or not the condition curl u = 0 implies that u is the gradient of a 
scalar function f. Under certain conditions this statement is valid. In any 
Cartesian coordinate system, the condition u = Vf becomes 

of 
u2 = ox2' 

or 
(16.25) 

Then the statement curl u = 0 asserts that the right side of(16.25) is an exact 
differential. 

EXAMPLE 3. Let the vector field u be given (in coordinates) by 

u = 2x 1x2x3e1 + (xix3 + x2)e2 + (xix2 + 3xDe3. 

Verify that curl u = 0 and find the function f such that Vf = u. 

Solution. Computing V x u by Formula (16.22), we get 

et e2 e3 

curl u = 
a a a 

oxl ox2 ox3 

2x 1 x2x3 xfx3 + x2 xfx2 + 3x~ 
=(xi- xi)e1 + (2x 1 x2 - 2x 1 x2)e2 + (2x1 x3 - 2x1 x3)e3 = 0. 

We seek the function f such that 

Integrating the first equation, we find 

f(xl, X2, X3) = XIX2X3 + C(x2, X3). 

Differentiating this expression with respect to x2 and x3, we obtain 

of 2 ac 2 
- = XtX3 +- = XtX3 + X2 
ox2 ox2 

Thus it follows that 

ac 
-=x2 
ox2 ' 
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where K'(x3 ) = 3x~. Therefore C(x2 , x3 ) = !x~ + x~ + K 1 with K1 a con
stant. Hence 

0 

PROBLEMS 

1. Let D be a domain in IRN and suppose that u: D -+ VN is a vector function. IfF is 
a figure in D and if JFudVexists, prove that the value is unique. 

2. Suppose that u: D -+ VN is integrable over some figure Fin D. If u(x) = Lf=1 u1(x)ei 
for some orthonormal basis e1, .•. , eN, write a detailed proof of the formula 

3. Suppose that u: IR2 -+ V2 is given by u(x 1 , x2 ) = (xf- xDe1 + 2x1x 2e2 • Find 
JFudVwhere F = {(x1 , x2 ): xf + x~ ~ 1}. 

In each of the following Problems 4 through 7 express Vf(x) in terms of 
(x1 , x 2 , x3 ) and(el> el> e3 ) andcomputeD.,f(x) where a is the given unit vector 
and xis the given point. 

4. f(x) = 2xf + x~- x 1x3 - x~, a= (1/3)(2e1 - 2e2 - e3), x = (1, -1, 2). 

5. f(x) = xf + x 1x 2 - x~ + x~. a= (1/7)(3e1 + 2e2 - 6e3), x = (2, 1, -1). 

6. f(x) = e"• cos x2 + e"• cos x3, a= (1/J3)(e1 - e2 + e3), x = (1, 1t, -1/2). 

7. f(x) = xf log(1 + xD - x~, a = (1/.Jl0)(3e1 + e3), x = (1, 0, - 2). 

In each of Problems 8 and 9 express D.,w(x) in terms of (x 1 , x 2 , x3 ) and 
(e1 , e2 , e3 ). Find the value at xas given. · 

8. w(x) = x2 x3 e1 + x 1 x 3e2 + x 1 x2 e3 , a = (1/3)(e1 + 2e2 - 2e3), x = (1, 2, -1). 

9. w(x) = (x1 - 2x2 )e1 + x2 x3e2 - (x~ - x~)e3 , a = (1/.ji4)(3e1 + 2e2 - e3), x = 
(2, -1, 3). 

10. Prove the first, third, and fourth formulas in Theorem 16.8. 

11. Show that Lemma 16.3 remains valid if the functions gin Formula (16.19) are 
restricted to the class q'(D). 

12. Prove Theorem 16.10. 

In each of Problems 13 through 17 find the value of div v(x) at the given point 
x. 
13. v(x) = x 1x2 e1 + x~e2 - xfe3 , x = (1, 0, 1). 

14. v(x) = (xf- X 2 X 3)e1 + (x~- x 1 x3)e2 + (x~- x 1x2 )e3, x = (2, -1, 1). 

15. v(x) = Vu, u(x) = 3x 1 x~ - x~ + x3, x = ( -1, 1, 2). 

16. v(x) = r-•r, r = x 1 e1 + x2 e2 + x3 e3 , r = lrl, x = (2, 1, - 2). 
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In each of Problems 18 through 20, find curl v in terms of (x1 , x2 , x3 ) and 
(e1 , e2 , e3 ).1f curl v = 0 find the function f such that Vf = v. 

18. v(x) =(xi + x~ + x~)-1 (x 1 e1 + x2 e2 + x3e3 ). 

19. v(x) =(xi + x2 x3)e1 + (x~ + x1 x3 )e2 + (x~ + x1x2 )e3 . 

20. v(x) = e"•(sin x 2 cos x3 e1 + sin x 2 sin x 3e2 +cos x2 e3 ). 

21. Find curl v where vis the gravitation field given in Example 2. 

22. Prove Parts (a), (c), (d), and (e) ofTheorem 16.12. 

23. Find a formula for curl(curl u) in terms of(x1 , x2 , x3 ) and (el> e2 , e3 ) ifu = u1 e1 + 
u2 e2 + u3 e3 and each of the u; is a C2 function on IR3. 

16.3. Line Integrals in ~N 

Let I= {t: a~ t ~ b} be an interval and fa vector function with domain I 
-and rangeD, a subset of VN. We consider in ~N the directed line segments 
having base at the origin 0 which represent the vectors fin D. The heads of 
these directed line segments trace out a curve in ~N which we denote by C. In -Figure 16.5, OP represents a vector in D, the range off We recall that iff is 
continuous and the curve C has finite length, then we say that Cis a rectifiable 
path (see Section 16.1). 

Letg be a continuous vector function from C into VN.If J, as defined above, 
is rectifiable then we can determine the Riemann-Stieltjes integral of g with 
respect to f To do so we introduce a coordinate system with an orthonormal 
basis el> e2, ... , eN in VN, although the formula we shall obtain will be 
independent of the coordinate system. We write 

g(x) = gl(x)e1 + · · · + gN(x)eN, 

/(t) = f1(t)el + """ + fN(t)eN, X E C, t E I. (16.26) 

If /is rectifiable, then the functions fi: I--..~\ i = 1, 2, ... , N, are continuous 
and of bounded variation. Also, if g is continuous, then the functions gi: C--.. 
~N. i = 1, 2, ... , N, are continuous. Using the notation gi[/(t)] for gi[f1 (t), 

0 

Figure 16.5. The curve /(t). 
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... , fN(t)], we observe that the following Riemann-Stieltjes integrals exist: 

i = 1, 2, ... , N. (16.27) 

We now establish the basic theorem for the existence of a Riemann-Stieltjes 
integral of a vector function g with respect to a vector function f 

Theorem 16.13. Suppose that 1: I --+ VN is a vector fu~n and that the range 
C in IRN as defined above by the radius vector r(t) = v(OP) is a rectifiable path. 
Let g be a continuous vector field from C into VN. Then there is a number L 
with the following property: for every e > 0, there is a o > 0 such that for any 
subdivision.!\: a= t0 < t 1 < · · · < t" = b with mesh less than 0 and any choices 
of ei with ti-l ~ ei ~ ti> it follows that 

I it g[l(ei)] · [r(ti)- r(ti-d] - L I < e. (16.28) 

The number L is unique. 

PRooF. We introduce an orthonormal set e1, e2, ... , eN in VN and writeg and 
I in the form (16.26). Then we set 

N fb 
L = i~ a gi[l(t)] dJi(t), 

and it is clear that each of the integrals exists. Replacing each integral by its 
Riemann sum, we obtain Inequality (16.28). 0 

Definition. We write L = f!g[l(t)] · dl(t) and we call this number the Rie
mann-Stieltjes integral of g with respect to f 

EXAMPLE 1. Given I and g defined by 

l(t) = t2 e1 + 2te2 - te3 , 

Find f~g·df 

Solution. We have 

L g[l(t)]. dl(t) 

= t1 [(t4 - t)e1 + t2 ( -t)e2 + t2 (2t)e3 ]' [d(t2 e 1 + 2te2 - te3 )] 

= tl [(t4 - t)·2t + t 2(-t)·2 + t 2(2t)(-1)] dt = -;. 0 

Let / 1 = {t: a1 ~ t ~ bd and / 2 = {t: a2 ~ t ~ b2 } be any intervals and 
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suppose that 11 : I 1 -+ C and 12 : I2 -+ Care one-to-one mappings onto a path 
C in !RN, as described at the beginning ofthis section. We saw in Theorem 16.1 
that there is a continuous function U: I1 -+ I2 such that 

(16.29) 

and that U is either increasing on I 1 or decreasing on I 1 . If C is rectifiable and 
g: C -+ VN is continuous, then 

J.~' g[l1 (t)] · dl1 (t) = ± J.:, g[l2(u)] · dl2(u), 

the plus sign corresponding to U increasing and the minus sign to U decreas
ing on I 1 • 

Definitions. Let 1: I-+ VN define an arc C in !RN by means of the radius vector 
--+ --+ 

r(t) = 11(0P), where OP represents f We consider the collection .!11 of all 
functions /,.: Ia -+ VN such that the range of fa is C and fa is related to I by an 
equation such as (16.29) with Ua increasing. We define a directed arc, denoted 
C, as the ordered pair ( C, d). Any function fa in .!11 is a parametric represen
tation of C. From Theorem 16.1 it follows that there are exactly two directed 
arcs c1 and c2 corresponding to an undirected arc c. We write I C11 = I C21 = 
c. If 11 is a parametric representation of c1 and h. is one of c2, then 11 and 
12 are related according to (16.29) with U decreasing. It is therefore appro
priate to write C1 = - C2 (see Figure 16.6). 

The Riemann-Stieltjes integral along a directed arc C with radius vector 
r is defined by the formula 

fc.g(r)·dr = r g[l(t)] ·dl(t) (16.30) 

where I is a parametric representation of C. It is not difficult to see that the 
integral along a directed arc as in (16.30) depends only on g and C and not 
on the particular parametric representation of C. Also, it follows at once that 

f _g(r)·dr =- i_g(r)·dr. 
-c Jc 

--
Figure 16.6. Directed and undirected arcs. 
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A directed arc may be decomposed into the union of directed subarcs. Let 
I= {t: a :,; t:,; b} be decomposed into the subdivision Ik = {t: tk_1 :,; t:,; tk}, 
k = 1, 2, ... , n, with t0 = a and tn = b. If C has the representation 1: I-+ V,., 
define fi: Ik -+ VN as the restriction of I to the interval Ik. Then each function 
h determines a directed arc ck and we may write 

c = c1 + c2 + .. · + ck. 
The following result is an immediate consequence of the basic properties of 
Riemann-Stieltjes integrals. 

Theorem 16.14 

(a) Suppose that Cis a rectifiable arc and that C = C1 + C2 + · · · + Cn. If g 
is continuous on C, then 

r~g(r)·dr = ± r~ g(r)·dr. Jc k=1 Jck (16.31) 

(b) Suppose that C has a piecewise smooth representation I and that g is 
continuous on I Cl. Then 

fcg(r)·dr= r g[l(t)]·f'(t)dt. (16.32) 

Remark. If I is piecewise smooth then the integral on the right in (16.32) 
may be evaluated by first decomposing C into subarcs, each of which has a 
smooth representation, and then using (16.3) to add up the integrals evaluated 
by a smooth I on the individual subarcs. We give an illustration. 

EXAMPLE 2. In V3, let g = 2x1 e1 - 3x2 e2 + x3e3 and define the arc Cas the 
union c1 + c2 where c1 is the directed line segment from (1, 0, 1) to (2, 0, 1), 
and C2 is the directed line segment from (2, 0, 1) to (2, 0, 4) (see Figure 16.7). 
Find the value of Jc-g(r) · dr. 

Solution. c1 = {r: r = x1e1 + eJ, 1 :,; x1 :,; 2} and c2 = {r: r = 2e1 + x3eJ, 
1 :,; XJ :,; 4}. On c1, we have 

dr = (dx1 )e1 

Therefore 

r~ g·dr = f
2 

2x1 dx1 = 3 Jc, 1 
i f4 15 

and ~ g·dr = x3 dx 3 = 2· 
c2 1 

We conclude that 

D 
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(2. 0. I) 

Figure 16.7 

If a functi~p g is continuous on a domain Din IRN, then Jcu · dr will depend 
on the path C chosen in D. However, there are certain situations in which the 
value of the integral will be the same for all paths C in D which have the same 
endpoints. Under such circumstances we say the integral is independent of the 
path. The next result illustrates this fact. 

Theorem 16.15. Suppose that u is a continuously differentiable scalar field on a 
domain D in !RN and that p, q are points of D. Let C be any piecewise smooth 
path with representation f such that f(t) ED for all ton I= {t: a~ t ~ b}, the 
domain of f. Suppose that f(a) = p, f(b) = q. Then 

fc Vu·dr = u(q)- u(p). 

PROOF. Because of Part (a) in Theorem 16.14 it suffices to prove the result for 
f smooth rather than piecewise smooth. Let e 1 , e2 , ••• , eN be an orthonormal 
basis. Define 

G(t) = u[f(t)] for t E /, 

with f(t) = f 1 (t)e1 + · · · + fN(t)eN. Using the Chain rule we find 

Hence 

N 

G'(t) = L u,;[/(t)]/;'(t) = Vu[f(t)] · f'(t). 
i=l 

fc Vu · dr = r Vu[f(t)] · f'(t) dt = r G'(t) dt = G(b)- G(a) 

= u(q) - u(p). 

Next we establish a converse of Theorem 16.15. 

D 
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Po 

Figure 16.8 

Theorem 16.16. Let v be a continuous vector field with domain D in IRN and 

range in VN. Suppose that for every smooth arc C lying entirely in D, the value of 

fc v·dr 

is independent of the path. Then there is a continuously differentiable scalar field 
u on D such that Vu(p) = v(p) for all p e D. 

PRooF. Let p0 be a fixed point of D and suppose that Cis any smooth path 
in D from p0 to a point p. Define 

u(p) = fc v· dr, 

which, because of the hypothesis on v, does not depend on C. Let p1 be any 
point of D and C0 and arc from Po to p1 . Extend C0 at p1 by adding a straight 
line segment l which begins at p1 in such a way that the extended arc C0 + l 
is smooth. Denote by a the unit vector in the direction l (see Figure 16.8). We 
introduce a coordinate system in IRN and designate the coordinates of p1 by 
x 0 • Then any point q on l will have coordinates x 0 + ta forte IR 1. Thus, if 
h > 0 we find 

Therefore 

lim -h1 [u(x0 + ha) - u(x0 )] = v(x0 ) ·a 
h-+O+ 

lim _hl [u(x0 + ha) - u(x0 )] = -lim _kl [u(x0 - ka) - u(x0 )] 
h~o- k~o 

= -v(x0 )·( -a)= v(x0 )·a. 
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This procedure can be carried out for any arc C0 passing through p1 with a a 
unit vector in any direction. From Theorem 16.7 it follows that Vu =vat x 0 , 

an arbitrary point of D. D 

Suppose that u is a smooth scalar field in IR 3 • We saw earlier that if v = Vu 
then it follows that curl v = 0. On the other hand if v is a given vector field 
such that curl v = 0 in a domain D, it is not necessarily true that v is the 
gradient of a scalar field in D. In fact, the following example shows that the 
integral of v may not be path-independent, in which case v cannot be the 
gradient of a scalar field. To see this, we set 

v =(xi+ xn-1 ( -Xze1 + x1e2 + O·e3) 

with D = {(x1 , x 2 , x 3 ): t ~xi+ x~ ~ t, -1 ~ x 3 ~ 1}. We choose for C the 
path r(t) =(cos t)e1 +(sin t) · e2 + 0 · e3 , 0 ~ t ~ 2n. Then 

fc. v·dr =I:" dt = 2n. 

However, if the integral were independent of the path its value should be zero 
since the initial and terminal points of Care the same. The difficulty arises 
because the path C encloses a singularity of von the line x 1 = x 2 = 0 whereas 
the cylindrical domain D does not contain this line. 

If a smooth vector field v is defined in a domain which is not merely 
connected but also simply connected (as defined below), then we shall prove 
that if curl v = 0 then v is the gradient of a scalar field u. 

Definition. Let D be a domain in !RN. Then Dis simply connected if and only 
if whenever / 0 and / 1 are paths from I= {t: a~ t ~ b} into D with / 0 (a) = 
/ 1 (a) and / 0 (b) = / 1 (b), there exists a function f(t, s) which is continuous for 
t e I and s e J = {s: 0 ~ s ~ 1}, has range in D, and has the properties: 

f(t, 0) = fo(t), 

f(t, 1) = /1(t), 

f(a, s) = fo(a) = /1 (a) 

f(b, s) = /o(b) = / 1 (b) 

for all s E J, 

for all s E J. (16.33) 

In other words, a domain D is simply connected if any two paths situated 
in D which have the same starting and ending points can be deformed con
tinuously one into the other without leaving D (see Figure 16.9). 

The following technical lemma shows that in general the function f(t, s) 
u~~d for deforming one path into another in a simply connected domain can 
be chosen so that it has certain smoothness properties. For the proof, see 
Problem 17 at the end of this section and the hints given there. 
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simply connected not simply connected 

Figure 16.9 

Lemma 16.4. Let I= {t: a~ t ~ b} and J = {s: 0 ~ s ~ 1} be intervals. Let D 
be a simply connected domain in IRN and suppose that lo and 11 with domain I 
are smooth paths in D for which l 0 (a) = 11 (a) and l 0 (b) = 11 (b). Then there is 
a continuous function l(t, s) with domain R = I x J and with range in D satis
fying conditions (16.33) and also the conditions: (i) (ofot) I is continuous in R; 
and (ii), there is a sifficiently large integer n so that, for each t e I, the function 
1 is linear ins on J; = {s: (1/n)(i- 1) ~ s ~ (1/n)i}, i = 1, 2, ... , n, with oflos 
and o2 1/otos uniformly continuous on each rectangle I x J;. 

Theorem 16.17. Suppose that vis a continuously differentiable vector field on a 
simply connected domain D in IR 3 and that curl v = 0 on D. Then there is a 
continuously differentiable scalar field u on D such that v = Vu. 

PROOF. We need only show that Jc:v·dris independent of the path. To do this 
let p and q be two points of D and let lo and 11 represent two smooth paths 
Co and c1 in D such that lo(a) = 11 (a) = p and lo(b) = 11 (b) = q. We choose 
a coordinate system with orthonormal basis e1, e2 , e3 and write v = v1e1 + 
v2e2 + v3e3 • From Lemma 16.4 there is a function l(t, s) = f 1 e1 + f 2e2 + 
f 3 e3 which is differentiable in t, piecewise linear ins and satisfies conditions 
(16.33). We define the function 

q>(s) = Lb [v1(1)(ofdot) + v2(1)(of2/ot) + v3(1)(of3/ot)] dt. 

Then from (16.33) it follows that 

q>(O) = fb v(l0) ·I~ dt = l ~ v · dr, 
a Jc0 

q>(1)=Jb v(ld·l{dt= ~~ v·dr. 
a Jc, 

We shall show that q>'(s) = 0, which implies that the desired integral is 
independent of the path. Since v, f, and olfot are continuous, it follows 
that q> is continuous for s e J = { s: 0 ~ s ~ 1 }. On each subinterval J; = 
{s: (1/n)(i- 1) ~ s ~ (1/n)i}, we know that olfos and o21/otos are uniformly 
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continuous. Therefore we may differentiate cp and obtain 

fb 3 { a2J; 3 oJ; oJ;} 
cp'(s) = .L v;(/) !l !l• + ~ v;,i(f)-i- !l 1 dt, 

a •=1 usut J=l ut uS 

i- 1 i 
--<s<-. 

n n 

Integrating by parts in the terms containing oJ;fotos, we find 

cp'(s) = t {v;[/(b, s)) oj;(b, s) - V;[f(a, s)] oj;(a, s) 
i=l OS OS 

+ "\" V· · ___!_ __!. - V· · ___!_ __!. dt . fb 3 ( oJ; oJ; oJ; oJ;) } 
a i,f,;.l I,J ot OS I,J OS ot 

(16.34) 

Since f(a, s) and f(b, s) are independent of s (according to (16.33)), it is clear 
that oJ;(a, s)jos = oJ;(b, s)jos = 0, i = 1, 2, 3. Therefore the first sum in (16.34) 
is zero. In the second sum we interchange the indices i and j and obtain 

, fb f oJ; ojj d cp (s) = L. (v. ·- V· ·)-- t. 
a i,j=l I,J J, I ot OS 

The hypothesis curl v = 0 implies that the above integrand vanishes, and so 
cp'(s) = 0 for s E J. D 

Remark. We can easily extend Theorem 16.17 to functions v from a domain 
D in IRN to VN. If curl v = 0 is replaced by the condition 

v;,i- vi,i = 0, i, j = 1, 2, ... , N, 

where v = v1 e1 + · · · + vNeN, then vis the gradient of a scalar field u provided 
that the domain D is simply connected. 

It is useful to have criteria which establish the simple-connectivity of 
domains so that Theorem 16.17 can be employed. The reader should not find 
it difficult to prove the following result. 

Theorem 16.18 

(a) If D is a convex2 domain in IRN, then D is simply connected. 
(b) Let h be a one-to-one continuous mapping of a domain Din IRN onto a domain 

D1 in IRN. If D is simply connected then so is D1 • 

PROBLEMS 

In each of Problems 1 through 8 assume that g is a continuous vector field 
from a domain D in IRN into VN for the appropriate value of N. The vectors 

2 Recall that a set S is convex if, whenever p and q are in S, the line segment joining p and q is 
also inS. 
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e1 , ... , eN form an orthonormal basis for a coordinate system. Compute 
Jcg·dr. 

1. g = x 1 x3 e1 - x 2 e2 + x1 e3 ; Cis the directed line segment from (0, 0, 0) to (1, 1, 1). 

2. g = x1 x 3 e1 - x 2e2 + x1 e3 ; Cis the directed arc given by f(t) = te1 + t2e2 + t3 e3 , 

0 :s:; t :s:; 1, from 0 to 1. 

3. g = -x1 e1 + x 2e2 - x3 e3 ; Cis the helix given by f(t) =(cos t)e1 +(sin t)e2 + 
(t/n)e3 , 0 :s:; t :s:; 2n, from 0 to 2n. 

4. g = -x1 e1 + x 2 e2 - x 3e3 ; Cis the directed line segment from (1, 0, 0) to (1, 0, 2). 

5. g = xie1 + x 1 x 2e2 + O·e3 ; C = {(x1 , x 2 , x 3 ): x 2 =xi, x 3 = 0, 0 :s:; x 1 :s:; 1, from 
(0, 0, 0) to (1, 1, 0)}. 

6. g = 2x2 x3e2 + (x~ - x~)e3 ; C is the shorter circular arc given by x 1 = 0, x~ + 
x~ = 4, from (0, 2, 0) to (0, 0, 2). 

7. g = x1 x4 e1 + x 2 e2 - x2 x4 e3 + x3 e4 ; Cis the directed straight line segment from 
(0, 0, 0, 0) to (a1 , a2 , a3 , a4 ). 

8. g = If=1 xre;; Cis the directed line segment given by f(t) = If=1 a.;te;, 0 :s:; t :s:; 1 
from 0 to 1; {a.;} are constants. 

9. Given the scalar function u(x) =xi+ 2x~- x~ + x4 in IR4 • Verify that kJu·dr 
is independent of the path by computing the value of the integral along C1 , the 
straight line segment from (0, 0, 0, 0) to (1, 1, 1, 1), and the along C2 , the straight 
segment from (0, 0, 0, 0) to (1, 0, 0, 0) followed by the straight segment from 
(1, 0, 0, 0) to (1, 1, 1, 1). Show that the two values are the same. 

10. Given the scalar function u(x) = If=l Xf in n;tN, Let cl be the line segment from 
- 2 ~N • (0, 0, ... , 0) to (1, 1, ... , 1) and C2 the path f(t) = t e1 + L.i=l te;, 0 :s:; t :s:; 1. yenfy 

t~at Jc;Vu·dr is independent of the path by computing this integral along C1 and 
C2 and showing that the values are the same. 

11. In IR2, let" be the vector field given by"= (xi + x~r1 ( -x2e1 + x 1 e2 ). Let C be 
the directed arc given by f(t) = (cos t)e1 + (sin t)e2 , 0 :s:; t :s:; 2n. Use Theorem 
16.17 to show that IR2 with the origin removed is not simply connected. 

12. Prove Theorem 16.18. 

13. (a) Show that any half-plane in IR2 is convex. 
(b) Show that in n;tN the half-space given by xN ;a. 0 is convex. 

14. Show that the setS in IR2 given by S = {(x1 , x2 ): x1 ;a. 0, -n :s:; x2 :s:; n} is convex. 

15. Let I= {x1 : a :s:; x 1 :s:; b} and suppose that f: I -+IR1 is a continuous, positive 
function. Show that the setS= {(x1 , x2): a< x 1 < b, 0 < x2 < f(x 1)} is a simply 
connected set in IR2• 

16. A torus is obtained by revolving a circle about an axis in the plane of the circle 
provided the axis does not intersect the circle (see Figure 16.10). Let a be the radius 
of the circle and let b be the distance from the axis of revolution to the center of 
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Figure 16.10 

the circle. The interior of the torus is the set S given by 

S = {(xt, x 2 , x3 ): (Jxi + x~- b)2 + x~ < a2 }. 

Use the method of Problem 11 to show that the setS is not simply connected. 

17. Employ the following steps to prove Lemma 16.4. 
(a) Let f*(t, s) be a continuous function satisfying the conditions (16.33) for the 

definition of simple connectivity. Let R be the rectangle { (t, s): a ~ t ~ b, 
0 ~ s ~ 1}. Show that there is a number p > 0 such that the ball with center 
at f*(t, s) and radius p is in D for all (t, s) e R. 

(b) Define a sequence {g.;}, i = 0, 1, 2, ... , n, n = 1, 2, ... , such that g.0 (t) = 
f*(t, s) = f 0 (t), g •• (t) = f*(t, 1) = / 1 (t), and such that, for 1 ~ i ~ n - 1, we 
set 9:; equal to a polynomial with the property that l9:;(t) - f*(t, i/n)l < p/8 
for a ~ t ~ b. Then let 

9.;(t) = 9:;(t) - l.;(t) 

where l.;(t) is the linear function coinciding withg:;(t)- f*(t, i/n) fort= a and 
t = b. Show that ll.;(t)l < p/8 on a ~ t ~ b and that 

l9.;(t) - f*(t, i/n)l < ~ for a ~ t ~ b, 0 ~ i ~ n. 

(c) Show that there is an n so large that 

lf*(t, st) - f*(t, s2 )1 < ~ 

(d) With then chosen as in (c), define 

f(t, s) = (i - ns)g.;_1 (t) + (ns - i + 1)g.;(t), 

i -1 i 
a~ t ~ b, -- ~ s ~ -, i = 1, 2, ... , n. 

n n 

Show that f and offot are continuous on R and observe that f is linear 
in s for (i- 1)/n ~ s ~ i/n, i = 1, 2, ... , n, with f(t, (i- 1)/n) = 9.;-1 (t) and 
f(t, i/n) = g.;(t). 
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(e) By considering the inequalities 

I f(t, s) - /* (t, ~)I ~ 1/(t, s)- u.;(t)l + lu.;(t)- f* (t, ~)I 

p I • [ (i- 1)J I ~ IU.;-t(t)- U.;(t)l + 4 ~ g.;-t(t)- I t, -n-

show that 
i- 1 i 

for--~ s ~-. 
n n 

Conclude that f(t, s) E D for all (t, s) in R. 

16.4. Green's Theorem in the Plane 

Green's theorem is an extension to the plane of the Fundamental theorem of 
calculus. We recall that this Fundamental theorem states that if I is an interval 
in IR 1 and f: I~ IR 1 is a continuously differentiable function then for any 
points a and b in I we have the formula r f'(x) dx = f(b) - f(a). (16.35) 

In the extension of this theorem to the plane we suppose that F is a figure in 
IR2 and Cis its boundary. Then Green's theorem is a formula which connects 
the line integral of a vector function over C with the double integral of the 
derivative of the function taken over the figure F. 

In order to achieve the appropriate precision in the statement and proof 
of the theorem we first develop lemmas and theorems which deal with geo
metry in the plane and the representation of vector functions defined on 
figures. The reader who is interested only in the basic formula may ship all 
the introductory material and start with the definitions on page 447. 

Definitions. Let I= {t: a :s;; t :s;; b} be the domain of a path f I~ VN. The 
function/represents a curve C in IRN. Thenfis said to be a closed path if and 
only iff( a)= f(b). Also,/ is a simple closed path if and only iff is closed and, 
whenever a< t 1 , t2 < b, then /(t1 ) = f(t 2 ) implies that t1 = t 2 . The curve 
C which is the range of the path/is called a simple closed curve or a closed 
Jordan curve. 

The next theorem is an extension to simple paths of Theorem 16.1 which 
connects any two representations of a curve in IRN. 
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Theorem 16.19*. Let I= {t: a~ t ~ b} and J = {t: c ~ t ~ d} be any inter
vals and suppose that f I -+ VN, g: J -+ VN have as range the same simple closed 
curve C. 

(a) If f(a) = f(b) = g(c) = g(d), then there is a continuous function U from I 
onto J such that f(t) = g[U(t)] for t E I, and either U is increasing ith 

U(a) = c, U(b) = d or U is decreasing with U(a) = d, U(b) = c. 
(b) If fis rectifiable, theng is rectifiable and the length of the path/equals the 

length of the path g. 

PROOF 
(a) Let B > 0 be given and define I,= {t: a+ B ~ t ~b-e}. Then/re

stricted to I, has as range an arc C,. The arc C, will be the range of g restricted 
to Jd, a subinterval of J. According to Theorem 16.1 there is a function 
U,: I,-+ Jd which is continuous on I, and is either increasing on I, or de
creasing on I,. Furthermore, f(t) = g[U,(t)] for t E I,. We let B tend to zero 
and obtain in the limit a function U defined from I'= {t: a< t < b} onto 
J' = {t: c < t < d}. If we define U(a) = c and U(b) = d when U is increasing, 
then U will be continuous from I onto J. Similarly, if U is decreasing, we set 
U(a) = d, U(b) = c and U is a continuous decreasing function from I onto 
L D 

We leave to the reader the proof of Part (b) (see Theorem 16.3). 
It may happen that f I -+ VN and g: J -+ VN have the same simple closed 

curve Cas range but that g(c) and g(d) are equal to f(p) where Pis an interior 
point of I. The following corollary shows that if the definition off is ex
tended by periodicity, we get the same result as in Theorem 16.19(a). 

Corollary*. Suppose that the domain of fin Theorem 16.19 is extended from 
I to I 1 = {t: a~ t ~ b + (b- a)} by the formula f(t) = f[t + (b- a)] for 
a ~ t ~ b. Suppose that g(c) = g(d) = f(a + oc) = f(b + oc) for some oc such that 
0 ~ oc ~ (b- a). Define fa(t) = f(t + oc) for t E I. Then there is a function 

Ua: I-+ J with the properties of U in Theorem 16.19(a) such thatfa(t) = g[Ua(t)] 
fortE I. 

Suppose thatfandg are as in the Corollary to Theorem 16.19 with range 
C, a simple closed rectifiable curve. Let F: C -+ VN be a continuous function 
on C. Then r F[fa(t)] · dfa(t) = ± r F[g(s)] · dg(s) 

with the plus sign taken if ua is increasing and the minus sign if ua is decreasing. 

* Material marked with an asterisk may be omitted on a first reading. 



16.4. Green's Theorem in the Plane 447 

The proof of the above formula is virtually unchanged from the proof when 
C is a rectifiable arc. 

The following definitions which give an orientation to simple closed curves 
in RN are analogous to those for directed curves (see page 436). 

Definition*. Letf I-+ VN have as range a simple closed curve C in RN. An 
oriented simple closed curve is a pair (C, d) where d is the class of vector 
functions consisting of all paths/11 having range C which are related to /by a 
function u .. as in the Corollary to Theorem 16.19 with u .. increasing. We call 
any such/p a parametric representation of (C, d). We denote (C, d) by the 
symbol C. The unoriented simple closed curve will be designated by Cor ICI. 

An unoriented simple closed curve C has two possible orientations C1 and 
C2 according as u .. is increasing or decreasing. We often write C1 = - C2 • 

Suppose that f I -+ VN is a parametric representation of C; we decompose 
I= {t: a~ t ~ b} into subintervals I"= {t: t~~;_ 1 ~ t ~ t~~;}, k = 1, 2, ... , n, with 
t0 = a, t,. = b and denote by ft: I" -+ VN the restriction off to I". Then the 
directed arc C" is the range of h· We write C = C1 + C2 + · · · + C,.. As in 
Theorem 16.14 an integral over C may be decomposed into a sum of integrals 
over the c", k = 1, 2, ... , n. 

Let D be a region in R2 with a boundary which is a simple closed curve. We 
denote the unoriented bound~ by iJD and t~ boundary oriented in a 
counterclockwise direction by iJD . The symbol -oD is used for the clockwise 
orientation. 

We shall first establish Green's theorem for regions in R2 which have a 
special simple shape. Then we shall show how the result for these special 
regions can be used to yield the same formula for general regions in the plane. 

Definitions. Let D be a region in R2 and v: D-+ V2 a vector function. We 
introduce a coordinate system in V2 with orthonormal basis e1 and e2 • There 
are two possible orientations for such a basis: e2 is obtained from e1 by a 90° 
rotation in a counterclockwise direction or e2 is obtained from e1 by a 90° 
rotation in a clockwise direction. We call the plane R2 oriented when one of 
these systems is introduced in V2 (R2 ) and we use the notation R2 and - R2 for 
the orientations (see Figure 16.11). Generally, we shall consider the oriented 
plane R2• In coordinates we write v = P(xto x2 )e1 + Q(xto x 2 )e2 where P and 
Q are functions from D into R 1. The scalar curl of v is the function Q, 1 - P, 2 

and we write 
curl v = Q, 1 - 1', 2 • 

We recall that in V3 the curl of a vector function is a vector function whereas 
the above curl is a scalar function. To justify the above terminology observe 

*See the footnote on page 446. 
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-iil 

0 0 

Figure 16.11. Two orientations of the plane. 

that if v is a vector function from ~3 to v3 in the special form 

v = Pe 1 + Qe2 + O·e3 

and P = P(x1 , x2 ), Q = Q(x 1 , x 2 ), then 

curl v = (Q, 1 - P,2)e3. 

Lemma 16.5. Let f be a continuously differentiable function with domain I = 
{x1 : a~ x 1 ~ b} and range in ~1 • Let c be a constant with f(xd ~ c for x 1 E I. 
DefineD= {(x1 , x 2 ): a~ x 1 ~ b, c ~ x 2 ~ f(xd}. (See Figure 16.12) Suppose 
that G is any region in Gi2 with i5 c G and let v: G-+ V2(~2 ) be a continuously 
differentiable vector function. Then 

I curl v dA =I- v·dr, 
D oD 

(16.36) 

-where iJD is oriented in a counterclockwise sense. 

PROOF. Writing v(x1 , x2) = P(x1 , x2)e1 + Q(x1, x2)e2, we see that it is suffi
cient to prove (16.36) for the functions P(x1 , x2)e1 and Q(x1, x2}e2 separately. 
Letting v1 = Pe1 , we have 

L curl vl dA = L ~2(xl, x2) dA = - r {P(xl,f(xd)- P(xl, c)} dxl. 

~ ~ -+ -+ -+ 

We write iJD = C1 + C2 + C3 + C4 as shown in Figure 16.12. Then 

I curl v1 dA = f_ P dx1 + f_ P dx 1 . 
D Jc, Jc, 

Since x 1 is constant along C2 and C4 , it follows that Jc2 P dx 1 = Jc. P dx 1 = 0. 
Therefore 

(16.37) 
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Figure 16.12 

Then 

and 
u,l,2 = u.2.1 = Q,l· 

Since U is smooth in G, it is clear that 

• 
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• 

f-(U, 1 dx1 + U, 2 dx2) = 0 = f- U, 1 dx 1 + f- Q dx2, (16.38) 
ao ao ao 

and, using Formula (16.37) with U, 1 in place of P, we obtain 

[ curl v2 dA = [ U, 1, 2 dA = -f- U,l dx1. 
Jo Jo ao 

Taking (16.38) into account we conclude that 

f curl v2 dA = f- Q dx2. 
D oD 

(16.39) 

Adding (16.37) and (16.39) we get the result. 0 

Definitions. Let C1 and C2 be two smooth arcs which have as their only point 
in common an end point of each of them. This point, denoted P, is called a 
corner of C1 and C2 if each of the arcs has a (one-sided) tangent line at P and 
if the two tangent lines make a positive angle (see Figure 16.13). A piecewise 
smooth simple closed curve is a simple closed curve which is made up of a finite 
number of smooth arcs which are joined at corners. 

Remark. In Lemma 16.5 we may suppose that f is a piecewise continuously 
differentiable (i.e., piecewise smooth) function on I consisting of a finite num
ber of smooth arcs joined at corners. The proof is unchanged. 
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a comer not a corner (cusp) 

Figure 16.13 

Definition. A region D in IR2 is said to be regular if and only if (i) D is bounded, 
(ii) oD consists of a finite number of piecewise smooth simple closed curves, 
and (iii) at each point P of oD a Cartesian coordinate system can be con
structed with P as origin with the following properties: for sufficiently small 
a and b a rectangle 

R = {(x1, x2): -a~ x1 ~a, -b ~ x2 ~ b} 

can be found so that the part of oD in R has the form x2 = f(xl) for xl on 
I= {x1: -a~ x1 ~a} and with range on J = {x2: -b < x2 < b}, where fis 
a piecewise smooth function (see Figure 16.14). 

Of course, the values of a, b, and the function f will change with the point 
P. If a rectangle R is determined for a point P, then it is clear that any rectangle 
with the same value forb and a smaller value for a is also adequate. See Figure 
16.15 for examples of regions which are not regular. 

If Dis a regular region in ~2 , a tangent vector can be drawn at any point of 
oD which is not a corner. Let T be the tangent vector at a point p E oD and 

construct a coordinate system in ~2 so that e1 is parallel to T. Then oD may be 
oriented at Pin two ways: the vector e2 may point into D or the vector e2 may 
point outward from D. In the first case we say oD is oriented at P so that Dis 

b 

------4---~~~~----------------.xl 

x 2 = f(xtl for -a,;;; x1 ,;;; a 

D 

Figure 16.14 
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Infinite number of holes Infinite spiral 

Regions which are not regular 

Figure 16.15 

to the left; in the second case, we say D is to the right. It can be shown that 
'---+ 

the oriented piecewise smooth simple closed curve oD has the property that 
Dis always on the left or always on the right for all points at which a tangent 
vector can be drawn. 

Theorem 16.20 (Green's theorem in the plane). Let D be a regular region in R2• 

Suppose that G is a region in R2 with jj c G, and let v: ~ V2 (R2 ) be a 
continuously differentiable ~tor f!!ncti~n on G. As~ume that oD i~ oriented so 
that Dis on the left and that oD = C1 + C2 + .. · + Ck where each C; is a smooth 
arc. Then 

f curl v dA = .± f _ v · dr = f- v · dr. 
D •=1 Jc, aD 

(16.40) 

PROOF. For each point of oD, choose a rectangle Rp and a function fp as 
prescribed in the definition of a regular region. For each interior point P of 
D choose a coordinate system with origin at P and an open rectangle Rp with 
sides parallel to the coordinate axes so that Rp c D. Since jj is compact, a 
finite number ofthe rectangles {Rp} as described for P e D u oD cover jj (see 
Figure 16.16). We denote these rectangles by St> S2 , ... , S,. and their centers 
by P;, i = 1, 2, ... , n. According to the process described in Section 15.4, we 
can find mollifiers 1/11 , 1/12 , ••• , 1/1,. of class C'"' on an open set G0 ::::> i5 such that 
each 1/1; vanishes on G0 - F; where F; is a compact subset of the open rectangle 
S; containing P;. For each point P define 

Then each cp; is of class coo and, for every P,. e G0 , it follows that :Lr=1 cp;(P) = 
1. The functions cp1 , cp2 , ... , cp,. are called a partition of unity (see Problem 2 
of Section 15.4). We define 

V; = lp;V, i = 1, 2, ... , n. 
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c, 

G []·· 

Figure 16.16. A finite number of rectangles covers i5. 

Then each V; is continuously differentiable on G0 and 

v = v1 + v2 + · · · + vn. 

Hence it suffices to establish (16.40) for each v;. If S; is contained in D, we have 

I-v;·dr = 0 
aD -since v; is zero at every point of iJD. Also, by Lemma 16.5 

f curl v;·dA = r curl V; dA =I-. V;·dr = 0, 
D Js, as, 

--+ 
since v; = 0 except in F;, and iJS; is disjoint from F;. Finally, suppose S; is a 

-+ -QQ.und~y rectangle. Let D; = D n S; and C; = iJD n S;. Then, since v; = 0 on 
iJD- C;, and on D- D;, it follows from Lemma 16.5 that 

I v.·dr = i v.·dr =I v.·dr =I curl v. dA =I curl. dA. - J. ..... l --+ l l l 

m ~ ~ ~ D 

Performing this process for each i and adding the results, we obtain (16.40). 
D 

If we set v = P(x1 , x2 )e1 + Q(x1 , x2 )e2 and express (16.40) in terms of 
coordinates we have the following form of Green's theorem. 
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Corollary. If P and Q are smooth in a domain G in IR 2 which contains a regular 
region D, then 

I (~Q-~P)dA=rh (Pdx 1 +Qdx2) 
D uXl uX2 Jon 

(16.41) 

where the line integral is taken in a counterclockwise direction. 

EXAMPLE 1. Given the disk K = {(x1 , x2): xi+ x~ < 1}, use Green's theorem 
to evaluate 

Solution. Setting P = 2x 1 - x~, Q = x~ + 3x~, we see from (16.41) that 

rh (P dx 1 + Q dx2) =I 3(xi + x~) dA = 3 f2
" J1 

r2·r dr d(} = ~n. JaK K 0 0 

D 

EXAMPLE 2. Let K = { (x 1 , x2 ): xi + x~ ~ 1} be the unit disk and let D be the 
region outside K which is bounded on the left by the parabola x~ = 2(x1 + 2) 
and on the right by the line x 1 = 2 (see Figure 16.17). Use Green's theorem 
to evaluate 

I ( 2 x2 2 dxl + 2 xl 2 dx2) c, xl + x2 Xt + x2 

where C1 is the outer boundary of D. 

Figure 16.17 
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Solution. We write P = -x2 /(xi + xn, Q = xtf(xi + xn and note that 
-"-+ 

Q, 1 - P, 2 = 0 in D. Hence with oK oriented in the counterclockwise sense, 
Green's theorem implies that 

0 = I- (P dx 1 + Q dx2 ) = f- (P dx 1 + Q dx2)- I- (P dx 1 + Q dx2 ). 
iJG C 1 ilK 

Using the representation x1 =cos(), x 2 =sin(), -n ~ () ~ n, for the last 
integral on the right, we obtain 

f-(P dx 1 + Q dx2 ) = I" (sin2 () + cos2 ()) d() = 2n. D 
c, _, 

EXAMPLE 3. Let D be a regular region with area A. Let v = -!(x2 e1 - x1e2 ). 

Show that 

A= I- v·dr. 
iJD 

Solution. We apply Green's theorem and find that 

I-v · dr = I curl v dA = I (! + !) dA = A. 
iJD D D 2 2 

D 

Example 3 shows that the area of any regular region may be expressed as 
an integral over the boundary of that region. 

PROBLEMS 

In each of Problems 1 through 8 verify Green's theorem. 

1. P(x1 , x2 ) = -x2 , Q(x1 , x2 ) = x1 ; D = {(x 1 , x2 ): 0 ~ x1 ~ 1, 0 ~ x 2 ~ 1}. 

2. P(x1 , x2 ) = x1x2 , Q(x1 , x2 ) = -2x1 x2 ; D = {(x1 , x2 ,: 1 ~ x1 ~ 2, 0 ~ x 2 ~ 3}. 

3. P(x1 , x2 ) = 2x1 - 3x2 , Q(x1 , x2 ) = 3x1 + 2x2 , D = {(x1 , x2 ): 0 ~ x1 ~ 2, 0 ~ 
x 2 ~ 1}. 

4. P(x 1 , x2 ) = 2x1 - x 2 , Q(x1 , x2 ) = x1 + 2x2 ; Dis the region outside the unit disk, 
above the curve x 2 = xi - 2, and below the line x 2 = 2. 

5. P =xi- x~, Q = 2x1x2 ; Dis the triangle with vertices at (0, 0), (2, 0), and (1, 1). 

6. P = -x2 , Q = 0; Dis the region inside the circle xi+ x~ = 4 and outside the 
circles xi + (x2 - 1)2 = 1/4 and xi + (x2 + 1)2 = 1/4. 

7. v =(xi+ x~r 1 (-x2 e 1 + x1e2 ); D = {(x1 , x2 ): 1 <xi+ x~ < 4}. 

8. P = 4x1 - 2x2 , Q = 2x1 + 6x2 ; Dis the interior ofthe ellipse: x 1 = 2 cos 8, x 2 = 
sin 8, - n ~ 8 ~ n. 

9. Prove Part (b) of Theorem 16.19. 
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10. Given D = {(x1 , x2): 0::::;; xii3 + x~l3 < 1}. Decide whether or not Dis a regular 
region. 

In Problems 11 through 14 compute J a» v · dr by means of Green's theorem. 

11. v(xl, x2) = (4x1ex2 + 3xix2 + xnel + (2xiex2- cos x2)e2; D = {(xl> x2): X~+ 
X~::::;; 4}. 

12. v(x1, x2 ) = arctan(x2/xde1 +! log(xi + xDe2; D = {(x1 , x2): 1::::;; x 1 ::::;; 3, -2::::;; 
x 2 ::::;; 2}. 

13. v(x1, x2) = -x2e1 + x 1e2; D = {(xl> x2): (x1 - 1)2 + x~ < 1}. 

14. v(x1, x2 ) = -3xfx2e1 + 3x 1 x~e2 ; 

D = {(x 1,x2 ): -a::::;; x 1 ::::;; a,O::::;; x2 ::::;; Ja2 - xi}. 

15. Given P = -xdxf + x~r\ Q = x2 (x~ + xn-1. Use Green's theorem to find the 
value of Jc(P dx 1 + Q dx2) where Cis the arc of the parabola x2 = xf - 1, -1 ::::;; 
x 1 ::::;; 2, followed by the line segment from (2, 3) to ( -1, 0). Let D be the region 
outside a small disk of radius p center at (0, 0) and inside of I Cl. 

16. Suppose u(x1, x2) satisfies ux,x, + Ux2x2 = 0 in a region G. Show that ~·(ux2 dx 1 -
ux, dx 2 ) = 0 where G* is any region interior to G. 

17. Ifux,x, + Ux2x 2 = 0 in a region G and v(x1, x2) is a smooth function, use the identity 
(vux)x, = vux,x, + vx, ux, and a similar one for (vux)x2 to prove that 

f v(ux2 dxl- ux, dx2) = -ff (vx,ux, + Vx2ux) dV 
OG"' G"' 

where G* is any region interior to G. 

16.5. Surfaces* in IR3 ; Parametric Representation 

Until now we have considered a surface in IR 3 as the graph (in a Cartesian 
coordinate system) of an equation of the form x3 = f(x 1 , x2 ) or F(x 1 , x2 , x3 ) = 
0. Now we are interested in studying surfaces which are more complicated 
than those which can be described by a single equation in x1 , x2 , x3 . 

We simplify the study of a complicated surface by decomposing it into a 
number of small pieces and by examining each piece separately. It may happen 
that if the decomposition is fine enough, each individual piece will have a 
simple structure even when the entire surface is unusual or bizarre. For most 
surfaces we shall study, each small piece will have a structure like that of a 
small section of a sphere, a cylinder, a hyperboloid, or similar smooth surface. 

A sphere, an ellipsoid, and the surface of a parallelepiped are examples of 
surfaces without boundary. On the other hand, a hemisphere has as a boundary 

* Those readers interested only in the basic form of Stokes' theorem may omit this section without 
loss of continuity. 
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Figure 16.18 

the circle consisting of its (equatorial) rim. When dividing a surface into small 
pieces we must be careful to distinguish those pieces which contain a portion 
of the boundary from those which are entirely interior to the surface. 

Definitions. A smooth surface element is the graph of a system of equations of 
the form 

(s, t) eDu oD (16.42) 

in which x 1 , x 2 , x3 are C1 functions with domain a region Gin R2 containing 
D u oD. We suppose that Dis a region whose boundary consists of a finite 
number of piecewise smooth simple closed curves. In vector notation Equa
tions (16.42) may be written 

---+ 
v(OQ) = r(s, t), (s, t) E D u oD, 0 given. (16.43) 

In Figure 16.18 we exhibit a smooth surface element and a domain D whose 
boundary oD consists of a single piecewise smooth curve. We shall assume that 

r. x r1 =F 0 for (s, t) E G (16.44) 

and thatr(s1 , tt) =F r(s2 , t 2 )whenever(sl> t 1) =F (s2 , t2 ). In other words, Equa
tions (16.42) define a one-to-one C1 transformation from D u oD onto the 
points of the surface element. Observe that if 

r(s, t) = x 1 (s, t)e1 + x 2 (s, t)e2 + x 3(s, t)e3 , 

then 

- (ox2 OXJ - ox2 ox3) (OXJ oxl - OXJ oxl) 
r. X r, - OS ot ot OS e 1 + OS ot ot OS e2 

+ (oxl ox3- oxl OXJ)e3. 
os at at os 
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Employing the Jacobian notation which we introduced on page 359 

0(() 0(() 

J(~~)= ;; ov = (ocp oi/J _ ocp oi/J) 
oi/J ou ov ov ou • 

ou ov 

(16.45) 

We say that the equations (16.42) or (16.43) form a parametric representation 
of the smooth surface element. The quantities s and t are called parameters. 

The next result shows the relation between two parametric representations 
of the same surface element. 

Theorem 16.21. Suppose that the transformation given by (16.43) satisfies Con
dition (16.44) and that (16.43) is C1 on a region G which contains D u oD. Let 
S and S1 denote the images of D u oD and G, respectively. 

(a) If (s, t) is any point of D u oD, then there is a positive number p such that 
the part of S corresponding to the disk 

(s - si + (t - t)2 < P2 

has one of the forms 

X3 = f(xl, X2), 

where f, g, or his smooth near the point (x1 , x2 , x3 ) co"esponding to (S, t). 
(b) Suppose that another parametric representation of S and S1 is given by -v(OP) = r1(s', t'), (s', t') e D1 u oD1, 

in which S and S1 are the images of D1 u oD1 and G1 respectively, in the 
(s', t') plane. Assume that D1 , G1 and r1 have all the properties which D, G, 
and r have. Then there is a one-to-one transformation 

T: s = U(s', t'), t = V(s', t'), (s', t') e G1 , (16.46) 

form G1 to G such that T(Dd = D, T(oDd = oD and 

r[U(s', t'), V(s', t')] = r1 (s', t') for (s', t') e G1 • 

PROOF 
(a) Since '• x r, :F 0 at a point (S, i), it follows that at least one of the three 

Jacobians in (16.45) is not zero at (S, t). Suppose, for instance, that 

J(x1, x2) #: 0 
s, t 
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at (S, t). We set 

r(s, t) = X1(s, t)e1 + X 2 (s, t)e2 + X3(s, t)e3 

and denote x1 = X1(S, i), x2 = X 2 (S, i), x3 = X3(S, t). Then from the Implicit 
function theorem it follows that there are positive numbers IX and {J such that 
all numbers x1, x2 , s, t which satisfy 

and 

( - )2 ( - )2 2 x1 - x1 + x2 - x2 < IX , 

lie on the graph of 

s = q>(xt> x2), t = 1/J(xl, x2), 

where q> and 1/1 are smooth functions in the disk (x- xd2 + (x2 - x2)2 < 1X2. 
In this case the part of S1 near (xt> x 2 , x3) is the graph of 

x3 = X3[q>(x1, x2), ljl(x1, x2)] for (x1 - x1)2 + (x 2 - x2)2 < IX2. 

The conclusion (a) follows when we select p > 0 so small that the image ofthe 
disk(s- sjl + (t- f}2 < p2liesinsidethedisk(X1- Xd2 + (x2- X2)2 < IX2. 

(b) Since r(s, t) and r1 (s', t') are one-to-one, it follows that to each (s', t') in 
G1 there corresponds a unique P on S1 which comes from a unique pair (s, t) 
in G. The relationship is shown in Figure 16.19. The transformation T in 
(16.46) is defined by this correspondence: s = U(s', t'), t = V(s', t'). Then Tis 
clearly one-to-one. To see that Tis smooth, let (s0, t0) be any point in G1 and 
let s0 = U(s0, t0), t0 = V(s0, t0). Denote by P0 the point of S corresponding 
to both (s0 , t0 ) and (s0, t0). At least one of the three Jacobians in (16.45) does 
not vanish at (s0 , t0 ). If, for example, the last one does not vanish, we can solve 
for sand tin terms of x1 and x2 as in Part (a). We now set 

r1(s', t') = XJ.(s', t')e1 + X2(s', t')e2 + X3(s', t')e3 • 

At points P of S near P0 the surface can be represented as a function of (x1, x2) 
so that there is a one-to-one correspondence between the range and domain 

0 

Figure 16.19. Defining the transformation T. 
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of this function. Therefore we find 

U(s', t') = <p [X~ (s', t'), X~(s', t')], V(s', t') = I{I[X~(s', t'), X~(s', t')]. 

Hence U and V are smooth near (s0, t~). an arbitrary point of D1 u oD1 • 0 

Remark. The inverse transformation, r-1, has the same smoothness 
properties that T does. 

Definition. Suppose that S is a smooth surface element given by 

(s, t) E D u oD. 

Then the boundary of S is the image of oD in the above parametric represen
tation. From Part (b) of Theorem 16.21 the boundary of a smooth surface 
element is independent of the particular parametric representation. Also, it is 
not difficult to see that such a boundary consists of a finite number of piecewise 
smooth, simple closed curves, no two of which intersect. 

From Part (a) of Theorem 16.21 it follows that a neighborhood of any point 
of a smooth surface element is the graph of an equation of one of the three 
forms 

where f, g, or h is a smooth function on its domain. 
The set of points 

{(xl, Xz, X3): X3 = f(xl, Xz), (x1, Xz) ED U oD} 

where f is smooth on a region G containing D u oD is a smooth surface 
elementS. To see this, observe that Sis the graph of the parametric equations 

x 2 = t, x3 = f(s, t), (s, t) E D u oD. 

Definition. A piecewise smooth surface S is the union S1 u S2 u · · · u Sn of a 
finite number of smooth surface elements S1 , S2 , ••. , S" satisfying the following 
five conditions: 

(i) No two S; have common interior points. 
(ii) The intersection of the boundaries of two elements oS; n oSi, i =I= j, is 

either empty, or a single point, or a piecewise smooth arc. See Figure 16.20 
for an example of a surface S. 

(iii) The boundaries of any three distinct elements have at most one point in 
common. 

(iv) Any two points of S can be joined by a path in S. 
(v) The union of all arcs each of which is on the boundary of only one of the 

S; form a finite number of disjoint piecewise smooth simple closed curves. 

The set of points in (v) constitute the boundary of S, denoted oS. If this set 
is empty then Sis a piecewise smooth surface without boundary. 

A piecewise smooth surface S has many decompositions into the finite 
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Figure 16.20. A piecewise smooth surface. 

union of smooth surface elements. An arc which is part of the boundary of 
two of the S; is called an edge of the decomposition. A corner of one of the 
boundaries of an S; is called a vertex. 

A piecewise smooth surface S is said to be a smooth surface if and only if 
for every point p not on as a decomposition of s into piecewise smooth surface 
elements can be found such that P is an interior point of one of the surface 
elements. 

It can be shown that if F is a smooth scalar field on some domain in IR 3 

and F(x 1 , x 2 , x3 ) and VF(x 1 , x2 , x3 ) are never simultaneously zero, then the 
graph of the equation F = 0 is a smooth surface provided that the graph is a 
closed, bounded set. We leave the details of the proof to the reader. For 
example, the functions 

F(x1 , x2 , x3 ) =xi+ x~ + x~- a2 , 

and 

exhibit the fact that spheres and ellipsoids are smooth surfaces. Any poly
hedron can be shown to be a piecewise smooth surface. 

EXAMPLE. Suppose that a smooth scalar field is defined in all of IR3 by the 
formula 

F(x 1 , x2 , x3 ) =xi + 4x~ + 9x~ - 44. 

ShQw that the setS= {(x1 , x2 , x3 ): F = 0} is a smooth surface. 

Solution. We compute the gradient: 

VF = 2x1e1 + 8x2 e2 + 18x3 e3 • 

Then VF = 0 only at (0, 0, 0). Since Sis not void (e.g., the point (j44, 0, 0) is 
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on it), since (0, 0, 0) is not a point of S, and since F = 0 is a closed, bounded 
set, the surface is smooth. 0 

PROBLEMS 

1. Find two parametric representations ofthe hemisphereS= {(x1 , x2 , x3 ): xf + x~ + 
x~ = 1, x3 > 0} and find the transformation T as given by (16.46) relating the two 
representations. 

2. Same as Problem 1 for the surfaceS= {(x1 , x 2 , x3 ): xf + x~ + 2x~ = 1, x3 > 0}. 

3. Given the cube with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (0, 1, 1) 
(1, 0, 1), (1, 1, 1). Find a decomposition ofthe surface ofthe cube into smooth surface 
elements, and verify that the boundary is empty. 

4. Given the sphereS= {(x1, x 2 , x3 ): xf + x~ + x~ = 1}. DecomposeS into smooth 
surface elements and verify that S is a smooth surface without boundary. 

5. Given the conical surface S = {(x 1 , x 2 , x3 ): xf + x~- x~ = 0, -1 < x3 < 1}. 
Decide whether or not S is a smooth surface. 

6. A torus Sis given by S = {(x1, x 2 , x3 ): (jxf + x~- W + x~ = a2 } with 0 <a< b. 
Find a decomposition of S into smooth surface elements and show that Sis a surface 
without boundary. 

7. Let F: D-+ IR1 be a smooth scalar function where D is a region in IR3 . Suppose 
that F and VF are never simultaneously zero. Suppose that S = {(x1 , x 2 , x3 ): 

F(x1 , x2 , x3 ) = 0} is a closed, bounded set. Show that Sis a smooth surface. 

8. Let S0 = {(x1 , x 2 , x3 ): 1 ~ xf + x~ + x~ ~ 4} and S1 = {(x1 , x2 , x3): 2(xf + x~) = 
1, x3 > 0} be given. Show that S1 n S0 = Sis a piecewise smooth surface. Describe 
as. 

16.6. Area of a Surface in IR3 ; Surface Integrals 

Let a surface S in IR3 be given by 

s = {(xl, x2, x3): x3 = f(xl, x2), (xl, x2) ED u oD} 

where Dis a bounded region in IR2• We know that iff has continuous first 
derivatives the area of the surface, A(S), may be computed by the formula 
developed in calculus. In fact, we recall that 

A(S) = f L 1 + (:~)2 + (:~J2 
dA. 

In order to develop methods for finding the area of more complicated surfaces 
we first define the area of a smooth surface element (seep. 456 for the definition 
of a smooth surface element). 

Let u be a smooth surface element given by -u: v(OQ) = r(s, t), (s, t) E D u oD, (16.47) 
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Figure 16.21. '• and r, are tangent to u. 

with r and D satisfying the conditions stated in the definition of a smooth 
surface element. If tis held constant, say equal to t 0 , then the graph of (16.47) 
is a smooth curve on a. Therefore r.(s, t0 ), the partial derivative of r with 
respect to s, is a vector tangent to this curve on the surface. Similarly, the 
vector r1(s0 , t) is tangent to the curve on a obtained when we set s = s0 (see 
Figure 16.21). The vectors r.(s0 , t0 ) and r,(s0 , t0 ) lie in the plane tangent to the 
surface element a at the point P0 = r(s0 , t0 ). 

Definition. The tangent linear transformation of the surface given by (16.47) at 
the point P0 on a is given by 

--+ 
v(OP) = r(s0 , t 0 ) + r.(s0 , t0 )(s - s0 ) + r,(s0 , t0 )(t - t0 ) (16.48) 

for (s, t) e IR2 • Observe that the graph of the point P in (16.48) is the plane 
tangent to a at P0 • The image of a rectangle in IR2 such as 

R = {(s, t): s1 ~ s ~ s2 , t 1 ~ t ~ t2 } 

under the transformation (16.48) is a parallelogram ABCD in the plane tangent 
to a at P0 (see Figure 16.22). We set a = r.(s0 , t0 ) and b = r,(s0 , t0 ). Then the 

1 = 12 

I= II 

0 s -s2 

Figure 16.22. Image of R is a parallelogram. 
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points A, B, C, D are determined by 
~ 

v(OA) = r(s0 , t0 ) + a(s 1 - s0 ) + h(t 1 - to). 
~ 

v(OB) = r(s0 , t 0 ) + a(s2 - s0 ) + h(t 1 - t 0 ), 

~ 

v(OC) = r(s0 , t 0 ) + a(s2 - s0 ) + h(t2 - t 0 ), 

~ 

v(OD) = r(s0 , t0 ) + a(s 1 - s0 ) + h(t2 - t0 ). 

~ ~ ~ ~ 

By subtraction of v(OA) from v(OB) and v(OA) from v(OD) we find that 
---+ ---+ 

v(AB) = (s2 - sda, v(AD) = (t 2 - t 1 )h. 
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Denoting the area of R by A(R), we use the vector product to obtain the area 
of the parallelogram ABCD. Hence 

---+ ---+ 
Area ABCD = lv(AB) x v(AD)I = l(s2 - s1 )(t2 - t 1 )lla x hi 

= A(R)Ir.(s0 , t0 ) x r1(s0 , t0 )1. 

In defining the area of a surface element we use the fact that a very small 
piece of surface is approximated by a small parallelogram in the plane tangent 
to this small piece. 

Definition. Let u be a smooth surface element given by (16.47). We subdivide 
D into a number of subregions D1 , D2 , •.. , D" and define the mesh size 11~11 as 
the maximum diameter of all the D;. The area of the surface element u, denoted 
A(u), is defined by the formula 

n 

A(u) = lim L A(D;)Ir.(s;, t;) x r1(S;, t;)l 
11<111-+0 i=1 

where A(D;) is the area of D;, and (s;, t;) is any point of D;, and where the limit 
exists in the same manner as that determined in the definition of a definite 
integral. From this definition of area we obtain at once the formula 

A(u) = I L lr.(s, t) x r1(s, t)l dA. (16.49) 

Suppose a surface element u has another parametric representation in 
addition to (16.47). That is, suppose u is given by 

~ 

u: v(OP) = r'(s', t') for (s', t') ED' u 8D'. 

Then the area A'(u) in this representation is given by 

A'(u) = I L. lr;.(s', t') x r;.(s', t')l dA. (16.50) 

From the rule for multiplying Jacobians and the rule for change of variables 
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in a multiple integral, it follows that A(cr) = A'(cr). In fact, we have 

lr;.(s', t') X r;.(s', t')l = lr.(s, t) X rt(s, t)l·l J c~: :,) I' 
and so (16.49) and (16.50) yield the same value. 

If the representation of cr is of the form x3 = f(x 1 , x2 ) discussed at the 
beginning of the section, we may set x 1 = s, x 2 = t, x3 = f(s, t) and find that 

1 (xb x 2 ) = 1. 
s, t 

Then (16.49) becomes the familiar formula 

A(cr) =I L j1 + J/ + J/ dA. (16.51) 

When a surface cr is described by a single equation such as x3 = f(x 1 , x2 ) we 
say that cr is given in nonparametric form. 

Unfortunately most surfaces cannot be described in nonparametric form, 
and so (16.51) cannot be used in general for the computation of surface area. 
In fact, it can be shown that a simple surface such as a sphere cannot be part 
of a single smooth surface element. 

If Sis a piecewise continuous surface, we can define area by decomposition. 
First, if cr is a smooth surface element, a set F is a figure in cr if and only ifF 
is the image under (16.47) of a figure E in the plane region D u oD. The area 
ofF is defined by Formula (16.49). If r1 = r1 (s', t') is another representation 
of cr and E1 is the set in D1 u oD1 corresponding to F, it follows from Theorem 
16.21(b) and the rule for multiplying Jacobians that E 1 is a figure and hence 
the area ofF is also given by (16.49). 

Definitions. Let S be a piecewise continuous surface. A set F contained in S is 
a figure if and only ifF = F1 u F2 u · · · u Fk where each F; is a figure contained 
in a single smooth surface element cr; of Sand no two F; have common interior 
points. The area ofF is defined by the formula 

A(F) = A(F1 ) + · · · + A(Fd. 

It is important to know that any two such decompositions of a set F yield 
the same value for A(F). We omit the proof of the theorem which establishes 
this fact. 

We now discuss integration of a function f defined on a surface F. Suppose 
that F is a closed figure on a piecewise smooth surface. We write F = F1 u 

F2 u · · · u Fk where each F; is a figure contained in one smooth surface element. 
Then each F; is the image of a figure E; in IR2 , i = 1, 2, ... , k, under the map 

---+ 
v(OQ) = r;(s, t) for (s, t) ED; u oD; (16.52) 
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with Ei c (Diu oDJ Let f: F--+ IR 1 be a continuous scalar field. We define 

(16.53) 

where each term in the right side of (16.53) is defined by the formula 

f t f dS = f L, f[ri(s, t)] ·Iris X rirl dA. (16.54) 

The result is independent of the particular subdivision { F;} and the particular 
parametric representation (16.52). 

If a surface element a has a nonparametric representation x3 = <p(x1, x2), 
then (16.54) becomes 

f t J ds =fL. J[xl, Xz, <p(xl, Xz)J 1 + (:~y + (::Y dA. (16.55) 

The evaluation of the integral in (16.55) follows the usual rule for evaluation 
of ordinary double and iterated integrals. We show the technique and give 
several applications in the following examples. 

EXAMPLE 1. Find the value of J J F x~ dS where F is the part of the lateral surface 
of the cylinder xi + x~ = 4 between the planes x3 = 0 and x3 = x2 + 3 (see 
Figure 16.23). 

Solution. When we transform to the cylindrical coordinate system x1 = r sin (), 
x2 = r cos(), x3 = z, then Flies on the surfacer= 2. We choose ()and z as 

(0, -2, I) 

I 
I 

(0, 2. 5) 

I xi+ x~ = 4 

I 
I F I 

-+- I - - J2 - ......... (0. 2. 0~2 
/ 

Figure 16.23 
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z 

(0, 5) 

Figure 16.24 

parametric coordinates on F and set 

G = {(0, z): -n ~ 0 ~ n, 0 ~ z ~ 3 + 2 cos 0}, 

F = {(x1 , x 2 , x 3 ): x 1 = 2 sin 0, x 2 = 2 cos 0, x 3 = z, (0, z) e G}. 

The element of surface area dS is given by dS = ir8 x rzl dA8z, (see Figure 
16.24) and since 

we find 

Therefore 

= -(2 sin O)e1 - (2 cos O)e2 + 0 · e3 , 

dS = 2dAez· 

II II f" J3+2cos8 
F x~ dS = 2 G z2 dA8z = 2 _, 

0 
z2 dz dO 

= - (3 + 2 cos 0)3 dO = 60n. 2f" 
3 _, 

(16.56) 

D 

Remark. The surface F is not a single smooth surface element since the 
transformation from G to F shows that the points ( -n, z) and (n, z) of G are 
carried into the same points of F. The condition that the transformation be 
one-to-one, necessary for a smooth surface element, is therefore violated. 
However, if we divide G into G1 and G2 as shown in Figure 16.24, the image 
of each is a smooth surface element. The evaluation of the integral (16.56) is 
unchanged. 

Surface integrals can be used for the computation of various physical 
quantities. The center of mass and the moment of inertia of thin curvilinear 
plates are sometimes computable in terms of surface integrals. Also, the 
potential of a distribution of an electric charge on a surface may be expressed 
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xi + x~ + xj = I 

Figure 16.25. A cone surmounted by part of a sphere. 

as a surface integral. We may associate a mass with any surface F by assuming 
it to be made of thin material having density 1>. The density is assumed to be 
continuous but not necessarily constant. The total mass of such a surface F, 
denoted M(F), is given by 

M(F) = It b(P) dS. 

The moment of inertia lx3 (of a surface F) about the x3 axis is given by 

lx3 (F) = It 1>(P)(xi(P) + x~(P)) dS, 

with analogous formulas for Ix, (F) and lx2 (F). 

ExAMPLE 2. Find the moment of inertia about the x 1 axis of the surface 
s = {(xl, x2, x3): xi+ X~+ X~= 1, x3 ~ Jxi + xn. Assume the density{) 
is a constant (see Figure 16.25). 

Solution. We introduce spherical coordinates x1 = p cos() sin qJ, x2 = 
p sin () sin qJ, x3 = p cos qJ and set 

D = { (0, qJ): 0 ~ () ~ 2n, 0 ~ qJ ~ n/4}. 

Then the surfaceS is given by S = {(p, (), qJ): p = 1, ((), ({J) ED}. We compute 
r"' x r9 and find 

r"' x r9 = J(x~: ~3)e1 + J(x;: ~ 1)e2 + J(x~: ~2)e3 
= (sin2 qJ cos O)e1 + (sin2 qJ sin O)e2 +(sin qJ cos qJ)e3 • 
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The element of surface area is 

Then 

lx 1 = It J(x~ + xD sin q> dA"'6 

f7t/4 f2" 
= J 

0 0 
(sin2 q> sin2 (} + cos2 cp) sin q> d(} dq> 

f"/4 nJ 
= nJ 

0 
(1 + cos2 q>) sin q> dq> = 12 (16 - 7 j2). 0 

Remark. The parametric representation of S in spherical coordinates does 
not fulfill the required conditions for such representations since lr"' x r61 = 
sin q> vanishes for q> = 0. However, the surface S with the deletion of a small 
hole around the x3 axis is of the required type. We then let the size of the hole 
tend to zero and obtain the above result for lx 1 • 

ExAMPLE 3. Given R = { (x 1 , x 2 , x 3 ): xi + x~ ::;; 1, 0 ::;; x3 ::;; x 1 + 2} and S = 
oR. If S has uniform density J, find its mass. Find the value of 

and obtain x1, the xrcoordinate of the center of mass of S (see Figure 16.26). 

Solution. The surface is composed of three parts: S1 , the disk in the x 1 x2-plane; 
S2 , the lateral surface of the cylinder; and S3 , the part of the plane x3 = x 1 + 2 

(I. 0. 3) 

I xi+ x~ = 1 

( -I. 0, I) VI x2 

1 s2 

I I / 
I ---+-7"- I --*--0 s, 

Figure 16.26 
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inside the cylinder. We have (since x 1 is an odd function) 

On S3 we see that x3 = x1 + 2 so that dS = J2 dAis the element of area on 
S1 • Hence 

On S2 we choose coordinates (0, z) with x 1 = cos 0, x 2 = sin 0, x 3 = z, dS = 
dAez· We write 

D2 = {(0, z): -n: ~ 0 ~ n, 0 ~ z ~ 2 + cos 0} 

and find 

fi If f" f2+cos9 
X 1 dS = cos 0 dA6z = COS 0 dz dO = n. 

S2 D2 -x 0 

Therefore 

The surfaceS is a piecewise smooth surface without boundary. The intersec
tions of x~ + x~ = 1 with the planes x3 = 0, x3 = x1 + 2 form two smooth 
edges. There are no vertices on S. To find the mass M(S) of S, we observe that 

M(S) = f I {J dS = {JA(S) = {J[A(Sl) + A(S2) + A(S3)]. 

Clearly, A(Sd = n, A(S3) = n.J2. Also, 

A(S2) = f l dA6z = f" j2+•ose dz dO= 4n. 
JD2 -x Jo 

Therefore M(S) = n:{J(5 + J2). To obtain the x 1 coordinate of the center of 
mass, note that 

_ {J Hs x1 dA {Jn: 
x 1 = M(S) = {Jn:(5 + J2) 

1 
0 

5+J2" 

PROBLEMS 

In each of Problems 1 through 9, find the value of 

f I f(x 1 , x 2 , x3 ) dS. 

1. f(x 1 , x2 , x3 ) = x1 , S = {(x1, x2 , x3): x1 + x2 + x3 = 1, x1 ;;:?; 0, x2 ;;:?; 0, x3 ;;:?; 0}. 
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2. f(x 1 , x2 , x3) =xi, S = {(x 1 , x 2 , x3): x3 = x 1 , xi+ x~:::;; 1}. 

3. f(x 1 , x2 , x3) =xi, S = {(x 1 , x2 , x3): x~ =xi+ x~, 1:::;; x3 :::;; 2}. 

4. f(x 1 , x2 , x3) =xi, Sis the part of the cylinder x3 = xi/2 cut out by the planes 
x2 = 0, x 1 = 2, and x 1 = x2 . 

5. f(x 1 , x 2 , x3) = x1 x3, S = {(x1 , x2 , x3): xi+ x~ = 1, 0:::;; x3 :::;; x 1 + 2}. 

6. f(x 1 , x2 , x3) = xl> Sis the part of the cylinder xi - 2x1 + x~ = 0 between the two 

nappes of the cone xi+ x~ = x~. 

7. f(x 1 , x2 , x3) = 1; using polar coordinates (r, 8) in the x 1 , x2 -plane, Sis the part of 
the vertical cylinder erected on the spiral r = 8, 0 :::;; 8 :::;; n/2, bounded below by 

the x 1xz-plane and above by the cone xi+ x~ = x~. 

8. f(xl, x2 , x3) =xi+ x~- 2x~, S = {(x1 , x2 , x3): xi+ x~ + x~ = a2 }. 

9. f(xl, Xz, x3) =xi, s =oR where R = {(xl> Xz, x3): X~~ xi+ X~, 1:::;; x3:::;; 2} 
(see Problem 3). 

In each of Problems 10 through 14, find the moment of inertia of S about the 
indicated axis, assuming that the density (J is constant. 

10. The surfaceS of Problem 3; x 1 axis. 

11. The surface S of Problem 6; x 1 axis. 

12. The surface S of Problem 7; x3 axis. 

13. The surfaceS which is the boundary of R, where R = {(x1 , x2 , x3): x 1 + x2 + 
x3 < 1, x 1 > 0, x2 > 0, x3 > 0}; about the x2 axis. 

14. The torus S = {(x 1 , x2 , x3): (Jxi + x~- b)2 + x~ = a2, 0 <a< b}; x3 axis. 
[Hint: If the parameters 8, q> are introduced by the relations 

x1 = (b +a cos cp) cos 8 

x2 = (b + a cos cp) sin 8 

x 3 =a sin q>, 

the torus Sis described by {(cp, 8): 0:::;; cp:::;; 2n, 0:::;; 8:::;; 2n}.] 

In each of Problems 15 through 17 find the center of mass assuming the 
density (J is constant. 

15. Sis the surface of Problem 2. 

16. S is the surface of Problem 13. 

The electrostatic potential E(Q) at a point Q due to a distribution of electric 
charge (with charge density p) on a surfaceS is given by 

E(Q) = f L p(:~QdS 
where dPQ is the distance from a point Q in IR3 - S to a point P E S. 
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n 

Figure 16.27. The unit normal to the surfaceS. 

In Problems 18 through 21 find E(Q) at the point given, assuming that p 
is constant. 

18. S = {(x1 , x 2 , x3 ): xi+ x~ = 1, 0 ~ x3 ~ 1}; Q = (0, 0, 0). 

19. S = {(x1 , x2 , x3 ): xi+ x~ + x~ = a2 }; Q = (0, 0, c). Case 1: c >a> 0; Case 2: 
a>c>O. 

20. S = {(x1 , x2 , x3 ): xi+ x~ + x~ = a2 , x3 ~ 0}. Q = (0, 0, c); 0 < c <a. 

21. S is the surface of Problem 3; Q = (0, 0, 0). 

16.7. Orientable Surfaces 

Suppose that S is a smooth surface element represented parametrically by 
--+ 

v(OP) = r(s, t) with (s, t) E D u aD (16.57) 

where Dis a region in the (s, t) plane with a piecewise smooth boundary aD. 
From the definition of a smooth surface element, we know that r. x r, =1= 0 for 
(s, t) in a region G containing D u aD (see Figure 16.27). 

Definition. For a smooth surface element S, the unit normal function to S is 
defined by the formula 

r. x r1 n = --, (s, t) ED. 
lr. x r,l 

Whenever S is a smooth surface element, the vector n is a continuous 
function of sand t. Using Jacobian notation, n may be written in coordinates 

n = lr. x r,l-1 [J(x2 , x3)e1 + J(x3 , x1)e2 + J(x1 , x2)e3]. (16.58) 
~t ~t ~t 

Suppose now that the same surface element S has another parametric 
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representation --+ 
v(OP) = r 1(S 1, t 1 ) with (s 1, t 1) E D1 u 8D1• 

Then from Part (b) of Theorem 16.21 there is a one-to-one continuously 
differentiable transformation T given by 

T: s = U(s 1
, t 1

), t = V(s 1
, t 1 ), (s 1, t 1 ) E G1, 

from G1 to G such that T(D1
) = D and T(8D1 ) = 8D. We also have 

r[U(s 1, t 1 ), V(s 1, t 1 )] = r1(S 1, t 1 ) for (s 1, t 1 ) E D1• 

We now define the unit normal function n1 in terms of the second parametric 
representation: 

I I 1 _ 1 [ (x2, X3) (x3, X1) (x1, X2) J n = lr •. x 'r·l J - 1 - 1 e1 + J -~-~ e2 + J - 1 - 1 e3 • (16.59) 
s,t s,t s,t 

Using the law for multiplying Jacobians, we conclude from (16.58) and (16.59) 
that for all P E S 

n1(P) = n(P) or n1(P) = -n(P). 

The choice of sign depends upon whether J(s, t/s 1, t 1) is positive or negative 
onD1 u8D1• 

Definitions. A smooth surface S is orientable if and only if there exists a 
continuous unit normal function defined over all of S. Such a unit normal 
function is called an orientation of S. 

Since the unit normal function to S at a point Pis either n(P) or -n(P), 
each orientable surface possesses exactly two orientations, each of which is 
the negative of the other. An oriented surface is the pair (S, n) where n is one 
of the two orientations of S. We denote such an oriented surface by S. Suppose 
that F is a smooth surface element of the oriented surface S. The function n 
when restricted to F provides an orientation for F so that (F, n) = F is an 
oriented surface element. We say that the orientation ofF agrees with the 
orientation of S if the parametric representations ofF and S yield unit normal 
functions on F which are identical. 

It is intuitively clear that smooth surfaces such as spheres, ellipsoids, 
toruses, and so forth, are all orientable surfaces. However, there are smooth 
surfaces for which there is no way to choose a continuous unit normal over 
the entire surface. One such surface is the Mobius strip shown in Figure 16.28. 
A model of this surface can be made from a long, narrow rectangular strip of 
paper by giving one end a half-twist (180°) and then gluing the ends together. 
A Mobius strip M can be represented parametrically on a rectangle (Figure 
16.29) 

R = { (s, t): 0 ~ s ~ 2n, - h ~ t ~ h} 
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Figure 16.28. A Mobius strip. 

by the equations (0 < h <a): 

x1 = (a + t sints) cos s, x 2 = (a + t sints) sins, x3 = t costs. 
(16.60) 

To find the unit normal to M, we first compute 

J (x2 ' x3 ) = (a + t sints) costs cos s + tt sins, 
s, t 

J (x3 , x1) = (a + t sints) costs sin s - tt cos s, 
s, t 

J(x1 , x2 ) = -(a+ t sints) sints. 
s, t 

(G, h)+----------. 

(0, t) 

R 

0 

(0, -h)+-----------' 

Figure 16.29 
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aD is positively d1rel'ted 

0 

Figure 16.30 

Then 
Irs x Y1 12 =(a + t sin!s)2 + it2• 

Therefore r. x r1 is never 0, so that if we define n(s, t) by 

n(s, t) = Irs X r1l-1r5 X Yn 

it follows that n(s, t) is continuous. However, n(O, 0) = e1 and n(2n, 0) = -e1 , 

while the points (0, 0), (2n, 0) in R correspond to the same point on M. The 
transformation (16.60) is one-to-one except for the points of R given by (0, t) 
and (2n, - t), - h ~ t ~ h, which are carried into the same point of M (see 
Figure 16.29). The Mobius strip, called a "one-sided surface," is not a smooth 
surface element. It is not an orientable surface since, if a pencil line (with pencil 
perpendicular to the surface) is drawn down the center of the strip (t = 0) then, 
after one complete trip around, the pencil will be pointing to the "opposite 
side." 

If S is a smooth surface element represented parametrically by 
---+ 

v(O P) = r(s, t), (s, t) E D u aD, (16.61) 

then the boundary as is the image of aD. Since IR 2 is oriented, we say that aD 
is positively directed if it is oriented so that D is on the left as aD is traversed 

--+ --+ 
(see Figure 16.30). We write an for this orientation and -aD when the 
boundary is oppositely directed. 

LetS be an oriented surface and suppose that the parametric representation 
given by (16.61) agrees with the orientation of S. Then every closed curve r 
on the boundary of Swill have an orientation induced by the oriented closed 

- --+ -curve C of aD which has r as its image. We write r for this oriented curve 
and say that it is positively directed with respect to S if Cis positively directed. 

- ----+ 
Geometrically, the curve r is directed so that if one proceeds along as in an 
upright position with head in the direction of the positive normal n to the 
surface, then the surface is on the left (see Figure 16.31). In terms of positively 

----+ 
and negatively oriented coordinate systems in IR 3, if tis tangent to as pointing 



16.7. Orientable Surfaces 475 

as 

Figure 16.31. Sis on the left as as is traversed. 

in the positive direction, if n is perpendicular to t and in the direction of the 
positive normal to S, and if b is perpendicular to the vectors t and n and 
pointing toward the surface S, then the triple t, b, n is a positively-oriented 
triple. If oD and oS consist of several closed curves, the statement holds for 
each curve. 

The notion of an orientable surface can be extended to piecewise smooth 
surfaces. Such surfaces have edges, and so a continuous unit normal vector 
field cannot be defined over the entirety of such a surface. However, a piecewise 
smooth surface can be divided into a finite number of smooth surface elements 
F1 , F2 , ••• , Fn. Each surface element may be oriented and each boundary can 
be given a positive direction. Let Yii be a smooth arc which is the common 
boundary of the surface elements F; and Fj. 

___... 
Definitions. If, for all arcs yii, the positive direction of Yii as part of oF; is the ___... 
negative of the positive direction of Yii as part of oFJ, the surface F is said to 
be an orientable piecewise smooth surface. In this case, the collection of 
oriented elements f; forms an orientation ofF and the unit normal function 
defined on the interior of each F; is called the positive unit normal function 
of F. 

Figure 16.32 exhibits a piecewise smooth, orientable surface and its decom
position into four smooth surface elements. Those boundary arcs of the F; ___... 
which are traversed only once comprise oF which is a positively directed, 

1 

Figure 16.32. An orientable piecewise smooth surface. 
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Figure 16.33. Sis the surface of a tetrahedron. -closed, piecewise smooth curve. However aF may be empty (e.g., if S is the 
surface of a cube). From the above discussion, it follows that if a piecewise 
smooth surface is orientable according to one decomposition into smooth 
surface elements, then it is orientable according to any other such decomposi
tion. A nonorientable surface, such as a Mobius strip, is not orientable even 
if it is treated as a piecewise smooth rather than as a smooth surface. That is, 
if a surface Sis not orientable, then it can be shown that there is no decomposi
tion into smooth surface elements such that all the Y;; always have opposite - - , orientations as parts of aF; and aEJ. 

EXAMPLE. Let S be the surface of the tetrahedron with vertices at (0, 0, 0), 
(1, 0, 0), (0, 1, 0), (0, 0, 1). Divide S into smooth surface elements, find a pa
rametric reprsentation of each, and find n, the unit normal function in terms 
of the parameters (see Figure 16.33). 

Solution. The surface S = S1 u S2 u S3 u S4 where each S; is one of the tri
angular faces. We define 

D = {(s, t): 0 < s < 1- t, 0 ~ t ~ 1}. 

The surface S1 consisting of the triangular region connecting the points 
(0, 0, 0), (1, 0, 0), (0, 1, 0) has the parametric representation 

r(s, t) = se1 + te2 + 0 · e3 , (s, t) ED. 

Therefore r. = e1 , r, = e2 and r. x r, = e3 . Since this last vector has length 1, 
the unit normal function n is e3 on S1 . The surface S2 consisting of the 
triangular region connecting the points (1, 0, 0), (0, 1, 0), (0, 0, 1) has the pa
rametric representation 

r(s, t) = se1 + te2 + (1 - s - t)e3 , (s, t) ED. 
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Hence r. = e1 - e3 , r1 = e2 - e3 and r. x r1 = e1 + e2 + e3 • Therefore n = 
lr. x r1l-1r. x r1 = (1/j3)(e1 + e2 + e3 ). 

The remaining two surfaces of S are similar to S1 . 0 

PROBLEMS 

In each of Problems 1 through 6 a piecewise smooth (or smooth) surfaceS is 
described. Divide S into smooth surface elements (if necessary) and find a 
parametric representation for each element. The!!_fxpress n, the unit normal 
function, in terms of these parameters. Describe as in each case. 

1. S is the surface of a cube of side length 1. 

2. Sis the pyramid with vertices at (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), and (0, 0, 1). 

3. S = {(x1 , x 2 , x3 ): xi+ x~ + x~ = 1, x 3 ~ 0}. 

4: S = {(x1 , x 2 , x 3 ): xi+ x~- x~ = 0, 1.:;; x 3 .:;; 2}. 

5. S = Sl U S2 where Sl = {(xl, X2, X3): xi+ 4x~ +X~= 12, 0,:;; X2,:;; }}, S2 = 
{(x 1 , x 2 , x 3 ): xi+ 3x~ + x~ = 12, -i.:;; x 2 .:;; 0}. 

6. S = { (x 1 , x 2 , x 3 ): lx3 1 = xi + x~, -1 .:;; x 3 .:;; 1 }. 

7. Let M be the Mobius strip given by x 1 = (1 + t sin}s) cos s, x 2 = (1 + t sin}s) sins, 
x3 = t cos}s, with (s, t) E R = { (s, t): 0 .:;; s .:;; 2n, - i .:;; t .:;; t}. Divide the rectangle 
R into n vertical strips of equal size and show that the portion of M corresponding 
to each strip is a smooth surface element. Also show that the curves Yii• the common 
boundary of the ith and jth surface element, are oriented in such a way that M 
cannot be oriented. 

8. Let S be the surface of a pyramid with a square base. Show that it is an orientable 
piecewise smooth surface. 

9. LetS be the surface of a pyramid with base which is a polygon with n sides, n ~ 5. 
Show that S is an orientable piecewise smooth surface. 

16.8. The Stokes Theorem 

.... -Let S be a smooth oriented surface in IR 3 with boundary as and suppose that 
vis a vector function defined on Sand as. Stokes's theorem is a generalization 
to surfaces of Green's theorem. We recall that Green's theorem establishes a 
relation between the integral of the derivative of a function in a domain D in 
IR2 and the integral of the same function over aD (Theorem 16.20). The 
theorem of Stokes establishes an equality between the integral of curl v · n over 
a surface Sand the integral of v over the boundary of S. The principal result 
is given in Theorem 16.22. 

Let S be represented parametrically by 

r(s, t) = x1(s, t)e1 + x2 (s, t)e2 + x3 (s, t)e3 for (s, t) ED, 
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where D is a bounded region in the (s, t)-plane. Then the positive unit normal 
function is 

_1 [ (x2, X3) (x3, x1) (x1, x2) J n(s, t) = Jr. x r,J J -- e1 + J -- e2 + J -- e3 . 
~t ~t ~t 

Suppose that v is a continuous vector field defined on S and given in co
ordinates by 

v(x 1 , x 2 , x3) = v1(x1, x 2 , x3)e1 + v2 (x 1 , x 2 , x3)e2 + v3(x1, x 2 , x3)e3. 

Since S is a smooth surface the scalar product v · n is continuous on S, and a 
direct computation yields 

Therefore it is possible to define the surface integral 

f I v·ndS. (16.62) 

The surface element dS can be computed in terms of the parameters (s, t) by 
the formula 

dS = Jr. x r,J dA., 

where dA., is the element of area in the plane region D. Hence 

If r1(s', t') is another smooth representation of S with (s', t') e D1 , it follows 
from Theorem 16.21 that there is a smooth one-to-one transformation 

s = U(s', t'), t = V(s', t'), 

such that 
r[U(s', t'), V(s', t')] = r1 (s', t'). 

The rule for multiplying Jacobians implies that the representation r1 (s', t') 
gives the same orientation as the representation r(s, t) if and only if 

( s, t) J -,-, >0. 
s' t 

Therefore if we replace (s, t) by (s', t') in (16.63) and integrate over D1 we obtain 
the formula for 

in terms of the parameters (s', t'). 
If S is piecewise smooth rather than smooth, it can be represented as the 

union of a finite number of smooth surface elements S1o S2 , ••• , Sm. Then it is 
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natural to define 

If v · n dS = .I If v · II; dS; 
s 1:1 s, 

where each integral on the right may be evaluated according to (16.63). In a 
-'-+ 

similar way we can define the line integral over the boundary as of a piecewise 
... --'-+ 

smooth oriented surface S. If as is made up of a finite number of smooth 

positively directed arcs c1 , c2 , ... , c", and if v is a continuous vector field 
--+ 

defined in a region of IR 3 which contains oS, we define 

f~ v·dr =_±f.- v·dr. 
iJS 1:1 C' 

The following two lemmas are needed in the proof of the Stokes theorem. 

Lemma 16.6. Suppose that Sis a smooth oriented surface element in IR 3 with a 
parametric representation 

r(s, t) = X1 (s, t)e1 + Xz(S, t)ez + X3(s, t)e3 for (s, t) ED U oD. 
--+ 

Let v be a continuous vector field defined on an open set G containing as given by 

v(x1, x 2 , x 3) = v1(x1, x 2 , x 3)e1 + v2 (xt> x 2 , x3)e2 + v3(x1, x 2 , x 3)e3 

for (x1 , x 2 , x 3 ) E G. Then 

(16.64) 

--+ 
PROOF. We establish the result when oD consists of a single piecewise s~oth 

simple closed curve. The extension to several such curves is clear. Let oD be 

given parametrically by the equations 

s = s(r), t = t(r), a~ r ~b. 

Then the equations 

x 1 = x 1 [s(r), t(r)], x 2 = x 2 [s(r), t(r)], 

x3 = x3[s(r), t(r)], a~ r ~ b, 
--+ 

give a parametric representation of as. Using the Chain rule we find 

dr = (dxde1 + (dx 2 )e2 + (dx3 )e3 

= [ax1 ds + ox1 dt] dre1 + [OXz ds + OXz dt] drez 
OS dr ot dr OS dr ot dr 

+ [ox3 ds + ox3 dt]dre3 • 

OS dr ot dr 
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Therefore 

and (16.64) follows at once. 0 

Let v be a smooth vector field defined in a region G of IR 3 given in 
coordinates 

v(x 1 , x 2 , x 3 ) = v1(x1 , x2 , x 3 )e1 + v2 (x 1 , x 2 , x 3 )e2 + v3 (x 1 , x 2 , x 3 )e3 . 

(16.65) 

We recall that curl vis a vector field on G given by 

(16.66) 

Theorem 16.22 (The Stokes theorem). Suppose that S is a bounded, closed, 
oriented piecewise-+smQgJh surface and that v is a smooth vector field on a region 
in IR 3 containing S u as. Then 

I Is (curl v)· n dS =Is v·dr. (16.67) 

PROOF. We first suppose that Sis a smooth oriented surface element and that 
the components of r have continuous second derivatives. From Equation 
(16.64) in Lemma 16.6, it follows that 

We apply Green's theorem to the integral on the right and use the Chain rule 
to obtain 
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+ (ov2 OX1 + ov2 OX2 + ov2 ox3) ox2 
ox1 OS ox2 OS ox3 OS ot 

+ (ov3 OX1 + ov3 OX2 + OV3 ox3) ox3 
ox1 OS ox2 OS ox3 OS ot 

- (ov1 ox1 + ov1 ox2 + OV1 ox3) ox1 
ox1 ot ox2 ot ox3 ot OS 

- (OV2 ox1 + ov2 OX2 + ov2 OX3) OX2 
OX1 ot ox2 ot ox3 ot OS 

- (ov3 ox1 + ov3 ox2 + ov3 OX3) ox3} dA.,. 
ox1 ot ox2 ot ox3 ot OS 

All the terms containing o2xdosot, o2x2/osot, o2x3/osot in the expression on 
the right cancel. Collecting the terms on the right we find 

fas v·dr = f L {(!:: _ ~::) 1 (x:: :3) + (~:: _ ;::)1 (x:: :1) 
+ (ov2 _ ov1) 1(x1, x2)}dA,,. 

ox1 ox2 s, t 

The above' expression is equivalent to (16.67). D 

If x 1(s, t), x2(s, t), x3(s, t) are only continuously differentiable on an open 
set G containing D u oD, then it can be shown that there are sequences {x1n}, 
{x2n}, {x3n} such that x 1n, x2n, x3n and ox1n/os, ox2n/os, ... , ox3n/ot are smooth 
functions on an open set G containing D u oD and such that all these se
quences converge uniformly on D u oD to x 1, x2, ... , ox3/ot as n-+ oo. 
Formula (16.67) holds for each nand, because of the uniform convergence, it 
also holds in the limit. Finally, if Sis any piecewise smooth surface, it is the 
union s1 u s2 u ... u sk of smooth surface elements S; oriented in such a way 
that any piecewise smooth arc Yii which is the boundary of both S; and ~ is 
directed oppositely on oSi from the way it is directed on oS;. Therefore 

f[_(curlv)·ndS= .± f-+ v·dr=f-+v·dr. Js •=1 as, as 
D 

Corollary. Suppose that Sis a bounded, closed, oriented piecewise smooth surface 
without boundary and that v is a smooth vector field defined on an open set 
containing S. Then 

f J/curl v)·n dS = 0. (16.68) 

In the following example we show how an integral over a surface in IR 3 may 
be calculated by reducing it to an ordinary double integral in the plane. 
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xi+ x~ = 1 

Figure 16.34 

ExAMPLE 1. Let R be the region in IR3 defined by R = {(x1, x 2 , x3): xi+ x~ :(; 
1, 0 :(; x3 :(; x1 + 2}. Let S be the boundary of R. Define v(x 1 , x 2 , x3 ) = 
2x 1 e1 - 3x2 e2 + x3 e3 . Find the value of 

(16.69) 

where n is the unit normal directed outward from S (see Figure 16.34). 

Solution. S is a piecewise smooth surface and we divide it into three smooth 
surface elements as shown in Figure 16.34. The normal to S1 is -e3 and 
therefore v · n = - x3 on S1 . Since x3 = 0 on S1 , the value of (16.69) over S1 is 
0. Since x3 = x1 + 2 on S3 it follows that 

on S3 . Hence on S3 : 

1 1 
v·n= J2(-2x1 +x3)= J2(-x1 +2), 

dS = j2dAst 

where dA51 is the element of area in the disk D = { (s, t): s2 + t 2 < 1 }. Using 
the parameters x 1 = s, x 2 = t, we find 

f 1, v · n dS = f L (- s + 2) dA.1 = 2n. 

To evaluate (16.69) over S2 choose cylindrical coordinates: 

x1 =cos s, x 2 =sins, (s, t) E D1, 



16.8. The Stokes Theorem 483 

where D1 = {(s, t): -n ~ s ~ n, 0 ~ t ~ 2 +cos s}. The outward normal on 
S2 is n = (cos s)e1 +(sin s)e2 and v · n = 2 cos2 s- 3 sin2 s. Therefore 

I L2 v · n dS = I L, (2 cos2 s - 3 sin2 s) dA 51 

= (2 - 5 sin2 s) dt ds = - 2n. I" f2+coss 

_, 0 

Finally, 

II v · n dS = II v · n dS = 0 + 2n - 2n = 0. D 
s s,us2us, 

EXAMPLE 2. Verify Stokes's theorem given that 

v = x2 e1 + x3 e2 + x 1e3 

and S2 is the lateral surface in Example 1 with n pointing outward. 

Solution. The boundary of S2 consists of the circle 

Cl = {(xl, X2, X3): xi+ X~= 1, X3 = 0} 

and the ellipse 

C2 = {(x 1 , x 2 , x 3 ): xi+ x~ = 1, x3 = x 1 + 2}. 

The curves C1 , C2 are oriented as shown in Figure 16.35. We select cylindrical 
coordinates to describe S2: 

x 2 =sins, (s, t) E D1 

where D1 = {(s, t): -n ~ s ~ n, 0 ~ t ~ 2 +cos s}. We decompose S2 into 
two smooth surface elements, one part corresponding to x 2 ?: 0 and the other 
to x 2 ~ 0. Then D1 is divided into two parts E 1 and E2 corresponding to s?: 0 

and s ~ 0 as shown in Figure 16.36. This subdivision is required because the 
representation of S by D1 is not one-to-one (s = n and s = - n correspond to 
the same curve on S2). A computation yields 

J(x2, X 3) 
~~ =COSS, 

s, t 
J(x3, X1) . 
~~ =sins, 

s, t 
J(xl, x2) = 0, 

s, t 

0@ c, n 

,..-~--- -
-+ 82 
c1 

n 

Figure 16.35 
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Figure 16.36 

and n =(cos s)e1 +(sin s)e2 . Also, curl v = -e1 - e2 - e3 , dS = dA.,. 
Therefore, 

IIs(curlv)·ndS= I~"I2+cosll (-cos(}-sin(})dtds= -n. (16.70) 

The boundary integrals are 

I--- v. dr = r ~ v . dr _ I ~ v. dr. 
as Jc, -Cz 

Using cylindrical coordinates on C1 and C2 , we obtain 

v =(sin s)e1 +(cos s)e3 , 

and on c2 
v =(sin s)e1 + (2 +cos s)e2 +(cos s)e3 , 

dr = [(-sin s)e1 + (cos s)e2 + (-sin s)e3 ] ds. 

Taking scalar products, we find 

~~ v·dr = f" ( -sin2 s) ds = -n, Jc, -" 
(16.71) 

~~ v·dr = f" ( -sin2 (} + 2 cos(}+ cos2 (}-sin(} cos(}) d(} = 0. (16.72) 
Jcz -" 

Stokes's theorem is verified by comparing (16.70) with (16.71) and (16.72). 
D 

PROBLEMS 

In each of Problems 1 through 6 compute 

I Is v·n dS. 

1. v = (x 1 + 1)e1 - (2x2 + 1)e2 + x3 e3 ; Sis the triangular region with vertices at 
(1, 0, 0), (0, 1, 0), (0, 0, 1) and n is pointing away from the origin. 
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2. v = x 1e1 + x2e2 + x3e3; S = {(x1 , x2, x3): xi+ x~ = 2x3, (x1 - 1)2 + x~.::; 1}, 
oriented so that n · e3 > 0. 

3. v = xie1 + x~e2 + x~e3 ; S = {(x1 , x2, x3): xi+ x~ = x~; 1.::; x 3 .::; 2}, n·e3 > 0. 

4. v = x 1x2e1 + x 1x3e2 + x2x3e3; S = {(x1 , x2, x3): x~ = 2- x 1 ; x~.::; x2 .::; x~12 }. 

5. v = x~e1 + x3e2 - x 1e3; S = {(x1 , x2, x3): x~ = 1- x 1 , 0.::; x 3 .::; x 1 ; x 1 ~ 0}, 
n·e1 > 0. 

6. v = 2x1 e1 - x 2e2 + 3x3e3; S = {(x1 , x2, x3): x~ = x 1 ; x~.::; 1- x 1 ; x2 ~ 0}, 
n·e1 > 0. 

In each of Problems 7 through 12, verify the Stokes theorem. 

7. v = x3e1 + x 1e2 + x2e3; S = {(x1 , x2, x3): x 3 = 1- xi- x~, x3 ~ 0}, n·e3 > 0. 

8. v = x~e1 + x 1x 2e2 - 2x1x3e3; S = {(x1 , x2, x3): xi+ x~ + x~ = 1, x3 ~ 0}, 
n·e3 >0. 

9. v = -x2x 3e3; S ={(xi+ x~ + x~ = 4, xi+ x~ ~ 1}, n pointing outward from 
the sphere. 

10. v = -x3e2 + x 2 e3 ; Sis the surface of the cylinder given in cylindrical coordinates 
by r = 0, 0 .::; (J .::; n/2, which is bounded below by the plane x3 = 0 and above by 

the surface of the cone xi + x~ = x~; n · e1 > 0 for (J > 0. 

11. V = X2e1 + X3e2 + X1e3; S = {(xl, X2, X3): X~= 4- Xl, X1 ~ xn, n•el > 0. 

12. v = x 3 e1 - x1 e3 ; Sis the surface of the cylinder given in cylindrical coordinates 
by r = 2 +cos (J above the plane x 3 = 0 and exterior to the cone x~ =xi+ x~; n 
is pointing outward from the cylindrical surface. 

In each of Problems 13 and through 15 use the Stokes theorem to compute 
Jasv · dr. 

13. v = r-3r where r = x 1 e1 + x2e2 + x 3e3 and r = lrl; Sis the surface S2 of Example 
2. 

14. v =(ex' sin x 2 )e1 +(ex' cos x2 - x3)e2 + x2e3; Sis the surface in Problem 3. 

15. v =(xi+ x3)el + (xl + xDe2 + (x2 + xne3; s = {(xl, x2, x3): xi +X~+ X~= 
1, x3 ~ (xi + xD112 }; n points outward from the spherical surface. 

16. Show that if Sis given by x3 = f(x 1, x2 ) for (x1 , x2 ) ED= {(x1 , x 2 ): xi+ x~.::; 
1}, iff is smooth, and if v = (1- xi- xDw(x1, x2, x3) where w is any smooth 
vector field defined on an open set containing S, then 

f fs(cur! v)·n dS = 0. 

17. Suppose that v = r- 3(x 2e1 + x 3e2 + x 1 e3) where r = x 1 e1 + x2e2 + x3e3 and 

r = lrl, and Sis the sphere {(x1 , x2, x3): xi + x~ + x~ = 1} with n pointing out
ward. Show that 

f I (curl v)·n dS = 0. 
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18. Suppose that a smooth surfaceS has two different smooth parametric represen
tations, r(s, t) for (s, t) E D and r1 (s', t') for (s', t') E D1. Let v be a smooth vector 
field defined on S. Find the relationship between the formulas for (curl v) · n in the 
two representations. 

19. In the proof of the Stokes theorem, carry out the verification that all the second 
derivative terms cancel in the displayed formula before (16.68). 

20. Let M be a Mobius strip. Where does the proof of the Stokes theorem break down 
for this surface? 

16.9. The Divergence Theorem 

Green's theorem establishes a relation between the line integral of a function 
over the boundary of a plane region and the double integral of the derivative 
of the same function over the region itself. Stokes's theorem extends this 
result to two-dimensional surfaces in three-space. In this section we establish 
another kind of generalization of the Fundamental theorem of calculus known 
as the Divergence theorem. This theorem determines the relationship between 
an integral of the derivative of a function over a three-dimensional region in 
IR3 and the integral of the function itself over the boundary of that region. All 
three theorems (Geen, Stokes, Divergence) are special cases of a general 
formula which connects an integral over a set of points in IRN with another 
integral over the boundary of that set points. The integrand in the first integral 
is a certain derivative of the integrand in the boundary integral. 

Let v = v1 (x1 , x 2 , x 3 )e1 + v2 (x 1 , x 2 , x 3 )e2 + v3 (x1 , x 2 , x 3 )e3 be a vector 
field defined for (x 1 , x 2 , x3 ) in a region E in IR 3 . We recall that div vis a scalar 
field given in coordinates by the formula 

d . 8v1 8v2 8v3 
lVV=-+-+-. 

8x1 8x2 8x3 

The Divergence theorem consists of proving the formula 

(16.73) 

where oE is oriented by choosing n as the exterior normal to 8E. We first 
establish (16.73) in several special cases and then show that the formula holds 
generally, provided that the boundary of E is not too irregular and that vis 
smooth. 

Lemma 16.7. Let D be a domain in the (x 1 , x 2 )-plane with smooth boundary. 
Let f: D u 8D-+ IR 1 be a piecewise smooth function and define 

E = {(x1 , x 2 , x 3 ): (x 1 , x 2 ) ED, c < x 3 < f(x 1 , x 2 )} 
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XJ 

Figure 16.37. aE = S1 v S2 v S3 . 

for some constant c. Suppose that v = u(x1 , x 2 , x 3 )e3 is such that u and au;ax3 

are continuous on an open set in ~3 containing E u a E. Then 

where n is the outward unit normal of aE. 

PROOF. Since div v = aujax3 , it follows that 

I I L div V dV = I I L ::
3 

dV = I L 1/(x~ox,) ::
3 

dx 3 dAx,x,· 

Performing the integration with respect to x 3 , we find 

I I L div v dV =I L {u[xl> x 2 , f(xl> x2)]- u(x1 , x 2 , c)} dAx,x,· (16.74) 

Let aE = S1 u S2 u S3 where S1 is the domain in the plane x 3 = c which is 
congruent to D; S2 is the lateral cylindrical surface of aE; and S3 is the part of 
aE corresponding to x 3 = f(x 1 , x2 ) (see Figure 16.37). We wish to show that 
(16.74) is equal to 

If v·n dS. 
s,us,us3 

Along S2 , the unit normal n is parallel to the (x1 , x2 )-plane, and son· e3 = 0. 
Therefore v · n = 0 on S2 and 

I I, v · n dS = 0. (16.75) 

The outer normal along S1 is clearly -e3 and therefore 

I I. v·n dS = -I L u(x1 , x 2 , c) dAx,x,· (16.76) 
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As for S3 , the unit normal function is given by 

[ ( of ) 2 (of )2]112 
dS = 1 + oxl + ox2 dAx,x,· 

Therefore, since v = ue3 , we find 

fL
3 
v·ndS= fL u[x1 ,x2,f(x1 ,x2)]dAx,x,· (16.77) 

The result follows when (16.74) is compared with (16.75), (16.76), and (16.77). 
D 

Lemma 16.8. Suppose that the hypotheses of Lemma 16.7 hold, except that v 
has the form 

v = v1(x1 , x 2, x 3)e1 + u2(x1 , x2, x 3)e2 

with u1 , u2 smooth function on an open set containing E u oE. Then 

where n is the outward unit normal of oE. 

PROOF. Let U1(x 1 , x2, x 3 ), U2(x 1 , x 2, x 3 ) be defined by 

U1(x1 , x 2, x 3 ) = -1"3 u1(x1 , x 2, t) dt, U2(x1 , x 2, x 3 ) = 1"3 u2 (x1 , x2, t) dt. 

In addition, we define 

Then w is a smooth vector field and U3 , oU3jox3 are continuous, and hence 

oul oU2 (oul oU2) curl w = --e1 + -e2 + --- e3 = v + u, 
ox3 ox3 oxl ox2 

. oul ou2 oU3 . 
dtvv =-+-=-= -d1vu. 

oxl ox2 ox3 
(16.78) 

Since oE is a piecewise smooth surface without boundary, the Corollary to 
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Stokes's theorem is applicable. Hence 

fIE (curl w)·n dS = 0 =fIE (v + u)·n dS. 

Therefore using Lemma 16.7 for the function u = - U3 e3 , we find 

fIE v • n dS = -fIE u • n dS = - f f L div u dV. (16.79) 

The result of the lemma follows by inserting (16.78) into (16.79). D 

The Divergence theorem will now be established for a wide class of regions 
which are called "regular". Intuitively, a region in IR 3 is regular if its boundary 
can be subdivided into small pieces in such a way that each piece has a 
piecewise smooth representation of the form x3 = f(x 1 , x2 ) if a suitable Car
tesian coordinate system is introduced. 

Definition. A region E in IR 3 is regular if and only if: (i) oE consists of a finite 
number of piecewise smooth surfaces, each without boundary; (ii) at each 
point P of oE a Cartesian coordinate system is introduced with Pas origin. 
There is a cylindrical domain r = {(x1 , x2 , x3 ): (x1 , x2 ) e D, -oo < x3 < oo }, 
with D a region in the plane x3 = 0 containing the origin, which has the 
property that r n oE is a surface which can be represented in the form 
x3 = f(x 1 , x2 ) for (x1 , x2 ) e D u oD. Furthermore, f is piecewise smooth (see 
Figure 16.38); (iii) the set 

r 1 = {(x1 , x2 , x3 ): (x1 , x2 ) e D, -c < x3 < f(x 1 , x2 )} 

for some positive constant c (depending on P) is contained entirely in E. 

Remarks. If E is a regular region, then each point P of oE is interior to a 
smooth surface element except for those points on a finite number of arcs on 
oE which have zero surface area. If a line in the direction of the unit normal 

Figure 16.38. A regular region. 
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to 8E is drawn through a point P interior to a smooth surface element on 8E, 
then a segment of the line on one side of P will be in E, while a segment on 
the other side will be exterior to E. Finally, we observe that n varies con
tinuously when Pis in a smooth surface element of 8E. 

Theorem 16.23 (The Divergence theorem). Suppose that E is a closed, bounded, 
regular region in IR 3 and that v is a continuously differentiable vector field on 
an open set G containing E u 8E. Then 

where n is the unit normal function pointing outward from E. 

PROOF. With each point P E 8E associate a coordinate system and a cylindrical 
domain r as in the definition of a regular region. Let rP be the bounded 
portion of r such that - c < x3 < c (where cis the constant in the definition 
of regular region; c depends on P). With each interior point P of E, introduce 
a Cartesian coordinate system and a cube rP with Pas origin, with the sides 
of rP parallel to the axes, and with fP entirely in E (see Figure 16.39). Since 
E u 8E is compact, a finite number r 1 , r 2 , ... , rn cover E u 8E. As described 
in the proof of Green's theorem, there is a partition of unity cp1 , cp2 , •.• , CfJn of 
class C'" on an open set G containing E u 8E such that each CfJ; vanishes on 
G- F; where F; is a compact subset of r;. We define 

V; = (/J;V, i = 1, 2, ... , n. 

x, 

x, 

)-., 
iJE 

----------------

Figure 16.39 
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Then each v; is continuously differentiable on G and vanishes on G - F;. Also, 
v = Li'=1 V;. Therefore it is sufficient to establish the result for each V;. Suppose 
first that P; is an interior point of E. Then f; c: E and V; vanishes on or;. Hence 

I I L div v; dV = I I L. div v; dV = 0 

because of Lemma 16.8. Also, because V; = 0 on oE, we have 

I LE V; • n dS = 0. 

Thus the result is established for all such ri. Suppose now that P; E oE. Define 
E; = r; n E. Then V; = 0 on the three sets: (i) E - E;; (ii) oE - Y; where Y; = 
oE n r;; (iii) oE; - Y;· Now, since E; is a region of the type described in Lemmas 
16.7 and 16.8, we find 

I I L div V; dV = I I L. div V; dV = I LE, V; • n dS 

= It V; • n dS = I LE V; • n dS. 

The result is established for all v; and hence for v. D 

EXAMPLE 1. Let E be the region given by 

E = {(x1, x 2, x3): 1 ~xi+ x~ + x~ ~ 9}. 

Letr = x 1 e1 + x 2 e2 + x 3 e3 and v = r- 3 rwhere r = lrl. Verify the Divergence 
theorem. 

. ... 2 2 2 ... • 
Solutwn. Let sl = { (xl, x2, x3): xl + x2 + x3 = 1} and s2 = { (xl, x2, x3). 
xi+ x~ + x~ = 9} be the boundary spheres of E with n pointing outward 
from the origin 0. Then 

I I ai v • n dS = I Is, v · n dS - I Is, v · n dS. 

A cop.putation shows that div v = 0 and so J J JEdiv v dV = 0. On both S1 

and S2 the normal n is in the radial direction and hence n = r-1 r. Therefore 

IIs
2 
v·ndS- I Is, v·ndS=~A(S2)-A(S1 )=0. 0 

EXAMPLE 2. Let E = {(x1, x 2 , x3): xi+ x~ < 1, 0 < x3 < x1 + 2} and define 
v = t(xi + xne1 + t(x~ + x 3xi)e2 + t(x~ + xix2)e3. Use the Divergence 
theorem to evaluate 
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Solution. A computation shows that div v = x 1 + x 2 + x3 • We denote the unit 
disk by F and obtain 

f foE v · n dS = f f L (x1 + x2 + x 3 ) dV 

1 (! ( 2" 19 
= 2 Jo Jo (3r2 cos2 0 + 4])r dr dO= 8 n. D 

PROBLEMS 

In each of Problems 1 through 10 verify the Divergence theorem by computing 
J J JE div v dV and J J aE v · n dS separately. 

1. v = x1x2e1 + x 2 x 3 e2 + x3x1e3; E is the tetrahedron with vertices at (0, 0, 0), 
(1, 0, 0), (0, 1, 0), (0, 0, 1). 

2. v = xie1 - x~e2 + x~e3 ; E = {(x1, x 2, x3): xi+ x~ < 4, 0 < x3 < 2}. 

3. v = 2x1e1 + 3x2e2 - 4x3e3; E = {(x1, x2, x3): xf + x~ + x5 < 4}. 

4. v = xfe1 + x~e2 + x5e3; E = {(x1, x 2, x3): x~ < 2- x1, 0 < x3 < xt}. 

5. v = x1e1 + x2e2 + x3e3; E = E1 n E2 where E1 = {(x1, x2, x3): xf + x~ > 1}, 
E2 = {(xl, X2, X3): Xf +X~+ X~< 4}. 

6. v = x1e1 - 2x2e2 + 3x3e3; E = E1 n E2 where E1 = {(x1, x2, x3): x~ < xt}, 
E2 = {(x1, x2, x3): x5 < 4- xt}. 

7. "= r-3(x3el + xle2 + x2e3), r = (xf +X~+ xn112; E = {(xl, X2, x3): 1 <xi+ 
x~ + x5 < 4}. 

8. v = x1 e1 + x2e2 + x3e3; E = E1 n E2 where E1 = {(x1, x2, x3): xi + x~ < 4}; 
E2 = {(x1 , X2, x3 ): Xf +X~- X~> 1}. 

9. v = 2x1e1 + x2e2 + x3e3; E = E1 n E2 where E1 = {(x1, x2, x3): x3 ~ xf + 
xD; E2 = {(x1, x2 , x3): 2x1 ~ x3}. 

10. v = 3x1 e1 - 2x2e2 + x 3e3; E = E1 n E2 n E3 where E1 = {(x1, x2, x3): x2 ~ 
0}; E2 = {(xto x2, x3): xf + x5 ~ 4}; E3 = {(x1, x2, x3): x1 + x2 + x3 ~ 3}. 

In each of Problems 11 through 13, use the Divergence theorem to evaluate 
HaEv·n dS. 

11. v = x 2 e"'e1 + (x2 - 2x3e"•)e2 + (x1e"•- x3)e3; E = {(xto x 2 , x3): [(xi+ x~) 1'2 

-2] 2 + x5 < 1}. 
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12. v = x~e1 + x~e2 + x~e3 ; E = {(x 1 , x 2 , x3 ): xi+ x~ + x~ < 1}. 

13. v = x~e 1 + x~e2 + x 3 e3 ; E = {(x1 , x 2 , x3 ): xi+ x~ < 1, 0 < x3 < x1 + 2}. 

14. Let E be a regular region in ~3 . Suppose that u is a scalar field and vis a vector 
field, both smooth in an open region G containing E u oE. Show that 

f f t u div v dV = fIE uv • n dS - f f t (grad u) · v dV. 

15. Let E and G be as in Problem 14 and u, grad u and v smooth functions in G. Let 
ojon denote the normal derivative on oE in the direction of n. If ll denotes the 
Laplace operator: (82 ;a xi) + (o 2 ;ax~) + (o 2 ;axn, show that 

If u is any solution of Llu = 0 in E, prove that 

fIE :: dS = 0. 
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Appendix 1. Absolute Value 

If a is a real number, the absolute value of a, denoted by lal, is defined by the 
conditions 

Ia I = a if a > 0, 

lal = -a if a< 0, 

101 =0. 

Algebraic manipulations with absolute values are described in the follow
ing theorem. 

TheoremA.l 

(i) lal ~ 0, 1-al = lal, and lal 2 = a2• 

(ii) Ia · bi = lal·lbl and, if b ::1= 0, then la/bl = lal/lbl. 
(iii) lal = ibl<=>a = ±b. 
(iv) If b is a positive number, then 

lal <b<=>-b<a<b. 

PRooF. Parts (i) and (ii) are simple consequences of the definition of absolute 
value. To prove (iii) observe that if a= ±b, then it follows from (i) that 
lal = lbl. Also, if lal = lbl, then lal 2 = lbl 2 so that from (i) again a2 = b2 and 
a= ±b. To establish (iv), note that the solution of the inequality lxl < b is 
the union ofthe sets sl and s2 where 

Sl = {x: lxl <band X~ 0}, S2 = {x: lxl <band X< 0}. 
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Then 

Similarly, 

X E S1 <=> lxl <band X~ 0 

<=>x <band x ~ 0 (since lxl = x if x ~ 0) 

<=>X E (0, b). 

X E s2 <=> I X I < b and X < 0 

<=> -x <band x < 0 (since lxl = -x if x < 0) 

<=>X E ( -b, 0). 

The result of (iv) follows since S1 u S2 = (- b, b). 

EXAMPLE 1. Find the solution of the equation 

1 ~1=3. 2x- 5 

Solution. Using the result of (ii) in Theorem A.1, we have 

I x + 21 = 3 <=> lx + 21 = 3 (x ~ 5/2) 
2x- 5 12x- 51 

<=>lx + 21 = 312x- 51. 

Now Part (iii) of Theorem A.1 may be used to yield 

l;x ~ 251 = 3<=>x + 2 = ±3(2x- 5) 

<=> x + 2 = 3(2x - 5) or x + 2 = - 3(2x - 5) 

<=>-5x= -17or7x=13 

17 13 
<=>x = 5 or 7 . 

D 

The solution consists of the two numbers 157 , 1/ which, written in set notation, 
is { 1s7' ¥}. D 

EXAMPLE 2. Find the solution of the inequality 13x- 41 ~ 7. 

Solution. Using Parts (iii) and (iv) of Theorem A.1, we have 

13x- 41 ~ 7<=> -7 ~ 3x- 4 ~ 7. 

Adding 4 to each portion of this double inequality, we find 

13x- 41 ~ 7 <=>- 3 ~ 3x ~ 11. 
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Dividing by 3, we obtain 

13x- 41 ~ 7<=> -1 ~ x ~ 11/3. 

The solution is the interval [ -1, 11/3]. 

EXAMPLE 3. Solve for x: 

12:-=-:I< 3. 

Solution. Proceeding as in Example 2, we see that 

-- <3<=>-3<--<3 1
2x-51 2x-5 
x-6 x-6 

The solution consists of the union of S1 and S2 where 

(x =1: 6). 

{ 2x-5 } 
Sl = X: -3 < X_ 6 < 3 and X- 6 > 0 , 

{ 2x-5 } 
S2 = x:-3< x- 6 <3andx-6<0. 

For numbers in S1 , we find 

X E Sl <=> - 3(x - 6) < 2x - 5 < 3(x - 6) and X - 6 > 0. 

Considering the three inequalities separately, we may write, 

x e S1 <=> - 3x + 18 < 2x - 5 and 2x - 5 < 3x - 18 and x - 6 > 0. 

<=>23 < 5x and 13 < x and x > 6 

<=> 13 <X. 

Thus X E S1 <=>X E (13, 00). 
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D 

Similarly, for x e S2 multiplication of an inequality by the negative quantity 
x - 6 reverses the direction. Therefore, 

X E S2 <=> - 3(x - 6) > 2x - 5 > 3(x - 6) and X - 6 < 0 

<=>23 > 5x and 13 > x and x- 6 < 0 

<=>X< 23/5. 

Hence X E s2 <=>X E ( -00, 23/5). The solution consists of sl u s2 (see Figure 
A~ D 

s2 
'$$$$$$$$$$$$$S$SSSS~ 

23 
5 

Figure A.l 

s. 
~$S$SSSS$SSSSS$$$$SS' 

13 
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We now prove an important theorem and corollary. 

Theorem A.2.Jf a and bare any numbers, then 

Ia + bl :::; lal + lbl. 

Appendixes 

PROOF. Since lal =a or -a, we may write -lal:::; a:::; lal. Similarly, we have 
-lbl:::; b:::; lbi.Addingtheseinequalities(seeProblem27attheendofSection 
1.3), we get 

-(lal + lbl):::; a+ b :::; lal + lbl. 

The conclusion of the theorem is equivalent to this double inequality. 0 

Corollary. If a and bare any numbers, then 

Ia- bl :::; lal + lbl. 

PRooF. We write a-bas a+ (-b) and apply Theorem A.2 to obtain 

Ia- bl = Ia + (-b) I :::; Ia I + 1-bl = Ia I + lbl. 

The final inequality holds since, from (i) of Theorem A.l, it is always true that 
1-bl = lbl. 0 

PROBLEMS 

In each of Problems 1 through 10, find the solution. 

l.l2x+11=3 

3. 17- 5xl = 4 

5. lx- 21 = l2x + 41 

7. 13x- 21 = l2x + 11 

9. -- =2 1
2x- 31 
3x -2 

2. 14x- 51= 3 

4. 15 + 3xl = 2 

6. l2x- 11 = 13x +51 

8. lx - 21 = lx + 41 

10. -- =3 I X +21 
3x -1 

In each of Problems 11 through 22, find the solution. 

11. lx- 21 < 1 

13. lx + 11 < 1/3 

15. 14- 3xl < 6 

17. -- <2 
1
3- 2xl 
2+x 

I x+ 31 19. 6- 5x ~ 2 

21. lx + 31 ~ 12x- 61 

12. lx + 21 < 1/2 

14. 12x + 31 < 4 

16.111+5xl~3 

18.12x-51<3 
x-6 

20.1x-11~13+xl 

22. 13- 2xl < lx + 41 
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23. Prove for any numbers a and b that lal - lbl :,.;; Ia- bi. 

24. Given that a and b are positive, c and d are negative, and a > b, c > d. Show that 

a b 
;; < J• 

Appendix 2. Solution of Algebraic Inequalities 

In this appendix we give a method for determining the solution of inequalities 
which involve polynomial expressions. For example, consider the inequality 

(x - 2)(x - 1)(x + t> > 0; 

we want to find those values of x for which the inequality is valid. First, 
observe that the values x = 2, 1, -t are not in the solution set since they 
make the left side of the inequality zero. For all other values of x the left 
side of the above inequality is either positive or negative. It is convenient 
to proceed geometrically (see Figure A.2) and examine the behavior of 
(x- 2)(x- 1)(x + t> in each of the intervals that separate the zeros of this 
expression. If x > 2, then x- 2 is positive, as are x- 1 and x + t. Therefore 
the polynomial expression is the product of three positive quantities, which is 
positive. This fact is shown in Figure A.2 by the three plus signs above the 
interval (2, oo). We conclude that the inequality (x- 2)(x- 1)(x + t> > 0 
holds for (2, oo ). In the interval 1 < x < 2, we note that (x - 2) is negative, 
(x- 1) is positive, and (x + t> is positive. We indicate this fact by placing two 
plus signs and one minus sign above the interval (1, 2), as shown in Figure A.2. 
The law of signs states that (x - 2)(x - 1)(x + t> is negative in this interval. 
Proceeding to the intervals ( -t, 1) and ( -oo, -t), we get the signs -- + 
and - - -, respectively. The solution of the inequality 

(x - 2)(x - 1)(x + t> > 0 

is the setS= ( -t, 1) u (2, oo). 
More generally, suppose we have an inequality of the form 

A(x - a1 )(x - a2 )(x - a3 ) ••• (x - a,.) > 0, 

where A and a1 , a2 , ••• ,a,. are numbers. For convenience we place the a;, 
i = 1, 2, ... , n, in decreasing order (see Figure A.3), and we allow two 
or more of the ai to coincide. The number A may be positive or negative. It 

-- + -++ +++ 

2 

Figure A.2 
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Figure A.3 

is clear that x = at> x = a2 , ••• , x = an are values for which the inequality 
does not hold since each of these numbers makes the polynomial expres
sion zero. For each of the intervals in between the numbers at> a2 , ••• , an, 
examine the sign of each factor (x - a1), use the law of signs, and determine 
whether or not the inequality is valid. The solution is the union of the intervals 
in which the inequality holds. We illustrate with another example. 

EXAMPLE 1. Solve the inequality 

2x2 - x > 6. 

Solution. We rearrange the inequality so that a polynomial is on the left and 
zero is on the right. That is, 

2x2 - x > 6<=>2x2 - x- 6 > 0. 

We factor the polynomial, obtaining 

2x2 - x > 6<=>(2x + 3)(x- 2) > 0. 

Next we write the factor 2x + 3 in the form 2(x + ~)and rearrange the terms 
so that the a1 are in decreasing order. Therefore 

2x2 - x > 6<=>2(x- 2)(x- ( -!)) > 0. 

A line with the values 2, -!indicated is shown in Figure A.4 and the law of 
signs is used to determine the validity of the inequality in each interval. We 
conclude that the solution is the set 

( -oo, ~3) u (2, oo). D 

It is a fact, although we have not proved it, that in each of the intervals 
separating the zeros of a polynomial the polynomial maintains one sign. Also, 
for values of x above a 1 , the polynomial cannot change sign. The same is true 
for values of x below an. We now work another example. 

EXAMPLE 2. Determine the solution of the inequality 

2x5 - 3x4 > -x3• 

-+ 
SSSSSSSSI 

2 

Figure A.4 

00 
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+++-- ++++- +++++ 

0 I 
2 

Figure A.5 

Solution. We have 

2x 5 - 3x4 > -x 3 <=>2x 5 - 3x4 + x 3 > 0 

<=>x3(2x- 1)(x- 1) > 0 

<=> 2(x - 1)(x - i)x3 > 0. 

+oo 

Here a 1 = 1, a2 = t, a 3 = a4 = a5 = 0. The numbers 1, t, 0 are marked off as 
shown in Figure A.5, and the signs of the factors in each of the intervals are 
shown. The solution set is (0, t> u (1, oo ). 0 

If P(x) and Q(x) are polynomials, then the quotient P(x)/Q(x) and the 
product P(x)Q(x) are always both positive or both negative. This fact is a 
restatement of Theorem 1.18, Part (ii), which asserts that if a ::1- 0, b ::1-0 then 
ab and afb always have the same sign. We conclude that 

{The solution set of ~i:~ > 0} = {The solution set of P(x)Q(x) > 0}. 

In this way the solution of inequalities involving the division of polynomials 
can always be reduced to a problem in polynomial inequalities. 

EXAMPLE 3. Solve for x: 
210 50 
--<-. 
3x-2 x 

Solution. We have 

210 50 210 50 
-- < -<::>---- < 0 
3x- 2 x 3x- 2 x 

60x + 100 0 <=> < 
x(3x- 2) 

20(3x + 5) 0 <=> < 
x(3x- 2) 

<=> 20(3x + 5)x(3x - 2) < 0 

(changing the quotient of polynomials to a product) 

<=> 180(x - j)x(x - ( -i)) < 0. 

The zeros are a 1 = 2/3, a2 = 0, a 3 = - 5/3. The signs of the factors are in
dicated in Figure A.6. The solution set is ( -oo, - 5/3) u (0, 2/3). 
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PROBLEMS 

+-- ++- +++ 
~SSSSSSSI 
0 l 

3 

Figure A.6 
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+oo 

In Problems 1 through 10 determine the solution set in each case. 

1. x 2 - x - 12 < 0 

2. x2 + 2x - 15 > 0 

3. 2x2 + 5x + 2 > 0 

4. 60x2 - 42x - 36 > 0 

6. x 2 > 4 

7. x 2 < 4 

8. x 2 + 2x- 4 < 0 (complete the square) 

9. x 2 + 2x + 2 > 0 

10. 4x4 < x 2 

11. Find a polynomial inequality which has the interval (1, 2) as its solution set. 

12. Find a polynomail inequality which has the setS = (1, 3) u (4, 7) as its solution. 

13. Find a polynomial inequality which has the setS = ( -oo, 2) u (2, 3) u (3, oo) as its 
solution. 

14. Find a polynomial P(x) ofthe second degree such that ( -oo, oo) is the solution of 
the inequality P(x) > 0. Is it possible to find a polynomial inequality of the third 
degree with the same solution set? Justify your answer. 

In Problems 15 through 25 determine the solution set in each case. 

15. x4 - 5x2 + 4 < 0 

2x x2 - 3 1 x 
17" 3-~+2<6 

10 -7x 5x- 4 
19.---<--

6- 7x 5x 

x-1 
21. 2 < 0 

x +x-6 

4x 1 3x 
23. ---->--

2x- 3 2 2x + 3 

X 2 
25. --<-

1 + x2 5 

16. x 3 + x 2 < x + 1 

4 x-1 3 
18. -+--<-+ 1 

X 5 X 

20.~<0 
x 2 - 3x 

22 _ _E._ + 23x + 26 > _2!_ 
2x - 3 4x2 - 9 2x + 3 

4 
24. 1 + x2 - x - 6 < 0 
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Appendix 3. Expansions of Real Numbers 
in Any Base 

503 

In this appendix we develop the theory of decimal expansions of real numbers. 
We also describe the expansions of real numbers with an arbitrary base b, 
when b is any positive integer greater than 1. 

Theorem A.3. If xis any real nonnegative number, then there is a unique positive 
integer n such that n - 1 ~ x < n. 

PROOF. From Part (a) of Theorem 2.21, there is a positive integer k larger than 
x. Thus the set S of all positive integers larger than x is not empty. Hence S 
contains a smallest element (Theorem 1.30); call it n. If n > 1, the positive 
integer n - 1 is not in S and so n - 1 ~ x. Then n - 1 ~ x < n. If n = 1, then 
O~x<l. 0 

Definition. Let b be a positive integer greater than 1. A sequence of the form 

dl d2 dn 
b' b2' ... , bn' ••• 

in which each d; is an integer with 0 ~ d; ~ b - 1 is called a development with 
the base b. 

Remarks. When b = 10 we have the familiar decimal development. In this 
case the d; are the usual digits from 0 through 9. When b = 2 we have the 
binary development. In this case the d; are always either 0 or 1. 

Definitions. If, in a development with the base b, only a finite number of the 
d; are different from zero, we say the development is terminating; otherwise, 
it is nonterminating. If all the d; beyond some specific dn have the value b - 1 
we say the development is improper; otherwise it is called proper. For decimal 
developments, the customary notation O.d 1d2d3 ••• is used. 

The decimal development 0.32799999 ... is improper, while the develop
ment 0.218218218 ... is proper. An improper binary development has d; = 1 
for all i beyond some given integer n. 

Theorem A.4. Consider an arbitrary development with the base b and define 

n d. 
Sn = L -b:' 

i=l 
.n = 1, 2, .... 

(a) Then sn -+ a as n -+ oo where 0 ~ a ~ 1. 
(b) Also, a= 1 <=>d; = b- 1 for every positive integer i. 
(c) If the development is improper, then there are positive integers nand p such 
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that 

withp ~ b". 

PRooF 

p 
a=

b" 

Appendixes 

(a) Since d1 ~ 0 and b > 1, we have s,+l ~ s, for every n. Also, since 
d1 ~ b - 1 for every i, we see that 

s, ~It b ~ 1 = t<b- 1{ 1 +G)+ GY + ... + G)"-1]. 
Setting r = 1/b, we find 

s, ~ r (! - 1) 1 - r" = 1 - r" ~ 1 
r 1- r 

for every n. 

Hence the s, satisfy the hypotheses of Axiom C with M = 1, and so s,-+ a as 
n -+ oo with a ~ 1. 

(b) Note that if all the d1 = b - 1 then 

" b -1 
s = L -.- = 1 - r" -+ 1 as n -+ oo. 

" 1=1 b' 

(c) Suppose that d1 = b - 1 for all i ~ n. Then for k > n, 

n-1 d. " b- 1 
S~r;= ~~ b~+ ~~IT' 

where if n = 1 the first term is omitted and a = 1. We have 

n-1 d. oo 1 n-1 d 1 
lim s" = .L b~ + (b - 1) ,I: b; = .L b~ + b"-1 · 

11:-+oo •=1 o=n •=1 

The common denominator in the last expression on the right is b"-1, and 
therefore 

p 
a = b"-1 

n-2 
with P = I: d1b"-1-l + (d,_1 + 1). 

1=1 
0 

The next theorem shows that for any base b > 1, every real number a with 
0 ~ a < 1 has a unique proper development with that base. 

Theorem A.S. Let b be a positive integer greater than 1, and let a be any real 
number such that 0 ~ a < 1. Then there is a unique proper development with 
base b such that s, -+a as n -+ oo, where s, = L~=1 d;/b1• 

PROOF. Since ba is a real number, we may apply Theorem A.3 to assert that 
there is a nonnegative integer p1 such that p1 ~ ba < p1 + 1. In fact, for each 
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i, there is a nonnegative integer p1 such that p1 ~ bia < p1 + 1. Then we define 
the di as follows: 

and d, = Pt - bPt-1 for i > 1. (A.1) 

We must show that 0 ~ di ~ b - 1 for all i. Clearly, d1 = p1 ~ ba < b, and 
d1 ~ 0. Also, fori> 1, it follows from the definition of Pi that 

Pt ~ b'a < Pt + 1; Pi-1 ~ b1- 1a < Pi-1 + 1. 

Hence b1- 1a - 1 < p1_1 or b1a - b < bpi_1. Therefore 

di = Pi - bpi-1 < bia - (b1a - b) = b 

d, =Pi- bpi-1 > (bia - 1)- b(bi-la) = -1. 

Since d1 is an integer and -1 < d1 < b, we conclude that 0 ~ d1 ~ b - 1. 
Using the relation Pi= di + bpi_1 and proceeding by induction, we find 

that 

Hence, 
I 

Pt = L bH'd,. ~ b1a < Pi + 1. 
/c=1 

But L~=1 bi-"d,. = biL~=1 b-"d,.. Setting si = L~=1 b-"d,., we have s1 = b-1P~t 
and so s1 ~a< si + b-i. Therefore, s1 -+ a as i-+ oo. 

Thus far we have shown that each number a has a proper development 
with the base b. To show that there is a unique proper development, let 

d1 d2 d~ 
b' b2 ' ••• , bn' ••• 

be a second proper development for the number a. That is, 

co d~ 

a= L b~· 
1=1 

We may write 
n co 

b•a = L bn-1d; + L bn-td; 
1=1 l=n+1 

Since the last sum on the right is a proper development of some number, it 
must be a number less than 1. Hence 

n n 

L bn-td; ~ b•a < L bn-idi + 1. 
1=1 i=1 

We define Pn = L~=1 bn-td; and obtain 

Pn ~ b•a < Pn + 1. 
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Therefore these Pn are the same as the Pn used for the development 
ddb\ d2 /b2 , ••• , dn/b", ... Hence d; = di for every i and the development 
is unique. 0 

The next result is frequently useful in studying properties of the real number 
system. 

Theorem A.6. There is a rational number between any two real numbers. 

PROOF. Let the given numbers be a and b with a < b. Without loss of generality 
assume a ~ 0, as otherwise adding a sufficiently large positive integer to a and 
b will make them nonnegative. Let q be the smallest positive integer larger 
than 1/(b- a). Let p be the smallest positive integer larger than qa. Then we 
have p - 1 ~ qa so that 

p 1 
qa < p ~ qa + 1 = a < - ~ a + -. 

q q 

Also, q(b- a)> 1 -a+ (1/q) < b, and we conclude that 

a<!!_< b. 
q 

Corollary. There is an irrational number between any two real numbers. 

0 

PROOF. Let the given real numbers be a and b. From Theorem A6 there is a 
rational number r between aj.J2 and bj.J2. Then r.J2 is between a and b 

and r.J2 is irrational (since .J2 is-see Theorem A.7). 0 

We show now that .J2 is irrational. 

Theorem A.7. There is no rational number whose square is 2. 

PROOF. Suppose there is a rational number r such that r2 = 2. We shall reach 
a contradiction. If r is rational there are integers p and q such that r = pjq. 
Assume that p and q have no common factor, a fact which follows from the 
axioms of Chapter 1 (although not proved there). Since r2 = 2, we have 
p2 = 2q2 and p2 is even. The fact that p2 is even implies that pis even. For if 
p were odd, then p = 21 + 1 for some integer 1 and then p2 = 41 2 + 41 + 1. 
Thus p 2 would be odd. Hence, p = 2k for some integer k and q2 = 2P. We 
see that q2 is even and by the same argument as that used for p2 , it follows 
that q is even. However, we assumed that p and q have no common factor and 
then deduced that they have 2 as a common factor, a contradiction. 0 

PROBLEMS 

*1. Given the integers d1 , d2 , ••• , d" with 0 ~ d; ~ b- 1 where b is an integer > 1. We 
say the expansion 
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is repeating if and only if there is a positive integer n such that d;+n = d;, 
i = 1, 2, ... Show that every repeating development represents a rational number. 

2. Prove that -/3 is irrational. 

*3. Consider the numbers on [0, 1] represented with the base b = 3. We shall write 
these numbers using "decimal" notation. Describe geometrically on the interval 
[0, 1] all points corresponding to numbers ofthe form 

O.ld2d3d4 ••• 

where the d; may be 0, 1, or 2. Similarly, describe the sets 

where the a; and b; may be 0, 1, or 2. Finally, describe the set corresponding to 

where all the c; are either 0 or 2. 

Appendix 4. Vectors in EN 

I. The space EN. We recall the definition of a vector in a plane or three
space as an equivalence class of directed line segments, all having the same 
length and direction. We shall extend this definition to N -dimensional space 
and establish several of the basic properties of such vectors. 

By a Euclidean N-space, denoted EN, we mean a metric space which can 
be mapped onto IRN by an isometry. Such a mapping is called a coordinate 
system and will be denoted by a symbol such as (x). If A is a point in EN and 
(x) is a coordinate system, then the point in IRN which corresponds to A is 
denoted xA or (xf, xf, ... , x:). Of course, IRN itself is a Euclidean N-space; 
the plane and three-space studied in elementary geometry courses are also 
examples of Euclidean spaces. In this section we establish several elementary 
properties of EN. The reader is undoubtedly familiar with the two- and 
three-dimensional versions of the results given here. 

We define a line to be a Euclidean 1-space. Ifl is a line and (t) is a coordinate 
system on l, then the origin and unit point of (t) are the points having co
ordinates 0 and 1, respectively. 

Theorem A.8. Suppose that l is a line and (t) and (u) are coordinate systems on 
l. Let the origin of the (u) system have t-coordinate t0 and the unit of the (u) 
system have t-coordinate t0 + A.. Then for every P on l, it follows that 

uP = A.(tP - to), A. = ± 1. 

PRooF. We have luP- 01 = ltP- t0 1 and luP- 11 =It'- t0 - A.l for all p. 
Squaring both sides of these equations and subtracting, we get 

uP = A.(tP - to). 
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Choosing p and 0 as the unit point and the origin, we find 

lu1 - U0 1 = 1 = I.A.(t1 - t0 )1 = I.A.I·It1 - t0 1 = I.A.I; 

hence .A.= ±1. 

Appendixes 

D 

We observe that a coordinate system (t) on a line l sets up an ordering of 
the points in which P1 precedes P2 if and only if t 1 < t 2• We use the notation 
P1 -< P2 to indicate that P1 precedes P2 • Theorem A.S shows that there are 
exactly two possible orderings on every line according as .A. = 1 or -1. A line 
l and a specific ordering, denoted lV, determine a directed line l The same line 
with the 2J>POSite ordering is frequently denoted -l A pair of points (A, B) 
on a line l will determine a directed line segment when they are ordered with 
respect to lV. We use the symbol AB for such a directed line segment. 

If A and B are any points on a line l, we define the directed distance from 
A to B along ~ denoted AB, by the formula 

AB = IABI ifA-<B, 

AB = -IABI if B -<A. 

Theorem A.9. Let f be a directed line and (t) a coordinate system which agrees 
with the order on l Then 

where tA and tB are the (t) coordinates of A and B, respectively. 

PRooF. Since (t) is a coordinate system, we have IABI = ltB- tAl. From the 
definition of directed distance, it follows that AB = ltB- tAl if tB > tA and 
AB = -ltB- tAl iftB < tA. D 

Theorem A.lO. Suppose that (x) is a coordinate system on a Euclidean space EN, 
l is a line in EN, and (t) is a coordinate system on l with origin at x0 and unit 
point at x0 + .A.. Then for each p on l, it follows that 

I.A.I = 1, i = 1, 2, ... , N. (A.2) 

PRooF. Since (t) and (x) are coordinate systems, 

1 = 11-01 = lx0 +.A.- X 0 1 = I.A.I. 

If p is any point on l there are numbers er' ... ' e~ such that 

i=1,2, ... ,N. (A.3) 

Then (since I.A.I = 1), 

N 

lxP- X0 12 = I.A.I2 (tP)2 + lepl2 + 2 L .A.ieftP = (tP)2 

i=l 
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and 
N 

lxP- x0 - .w = j,tjl(tP- W + 1ep12 + 2 :L A.;ef(tP- 1) = (tP- w. 
1=1 

Subtracting these two equations and simplifying, we get 

N N 

1ep12 + 2 :L ;.~ertP = o, 1ep12 + 2 :L ;.~erw- 1) = o. 
1=1 1=1 

We conclude that er = 0, i = 1, 2, ... , N, which shows that (A.3) and (A.2) are 
the same. D 

Theorem A.ll. Suppose that (x) is a coordinate system on a Euclidean space EN 
and that l is the range in EN of the mapping 

lA. I = 1, i = 1, 2, ... ' N. (A.4) 

Then l is a line and the Equations (A.4) set up a coordinate system on l with 
origin at x0 and unit point x0 + A.. 

PRooF. Let p and q be in the range of (A.4). Then 

i = 1, 2, ... , N, 

and lxP- x"l = itP- t"i· This shows that lis a line and that the equations 
(3) set up a coordinate system with origin (t = 0) at x0 and unit point at 
~+L D 

It is easy to see from the above theorems that if I is a line in EN, if (x) is a 
coordinate system on EN, and if(t) and (u) are coordinate systems on l which 
set up the same ordering on l, then the corresponding sets A. of(t) and A.' of(u) 
in Equations (A.4) must be the same. Hence the set A. depends only on the 
ordering oft Iff is any directed line, the set A. in Equations (A.4) is called the 
direction cosines off corresponding to the coordinate system (x) on EN. Two 
lines 11 and 12 are perpendicular if and only if 11 and 12 intersect at some point 
x0 and 

lx1 - x212 = lx1 - xol2 + lx2- xol2 

for all points x 1 on 11 and x2 on 12 • 

Theorem A.ll. Let (x) be a coordinate system on EN and let 11 and 12 be lines 
in EN with equations 

11: X(= x? + AftP, 

l2: X(= x? + AftP, 

Then 11 is perpendicular to 12 if and only if 
N 

i = 1, 2, ... , N, 

i = 1, 2, ... , N. 

:L A.fA.f = o. 
i=1 

(A.S) 



510 Appendixes 

PROOF. Let x 1 E 11 and x 2 E 12 • Then there are t 1 and t2 such that xf = 
x? +.Aft\ xl = x? + .Alt2 , i = 1, 2, ... , N. Hence 

N N 

!x1 - x2!2 = L (.Aft 1 - .Alt2f = (t1)2 + (t2f- 2t1t2 L .Af.Al 
i=l i=l 

and 
N 

!xl _ xo!2 + lx2 _ xo!2 = L [(tl .Af)2 + (t2 _Al)2] = (tl )2 + (t2)2, 
i=l 

from which (A.5) follows. D 

Definition. Let A and B be points in EN. Then a point Pis h of the way from 

A to B if and only if 

!API= !h!·!AB! and !BPI= 11- h!·IAB!. (A.6) 

The number h is any real number. 

Theorem A.l3 

(a) Let (x) be a coordinate system on EN. A point Pis h of the way from A to 

B if and only if 

xf - xt = h(xf - xt) or xr = (1 - h)xt + hxf, i = 1, 2, ... , N. 
(A.7) 

(b) A point h of the way from A to B coincides with the point (1 -h) of the way 

from B to A. 

PROOF. Let P be any point in EN. Then there are numbers ef, ... , e~ such that 

xr- xt = h(xf - xt) + er 

or 
xr- xf = (h- 1)(xf- xt) + er, i = 1, ... , N. (A.8) 

Part (a) results from substituting (A.8) into (A.6), squaring, subtracting, and 
simplifying as in the proof of Theorem A.10. Then if Pis h of the way from A 

to B, all the U are zero. Part (b) is a direct consequence of (a). D 

Theorem A.14 

(a) Let A and B be distinct points in EN. Then the set of all points Pin EN each 

of which is h of the way from A to B, where h is any real number, constitute 

a line. The set of all points Q which are (1 -h) of the way from B to A as 

h takes on all real values constitutes the same line. 
(b) There exists a unique line in EN which passes through two distinct points. 

PROOF. 
Let (x) be a coordinate system on EN. If Pis h of the way from A to B, 
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then 
B A 

h 1AB Xi -Xi 
were~~.. =---

' IABI 
i = 1, 2, ... , N, (A.9) 

Here we set tP = h and note that IA.ABI = 1. Therefore P lies on the line 
with Equations (A.9). On the other hand, if P is on the line given by (A.9), 
then P satisfies (A.7) with tP = h and so is h of the way from A to B. Now 
if Q is k of the way from B to A, then 

xP - xr = k(xt - xr) 
or 

xP = (1 - k)xr + kxt = (1 - h)xt + hxr = xr. 

The preceding argument shows that there is only one line through A and 
R D 

Theorem A.15. Let l be a line in EN and P1 a point in EN not on l. Then there 
exists a unique line 11 in EN which contains P1 and is perpendicular to l. If 
(x) is a coordinate system on EN, if P1 has coordinates (x1, ... , xN), and if 
l has equations 

xi = xP + A.it, i = 1, 2, ... , N, (A.10) 

then the (t) coordinates of the point P2 of intersection of land 11 are given by 

N 

t* = L A.i(x;- x?}. (A.11) 
i=1 

PROOF. The point of intersection P2 will satisfy Equations (A.10) and, denoting 
its (x) coordinates by (xf, ... , x~). we have 

xr = xP + A;t* for some t*. 

The differences xr - xi are proportional to the direction cosines of 11 and so 
the perpendicularity condition, (A.5), implies that 

N 

L A.;(xr - xi) = o. 
i=1 

Therefore Lf=1 A.;(xP + A.;t* - xi) = 0, from which (A.11) follows. D 

-+ ---+ 
Definition. Let l be a directed line and AB a directed line segment in EN. Let 
A' be the point of intersection with l of the line through A which is perpendicu
lar to f (if A is on r then A' = A). Similarly, let B' be the point of intersection 

-+ ---+ -+ 
of the perpendicular to l through B. We define the projection of AB on l as 

---+ 
the directed distanceA'B'. We write 

---+ ---+ 
ProJ; AB = A' B'. 

-+ ---+ 
Theorem A.l6. Let l be a directed line and AB a directed line segment in EN. 
Let (x) be a coordinate system on EN and suppose that the direction cosines of 
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·- ~ B A PrOJI AB = '-' Aix; - X; ). 
i=l 

PRooF. According to Theorem A.15, the (t) coordinates of A' and B', as given 
in the definition of projection, are 

N 

tA' = "' A..(x~ - x!>) f... I l & ' 
i=l 

Using Theorem A.9, we find 

----+ N 
Proj-; AB = A'B' = tB'- tA' = L A.;(xf- xt). D 

i=l 

2. Vectors in EN. As in the case oftwo and three dimensions, we shall define 
a vector as an equivalence class of directed line segments. Two directed line 

- ---+ segments AB and CD are equivalent if and only if 

- ---+ Proj-; AB = Proj-;CD 
... ----+ 

for every directed line l in EN. We writeAB ~ CD for such equivalent directed 
line segments. 

The proofs of the following elementary properties of equivalent directed 
line segments are left to the reader. 

Theorem A.l7 
----+ 

(a) /f(x) is a coordinate system in EN, thenAB ~CD if and only if xf- xf = 
xf - xt, i = 1, 2, ... , N. 
----+ ---+-

(b) If AB ~CD then CD ~AB. ---- --(c) If AB ~ CD and CD ~ EF, then AB ~ EF. -(d) If AB and P are given, then there is a unique point Q such that 
~---+ 

PQ ~AB. 
-- -- ---+ (e) If AB ~DE and BC ~ EF, then AC ~ DF. --(f) If AB ~DE, if Cis h of the way from A to B, and ifF ish of the way from 

"""""-+ -D toE, thenAC ~DF. 

Definitions. A vector in EN is the collection of all ordered pairs of points (A, B), -i.e., all directed line segments AB in EN having the same magnitude and 
direction. The individual ordered pairs are called representatives of the vector 
containing them. We denote by v(AB) the vector containing the representative -AB. -Let v and w be vectors and AB a representative of v. Then there is a 

- ---+ representative BC of w. We define the sum v + was the vector u which as AC 
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as its representative. That is, 

u(AC) = v(AB) + w(BC). 

If h is a real number and D is h of the way from A to B, then 

hv = v(AD). 

We define I vi as the common length of all the representatives of v. 
Let (x) be a coordinate system on EN. We define the ith unit point I; by the 

coordinates (0, 0, ... , 0, 1, 0, ... , 0) where all the coordinates are zero except 
the ith which is 1. The vector e; is th~ vector of length 1 which has as 
representative the directed line segment OI;, where 0 is the origin of (x). 

Theorem A.18. Let (x) be a coordinate system on EN. If A and Bare any points 
in EN, then 

N 

v(AB) = L (xf - xf)e;. 
i=l 

PROOF. We prove the result for N = 3, the proof in the general case being 
--+ 

similar. The vector v(AB) has a representative OP where P has coordinates 

(x:- xf, xf- xt, x:- xf). 

Let R1 , R 2 , R3 , Q1 , Q2 , Q3 have coordinates 

R1 = (x:- xf, 0, 0), R 2 = (0, xf- xt, 0), R3 = (0, 0, x: - xf), 

Q1 = R1 , Q2 = (x:- xf, xf- xt, 0), Q3 = P. 

We observe that R1 is (x:- xf) of the way from 0 to I 1 ; R 2 is (xf- xt} of 
the way from 0 to I 2 and R3 is (x:- xf) of the way from 0 to I3 • Also, 

v(ORt) = (x:- xf)e~o v(OR2 ) = (xf - xt)e2 , 

v(OR3 ) = (x: - xf)e3 • 

Hence we see that 

v(OP) = v(OQd + v(Q1Q2) + v(Q2Q3), 

which is the desired result. D 

Theorem A.19. Suppose that e1, e2 , ••• , eN are mutually perpendicular unit 
vectors in EN. Suppose that 

Then N N 

v + w = L (a; + b;)e;, 
i=l 

hv = L ha;e;, 
i=l 

lvl = Ja~ +···+a~. 
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PROOF. Let (x) be a coordinate system on EN with origin 0 and unit points I; 
where v(OI;) = e;. The hypotheses of Theorem A.18 hold. Let A, B, C be the 
points with coordinates (a1 , ... , aN), (b1 , ••. , bN), (ha1 , ••• , haN). Then Cis h of 
the way from 0 to A and 

v = v(OA), w = v(AB), hv = v(OC), v + w = v(OB). D 

The next theorem is a direct consequence of the above results on vectors. 

Theorem A.20 

(a) The operation of addition for vectors satisfies Axioms A-1 through A-5 for 
addition of real numbers (Chapter 1). 

(b) Let v and w be two vectors and c, d real numbers. Then 

(c + d)v = cv + dv, c(v + w) = cv + cw, 

c(dv) = (cd)v, 1 · v = v, O·v = 0, (-1)v = -v. 

Definition. Let u and v be vectors in EN. The inner (or scalar) product of u and 
v, denoted u · v, is defined by 

u·v = Hlu + vl 2 -lul 2 -lvl 2]. 

The value of the inner product is independent of the coordinate system. 

Theorem A.ll. Let u and v be vectors in EN and (x) a coordinate system on EN. 
Suppose e1, ... , eN is a set of mutually orthogonal unit vectors and 

Then 

N 

u = L a;e;, 
i=l 

N 

u·v = ~ a.b.· L..t 1 ,, 

i=l 

also, 

u·v = v·u, u · (cv + dw) = c(u · v) + d(u · w), 

where '!:Y is any vector in EN. 



Answers to Odd-Numbered 
Problems 

Section 1.2 

1. The inverse ofT is a function if the a; are all distinct. 

7. (a) Proposition 1.3. 
(b) Propositions 1.4, 1.6, 1.7. 

(c) f "f n! a•-i-ibici 
i=O j=O i!j! (n- i- j)! 

11. Yes 

Section 1.3 

+ 0 

0 

2 

3 

0 

1 

2 

3 

1 

0 

3 

2 

2 3 

2 3 

3 2 

0 1 

1 0 

X 0 

0 

2 

3 

0 

0 

0 

0 

2 3 

0 0 0 

1 2 3 

2 3 1 

3 1 2 

1. Yes. Each number a + bj7, a, b rational corresponds to a unique point on the line. 

5. (0, oo) 

13. ( -1, 5) 

19. (!, 3) 

Section 1.4 

7.(-4,00) 9.(-2,3) 11.[-1,2) 

15. (-oo,O)u(-!f,oo) 17. (-oo,l)u(2,oo) 

9. (b) Yes. (c) Yes. 
20. lfSisasubsetofN x N containing(!, l)such thatforall(m, n)inSboth(m + 1, n) 

and (m, n + 1) are inS, then S = N x N. 

515 
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Section 2.1 

1. {) = 0.005 

7. {) = 0.06 

13. {) = 0.07 

Section 2.2 

5. No. 

Section 2.3 

1. Yes. 

7. No. On the right. 

3. {) = 0.02 

9. {) = 0.005 

15. {) = 0.09 

3. No. Neither. 

9. No. Neither. 

13. Limit is 1; limit is 0; limit doesn't exist. 

5. {) = 0.002 

11. {) = 0.01 

17. {) = 0.7 

5. No. Neither. 

11. No. Neither. 

15. If limx-•+ / 1 (x) = L 1 , limx-•+ / 2(x) = L 2 and g(x) = / 1 (x) + / 2(x), then 
limx-•+ g(x) = L 1 + L 2 • 

17. Suppose limx-•- f(x) = L, Iimx-•- g(x) = M and f(x) ::;; g(x) for all x in an interval 
with a as right endpoint. Then L ::;; M. 

Section 2.4 

1. 0 3. +oo 5. 0 

7. +oo 9. 2 

13. Suppose that/ and g are functions on IR 1 to IR 1• Iff is continuous at Land g(x)-+ L 
as x-+ -oo, then limx--oof[g(x)] = f(L). 

17. Examples are (a) f(x) = 2x, g(x) = -x; 
(b) f(x) = x, g(x) = -2x; 
(c) f(x) = x +A, g(x) = -x. 

19. Suppose that limx_ +oo f(x) = L, limx_ +oo g(x) = M. If f(x) ::;; g(x) for all x > A for 
some constant A, then L ::;; M. 

Section 2.5 

1. (a) Xn = (n + t)n; (b) Yn = 2nn; (c) Zn = (2n + 1)1t. 

3. Hint: Write a" = (1 + (a - 1))" and use the binomial theorem. 

11. 1 13. 0 

Section 3.1 

3. If a0 < 0, then f(x)-+ +oo as x-+ ±oo; if a0 > 0, then f(x)-+ -oo as x-+ ±oo. 

7. f(x) = x sin(1/x), c = 0. 

Section 3.2 

1. 3, yes; 0, no. 3. 3, no; -1, no. 
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5. 1, no; t, yes. 7. 31t/2, yes; 1t/2, yes. 

11. (b) inf S = inf{bi} provided the right-hand expression exists. Similarly, supS= 
supi{Bi}· 

19. Example 1: Take Ii = [(i - 1)1t, i1t], f(x) = cos x; 
Example 2: 11 = [ -1, 0], Ii = [1/i1t, 1/(i - 1)1t], f(x) = 0, x ~ O,f(x) = cos(1/x), 
x>O. 

Section 3.3 

1. No; {x2.}. 3. No; {x2.}. 

5. Yes. 7. No; {x3.}. 

9. (a) xk,n = {k + 1/n}, k = 1, 2, ... , N; n = 1, 2, ... . 
(b) xk,n={k+1/n}, k=1,2,3, ... ,n=1,2,3, ... . 

Section 3.5 

3. f(x) = xf(x + 1) 

Section 3.7 

1. Yes. 3. Yes. 5. No; {x3.}. 

13. (b) A finite subfamily has a smallest interval IN. The point x = 1/(N + 3) is not 
covered. 

15. No. 

17. Finite subfamilies which cover E are 1413 and 1312 • 

Section 4.1 

5. Let J, u, v be functions on IR1 such that v has a derivative at x0 , u has a derivative 
at v(x0 ), and f has a derivative at u[v(x0 )]. 

3 + 3h + h2 

9. (b) rJ(h) = 3 - (1 + h)3 

15. For k ~ (n - 1)/2 21. 1 23. e 

Section 4.2 

1. 11 = ( -oo, -1], 12 = [ -1, +oo), J1 = [1, +oo), g1(x) = -Jx"=i- 1, g2 (x) = 

Jx"=l-1 

3. 11 = (-oo, 2], 12 = [2, +oo), J1 = ( -oo, 4], J2 = ( -oo, 4], g1(x) = 2-~. 
g2(x)=2+~ 

5. 11 = ( -oo, -2), 12 = ( -2, +oo), J1 = (2, +oo), J2 = ( -oo, 2), g1(x) = 2x/(2- x), 
g2 (x) = 2x/(2- x) 

7. 11 = (-oo, -1], 12 = [ -1, +1], 13 = [1, +oo), J1 = [ -2, 0), J2 = [ -2, 2],J3 = 

(0, 2],g1(x) = (2 + J4- x 2 )/x,g2(x) = (2- J4- x2)/x,g3(x) = (2 + J4- x2)/x 
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9. / 1 = (-oo, +oo),J1 = (-oo, +oo) 

11. / 1 = (-oo, -3), 12 = [ -3, 1], / 3 = [1, +oo) 
J 1 = ( -oo, 31], J2 = [ -1, 31], J3 = [31, +oo) 

15. f'(x) = 3(x - 1)2, g'(x) = lx- 213 

17. f'(x) =cos x, g'(x) = 1/JI="? 

Section 5.1 

1. s+u, ~) = -H; s_(f, ~) = z6s 

9. Note that Li'=1 [f(x;)- f(x;-d] - f(x.)- f(x 0 ) = f(b)- f(a). 

15. Yes. 19. Hint: Use the result of Problem 18. 

Section 5.2 

1. (c) Choose f(x) = x, a :::; x < b, f(b) = b - 1. 

3. Note that d(uv) = u dv + v du. 

5. For 0 :::; x :::; 1let f(x) = 1 for x rational, f(x) = -1 for x irrational. 

Section 6.1 

3. Not equivalent. 5. Yes. 7. No. 

11. Either all X; are zero or there is a number 2 such that Y; = h; fori = 1, 2, ... , n, ... . 

Section 6.2 

3. The square with vertices at (1, 0), (0, 1), ( -1, 0), (0, -1). 

5. No. The set { 1/n }, n = 1, 2, ... , is an infinite set of isolated points. 

7. A={x:O:::;x:::;1}. 

11. The sets A.= {(x, y): 0:::; x2 + y2 < 1/n}, n = 1, 2, .... 

15.Define (in IR 1), A;={x:1/i<x:::;1}. Then UA;={x:O<x:::;1}; B= 
{x: 0:::; x:::; 1} =1- U A;= {x: 0 < x:::; 1}. 

Section 6.3 

1. Arrange the rational points as shown in Figure 6.5. 

Section 6.4 

5. Choose p = -fo. 
7. Choose x" = (x~, Xz, ... , x;:, ... ) so that xi: = 1 if k = n, xi: = 0 otherwise. 

Section 6.5 

7. Statement: Let f, g, h be functions defined on a set A in a metric space, and suppose 
PoE A. Ifj(p):::; g(p):::; h(p)forallp E A andiflimP~PJ(p) = limP~P0 h(p) = Lfor 
pEA, then limP~Pog(p) = L for pEA. 
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9. (a) For every B > 0 there is a 8 > 0 such that d2(f(p), f(p 0 )) < e whenever 
d1(p, p0 ) < 8 where d1 , d2 are the metrics in S1 , S2, respectively. 

(b) Same as 9(a) except that the points p must belong to A. 
(c) Foreverye > Othereisa8 > Osuchthatd2(f(p), q0 ) < ewheneverd1(p, p0 ) < 

8 and pEA, where d1 , d2 are the metrics of S1, S2 respectively. 

11. Let A= 11 u 12 , 11 = {x: 0 ~ x ~ 1}, 12 = {x: 2 ~ x ~ 3}. Define f = 0 on 11 , 

f = 1 on 12 • 

Section 7.1 

5. H, 3(x) = -4x3(xf + x~) + 2xf(xfx3 + x4 ) + 2[cos(x1 + x3)- 2x4 ] sin(x1 + x3) 

Section 7.2 

7. f(x) = f(a) + Dtf(a)(x1 - a 1) + Dd(a)(x2 - a2) + DJI(a)(x3 - a3) 

+ !DU(a)(x1 - ad2 + D1 Dd(a)(x 1 - a1)(x2 - a2) 

+ DtD3f(a)(xt- ad(x3- a3) + tDif(a)(x2- a2)2 

+ D2DJf(a)(x2 - a2)(x3 - a3) + !Dif(a)(x3 - a3)2 

+ iDif(~)(xt - ad3 + !DfDd(~)(xt - ad2(x2- a2) 

+ !DfDJf(~)(xt- at)2(x3- a3) + !D1 Dif(~)(xt- ad(x2 - a2)2 

+ D1 D2D3f(~)(x 1 - a 1)(x2 - a2)(x3 - a3) 

+ !DtDif(~)(xt - at)(x3 - a3)2 + iDif(~)(x2 - a2)3 

+ !D1DJf(~)(x2 - a2)2(x3 - a3) + !D2D~f(~)(x2 - a2)(x3 - a3)2 

+ iDU(~)(x3 - a3)3 

11. Positive definite. 

13. Negative definite. 

Section 7.3 

11. (a) Definition: The derivative off at a is the lmear function L: ~N-+ IRM such that 

lim dM(f(x), L(x)) = O . 
.. ~. dN(x, a) 

Section 8.1 

1. S = {x: 0 ~xi~ 1, xi is rational, i = 1, 2, ... , N}. 

3. The result does not hold even in ~2 with S = {(x 1 , x2): t ~xi~ j, i = 1, 2}. 

7. sl = {x: 0 ~xi~ 1, xi rational}, s2 = {x: 0 ~xi~ 1, xi irrational}. sl u s2 is a 
figure, S1 n S2 = 0. Also S1 - S2 = 0; hence all are figures. 
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Section 8.2 

1. Let F = {x: 0 ~X;~ 1, i = 1, 2, ... , N}. Definef: F-+ IR1 such thatf(x) = Oifx1 

is rational and f(x) = 1 if x 1 is irrational. 

Section 8.3 

3. Let F1 be a regular figure in IRN and G a figure with zero N-dimensional volume. 
Define F = F1 v G and suppose f: F-+ IR 1 is Riemann integrable on F1 and 
unbounded on G. 

7. (b) Observe that for every subdivision into subsquares of S, we have s+(f, ~) = 1 
and s-(f, ~) = 0. 

Section 9.1 

1. Convergent. 

7. Convergent. 

17. Divergent. 

Section 9.2 

1. Absolutely convergent. 

5. Divergent. 

3. Convergent. 

9. Convergent. 

5. Convergent. 

13. p > 1. 

3. Conditionally convergent. 

7. Divergent. 

9. Conditionally convergent. 

13. Divergent. 

11. Conditionally convergent. 

15. Convergent. 

17. -1 <X< 1 19. -i ~X< i 
21. 1 <X< 5 23. -i <X< -t 

co co x" 
29. (i) L n! x"; (ii) L 1 . 

n=O n=O n. 

Section 9.3 

1. Uniform. 

7. Not uniform. 

Section 9.4 

1. h < 1 

7. h < 1 

3. Uniform. 

9. Uniform. 

3. h < 1 

9. h < 1 

23. 1 + f (-1/2)(-3/2) ... (-1/2- n + 1)x2n, lxl < 1 
n=l n! 

251 ~(-1r(-3)(-4) ... (-3-n+1) n 
• + L... I X ' jxj < 1 

n=l n. 

5. Uniform. 

5. h < 3/2 
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27. 1 + f (-1t(-3)(-4) ... (-3- n + 1)x2•, lxl < 1 
n=l n! 

29 3 ~ (-1f(-1/2)(-3/2) ... (-1/2-n+ 1) 6•+ 3 
.x+L.. x, 

n=l n!(2n + 1) 

31. 0.47943 

35. 1.99476 

Section 9.5 

3. No. 

Section 9.6 

3. No. 

9. No. In fact, the sum does not converge. 

13. No. In fact, the sum does not converge. 

Section 9.7 

x2 y2 x3 xy2 
1 1+x+---+---. 2 2 6 2 

x2 y2 x3 xy2 
3. 1-x+-+-----

2 2 6 2 

5. 1 

Section 10.1 

33. 0.89837 

37. 0.23981 

5. No. 

lxl < 1 

1 2 [sin x sin 3x sin(2k + 1)x J 
1. 2 + ~ -1- + -3- + ... + 2k + 1 + . . . ' -1t~X~1t. 
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3 11:2 4[ cos x cos 2x cos 3x ( -1)k cos kx J 
• 3+ -~+~-~+···+ k2 +··· ' -1t~X~1t. 

5 2 4 [cos 2x cos 4x . . . ( -1)k+l cos 2kx] 
• ~ + ~ -3--lS + + 4k2 - 1 ' -11: ~X~ 11:. 

7 e2"- e-2" e2"- e-2"[-2 cos x sin x 2 cos 2x 2 sin 2x ( -1)"2 cos kx 
• 411: + 11: 5 + -5- + --8-- --8- + k2 + 4 

_(-1}"ksinkx+···] -n~x~n. 
k2 + 4 ' 

1 cos 2x 
9• 2--2-

4 00 1 
11. - L -2-- sin(2n- 1)x, -11: ~ x ~ 11:. 

11: n=l n- 1 
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13. 1 cos x + ;i cos 3x, - n ~ x ~ n. 

19 (a) n3 _ 4 cos x 2 sin x 4 cos 2x _ 2 sin 2x . . . 4( -1)k cos kx 
. 3 12 + 1 + 22 2 + + k2 

2( -1)k sin kx 
- k + · · ·, - n ~ x ~ n. 

Section 10.2 

1. ~ + ~[cos x _ cos 3x + cos 5x + ... J 
2 n 1 3 5 ' 

0 ~ x ~ n. 

3 ~_~[cos x cos 3x cos 5x ···] 
· 2 n 12 + 32 + 52 + ' 0 ~ x ~ n. 

5. -+ --+--+--+··· 
8 [sin 2x sin 6x sin lOx J 
n 2 2 2 ' 

0 ~ x ~ n. 

[ sin x sin 2x sin 3x J 
7. 2 - 1---2-+-3--··· , O~x~n. 

9 4 [ . 1 sin !nx sin fnx J . -- sm-nx+---+---+··· 
n 2 3 5 ' 

1 4 [cos xn cos 2nx cos 3nx ... J 
11. 3 + n2 -1-2- + _2_2_ - _3_2_ + , 0 ~ x ~ n. 

Section 10.3 

[ sin x sin 2x sin 3x ... J 
1. 4 1"3-2J+~- , -n~x~n. 

4 [sin x sin 3x sin 5x ... J 
3. -n 1"3+~+~+ , -n~x~n. 

2 4 [cos 2x cos 4x cos 6x J 
5. f(x) ~ lt- lt 22- 1 - 42- 1 + 62- 1 +... ' -n; ~X~ n. 

4 [ sin 2x sin 4x sin 6x J 
F(x) ~ -n 2(22 - 1) + 4(42 - 1) + 6(62 - 1) + · · · ' -n ~ x ~ n. 

a. b. c II . . k 7. I<-+ 0, I<-+ 0 as n-+ oo, .or a positive . 
n n 

n+t 
11.~ 

n 

Section 11.1 

11 cos xt 
1. sin x- --dt 

0 1 + t 
3. 1/(x + 1), x =1- -1 
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2xe-l-x2 sin xe-cosx e-l-x2 e-cosx 
7. 3 + - 2 3 + ~2 ----

1 + X + X 1 + X COS X X (1 + X + X ) X (1 + X COS X) 

--- ---dt 
1 +X fl+x2 e-t 

x2 cos x 1 + xt , 

2 sin(x2)- 3 sin(x3) 
9.-------

x 

X #-0. 

~-1 1 
11. 2 + ~· X #- 0, 1, ~'(0) = 0. 

x v 1- x2 

3ex'- exy 
13.---

x 
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J,h1(x,y) 

F_ 2 = f[x, y, h1 (x, y)Jhu(x, y) - f[x, y, h0 (x, y)]h0 , 2(x, y) + f.2(x, y, t) dt. 
h0 (x,y) 

19. ~. 3 = f[x, y, z, g1(x, y, z)]g1.3(x, y, z)- f[x, y, z, g0 (x, y, z)]g0 , 3(x, y, z) fg 1(x,y,z) 

+ f. 3 (x, y, z, t) dt. 
9o(x,y,z) 

Section 11.2 

1. Convergent. 

7. Divergent. 

Section 11.3 

3. Convergent. 

9. Convergent. 

5. Convergent. 

11. Convergent. 

1 foo e-xt 
1. ~'(x) = -- + -- dt 

X o 1 + t foo t sin xt 
3. ~'(x) = - --3 dt 

0 1 + t 

1 f 1 sin xt 5. ~'(x) = -- -- dt 
X o t 

2 2x+1 x 
7. ~'(x) = --- 2 312 arctanh ~ 

x + 1 (x + x) v x2 + x 

' 1 15. ~ (x) = --, ~(x) = log(x + 1) 
X+ 1 

Section 12.1 

3. 4 5. 2 

11. (b) Example: f(x) = x sin(1/x), 0 < x ::::; 1, f(O) = 0. 
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Section 12.2 

1. (a) f f dg = 0 

3. 2 
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(b) f f dg = (dn- 1)/(b) + (1 - dt)f(a) 

7. 0 

13. Conditions under which the "integration by parts" formula holds. 

Section 13.1 

1. 1.581 3. -1.24 

5. 1.30, 0.67, -2.32 

10 + 4x; 
7. Xn+t = 10 + 5x!; Xt = 1, x 2 = 0.933, x3 = 0.9303 

13. 0.169 

Section 13.2 

Section 14.1 

1. f' = 2xf(3y2 + 1) 

3. f' = - xy2 + 2y 
x 2y + 3x 

5. Example: F(x, y) = y3 - x, (x0 , y0 ) = (0, 0) 

7. ft(l, 0) = 2,f2(1, 0) = 0 

9. ft(O, t) = -!, f2(0, t) = -1 

13. Example: F(xt, x2, y) = y3 - x~, (x?, x~, y) = (0, 0, 0) 

( aF a2F aF a2F aF a2F aF a2F )j(aF)3 

15• ft.t = axt axtaY- ay axf- axt ay2 + ay axtaY ay 

( aF a2F aF a2F aF a2F aF a2F )j(aF)3 

ft. 2 = ax2 ax2ay- ay axtax2- ax2 ay2 + ay ax2ay ay 

( aF a2F aF a2F aF a2F aF a2F )j(aF)3 

! 2'2 = ax2 ax2ay- ay ax~ - ax2 ay2 + ay ax2ay ay 

Section 14.2 

1. f = (ft' /2); !t,t = -1.!t,2 = t.J2,t = 1.!2,2 = -1 

3. f = (ft.f2); ft.t = ~.!t,2 = t.J2,t = -1.!2,2 = ~ 

5_ af2 = (aFt aF2 _ aFt aF2)/(aFt aF2 _ aFt aF2) 
axt axt ayt ayt axt ayt ay2 ay2 ayt 
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ap = (aF1 aF2 _ aF1 oF2)/(aF1 aF2 _ aF1 aF2) 
axl ay2 axl axl oy2 ayl ay2 ay2 ayl 

of1 = (aF1 aF2 _ aF1 aF2)/(aF1 aF2 _ aF1 oF2) 
ax2 ay2 ax2 ax2 ay2 ayl ay2 ay2 oyl 

ap = (aF1 aF2 _ aF1 aF2)/(aF1 aF2 _ oF1 aF2) 
ax2 ax2 ayl ayl ox2 oyl ay2 ay2 ayl 

9. X1 = Y1• X2 = Y2- Y~ 

Y1 Y2 
11. x 1 = , x2 = -=-----

1 - Y1 - Y2 1 - Y1 - Y2 

13. All P(x1 , x 2 , x3 ) such that x 3 # nn for integer values of n. 

Section 14.3 

1. JFK(x1, x2 ) dV2 = 2l, u1 = (3x1 - x2 )/8, u2 = (3x2 - x 1)/8 

3. JFK(x 1, x2 ) dV2 = 0, u1 = 2x1 + x2 - 2x~, u2 = x1 + x2 - x~ 

5. JFK(x 1, x2 ) dV2 = -ffi, u1 = x1 - x2, u2 = x1 + x2 

9. JFx3 dV3 = n/8 

Section 14.4 

1. 15 

7. (2, 1), ( -2, -1) 

11. (a) n1'" 

Section 15.1 

1. M(S) is a metric space. 

3. 45 5. 5/2 

9. (j2, -j2), ( -j2), j2) 

{0 forO~ x < t 
7. Example: Let A = [0, t) u (t, 1] and f(x) = 1 fort< x ~ 1 

Section 15.3 

13. f(x) = 0 for -oo < x 1 ~ 0; f(x) = 0 for -oo < x 2 ~ 0; 
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f(x) = 1 for 1 ~ x1 < +oo and 1 ~ x2 < +oo; f(x) = x1 for 0 ~ x1 ~ 1, 
1 ~ x2 < +oo; 
f(x) = x2 forO~ x2 ~ 1,1 ~ x1 < +oo. 

Section 15.4 

9. Example: The function f(x) = sin(1/x) is continuous on I. 

13. It is sufficient that f is integrable on 0 ~ y ~ 1. 

Section 16.1 
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7. Not rectifiable. 

9. T = (j3/3)(e1 + e2 + e3 ); N = (j2}2)( -e1 + e2 ) 

B = (j6/6)( -e1 - e2 + 2e3 ); K = J2J3); r = 1/3 

11. T = l9 (e 1 + 6e2 + 18e3 ); N = fg( -6e1 - 17e2 + 6e3 ) 

B = l 9 (18e1 - 6e2 + e3 ); K = 3~1; r = 3~1 

15. 14 17. 3n2 Jn2 + 32 + lnG + ~Jn2 + 32)- ~In 2 

Section 16.2 

3.fFudV=0 

5. (2x 1 + x2 )e1 + (x 1 - 2x2 )e2 + 2x3 e3 ; Daf(x) = 27/7 

13. div v(x) = 0 

15. div v(x) = -12 

17. div v(x) = -a curl r(x) 

19. curl v = 0; f(x) = x 1 x2 x 3 + t(xi + x~ + x~) 
21. curl v = 0 

Section 16.3 

1. fcg·dr = t 

5. fcg·dr = g 

9. fc Vu·dr = 3 

Section 16.4 

11. -24n 

3. fcg·dr = -2 

13. 2n 15. 2n 
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Section 16.5 

5. No. 

Section 16.6 

1 . ..fi/6 

7. n4 /192 

13. (2 + .j3)o/6 

3 15j2n 
.-4-

9. (17 + 15j2)n/4 

15. (0, 0, 0) 

19. Case 1: 4na2pfc; Case 2: 4nap 

21. 2np 

Section 16.7 
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5. 2n 

11. 10240/45 

1. If the edges of the cube are parallel to the coordinate axes, then n = ±e1 or ±e2 

or ±e3 for each of the appropriate faces. 

3. n =~[cos(} sin2 f/Je 1 + sin(} sin2 f/Je2 +sin(} cos ¢Je3 ] 
sm ., 

Section 16.8 

1. 0 

13. 0 

Section 16.9 

7. 0 

13. 5n 

Appendix 1 

1.{-2,1} 

7. {!, 3} 

13. ( -t. -f) 
19. ( -00, rr) u [f, oo) 

Appendix 2 

1. ( -3, 4) 

5. ( -00, -t) u (0, !) 
9. ( -oo, oo) 

3. 15n/2 

15. n/2 

3. 32n/3 

9. 2n 

3. {!,.If} 

9. {!.i} 

15. ( -t. 13°) 

5. 145 

5. 12.j3n 

11. 0 

5. { -6, -t} 

11. (1, 3) 

17. ( -!, oo) 

21. ( -oo, 1] u [9, oo) 

3. (-oo,2)u(-!,oo) 

7. (-2,2) 

11. Example: x 2 - 3x + 2 ~ 0 
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13. Example: x4 - 10x3 + 37x2 - 60x + 36 > 0 

15. ( -2, 1) u (1, 2) 

19. ( -00, 0) u (t 3) 

23. ( -~, -134) u (~, 00) 

17. ( -3, 0) 

21. ( -00, - 3) u (1, 2) 

25. ( -oo, !) u (2, oo) 
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Absolute convergence 216 
Absolute value 495 
Algebra of functions 409 
Algebraic number 149 
Alternating series theorem 216 
Analytic function 234, 403 
Arc 415 

directed 436 
piecewise smooth 418 
smooth 417 

Area 122 IT, 463 
inner 124 
outer 124 

Arzela's theorem 397 
Associative law 2, 4 
Auxiliary polynomial 182 
Axiom of continuity (Axiom C) 56 
Axiom of inequality 15 
Axioms for a field 1 IT 
Axioms of addition and subtraction 2 
Axioms of multiplication and division 

4 

Baire category theorem 377 
Ball 

closed 136 
open 136 

Bessel's inequality 275 
Binomial theorem 180, 238 
Binormal 420 
Bolzano-Weierstrass theorem 68 IT 

Bound 62 
Boundary cube 195 
Boundary square 127 
Boundary of a set 125, 143 
Boundary of a surface 459 
Bounded sequence 135, 394 
Bounded set 150 
Bounded variation 305 
Boundedness theorem 70 IT 

Cantor's diagonal process 311 
Cartesian product 132 
Category 

first 376 
second 376 

Cauchy criterion for convergence 75 IT 
Cauchy product 259 
Cauchy sequence 76, 152, 374 
Cell 

closed 148, 195 
open 148, 195 

Center of mass 466 
Chain rule 85, 176, 191 

converse of 92 
Change of variables formula 359 IT 
Class Ck 357 
Closed ball 136 
Closed cell 148, 195 
Closed interval 17 
Closed path 445 
Closed set 125, 138, 168 
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Closure of a set 125, 143 
Closure property 2, 4 
Common logarithm 121 
Common ratio 212 
Common refinement 198 
Common refinement of two subdivisions 

99 
Commutative law 2 
Compact set 150, 374 
Compact support 427 
Comparison test 

for integrals 291 
for series 213 
for unordered sums 250 

Complement of a set 140 
Complete metric space 329, 374 ff 
Composite function theorem 166, 167 
Conditional convergence 216 
Connected set 161, 168 
Continuity on a domain 43, 157, 165, 

168 
Continuity on the left 43 
Continuity on the right 43 
Continuous function 30, 157 
Contraction mapping 329 ff 
Convergence of a double sequence 255 
Convergence of integrals 213 
Convergent sequence 136 
Convergent series 211 
Convex function 381 ff 
Convex hull 392 
Convex set 381 ff 
Comer 449 
Countable 145 ff 
Covering family 78 
Covering square 123 
Curl 431 

scalar 447 
Curvature 422 

radius of 420 
scalar 420 
second 420 

Darboux integral 98 ff, 197 ff 
Darboux-Stieltjes integral 322 
Darboux-Stieltjes sum 322 
Darboux sum 

lower 98 
upper 98 

Decimal development 503 
Decreasing function 64 
de Morgan formulas 140 
Dense 311, 375 

Denumerable 146 
Derivative in IRN 188 ff, 414 
Derivative of a function in IR 1 83 
Derived set 143 
Development 

decimal 503 
with base b 503 

Diameter of a set 203 
Difference of two sets 124, 140 
Differentiable function 190 
Differential 191 
Differential equations 335 ff 
Dini test 279 
Directed arc 436 
Directed distance 508 
Directed line segment 508 
Direction cosines 383, 509 
Direction numbers 383 

Index 

Directional derivative 183, 192, 424 
Dirichlet kernel 276 
Distance function 133 
Distance from a point to a set 399 
Distributive law 5 
Divergence 429 
Divergence of integrals 213 
Divergence operator 427 
Divergence theorem 486 ff 
Divergent series 211, 255 
Domain 10, 164 
Double sequence 255 
Double series 255, 260 
Duhamel's principle 419 

Edge 460 
Electrostatic potential 470 
Empty set 20 
Epigraph 385 
Equicontinuous 394 
Equivalent metrics 134 
Euclidean distance 125 
Euclidean metric 133 
Euler's theorem 177 
Existence of a negative 2 
Existence of a reciprocal 4 
Existence of a unit 4 
Existence of a zero 2 
Exponential function 117 ff 
Exterior cube 195 
Extreme-value theorem 70 ff 

Family of intervals 77 
Family of sets 78 
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Field 1, 5 
Figure 124, 196, 464 

regular 204 
Finite field 5 
Finite subfamily 78 
First partial derivative 173 
Fixed point theorem 330 
Fourier coefficients 265 
Fourier cosine series 270 IT 
Fourier series 263 IT 
Fourier sine series 270 IT 
Frenet formulas 420 
Function from IR 1 to IR 1 10 
Function of bounded variation 305 IT 
Fundamental lemma of differentiation 

85, 175 
Fundamental theorem of calculus 

first form 107 
second form 107 

Gamma function 295 
Generalized Mean-value theorem 88 
Geometric series 212 
Gradient 359, 426 
Graph 94 
Gravitational field 429 
Greatest lower bound 62 IT 
Green's theorem 445 
Grid 123, 195 

Half-open interval 18 
Half-range series 270 
Heine-Bore! theorem 79, 154 
Reily's theorem 312 
Hilbert space 135 
Holder condition 315 
Holder continuity 280 

uniform 315 
Homogeneous function 177 
Hypercube 149, 195, 389 
Hyperplane 383 

Ideal element 379 
If and only if 5 
Image of a mapping 164 
Implicit function theorem 341fT 
Improper integral 213 
Increasing function 64 
Induction, Principle of mathematical 

25 
Inductive set 25 

Infimum 64 
Infinite limits 48 IT 
Infinite sequence 10 
Infinite series 211 IT 
Infinitely differentiable 234 
Initial value problem 335 
Inner area 124 
Inner cube 195 
Inner square 123 
Inner volume 196 
Integer 13 
Integrable 101, 115 
Integral test for series 213 
Integration by parts 116 
Integration of uniformly convergent 

sequences 225 
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Interior point 65, 124, 143, 383 
Intermediate-value theorem 59 IT, 66, 

161 
Intersection of two sets 20, 140 
Interval 18, 66 
Inverse differentiation theorem 95 
Inverse function 94 IT 
Inverse function theorem 94, 345, 357 
Inverse relation 14, 94, 164 
Irrational number 13 
Isolated point 44, 138 

Jacobian 359 
Jordan content 122fT 
Jordan curve 445 
Jump of a function 265 

Lagrange multiplier rule 369fT 
Lattice point 389 
Laws of fractions 7 
Laws of signs 7 
Least upper bound 62 IT 
Lebesgue lemma 79, 155 
Legendre polynomial 303 
Leibniz's rule 91 

for improper integrals 298 
Lemma of Lebesgue 79 
Length of a curve 315,418 
Length of a vector 413 
L'Hopital's rule 88 IT 
Limit 

obvious 36, 49 
one-sided 42 IT 
uniqueness of 36, 50 

Limit comparison theorem 215 
Limit of a composite function 39, 49, 50 
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Limit of a constant 36 
Limit of equal functions 37 
Limit of a function 34 
Limit of inequalities 40 
Limit point of a set 125, 138 
Limit of a product 38 
Limit of a quotient 39 
Limit of a sum 37, 55 
Limits at infinity 48 IT 
Limits of sequences 55 IT 
Line in E. 508 
Line integral in IRN 434 IT 
Lipschitz condition 337 
Logarithm function 117 IT 
Lower bound 62 
Lower Darboux 

integral 101, 199 
sum 98, 197 

Mapping 10, 164 
Mathematical induction 25 IT 
Maximum 68, 178 
Mean-value theorem 86 
Mean-value theorem for integrals 106 
Mesh of a subdivision 111, 203 
Metric space 133 

complete 329, 374fT 
Metrics, equivalent 134 
Minimum 178 
Mobius strip 472 
Modified Fourier series 273 
Modified inductive property 26 
Mollifier 406 
Moment of inertia 466 
Monotone function 64 
Moving trihedral 420 
Multi-index 180 
Multinomial theorem 181 
Multiplication of unordered sums 258 

Naturallogarithm 117 
Natural number 10, 25 
Necessary and sufficient 6 
Negative number 16 
Nested intervals theorem 59 
Newton's method 329 IT 
Non-Archimedean field 56, 58 
Nondecreasing function 64 
Nonincreasing function 64 
Nowhere dense 375 
nth grid 149 

Obvious limit 36, 49 
One-sided derivative 92 

One-sided limits 42 IT 
Open cell 148, 195 
Open ball 136 
Open interval 17 
Open set 138, 168 

Index 

Order of a differential operator 182 
Order of a multi-index 180 
Orientable surface 472 
Oriented simple closed curve 447 
Orthogonal vectors 419 
Orthonormal basis 423 
Outer area 124 
Outer volume 196 

Partial derivative 173 
Partial sum of an infinite series 211, 

255 
Partition of unity 451 
Path 416 

directed 416 
rectifiable 416 
smooth 417 

Periodic extension of a function 266 
Piecewise continuous function 265 
Piecewise linear mapping 170 
Piecewise smooth function 265,418 
Piecewise smooth simple closed curve 

449 
Positive definite quadratic form 186 
Power series 219, 230 
Principal normal 420 
Principle of mathematical induction 25 
Product 4 
Projection 511 

Radius of curvature 420 
Range 10, 161 
Ratio test for series 217 
Rational number 13 
Real algebraic number 149 
Refinement of a subdivision 99, 198 
Region 

regular 450, 489 
simply connected 440 

Regular figure 204 
Regular region 450, 489 
Relation 164 

from IR 1 to IR 1 10 
Remainder in Taylor's theorem 186 
Restriction of a function 62, 161 
Riemann integral 111 IT, 203 IT 
Riemann-Lebesgue lemma 278 
Riemann-Stieltjes integral 305 IT, 435 
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Riemann sum 111 
Rolle's theorem 86 
Root test for series 218 

Sandwiching theorem 40, 252 
Scalar curl 44 7 
Scalar curvature 420 
Scalar field 423 
Scalar product of vectors 419, 514 
Schwarz inequality 130 IT, 135 
Second directional derivative 184 
Second partial derivative 178 
Separable metric space 393 
Sequence 10 
Series 

absolute convergence 216 
comparison test 213, 215 
conditional convergence 216 
convergent 211 
divergent 211 
geometric 212 
integral test 213 
partial sum of 211 
power 216 
ratio test 217 
root test 218 
uniform convergence 230 IT 
Weierstrass M test 231 

Side condition 369 
Simple closed curve 445 

oriented 447 
piecewise smooth 449 

Simple linear transformation 360 
Simply connected region 440 
Smooth function 266 
Smooth surface element 456 
Solution set 19 
Standardized function 265 
Step function 65, 109 
Stirling's formula 409 
Stokes theorem, the 477 IT 
Stone approximation theorem 408 
Stone-Weierstrass theorem 410 
Subdivision of a figure 197 
Subdivision of an interval 98 
Subfamily of intervals 77 
Subsequence 69, 142 
Subset 22 
Subspace 167 
Sum of a series 211 
Support 427 
Supremum 64 
Surface 

nonparametric form of 464 

orientable 472 
piecewise smooth 459 
without boundary 459 

Surface element 456 
area of 460 
smooth 456, 460 

Tangent linear function 190 
Tangent linear transformation 462 
Taylor's theorem 184 
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with remainder 185, 234, 237 
Term-by-term differentiation 230 260 

281 , , 

Term-by-term integration 230, 253, 
262,282 

Terms of a series 211 
Third partial derivative 179 
Tietze extension theorem 400 
Torsion 420 
Torus 443 
Total derivative 190 
Total differential 191 
Total variation 312 
Transformation 164 
Triangle inequality 131, 135 
Trigonometric series 263 
Trinomial formula 14 
Triple power series 260 
Two-sided limit 45 

Unconditional convergence 247 
Uncountable 145 IT 
Uniform continuity 72, 159, 169, 377 
Uniform continuity theorem 74 
Uniform convergence 222 IT, 230, 250 

of integrals 300 
Uniform convergence on an interval 

222 
Uniform Holder condition 315 
Uniform sum 252 
Union of two sets 20, 125, 140 
Uniqueness oflimits 36, 50, 158 
Unit normal function 471 
Unit tangent vector 419 
Unordered sums 241 IT, 258 
Upper bound 62 
Upper Darboux 

integral 101, 199 
sum 98, 197 

Variation of a function 305 
Vector field theory 413 IT 
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Vector function 413 
derivative of 414 

Vectors in EN 507 ff 
Volume in IRN 195 ff 

inner 196 
outer 196 

Index 

Weierstrass approximation theorem 
411 

Weierstrass M test for series 231, 
254 

for unordered sums 254 
Well-ordering principle 28 
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