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Preface

The main purpose of this second edition is essentially the same as the first edition with changes noted below.
Accordingly, first we quote from the preface by Murray R. Spiegel in the first edition of this text.

“This book is designed to be used either as a textbook for a formal course in vector analysis or as a useful
supplement to all current standard texts.”

“Each chapter begins with a clear statement of pertinent definitions, principles and theorems together
with illustrated and other descriptive material. This is followed by graded sets of solved and supplementary
problems. . .. Numerous proofs of theorems and derivations of formulas are included among the solved pro-
blems. The large number of supplementary problems with answers serve as complete review of the material
of each chapter.”

“Topics covered include the algebra and the differential and integral calculus of vectors, Stokes’
theorem, the divergence theorem, and other integral theorems together with many applications drawn
from various fields. Added features are the chapters on curvilinear coordinates and tensor analysis ... .”

“Considerable more material has been included here than can be covered in most first courses. This has
been done to make the book more flexible, to provide a more useful book of reference, and to stimulate
further interest in the topics.”

Some of the changes we have made to the first edition are as follows: (a) We expanded many of the sec-
tions to make it more accessible for out readers. (b) We reformatted the text, such as, the chapter number is
included in the label of all problems and figures. (c) Many results are restated formally as Propositions and
Theorems. (d) New material was added, such as, a discussion of linear dependence and linear independence,
and a discussion of R" as a vector space.

Finally, we wish to express our gratitude to the staff of McGraw-Hill, particularly to Charles Wall, for
their excellent cooperation at every stage in preparing this second edition.

SEYMOUR LIPSCHUTZ
DENNIS SPELLMAN

Temple University
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Vectors and Scalars

1.1 Introduction

The underlying elements in vector analysis are vectors and scalars. We use the notation R to denote the
real line which is identified with the set of real numbers, R? to denote the Cartesian plane, and R? to
denote ordinary 3-space.

Vectors

There are quantities in physics and science characterized by both magnitude and direction, such as dis-
placement, velocity, force, and acce_lgration. To describe such quantities, we introduce the concept of a
vector as a directed_line segment PQ from one point P to another point Q. Here P is called the initial
point or origin of PQ , and Q is called the terminal point, end, or terminus of the vector. .

We will denote vectors by bold-faced letters or letters with an arrow over them. Thus the vector PQ may
be denoted by A or A as in Fig. 1-1(a). The magnitude or length of the vector is then denoted by
PO A, I], or A,

The following comments apply.

(a) Two vectors A and B are equal if they have the same magnitude and direction regardless of their initial
point. Thus A = B in Fig. 1-1(a).

(b) A vector having direction opposite to that of a given vector A but having the same magnitude is denoted
by —A [see Fig. 1-1(b)] and is called the negative of A.

(a) (b)
Fig. 1-1

Scalars

Other quantities in physics and science are characterized by magnitude only, such as mass, length, and
temperature. Such quantities are often called scalars to distinguish them from vectors. However, it must
be emphasized that apart from units, such as feet, degrees, etc., scalars are nothing more than real
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numbers. Thus we can denote them, as usual, by ordinary letters. Also, the real numbers 0 and 1 are part of
our set of scalars.

1.2 Vector Algebra

There are two basic operations with vectors: (a) Vector Addition; (b) Scalar Multiplication.

(a) Vector Addition

Consider vectors A and B, pictured in Fig. 1-2(a). The sum or resultant of A and B, is a vector C formed by
placing the initial point of B on the terminal point of A and then joining the initial point of A to the terminal
point of B, pictured in Fig. 1-2(b). The sum C is written C = A + B. This definition here is equivalent to the
Parallelogram Law for vector addition, pictured in Fig. 1-2(c).

B -
C=A+B ~~~___
C=A+B \ -
/ B 2
(a) (b) (c)
Fig. 1-2

Extensions to sums of more than two vectors are immediate. Consider, for example, vectors A, B, C, D
in Fig. 1-3(a). Then Fig. 1-3(b) shows how to obtain the sum or resultant E of the vectors A, B, C, D, that is,
by connecting the end of each vector to the beginning of the next vector.

B
>
D
(&
E=A+B+C+D
(a) (b)

Fig. 1-3

The difference of vectors A and B, denoted by A — B, is that vector C, which added to B, gives
A. Equivalently, A — B may be defined as A + (—B).

If A = B, then A — B is defined as the null or zero vector; it is represented by the symbol 0 or 0. It has
zero magnitude and its direction is undefined. A vector that is not null is a proper vector. All vectors will
be assumed to be proper unless otherwise stated.

(b) Scalar Multiplication

Multiplication of a vector A by a scalar m produces a vector mA with magnitude |m| times the magnitude of
A and the direction of mA is in the same or opposite of A according as m is positive or negative. If m = 0,
then mA = 0, the null vector.
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Laws of Vector Algebra

The following theorem applies.
THEOREM 1.1:  Suppose A, B, C are vectors and m and n are scalars. Then the following laws hold:
[A;] A+B)+C=A+B)+C Associative Law for Addition

[A2] There exists a zero vector 0 such that, for
every vector A,

A+0=0+A=A Existence of Zero Element
[A3] For every vector A, there exists a vector

—A such that

A+(-A)=(-A)+A=0 Existence of Negatives
[As,] A+B=B+A Commutative Law for Addition
[M;] m(A+ B)=mA +mB Distributive Law
[M;] (m+n)A = mA + nA Distributive Law
[M3] mmA) = (mn)A Associative Law
[My] 1(A)=A Unit Multiplication

The above eight laws are the axioms that define an abstract structure called a vector space.
The above laws split into two sets, as indicated by their labels. The first four laws refer to vector addition.
One can then prove the following properties of vector addition.

(a) Any sum A; + A, + --- + A, of vectors requires no parentheses and does not depend on the order of
the summands.

(b) The zero vector 0 is unique and the negative —A of a vector A is unique.

(¢) (Cancellation Law) If A+ C =B + C, then A = B.

The remaining four laws refer to scalar multiplication. Using these additional laws, we can prove the
following properties.

PROPOSITION 1.2:  (a) For any scalar m and zero vector 0, we have m0 = 0.
(b) For any vector A and scalar 0, we have 0A = 0.
(c) If mA=0,thenm=0o0rA=0.
(d) For any vector A and scalar m, we have (—m)A = m(—A) = —(mA).

1.3 Unit Vectors

Unit vectors are vectors having unit length. Suppose A is any vector with length |A| > 0. Then A/|A]|
is a unit vector, denoted by a, which has the same direction as A. Also, any vector A may be represented
by a unit vector a in the direction of A multiplied by the magnitude of A. That is, A = |A|a.

EXAMPLE 1.1 Suppose |A| = 3. Then a = |A|/3 is a unit vector in the direction of A. Also, A = 3a.

1.4 Rectangular Unit Vectors i, j, k

An important set of unit vectors, denoted by i, j, and k, are those having the directions, respectively, of the
positive x, y, and z axes of a three-dimensional rectangular coordinate system. [See Fig. 1-4(a).]

The coordinate system shown in Fig. 1-4(a), which we use unless otherwise stated, is called a right-
handed coordinate system. The system is characterized by the following property. If we curl the fingers
of the right hand in the direction of a 90° rotation from the positive x-axis to the positive y-axis, then
the thumb will point in the direction of the positive z-axis.
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Generally speaking, suppose nonzero vectors A, B, C have the same initial point and are not
coplanar. Then A, B, C are said to form a right-handed system or dextral system if a right-threaded screw
rotated through an angle less than 180° from A to B will advance in the direction C as shown in Fig. 1-4(b).

Z

(@) (b) ©
Fig. 1-4

Components of a Vector

Any vector A in three dimensions can be represented with an initial point at the origin O = (0, 0, 0) and its
end point at some point, say, (A;, Az, Az). Then the vectors A;i, A,j, Ask are called the component vectors
of A in the x, y, z directions, and the scalars A, A,, A3 are called the components of A in the x, y, z
directions, respectively. (See Fig. 1-4(c).)

The sum of Aqi, A,j, and A3k is the vector A, so we may write

A :A1i+A2j +A3k

Al = /AT + A5 +43

Consider a point P(x, y, z) in space. The vector r from the origin O to the point P is called the position
vector (or radius vector). Thus r may be written

The magnitude of A follows:

r=uxi+yj+zk

It has magnitude |r| = /x2 4 y2 4 2.

The following proposition applies.
PROPOSITION 1.3:  Suppose A = Aji + Azj + Ask and B = Byi + B,j + Bsk. Then
i) A4+B=@A+B)i+ A+ By)j+ (A3 + B3k
(i) mA =m(Ai + Azj + AsK) = (mADi + (mA2)j + (mA3)k

EXAMPLE 1.2 Suppose A = 3i + 5j — 2k and B = 4i — 8j 4 7k.

(a) To find A + B, add corresponding components, obtaining A +B = 7i — 3j + 5k
(b) To find 3A — 2B, first multiply by the scalars and then add:

3A —2B = (9i+ 15j — 6k) + (—8i+ 16j — 14k) =i+ 31j — 20k
(c) To find |A] and |B|, take the square root of the sum of the squares of the components:

Al =+v9+25+4=+/38 and [B|=+/16+ 64 +49 =+/129
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1.5 Linear Dependence and Linear Independence

Suppose we are given vectors Ay, A,, ..., A, and scalars a;, a, ..., a,. We can multiply the vectors by the
corresponding scalars and then add the corresponding scalar products to form the vector

B=aA +aA,+---+a,A,

Such a vector B is called a linear combination of the vectors A, A,, ..., A,.
The following definition applies.

DEFINITION  Vectors Ay, A,, ..., A, are linearly dependent if there exist scalars aj, a,, ..., a,, not all
zero, such that

aA + A+ +a,A, =0
Otherwise, the vectors are linearly independent.
The above definition may be restated as follows. Consider the vector equation
X1A1 +X2A2 4+ - +Xx,A, =0

where Xj, Xp,...,X, are unknown scalars. This equation always has the zero solution x; =0,
x; =0,...,%, = 0. If this is the only solution, the vectors are linearly independent. If there is a solution
with some x; # 0, then the vectors are linearly dependent.

Suppose A is not the null vector. Then A, by itself, is linearly independent, since

mA =0 and A #0, impliesm =0
The following proposition applies.

PROPOSITION 1.4: Two or more vectors are linearly dependent if and only if one of them is a linear
combination of the others.

COROLLARY 1.5:  Vectors A and B are linearly dependent if and only if one is a multiple of the other.

EXAMPLE 1.3

(a) The unit vectors i, j, k are linearly independent since neither of them is a linear combination of the other two.

(b) Suppose aA +bB + cC = a’A + b'B + ¢/C where A, B, C are linearly independent. Thena = a’, b=1,
c=c.

1.6 Scalar Field

Suppose that to each point (x, y, z) of a region D in space, there corresponds a number (scalar) ¢(x, y, z).
Then ¢ is called a scalar function of position, and we say that a scalar field ¢ has been defined on D.

EXAMPLE 1.4

(a) The temperature at any point within or on the Earth’s surface at a certain time defines a scalar field.

(b) The function ¢(x, v, z) = x>y — 7> defines a scalar field. Consider the point P(2, 3, 1). Then
&(P)=8(3)—1=23.

A scalar field ¢, which is independent of time, is called a stationary or steady-state scalar field.

1.7 Vector Field

Suppose to each point (x, y, z) of a region D in space there corresponds a vector V(x, y, z). Then V is called a
vector function of position, and we say that a vector field V has been defined on D.
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EXAMPLE 1.5

(a) Suppose the velocity at any point within a moving fluid is known at a certain time. Then a vector field is defined.

(b) The function V(x, y, z) = xy*i — 2yz°j + x>zk defines a vector field. Consider the point P(2, 3, 1). Then
V(P) = 18i — 6j + 4k.

A vector field V which is independent of time is called a stationary or steady-state vector field.

1.8 Vector Space R”

Let V = R" where R" consists of all n-element sequences u = (aj, ay,...,a,) of real numbers called the
components of u. The term vector is used for the elements of V and we denote them using the letters u,
v, and w, with or without a subscript. The real numbers we call scalars and we denote them using
letters other than u, v, or w.

We define two operations on V = R":

(a) Vector Addition
Given vectors u = (ay, ap,...,a,) and v = (b, by,...,b,) in V, we define the vector sum u + v by
u+v=_(a;+b,ay+by,...,a,+by,)

That is, we add corresponding components of the vectors.

(b) Scalar Multiplication

Given a vector u = (a, a,,...,4a,) and a scalar k in R, we define the scalar product ku by
ku = (kay, kay, ..., ka,)
That is, we multiply each component of u by the scalar k.

PROPOSITION 1.6: 'V = R" satisfies the eight axioms of a vector space listed in Theorem 1.1.

SOLVED PROBLEMS

1.1. State which of the following are scalars and which are vectors:
(a) specific heat, (b) momentum, (c) distance, (d) speed, (e) magnetic field intensity
Solution

(a) scalar, (b) vector, (c) scalar, (d) scalar, (e) vector

1.2. Represent graphically: (a) a force of 10 Ib in a direction 30° north of east,
(b) a force of 15 1b in a direction 30° east of north.

Solution
Choosing the unit of magnitude shown, the required vectors are as indicated in Fig. 1-5.

N N
Unit=51b

/\y/b

oY o

30°

(a) (b)
Fig. 1-5
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1.3. An automobile travels 3 miles due north, then 5 miles northeast. Represent these displacements
graphically and determine the resultant displacement: (a) graphically, (b) analytically.

Solution

Figure 1.6 shows the required displacements.
Vector OP or A represents displacement of 3 miles due north.
Vector PQ or B represents displacement of 5 miles north east.
Vector OQ or C represents the resultant displacement or sum of vectors A and B, i.e. C = A + B. This is the
triangle law of vector addition.
The resultant vector OQ can also be obtained by constructing the diagonal of the parallelogram OPQR having
vectors OP = A and OR (equal to vector PQ or B) as sides. This is the parallelogram law of vector addition.
(a) Graphical Determination of Resultant. Lay off the 1 mile unit on vector OQ to find the magnitude 7.4 miles
(approximately). Angle EOQ = 61.5°, using a protractor. Then vector OQ has magnitude 7.4 miles and
direction 61.5° north of east.

(b) Analytical Determination of Resultant. From triangle OPQ, denoting the magnitudes of A, B, Cby A, B, C,
we have by the law of cosines

C? = A2 + B2 — 2AB cos ZOPQ = 3% + 52 — 2(3)(5) cos 135° = 34 + 1542 = 55.21
and C = 7.43 (approximately).

C

- .Th
sinZOQP _sinZ0PQ "

By the law of sines,

Asin ZOPQ  3(0.707)

in 2 00P = =
sin 200 C 743

=0.2855 and ZOQP = 16°35".

Thus vector OQ has magnitude 7.43 miles and direction (45° + 16°35") = 61°35’ north of east.

N
0 N 0
7
B A T
P 30°
4so PR AR A c
PL ~ 459
135° /¢ W 5 E
1 60°
A B
— D
w 0 E Unit=>5 ft
—
Unit = 1 mile
S
S R
Fig. 1-6 Fig. 1-7

1.4. Find the sum (resultant) of the following displacements:
A: 10 ft northwest, B: 20 ft 30° north of east, C: 35 ft due south.

Solution

Figure 1-7 shows the resultant obtained as follows (where one unit of length equals 5 feet).

Let A begin at the origin. At the terminal point of A, place the initial point of B. At the terminal point of B,
place the initial point of C. The resultant D is formed by joining the initial point of A to the terminal point of C,
that is, D = A 4+ B + C. Graphically, the resultant D is measured to have magnitude 4.1 units = 20.5 ft and
direction 60° south of east.
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Show that addition of vectors is commutative, that is, A +B = B + A. (Theorem 1.1 [A4].)

Solution
As indicated by Fig. 1-8,

OP+PO=0QorA+B=C and OR+RQ=0QorB+A=C
Thus A+B =B +A.

Fig. 1-8 Fig. 1-9

Show that addition of vectors is associative, thatis, A + (B + C) = (A + B) + C. (Theorem 1.1 [A;].)

Solution
As indicated by Fig. 1-9,

OP+PO0=00=(A+B) and PQO+QR=PR=B+C)
OP+PR=0OR=DorA+B+C)=D and OQ+QR=0OR=Dor(A+B)+C=D

Then A+ B+ C)=(A+B)+C.

Forces Fy, F», ... ,Fg act on an object P as shown in Fig. 1-10(a). Find the force that is needed to
prevent P from moving.

Solution

Since the order of addition of vectors is immaterial, we may start with any vector, say F;. To F; add F;, then F3,
and so on as pictured in Fig. 1-10(b). The vector drawn from the initial point of F to the terminal point of Fg is
the resultant R, that is, R=F; + F, + --- + Fg.

The force needed to prevent P from moving is —R, sometimes called the equilibrant.

(a) (b)

Fig. 1-10
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1.8. Given vectors A, B, and C in Fig. 1-11(a), construct A — B + 2C.

Solution

Beginning with A, we add —B and then add 2C as in Fig. 1-11(b). The resultant is A — B + 2C.

A/"’”C;

(a) (b)
Fig. 1-11

1.9. Given two non-collinear vectors a and b, as in Fig. 1-12. Find an expression for any vector r lying in
the plane determined by a and b.

Solution

Non-collinear vectors are vectors that are not parallel to the same line. Hence, when their initial points
coincide, they determine a plane. Let r be any vector lying in the plane of a and b and having its initial
point coincident with the initial points of a and b at O. From the terminal point R of r, construct lines parallel
to the vectors a and b and complete the parallelogram ODRC by extension of the lines of action of a and b if
necessary. From Fig. 1-12,

OD = x(OA) = xa, where x is a scalar

OC = y(0OB) = yb, where y is a scalar.

But by the parallelogram law of vector addition
OR=0D+0OC or r=xa+yb

which is the required expression. The vectors xa and yb are called component vectors of r in the directions a
and b, respectively. The scalars x and y may be positive or negative depending on the relative orientations
of the vectors. From the manner of construction, it is clear that x and y are unique for a given a, b, and r.
The vectors a and b are called base vectors in a plane.

Fig. 1-12 Fig. 1-13
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Given three non-coplanar vectors a, b, and ¢, find an expression for any vector r in three-dimensional
space.

Solution

Non-coplanar vectors are vectors that are not parallel to the same plane. Hence, when their initial points
coincide, they do not lie in the same plane.

Let r be any vector in space having its initial point coincident with the initial points of a, b, and ¢ at O. Through
the terminal point of r, pass planes parallel respectively to the planes determined by a and b, b and ¢, and a and c;
Refer to Fig. 1-13. Complete the parallelepiped PORSTUYV by extension of the lines of action of a, b, and ¢, if
necessary. From

OV = x(0OA) = xa where x is a scalar
OP = y(OB) = yb where y is a scalar
OT = x(OC) = z¢ where z is a scalar.

ButOR=0V+VQ+QR=0V+OP+OT orr=xa+yb+zc.

From the manner of construction, it is clear that x, y, and z are unique for a given a, b, ¢, and r.

The vectors xa, yb, and zc are called component vectors of r in directions a, b, and ¢, respectively. The vectors
a, b, and c are called base vectors in three dimensions.

As a special case, if a, b, and ¢ are the unit vectors i, j, and k, which are mutually perpendicular, we see that
any vector r can be expressed uniquely in terms of i, j, k by the expression r = xi + yj + zk.

Also, if ¢ = 0, then r must lie in the plane of a and b, and so the result of Problem 1.9 is obtained.

Suppose a and b are non-collinear. Prove xa + yb = 0 implies x =y = 0.

Solution

Suppose x # 0. Then xa + yb = 0 implies xa = —yb or a = —(y/x)b, that is, a and b must be parallel to the
same line (collinear) contrary to hypothesis. Thus, x = 0; then yb = 0, from which y = 0.

Suppose x;a 4+ y;b = x,a + y,b, where a and b are non-collinear. Prove x; = x, and y; = y,.
Solution
Note that x;a + y;b = x,a + y,b can be written
xja+yb—(a+yb)=0 or (x —x)a+ @ —y)b=0.
Hence, by Problem 1.11, x; —x, =0, y; —y, =0 or x; = x2, y1 = y».
Suppose a, b, and ¢ are non-coplanar. Prove xa + yb 4+ z¢ = 0 impliesx =y =z = 0.

Solution

Suppose x # 0. Then xa + yb + ze = 0 implies xa = —yb — zc or a = —(y/x)b — (z/x)c. But —(y/x)b — (z/x)c
is a vector lying in the plane of b and ¢ (Problem 1.10); that is, a lies in the plane of b and ¢, which is clearly a con-
tradiction to the hypothesis that a, b, and ¢ are non-coplanar. Hence, x = 0. By similar reasoning, contradictions are
obtained upon supposing y # 0 and z # 0.

Suppose xja + y;b + z;¢ = xpa + y,b + z5¢, where a, b, and ¢ are non-coplanar. Prove x; = x»,
Y1 =5, and 21 = 2.

Solution

The equation can be written (x; — x2)a + (y; — y2)b 4+ (21 — z2)e = 0. Then, by Problem 1.13,

X=X =0,y1—y2=0,21—22=0 or x =x3,y =Yy, =2.
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1.15.

1.16.

1.17.

Suppose the midpoints of the consecutive sides of a quadrilateral are connected by straight lines.
Prove that the resulting quadrilateral is a parallelogram.

Solution

Let ABCD be the given quadrilateral and P, Q, R, S the midpoints of its sides. Refer to Fig. 1-14.
Then, PQ=3(a+b), QR=1(b+c), RS=j(c+d), SP=1id+a).
But,a+b+c+d=0. Then

PQ:%(a—l—b) = —%(c+d) =SR and QR:%(b—l—c): —%(d—l—a):PS

Thus, opposite sides are equal and parallel and PORS is a parallelogram.

Fig. 1-15

Let Py, P,, and P be points fixed relative to an origin O and letry, r;, and r3 be position vectors from
O to each point. Suppose the vector equation a;r; + a,r; + asr; = 0 holds with respect to origin O.
Show that it will hold with respect to any other origin O’ if and only if a; + a; + az = 0.

Solution

Letr}, r, and r} be the position vectors of Py, P>, and P3 with respect to O" and let v be the position vector of O’
with respect to O. We seek conditions under which the equation air}| + aor), 4 a3r; = 0 will hold in the new
reference system.
From Fig. 1-15, it is clear that rj =v 41|, r; =Vv+71), r3 =v+71} so that air; +ar; +asr;3 =0
becomes
airy + axry + asrs = a;(v +ry) + ax(v + 13) + az(v 4+ 1j)

= (a1 +a+a3)v+ar; + ar, +a;r; =0
The result a1} + a,r, + aszry = 0 will hold if and only if
(ay+a+a3)v=0, ie.a;+a,+a3=0.

The result can be generalized.

Prove that the diagonals of a parallelogram bisect each other.

Solution

Let ABCD be the given parallelogram with diagonals intersecting at P as in Fig. 1-16.
Since BD+a=b, BD=b-—a. Then BP = x(b — a).

Since AC=a+b, AP =ya+h).

But AB = AP + PB = AP — BP,

thatis,a=y@a+b) —x(b—a) =(x+y)a+ (y —x)b.



1.18.

1.19.

CHAPTER 1 Vectors and Scalars

Since a and b are non-collinear, we have by Problem 1.12, x +y=1landy —x =0 (e, x =y = %) and P is
the mid-point of both diagonals.

Fig. 1-16 Fig. 1-17

Find the equation of the straight line that passes through two given points A and B having position
vectors a and b with respect to the origin.

Solution
Let r be the position vector of a point P on the line through A and B as in Fig. 1-17. Then
OA+AP=0OP or a+AP=r (e,AP=r-—a)

and

OA+AB=0OB or a+AB=b (ie., AB=b-—a)
Since AP and AB are collinear, AP = tAB or r — a = #(b — a). Then the required equation is
r=a+tb—a) or r=(1—-nNa+tb

If the equation is written (1 — f)a + tb — r = 0, the sum of the coefficients of a, b, andris 1 —¢t+¢t—1=0.
Hence, by Problem 18, it is seen that the point P is always on the line joining A and B and does not depend on the
choice of origin O, which is, of course, as it should be.

Another Method. Since AP and PB are collinear, we have for scalars m and n:
mAP =nPB or m(r—a)=nb—-r)

Solving r = (ma + nb)/(m + n), which is called the symmetric form.

Consider points P(2, 4, 3) and Q(1, —35, 2) in 3-space R3, asin Fig. 1-18.
(a) Find the position vectors r; and r, for P and Q in terms of the unit vectors i, j, k.
(b) Determine graphically and analytically the resultant of these position vectors.

Solution

(@) r; = OP = OC + CB + BP = 2i + 4j + 3k
r=0Q=0D+DE+EQ=i-5j+2k
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(b) Graphically, the resultant of r; and r; is obtained as the diagonal OR of parallelogram OPRQ. Analytically,

the resultant of r; and r; is given by

ri+r=Qi+4j+3k)+ (G —5j+2k) =3i — j+ 5k

Z Zz
R
(Ay, Ay, A
P(2]4,3)
A
o
A y
— \ Azk
y A N :
'R Ay o)
Fig. 1-18 Fig. 1-19
1.20. Prove that the magnitude of the vector A = A;i+ Aj+ Ask, pictured in Fig. 1-19, is

1.21.

1.22.

|A| = AT + A3 + A3,

Solution

By the Pythagorean theorem,

(OP)* = (0Q)* + (QP)*

where OP denotes the magnitude of vector OP, and so on. Similarly, (0Q)* = (OR)* + (RQ).

Then (OP)* = (OR)* + (RQ)* + (QP)* or A% = A2 + A3 + A2 (ie., A = \JAT + A + A3).

Given the radius vectors r; =3i—2j+k, rp =3i+4j+9k, r; = —i+2j+2k. Find the
magnitudes of: (a) r3, (b) r{ +1r; + 13, (C) r| — 1) + 413.

Solution

(@) |3l =|—i+2j+2kl =V (-D*+27*+ (27 =3.

(b) ri+ry+1r3 =3i+4j+ 12k, hence |r; + 12 + 13| = /9 + 16 + 144 = /169 = 13.
(©) ri—ry+4r; =2i+2j=/4+4=V8=2V2

Find a unit vector u parallel to the resultant R of vectors r; = 2i +4j — Sk and r, = —

Solution

Resultant R =r; + 1, = (2i 4+ 4j — 5k) 4+ (=i — 2j + 3k) =i+ 2j — 2k. Also,

Magnitude of R = |R| = |i + 2j — 2k| = \/(1)2 +(2)> 4+ (=2)* = 3.
Then u is equal to R/|R|. That is,

u=R/IR| = (i +2j —2k)/3 = (1/3)i +(2/3)j — (2/3)k

Check: |(1/3)i + (2/3)j — (2/3)K| = /(1/3)* + (2/3)* + (=2/3)* = 1.

i—2j+3k



1.23.

1.24.
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Suppose r; =2i—j+Kk, rp=i—3j—2k, r3;=-2i+j—3k Write ry =i+3j+2k as a
linear combination of ry, r;, r3; that is, find scalars a, b, ¢ such that ry = ar; + br, + crs.
Solution
We require
i+3j+2k =ai—j+k) +bi—3j—2k) +c(—2i+j—3k)
=Qa+b—-20)i+ (—a+3b+c)j+ (a—2b—3c)k

Since i, j, k are non-coplanar, by Problem 1.13, we set corresponding coefficients equal to each other obtaining
2a+b—-2c=1, —a+3b+c=3, a—2b—3c=2
Solving, a = -2,b =1, c = —2. Thus ry = —2r; + r; — 2r;.

The vector r4 is said to be linearly dependent on ry, r;, and rs; in other words ry, 1y, r3, and r4 constitute a
linearly dependent set of vectors. On the other hand, any three (or fewer) of these vectors are linearly
independent.

Determine the vector having initial point P(x;, y,, z1) and terminal point Q(x,, y,, z2), and find its
magnitude.

Solution

Consider Fig. 1-20. The position vectors of P and Q are, respectively,
ri=xji+yj+zk and ry;=xi+yj+nk

Thenr; + PQ =r, or

PQ =r; —r; = (i + y2j + 22K) — (i + y1j + 21k)
= (o —x)i+ 2 —yDj+ (22 — 2k

Magnitude of PQ = PO = /(x2 — x1)> + (y2 — y1)* + (z2 — z1)>. Note that this is the distance between
points P and Q.

z
P(xy, y1, 21) c i
f \\
1 0, ¥2, 22) ;o \f’fx:y,z
r 0 /B’ ~_|B v
0 y //,/
A
* X
Fig. 1-20 Fig. 1.21

1.25. Determine the angles «, 8, and 7 that the vector r = xi + yj + zk makes with the positive directions

of the coordinate axes and show that
cos® a4+ cos® B+cos’ y = 1.
Solution

Referring to Fig. 1-21, triangle OAP is a right triangle with right angle at A; then cos @ = x/|r|. Similarly,
from right triangles OBP and OCP, cosB=y/|r] and cosy=z/|r|, respectively. Also,

Ir|=r=yx2+)2+2.
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1.26.

1.27.

Then, cos « = x/r, cos B = y/r, and cos y = z/r, from which «, 3, and y can be obtained. From these, it
follows that

2+y+2

> 1.

cos? a + cos? B+ cos? Y=

The numbers cos a, cos 3, cos vy are called the direction cosines of the vector OP.

Forces A, B, and C acting on an object are given in terms of their components by the vector
equations A = Aji + Ayj + Ask, B = Bji 4+ Byj + B3k, C = C1i + C,j + Csk. Find the magnitude
of the resultant of these forces.

Solution

Resultant force R = A +B =+ C = (Al +Bl =+ Cl)i-f- (A2 +Bz =+ Cz)j =+ (A3 +B3 + C3)k

Magnitude of resultant = /(A; + By + C1)> + (A> + B> + C>)* + (A3 + B + C3)%.
The result is easily extended to more than three forces.

Find a set of equations for the straight lines passing through the points P(x;, y,, z1) and Q(x2, ¥, z2).

Solution
Letr; and r, be the position vectors of P and Q, respectively, and r the position vector of any point R on the line

joining P and Q, as pictured in Fig. 1-22

rr+PR=r or PR=r—r
r+PQ=r, or PQ=r,—1

But PR = rPQ where ¢ is a scalar. Then, r — r; = #(r, — 1) is the required vector equation of the straight
line (compare with Problem 1.14).
In rectangular coordinates, we have, since r = xi + yj + zK,
(i + yj + zK) — (i + y1j + 21K) = (2l + yoj + 22K) — (x1i +y1j + 21K)]

or

G —=xDi+ @ —y)j+@—zDk =102 —xDi+ (y2 — y1)j + (22 — 21K]

P (xp,y1,21)
TR
r, -

r : 0 (x2, y2, 22)
2

Fig. 1-22
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Since i, j, k are non-coplanar vectors, we have by Problem 1.14,

X—x1 =tx2—x1),y—=y1 =t —y1), z2—21 = Hz2 — 21)

as the parametric equations of the line, # being the parameter. Eliminating ¢, the equations become

1.28.

1.29.

1.30.

X=X Y=Y _I—Z
X2 =Xt Y2 — )1 22—

Prove Proposition 1.4: Two or more vectors, A, Ay, ..., A, are linearly dependent if and only if one
of them is a linear combination of the others.

Solution
Suppose, say, A; is a linear combination of the others,
Aj=aA1 4+ Fa A FaA + -+ a,A,
Then, by adding —A, to both sides, we obtain
aA 4+ F+a A — A+ A A+ +a,A, =0

where the coefficient of A; is not 0. Thus the vectors are linearly dependent.
Conversely, suppose the vectors are linearly dependent, say

biA; +~~~+bjAj+"'+bmAm =0 where bjsﬁo

Then we can solve for A; obtaining
A; = (b /DA + - -+ (bi—1 /bPA;_1 + (bjr1 /DDA 11 + - - - + (b /DA,

Thus A, is a linear combination of the others.

Consider the scalar field ¢ defined by ¢(x, y, z) = 3x>z> — xy® — 15. Find ¢ at the points
(@) (0, 0, 0), (b) (1, =2, 2), (¢) (—1, =2, =3).

Solution

(@) @0, 0, 0) = 3(0)%(0)> — (0)(0)> —15=0—0— 15 = —15.
b) o1, —=2,2)=3(1)*Q)* —(I)N(-2 —-15=12+8—15=5.
() (=1, =2, =3) =3(—=1*(=3)> = (=I)(=2) —15=27 -8+ 15 =4.

Describe the vector fields defined by:
@V, y)=xi+yj, b))V, y)=-—xi—yj, () Vi y 2)=xi+yj+zk
Solution

(a) At each point (x, y), except (0, 0), of the xy plane, there is defined a unique vector xi—+ yj of
magnitude /x*> + y? having direction passing through the origin and outward from it. To simplify graphing
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procedures, note that all vectors associated with points on the circles x> + y?> = a2, a > 0 have magnitude
a. The field therefore appears in Fig. 1-23(a) where an appropriate scale is used.

y

<

;\,

-

i)

LT
“

Fig. 1-23

(b) Here each vector is equal to but opposite in direction to the corresponding one in Part (a). The field therefore
appears in Fig. 1-23(b).
In Fig. 1-23(a), the field has the appearance of a fluid emerging from a point source O and flowing in the
directions indicated. For this reason, the field is called a source field and O is a source.
In Fig. 1-23(b), the field seems to be flowing toward O, and the field is therefore called a sink field and O
is a sink.
In three dimensions, the corresponding interpretation is that a fluid is emerging radially from (or pro-
ceeding radially toward) a line source (or line sink).
The vector field is called two-dimensional since it is independent of z.
(c) Since the magnitude of each vector is y/x2 + y2 + z2, all points on the sphere x> + y> + 72 = a?, a > 0 have
vectors of magnitude a associated with them. The field therefore takes on the appearance of that of a fluid
emerging from source O and proceeding in all directions in space. This is a three-dimensional source field.

SUPPLEMENTARY PROBLEMS

1.31.

1.32.

1.33.

1.34.

1.35.

1.36.

Determine which of the following are scalar and which are vectors:

(a) Kinetic energy, (b) electric field intensity, (c) entropy, (d) work, (e) centrifugal force, (f) temperature,
(g) charge, (h) shearing stress, (i) frequency.

An airplane travels 200 miles due west, and then 150 miles 60° north of west. Determine the resultant
displacement.

Find the resultant of the following displacements: A: 20 miles 30° south of east; B: 50 miles due west;
C: 40 miles 30° northeast; D: 30 miles 60° south of west.

Suppose ABCDEF are the vertices of a regular hexagon. Find the resultant of the forces represented by the
vectors AB, AC, AD, AE, and AF.

Consider vectors A and B. Show that: (a) |A + B| < |A| + |B|; (b) |]A — B| > |A| — |B|.

Show that: |A +B + C| < |A| + |B| + |C].



1.37.

1.38.

1.39.

1.40.

1.41.

1.42.

1.43.

1.44.

1.45.
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Two towns, A and B, are situated directly opposite each other on the banks of a river whose width is 8 miles
and which flows at a speed of 4 mi/hr. A man located at A wishes to reach town C which is 6 miles upstream from
and on the same side of the river as town B. If his boat can travel at a maximum speed of 10 mi/hr and if he
wishes to reach C in the shortest possible time, what course must he follow and how long will the trip take?

Simplify: 2A + B +3C — {A — 2B — 2(2A — 3B — C)}.

Consider non-collinear vectors a and b. Suppose
A=x+4y)a+2x+y+1b and B=(y—2x+2)a+2x—3y—1)b
Find x and y such that 3A = 2B.

The base vectors a;, a, and a3 are given in terms of the base vectors by, by, and bs by the relations
a; =2b; +3b, — b3, a, =b; —2b, +2b3, a3 = —2b; + b, —2b;

Suppose F = 3b; — b, + 2bs. Express F in terms of a;, a,, and as.

An object P is acted upon by three coplanar forces as shown in Fig. 1-24. Find the force needed to prevent
P from moving.

S
. 30° N w0 60°
1501b i
7 3
1001b
1001b
Fig. 1-24 Fig. 1-25

A 100 Ib weight is suspended from the center of a rope as shown in Fig. 1-25. Determine the tension T in
the rope.

Suppose a, b, and ¢ are non-coplanar vectors. Determine whether the following vectors are linearly independent
or linearly dependent:

rpr=2a—3b+c¢, r,=3a—-5b+2¢, r;=4a—5b+ec.

(a) If O is any point within triangle ABC and P, Q, and R are midpoints of the sides AB, BC, and CA, respectively,
prove that OA + OB + OC = OP + OQ + OR.

(b) Does the result hold if O is any point outside the triangle? Prove your result.

In Fig. 1-26, ABCD is a parallelogram with P and Q the midpoints of sides BC and CD, respectively. Prove
that AP and AQ trisect diagonal BD at points E and F.

A

0
Fig. 1-26
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1.46.

1.47.

1.48.

1.49.

1.50.

1.51.

1.52.

1.53.

1.54

1.55.

1.56.

1.57.

1.58.

1.59.

Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and has one
half of its magnitude.

Prove that the medians of a triangle meet in a common point, which is a point of trisection of the medians.
Prove that the angle bisectors of a triangle meet in a common point.

Let the position vectors of points P and Q relative to the origin O is given by vectors p and q, respectively.
Suppose R is a point which divides PQ into segments that are in the ratio m : n. Show that the position vector of R
is given by r = (mp + nq)/(m + n) and that this is independent of the origin.

A quadrilateral ABCD has masses of 1, 2, 3, and 4 units located, respectively, at its vertices
A(—1, =2, 2), B(3, 2, —1), C(1, =2, 4), and D(3, 1, 2). Find the coordinates of the centroid.

Show that the equation of a plane which passes through three given points A, B, and C not in the same straight
line and having position vectors a, b, and ¢ relative to an origin O, can be written

l__ma—i—nb—i—pc
B m+n+p

where m, n, p are scalars. Verify that the equation is independent of the origin.

The position vectors of points P and Q are given by r; = 2i + 3j — k, r; = 4i — 3j 4 2k. Determine PQ in
terms of i, j, and k, and find its magnitude.

Suppose A =3i—j—4k, B=-2i+4j—-3k, C=i+2j—k Find
(a) 2A —B +3C, (b) |JA+ B+ C|, (¢c) |3A — 2B + 4C|, (d) a unit vector parallel to 3A — 2B + 4C.

The following forces act on a particle P: F; = 2i + 3j — 5k, F, = —5i +j + 3k, F3 =i — 2j + 4k,
F, = 4i — 3j — 2k, measured in pounds. Find (a) the resultant of the forces, (b) the magnitude of the resultant.

In each case, determine whether the vectors are linearly independent or linearly dependent:
(@A=2i+j—-3kB=i—4k,C=4i+3j—k, D) A=i—-3j+2k, B=2i—4j -k, C=3i+2j—k.

Prove that any four vectors in three dimensions must be linearly dependent.

Show that a necessary and sufficient condition that the vectors A = A;i + Ayj + A3k,
B = Bji+ Byj + Bsk, C = Ci + C,j + Csk be linearly independent is that the determinant

Al Ay Az
B, B, Bj| be different from zero.
C, G G

(a) Prove that the vectors A = 3i + j — 2k, B = —i 4+ 3j + 4k, C = 4i — 2j — 6k can form the sides of a
triangle.

(b) Find the lengths of the medians of the triangle.

Given the scalar field defined by ¢(x, v, z) = 4yx> + 3xyz — 22 + 2. Find (a) ¢(1, —1, —2), (b) ¢(0, —3, 1).

ANSWERS TO SUPPLEMENTARY PROBLEMS

1.31.
1.32.
1.33.
1.34.
1.37.

@) s, () v, (©) s, (d) s, (e) v, (D) s, () 5, (h) v, () s.

Magnitude 304.1 (50+/37), direction 25°17 north of east (arcsin 3+/111 /74).
Magnitude: 20.9 mi, direction 21°39’ south of west.

3AD.

Straight line course upstream making an angle 34°28’ with the shore line. 1 hr 25 min.
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1.38.
1.39.

1.40.
1.41.

1.42.
1.43.
1.44.
1.50.

SA-3B+C.

x=2,y=—1.

2a; + 5a, + 3a;.

323 Ib directly opposite 150 1b force.
100 1b

Linearly dependent since r3 = 5r; — 2r5.

Yes.
(2,0, 2).

1.52.
1.53.

1.54.

1.55.
1.58.
1.59.
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2i —6j + 3k, 7.

(a) 11i — 8K, (b) +/93,

(a) 2i — j, (b) V5.

(c) ¥/398, BA — 2B + 4C)/~/398.

(a) Linearly dependent, (b) Linearly independent.
(b) v/6, (1/2)v/T14, (1/2)3/T50.

(a) 36, (b) —11.



The DOT and CROSS Product

2.1 Introduction

Operations of vector addition and scalar multiplication were defined for our vectors and scalars in
Chapter 1. Here, we define two new operations of multiplication for our vectors. One of the operations,
the DOT product, yields a scalar, while the other operation, the CROSS product yields a vector. We
then combine these operations to define certain triple products.

2.2 Dot or Scalar Product

The dot or scalar product of two vectors A and B, denoted by A « B (read: A dot B), is defined as the product
of the magnitudes of A and B and the cosine of the angle 6 between them. In symbols,

A+B=|A|B|cos 6, 0<é6<mm

We emphasize that A + B is a scalar and not a vector.
The following proposition applies.

PROPOSITION 2.1:  Suppose A, B, and C are vectors and m is a scalar. Then the following laws hold:

i) A-B=B-A Commutative Law for Dot Products
i) A-B+C)=A-B+A-C Distributive Law
(iii)) mA-B)y=mA)*B=A-(mB)=(A+*B)m
@iv) iri=j-j=k-k=1, i‘j=j-k=k-i=0
(v) IfA-+B =0and A and B are not null vectors, then A and B are perpendicular.

There is a simple formula for A < B when the unit vectors 1, j, k are used.

PROPOSITION 2.2:  Given A = A;i+ Ayj + Aszk and B = Byi 4 Bj + Bsk. Then
A+*B =AB|+AB, 4+ A3B;
COROLLARY 2.3:  Suppose A = Aji + Ayj + Ask. Then A + A = A] +A] + A3
EXAMPLE 2.1 Given A =4i+2j—3k, B=5i—j—2k, C =3i+j+ 7k Then:
AB=@HGE)+Q=D+(=3)(-2)=20-2+6=24, A-C=1242-21=-7,
B:C=15-1-14=0, A*A=4>4+2>4+(-3=16+4+9=29

Thus vectors B and C are perpendicular.
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2.3 Cross Product

The cross product of vectors A and B is a vector C = A x B (read: A cross B) defined as follows. The
magnitude of C = A x B is equal to the product of the magnitudes of A and B and the sine of the
angle 6 between them. The direction of C = A x B is perpendicular to the plane of A and B so that A,
B, and C form a right-handed system. In symbols,

AxB=|A|B|sinfu 0<6<m

where u is a unit vector indicating the direction of A x B. [Thus A, B, and u form a right-handed system.]
If A =B, orif A is parallel to B, then sin # = 0 and we define A x B = 0.
The following proposition applies.

PROPOSITION 2.4:  Suppose A, B, and C are vectors and m is a scalar. Then the following laws hold:

i) AxB=—-—B xA) Commutative Law for Cross Products Fails
i) AxB+C)=AxB+A xC Distributive Law
(iii)) m(A x B) = (mA) x B=A x mB) = (A x B)m
(v) ixi=jxj=kxk=0, ixj=k jxk=ikxi=j
(v) If AxB=0and A and B are not null vectors, then A and B are parallel.
(vi) The magnitude of A x B is the same as the area of a parallelogram with sides A
and B.

There is a simple formula for A x B when the unit vectors i, j, k are used.

PROPOSITION 2.5:  Given A = Aji + Ayj + Ask and B = Byi + B,j + Bsk. Then

i j ok
B Ay As] A As|, A A
AxB= Al A2 A3 = Bz B3l ‘Bl B3J B] sz
B, B, B

EXAMPLE 2.2 Given: A = 4i + 2j — 3k and B = 3i 4+ 5j + 2k. Then
k
-3
2

i
AxB=|4 =191 — 17j + 14k
3

N ~.

2.4 Triple Products

Dot and cross multiplication of three vectors A, B, and C may produce meaningful products, called triple
products, of the form (A + B)C, A+ (B x C), and A x (B x C).
The following proposition applies.

PROPOSITION 2.6:  Suppose A, B, and C are vectors and m is a scalar. Then the following laws hold:
(i) In general, (A +*B)C # AB - C).

i) A+-BxC)=B-+(CxA)=C-(A xB)=volume of a parallelepiped having
A, B, and C as edges, or the negative of this volume, according as A, B, and C do
or do not form a right-handed system.

(iii) In general, A x (B x C) # (A xB) x C
(Associative Law for Cross Products Fails)

iv) AxBxC=A+CB-(A-B)C
AxB)xC=A-CB-—B-0A

There is a simple formula for A « (B x C) when the unit vectors i, j, k are used.
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PROPOSITION 2.7:  Given A = Aji + Ayj + A3k, B = Bji + Bj + B3k, C = Cyi + C,j + Csk. Then

Al Ay Az
A‘(BXC): 31 32 B3
C, C G
EXAMPLE 2.3 Given A =4i+2j—3k, B =5i+j—2k, C=3i—j+ 2k. Then:
4 2 -3
A BxC)=1|5 1 2|=8—-12+154+9—-8—-20=-8.
3 -1 2

2.5 Reciprocal Sets of Vectors

The sets a, b, ¢ and a’, b’, ¢’ are called reciprocal sets or reciprocal systems of vectors if:
ara=b-b=c-c=1
a+*b=a-+c=b-a=b-c=c-a=c+b=0
That is, each vector is orthogonal to the reciprocal of the other two vectors in the system.
PROPOSITION 2.8:  The sets a, b, ¢ and a’, b, ¢’ are reciprocal sets of vectors if and only if

’ b xc , axbhb
a =

= = C =————
a-bxc’ a-bxc’ a-bxec

, cxa

wherea*b x ¢ #0.

SOLVED PROBLEMS
Dot or Scalar Product
2.1. Prove Proposition 2.1(1): A*-B =B < A.

Solution
A B =|A||B|cos 0= |B||A|cos 8 =B - A.

Thus the commutative law for dot products is valid.
2.2. Prove that the projection of A on B is equal to A + b where b is a unit vector in the direction of B.
Solution

Through the initial and terminal points of A pass planes perpendicular to B at G and H as in Fig. 2-1. Thus

Projection of A on B=GH =EF =Acosf=A"+b
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2.6.

2.7.

2.8.

CHAPTER 2 The DOT and CROSS Product

Prove Proposition 2.1(ii)): A (B+C)=A-B+A-C.
Solution
Let a be a unit vector in the direction of A. Then, as pictured in Fig. 2-2
Proj(B + C) on A = Proj(B) on A + Proj(C) on A andso (B+C)-a=B-a+C-a
Multiplying by A,
B+C)-Aa=B-Aa+C-Aa and B+ C)-A=B-A+C-A
Then by the commutative law for dot products,
A-B+C)=AB+A-C

Thus the distributive law is valid.

Prove that A+ B) - (C+D)=A-C+A-D+B-C+B-D.
Solution

By Problem 2.3, (A+B)-(C+D)=A-(C+D)+B-(C+D)=A-C+A:-D+B-C+B-D.
The ordinary laws of algebra are valid for dot products.

Evaluate: (a) i-i, (b)i-k, () k-j, (d) j-@2j—3j+k), (¢) 2i—j) - Gi+k).
Solution

(@ i-i = lillijcos0° = (H(1)(1) =1

(b) ik = [i||k| cos90° = (1)(1)(0) = 0

(©) k-*j=IKl[jlcos90° = (1)(1)(©0) =0

d j-Qi-3j+k) =2j-i-3jj+j-k=0-3+0=-3

(€ QRi—j) Gi+k) =2i-Gi+k —j-Gi+k =6i+i+2i-k—3j+i—j-k=6+0-0-0=6

Suppose A = Aji + Ayj + Ask and B = Bji + B;,j + Bsk. Prove that A « B = A1B + A,B; + A3B;3.
Solution
Sincei<i=j+j=k+k =1, and all other dot products are zero, we have:
A B =(Ai+ Ayj + AszK) « (Bii + Byj + B3k)
:Ali * (B]l +B2j +ng) +A2J . (B]l +sz +ng) +A3k M (B]l +sz +B3k)
=ABli*i+ABi*j+ABsi*k+AB1ji+AByj+j+ABsj+k

+AsBiki+ AsByk - j+AsBsk -k
=A1B| +A,B, + A3B;3

Let A = Aji + Aoj + Ask. Show that A = VA + A = \/A? + A3 + A2
Solution

A <A = (A)A)cos0° = A%. Then A = /A - A.
By Problem 2.6 and taking B = A, we have

AA=Ai+Aj+Ask) - (Aji+ Arj + Azk)
= (ADAD) + (A2)(A2) + (A3)(A3) = A2 + A2 + A

Then A = VA + A = \/A? + A3 + A3 is the magnitude of A. Sometimes A « A is written A%,
Suppose A + B =0 and A and B are not zero. Show that A is perpendicular to B.

Solution

If A+B =ABcos =0, then cos § = 0 or § = 90°. Conversely, if 6 =90°, A+B = 0.
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2.9. Find the angle between A = 2i + 2j — k and B = 7i + 24k.

Solution
We have A + B = |A||B| cos 6.

Al =P+ QP +(-1F =3 and [Bl = /(77 + (0 + (247 =25

AB=Q2)(7)+ 2)0)+ (—1)(24) =-10

Therefore,
A-B —10 -2

0:7_ =
|AlIBl  (3)(25) 15

= —0.1333 and 6 = 98° (approximately).

2.10. Determine the value of « so that A = 2i + aj + k and B =i + 3j — 8k are perpendicular.
Solution
By Proposition 2.1(v), A and B are perpendicular when A + B = 0. Thus,

AB=2)(D)+(@3)+()(-8) =2+3a—-8=0

and if @ = 2.

2.11. Show that the vectors A = —i+j, B=—i—j—2k, C =2j+ 2k form a right triangle.
Solution
First we show that the vectors form a triangle. From Fig. 2-3, we see that the vectors form a triangle if:

(a) one of the vectors, say (3), is the sum of (1) and (2) or
(b) the sum of the vectors (1) + (2) + (3) is zero

according as (a) two vectors have a common terminal point, or (b) none of the vectors have a common terminal
point. By trial, we find A = B + C so the vectors do form a triangle.

Since A * B = (—1)(—1) + (1)(—1) + (0)(—2) = 0, it follows that A and B are perpendicular and the triangle
is a right triangle.

3) )
@ 3

(1) 1)

(a) (b)
Fig. 2-3
2.12. Find the angles that the vector A = 4i — 8j + k makes with the coordinate axes.

Solution

Let «, B, y be the angles that A makes with the positive x, y, z axes, respectively.

A-i=|A|()cosa = \/(4)2 + (=82 4+ (1)>cos e = 9cos «
Aci=@i-8j+ki=4
Then cos @ = 4/9 = 0.4444 and o = 63.6° approximately. Similarly,
cosB=-8/9, B=152.7° and cosy=1/9, y=83.6°

The cosines of «, 3, y are called the direction cosines of the vector A.
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2.13. Find the projection of the vector A =i — 2j + 3k on the vector B =i+ 2j + 2k.

Solution

We use the result of Problem 2.2. A unit vector in the direction of B is
b=B/|B|=({+2j+2k)/v1+4+4=1i/3+2j/3+2k/3
The projection of A on vector B is

A-b=(-2j+3k) - (@i/3+2j/3+2k/3) = (1)(1/3) + (=2)(2/3) + 3)(2/3) = 1.

2.14. Without making use of the cross product, determine a unit vector perpendicular to the plane of
A =2i—-6j—3kand B=4i+3j -k

Solution

Let vector C = c;i + c,j + c3k be perpendicular to the plane of A and B. Then C is perpendicular to A and also
to B. Hence,

C'A=261—6C2—3C3 =0 or (1) 2C1—602=3C3
C-B=4ci+3¢cp—c3 =0 or (2)4ci+3c; =c3

. . 1 1 1. 1.
Solving (1) and (2) simultaneously: ¢; = 563, ) = —§C3, C=qc 51 —§J +kJ.

Then a unit vector in the direction of C is £ =
IC| 2 2

2 = _ - 1 2

c3|:<2> +( 3> +(1) :|

2.15. Prove the law of cosines for plane triangles.

2i—Zj4 2k
71775

1, 1
C3(7i—7j+k)
23 :i<3, 2, 6>.

Solution
From Fig. 2-4,
B+C=A or C=A-B
Then
C-C=(A-B)*A—-B)=A*A+B:-B—-2A-B
and

C?> =A%+ B*>—2ABcos 0
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2.16. Prove the diagonals of a rhombus are perpendicular. (Refer to Fig. 2-5.)

Solution
0Q0=0P+PQ=A+B
OR+RP=0OP or B+RP=A and RP=A-B
Then, since |A| = |B|,
OQ-RP=(A+B)-A-B)=|A>—B*=0
Thus OQ is perpendicular to RP.
2.17. Let A = Ai + Asj + A3k be any vector. Prove that A = (A - )i+ (A - j)j + (A - kK)k.

Solution

Since A = Aji + Ayj + Ask,
Aci=Aji-i+Aj-it+Ask-i=A4A

Similarly, A + j = A, and A « k = Aj3. Then

A=Aji+Aj+Ask=(A-Di+A-jj—A- Kk

2.18. Find the work done in moving an object along a vector r = 3i + j — 5k if the applied force is
F=2i—-j—k
Solution
Consider Fig. 2-6.

Work done = (magnitude of force in direction of motion)(distance moved)
=FcosO)r)=F-r=Qi—j—k)-Bi+j—5k)
=6—-1+5=10

r X

Fig. 2-6 Fig. 27

2.19. Find an equation of the plane perpendicular to the vector A = 2i — 3j + 6k and passing through the
terminal point of the vector B = i + 2j + 3k. [See Fig. 2-7.]
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Solution

Since PQ = B — r is perpendicular to A, we have (B —r)* A =0orr+A = B - A is the required equation of
the plane in vector form. In rectangular form this becomes

(xi 4 yj + zK) * (2i — 3j + 6K) = (i +2j + 3k) * (2i — 3j + 6k)
or
2x—3y+6z=2—6+18=14
2.20. Find the distance from the origin to the plane in Problem 2.19.

Solution

The distance from the origin to the plane is the projection of B on A. A unit vector in the direction of A is

2i —3j+ 6k 2, 3, 6
a=A/JA|=—— AT =Zi-Zj+ok
Ver+E3+e6 77T
Then the projection of B on A is equal to
2, 3, 6 2 3 6
Bra=(@{+2j+3k)|zi—=j+=k)]=D=z—2)=+B)==2.
a=(i+2j+ )<71 7J+7> D=7+ Q)5

Cross or Vector Product

2.21. Prove A x B = —(A x B).

Solution

A x B = C has magnitude AB sin 6 and direction such that A, B, C form a right-handed system as in Fig. 2-8(a).
B x A = D has magnitude BA sin 0 and direction such that B, A, D form a right-handed system as in Fig. 2-8(b).
Then D has the same magnitude as C but in the opposite direction, i.e. C = —D. Thus A x B = —(A x B).
Accordingly, the commutative law for cross products is not valid.

(a) (b)
Fig. 2-8

2.22. Suppose A x B =0 and A and B are not zero. Show that A is parallel to B.

Solution

Since A x B =ABsin § u = 0, we have sin § = 0 and hence 6 = 0° or 180°.
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2.23.

2.24.

2.25.

2.26.

Show that |A x B|* + |A « B|* = |A|*|B|>.

Solution
IA x B>+ |A * B> = |ABsin 6 u|?® + |AB cos 0]>

= A’B?sin® 4+ A’B* cos® 0

=A’B’ = |AP’B]’
Evaluate: (a) 2j x 3k (b) 2j x —k (c) —3i x —2k,2j x3i—k
Solution

(@) (2j) x Bk) =6(j x k) =6i

®) (@) x (—k) = —2( x k) = ~2i

() (=3i) x (—2k) = 6(i x k) = —6j

d 2jx3i—k=6(j xi)—k=-6k—-—k=-7k.

Prove that A x (B 4+ C) = A x B+ A x C for the case where A is perpendicular to both B and C.
[See Fig. 2-9.]

Solution

Since A is perpendicular to B, A x B is a vector perpendicular to the plane of A and B and having magnitude
ABsin 90° = AB or magnitude of AB. This is equivalent to multiplying vector B by A and rotating the resultant
vector through 90° to the position shown in Fig. 2-9.

Similarly, A x C is the vector obtained by multiplying C by A and rotating the resultant vector through 90° to
the position shown.

In like manner, A x (B 4 C) is the vector obtained by multiplying B 4+ C by A and rotating the resultant
vector through 90° to the position shown.

Since A x (B+ C) is the diagonal of the parallelogram with A x B and A x C as sides, we have
AxB+C)=AxB+AxC.

Fig. 2-9 Fig. 2-10

Prove that A x (B 4+ C) = A x B 4+ A x C for the general case where A, B, and C are non-coplanar.
[See Fig. 2-10.]

Solution

Resolve B into two component vectors, one perpendicular to A and the other parallel to A, and denote them by
B, and By, respectively. Then B = B, + By.

If 61is the angle between A and B, then B, = B'sin 6. Thus the magnitude of A x B, is AB sin 0, the same as
the magnitude of A x B. Also, the direction of A x B, is the same as the direction of A x B. Hence
AxB =A xB.

Similarly, if C is resolved into two component vectors C; and C, parallel and perpendicular respectively to
A,then A x C; = A x C.
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AISO, since B + C = BJ_ =+ B” + CJ_ =+ C” = (BJ_ =+ CJ_) =+ (BH =+ C“) it follows that

Ax B, +C)=AxB+C).

Now B and C, are vectors perpendicular to A and so by Problem 2.25,

AxB, +C))=AxB, +AxC,

Then
AxB+C)=AxB+AxC

and the distributive law holds. Multiplying by —1, using Problem 2.21, this becomes (B+ C) x A =
B x A+ C x A. Note that the order of factors in cross products is important. The usual laws of algebra
apply only if proper order is maintained.

i j Kk
2.27. Suppose A = Aji+ Azj+Askand B=Bi+ Byj+ Bsk. Prove AxB=|A;, A, Aj|.

B, B, B
Solution ! 2 3

A x B = (Aji + Ayj + A3Kk) x (Bii + Baj + B3k)
— AJi X (Byi + Baj + Bsk) + Asj x (B1i + Baj + BsK) + Ask x (Byi + Baj + B3k)
=ABlixi+ABixj+AB3ixKk+AB1jxi+AxByjxj+AxBsjxKk
+ A3Bik x i+ A3Bk x j+ A3sBsk x k
i j ok
= (A2B3 — A3Bo)i+ (A3B1 — A1B3)j + (A1By —A2B Dk = [A) Ay Az
By B, B

2.28. Suppose A = j+ 2k and B =i+ 2j + 3k. Find: (a) A x B, (b) B x A, (c) (A +B) x (A —B).
Solution

ij
@ AxB=(G+2k)x(i+2j+3k)=(0 1 2
12

1 2], 02'+01k i 420 _ Kk
= i— =-i+2j—k.
2 3 3P T 2 !

i j k
() BxA=(@+2j+3k)x({+2k)=|1 2 3
01 2

2 3, 1 3], 1 2k ik

2 Tl 2P Flo [ TITATE

Comparing with (a), we have A x B = —(B x A). Note this is equivalent to the theorem: If two rows of a

determinant are interchanged, the determinant changes sign.
(¢) A+B=i+3j+5kand A—B = —i—j—k. Then
i
A+B)x(A-B)=| 1 3 5=
-1 -1 -1
=2i—4j+2k.

‘3 5‘_’1 5‘,‘1 3
i— i

Kk
-1 -1 -1 -1 1 —1}
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2.29. Suppose A=—i+j+k,B=i—j+k C=i+j—k. Find: (a) (A xB) x C, (b) A x (B x C).

Solution
i j k
(@ AxB=|-1 1 1|=2i+2j
1 -1 1
i j k
Then AxB)x C=QRi+2))x(i+j—Kk) =[2 2 0|=—-2i+2j
1 1 -1
i j Kk
b BxC=(G(-j+kx(i+j—k=|1 -1 1|=2j+2k
1 1 -1
i j k
Then Ax(BxC)=(—-i+j+k) x2j+2k)=|—-1 1 1|=2j-2k
0 2 2

Thus (A x B) x C # A x (B x C). This shows the need for parentheses in A x B x C to avoid ambiguity.

2.30. Prove: (a) The area of a parallelogram with touching sides A and B, as in Fig. 2-11, is |A x B|.
(b) The area of a triangle with sides A and B is %lA x BJ.

Solution

(a) Area of parallelogram = h|B| = |A|sin 0 |B| = |A x B|.

(b) Area of triangle = % area of parallelogram = % |A x BJ.

> B »C

a (B‘A)

Fig. 2-11 Fig. 2-12 Fig. 213

2.31. Prove the law of sines for plane triangles.
Solution

Let a, b, ¢ represent the sides of a triangle ABC as in Fig. 2-12. Then, a + b + ¢ = 0. Multiplying by ax, bx,
and ¢x in succession, we find

axb=bxc=cxa

that is

absin C = bcsinA = casin B

or
sinA sinB  sinC

a b ¢

2.32. Consider a tetrahedron, as in Fig. 2-13, with faces Fy, F;, F3, F4. Let V{,V,,V3,V4 be vectors whose
magnitudes are equal to the areas of F, F,, F3, Fy, respectively, and whose directions are perpen-
dicular to these faces in the outward direction. Show that V; +V, + V3 +V, = 0.

Solution

By Problem 2.30, the area of a triangular face determined by R and S is % IR x S|.
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The vectors associated with each of the faces of the tetrahedron are
V1 :%AXB, Vz :%B X C, V3 :%C XA, V4 :%(C—A) X (B—A)

Then
Vl+V2+V3~|—V4:%[A><B+B><C+C><A+(C—A)><(B—A)]

=1[AxB+BxC+CxA+CxB-CxA—-AxB+AxA]=0.

This result can be generalized to closed polyhedra and in the limiting case to any closed surface.
Because of the application presented here, it is sometimes convenient to assign a direction to area and we
speak of the vector area.

Find the area of the triangle having vertices at P(1, 3, 2), QQ2,—1, 1), R(-1, 2, 3).

Solution
PQ=Q2-Di+(-1-3)j+(1-2k=i—-4j—k
PR=(—1-1i+(2-3)j+B-2k=-2i—j+k

From Problem 2.30,

1 1
area of triangle = 3 |PQ X PR| =3 |(i —4j —K) x (=2i—j +k)|

i
1 1 1 1
=—| 1 —4 —1|==|=514+j—9k| ==/(=5>+ 1)+ (-9 ==-+/107.
5 SN 2\ 5i-+j — 9K| 2\/(5)+()+(9) 2‘/0

Determine a unit vector perpendicular to the plane of A = 2i — 6j — 3k and B = 4i + 3j — k.

Solution

A x B is a vector perpendicular to the plane of A and B.

i i k
AxB=1|2 -6 -3|=15i-10j+ 30k
4 3 -1
AxB 15i — 10j + 30k 3, 2, 6
A unit vector parallel to A x B is 2 ! )+ =-i——j+-k
IAXBl /a5y + (107 +@07 7 T 7

Another unit vector, opposite in direction, is (—3i + 2j — 6k)/7. Compare with Problem 2.14.

Find an expression for the moment of a force F about a point P as in Fig. 2-14.

Solution

The moment M of F about P is in magnitude equal to P to the line of action of F. Then, if r is the vector from P
to the initial point Q of F,

M = F(rsinf) = rFsinf = |r x F|
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If we think of a right-threaded screw at P perpendicular to the plane of r and F, then when the force F acts, the screw
will move in the direction of r x F. Because of this, it is convenient to define the moment as the vector M = r x F.

Fig. 2-14 Fig. 2-15

2.36. As in Fig. 2-15, a rigid body rotates about an axis through point O with angular speed w. Prove that
the linear velocity v of a point P of the body with position vector r is given by v = @ X r, where w is
the vector with magnitude @ whose direction is that in which a right-handed screw would advance
under the given rotation.

Solution

Since P travels in a circle of radius 7 sin 6, the magnitude of the linear velocity v is w(r sin ) = |w X r|. Also, v
must be perpendicular to both w and r and is such that r, w, and v form a right-handed system.

Then v agrees both in magnitude and direction with @ X r; hence v = @ X r. The vector w is called the
angular velocity.

Triple Products
2.37. Suppose A = Aji + Azj + Ask, B = Bji + Byj + B3k, C = Cii+ C,j + Csk.

Show that
Al Ay A
A'(BXC): B] Bz B3
C1 Cz C3
Solution
i j Kk
A-BxC)=A-|B; B, Bj;
C, G G

= (A1i+Azj + A3K) « [(B2C3 — B3Ch)i+ (B3Cy — B1G3)j + (B C, — BoCy)K]
=A1(B2C3 — B3Cy) + A2(B3Cy — B1C3) + A3(B1C, — B2Cy)

A Ay Az
=|By B, B3
C, G G

2.38. Evaluate (i + 2j + 3K) * (i + 3j + 5k) x (i + j + 6k).

Solution |

2
By Problem 2.37, the resultis |1 3
1 1

=5.

AN W
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Prove that A-Bx C)=B-+-(CxA)=C-(A xB).

Solution
Al Ay Az
By Problem 2.37, A-(BxC)=|B; B, Bj|.
C G G

By a theorem of determinants which states that interchange of two rows of a determinant changes its sign, we have

A Ay As B, B, Bs| |B, B, B
By By B3|=—|A1 A, A;|=|C; C; C3|=B-+<(CxA)
G G G G G G A1 Ay A;
Al Ay Az C, G G C, C GCs
Bi B, By|=—|B, B, Bi|=|A, A A3|=C-(AxB)
C, C G Ay Ay Az B, B, Bj

Show that A (B x C)=(A x B) - C.

Solution

From Problem 2.39,A-(BxC)=C+-(AxB)=(AxB)-C.

Occasionally, A « (B x C) is written without parentheses as A + B x C. In such a case, there cannot be any
ambiguity since the only possible interpretations are A + (B x C) and (A + B) x C. The latter, however, has no
meaning since the cross product of a scalar with a vector is undefined.

The result A« B x C = A x B « C is sometimes summarized in the statement that the dot and cross can be
interchanged without affecting the result.

Show that A « (A x C) = 0.

Solution

From Problem 2.40 and that A x A =0, we have A (A X C)=(AxA)-C=0.

Prove that a necessary and sufficient condition for the vectors A, B, and C to be coplanar is that
A-BxC=0.

Solution

Note that A « B x C can have no meaning other than A « (B x C).

If A, B, and C are coplanar, the volume of the parallelepiped formed by them is zero. Then, by Problem 2.43,
A-BxC=0.

Conversely, if A «+ B x C = 0, the volume of the parallelepiped formed by vectors A, B, and C is zero, and so
the vectors must lie in a plane.

Show that the absolute value of the triple product A « (B x C) is the volume of a parallelepiped with
sides A, B, and C.

Solution

Let n be a unit normal to a parallelogram /, having the direction of B x C, and let / be the height of the terminal
point of A above the parallelogram /. [See Fig. 2-16.]

Volume of parallelepiped = (height h)(area of parallelogram 1)
=(A-n)(B xCJ))
=A{BxCnj=A-BxC)

If A, B, and C do not form a right-handed system, A * n < 0 and the volume = |A « (B x C)|.
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2.44.

2.45.

2.46.

Fig. 2-16 Fig. 2-17

Let r; = x1i 4+ y1j + 21k, 1o = xi + y2j + 20k, and r3 = x3i + y3j + z3k be the position vectors of
points Pi(x1, y1, 21), P2(x2, y2, 22), and P3(x3, y3, z3). Find an equation for the plane passing through
Pl, Pz, and P3.

Solution

We assume that Py, P,, and P3 do not lie in the same straight line; hence they determine a plane.

Let r = xi + yj + zk denote the position vector of any point P(x, y, z) in the plane. Consider vectors
PP, =r, —r;, PiP3; =13 — 1|, and P,P = r — r;, which all lie in the plane. [See Fig. 2-17.]

By Problem 2.42, P\P - PP, x PIP; =0o0or(r—r))*(r —r;) x (r3 —r;) =0.

In terms of rectangular coordinates, this becomes

[ =xDi+ (@ —yDi+ (@ —z0K] * [(r2 —x)i+ (2 — yDi + (22 — z0)K] X [(x3 —xDi+ (y3 — y1)i
+(z3—2)k] =0
or, using Problem 2.37,
X=X Y—=Y1 I—21

X2—x1 y2—y1 z2—z|=0.
X3 =X Yy3—)Y1 3—12

Find an equation for the plane determined by the points Pi(2, —1, 1), P,(3,2, —1), and
P3(—1, 3, 2).

Solution

The position vectors of Py, P,, P3 and any point P(x, y, z) are, respectively, r; = 2i — j + k, r, = 3i +2j — k,
r; = —i+3j+ 2k, and r = xi 4 yj + zk.
Then PP, =r —r;, P,P; =1, —r|, P3sP; =r; —r; all lie in the required plane, so that

r—r) (@m-r)x@—-r)=0
that is,
[(x—2)i+ G+ Dj+(— DKl [i+3j—2Kk] x [-3i+4j+ k] =0
[(x—2)i+ O+ Dj+ - DK+ [11i+5j+ 13k] =0
1Hx—2)+5¢+1D+13z—1)=0 or 1lx+5y+ 13z=230.

Suppose the points P, Q, and R, not all lying on the same straight line, have position vectors a, b, and
crelative to a given origin. Show thata x b +b x ¢ + ¢ x ais a vector perpendicular to the plane of
P, O, and R.

Solution

Let r be the position vector of any point in the plane of P, O, and R. Then the vectorsr —a, b —a, and ¢ — a are
coplanar, so that by Problem 2.42

(r—a)(b—a)x(c—a)=0 or (r—a)*(axb+bxc+ecxa)=0.

Thusa x b+ b x ¢ + ¢ x ais perpendicular to r — a and is therefore perpendicular to the plane of P, Q, and R.
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247. Prove: @9 AXBxC)=BA:-C)—CA-'B), b) (AxB)xC=BA-C)—AB-C(O).
Solution

(@ Let A=Aji+Ayj+Ask, B=Bji+B,j+Bik C=Cji+ Coj+ Csk. Then

i j Ok
AX(BXC):(A1i+A2j+A3k)>< Bl B2 B3
C, G G
= (A1i + A2j + A3K) x ([B2C3 — B3Chli + [B3C — B1G3lj + [B1Co — BoCy]K)
i j k
= A A, Aj

B,C; —B3;C, B;C; —BC; BC; — B,C

= (A2B,C) — A2ByCy — A3B3C + A3B 1 C3)i+ (A3B2C3 — A3B3Cy, — A1 B1Cy + A 1By CY)j

4+ (A1B5Cy — A1B1C3 — AyB,C3 + AB3 )k
Also

B(A - C)—C(AB) = (Bii+ Baj + B3K)(A | C) +ArCy + A3C3) — (Cii+ Coj + C3K)(A 1By +AyBy + A3B3)
= (A2B|Cy + A3B1C3 — Ay C 1By — A3C1B3)i + (BoA | Cy + BrA3C3 — CoA 1By — CLA3B3)j
+ (B3A|C; 4+ B3A,C, — C3A 1B — C3A3B)k

and the result follows.

b)) AxB)xC=-CxAxB)=—-{A(C-B)—B(C-A)} =B(A-C)—A(B - C) upon replacing A, B,
and C in (a) by C, A, and B, respectively.

Note that A x (B x C) # (A x B) x C, that is, the associative law for vector cross products is not valid for
all vectors A, B, and C.

2.48. Prove: AxB)- (CxD)=A-C)B-D)—(A-D)B- ().
Solution
From Problem 2.41, X+ (C x D) = (X x C) * D. Let X = A x B; then

(AxB)*(CxD)={(AxB)xC}:D
={B(A-C)—AB-C)}-D
—=(A-C)B+D)—(A-D)B-C), using Problem 2.47(b).

2.49. Prove: Ax (BxC)+Bx(CxA)+Cx (A xB)=0.

Solution

By Problem 2.47(a), Ax (B xC)=BA-C)—-C(A-B)
Bx(CxA)=CB-A)—-AB-0O)
Cx(AxB)=A(C-B)—-B(C-A)

Adding, the result follows.

2.50. Prove: AxB)x (CxD)=BA-CxD)—AB-CxD)=CA-BxD)—DA-B x ().
Solution
By Problem 2.47(a), X x (C xD)=C(X+*D)—-D(X - C). Let X = A x B; then

AxB)x(CxD)=CAxB:-D)—DA xB-C)
=CA-*BxD)—DA-BxC)
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By Problem 2.47(b), (AxB)xY=BA-Y)—AB-Y).LetY=C x D; then

AxXxB)x(CxD)=BA-:-CxD)—AB-C xD).

2.51. Let POR be a spherical triangle whose sides p, g, r are arcs of great circles. Prove that

sinP sinQ sinR

sinp sing  sinr

Solution

— >

Suppose that the sphere, pictured in Fig. 2-18, has unit radius. Let unit vectors A, B, C be drawn from the center

O of the sphere to P, Q, R, respectively. From Problem 2.50,
AxB)x(AxC)=A-BxOCA

A unit vector perpendicular to A x B and A x C is A, so that (1) becomes

(sinrsingsinP) A =(A+*B x C)A or
sinrsingsinP =A+B x C

By cyclic permutation of p, g, r, P, O, R and A, B, and C, we obtain

sinpsinrsinQ =B+C x A
singsinpsinR=C-+-A xB

Then, since the right-hand sides of (3), (4), and (5) are equal (Problem 2.39)
sinrsingsin P = sinpsinrsin Q = sing sinp sinR

from which we find

sinP sinQ sinR
sinp  sing sinr

This is called the law of sines for spherical triangles.

Fig. 2-18

()]

(@)
3)

“
)
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2.52. Prove: (A xB)+ (B x C) x (C x A) = (A B x C)%.
Solution
By Problem 2.47(a), X x (CxA)=C(X+A)—-AX"-C). Let X =B x C; then
BxOx(CxA)=CBxC+-A—-—ABxC-0)
=CA*BxC)—AB-CxC)
=CA-BxC)
Thus
AxB)+BxC)x(CxA)=(AxB)-CA-BxC)
=(AxB-C)A-BxC)
=(A-BxC)?

. bxc cxa
2.53. Given the vectors a’ = /

2 bxc :a.bXcandc/:a?%:c,supposea-bxc # 0. Show that
(a) aca=b*b=c-c=1,

(b)ya*b=a+c=0,ba=b-:c=0,ca=c¢c-b=0,
(¢c)ifa*bxe=V,thena *b' xc =1/V,

(d) a’, b/, and ¢ are non-coplanar if a, b, and ¢ are non-coplanar.

Solution

, . bxec _a-b><c_1

abxc a*bxc

cxa beecxa a-bxc 1

a*bxc a*bxc a*bxc

, , axb craxb a-bxc
. —c- _ _ —1

a*bxc a*bxc a*bxec

bxc b:bxc bxb-c
b) a’-b=b-:a' =b- = = =0
®) a a a*bxec a*bxc a*bxc
Similarly, the other results follow. The results can also be seen by noting, for example, that a’ has the direction of
b x ¢ and so must be perpendicular to both b and ¢, from whicha’+b=0and a’ - ¢ = 0.

From (a) and (b), we see that the sets of vectors a, b, ¢ and a’, b’, ¢/ are reciprocal vectors. See also
Supplementary Problems 2.104 and 2.106.

(©) a/:bxc, p =X o _axb
%4 Vv Vv
b ’ b b) - (b
Then a/°b/><c/=( alld (c>;3a)x(ax ):(ax )« ( \>/<3c)><(c><a)
b 2 V2
:%:W:V using Problem 2.52.

(d) By Problem 2.42, if a, b, and ¢ are non-coplanar a+b x ¢ # 0. Then, from part (c), it follows that
a’ +b’ x ¢ #0, so that a’, b’, and ¢ are also non-coplanar.
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2.54.

Show that any vector r can be expressed in terms of the reciprocal vectors of Problem 2.53 as

r=(-a)a+@-b)b+(r-cc.

Solution
From Problem 2.50, B(A-CxD)—AB-CxD)=C(A+B xD)—D(A +B x C). Then

D_A(B‘CXD)_B(A‘CXD) CA*B xD)
T A:‘BxC A-BxC A-BxC

Let A=a, B=Db, C=c,and D =r. Then

r-bxc r-cxa r-axb
r=

= a [
a*bxc a*bxc a*bxc

e (P N e (A Vel (2P
o a‘bxc a‘bxc a‘bxc

=@-a)a+@-b)b+(r-c)c

SUPPLEMENTARY PROBLEMS

2.55.

2.56.

2.57.

2.58.

2.59.

2.60.

2.61.

2.62.

2.63.

2.64.

2.65.

2.66.

Evaluate: (a) k-« (i+j), (b)(i—2Kk)*(+3k), (c)(2i—j+3K)-3i+2j—k).

Suppose A=i+3j—2k and B=4i—2j+4k. Find: (a) A-B, (b) A, (¢) B, (d |3A+2B|,
(e) QA +B) - (A — 2B).

Find the angle between (a) A=3i+2j—6k and B=4i—3j+k; (b) C=4i—-2j+4k and
D = 3i — 6j — 2k.

Find the values of a for which vectors A and B are perpendicular where:
(@A A=dai—2j+kand B=2ai+aj—4k, (b) A=2i+j+akand B=2i+aj+k.

Find the acute angles that the line joining the points (1, —3, 2) and (3, —5, 1) makes with the coordinate axes.

Find the direction cosines of the line joining the points:
(@) (3,2, —4) and (1, —1, 2), (b) (=5, 3, 3) and (-2, 7, 15).

Determine the angles of a triangle where two sides of a triangle are formed by the vectors:
(@A=3i—-4j—kand B=4i—j+3k, (b)A=-2i+5j+6kandB =3i+j+2k

The diagonals of a parallelogram are given by A = 3i — 4j — k and B = 2i + 3j — 6k. Show that the paralle-
logram is a rhombus and determine the length of its sides and angles.

Find the projection of the vector A on the vector B where:
(@AA=2i—3j+6kand B=i+2j+2k, (b)A=2i+j—kandB=—-6i+2j—3k.

Find the projection of the vector A = 4i — 3j + k on the line passing through the points (2, 3, —1) and
(=2, -4, 3).

Find a unit vector perpendicular to both vector A and vector B where:
(@A=4i—j+3kand B=-2i+j—2k, (b) A=06i+22j—5kand B=1i+6j— 2k

Find the acute angle formed by two diagonals of a cube.



2.67.

2.68.

2.69.

2.70.

2.71.
2.72.

2.73.

2.74.

2.75.

2.76.

2.77.

2.78.

2.79.

2.80.

2.81.

2.82.
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Find a unit vector parallel to the xy-plane and perpendicular to the vector 4i — 3j + k.

Show that A, B, and C are mutually orthogonal unit vectors where:
@A=Qi—-2j+k)/3, B=(@{+2j+2k)/3, and C= (2i+j—2k)/3
(b) A = (12i —4j —3k)/13, B = (4i +3j+ 12k)/13, and C = (3i + 12j — 4k)/13.

Find the work done in moving an object along a straight line:
(a) from (3, 2, —1) to (2, —1, 4) in a force field given by F = 4i — 3j + 2k.
(b) from (3, 4, 5) to (—1, 9, 9) in a force field given by F = —3i + 5j — 6k.

Let F be a constant vector field force. Show that the work done in moving an object around any closed polygon
in this force field is zero.

Prove that an angle inscribed in a semicircle is a right angle.

Let ABCD be a parallelogram. Prove that AB- + BC~ + CD’ + DA’ = AC" + BD"

Let ABCD be any quadrilateral where P and Q are the midpoints of its diagonal. Prove that
AB +BC +CD° + DA® — AC* + BD" +4@2

This is a generalization of the preceding problem.

Consider a plane P perpendicular to a given vector A and distance p from the origin. (a) Find an equation of the
plane P. (b) Express the equation in (a) in rectangular coordinates.

Let r; and r; be unit vectors in the xy-plane making angles « and 8 with the positive x-axis.

(a) Prove that r; = cos ai + sin «j and r, = cos i + sin Sj.

(b) By considering r; * r, prove the trigonometric formulas

cos(a — B) = cosacos B+ sinasinB and cos(a+ ) = cos acos B+ sinasin B

Let a be the position vector of a given point (x;, y;, z1), and let r be the position vector of any point (x, y, 2).
Describe the locus of rif: (a) r—a| =3, (b)(r—a)+a=0, (¢c)(r—a)-r=0.

Suppose A = 3i+ j + 2k and B =i — 2j — 4k are the position vectors of points P and Q, respectively.

(a) Find an equation for the plane passing through Q and perpendicular to the line PQ.

(b) Find the distance from the point (—1, 1, 1) to the plane.

Evaluate each of the following: (a) 2j x (3i—4k), (b) i+2j) xk, (c) 2i—4k) x (i+2j),
(d)@di+j—2k)x Bi+k), (e)(2Qi+j—k) x (3i —2j+4k).

Suppose A =3i—j—2k and B=2i+3j+k Find: (a) |JAxB|, (b) (A+2B)x (2A—-B),
(c) (A+B) x (A —B)|.

Suppose A =i—2j—3k, B=2i+j—k, C=1i+ 3j— 2k. Find:

(@) ([AxB)xC| (c) A-BxC), () AxB)x B xC)

b) [AxBxC)| d AxB)-+C, () AxB)B-C)

Suppose A # 0 and both of the following conditions hold simultaneously: (a) A+B =A - C,
and (b) A x B = A x C. Show that B = C but, if only one of the conditions holds, then B # C necessarily.

Find the area of a parallelogram having diagonals: (a) A = 3i+ j — 2k and B =i — 3j — 4k,
(b) A =2i+4j and B = —4i + 4k.
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2.83.

2.84.

2.85.

2.86.

2.87.

2.88.

2.89.

2.90.

2.91.

2.92.

2.93.

2.94.

2.95.

2.96.

2.97.

2.98.

2.99.

2.100.

Find the area of a triangle with vertices at: (a) (3, —1, 2), (1, —1, —3), and (4, —3, 1),
() 2, =3, =2), (=2, 3, 2), and (4, 3, —1).

Suppose A = 2i+ j — 3k and B =i — 2j + k. Find a vector of magnitude 5 perpendicular to both A and B.
Use Problem 2.75 to derive the formulas:

sin(e — B) = sinacos B —cosasinB and sin(a+ B) = sin wcos B + cos a sin B

Suppose a force F = 3i + 2j — 4k is applied at the point (1, —1, 2). Find the moment of F about the point:
(@) (2, -1, 3), (b)4, -6, 3).

The angular velocity of a rotating rigid body about an axis of rotation is given by @ = 4i + j — 2k. Find the
linear velocity of a point P on the body whose position vector relative to a point on the axis of rotation is
2i —-3j+k

Simplify: (@) (A+B)-B+C)x(C+A), (b)A-(2A+B)xC.

Prove that (A*B x C)(a*b x ¢) =

aw >
NIENIEN
aw >
SES
aw >
f.:ﬁ"}

Find the volume of the parallelepiped whose edges are represented by:
(@)A=2i—3j+4k, B=i+2j—k, andC=3i—j+2k.
b)A=i—j+2k, B=i+j—k andC=i—-j—4k

Suppose A B x C = 0. Show that either (a) A, B, and C are coplanar but no two of them are collinear,
or (b) two of the vectors A, B, and C are collinear, or (c) all the vectors A, B, and C are collinear.

Find the constant a so that the following vectors are coplanar:
(@2—-j+k, i+2j—3k, 3i+aj+5k, (b)3i—3j—k, -3i—2j+2k, 6i+aj—3k

Suppose A =xja+yb+zic, B=xa+y,b+zc, and C=x3a+ y;b+z3c. Prove that

X112
A-BxC= X2 Y2 22 (a-b><c)
X3 Y3 3

Prove that (A x C) x B = 0 is a necessary and sufficient condition that A x (B x C) = (A x B) x C. Discuss
the cases where A*B=0o0orB+-C=0.

Let points P, O, and R have position vectors r; = 3i — 2j — Kk, r, =i+ 3j + 4k and r3 = 2i + j — 2k relative
to an origin O. Find the distance from P to the plane OQOR.

Find the shortest distance: (a) from (6, —4, 4) to the line joining (2, 1, 2) and (3, —1, 4),
(b) from (1, —7, 5) to the line joining (13, —12, 5) and (23, 12, 5).

Consider points P(2, 1,3), 0(1,2,1), R(—1, —1, —2), S(1, —4, 0). Find the shortest distance between lines
PQ and RS.

Prove that the perpendiculars from the vertices of a triangle to the opposite sides (extended if necessary) meet
at a point (called the orthocenter of the triangle).

Prove that the perpendicular bisectors of the sides of a triangle meet at a point (called the circumcenter of the
triangle).

Prove that A X B)+ (Cx D)+ B xC)* (AxD)+(CxA)+-(B xD)=0.
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2.101. Let POR be a spherical triangle whose sides p, g, r are arcs of great circles. Prove the law of cosines for spheri-
cal triangles,

cosp = cosqgcosr —+ singsinr

with analogous formulas for cos g and cos r obtained by cyclic permutation of the letters. Hint: Interpret both
sides of the identity

AxXB)*AxC=B-C)AA-A-C)B-A)

2.102. Find a set of vectors reciprocal to the set vectors:
(@2i+3j—k i—-j—2k, —i+2j+2k, (b)i+2j+3k Si—j—k, i+j—k

bxc cxa axb
2.103. Suppose a’ = b = ,¢ = . Prove that
a*bxc a*bxc a*bxc
b xc dxd a xb
a—= = CcC =
a-bxc’ a-bxc’ a-b xc

2.104. Suppose a, b, ¢ and a’, b’, ¢’ have the following properties:

aca=b+'b=c:c=1
a+b=a‘+c=ba=b-c=c+ra=c+b=0

Prove that the hypothesis of Problem 2.103 holds, that is,

, b xc cxa axb
a —

[ — = CcC = .
arbxc’ arbxc’ a*bxec

/ /

2.105. Prove that the only right-handed self-reciprocal sets of vectors are i, j, k.

2.106. Prove that there is one and only one set of vectors reciprocal to a given set of non-coplanar vectors a, b, c.

ANSWERS TO SUPPLEMENTARY PROBLEMS

2.55. (a) 0, (b) —6, (c) 1 2.57. (a) 90°, arc cos 8/21 = 67°36
2.56. (a) —10, (b) V14, (¢) 6, (d) /150, () =14  2.58. () a=2, —1,(b)a=2
2.59. arc cos2/3, arc cos2/3, arc cos 1/3 or 48°12’, 48°12/, 70°32'
2.60. (a)2/7,3/7, —6/7 or —=2/7, =3/7, 6/7, (b) 3/13,4/13,12/13 or —3/13, —4/13, —12/13
2.61. (a) arc cos7/+/75, arc cos +/26/+/75, 90° or 36°4’, 53°56/, 90° (b) 68.6°, 83.9°, 27.5°
2.62. 5«/§/2, arc cos 23/75, 180° — arc cos 23/75; or 4.33, 72°8', 107°52’
2.63. (a) 8/3, (b) —1 2.66. arc cos 1/3 or 70°32/
2.64. 1 2.67. +(3i+4j)/5
2.65. (a) +(i—2j—2k)/3,(b) +(2i—j—2k)/3 2.69. (a) 15, (b) 13
2.74. (a)r+n=p where n = A/|A| = A/A, (b) Aix+ Ay +Aszz = Ap
2.76. (a) Sphere with center at (x;, y;, z1) and radius = 3.
(b) Plane perpendicular to a and passing through its terminal point.
(c) Sphere with center at (x1/2, y,/2, z1/2) and radius \/x? + y7 + z2/2; or a sphere with a as diameter.

277. (@)(r—B)+(A—B)=0or2x+3y+6z=-28;(b)5
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2.78.
2.79.

2.80.
2.82.
2.83.
2.84.

2.86.
2.87.
2.88.

2.90.

(a) —8i — 6k, (b) 2i — j, (c) 8i — 4j + 4k, (d) i — 10j — 3k, (e) 2i — 11j — 7k

(a) V195, (b) —25i + 34j — 55Kk, (c) 2+/195

(a) 54/26, (b) 3+/10, (c) —20, (d) —20, (e) —40i — 20j + 20Kk, (f) 35i — 35j + 35k

(a) 5+/3, (b) 12 2.92.
(a) V165/2, (b) 21 2.95.
+[5v3/31G +j+ k) 2.96.
(a) 2i — 7j — 2Kk, (b) —3(6i + 5j + 7k) 2.97.
—5i — 8j — 14k 2.102.

(@2A*BxC,(b)A-BxC

(@7, () 12

(@) a=—4 (b)a=—13

3
(a) 3, (b) 13
3v2
20 1. 8 7.7 5
20 1 8 T T L 5
@3i+3k —3i+i—3k —3i+j—3

(b) (2i + 4j + 6k)/28, (51 — 4j + k)/28,
(i+9j — 11k)/28



Vector Differentiation

3.1 Introduction

The reader is familiar with the differentiation of real valued functions f(x) of one variable. Specifically,
we have:

oy~ Y iy S =
dx

h—0 h

Here we extend this definition to vector-valued functions of a single variable.

3.2 Ordinary Derivatives of Vector-Valued Functions

Suppose R(u) is a vector depending on a single scalar variable u. Then

AR R(u + Au) — R(u)

Au Au

where Au denotes an increment in u as shown in Fig. 3-1.
The ordinary derivative of the vector R(«) with respect to the scalar u is given as follows when the limit

exists:

dR . AR . R+ Au) — R(w)

— = lim — = lim

du Au—0 Au Au—0 Au
Since dR/du is itself a vector depending on u, we can consider its derivative with respect to u. If this
derivative exists, we denote it by d”R/du’. Similarly, higher-order derivatives are described.

Ar =r(u + Au) —r(u)

N
N (,:2)
S
IS
N
» «
> AR =R(u + Au) — R(u)
Q‘v
< y
0
R
o x

Fig. 3-1 Fig. 3-2
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Space Curves

Consider now the position vector r(u) joining the origin O of a coordinate system and any point (x, y, z).
Then

r(u) = x(wi + y(w)j + z(wk

and the specification of the vector function r(x) defines x, y, and z as functions of u.
As u changes, the terminal point of r describes a space curve having parametric equations

x=xw), y=yw), z=z(u)

Then the following is a vector in the direction of Ar if Au > 0 and in the direction of —Ar if Au <0
[as pictured in Fig. 3-2]:

g _ r(u+Au) —r(u)
Au Au
Suppose

Ar_dr

m — =
Au—0Au du

exists. Then the limit will be a vector in the direction of the tangent to the space curve at (x, y, z) and it is
given by

Motion: Velocity and Acceleration

Suppose a particle P moves along a space curve C whose parametric equations are x = x(¢), y = y(?),
z = z(t), where t represents time. Then the position vector of the particle P along the curve is

r(t) = x(Hi + y(@0)j + z(H)k

In such a case, the velocity v and acceleration a of the particle P is given by:

EXAMPLE 3.1 Suppose a particle P moves along a curve whose parametric equations, where ¢ is time, follows:
x =407 +8r, y=2cos3t, z=2sin3¢

(a) Determine its velocity and acceleration at any time.
(b) Find the magnitudes of the velocity and acceleration at t = 0.

(a) The position vector of the particle P is

r = xi + yj + 2k = (402 + 80)i + (2 cos 30)j + (2 sin 30k
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Then the velocity v and acceleration a of P follow:
dr . . .
V= i (807 + 8)i + (—6sin 31)j + (6 cos 31k
dv

a= a = 80i + (—18 cos 31)j + (—18 sin 3r)k.

(b) Att=0, v=_8i+ 6k, and a = 80i — 18j. Magnitudes of velocity v and acceleration a follow:

V| =+/(8)?+ (62 =10 and |a| = /(80)* + (—18)> =82

3.3 Continuity and Differentiability

A scalar function ¢(u) is called continuous at u if
Alimo d(u + Au) = P(u)

Equivalently, ¢(u) is continuous at u if, for each positive number €, we can find a positive number &
such that

|p(u + Au) — Pp(u)| < € whenever |Au| < 6

A vector function R(u) = R;(u)i + R,(u)j + R3(u)Kk is called continuous at u if the three functions
Ri(u), Ro(u), R3(u) are continuous at u or if lima, .o R(u + Au) = R(u). Equivalently, R(u) is continuous
at u if, for each positive number €, we can find a positive number & such that

IR(u + Au) — R(u)| < € whenever |Au| < 6

A scalar or vector function of u is called differentiable of order n if its nth derivative exists. A function
that is differentiable is necessarily continuous but the converse is not true. Unless otherwise stated, we
assume that all functions considered are differentiable to any order needed in a particular discussion.

The following proposition applies.

PROPOSITION 2.1  Suppose A, B, and C are differentiable vector functions of a scalar u, and ¢ is a
differentiable scalar function of u. Then the following laws hold:

dA dB

(@) —(A+B)——+—

du
.. dB dA
(i) —(A By =A- 2+ B
(iif) —(AXB):AX@+@XB

du du
. dA d
() L (pa) = 922 1 20y

dC dB dA
(v) E(A-BxC)—A-B d—+A X C+d ‘BxC
o) LaxBxoy=ax (BxE)tax(Bxc)+A @0
du du du du

The order of the products in Proposition 2.1 may be important.
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d
EXAMPLE 3.2 Suppose A = 5u%i + uj — u’k and B = sin ui — cos uj. Find d—(A- B)
u

d dB dA
“AB=A-—31+.B
du( ) du+du

= (5u%i + uj — u’K)~ (cos ui + sin uj) + (10ui + j — 3u’k)+ (sin ui — cos uj)
= [5u® cosu + usinu] 4 [10u sin u — cos u]
= (5u®> — 1)cosu + 1lusinu

Another Method

A+B = 5u’sinu — ucosu. Then
d d _, . 5 . .
d—(A-B):d—(Su sinu — utcosu) = Su”cosu + 10usinu + usinu — cosu
u u

= (5u* — 1)cosu + llusinu

3.4 Partial Derivative of Vectors

Suppose A is a vector depending on more than one variable, say x, y, z, for example. Then we write
A = A(x, y, 7). The partial derivative of A with respect to x is denoted and defined as follows when the
limit exists:

0A . A(x+Ax, y, 2) — A, y, 7)
— = lim
0x  Ax—0 Ax

Similarly, the following are the partial derivatives of A with respect to y and z, respectively, when the
limits exist:

oA o Alx, y+ Ay, 2) — Ax, y, 2)

ay Ay1—>0 Ay
A _ i Ay, 2+ A7 — A, 2)
0z A0 Az

The remarks on continuity and differentiability of functions of one variable can be extended to functions
of two or more variables. For example, ¢(x, y) is called continuous at (x, y) if

Aljim0 d(x + Ax, y + Ay) = d(x, y)
Ay—0

or if for each positive number € we can find a positive number 0 such that
|p(x + Ax, y + Ay) — P(x, y)| < € whenever |Ax| <8 and |Ay| <6

Similar definitions hold for vector functions of more than two variables.

For functions of two or more variables, we use the term differentiable to mean the function has continu-
ous first partial derivatives. (The term is used by others in a slightly weaker sense.)

Higher derivatives can be defined as in calculus. Thus, for example:

FA_o () PA_0 A\ FA_o (A
a2 ax\ox ) ot ay\ay) 82 az\oz

PA_ 0 () #A_5 () ¥A _0 (@A
oxdy ox\dy)  dydx dy\ox)  axdz2  ox \ 92
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In the case that A has continuous partial derivatives of the second order at least, we have
PA _ A
oxdy  dyox
That is, the order of differentiation does not matter.
83
EXAMPLE 3.3 Suppose ¢(x, y, z) = xy°z and A = xi + j + xyk. Find W((bA) at the point P(1, 2, 2).
X209z
PA = X*y* 7 + xy?zj + X3k

ad

o (00 =xYi+ 0% + vk

Z

82
—(¢A) = 20%i + %) + 2xy°k
0x0z
A 2 3
——(pA) = 2y"i + 2y’k
8XQBZ(d) )=2yi+2y
83
Whenx=1,y=2,and z =2, ——(¢A) = 8i + 16k.
ox20z
Rules for partial differentiation of vectors are similar to those in elementary calculus for scalar functions.

In particular, the following proposition applies.

PROPOSITION 3.2  Suppose A and B are vector functions of x, y, z. Then the following laws hold:

0 0B 0A
1) —(A*B)=A« — ‘B
@ ax( ) 8x+ ox
0 oB  0A
(i) —(AxB)=Ax—+—xB
ox ox  ox
2
Gi) & aepy =2 [0 apl oD s B A 4
8y3x( ) ay Bx( ) ay ox + ox
"B 0A OB 0A OB A
— A . « —+——>+B, and so on.

ayox E e ax dy  dyox

The rules for the differentials of vectors are essentially the same as those of elementary calculus as seen
in the following proposition.

PROPOSITION 3.3  Suppose A and B are functions of x, y, z. Then the following laws hold.

(i) If A = Aji + Asj + Ask, then dA = dAi + dAsj + dAsk
(i) d(A*B)=A-dB +dA-B
(iii) d(A xB) = A x dB +dA x B

0A 0A 0A
(iv) If A = A(x, y, 2), then dA = —dx + —dy + —dz, and so on.
ox dy 0z

3.5 Differential Geometry

Differential geometry involves the study of curves and surfaces. Suppose C is a space curve defined by the
function r(u). Then, we have seen that dr/du is a vector in the direction of the tangent to C. Suppose the
scalar u is taken as the arc length s measured from some fixed point on C. Then dr/ds is a unit tangent vector
to C and it is denoted by T (see Fig. 3-3). The rate at which T changes with respect to s is a measure of the
curvature of C and is given by dT/ds. The direction of d'T/ds at any given point on C is normal to the curve
at that point (see Problem 3.9). If N is a unit vector in this normal direction, it is called the principal normal
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to the curve. Then dT/ds = kN, where « is called the curvature of C at the specified point. The quantity
p = 1/k is called the radius of curvature.

Fig. 3-3

A unit vector B perpendicular to the plane of T and N and such that B =T x N, is called the binormal
to the curve. It follows that directions T, N, B form a localized right-handed rectangular coordinate system
at any specified point of C. This coordinate system is called the trihedral or triad at the point. As s changes,
the coordinate system moves and is known as the moving trihedral.

Frenet-Serret Formulas

A set of relations involving derivatives of the fundamental vectors T, N, and B is known collectively as the
Frenet—Serret formulas given by
dN dB

dT
— = kN, =B —-«kT, —=-1N
s - ds g K ds k
where 7 is a scalar called the forsion. The quantity o = 1/7 is called the radius of torsion.
The osculating plane to a curve at a point P is the plane containing the tangent and principal normal at P.
The normal plane is the plane through P perpendicular to the tangent. The rectifying plane is the plane
through P, which is perpendicular to the principal normal.

Mechanics

Mechanics often includes the study of the motion of particles along curves. (This study being known as
kinematics.) In this area, some of the results of differential geometry can be of value.

A study of forces on moving objects is considered in dynamics. Fundamental to this study is Newton’s
famous law which states that if F is the net force acting on an object of mass m moving with velocity v, then

d
F = —
" (mv)

where mv is the momentum of the object. If m is constant, this becomes F = m(dv/dt) = ma, where a is the
acceleration of the object.

SOLVED PROBLEMS

3.1. Suppose R(u) = x(u)i + y(u)j + z(w)k, where x, y, and z are differentiable functions of a scalar u.
Prove that
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Solution

dR . Ru+ Au) — R(u)
= lim —mM————~

E o Au—0 Au
— lim [x(u + Aw)i 4 y(u + Aw)j + z(u + Aw)k] — [x(w)i + y(w)j + z(w)k]
- Au—0 Au
o+ Aw) —x(u), |y + Au) —y@) . z(u+ Au) — z(u)
o AIJTO Au ' Au I+ Au k
_dx, dy, dz
dR d’R dR d’R
3.2. Given R = (3cos )i+ (3sin?)j + (41)k. Find: (a) ar (b) 7 (©) ‘dt , (d) 7
Solution
dR d .od .. d _ o .
(a) v E(3 cos i + EG sint)j + E(4t)k = (=3sinni+ (3cos)j + 4k.
d’R d (dR d ood . d . .
(b) o (E) = E(_3 sin )i + $(3 cost)j+ E(4)k = (—3cos )i+ (—3sint)j.

@)’%g‘:[(—3ﬁn02+{3c0502+(4ffﬂ::5.

&’R

M)gfzm%mﬁ+emm%mﬁmza

3.3. A particle moves along a curve whose parametric equations are x = e’

where ¢ is the time.

, ¥ =2cos3t, z=2sin3t,

(a) Determine its velocity and acceleration at any time.
(b) Find the magnitudes of the velocity and acceleration at t = 0.

Solution

(a) The position vector r of the particle is r = xi + yj + zk = e~'i + 2 cos 3¢j + 2 sin 37k. Then the velocity is v =
dr/dt = —e™'i — 6sin3tj + 6 cos 3tk and the acceleration is a = d?r/df> = e~'i — 18 cos 3tj — 18 sin 37k.

() Atr=0, dr/dr=—i+ 6k and d*r/d® =i— 18j. Then

magnitude of velocity at 1 =0 is /(—1)* + (6)* = v/37

magnitude of acceleration at t =0 is (1) 4+ (—18)* = +/325.

3.4. A particle moves along the curve x = 21>, y=1> —4t, 7= —t— 5 where ¢ is the time.
Find the components of its velocity and acceleration at time r = 1 in the direction i — 2j + 2k.

Solution
Vamn—iﬁ—ﬁﬂmﬁuwﬁ—my+eq—$m
Y= u T a ]
=@Ni+Qr—4)j—k=4i—-2j—k atr=1.
i—2j+2k

Unit vector in direction i — 2j + 2K is

W=
—-

JIOP+ (22t @7
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Then the component in the given direction is (4i — 2j — k)- (%1 - % i+ gk) =2
d2

Acceleration =

r d(dr d . . L.
EZE<E> :E[(4t)1+(2t—4).]—k] =4i+2j.

Then the component of the acceleration in the given direction is (4i + 2j)+ (i —3j +3k) = 0.
3.5. A curve C is defined by parametric equations x = x(s), y = y(s), z = z(s), where s is the arc length of

C measured from a fixed point on C. If r is the position vector of any point on C, show that dr/ds is a
unit vector tangent to C.

Solution

The vector

dr d dx, dy, dz
de_d oo dv dy. o odo
5= gty =it

is tangent to the curve x = x(s), y = y(s), z = z(s). To show that it has unit magnitude, we note that

o [fdx\? (av\ | (d2\D o) + (@) + (dz)?
—/ (%) () +(%) - @

since (ds)* = (dx)*> + (dy)2 + (dz)? from the calculus.

@
ds

3.6. (a) Find the unit tangent vector to any point on the curve x = 1> — t, y = 4t — 3, z = 21> — 8t.
(b) Determine the unit tangent at the point where ¢ = 2.

Solution

(a) A tangent to the curve at any point is

d d
di; = 2107 = Di+ (41 = 3)j + 27" = 80kl = Q21 — Di+4j + (41 — 8)k.
The magnitude of the vector is |dr/dz| = [(2r — 1)*> + (4)> 4 (47 — 8)*]"/%. Then the required unit tangent

vector is

T = [(2t — Di +4j + (41 — 8)K]I/[(2 — 1)* + (4)* + (4t — 8)%]'/2.

Note that since |dr/dt| = ds/dt, we have

_dr/di_dr
T ds/dt  ds’
3i + 4 N

(b) At =2, the unit tangent vector is T =

—=3i+
VEr+@r+e

3.7. Suppose A and B are differentiable functions of a scalar u. Prove:

dB dA d dB dA
+—+—B, b) —(AxB)=Ax—+—xB
du = du du u

d
@ 7, (A-B)=A du ' d
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Solution
A+AA)(B+AB)—A-B
(@) i(A-B)zum( +A4A)- (B +A4B)
du Au
_ iy ATAB+AA-B+AA-AB
Au—0 Au
. AB AA AA dB dA
= dm A Nt A BraAB=A B

Another Method
Let A = Aji+ Ayj + Ask, B = Bji + B,j + Bsk. Then

d d
—(A*B) =—(A1B; +AB> + A3B3)
du du

dB dB dB dA dA dA
<A171+A272+A3 3> + (7131 +=2B, +7233>

d d d d du d
du du

(A+AA)x (B+AB)— A xB

(b) i(A x B) = lim
du

Au
— Lm A xAB + AA x B+ AA x AB
Au—0 Au
. AB AA AA
= dim AR T A B, < AB
dB dA
—AX—+"—xB
du+d
Another Method J i j ok
TAXB)=_lA Ay A
" “IB B, By

Using a theorem on differentiation of a determinant, this becomes

i J kK i j k
A A

A A | A Ay dey | dB A
dB, dB, dBj du du du du  du
du du du B, B, Bj

3.8. Suppose A = 5¢%i +tj — ’k and B = sinti — cos #j. Find: (a) %(A x B), (b) %(A- A).

Solution
(@) —(A B)— A- @+%‘ ‘B

= (5% + 1j — k) - (cos fi + sin#j) + (104 + j — 37°K) - (sin#i — cos #j)

=512 cost+tsint + 10¢sint — cost = (512 — 1) cost + 11zsin¢
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3.9.

3.10.

Another Method

A+B =57sint — tcost. Then

d d
—(A+B) :Q(SI2 sint — rcost) = 52 cost + 10¢sint + 7sinz — cos ¢

= (5% — 1)cost 4+ 11tsint

®) 4 dB dA bk i ] k
—(AXB)—AXE+E xB=|52 t —£|+]|10¢ 1 -3
cost sint O sint —cost 0

= [Fsind — £ cos tj+ (57 sint — tcos K]
+ [=37% cos i — 3¢% sin tj + (=10t cos t — sint)k]

= (£ sinr — 3% cos i — (£ cos t + 3¢ sin nj + (5¢*sint — sint — 11z cos Hk

Another Method
i i k
AxB =57 t —| = —Fcosti — £ sintj + (=52 cost — tsinNk
sint —cost O

d
Then E(A x B) = (£ sint — 372 cos )i — (£} cost + 3£ sin1)j + (5> sint — 11tcost — sin )k

d dA  dA dA
© —(A A=A — 4 A=2A- —

=2(57i 4+ tj — k) (10ri + j — 3r°k) = 1007> + 21 + 61°
Another Method
A A=0CP? + @)+ (PP =25+ +1°
Then %(m4 + 2 4+1%) =100 + 2t + 61°.

Suppose A has constant magnitude. Show that A - dA/dt = 0 and that A and dA/dt are perpendicular
provided |dA/dt| # 0.

Solution

Since A has constant magnitude, A+ A = constant.
dA dA dA

d
Then E(A.A) A- di—i_di A=2A- 7 =0.

dA dA dA
Thus A — i =0 and A is perpendicular to T provided ’ ’ # 0.

Suppose A, B, and C are differentiable functions of a scalar u. Prove
d dC dB dA
—(A*B =A-Bx—+A:- ‘B .
du( x©) du + du xC du x €

Solution

d dA
By Problems 3.7(a) and 3. 7(b) A BxC)=A- d—(B x C) +d— ‘B xC
u u

dC dB dA
:A'[BXE-FEXC}—F? BXC
dC dB dA
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3.11. A particle moves so that its position vector is given by r = cos wti + sin wtj where  is a constant.
Show that (a) the velocity v of the particle is perpendicular to r, (b) the acceleration a is directed
toward the origin and has magnitude proportional to the distance from the origin, (c) r x v=a
constant vector.

Solution
dr L .
(a) v= 7 = —wsin wti + wcos wtj. Then
re v = [cos wti + sin wtj]* [—wsin wti + wcos wtj]
= (cos wt)(—w sin wt) + (sin wt)(w cos wt) = 0

and r and v are perpendicular.

by &r _dv__,

. 2
=—=—W COSWIl — W
drr  dt

sin wtj

= —’[cos wii + sin wtj] = —o’r

Then the acceleration is opposite to the direction of r, that is, it is directed toward the origin. Its magnitude is
proportional to |r|, which is the distance from the origin.

(©) r X v = [cos wti + sin wtj] X [—wsin wfi + wcos wtj]
i j k
=| coswt sinwt 0

—wsinwt wcoswt 0

= w(cos’wt + sinwhk

= wKk, a constant vector.

Physically, the motion is that of a particle moving on the circumference of a circle with constant angular
speed w. The acceleration, directed toward the center of the circle, is the centripetal acceleration.

A A
3.12. Show that A~ d :Ad—.
dt dt

Solution

Let A = Aji+ Ayj + Ask. Then A = /A + A2 + A2.

dA 1 5, 5 5 n dA, dA, dA;
AP+ A+ A2 24, 2 424, 2 4 24,2
g M TAHAY Vg T Ty,
A dA1+A @JFA dA;
_ "dr > di ddt
(A + A3 44
dA
A.
dt . dA dA
= — .., A7:A°
A Mo A d
Another Method
d d
Since A+ A = A2, —(A+A) = —(4?).
ince dt( ) dt( )
d dA dA dA d dA
—(A*A)=A- cA=2A. — —(AH =24—
dt( ) dt * dt dt and dt( ) dt
dA dA dA dA
Th 2A — =2A— A —=A—.
en di a ar

Note that if A is a constant vector A+

dl? = 0 as in Problem 3.9.
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3.13.

3.14.

3.15.

3.16.

0A 0A
Let A = (2x%y — xM)i + (¢® — ysinx)j + (x? cos y)k. Find: (a) e (b) =
X y

Solution

0A 0 0 X d
@ 9 _ 9 52y i+ (e — ysinxj + — (2 cos yk

ox  ox ox ox

= (4xy — 4x°)i + (ye® — ycosx)j + 2xcos yk

A
®) A _ 9 2%y —xhi+ 9 (€ — ysinx)j + 9 (% cos y)k

dy  dy dy dy

= 2x% + (xe® — sinx)j — x% sin yk
PA A
Let A be the vector in Problem 3.13. Find: (a) —-, (b) —-.
ax? dy?
Solution
2
A

(@ A = 9 (4xy — 4+ 9 (ye¥ —ycosx)j + 9 (2xcosy)k

o2 ox ox ox

= (4y — 122D)i + (*€¢” + ysinx)j + 2 cos yk

O FPA D 5 D

— = —(2x)i+ —(xe” — sinx)j — — (x" siny)k

o oy dy Py

=0+ x%eVj — x* cos yk = x*¢”j — x% cos yk

) . A A
Let A be the vector in Problem 3.13. Find: (a) ——, (b) —.
axay ayox
Solution
@ FA DAY Dl D D
oxdy = oy = 2x9)i + ™ (xe sin x)j ™ (x~ siny)k

= 4xi + (xye® + ¥ — cosx)j — 2xsin yk
PA D (oA a a a
B ——=— () =—(xy—4)i+ (e — j+—(2 k
v = 3y (ax ) = 5y 0 — 4+ 5067 — yeosj + - 2xcosy)
= 4xi + (xye™ + ¢V — cos x)j — 2xsinyk
Note that A /dydx = 3°A/dxdy, that is, the order of differentiation is immaterial. This is true in general if A has
continuous partial derivatives of the second order at least.

3

ax29z

Suppose ¢(x, y, z) = xy*z and A = xzi — xy*j + yz°k. Find (¢A) at the point (2, —1, 1).
Solution
PA = (xy*2)(xzi — % + y2’k) = Ky — Py + 0’k

a a . . . .
aiz(d)A) _ a?<x2y2z21 — 2+ 03 2K) = 232 — A + 3077k

0 9

axar P = 5 2 d = 4 30°2k) = 4nd - 20 + 37k
33 0 2 . 4. 30 ) . 4

8x2az(¢A) = ooy — 207 4 3y'2°k) = 4’z - 2

If x=2,y=—1, and z = 1, this becomes 4(—1)*(1)i — 2(—1)*j = 4i — 2j.
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3.17. Let F depend on x, y, z, t where x, y, and z depend on . Prove that

dF _OF OFdx  oFdy  OFds
dt ot oxdt dydt 0zdt

under suitable assumptions of differentiability.

Solution
Suppose that F = F(x,y,z, )i + Fa(x,y,2,1)j + F3(x,, z, )k. Then

dF = dFi+ dF,j + dF;k
oF, oF oF, oF, ], [0F> oF> oF, oF, .
=|—dt+—dx+—dy+—d —dt+—dx+—dy+—d
|:8t +3x o dy y+ 0z z]l+|:8l +3x A ady y+ 0z Z]J
oF oF oF oF
i |: 3 3 3 3 ]k

T3+ a4 3y + 234
o T Ty W R

OF,, OF,, OF OF,, OF,, OF
:<8—tli+—2'+—3k>dt+<—li+—2j+—3k>dx

a T YT o

OF,. OF,. OF; OF,. OF,. oF;
2 S ay + (i 225+ 253k e
+<8yl+8yj+8y )y+(821+82']+8z )Z

oOF oF oF OF
i+ S+ S+ S
o I W Tk

dF  OF 0Fdx 0Fdy 0Fdz
andso —=—+_—+—"F+——.
dt ot oxdt dydt Ozdt

Differential Geometry

dT dB dN
3.18. Prove the Frenet—Serret formulas: (a) e kN, (b) e —7N, (¢) I 7B — KT.
s s s

Solution

dT dT
(a) Since T+ T = 1, it follows from Problem 3.9 that T- o 0, that is, T is perpendicular to T.
S A

dT dT
If N is a unit vector in the direction —, then — = «N. We call N the principal normal, k the curvature
. ds ds
and p = 1/« the radius of curvature.

dB dN dT dN dN
(b) LetB:TxN,sothatazTX%—i—%xN:TXK—i—KNxN:Txﬁ.
dN

dB
=TT x — =0, so that T is perpendicular to —.
ds ds

dB
Then T~
en I

dB dB
But from B+ B = 1, it follows that B+ p = 0 (Problem 3.9), so that T is perpendicular to B and is thus
s s

in the plane of T and N.
dB
Since T is in the plane of T and N and is perpendicular to T, it must be parallel to N; then 5 —7N.
s s
We call B the binormal, 7 the torsion, and o = 1/7 the radius of torsion.

(c) Since T, N, B form a right-handed system, so do N, B, and T, that is, N =B x T.

Thenﬁ:Bxg—i—dB

s s EXT:BXKN—TNXT:—KT+TB=TB—KT.
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3.19. Prove that the radius of curvature of the curve with parametric equations x = x(s),y = y(s), and

z = z(s) is given by
x\’ d*y > rd\’ o
p=\\5=) H\==) Hl 5= .
(ds2> (dsz) (dsz)

The position vector of any point on the curve is r = x(s)i + y(s)j + z(s)k. Then

Solution

dr dx, dy, dz dr  d*c, d*y., d*z
T=" 50D % and =054
ds _ds' + s’ + ds ¢ T de! + ds2? + ds?

But dT/ds = kN so that

dT x 2+ 2y 2+ Pz\°
K= |—| = —_— —_— —_—
ds ds? ds? ds?
and the result follows since p = 1/k.
dr d*vr dr 71
3.20. Show that — - X — = —.
ds ds?  ds3 p?
Solution
dr d*r dT &r dN dk dk dk
— =T, —=—2= , —=k—+—N= B — kT)+—N =B — K&’T+—N
ds s ds < dss = ds + ds (7 KD+ ds KT b ds
dr d’r dr e dK
E' EngT' KNX (K'TB—K T+EN)

d
=T (KZTNXB—K3NXT+Kd—KNXN>
\)

=T- (KT + K’B)

The result can be written

X y/ /

-1
= (x//)Z + //)2 +(z//)2 X” " "
[ (y ] X" y/// Z///

where primes denote derivatives with respect to s, by using the result of Problem 3.19.

3.21. Given the space curve x = t,y = 1%,z = 1. Find: (a) the curvature , (b) the torsion 7.

Solution

(a) The position vector is r = 7i + *j + 5 °k. Then

d ds |d
X iy2uj+22k and LT

_ f dr
dt dt — |dt

dr ' dr \/(1)2 + Q0+ Ry =1+27
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and
_dr_dr/dr i+ 21j+2rk
Tds  ds/dt 1422
dT (1 427)2j +41k) — (i + 24 + 2°k) (1) —4ii + (2 — 41)j + 41k
dr (1 + 2¢2)? N (14 212)?
Then
dT _dT/di  —41i+ (2 — 41)j + 4ik
ds — ds/dt (14223
Since dT/ds = kN,
T V(4P @42 + (4 2
T lds| (1 +22)° I

1dT -2+ (1 —22)j + 2tk
(b) From (a), N=——= 1+( i+

kds 1422
Then
i j k
1 2t 21 2 .
21 — 2t + k
B=TxN= 2 2 =" =J '
X 1422 142 142¢ 1122

-2t 1—2¢7 2t
1422 1422 1+272

dB 41+ (47 — 2)j — 41k

dB  dB/dt  Ati+ (47 — 2)j — 4tk

Now — = and — = =
dt (14212 ds ~ ds/dt (1422)°
—2fi + (1 — 26%)j + 2tk dB
Also, — TN = —7 1+( s Since — = —7N, we find 1= ———.
1+ 22 s (1 + 282y

Note that k = 7 for this curve.

3.22. Find equations in vector and rectangular form for the (a) tangent, (b) principal normal, and
(c) binormal to the curve of Problem 3.21 at the point where ¢ = 1.

Solution

Let To, No, and Bg denote the tangent, principal normal, and binormal vectors at the required point. Then, from
Problem 3.21,

i+2j+2k —2i—j+2k 2i—2j+k

T0=71+ J3+ , No=71 3:]+ , 1"027l 3']+

If A denotes a given vector while rp and r denote, respectively, the position vectors of the initial point and an
arbitrary point of A, then r — rq is parallel to A and so the equation of A is (r — ro) x A = 0. Then

Equation of tangent is r—ro)xTo=0
Equation of principal normal is (r —rp) X No =0

Equation of binormal is r—ro)xBp=0
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In rectangular form, with r = xi + yj + zk,ro =i+ j + %k, these become, respectively,

x—1 y—-1 2z-2/3 x—-1 y—-1 z-2/3 x—-1 y—1 z-2/3

12 2 7 =2 -1 272 -2 1

These equations can also be written in parametric form (see Problem 1.28, Chapter 1).

3.23. Sketch the space curve x = 3 cost,y = 3sint, z = 4¢ and find (a) the unit tangent T, (b) the principal
normal N, curvature k, and radius of curvature p, (c) the binormal B, torsion 7, and radius of torsion o.

Solution

The space curve is a circular helix (see Fig. 3-4). Since t = z/4, the curve has equations x = 3 cos(z/4),
y = 3sin(z/4) and therefore lies on the cylinder x> +y? = 9.

(a) The position vector for any point on the curve is
r = 3costi+ 3sinzj 4 41k

d
Then i = —3sinti + 3 costj + 4k

ds dr dr
—=|—| =,/ = =/(=3sint)* + Bcos)? +42 =5
di |ar| “Ndrar V3sing? + Geosn? +
dr dr/dt 3 3 4
Th T=—= = —Zsinfi+= i+ -k
us s dsjdi 5sm l+scos J+5
(b) ar_d —ésinti—i—%cost'—i—ﬂk ——Ecosti—isint'
dr i\ 5 580 TER) =75 5500
ar _dTjdr _ 3 costi 3 sin tj
ds _ ds/dt 25 254
dT dT
Since — =kN, |—|=|k|IN|]=kas k= 0.
ds ds
dT 3 : 3 Z 3 1 25
Th = |—| = _— ——q] I ==
en K I \/( 2500st> +( 25smz) 25 and p =3
dT 14T
From — = kN, we obtain N = ——— = —costi — sintj.
ds K ds
i j k
() B=TxN=|—2sinr Zcost 2|=42sinsi—%cossj+3k
—cost —sint 0
dB 4 ti+4' ;i dB dB/dt 4 zi+4 in s
— == —sin — = =— —sin
dr 5SS e T dsyar T 25 S T st
4 4 4 1 25
—TN:—1'(—costi—sintj):gcosti—i-gsintj or T:E and a’:;:Z.
Normal Plane [ Osculating Plane
b4 ¥ ,//’
C /A ,/' ‘\
R iy TS \ \"“‘
: \,"\ P// \ /
7 Sr~_ | 1T,
\ 2
/
2 y \ Rectifying Plane
X

Fig. 3-4 Fig. 3-5
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3.24. Find equations in vector and rectangular form for the (a) osculating plane, (b) normal plane, and

3.25.

(c) rectifying plane to the curve of Problems 3.21 and 3.22 at the point where ¢ = 1.

Solution

(a) The osculating plane is the plane which contains the tangent and principal normal. If r is the position vector
of any point in this plane and rg is the position vector of the point # = 1, then r — ro is perpendicular to Bo,
the binormal at the point t = 1, i.e. (r —rg)* Bo = 0.

(b) The normal plane is the plane which is perpendicular to the tangent vector at the given point. Then the
required equation is (r — rg)* To = 0.

(c) The rectifying plane is the plane which is perpendicular to the principal normal at the given point. The
required equation is (r — rg)* No = 0.

In rectangular form the equation of (a), (b) and (c) become respectively,

2x— 1) =20 — )+ 1z —2/3) =0,
1= 1) +2(y — 1) +2(z — 2/3) = 0,
—2x-1D—-10v—D+2(z—-2/3)=0.

Fig. 3-5 shows the osculating, normal and rectifying planes to a curve C at the point P.

(a) Show that the equation r = r(u, v) represents a surface.
Jar or

(b) Show that u X > represents a vector normal to the surface.
u Y

Solution

(a) If we consider u to have a fixed value, say uq, then r = r(up, v) represents a curve which can be denoted by
u = up. Similarly # = u; defines another curve r = r(u;,v). As u varies, therefore, r = r(u, v) represents
a curve which moves in space and generates a surface S. Then r = r(u, v) represents the surface S thus
generated, as shown in Fig. 3-6(a).

The curves u = up,u = uy, ... represent definite curves on the surface. Similarly v = vo,v =vy, ...
represent curves on the surface.

By assigning definite values to u and v, we obtain a point on the surface. Thus curves u = up and v = v,
for example, intersect and define the point (1o, vo) on the surface. We speak of the pair of numbers (i, v) as
defining the curvilinear coordinates on the surface. If all the curves u = constant and v = constant are
perpendicular at each point of intersection, we call the curvilinear coordinate system orthogonal. For
further discussion of curvilinear coordinates see Chapter 7.

X, N
R

Fig. 3-6a Fig. 3-6b

(b) Consider point P having coordinates (1o, vo) on a surface S, as shown in Fig. 3-6(b). The vector dr/du at P is
obtained by differentiating r with respect to u, keeping v = constant = vg. From the theory of space curves,
it follows that dr/du at P represents a vector tangent to the curve v = vg at P, as shown in the adjoining
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figure. Similarly, dr/dv at P represents a vector tangent to the curve u = constant = ug. Since dr/du and
ar/ov represent vectors at P tangent to curves which lie on the surface § at P, it follows that these

. ar or .
vectors are tangent to the surface at P. Hence it follows that ™ X ™ is a vector normal to S at P.
v

3.26. Determine a unit normal to the following surface, where a > 9:

r = acosusin vi 4 asinu sin vj + a cos vk

Solution
or . . .
— = —asinusin vi + a cos u sin vj
ou
ar . . . .
P acos ucos vi 4+ asinu cos vj — a sin vk
v
i j k
Then ar or . . .
— X —=|—asinusinv acosusinv 0
ou I

acosucosv asinucosv —asinv
= —a? cos usin? vi — a” sin u sin? vj — a? sin v cos vk

represents a vector normal to the surface at any point (u, v).

ar
A unit normal is obtained by dividing 8—r X a—z by its magnitude, , given by
u

r
=
du ov

2 2 2

Vit cos? usin® v + a* sin® usin® v + a* sin® vcos? v = \/a“( cos? u + sin” u) sin* v + a* sin® vcos? v

= \/a4 sin® v( sin® v + cos? v)
_{azsinv if sinv >0

—a*siny  if siny <0
Then there are two unit normals given by

+ (cosusinvi + sinu sin vj + cos tk) = +n

It should be noted that the given surface is defined by x = acosusinv, y = asinu sinv, z = acosv from
which it is seen that x2 + y2 + 72 = @2, which is a sphere of radius a. Since r = an, it follows that

n = cos u sin vi + sin u sin vj 4 cos vk
is the outward drawn unit normal to the sphere at the point (u, v).
3.27. Find an equation of the tangent plane to the surface x> + 2xy* — 3z = 6 at the point P(1, 2, 1).

Solution

The normal direction N to a surface F(x,y, z) = k, where k is a constant, follows:
N= [vaFyst]

We have F, = 2x + 2y2,F y=2xF, = 3z2. Thus, at the point P, the normal to the surface (and the tangent
plane) is N(P) = [10, 2, 3].

The tangent plane E at P has the form 10x+ 2y + 3z =b. Substituting P in the equation gives
b=10+4+4+3 = 17. Thus 10x + 2y 4+ 3z = 17 is an equation for the tangent plane at P.
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Mechanics

3.28.

3.29.

3.30.

Show that the acceleration a of a particle which travels along a space curve with velocity v is given by

_dv v?
— T+ N
Todr

where T is the unit tangent vector to the space curve, N is its unit principal normal, and p is the radius
of curvature.

Solution

Velocity v = magnitude of v multiplied by unit tangent vector T

or v=1T
Differentiating,
dv d dv dT
= —= — = —T
dt dt( = to dr
But by Problem 3.18(a),
dT dT ds ds uvN
T asa Ng T N=

Then

d d 2
a=Dr (N By TN
dt p dt p

This shows that the component of the acceleration is dv/dt in a direction tangent to the path and v?/p in a direc-
tion of the principal normal to the path. The latter acceleration is often called the centripetal acceleration. For a
special case of this problem see Problem 3.11.

If r is the position vector of a particle of mass m relative to point O and F is the external force on the
particle, then r x F = M is the torque or moment of F about O. Show that M = dH/dt, where H =
r x mv and v is the velocity of the particle.

Solution
d
M:er:er(mv) by Newton’s law.
d d dr
But —(rxmv)-rx—(mv)%—zxmv
rxd( V) 4+ V X mv rxd( v)+ 0
= —(m mv = —m
dt dt
. d dH
1e., M=—(rxmv)=—

dt dt

Note that the result holds whether m is constant or not. H is called the angular momentum. The result states that
the torque is equal to the time rate of change of angular momentum.
This result is easily extended to a system of n particles having respective masses mj, my, ..., m, and position

n
vectors ry, Iy, .. .,r, with external forces Fy,F,, ..., F,. For this case, H = ) myr; x v, is the total angular
k=1

n ) . dH
momentum, M = Y r; x Fy is the total torque, and the result is M = a as before.
k=1

An observer stationed at a point which is fixed relative to an xyz coordinate system with origin O, as
shown in Fig 3-7, observes a vector A = A;i + Ayj + Aszk and calculates its time derivative to be

dA dA dA
dt] —|—d—t2 +d7%k Later, he finds out that he and his coordinate system are actually rotating

with respect to an XYZ coordinate system taken as fixed in space and having origin also at O. He
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asks, ‘What would be the time derivative of A for an observer who is fixed relative to the XYZ coor-
dinate system?’

Fig. 3-7
dA dA . . . .
(a) Let o and o denote respectively the time derivatives of A with respect to the fixed and
f m

moving systems. Show that there exists a vector quantity e such that
dA| dA
i A
dr|, dt m+ @x

(b) Let Dy and D,, be symbolic time derivative operators in the fixed and moving systems respect-
ively. Demonstrate the operator equivalence

Dy = Dy, + @wx
Solution

(a) To the fixed observer the unit vectors i, j, k actually change with time. Hence such an observer would
compute the time derivative of A as

dA dA,, dA,., dA; di dj dk
—=—i+—j+—k+A —+A—+A;— 1
dt dtl dt']+dt + ldt+ 2dt+ >t M
dA dA di dj dk
thatis, —| =—| +A;—+A,—+ A3 — 2
s dt}f dt m+1dt+ 2dt+ dr @
Since i is a unit vector, di/dt is perpendicular to i (see Problem 3.9) and must therefore lie in the plane of j
and k. Then
di
o= aij+ak )
Similarly,
di
d;; — ak + aji @)
dk
E = (Xsi + aﬁj (5)
dj di dj di
From i+ j = 0, differentiation yields i- j:+ d% -j=0.Buti- j: — a from (4), and Z: - j = a; from (3);
then ay = —Ag.
_ . . dk di
Similarly fromi-k =0, i- T +E *k=0and as = —ay;

dk dj
from je k=0, j- E+d—‘:~k:0and o = —as.
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di dj dk
Then E; = Ollj + Olgk, J = C(3k — Olli, — = —0£2i — C(3j and

dt dt
di dj dk . . . .
Al — I +AZE + Az E (—a1Ay — pA3)i+ (a1A] — azA3)j + (A1 + aszAz)k which can be written as

i j kK
a3 —0p Ap
A A A

Then if we choose a3 = wy, —as = w,, @] = w3 the determinant becomes

i j ok
W W w|=mxA
Al Ay A3

where @ = wi + wyj + wsk. The quantity e is the angular velocity vector of the moving system with
respect to the fixed system.

. dA
(b) By definition DA = E‘ = derivative in fixed system
f
dA T .
D, A = al = derivative in moving system.

From (a),
DA =DyA+ o xA=D,+wx)A

and shows the equivalence of the operators Dy = D,, + @ X.

SUPPLEMENTARY PROBLEMS

3.31.

3.32.

3.33.

3.34.

3.35.

3.36.

3.37.

3.38.

3.39.

Suppose R = e~'i 4 In(#> + 1)j — tantk. Find: (a) dR/dt, (b) d*R/df?, (c) |dR/dt], (d) |d*R/df*| at t = 0.

Suppose a particle moves along the curve x = 2sin 3¢,y = 2 cos 3¢,z = 8¢ at any time 7 > 0.
(a) Find the velocity and acceleration of the particle.
(b) Find the magnitude of the velocity and acceleration.

Find a unit tangent vector to any point on the curve x = acos wt, y =asinwt, z = bt where a, b, and w are
constants.
Suppose A = £%i — tj + (2t + Dk and B = (2¢ — 3)i + j — tk. Find
d d d d dB
—(A+B), (b) —(AxB),(c) -|[A+B|,(d) — (A x—)atr=1.
(@) 2 (A*B), (1) ~(AxB). () LA+ '”m( Xdu>a
Suppose A =sinui+ cosuj+uk, B =cosui—sinuj— 3k, and C =2i+3j—k.

Find di(A x (B xC))atu=0.
u

d dB dA B d’A
Show: (a) *(A E—E B) 7d5‘2 — ds? *
dB dA d’B  d’A
LAxE_ B g)oaxiZ_
®) < “ds " ds > a2 de
dv d2V av &’V
Lv- st )y
© (V dr dt2> dar AR

d2
Suppose A(f) = 3¢ — (t + 4)j + (> — 20k and B(¢) = sinti + 3e~’j — 3 cos tk. Flnd (A x B)att=

2

d’A dA
Let — 7 = = 6i — 24¢%j + 4 sinrk. Find A given that A = 2i + j and o= —i—3katr=0.

Show that r = ¢~/(C; cos 2t + C, sin 2¢), where C; and C, are constant vectors, is a solution of the differential
d’r _dr

equation a7 + 2d— +5r=0.
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3.40.

3.41.

3.42.

3.43.

3.44.

3.45.

3.46.

d*r dr
Show that the general solution of the differential equation i +2ad—+ w’r =0, where o and w are
constants, is

@ r=e (CleWL“’z’ +Cre az,a;t) if @ — >0
(b) r = e %(C; sinvw? — a2t + Cy cos v w? — a?1) if o — w? < 0.
() r=e"%C +Cat) if &> — * = 0.

where C; and C, are arbitrary constant vectors.

Solve: ()ir 4£ 5r=0 (b)—+2d—+r 0 ()i+4r—0
olve: a dt2 =0, d[2 , c dtz
dY dX
Solve — =X, — = ~Y.
© edt dt

A A PA PA PA FA
Suppose A = cos xyi + (3xy — 2x2)j — (3x + 2y)k. F1nda— o a2 W % Byax

&
Suppose A = x?yzi — 2x7°j + xz’k and B = 2zi + yj — x’k. Find ﬁ(A x B) at (1, 0, —2).
xoy

Suppose C; and C, are constant vectors and A is a constant scalar. Show that
A . L : . PH &*H
H = ¢7(C, sin Ay 4+ C, cos Ay) satisfies the partial differential equation —- o + e =0.
Y
Suppose p, is a constant vector,  and ¢ are constant scalars and i = /—1. Prove that A = [pye’~"/]/r
PA  20A 1 A

satisfies the equation —- + —— = — ——. [This result is of importance in electromagnetic theory.
q ar2 ror c% o [ P & vl

Differential Geometry

347.

3.48.

3.49.
3.50.

3.51.

3.52.

3.53.

3.54.

3.55.

Consider the space curve x =t — £3/3,y = 2,z = t + /3. Find: (a) the unit tangent T, (b) the curvature «,
(c) the principal normal N, (d) the binormal B, (e) the torsion 7.

Suppose a space curve is defined in terms of the arc length parameter s by the equations
X =arctans, y= %\/i(sz +1), z=ws—arctans

Find @T, 0N, B, d«k ()7 {p (o

Consider the space curve x =t,y = 2,z = 13 (called the twisted cubic). Find k and .

Show that for a plane curve the torsion 7= 0.

Consider the radius of curvature p = 1/« of a plane curve with equations y = f(x), z = 0, that is, a curve in the xy
plane. Show that p = {[1 + /)*I*%}/1y"I.

Consider the curve with position vector r = a cos ui + b sin uj, where a and b are positive constants. Find its
curvature k and radius of curvature p = 1/k. Interpret the case where a = b.
. . dT dN B
Show that the Frenet—Serret formulas can be written in the form T =wxT, I =w x N, T = w x B. Also,
determine w. § § §
Ir x 1|

Prove that the curvature of the space curve r = r(¢) is given numerically by « = T, where dots denote
r

differentiation with respect to .
r*rxr
IF x ¢
(b) Suppose the parameter ¢ is the arc length s. Show that

(a) Consider the space curve r = r(f). Prove that 7= for the space curve r = r(z).

dr d&r  dr

AL

e ds ds® ~ ds3 '
(dr/ds?)?
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3.56. Let Q = i x i. Show that k = %, r= Q';.
|| Q
3.57. Find « and 7 for the space curve x=6—sinf, y=1—cosf, z=4sin(6/2).
2t+1 7

3.58. Find the torsion of the curve x = p + T y= T z =t + 2. Explain your answer.
3.59. Consider the equations of the tangent line, principal normal, and binormal to the space curve r = r(t) at the point

t = ty. Show they can be written, respectively, r = rog + tTo, r = ro + tNo, r = ro + By where ¢ is a parameter.
3.60. Consider the curve x = 3cost, y = 3sint, z = 4¢. Find equations for the (a) tangent, (b) principal normal and

(c) binormal at the point where ¢ = .
3.61. Find equations for the (a) osculating plane, (b) normal plane, and (c) rectifying plane to the curve

x=3t—1, y=3r2, z=3t+1 at the point where ¢ = 1.
3.62. (a) Show that the differential of arc length on the surface r = r(u, v) is given by

ds* = Edu’ + 2F du dv + G dv*
ar or ar\’ ar or ar or ar\’
where E=— - —=(—), F=—-—, G=—-—=|—]) .
ou ou ou ou v o v ov
(b) Prove that a necessary and sufficient condition that the u, v curvilinear coordinate system be orthogonal is
F=0.
3.63. Find an equation of the tangent plane to the surface z = xy at the point (2, 3, 6).
3.64. Find equations of the tangent plane and normal line to the surface 4z = x> — y? at the point (3, 1, 2).
3.65. Assuming E, F, and G are defined as in Problem 3.62, prove that a unit normal to the surface r = r(u, v) is
ar y or
n— +_ou_o9v
" VEG - F?

Mechanics
3.66. Suppose a particle moves along a curve r = (2 — 41)i + (> + 41)j + (8> — 3r°)k. Find the magnitudes of the

tangential and normal components of its acceleration when 7 = 2.
3.67. Suppose a particle has velocity v and acceleration a along a space curve C. Prove that the radius of curvature p of

3
its path is given numerically by p = .
v x a

3.68. An object is attracted to a fixed point O with a force F = f(r)r, called a central force, where r is the position

vector of the object relative to O. Show that r x v =h where h is a constant vector. Prove that the angular

momentum is constant.
3.69. Prove that the acceleration vector of a particle moving along a space curve always lies in the osculating plane.
3.70. (a) Find the acceleration of a particle moving in the xy plane in terms of polar coordinates (p, ¢).

(b) What are the components of the acceleration parallel and perpendicular to p?
3.71. Determine the (a) velocity and (b) acceleration of a moving particle as seen by the two observers

in Problem 3.30.
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ANSWERS TO SUPPLEMENTARY PROBLEMS
331 (a) —i—K, (b)i+2j,(c) V2, () V5
3.32. v=06cos3ti — 6sin3zj + 8k, a = —18sin3ri — 18 cos 37§, |v| = 10, |]a| = 18

—awsin wti 4+ aw cos wtj + bk
Nz
3.34. (a) —6, (b) 7j+ 3k, (c) 1, (d) i+ 6j + 2k 3.37. —30i + 14j + 20k

3.33.

3.35. 7i+ 6j — 6k

338. A= —t+2)i+ 1 -2+ (t—4sinnk
341. (A r=C;e” + Cre™’, (b)r = ¢ '(C; + Cat), (c) r = C; cos 2t + C, sin 2t

342. X=C cost+ C,sint, Y = C;sint — Cycost

3.43. 3 9A
— = —ysinxyi + 3y — 4x)j — 3k, — = —xsinxyi 4 3xj — 2k,
ox ay
PA_ i PRl A BA
p v~ cos xyi — 4j, E X~ cos xyi, oxdy ~ yir xy cos xy + sinxy)i + 3j
344, —4i—gj
(1 —i+2+ 1+ 2k 20 . 1—#¢,
347. @ T= S)N=-— i+——
@ V21 + 12) © +2 1+
1 (= Di—-2j+ @+ Dk 1
(b) 1= z @WB= ! (e) 7= 22
(1+2) V2(1 +12) (1+1)
i+ ﬁs] + s’k V2
48. T=———— =
3.48. (a) o d) o
—/2si + (1 — $2)j + 25k V2 241
(b) N= 5 d (&) 7= (g) o=
s+ 1 s2+1 V2
s5— A/2sj + k s2+1
©B="22ES () p="
st +1 V2
29+ 92 + 1 3
349, k= , T=
“ (9% 4 412 + 1)*2 TR T2 1
b 1
3.52. a —; if a = b, the given curve, which is an ellipse, becomes a circle of radius a and

K = =
(@ sin®u+ b2 cos?u)?>  p
its radius of curvature p = a.

3.53. w=7T+ kB
s0/2 +2si i 2
357, k=16 Dcosh, r— ST C0s0)C0s6/2 + 25in Gsin 6/
’ 12cos 6—4

3.58. 7=0. The curve lies on the plane x — 3y 4+ 3z = 5.

3.60. (a) Tangent:r=—3i+477k+t(—%j+%k) or x:—3,y=—%t,z=47‘r+%t.
(b) Normal: r = -3i+4mj+1d or x=-3+t,y=4m z=0.

(c) Binormal: r = =3i+4mj +1(j+2k) or x=-3,y=4m+ir,z=1r
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3.61.

3.63.

3.70.

3.71.

@y—z+1=0,b)y+z—7=0,(c)x=2. 36d. 3x—y—2z=4;x=3t+3,y=1-—1,
z=2-12t.

3x+2y—z=6. 3.66. Tangential, 16; normal 24/73.

(@) 1 =[(p— pd )cos ¢ — (pd + 2pP) sin dli + [(p — pd ) sin ¢ + (pd + 2p) cos Plj

®) p—pd', pd+ 2

(@) Vpr = Vpjm + @ x 1, (b) 2,y = ap,, + a,,r. For many cases, w is a constant, i.e., the rotation proceeds with
constant angular velocity. Then D, = 0 and

Ay =20 X Dpr+ o X (@ X1) =20 X V), + @ X (0 X T)

The quantity 2w X v, is called the Cortiolis acceleration and w x (w x r)is called the centripetal acceleration.



CHAPTER 4

Gradient, Divergence, Curl

4.1 Introduction

The vector differential operator del, written V, is defined as follows:

g, 0 a ad a a
V=—i+—j+—k=i—+j—+k—
ax +8y +81 18x+']8y+ 0z
This vector operator possesses properties analogous to those of ordinary vectors. It is useful in defining
three quantities that appear in applications and which are known as the gradient, the divergence, and the

curl. The operator V is also known as nabla.

4.2 Gradient

Let ¢(x, y, z) be a scalar function defined and differentiable at each point (x, y, z) in a certain region of
space. [That is, ¢ defines a differentiable scalar field.] Then the gradient of ¢, written V¢ or grad ¢ is

defined as follows:
0 0 0 0
V¢ + — + — d’ — iﬁ i+ ﬁ + 7(1)
8 ox 8y 0z

Note that V¢ defines a vector field.
EXAMPLE 4.1 Suppose ¢(x, y, z) = 3xy> — y?z>. Find V¢ (or grad ¢) at the point P(1, 1, 2).

d 0 0
Vo = (—1 + 87‘] +— k) Bxy® —y*2)
=3yYi + (9% — 2y2%)j — 2y°2k

Therefore Ve(1, 1, 2) = 3(1)%i + [9(1)(1)? — 2(1D)(2)*]j — 2(1)’(2)k = 3i + j — 4k.

Directional Derivatives

Consider a scalar function ¢ = ¢(x, y, z). Then the directional derivative of ¢ in the direction of a vector A
is denoted by Da(¢). Letting a = A/|A|, the unit vector in the direction of A,

Dx(¢) =V -a

We emphasize that a must be a unit vector.



CHAPTER 4 Gradient, Divergence, Curl

EXAMPLE 4.2 Consider the scalar function ¢(x, y, z) = x> + > + xz.
(a) Find grad ¢. (b) Find grad ¢ at the point P = P(2, —1, 3). (c) Find the direction derivative of ¢ at the
point P in the direction of A =i+ 2j + k.

a d ad
(@) grad p=(—i+—j+—k |+ +x2) = 2x+ 2)i+2yj + k.
ax  dy" 0z

(b) At P2, —1, 3), grad ¢ = 7i — 2j + 3k.
(c) First we find the unit vector a = A/|A| = (i + 2j + K)/~/6 in the direction of A. Then the directional
derivative of ¢ at the point P(2, —1, 3) in the direction of A follows:

Ve a = (Ti— 2j +3K) - [(i+2j+k)/\/5] — 6/7/6 = /6/6.

Lagrange Multiplier

Here we want to find the points (x, y) that give the extrema (maximum or minimum value) of a function
f(x, y) subject to the constraint g(x, y) = d, where d is a constant. [More generally, we want to find
the points (x, x3, ..., X,) that give the extrema (maximum or minimum value) of a function
f(x1, x2, ..., x,) subject to the constraint g(x1, X2, ..., x,) = d, where d is a constant.]

This will occur only when the gradients Vf and Vg (directional derivatives) are orthogonal to the given
curve [surface] g(x, y) = d. Thus Vf and Vg are parallel; and hence there must is a constant A such that
Vf = AVg.

The Greek letter A (lamda) introduced above is called a Lagrange multiplier. The condition Vf = AVg
together with the original constraint yield three (n + 1) equations in the unknowns x, y and A:

fx(x’ )’) = /\gx(xa )’)’ fy(x7 y) = /\gy(x’ J’)’ g(x’ y) =d

Solutions of the system for x and y give the candidates for the extrema of f(x, y) subject to the constraint
glx,y) =d.
EXAMPLE 4.3 Minimize the function f(x, y) = x> + 2)? subject to the constraint g(x, y) = 2x +y = 9.

Using the condition that Vf = AVg and the constraint, we obtain the three equations
2x=2A, 4y=A, 2x+y=9
Eliminating A from the first two equations, we obtain x = 4y. This and 2x +y = 9 gives 9y = 9. Thus we obtain

the solution y = 1 and x = 4. Thus f(4, 1) = 16 + 2 = 18 is the minimum value of f subject to the constraint
2x+y=09.

4.3 Divergence

Suppose V(x, y, z) = Vii+ V,j + V3K is defined and differentiable at each point (x, y, z) in a region of
space. (That is, V defines a differentiable vector field.) Then the divergence of V, written V+V or div V
is defined as follows:

0 ad 0
VeV=|(—i+—j+—k|)-(Vii+V2j+ V3k)
x  dy 0z

0
_ovi v v,
T ay 0z

Although V is a vector, V+ V is a scalar.
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EXAMPLE 4.4 Suppose A = x’z%i — 2y?7%j + xy?zk. Find V+ A (or div A) at the point P(1, —1, 1).

a d
V-A:(a—1+a—J+ k) (22— 2922 + xy*zk)

=§(x222)+ (- 2y2z2)+ (xy 2) = 2x7" — 4y + xy?

At the point P(1, —1, 1),

4.4 Curl

VeA =2()(1) —4(=D(1)* + (I)(-1)* =7

Suppose V(x, y, 2) =

Vii+ V,j+ V3k is a differentiable vector field. Then the curl or rotation of V,

written V x V, curl V or rot V, is defined as follows:

. . . a
Note that in the expansion of the determinant the operators P
X

0 d 0
VxV= <i+j+k) x (Vii+ Va2 j+ V3k)

ox  dy 0z
i j Kk
_|82 98 38
ol Ay oz
Vi Vo V3
Jd 0 Jd 0 Jd 0
=|dy dzli—|ax ozli+|ox Ik
Vo V3 Vi V3 Vi W

aVz V. av, Vv aV, Vv
= (2 _2)i+ 71_73.“_ 22 9Pk
ay 0z 0z ox ox ay
0
—, — must precede Vi, V,, V3.
dy 0z

EXAMPLE 4.5 Suppose A = x’z%i — 2y?7%j + xy’zk. Find V x A (or curl A) at the point P(1, —1, 1).

ox 0 0z

i
el il

0 0 0
VxA= (—1 + —yj + —k) x (P22 — 2y 22j + xy*2Kk)
k
d
0z

ax ay
22 -2 w2

- 83<xy2z)—3(—2y2z2>}i—[3<xy2z>—3(x2z2)]j [ (=222) — <x2z2>]
| dy 0z ox 0z dy

= (2xyz + 4°2)i — v’z — 2x%2)j + Ok

At the point P(1, —1, 1), VX A =2i 4.

4.5 Formulas Involving V

The following propositions give many of the properties of the del operator V.

PROPOSITION 4.1:

Suppose A and B are differentiable vector functions, and ¢ and ¢ are differentiable
scalar functions of position (x, y, z). Then the following laws hold.

(i) V(p+ ) =Vod+ Vi or grad(¢ + ¢) = grad ¢ + grad ¢
(i) V-(A+B)=V-A+V-B or div(A+B)=divA +divB
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(i) VxA+B)=VxA+VxB or curl(A + B) = curl A + curl B
(iv) V+(PA) = (V) A + $(V+ A)

(V) V x ($A) = (V) x A + $(V x A)

(vi) V. (AxB)=B+(VxA)—A-(VxB)

(vil)) VX (AxB)=B-*V) A —B(V-A)— (A V)B+ A(V-B)
(viii) VA*B) =BV A+ A VIB+B x (VxA)+A x (VxB)

PROPOSITION4.2:  Suppose ¢ and A are differentiable scalar and vector functions, respectively, and both
have continuous second partial derivatives. Then the following laws hold.

. ‘P P Fh
)V (V) =Vip=—+—+—
V- ¢ ox? + dy? + 0z?
A L o
where V2 = 2 + ) + 52 is called the Laplacian operator.
x y Z

(i) V x (V¢) = 0. The curl of the gradient of ¢ is zero.
(i) V+(V x A) = 0. The divergence of the curl of A is zero.
(iv) Vx (VxA)=V(V-A)— V?A.

4.6 Invariance

Consider two rectangular coordinate systems or frames of reference xyz and x'y’z’ having the same origin O
but with axes rotated with respect to each other. (See Fig. 4-1.)

2~

Z . (.Y, 2)

oo

&,y 2)

Fig. 4-1

A point P in space has coordinates (x, y, z) or (¥, y', /) relative to these coordinate systems. The
equations of transformation between coordinates of both systems or the coordinate transformations are
given as follows:

¥ =lhx+loy+ sz
Y = bix+ oy + Inz (D
7 = Lix + l3zy + l337

Here I, j, k =1, 2, 3 represent direction cosines of the x’, ', z’ axes with respect to the x, y, z axes. (See
Problem 4.38.) In case the origins of the two coordinate systems are not coincident the equations of
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transformation become

X =lhix+lpy+ Lz +a)
Y =bix+ oy + hiz+d) 2)
7 = lx + by + I3z + d;

where the origin O of the xyz coordinate system is located at (a, a5, a}) relative to the x'y'z’ coordinate
system.

The transformation equations (1) define a pure rotation, while equations (2) define a rotation plus
translation. Any rigid body motion has the effect of a translation followed by a rotation. The transformation
(1) is also called an orthogonal transformation. A general linear transformation is called an affine
transformation.

Physically, a scalar point function or scalar field ¢(x, y, z) evaluated at a particular point should be inde-
pendent of the coordinates of the point. Thus the temperature at a point is not dependent on whether
coordinates (x, y, z) or (x', y', Z’) are used. Then, if ¢(x, y, z) is the temperature at point P with coordinates
(x, v, z) while ¢'(x', y', ') is the temperature at the same point P with coordinates (¥, y', z'), we must have
dx, v, 2) =P, y, ). I Px, y, 2) = $(X, ¥, 7), where x, y, zand x/, y', 7’ are related by the transform-
ation equations (1) or (2), we call ¢(x, y, z) an invariant with respect to the transformation. For example,
x% + y* + 22 is invariant under the transformation of rotation (1), since x> +y? + 2> = x> +y? + 7.

Similarly, a vector point function or vector field A(x, y, z) is called an invariant if A(x,y, 2) =
A'(x, ¥, ). This will be true if

Al(x, y, i+ Ax(x, y, 2 +As(x, y, Dk = A|(X, Y, DI + AL, Y, 2)f + A, Y, 2K

In Chapters 7 and 8, more general transformations are considered and the above concepts are extended.

It can be shown (see Problem 4.41) that the gradient of an invariant scalar field is an invariant vector field
with respect to the transformations (1) or (2). Similarly, the divergence and curl of an invariant vector field
are invariant under this transformation.

SOLVED PROBLEMS

4.1. Suppose ¢(x, y, z) = 3x*y — y*z%. Find V¢ (or grad ¢) at the point (1, —2, —1).
Solution

a a ]
Vo = [ —i I —~ kK 32 3.2
¢ (axl—i-ay,]-i-az )(xy y'zo)

.9 D 9
=i (3% —y*2) +ig (3xy —y’2%) + ko 3%y —y'2)
= 6xyi + (3% — 3y’2%)j — 2y°zk

= 6((=2)i + {3(1)* = 3(=2*(=1)*}j — 2(=2)*(- Dk
= —12i — 9j — 16k
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4.2. Suppose F and G are differentiable scalar functions of x, y and z. Prove (a) V(F 4+ G) = VF + VG,
(b) V(FG) = FVG + GVF.

Solution

@ VF+G) = (31+33J+8k>(F+G)

d
Zi*(F+G)+j*(F+G)+k*(F+G)
ox ay 0z

OF  0G  oF | 0G oF G
oF oF oF 3G G G
5+Ja*y“‘a*+ ?+17y+k?z

d d d 0 d
—+j—+k-|F —+j—+k—=)G=VF+VG
(18 +']8y+ Bz) —i—(l8 +_]ay+ ) +

(b) V(FG) = <3%1+—J+ k)(FG) —(FG)i+§(FG)j+a—az(FG)k

(Fveioe (i rof e (e o)

3G, 3G, 3G OF, OF, @
(87 +37J+<‘Tk>+G(7 +—J+—k):FVG+GVF
X

) 0 o

1
4.3. Find V¢ if (a) ¢ =In|r|, (b) ¢ =—.
r
Solution
(@) r=xi+yj+zk Then|r|=/x>+)>+z2and =In|r| =1In(x* +)* + 7).

1
Vo :Evm(x2 +y 4+

1.0 d a
=—{i—In(? +y + D) +j—In(? +y* + ) + k—In(x* +y* + %)
2| ox ay 0z

IR 2x . 2y 2z _xityj+zk r
_x2+y2+z2_r2

== k
2 1x2~|—y2+z2+Jx2+y2+zz+ X2 +y?+ 22
1 1
(b) V(I):V(f) S v] =V{(x2 +y2+Z2)71/2}
r \/xz—l—yz—i—z2
d
zla(xz—l—yz—i-zz)_l/z-i-‘l o+ +z)_1/2+k (x +y*+ )72
1
zl{ (P +y +z )_3/22x} +,]{ (x2+y2+zz)_3/22y}+k{—§(x2+y2+zz)_3/22z}

_ —xi—-yj—zk 1
T2 +y? +22932 7 3
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44.

4.5.

4.6.

4.7.

4.8.

Show that V"' = n#" 2.

Solution
v = v(m)”: VG2 432 4 22
—l*{(x +y' +z )”/2}+J {(x +y? +z2)"/2}+k {(x !

n
_ i{i(xz 4y 4 2y 2x} +j{§(x2 4y 4 2y Zy} + k{i(xz Ty 4 2y ZZ}
— n(xz +y2 + Z2)11/271(xi +yj + Zk) — n(r2)n/27lr — nrn—zr

Note that if r = rr; where r; is a unit vector in the direction r, then V/* = nr*~!r;

Show that V¢ is a vector perpendicular to the surface ¢(x, y, z) = ¢ where c is a constant.

Solution

Let r = xi + yj + zk be the position vector to any point P(x, y, z) on the surface. Then dr = dxi + dyj + dzk lies
in the tangent plane to the surface at P.

d 0 a ad
But d¢:a—(fdx+a—fdy+a—fdz=0 or <a—¢1+a—;b,]+a¢ )-(dxi+dyj+dzk):0, that is,

V¢-dr = 0, so that V¢ is perpendicular to dr and therefore to the surface.

Find a unit normal to the surface —x?yz?> + 2xy’z = 1 at the point P(1, 1, 1).

Solution

Let ¢ = —x?yz* + 2xy*z. Using Problem 4.5, V(1, 1, 1) is normal to the surface —x?yz?> + 2xy*z = 1 at the
Vé(l, 1, 1)
[Vé(l, 1, D)

Vo = (—2xyzz)i + (—x2z2 + 4dxyz)j + (—2x2yz + 2xy2)k.

point P(1, 1, 1); hence, will suffice.

3
Then V(1, 1, 1) =3j. |Vé(1, 1, 1)| = |3j| = 3|j| = 3. Thus, at the point P(1, 1, 1)§J = j is a unit normal
to —x%yz2 + 2xy’z = 1.

Find an equation for the tangent plane to the surface x>yz — 4xyz> = —6 at the point P(1, 2, 1).

Solution

V(xzyz — 4xyzz) = 2xyz — 4yzz)i + (xzz — 4xz2)j + (xzy — 8xyz)k.

Evaluating the gradient at the point P(1, 2, 1), we get —4i — 3j — 14k. Then 4i + 3j + 14k is normal to the
surface at P. An equation of the plane with normal N = ai + bj + ck has the form

ax+by+cz=Kk
Thus the equation has the form 4x 4 3y + 14z = k. Substituting P in the equation, we get k = 24. Thus the
required equation is 4x + 3y + 14z = 24.
Let ¢(x, y, z) and ¢p(x + Ax, y + Ay, z + Az) be the temperatures at two neighboring points P(x, y, 7)
and Q(x + Ax, y + Ay, z+ Az) of a certain region.

A A A
(a) Interpret physically the quantity A¢ ¢+ ax y + Ay, AZ +49 — ¢x v, 2)
s

where As is the

distance between points P and Q.
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4.10.
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A d
(b) Evaluate lim —d) —d) and interpret physically.
As—0 As ds
do dr

(c) Show that = V¢ +

Solution
(a) Since A¢ is the change in temperature between points P and Q and As is the distance between these points,

A¢/As represents the average rate of change in temperature per unit distance in the direction from P to Q.

(b) From the calculus,

Wy Wy

Ap = 3 + a—Az + infinitesimals of order higher than Ax, Ay, and Az.
y Z
Then
lim Ad) im ¢ ¢ Ax 8¢> Ay 8¢ Az
A0 As  As-0dx As 0y As | 9z As
or

dp _opdx  dpdy ¢ dz

ds  ox ds dy ds = 0z ds

d . . . . L
where a¢ represents the rate of change of temperature with respect to distance at point P in a direction
s
toward Q. This is also called the directional derivative of ¢.

(© 49 _dbdx addy dbde_ (a¢> 3. a¢>> <dx dy. dz>:

L+ 4+ 28 A k
ds  oxds dyds 0z ds 8x+3y']+8z d +d']+d

dr dr
Note that since I is a unit vector, V- I is the component of V¢ in the direction of this unit vector.
A) A)
Show that the greatest rate of change of ¢, i.e. the maximum directional derivative, takes place in the
direction of, and has the magnitude of, the vector V¢.

Solution

By Problem 4.8(c), d—d) =V¢-

dr d
maximum when V¢ and s have the same direction. Then the maximum value of d—d) takes place in the
s s
direction of V¢ and its magnitude is |V ¢|.
Let ¢ = x*yz — 4xyz?. Find the directional derivative of ¢ at P(1, 3, 1) in the direction of 2i — j — 2k.

Solution

First find Vop = (2xyz — 4yz2)i + (x2z — 4xz2)j + (x2y — 8xyz)k. Then Vé(l1, 3, 1) = —6i — 3j — 21k. The unit
vector in the direction of 2i — j — 2k is

_ 2i—j—2k 2
VO (=22

Thus the required directional derivative is

Vé(l, 3, 1) ra=(—6i —3j — 21K)- i —1j—2K) = —4+ 1 + 14 =11.
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4.11. Let ¢ = x*y*z%. (a) In what direction from the point P(1, 1, 1) is the directional derivative of ¢ a
maximum? (b) What is the magnitude of this maximum?

Solution

Vo = V(x*y320) = 2xy* 201 + 3x2y%°2%j + 6x2y k. Then V¢(1, 1, 1) = 2i + 3j + 6k. Then, by Problem 4.9:
(a) The directional derivative is a maximum in the direction Vé(1, 1, 1) = 2i 4 3j 4 6k.

(b) The magnitude of this maximum is [V(1, 1, 1)] = v/ (2)> + 3 + (6)* =7

2 2
6 6
4.12. Find the angle between the surfaces z = x*> +y” and z = <x —£) +<y —£) at the point

(Y6 V6 1 ° °
S\ 127 12)
Solution

The angle between the surfaces at the point is the angle between the normals to the surfaces at the point.
2

2
Let ¢, = x> +y* —zand ¢, = <x—\f) —l—(y—f) -2z

A normal to z = x* +y? is

Ve, =2xi+2yj—k and Vé,(P) = ?i +§j —k.
2 2
A normal to z = <x — \26) +<y - ?) is
2 2
Ve, :z(x_%) i+2<y—\/g) ok and v =0V
6 6 6 6
Now (V) (P)) - (Ve (P)) = |V, (P)||Vh,(P)| cos 8 where 8 is the required angle.

(o () o

L \/1+1+1\/1+1+1 6 and p23_1
- _Z = cos and cosf= =—.
6 6 6 6 6 6 4/3 2

1
Thus the acute angle is 6 = arc cos (E) = 60°.

4.13. Let R be the distance from a fixed point A(a, b, ¢) to any point P(x, y, 7). Show that VR is a unit
vector in the direction AP = R.

Solution

If ry and rp are the position vectors ai+ bj+ck and xi+yj+zk of A and P, respectively, then
R=rp—rp=x—a)i+(y—>b)j+ (z— o)k, sothatR:\/(x—a)2+(y—b)2+(z—c)2. Then
x—ai+(y—»bj+Gz—ck R

VR=V (x—a)2+(y—b)2+(z—6)2>= =—
<\/ Va—a? +(y—b+@z—-c? R

is a unit vector in the direction R.

4.14. Let P be any point on an ellipse whose foci are at points A and B, as shown in Fig. 4.2. Prove that lines
AP and BP make equal angles with the tangent to the ellipse at P.

Solution

LetR; = AP and R, = BP denote vectors drawn respectively from foci A and B to point P on the ellipse, and let
T be a unit tangent to the ellipse at P.
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Since an ellipse is the locus of all points P, the sum of whose distances from two fixed points A and B is a
constant p, it is seen that the equation of the ellipse is Ry + Ry = p

By Problem 4.5, V(R + R;) is a normal to the ellipse; hence [V(R; + R;)]*T = 0or (VR,)*T = —(VR;)-T.

T
P
Rl
/ Rz
A B
Fig. 4-2

Since VR| and VR, are unit vectors in direction R; and R, respectively (Problem 4.13), the cosine of the angle

between VR, and T is equal to the cosine of the angle between VR; and —T; hence the angles themselves are
equal.

The problem has a physical interpretation. Light rays (or sound waves) originating at focus A, for example
will be reflected from the ellipse to focus B.

Divergence

4.15. Suppose A = x*z%i — 2y%z%j + xy*zKk. Find V+ A (or div A) at the point P(1, —1, 1).
Solution
VA= (a%' + gj + a%k> « (P2 — 2y 2% 4 xy*zk)
= a—i(xzzz) +— ( 2y*2%) += (xy 7) = 22 — 4y + x°
V-A(L —1, 1) = 2(1)(1)° —4(=D(1)* + ()(~=1)* =7
4.16. Given ¢ = 6x°y’z. (a) Find V+ V¢ (or div grad ¢).
2 2 2

B
(b) Show that V+ V¢ = V2 ¢ where V> = Pl +— 5y 8722 denotes the Laplacian operator.

Solution
B B B
(@ V¢= §(6x3yzz)i + a—y(6x3y2z)j + a—z(6x3yzz)k = 18x%y%zi + 12x%yzj + 6x°y’k.
a, 8, 9
Then V-V = <a—i +a—j +a—k> - (18x%yzi + 12x°yzj + 6x°y?k)
X y Z

ad
= a(lezyzz) +— (12x ¥zZ) + (6x3y )= 36xy2z + 124z

(b) V-de:(ail—i-% +a%k> (a—d’ +8—¢J+8—¢k)

¢ d (0 ap\ P PP PP
8x(8x)+87y<87y)+8z<82)_¥+@+@

PP R
(G B
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1
4.17. Prove that V2 () =0.
r

Solution
vl 32+32+32 1
r) o\ 9y a2 )\ Syt 2
ol 1 0 _ _
o (/ﬁ) = @Y DT =
X< +y Z
La 1 :3[—x(x2+y2+z2)_3/2]
3x2 /_x2 + y2 + ZZ ox
252 — yz 2
— 3x2(x2 + 2 _{_22)75/2 _(x2 + 2 +Z2)—3/2 —
Similarl ’ ’ (2 +y2 + 222
imilarly,

32 1 2y2 _ ZZ _ x2 d 32 1 2Z2 _ x2 _ y2
— = and — =
8y2 /%2 +y2 + Z2 (X2 + y2 + Z2)5/2 822 /xz i y2 T Zz“ (x2 + y2 + Z2)5/2
Then, by addition,
& n & n & 1 _0
R I G A W el B
The equation V¢ = 0 is called Laplace’s equation. It follows that ¢ = 1/r is a solution of this equation.

4.18. Prove: (3) V- (A+B)=V-A+ VB, (b) V:(¢A)=(Vd)* A+ H(V-A).

Solution
(a) LCtA:A1i+A2j+A3k, B:Bli+sz+B3k
Then 9 9 9
VeA+B)=|_—i+_-j+__k|) [(A +B)i+ (A2 + B2)j + (A3 + B3)K]
ox Ay 0z

0 d 0
=—(A;1 +B)) +-(A2+ By) + (A3 + B3)
ox dy 0z

AL B s 0B 0By 0B
T oo ay 0z ax ay 0z

d d d d d d

=it i+-k) Ai+Aj+AK)+ | i+ —j+ k) Bii+ B+ Bsk)
ax  dy" 0z ax  dy" 0z

=V-A+V-B

(B) V- ($A) = V- (A i + draj + pAK) = a%(daAl) +3—8y(¢Az> +a%(¢A3)

o) 0A; ¢ 0A, 9¢ 0A3
ox 1+¢8x+8y 2+¢8y+82 3+¢3Z
d¢ d¢p dp 9A1  0A;  0A;
=—A+—A+—A —t—4+—
ox 1+8y 2+az sté 8x+8y 0z
9 0 ] 0 ) d
= jl +7¢J +7¢k . (A1i+A2j +A3k) + ¢ —1i +*,] +*k * (All +A2j +Agk)
ox ay 0z ox  dy 0z

— (V)- A+ $(V- A)
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4.19. Prove V- (;3) =0.

Solution

Let ¢ = r~> and A = r in the result of Problem 4.18(b).
Then V+(r—r) = (Vr3)-r + (r 3)Ver

= 3 rer+3r> =0, using Problem 4.4.
4.20. Prove V- (UVV — VVU) = UV?*V — VV?U.

Solution
From Problem 4.18(b), with ¢ = U and A = VV,
V-(UVV) = (VU)*(VV) + U(V-VV) = (VU)*(VV) + UV*V
Interchanging U and V yields
V+(VVU) = (VV)+(VU) + VV2U.
Then subtracting,
V-(UVV) - V+(VVU) =V-(UVV - VVU)
= (VU)*(VV) + U V2V — [(VV)+(VU) + VV*U]
=UV?V —VV?U
4.21. A fluid moves so that its velocity at any point is v(x, y, z). Show that the loss of fluid per unit volume

per unit time in a small parallelepiped having center at P(x, y, z) and edges parallel to the coordinate
axes and having magnitude Ax, Ay, Az respectively, is given approximately by div v = V- v.

Fig. 4-3

Solution

Referring to Fig. 4-3,
x component of velocity v at P = v;

10
x component of v at center of face AFED = v; — 5% AX approx.
X

10
x component of v at center of face GHCB = v; + 5% AX approx.
x
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19
Then (1) volume of fluid crossing AFED per unit time = <01 - E% Ax) AyAz,
X

1 81)1
—— Ax |AyAz.

(2) volume of fluid crossing GHCB per unit time = <01 + 23
X

o
Loss in volume per unit time in x direction = (2) — (1) = a—leAyAz.
X
.. . . . . . 302
Similarly, loss in volume per unit time in y direction = B—AxAyAz
y

. S S av
loss in volume per unit time in z direction = JAxAyAz.

Then, total loss in volume per unit volume per unit time

d d 0
(% + % + %) AxAyAz
— A% e < =divv=V-v
AxAYAz

This is true exactly only in the limit as the parallelepiped shrinks to P, i.e. as Ax, Ay, and Az approach zero.
If there is no loss of fluid anywhere, then V+ v = 0. This is called the continuity equation for an incompressible
fluid. Since fluid is neither created nor destroyed at any point, it is said to have no sources or sinks. A vector such
as v whose divergence is zero is sometimes called solenoidal.

4.22. Determine the constant a so that the following vector is solenoidal.
V =(—4x—6y+32)i+ (—2x+y —52)j + (5x + 6y + az)k

Solution

A vector V is solenoidal if its divergence is zero.

0] a9 a9
V-V:a(—4x—6y+3z)+8—y(—2x+y—52)+8—z(5x+6y+az)=—4+1+a:—3+a.

Then V+ V= -3 +a =0 when a = 3.

The Curl
4.23. Suppose A = x*z%i — 2y%z%j + xy’zKk. Find V x A (or curl A) at the point P = (1, —1, 1).

Solution

i j k
Vx A a a 9
A= b dy 0z
22 %2 w2

[ a a a a ad

= |- 0% —— (20’2 [i — | =072 — — (D) [j| == (-2’ + - (*2) [k
| dy 0z ax 0z ox ay

= (2xyz + 4yzz)i — (yzz - 2x2z)j

Thus V x A(P) =2i +j.
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4.24. Suppose A = x’z%i — 2y*z%j + xy*zk. Find curl curl A = V x (V x A).

Solution

By the previous problem, V x A = (2xyz + 4yz2)i — (y*z — 2x?2)j. Then

V x (VxA) =V x [2xyz +4y%2)i — (y°z — 2x%2)j]

i i k

d 0 0

| ay >
2xyz + 4’z —y’z+2x%z 0

— _i _2 2 251 3 _3 2.5 s
= _ay(O) az( Yz +2x z):|| [ax(O) aZ(2)cyz-i-4y Z)]J

3 d
+ | = (=¥’ 2 +26%2) + —(2oyz + 4y%2) |k
ox ay

= (y2 — 2x2)i + 2xy + 4y2)j + (2xz — 8yz)k.

4.25. Let A= Ai+A>j+Ask, B=Bji+B,j+ Bk Show (a) Vx (A+B) =V x A+ V x B,
(b) V x (pA) = (Vo) x A + H(V x A).

Solution
a. 9. a . .
(a) Vx(A+B)= (&‘ +$J +a—zk> x [(A; + BDi+ (A; + By)j + (A3 + B3)K]
i j k
| @ 3 9
T ay az

Ai+By Ay+B, A3+ B;j

0 d . d 0 .
=|—=(A3+B3) ——(A2+By) [i+ | (A1 + B1) — —— (A3 + B3) |j
ay 0z 0z ax

d 0
—(@A2+By) ——(A1+ By |k
ox ay

+
0Az  0A 0A; 0A 0A, 0A
[ e[ 2]

ay 0z 0z ax J ax ay
[0B; 0B, 0B, 0B, 0B, 0B
o Al 220 73 22 Py
+_8y Bz:|l+|:3z Bx:|‘l |:3x 3yi|
=VxA+VxB

(b) VX (PA) =V x (PA1i+ dpA;1j + $A3K)

i j k
a8 a
R T

A1 DAy PA;

[0 a . a a . a a
= _ny(tbAs) - a;((bAz)]l + |:8*Z(¢Al) - $(¢A3)]J + [&((bf\z) - a*y((bAO]k
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[t gt ]
y 0z
w05 o - o2 = i+ [ 052+ S - 0 - P i
dy  dy

[ (M (94 _aAsN (04, oay
_d)[(W BZ)+(32 3X>J+<3x 8y)k]
[/ d 0 ad ad
+ _<afA3 —afd)A2> + (8¢A1 —;Az),] + (8¢A2 _£A ) ]

i j k
_ dp ¢ I
=V xA)+ PN a*y PN

Al A2 A3
=V x A) + (V) x A.

4.26. Suppose V x A = 0. Evaluate V+ (A x r).

Solution
Let A = Aji + Ayj + Ask, r = xi + yj + zk. Then

i j k
Axr= A] A2 A3
X Yy z

(zAz — yA3)i + (xA3 — zAj + (YA — xApk
and
0 d d
V. (Axr) = a*(ZAz — YA3) + —(xA3 — zA) + —(YA] — xA3)
x ay 0z

Ay o
BT Ay Zay Y T e

8A3 0A; 0A, 043 8A2 0A
ay 0z 0z ox ox ay
. . 0Az  0A\, 0A; 0A3\. 0A, 0A;
= k . —_——— —_——— —_— k
ik [<3y 3Z>l+<32 3X>J+<8x 3y> ]
=r+(VxA)=r-curl A.

If V x A =0, this reduces to zero.
4.27. Prove: (a) V x (V) = 0 (curl grad ¢ = 0), (b) V+(V x A) = 0 (div curl A = 0).

Solution
i j k
a a9 9
(a) Vx(V¢):Vx(a—¢ Jra—qS +a¢) oy oz
9 9 3¢
ax 8y 0z

a0\ 0 (00\]., [0 (a8) 0 (36\]. [ (a6) @ (9
ay oz 8z X 8z o) " \az) P e oy ay ox
o P o P Fo &
_(FO_PO) (B6_FOy (B Py,
dydz  0dzdy dzox  oxoz axdy  dyox
provided we assume that ¢ has continuous second partial derivatives so that the order of differentiation is
immaterial.
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i j Kk
a 9 0
b) V. (VXA =V |- — —
®) (VxA) ox dy oz
Ay Ay Az
[(0A; 0A 0A; 0A A, 0A
=V [[Z=Z-22)i+ (-2 )+ (=2 -2 )k
L\ 9y 0z 0z ax ox ay
L0 (04 b (0 Ay 0 (4, oAy
T oax \ Ay 0z ay \ 0z ox az \ ox ay
A3 A PAL PA3 | A PA
T oxdy  dxdz  dydz  dydx  dzox  dzdy

assuming that A has continuous second partial derivatives.
Note the similarity between the above results and the results (C x Cm) = (C x C)m = 0, where m is a

scalar and C+ (C x A)=(C x C)- A =0.

4.28. Find curl (xf(r)) where f(r) is differentiable.

Solution
curl(ef(r)) = V x (xf(r)
=V x (xf(Ni+yf(nj+zf(rk)
i j Kk
I
ox ady 0z
xf(r) yf(r) zf(r)
o . A of  of
=(2-yZ L 2 L ¥ )k
(i (Tmeipe (5-3)
o (of\[or\ of @ F(r)x X
B —_— = — —_ ) =—— 2 2 2) = = —
u ox <8r><8x> E)rax( ety +Z) 2+ T
Similarly, % :]2 and % :B.
ay r oz r
Then, the result = (zj2 —yjz>i + (sz - z]!>j + (yf— xg>k =0.
r r r r r
4.29. Prove V x (V x A) = —V?A + V(V- A).
Solution
i j Kk
a 0
VxA)=V — = =
Vx(VxA) X w %
A Ay Az
g [\ (0 _0AsN (s oAy
L\ 9y 0z 0z ox oax ay
i j k
K K 9
= ox ay 0z
oy oy 0, by by oA
ay 0z 0z ox  ox ay
[ (22 oA\ b (oA A\,
C Loy \ ax ay 0z \ 0z ax
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N NI
dz \ ady 0z ox \ ox ay J
d (0A 0A
Lo aa) o fan m]
ox \ 0z ox dy \ dy 0z
PA PA, Ay PA), PA; PAs
=% 2 )T\ e P e T
ay 0z 0z ox ax ay
’A, PA ”A;  PA PA; PA
tot o it (ot it (ot K
dyox  dzox dzdy ~ oxdy oxdz ~ dyoz
_ PA, PA A i P4, FA, A, - PA;  PA;  0PA; K
n wz  9yr o2 oz 9yr  9z2 J oxz  9yr 972
FPA PAy  PA\,  [(FPA PA  FPA.  (PA PA PAs
gttt )it (et )i+ —+—
ax dyox ~ 0zox axdy  dy 0zdy oxdz  dydz 0z
LB L o
=——+—+—)Ai+Aj+ A3k
(ax2+ay2+azz>( 11+ 2.]+ 3 )
.0 [0A;  0A; 0Aj .0 [0A;  0A; 0Aj d (0A; 0A; 0Aj
el R R il ekl i S a4 k— s B it
+18x(8x 8y+81>+']8y<8x+8y+81>+ 8Z<8x 8y+8Z)
A A A
_ Ay S M ) pop L yvea
ox ay 0z

If desired, the labor of writing can be shortened in this as well as other derivations by writing only the i
components since the others can be obtained by symmetry.
The result can also be established formally as follows. From Problem 47(a), Chapter 2,

AxBxC)=BA-C) - (A-BC
Placing A =B =V and C =F,

ey

V x (VxF)=V(V-F)— (V- V)F = V(V:F) — V’F

Note that the formula (1) must be written so that the operators A and B precede the operand C, otherwise the
formalism fails to apply.

4.30. Suppose V= w X r. Prove o = % curl v where w is a constant vector.
Solution
i j Kk
carlv=Vxv=VXx(@wXxr)=Vx|lw w0 w;
x y z

=V X [(@22 — 03)i + (03x — w12)j + (01y — w0)K]

i j k
a 0 0 . .
= — _ — = 2(wii+ + w3k) = 2w.
P % % (011 + w2 + w3K)
W7 — W3y wW3X— Wiz Wy — WX

1
5 curl v.

This problem indicates that the curl of a vector field has something to do with rotational properties of the
field. This is confirmed in Chapter 6. If the field F is that due to a moving fluid, for example, then a
paddle wheel placed at various points in the field would tend to rotate in regions where curl F # 0, while if
curl F = 0 in the region, there would be no rotation and the field F is then called irrotational. A field that is
not irrotational is sometimes called a vortex field.

Then @ =3V x v =
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JH JE . ) %u
4.31. Suppose V-E=0,V-H=0,V X E = T VxH= o Show that E and H satisfy V°u = R
Solution
oH ad d (JE ’E
VXx(VxE)=Vx|—-—]=—(VxH)=—|—|=—-——
ot ot o \ ot or?
2 2 2 ¥E
By Problem 4.29, V x (V x E) = —V°E 4+ V(V:E) = —V°E. Then V°E = FrR
.. JE d 0 oH ’H
Similarly, V x (V x H) =V x (E) :&(V x E) :g(—§> =2z
2 2 2 PH
But Vx (VxH)=-V°H+ V(V-H)=—-V°H. Then V H=ﬁ'
The given equations are related to Maxwell’s equations of electromagnetic theory. The equation
Pu Pu Pu_
a2 3?2 a2 o
is called the wave equation.
Miscellaneous Problems
4.32. A vector V is called irrotational if curl V = 0. (a) Find constants a, b, and ¢ so that
V = (—4x — 3y 4+ ag)i+ (bx + 3y + 52)j + (4x + ¢y + 32)k
is irrotational. (b) Show that V can be expressed as the gradient of a scalar function.
Solution
(a) curlV=VxV
i j k
0] a ad
v = — — _
xV ox ay 0z
—4x —3y+az bx+3y+5z 4x+cy+3z
il Ll ; j
- dy P i— ax 3z i
b+3y+5z 4x+cy+3z —4x —3y+az dx+cy+3z
K K
+ ax dy Kk
—4x —3y+az bx+3y+5z
=(c—5i—@—a)j+(®+3)k
This equals the zero vector when a =4, b = —3, and ¢ = 5. So
V = (—4x — 3y + 42)i + (—3x + 3y + 52)j + (4x + 5y + 37)k.
d d d
(b) Assume V=V¢ = —(bi +—d>j —l——(bk. Then
ax ay 0z
d
My 3y4ac )
ox
d
—qs:—3x+3y+5z 2)
ay
d
—d):4x+5y+3z (€)

0z
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Integrating (1) partially with respect to x keeping y and z constant, we obtain

¢ =—2x> —3xy +4xz+f(y, 2) 4)

where f(y, z) is an arbitrary function of y and z. Similarly, we obtain from (2) and (3)
3
= —3xy+ Eyz + 5yz + g(x, 2) )
and
3,
¢ = 4xz+5yz+iz + h(x, y). 6)
Comparison of (4), (5), and (6) shows that there will be a common value of ¢ if we choose

3 3 3 3
fO. 2= Eyz + 5yz + Ezz, g(x, ) = =242 + dxz +§zz, h(x, y) = —2x* — 3xy + 5)’2

so that
2, 30,35
b= -2x"+-y +-7" —3xy+4xz+ 5yz

Note that we can add any constant to ¢. In general, if V x V = 0, then we can find ¢ so that V = V.
A vector field V, which can be obtained from a scalar field ¢, so that V = V¢ is called a conservative vector
field and ¢ is called the scalar potential. Note conversely that, if V = V¢, then V x V = 0 (see Problem 4.27a).

4.33. Show that if ¢(x, y, z) is any solution of Laplace’s equation, then V¢ is a vector that is both
solenoidal and irrotational.

Solution

By hypothesis, ¢ satisfies Laplace’s equation V2¢p =0, that is, V- (V¢) = 0. Then V¢ is solenoidal (see
Problems 4.21 and 4.22).
From Problem 4.27a, V x (V¢) = 0, so that V¢ is also irrotational.

4.34. Give a possible definition of grad B.

Solution

Assume B = Byi + B; j + B;k. Formally, we can define grad B as

d 0 9
VB =|—i+—j+—k|(Bii+ Bj + B3k)
ox  dy" 0z

0By, 0By, 0Bz,

ox n ox U+ ox !

oB B B
+—ylji+—2jj+—3jk

a ay ay
B B B

+ bki + ij + bkk
0z 0z 0z

The quantities ii, ij, and so on, are called unit dyads. (Note that ij, for example, is not the same as ji.)
A quantity of the form

anii + apij + aiik + azji + ax jj + axjk + aziki + askj + aszkk

is called a dyadic and the coefficients a1, ayz, ... are its components. An array of these nine components in
the form

a dp a3
azy dx a4
as; dszx  ass
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is called a 3 by 3 matrix. A dyadic is a generalization of a vector. Still further generalization leads to
triadics, which are quantities consisting of 27 terms of the form aiii + a»11jii + - - -. A study of how the com-
ponents of a dyadic or triadic transform from one system of coordinates to another leads to the subject of tensor
analysis, which is taken up in Chapter 8.

4.35. Let a vector A be defined by A = A,i + A,j + Aszk and a dyadic ® by
D = ayiii + apdj + ai3ik + axiji + axnjj + axsjk + a3 ki + a3kj + azkk
Give a possible definition of A+ ®.

Solution
Formally, assuming the distributive law to hold,
A D=(Ai+Aj+AK) DP=Ali-P+Aj - P+ Ak D
As an example, consider i+ ®. This product is formed by taking the dot product of i with each term of @ and

adding results. Typical examples are i+ ajii, i+ apsij, i+ az1ji, i asKj, and so on. If we give meaning to these
as follows

i-allii:au(i-i)i:alli sinceici=1

i- alzij = a12(i' i)j = a12j since ii =1

i-a21ji:a21(i-j)i:0 since i'j:()

i a32kj = a32(i' k)j =0 sincei*k =0

and give analogous interpretation to the terms of j+ @ and k+ ®, then

A ® = A (ayi+ apnj+ aizk) + Ay(ari + axnj + ak) + As(azii + asj + azszk)
= (A1ay; +Azaz +Azaz))i+ (Ajay + Azaxy + Azazn)j + (Ayaz + Azaxs + Azasz)k

which is a vector.

4.36. (a) Interpret the symbol A+ V. (b) Give a possible meaning to (A+ V)B. (c) Is it possible to write this
as A+ VB without ambiguity?

Solution

(a) Let A =Ai+ Ayj + Ask. Then, formally,
d d 0
A V=Ai+Aj+As3k) < i+ _]—}——k)
d 0z
0

d ad
=A—+A)—+A;—
1Bx—i_ 28y+ e

is an operator. For example,

0 a a a a
A V)p= A1 —+Ar— +A% d> A1f¢+z‘\2*¢+x43i5
ox ay ox ay 0z
Note that this is the same as A+ V.
(b) Formally, using (a) with ¢ replaced by B = Bji + B,j + B3k,
ad 0 9 oB oB oB
A-V)B = A A3— |B=A—4+A,—+Az;—
( ) ( 8+28+38> 18+28y+ i
0B 0B, 0B 0B, 0B, 0B,
A Ay—+A A A Ay —
(18+28+38z>l+<13+28y+38z>"

3B 9B 3B
A2+ 421 a 2 )k
ox ay 0z
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(c) Use the interpretation of VB as given in Problem 4.34. Then, according to the symbolism established in
Problem 4.35,

A+ VB = (Aji+A>j+AsK): VB = A i+ VB + Asj- VB + Ask+ VB
9B, . 9B,. 9B; 9B,. 9B,. 0B 9B, . 9B,. 9B;
A+ 22+ 0k ) A [ i+ T2 2k ) A [ i+ 2+ 2k
1(3xl+ 3x']+3x )+ 2(8yl+ 8y'l+8y >+ 3(3z1+ 3z']+32 )

which gives the same result as that given in part (b). It follows that (A+ V)B = A+ VB without ambiguity
provided the concept of dyadics is introduced with properties as indicated.

4.37. Suppose A =2yzi —x*yj+xz’k, B =x%i+yzj —xyk, and ¢ =2x%yz3. Find (a) (A: V),
(b) A=V, (c)(B-V)A, (d) (AxV)p, (e) Ax V.

Solution

a., 3., 9
@ AV)p= [(Zyzi — xyj +xz°k) (&i +@j +8—Zk)]¢

0 d 0
— (2 42 2 2 2.3
( Voo =X y—3y+xz 781)( X“yz’)

3 9 9
=2yz—(2x%y2)) — Xy — (2x%y2) 4+ x27 — (2x%yD)
ox ay 0z

= Qy)@wy2)) — ()T + ()6 YY)
= 8xy22* — 2y + 643y

(b) A+ Ve = (2yzi — x%yj + x2°k) - (8—¢i + %j + a—(ﬁk)
ox dy 0z

= (2yzi — x*yj + x22K)+ (dxyz’i + 2x%223j + 6x%y77K)
— 8Xy2Z4 _ 2x4yZ3 4 6X3yZ4
Comparison with (a) illustrates the result (A+ V)¢ = A+ V.

J J d
© (B-V)A= [(x2i+yzj—xyk)° <fi+—j+f )]A
ox  ady 0z
LA A AA

= xzﬁ—i— 3—JCBA—)C —+yi——xy—
U T V) T T T Y,

= X2(=2xyj + 22K) + yz(2zi — x%j) — xy(2yi + 2xzK)
= (2y7* — 2x0y)i — ¢y + ¥?y2)j + (P2 — 2%k

For comparison of this with B+ VA, see Problem 4.36(c).

A (A x V)= |Qyzi —xyj + 1K) x (ﬁi +3j +3k>]¢
ay” 0z

L ox
i j k
| 2yz XYy %P
B
ax ay 0z

i el 0 d el 0 a
: 2 2 i 2 2

=il —x¥y— — xz2— v2?— —2yz— | + k[ 22—+ 2y —) |$
_l< Yo" 8y) J( < Zaz) ( yzay 8x)]

a a a9 0 a d
=— xzyi)—i-xzzfd) i+ xzzij— yzi) J+ 2yz£+x2y£ k
0z ay ax 0z ay ox

= —(6)(4)1222 +232)i+ (4x2yz5 — 12x2y2z3)j + (4)(2)114 + 4x3y223)k
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d d
i j ok
_ |23z =Xy %2
o 3 B¢
ox ay 0z

¢ LW ¢ 8¢ 8(;’) R10)

2 2 2

=—xy——xz"— )i+ xz"——2yz + | 2yz— + X2 k
( r 0z ¢ By)l ( < ox 0z j Yox ox

= —(6x4yzz2 +25320)i+ (4)c2yz5 — 12x2yzz3)j + (4x2yz + 4x%y2z3)k

Comparison with (d) illustrates the result (A x V)¢ = A x V.

Invariance

4.38. Two rectangular xyz and x'y’z’ coordinate systems having the same origin are rotated with respect
to each other. Derive the transformation equations between the coordinates of a point in the two

4.39.

systems.

Solution

Let r and r’ be the position vectors of any point P in the two systems (see Fig. 4-1 on page 72). Then, since

r=r,
XV +yj+7K =xi+yj+zk
Now, for any vector A, we have (Problem 4.20, Chapter 2),
A=A+ A + A KK

Then, letting A =i, j, and k in succession,

i = GO + G O + G KOK = I+ D + Ik

J=G OV + G305 + (G KK = 1l + boj + oK

= (ke i)' + (k* j)j' + (k* K)K' = [;3i" + Dsj + I3k

Substituting equations (2) into (1) and equating coefficients of i, j', and k', we find

X =lnx+lpy+hsz, Y =bix+loy+hsz, 7z =Dhkx+hy+hz

the required transformation equations.

Prove
i =1li+lpj+Iik
J=hii+lnj+hik
K =i+ j+ sk
Solution

For any vector A, we have A = (A-1)i + (A-j)j + (A- k)k.
Then, letting A =i’ j’, and K’ in succession,

i = ()i 4 () + (- Ok = i + [ j + Lk

F=GDi+G i+ G Rk =i+ hrj+ sk
K =& Di+ &-j)j+ & Kk =10+ 5+ 5k

()]

(€3

3
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4.40. Prove that Z lpmlpny = 1if m = n, and 0 if m # n, where m and n can assume any of the values

4.41.

1, 2, or 3.

Solution

From equation (2) of Problem 4.38,

iri=1=ni + b + LK) Ui +bij +5iK) =05, + 5, + 5
i*j=0=ni+bij + K)ok + lnj + BK) = il + bl + Gilx
i*k=0=(ni"+bij +5iK) (a1 + bsj + B3K) = liliz + bils + Bilss

can be proved for m =2 and m = 3.
By writing

. 3
1 ifm=n .
S = { 0 ifmetn the result can be written E Lomlpn = O

p=1
The symbol 8, is called Kronecker’s symbol.
Suppose ¢(x, y, z) is a scalar invariant with respect to a rotation of axes. Prove that grad ¢ is a vector
invariant under this transformation.

Solution
By hypothesis, ¢(x, y, z) = ¢'(x, ¥, Z). To establish the desired result, we must prove that

3<1> 09 34> ¢ ¢ o’ ., AP,
i B B %k
o Ty T KT e T Ty

Using the chain rule and the transformation equations (3) of Problem 4.38, we have

d o ax’  dd dy o a7 9 d ¢
0 _ogar agay kel _ab,  oF od
x dx 3y ax 97 ax Bx ay’ a7

d g o'  ap' dy o o7 9 ¢ d

3 _ ¢i+ d)l-l- il d) ¢lzz+ ¢l32
dy ox’ dy 9y dy 07 By Bx oy’ a7
87(]5_8;#87)5+8¢8y+8q58z 8(15 ¢ 8(]5/1
z  w o & I o Bx ay’ a7

Multiplying these equations by i, j, and K, respectively, adding, and using Problem 4.39, the required result follows.

SUPPLEMENTARY PROBLEMS

4.42.
4.43.
4.44.
4.45.
4.46.
4.47.
4.48.

4.49.

Suppose ¢ = 2xz* — x*y. Find V¢ and |V¢| at the point (2, —2, —1).

Suppose A = 2x%i — 3yzj + xz°k and ¢ = 2z — x*y. Find A+ V¢ and A x V¢ at the point (1, —1, 1).
Suppose F = x>z + ¢"* and G = 212y — xyz. Find (a) V(F + G) and (b) V(FG) at the point (1, 0, —2).
Find V|r|>.

Prove Vf(r) = @

6
Evaluate V<3r2 —4r+ %)
Let VU = 2¢*r. Find U.

Find ¢(r) such that V¢ = r/r° and ¢(1) = 0



4.50.
4.51.
4.52.
4.53.

4.54.

4.55.

4.56.

4.57.

4.58.

4.59.
4.60.
4.61.
4.62.
4.63.

4.64.

4.65.

4.66.

4.67.

4.68.

4.69.

4.70.

4.71.
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Find Vi where o = (2 42 + 22)e V202

Let Vo = 2xy2%i + x22%j + 3x2yz%k. Find ¢(x, y, z) if $(1, =2, 2) = 4.
Suppose Vi = (y* — 2xyz2)i + (3 + 2xy — x22%)j + (622 — 3x%yz>)k. Find .
Let U be a differentiable function of x, y, and z. Prove VU - dr = dU.

Suppose F is a differentiable function of x, y, z, t where x, y, z are differentiable functions of ¢. Prove that

dF _OF | o dr
dt o dt

Let A be a constant vector. Prove V(r+ A) = A.

Suppose A(x, y, 7) = Aji 4+ Azj + Ask. Show that dA = (VA dr)i + (VA, - dr)j + (VA3 - dr)k.

F GVF — FVG .
Prove V(E) = — e if G # 0.

Find a unit vector that is perpendicular to the surface of the paraboloid of revolution z = x*> + y? at the point
1,2,5).

Find the unit outward drawn normal to the surface (x — 1)*> + y? + (z +2)*> = 9 at the point (3, 1, —4).

Find an equation for the tangent plane to the surface xz> 4+ x>y = z — 1 at the point (1, —3, 2).

Find equations for the tangent plane and normal line to the surface 7 = x> 4 y* at the point (2, —1, 5).

Find the directional derivative of ¢ = 4xz> — 3x%y?z at (2, —1, 2) in the direction 2i — 3j + 6k.

Find the directional derivative of P = 4> % at the point (1, 1, —1) in a direction toward the point (=3, 5, 6).

In what direction from the point (1, 3, 2) is the directional derivative of ¢ = 2xz — y2 a maximum? What is the
magnitude of this maximum?

Find the values of the constants @, b, and ¢ so that the directional derivative of ¢ = axy> + byz + cz’x at
(1, 2, —1) has a maximum of magnitude 64 in a direction parallel to the z axis.

Find the acute angle between the surfaces xy’z = 3x + z% and 3x> — y? + 2z = 1 at the point (1, =2, 1).

Find the constants a and b so that the surface ax* — byz = (a + 2)x will be orthogonal to the surface
4x*y + 22 = 4 at the point (1, —1, 2).

(a) Let u and v be differentiable functions of x, y, and z. Show that a necessary and sufficient condition that u
and v are functionally related by the equation F(u, v) = 0 is that Vu x Vv = 0.

+y are functionally related.

. X
(b) Determine whether u = arctanx + arctany and v = 1

(a) Show that Vu+ Vv x Vw = 0 a necessary and sufficient condition that u(x, y, z), v(x, y, z), and w(x, y, 2)
be functionally related through the equation F(u, v, w) = 0.

(b) Express Vu+Vuv x Vw in determinant form. This determinant is called the Jacobian of u, v, and w with

Lo, v, W) u, v, w
respect to x, y, and z, and is written orJ .
a(x, y, 2) X,z

(c) Determine whether u = x +y +z, v = x> + y*> + 2> and w = xy + yz + zx are functionally related.

Let A = 3xyz%i + 2xy°j — x>yzk and ¢ = 3x> — yz. Find, at the point (1, —1, 1), (a) V-A, (b) A=V,
(©) V+(dA), (d) V:(V¢),.

Evaluate div(2x’zi — xy*zj + 3yz%k).
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4.72.
4.73.
4.74.
4.75.
4.76.
4.71.
4.78.
4.79.
4.80.
4.81.
4.82.
4.83.
4.84.
4.85.

4.86.
4.87.
4.88.

4.89.

4.90.
4.91.
4.92.

4.93.

4.94.

4.95.

4.96.

4.97.

4.98.

4.99.

Let ¢ = 3x%z — y?2° + 4x%y + 2x — 3y — 5. Find V?¢.

Evaluate V*(Inr).

Prove V2" = n(n + 1)r"~2 where n is a constant.

Let F = (3x%y — 2)i + (x2° +y*)j — 2x3z°k. Find V(V- F) at the point (2, —1, 0).
Suppose w is a constant vector and v = @ X r. Prove that div v = 0.
Prove V(i) = V2 ih+ 2V Vi + V2 .

Let U = 3x’y and V = xz> — 2y. Evaluate grad[(grad U)- (grad V)].
Evaluate V- (°r).

Evaluate V- [rV(1/r)].

Evaluate V2[V- (r/r?)].

If A =r/r, find grad div A.

(a) Prove V2f(r) = Z—Z + %% (b) Find f(r) such that V2f(r) = 0.

Prove that the vector A = 3y*z%i + 4x°z%j — 3x?y’k is solenoidal.

Show that A = (2x* + 8xy2)i + (3x°y — 3xy)j — (4y*z> + 2x°2)k is not solenoidal but B = xyz?A is
solenoidal.

Find the most general differentiable function f(r) so that f(r)r is solenoidal.

Show that the vector field V = A
/ x2 + y2

Suppose U and V are differentiable scalar fields. Prove that VU x VV is solenoidal.

is a “sink field”. Plot and give a physical interpretation.

Let A = 2x7%i — vzj+ 3xz°k and ¢ = x*yz. Find, at the point (1, 1, 1):
(@) VxA, (b)curl(¢pA), (c) Vx(VxA), (d) V[A-curlA], (e) curl grad(¢$A) .

Let F = xzyz, G=xy— 3z2. Find (a) V[(VF)+ (VG)], (b) V+ [(VF) x (VG)], (¢c) V x [(VF) x (VG)].
Evaluate V x (r/r?).

For what value of the constant a will the vector A = (axy — z*)i + (a — 2)x%j + (1 — a)xz°k have its curl iden-
tically equal to zero?

Prove curl(¢ grad ¢) = 0.

Graph the vector fields A = xi + yj and B = yi — xj. Compute the divergence and curl of each vector field and
explain the physical significance of the results obtained.

Given A = x’zi + yz’j — 3xyk, B = y%i — yzj + 2xk and ¢ = 2x” + yz. Find:
(@) A= (Ve), (b)(A-V)p, (c) (A-V)B, (d)B(A-V), (e)(V-A)B.

Suppose A = yz?i — 3xz%j + 2xyzk, B = 3xi + 4zj — xyk, and ¢ = xyz. Find (a) A x (V¢), (b) (A x V)¢,
©)(VxA)xB,(d) BV xA.

Given A = xz%i 4 2yj — 3xzk and B = 3xzi + 2yzj — z?k. Find A x (V x B) and (A x V) x B at the point
(1, -1, 2).

Prove (v+ V)V =1Vi? —v x (V x V).

Prove V- (A xB) =B+ (V x A) — A-(V x B).
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4.107.
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4.109.

4.110.

4.111.

4.112.
4.113.

4.114.

4.115.

4.116.

4.117.

CHAPTER 4 Gradient, Divergence, Curl

Prove V x (A x B) = (B- V)A —B(V-A) — (A V)B+A(V:B).

Prove VAA*B) =B V) A+ (A V)B+B x (V x A)+ A x (V xB).

Show that A = (6xy + 22)i + (3x> — 2)j + (3xz> — y)k is irrotational. Find ¢ such that A = V¢.

Show that E = r/r? is irrotational. Find ¢ such that E = —V¢ and such that ¢(a) = 0 where a > 0.
Suppose A and B are irrotational. Prove that A x B is solenoidal.

Suppose f(r) is differentiable. Prove that f(r)r is irrotational.

Is there a differentiable vector function V such that (a) curl V =, (b) curl V = 2i + j + 3k? If so, find V.

Show that solutions to Maxwell’s equations

_10E
e’

10H

VxH VXE=———,
c ot

V-H=0, V-E=4dmp

where p is a function of x, y, and z, and c is the velocity of light, assumed constant, are given by

10A

where A and ¢, called the vector and scalar potentials, respectively, satisfy the equations

19¢
V-A4+-——"=0, 1
to% (1)
1 3¢
2
v ¢—c*2¥= —4p, )
1 A
VA =—=—
c? 3 )

(a) Given the dyadic ® = ii + jj + kK, evaluate r+ (®- r) and (r+ ®)- r. (b) Is there any ambiguity in writing
r- ®-r? (c) What does r- ®- r = 1 represent geometrically?

(a) Suppose A = xzi — y?j + yz’k and B = 27%i — xyj + y’k. Give a possible significance to (A x V)B at the
point (1, —1, 1).

(b) Is it possible to write the result as A x (VB) by use of dyadics?
Prove that ¢(x, v, z) = x* + y* + 2% is a scalar invariant under a rotation of axes.

Let A(x, y, z) be an invariant differentiable vector field with respect to a rotation of axes. Prove that (a) div A
and (b) curl A are invariant scalar and vector fields, respectively.

Solve equation (3) of Solved Problem 4.38 for x, y, and z in terms of x’, ¥/, and 7.
Suppose A and B are invariant under rotation. Show that A+ B and A x B are also invariant.

Show that under a rotation

ad ad d ad ad 0
V:.i -7 ki:./i 0/7 k/izvf
18x+']8y+ 0z lax/+'] By/+ o7’

Show that the Laplacian operator is invariant under a rotation.

Suppose A = x22%i — 2y?2%j + xy*zk, B = x%i + yzj — xyk, and ¢ = 2x*yz>. Find:
(@ A-V)p, (b)A-Vd, (©)B-V)p, (d)(AxV)d and (e) Ax V.

Prove: (3) VX (A+B) =V xA+VxB, (b) Vx(dA)=(Vd) x A+ H(V x A).
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ANSWERS TO SUPPLEMENTARY PROBLEMS

4.42.
4.43.
4.44.
4.4s.
4.47.
4.48.

4.49.
4.50.

4.51.
4.52.
4.58.
4.59.

4.60.
4.61.

4.62.
4.63.
4.81.
4.83.
4.86.
4.89.
4.90.

4.91.
4.95.

10i — 4j — 16k, 24/93 4.64. In the direction of 4i — 6j + 2k, 2+/14
5 7i—j—11k 4.65. a=6, b=24, c= -8
(a) —4i+9j + k, (b) —8j 4.66. arc cos; = arc cosﬁ = 79°55'
] > J +09- V1421 - 14
3rr 4.67. a=5/2, b=1
(6 —2r7312 — 2773y 4.68. (b) Yes (v = tanu)
rf/3 4 constant
o o
dr)==(1—-—= ax dy 0z
@) )3*Vr 4 4.69. (b) CC (c) Yes (u? 2w = 0)
r)e .69. axayazcesuvw_

v

ox dy oz
¢ =x*yz? +20 4.70. (a)4, (b) —15, (©) 1,(d) 6
o = xy* — x*yz3 + 3y + (3/2)z* + constant 4.71. 4xz — 2xyz + 6’7
Qi+4j—k)/ ++/21 4.72. 67+ 24xy — 270 — 6y’z
(2i+j—2k)/3 4.73. 1/r?
ix:z—jz—i_-; x=2 y+1 z-5 4.75. —6i 4 24j — 32k

| 4.78. (6y2% — 12x)i + 6322 + 12xyzk
3
orx=4t+4+2,y=-2t—1,z=—t+5 4.79. 6r
—4

176/7 4.80. 3r
—-20/9
254 4.82. —2r7%r

f(r) = A+ B/r where A and B are arbitrary constants.

f(r) = C/r’ where C is an arbitrary constant.

(@i+j, (b)5i—3j—4k, (¢)5i+3k, (d) —2i+j+8k, (e)0
(@) (2y%z+ 3x%z — 12xy2)i + (dxyz — 6x°2)j + (2xy* + x° — 6x%y)k

(b) 0
(©) (x%z — 24xy2)i — (12x°z 4 2xy2)j + (2xy? + 12y22 + )k
0 4.92. a=4

(a) 4x3z 4+ yz4 — 3xy2

(b) 4x3z + yz* — 3xy? (same as (a))

(©) 2y*2%i+ (Bxy* — yzhj + 2x°zk

’;

d ad d
(d) the operator (x*y’zi — x>yzj + 2x°zK) P + (V21— ¥+ 207 k)a—y + (=3xy%i + 3x0y°zj — 6x%yK) %

(&) 2xy*z+y?2)i — 2y + yzhj + (4x’z + 2xz)k
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. (a) —5x%yZ%i + xy*2%j + dxy’k

(b) —5x*yz2%i + xy*2%j + 4xyz’k (same as (a))

(©) 162%1 + (8x%yz — 12x7)j + 32xz%k  (d) 24x%z + dxyz?

A x (V x B) = 18i — 12j 4 16k, (A x V) x B =4j + 76k

¢ = 3x* + xz° — yz + constant 4.103. ¢ =In(a/r)

(a) No, (b) V =3xj + 2y — x)k + V¢, where ¢ is an arbitrary twice differentiable function.
@) r+(@+r) = (r®)-r = x> +y> + 2%, (b) No, (c) Sphere of radius one with center at the origin.
(a) —4ii —ij + 3ik — jj — 4ji + 3kk

(b) Yes, if the operations are suitably performed.

x=Inx' + by + 12,y =lho) + 1oy + 107, 2= lix + sy + B

(a) = (b) 4y75 — 42?55 + 6x3y37

(©) (2677 = 20y + (—4y°2 + 40y’ )j + (Fy’z + 20°2° — xyk

(d) = (&) (—12x%3z% — 2x3y22Hi + (—6x*yz* + 4x2y32M)j + 2x*2 + 8xy° )k



Vector Integration

5.1 Introduction

The reader is familiar with the integration of real-valued functions f(x) of one variable. Specifically, we
have the indefinite integral or anti-derivative, denoted by

f(x) dx

and the definite integral on a closed interval, say [a, b], denoted by

b

f(x) dx

a

Here we extend these definitions to vector value functions of a single variable.

5.2 Ordinary Integrals of Vector Valued Functions

Let R(u) = Ri(u)i + Ry(uw)j + R3(u)k be a vector depending on a single scalar variable u, where
Ry (1), Ry(u), R3(u) are assumed to be continuous in a specific interval. Then

JR(u) du = iJRl(u) du+j JRz(u) du + kJR3(M) du
is called an indefinite integral of R(u). If there exists a vector S(u) such that
d
R(u) = T (Sw)),
u
then
d
JR(M) du = Jd(S(u)) du =S(u) +c
u

where c is an arbitrary constant vector independent of u. The definite integral between limits u = a and
u = b can in such case be written

b
= S(b) — S(a)

a

b b
JR(u) du = Ji(S(u)) du =S(u) + ¢
du
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This integral can also be defined as a limit of a sum in a manner analogous to that of elementary integral
calculus.

EXAMPLE 5.1 Suppose R(«) = u%i + 2u’j — 5k. Find: (a) [ R(w) du, (b) [ R()du.

() JR(u) du = J[u2i+2u3j —5Kk] du = iJuzdu+jJ2u3 du—i—kJ—Sdu

M3 M4
= (;4— Cl>i + (7+ C2>j + (—5u + C3)k

u3 4

u
. .
=3 +—23—5uk+c

where c is the constant vector ¢;i + ¢, j + cs3k.
(b) From (a):
2 u’ u 2
JR(u) du = ?i +—j—Suk+c| =[(8/3)i+4j — 10k] — [—(1/3)i + (1/2)j — 5K]

2 1
1

— (7/3)i + (7/2)j - 5k

5.3 Line Integrals

Suppose r(u) = x(w)i + y(u)j + z(w)k is the position vector of points P(x, y, z) and suppose r(u) defines a
curve C joining points P; and P, where u = u; and u = u,, respectively.

We assume that C is composed of a finite number of curves for each of which r(«) has a continuous
derivative. Let A(x,y,7) = Aji + Azj + Ask be a vector function of position defined and continuous
along C. Then the integral of the tangential component of A along C from P; to P,, written as

Py
JA-dr = JA-dr = JAldx—i-Azdy + Aszdz
Py C C

is an example of a line integral. If A is the force F on a particle moving along C, this line integral represents
the work done by the force. If C is a closed curve (which we shall suppose is a simple closed curve, that is, a
curve that does not intersect itself anywhere), the integral around C is often denoted by

%A'dl’ = %A] dx+A2dy +A3dZ

In aerodynamics and fluid mechanics, this integral is called the circulation of A about C, where A represents
the velocity of a fluid.

In general, any integral that is to be evaluated along a curve is called a line integral. Such integrals can be
defined in terms of limits of sums as are the integrals of elementary calculus.

EXAMPLE 5.2 Suppose F = —3x%i + 5xyj and let C be the curve y = 2x? in the xy-plane. Evaluate the line
integral [.F+ dr from P1(0,0) to Px(1,2).
Since the integration is performed in the xy-plane (z = 0), we may take r = xi + yj. Then:

JF cdr = J(—3x2i + Sxyj) (dxi + dyj) = J (—=3x% dx + 5xy dy).
c c c
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First Method. Let x = t in y = 2x°. Then the parametric equations of C are x = ¢, y = 2¢>. Points (0, 0) and (1, 2)
correspond to t = 0 and ¢ = 1, respectively. Then:

1 1
JF dr = J [—3¢% dt + 51(2°) d(27)] = J (=37 + 40y dr = [ +8°], = 7.
C t=0 t=0
Second Method. Substitute y = 2x? directly where x goes from 0 to 1. Then:

1 1
JF- dr = J [—3x% dx + 5x(2x) d(2x*)] = J (=327 +40x") dx = [—2* + 8], = 7.

C x=0 x=0

Conservative Fields

The following theorem applies.

THEOREM 5.1.  Suppose A = V¢ everywhere in a region R of space, where R is defined by a; < x < ay,
by <y <by, c; <7 =<cp, and where ¢(x, y, 7) is single-valued and has continuous
derivatives in R. Then:

1) Lfl > A« dr is independent of the path C in R joining P; and P;.

(i1) 3§C A dr = 0 around any closed curve C in R.

In such a case, A is called a conservative vector field and ¢ is its scalar potential.

5.4 Surface Integrals

Let S be a two-sided surface, such as shown in Fig. 5-1. Let one side of S be considered arbitrarily as the
positive side. (If S is a closed surface, such as a sphere, then the outer side is considered the positive side.) A
unit normal n to any point of the positive side of S is called a positive or outward drawn unit normal.

4

Fig. 51

Associate with the differential of surface area dS a vector dS whose magnitude is dS and whose direction
is that of n. Then dS = n dS. The integral

JSJA.dS:JSJA.ndS
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is an example of a surface integral called the flux of A over S. Other surface integrals are

fou s ffre

where ¢ is a scalar function. Such integrals can be defined in terms of limits of sums as in elementary cal-
culus (see Problem 5.17).

The notation §f is sometimes used to indicate integration over the closed surface S. Where no confusion
can arise the notation 395 may also be used.

To evaluate surface integrals, it is convenient to express them as double integrals taken over the pro-
jected area of the surface S on one of the coordinate planes. This is possible if any line perpendicular to
the coordinate plane chosen meets the surface in no more than one point. However, this does not pose
any real problem since we can generally subdivide S into surfaces that do satisfy this restriction.

5.5 Volume Integrals

Consider a closed surface in space enclosing a volume V. Then the following denote volume integrals or
space integrals as they are sometimes called:

ﬂJA 4V and Jﬂwv

The Solved Problems evaluate some such integrals.

SOLVED PROBLEMS

5.1. Suppose R(u) = 3i + (u® + 4u”)j + uk. Find: (a) [R(u)du, (b) Lz R(u) du.
Solution

(a) JR(u) du = J[3i + (0 + 4u")j + uk] du
:ij3 du+jj(u3+4u7) du—i—kJudu

=Q@Bu-+ci+ (iu4 +%u8cz)j + (%u2 + C3>k
= Bu)i + <1u4 +1u8>j + (Lf)k +c
4 2 2
where c is the constant vector cii + ¢,j + c3k.
(b) From (a),
2 2
JR(u) du = |:(3u)i + (lu“ + lbtg)j + (%uz)k + c] =3i+ %j + 3k

47 T2 L 402
1
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Another Method

2 2 2 2
JR(M) du:iJ3 du+jj(u3 +4u”) du—i—kJudu
1 1 1 1

2

1, 177 525, 3
— 2 — .4 — .8 — .2 Kk = 3i ] ZKk.
[3u]11+[4u +2u]l+[2u]l 3i+ 1 ,]+2
5.2. The acceleration of a particle at any time ¢ > 0 is given by

a= % = (25 cos 20)i + (16 sin 2¢)j + (91)k.

Solution

Suppose the velocity v and the displacement r are the zero vector at t = 0. Find v and r at any time.
Integrating:

v= iJ(ZS c0s 21) dt+jj(l6 sin 21) dt+kJ(9t) di
= (22—5sin2t>i+ (—8cos20)j + <gt2>k+c1.

Putting v = 0 when 7 = 0, we find 0 = 0i — 8j + Ok + ¢; and ¢; = §j. Then

d 25 9
V= dilt‘ = <7sin2t)i + (8 —8cos2n)j + <§zz>k.

Integrating,

..,
Il

2
iJ(;sin2t>dt+j J(S —8cos2r) dr+kJ(§t2> dt

25 3
<_ZCOS 2t>i ~+ (8t + 4sin 20)j + (E t3>j + ¢;.

Putting r = 0 when ¢ = 0, we get

25 25
0= _ZH_CZ and ¢, = —i.

Then

25 25 3
r— (Z —cos 2t>i + (8 +4sin20)j + (§t3>k~

2

A
5.3. Evaluate JA X d—dt.
dr?

Solution

d dA d*’A  dA dA d’A
AX— | =Ax—+-—x—=AXx—
( th) i ta a T e
Integrating,

d’A d dA dA
AX—dt=|—(Ax—|dt=Ax—+c.
J X i dt Jdt( X dt)dt X 7 +c
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5.4. The equation of motion of a particle P of mass m is given by

d*r
mos = f(rry

where r is the position vector of P measured from an origin O, r; is a unit vector in the direction r,
and f(r) is a function of the distance of P from O.

(a)
(b)

Show that r x (dr/dt) = ¢ where c¢ is a constant vector.
Interpret physically the cases f(r) < 0 and f(r) > 0.

(c) Interpret the result in (a) geometrically.

(d)

Describe how the results obtained relate to the motion of the planets in our solar system.

Solution

(a)

(b)

(©)

(d)

Multiply both sides of m(d?r/dt*) = f(r)r; by rx. Then

2

d
mrxﬁ:f(r)rxn:O

since r and r; are collinear and so r x r; = 0. Thus

. dr . .
Integrating, r x = ¢, where c is a constant vector. (Compare with Problem 5.3.)

If f(r) < 0, the acceleration d*r / df? has a direction opposite to r;; hence, the force is directed toward O and

the particle is always attracted toward O.

If f(r) > 0, the force is directed away from O and the particle is under the influence of a repulsive
force at O.

A force directed toward or away from a fixed point O and having magnitude depending only on the dis-
tance » from O is called a central force.

In time Az, the particle moves from M to N (see Fig. 5-2). The area swept out by the position vector in
this time is approximately half the area of a parallelogram with sides r and Ar, or %r x Ar. Then the
approximate area swept out by the radius vector per unit time is %r x Ar/At; hence, the instantaneous
time rate of change in area is

L, dr

lim 1 Ar
m s X —=3' X — =3I XV
a—02 T At T T dr 2

where v is the instantaneous velocity of the particle. The quantity H = %r X (dr/dt) = %r x v is called the

areal velocity. From part (a),
. L _dr
areal velocity = H = 5r x e constant

Since r * H = 0, the motion takes place in a plane, which we take as the xy-plane in Fig. 5-2.

A planet (such as Earth) is attracted toward the Sun according to Newton’s universal law of gravitation,
which states that any two objects of mass m and M, respectively, are attracted toward each other with a
force of magnitude F = GMm/r*, where r is the distance between objects and G is a universal constant.
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—

Let m and M be the masses of the planet and sun, respectively, and choose a set of coordinate axes with the

origin O at the Sun. Then, the equation of motion of the planet is

d’r GMm d*r GM
m——=— r or —=——T
dr? 2 ! dar? 2ot

assuming the influence of the other planets to be negligible.

According to part (c), a planet moves around the Sun so that its position vector sweeps out equal areas in
equal times. This result and that of Problem 5.5 are two of Kepler’s three famous laws that he deduced
empirically from volumes of data compiled by the astronomer Tycho Brahe. These laws enabled

Newton to formulate his universal law of gravitation. For Kepler’s third law, see Problem 5.36.

Z

y
Planet
H = areal velocity 4l
1 dr 0
=-r X - = constant
2" dr STo
y <
y N
. _ a
X Ellipse r= 1+e€cosb
Fig. 5-2 Fig. 5-3

5.5. Show that the path of a planet around the Sun is an ellipse with the Sun at one focus.

Solution
From Problems 5.4(c) and 5.4(d),

dv_ GMr
a2 !
rxv=2H=h

Now r = rry,dr/dt = r(dr;/dt) + (dr/dt)r; so that

d d d
h=rxv=rr x (rﬁ—i-—rr]) = r’r ><g

dt dt dt
From (1),
dv GM dr
EXh:_rTrl x h=—-GMr; x <r1 ><711>
. dl‘l dl‘] o dl'l
——GMI:(I‘I d[)rl—(l'l TI)Z]—GMI

using equation (3) and the fact that r;+ (dr;/dt) = O (Problem 3.9). But since h is a constant vector,

dv d

— xh=— h

dt x dt (vxh)
so that

d dl‘l

dt (Vxh =G dt
Integrating,

vxh=GMr, +p

(e))
2

3
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from which
r-(vxhy=GMr+r;+r-p
= GMr +rri*p=GMr+rpcos 6

where p is an arbitrary constant vector with magnitude p, and 6 is the angle between p and r;.
Since r * (v x h) = (r x v)* h = h + h = 1%, we have h*> = GMr + rp cos 0 and

. h? _ h?/GM

" GM +pcos® 1+ (p/GM)cos 6

r

From analytic geometry, the polar equation of a conic section with focus at the origin and eccentricity € is r =
a/(1 + ecos 6) where a is a constant. See Fig. 5-3. Comparing this with the equation derived, it is seen that the
required orbit is a conic section with eccentricity € = p/GM. The orbit is an ellipse, parabola, or hyperbola
according as e is less than, equal to, or greater than one. Since orbits of planets are closed curves, it follows
that they must be ellipses.

Line Integrals

5.6. Suppose A = (3x? 4 6y)i — 14yzj + 20xz’k. Evaluate fc A + dr from (0, 0, 0) to (1, 1, 1) along the

following paths C:

@ x=ty==z="=r.

(b) the straight lines from (0, 0, 0) to (1, 0, 0), then to (1, 1, 0), and then to (1, 1, 1).
(c) the straight line joining (0, 0, 0) and (1, 1, 1).

Solution

JA dr = | [3x” + 6y)i — 14yzj + 20x2°K] - (dxi + dyj + dzk)
c

Ao—— O——s

(3x% + 6y) dx — 14yz dy + 20xz* dz

(@) Ifx=1y=1%z=1, points (0, 0, 0) and (1, 1, 1) correspond to = 0 and ¢ = I, respectively. Then

JA-dr
C

1
B2 + 612 dt — 143 d(?) + 20(0)(F)? d(F)

t=0

972 dr — 281° dt + 60¢° dt

t=0

1
(972 — 281° + 60¢°) dt = 3 — 44" + 6¢° .= 5

t=0
Another Method

Along C, A =972 — 14°j +20t'k and r =xi +yj+ zk = i + )j + £k and dr = (i + 2¢j + 3r°k) dt.

Then
1

JA odr = J (9% — 14855 + 2047K) - (i + 21j + 37°Kk) dt

C t=0

1
J(9z2 — 28054+ 60°) dt =5
0
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(b) Along the straight line from (0, 0, 0) to (1, 0, 0), y=0,z=0, dy =0, dz =0 while x varies from
0 to 1. Then the integral over this part of the path is
1 1
1
J (3x% 4 6(0)) dx — 14(0)(0)(0) + 20x(0)*(0) = J 3% dx = x° =1

x=0 x=0
Along the straight line from (1, 0, 0) to (1, 1, 0), x=1,z=0, dx =0, dz =0 while y varies from

0 to 1. Then the integral over this part of the path is
1

J (3(1)* + 6Y)0 — 14y(0) dy + 20(1)(0)%0 = 0

y=0
Along the straight line from (1, 1, 0) to (1, 1, 1), x =1,y =1, dx =0, dy = 0 while z varies from
0 to 1. Then the integral over this part of the path is

1

1
20231 20
J B(1)? + 6(1))0 — 14(1)z(0) + 20(1)Z? dz = J 2077 dz = TZ =3
z=0 z=0
Adding, 0 23
Aedr=14+0+"=="
J T +0+ 3 3
C

(c) The straight line joining (0, 0, 0) and (1, 1, 1) is given in parametric form by x = ¢, y = ¢, z = t. Then
1
J A-dr= J (38 + 61) dt — 14(0)(t) dt + 20(£)(1)* dt
c

t=0

1

13

= J B2 + 61 — 1477 + 208 dr = J (61 — 117% + 208%) dtz?
=0

t=0 t=

5.7. Find the total work done in moving a particle in the force field given by F = zi + zj 4+ xk along the
helix C given by x =cost, y =sint, z=t¢fromt =0to t = m/2.

Solution

Total work = JF dr = J(zi + zj + xK)* (dxi + dyj + dzk) = J(z dx+zdy+xdz)
c c c
/2 /2

/2
= J (td(cost) + td(sint) 4+ cost dt) = J (—tsint) dt + J (t+ 1)cost dt
0 0
Evaluating ([077/ % (—tsin?) dt by parts we get
/2
[tcost]]> — J costdt =0 —[sinf]]’* = —1.
0

Evaluating joﬂ/ : (t+ 1) cost dt by parts we get

/2
[( + 1)sinf)]"* — J sin dt :g—i— 1+ [cost]gﬂ:g

0

Thus the total work is (7/2) — 1.
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Suppose F = —3x?i + 5xyj. Evaluate Jc F - dr where C is the curve in the xy-plane, y = 2x?, from
(0, 0) to (1, 2).

Solution

Since the integration is performed in the xy-plane (z = 0), we may take r = xi + yj. Then:
JF <dr = J(—3x2i + 5xyj) * (dxi + dyj) = J(—3x2 dx + 5xy dy).
c c c

First Method. Let x = tin y = 2x°. Then the parametric equations of C are x = ¢, y = 2¢2. Points (0, 0) and (1, 2)
correspond to t = 0 and ¢t = 1, respectively. Then:

1 1
JF dr = J (=3¢ dt + 51(2%) d(21%)] = J (=37 +40r") di = [~ + 8], = 7.

c =0 =0
Second Method. Substitute y = 2x? directly where x goes from 0 to 1. Then:

1 1
JF -dr = J [—3x% dx + 5x(2x%) d(2x%)] = J (=3% +40x%) dx = [—2* + 8], = 7.

C x=0 x=0

Suppose a force field is given by

F=0Qx—y+2i+&+y—29j+@x—2y+4k

Find the work done in moving a particle once around a circle C in the xy-plane with its center at the
origin and a radius of 3.

Solution

In the plane z = 0,F = (2x — y)i + (x + y)j + (3x — 2y)k and dr = dxi + dyj so that the work done is

JF- dr = J [(2x — V)i + (x + y)j + Gx — 2y)K]* (dxi + dyj)
C

C
:J(Zx—y)dx+(x+y)dy
c

r=uxi+yj
=3 cos fi + 3 sin #j

Fig. 5-4
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5.10.

Choose the parametric equations of the circle as x = 3 cost, y = 3sint where ¢ varies from 0 to 27 (as in
Fig. 5-4). Then the line integral equals

2m

J [2(3cost) — 3sint](—3sint) dt + (3cost + 3sint)(3cost) dt
=0

2w
T

2
= J (9 —9sintcost) df = 9t—§sin2t0 =187
0

In traversing C, we have chosen the counterclockwise direction indicated in the adjoining figure. We call this the
positive direction, or say that C has been traversed in the positive sense. If C were traversed in the clockwise
(negative) direction the value of the integral would be —18.

(a) Suppose F = V¢, where ¢ is single-valued and has continuous partial derivatives. Show that
the work done in moving a particle from one point P; = (x1, y;, z1) in this field to another point
P, = (x3,y2,22) is independent of the path joining the two points.

(b) Conversely, suppose fCF- dr is independent of the path C joining any two points. Show that
there exists a function ¢ such that F = V.

Solution
(a) Py P
Work done = | F «dr = JVd)'dl‘
Py Py
Py
0 ) 0
= —(bi—l—jj—k—(bk * (dxi + dyj + dzk)
ax ay 0z
1
Tog 0o 0
0 0 a
= adx+5dy+a—zdz

Py
Py

= | dop = ¢(P2) — d(P1) = P(x2,2,22) — P(x1,Y1,21)

Py

Then the integral depends only on points P and P, and not on the path joining them. This is true of course
only if ¢(x,y,z) is single-valued at all points P; and P;.

(b) Let F = Fii+ F»j + Fsk. By hypothesis, jCF + dr is independent of the path C joining any two points,
which we take as (x,y1,21) and (x, y, z), respectively. Then

(x,,2) (x,y,2)
d(x,y,2) = J F-dr= J Fidx+ Fy,dy+ F3 dz

(1, y1,21) (x1,51,21)



CHAPTER 5 Vector Integration

is independent of the path joining (x;, y;, z1) and (x, y, z). Thus

(x+Ax, y,2) (X, ,2)

d(x + Ax,y,2) — Pp(x,y,2) = J F.dr — J F-dr
(X1, y1,21) (x1,y1,21)
(X1, y1,21) (x+Ax,y,2)

= J Fedr + J F-dr

(x,y,2) (x1,y1,21)

(c+Ax, y,2) (x+Ax,y,2)
= J Fedr = J Fldx+F2dy+F3dz
(x,y,2) (x,y,2)

Since the last integral must be independent of the path joining (x, y, z) and (x + Ax, y, z), we may choose the
path to be a straight line joining these points so that dy and dz are zero. Then

(x+Ax, y,2)
b(x+Ax,y,2) — plx,y,2) 1 Fy dx
Ax A 1

(x,y,2)

Taking the limit of both sides as Ax — 0, we have d¢p/dx = F;. Similarly, we can show that d¢/dy = F,
and 0¢/0z = F3. Then

ap, o 9
F:F1i+F2j+F3k:—¢i+—¢j-l——¢k: Vo.
ox ay 0z

It zfl * F - dr is independent of the path C joining Py and P,, then F is called a conservative field. It follows
that if F = V¢ then F is conservative, and conversely.

Proof using vectors. If the line integral is independent of the path, then

(x,y,2) (x,,2)
d(x,y,2) = J F-dr = J F-

(1, y1,21) (x1,y1,21)

dr

d.
dss

By differentiation, d¢p/ds = F+ (dr/ds). But d¢/ds = V¢ « (dr/ds) so that (V¢ — F) « (dr/ds) = 0.
Since this must hold irrespective of dr/ds, we have F = V ¢.

5.11. (a) Suppose F is a conservative field. Prove that curl F = V x F = 0 (i.e. F is irrotational).
(b) Conversely, if V x F = 0 (i.e. F is irrotational), prove that F is conservative.
Solution

(a) If F is a conservative field, then by Problem 5.10, F = V.
Thus curl F = V x V¢ = 0 (see Problem 4.27(a), Chapter 4).
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i

a
(b) If VX F =0, then o = 0 and thus

X
Fy

F e
IElew

OFy 0F, oF, 0oFy 0F, OF)
dy 9z &z ax  ox By
We must prove that F = V¢ follows as a consequence of this.
The work done in moving a particle from (xy, y1,z1) to (x, y, z) in the force field F is

JFl(x,y, 2) dx + Fy(x,y,2) dy + F3(x,y,2) dz
C

where C is a path joining (x;,y;,z;) and (x, y, z). Let us choose as a particular path the straight line segments
from (x1,y1,21) to (x,¥1,21) to (x,y,z1) to (x, y, z) and call ¢(x,y,z) the work done along this particular path.
Then

X y b4
dx,y,2) = JF|(x,y1,Z|) dx + JFz(x,y,m) dy + JFz(x,y,z) dz
X1 Y1

21

It follows that

a
d) = FB(X,)’,Z)
0z

z
d oF
% _ by y.z) + J—3<x,y,z) dz
dy ay

21

z
oF:
= Fy(x,y,21) + Ja—z"’(x,y, 2) dz
21
Z

= F(x,y,21) + Fo(x,y,2)| = Fo(x,y,21) + Fa(x, y,2) — Fo(x,y,21) = Fa(x, y,2)

21

8F
—3 (x,y,2) dz

y
0 oF"
3¢ =Fi(x,y,2)+ J—z(x,y,m) dy +
ox ax

1

’

=F1(x,y1,Z1)+Ja (x,y,21) dy + J “Loy,2) dz
1 21

y z
+ Fi(x,y,2)

Y

=Fi1(y1,21) + Fi(xy, zi) — Fi(x,yn,z0) + Fi(x,y, 2) — Fi(x, y, zi) = Fi(x,y,2)

= F1(x,y1,21) + Fi(x,y,21)

21

Then

j+ 2"k = V.

0. b, 0
Ty T

F= F11+F2J—|—F3k—

Thus a necessary and sufficient condition that a field F be conservative is that curl F = V x F = 0.
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5.12. (a) ShowthatF = (2xy + z°)i + x%j + 3xz°k is a conservative force field. (b) Find the scalar potential.

(c) Find the work done in moving an object in this field from (1, —2,1) to (3, 1, 4).

Solution

(a) From Problem 5.11, a necessary and sufficient condition that a force will be conservative is that curl

F=V xF=0.Now

i j k
vxp=| -~ L 21,
= x dy oz |
2y +72 ¥ 3xF?
Thus F is a conservative force field.
(b) First Method. By Problem 5.10,
ad 0 ad
F=Vé¢or —d)i +—¢j +—¢k = 2xy + )i + x%j + 3x7°k.
ox ay 0z

Then

Gl
—(b=2xy+z3
ox
09 _
dy
Gl

¢

¥ 32
dz e

Integrating, we find from (1), (2), and (3), respectively, that

¢ = ¥y + x@ + f(0.2
¢ = x%y + gx2)
¢ = x4+ h(x,y)

M

(@)

3

These agree if we choose f(v,z) = 0, g(x,z) = xz°, h(x,y) = x>y so that ¢ = x>y + xz> to which may be

added any constant.

Second Method. Since F is conservative, fCF + dr is independent of the path C joining (x;,y;,z;) and

(x, y, 2). Using the method of Problem 5.11(b),

X y z
d(x,y,2) = J(2xy1 +27) dx+ sz dy + J3xz2 dz
x| i 21

x y

+x7°
Y1

+ xzy

X1

= (Py) +xz7)

21

3
=Xy +xz; — X1y — Xz + X0y — X7y +x2 —xz;

=x*y+x2° =y —x12) = x*y +x2° + constant
Third Method.

F.dr=V¢ -dr:a—d)dx—i-a—(bdy—i-a—(ﬁdz:d(b.
ox ay 0z
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Then
dp=F +dr = Qxy+2°) dx + x* dy + 3x2% dz
= 2xy dx + x> dy) + (2 dx+3x7* do)
= d(x*y) + d(xz®) = d(X*y + x2°)

and ¢ = x%y + xz> + constant.

Py
(c) Work done = J F-dr
P,

Py
= J Q2xy + 2°) dx 4+ x> dy + 3x2% dz
Py
Py

=Xy +xz°
Py

Py (3,1,4)
= J APy +x2%) = Xy + 12

Py

=202

(1,-2.1)
Another Method. From part (b), ¢(x,y,z) = x>y + xz> + constant.
Then work done = ¢(3,1,4) — (1, —2,1) = 202.

5.13. Prove that if |, 11:, * F- dr is independent of the path joining any two points Py and P, in a given region,
then § F+ dr = 0 for all closed paths in the region and conversely.

Solution

B
Fig. 55

Let P{AP,BP; (see Fig. 5-5) be a closed curve. Then

%F-dr: J Fedr = J Fedr+ J F-dr
P1AP,BP, PAP, P,BP,
= J Fedr — J Fedr=0
PIAP, P1BP,

since the integral from P; to P, along a path through A is the same as that along a path through B, by hypothesis.
Conversely, if §F+dr = 0, then

J Fedr = J Fedr + J Fedr = J Fedr— J Fedr=0
P1AP,BP PLAP, P,BP PIAP, P\BP,

so that,

Fedr = J F-dr.
P1AP; PBP,
5.14. (a) Show that a necessary and sufficient condition that F'; dx + F, dy + F5 dz be an exact differential
is that V x F = 0 where F = Fji + F»j + F3k.

(b) Show that (y?z° cos x — 4x3z) dx + 273y sinx dy + (3y*z? sinx — x*) dz is an exact differential of a
function ¢ and find ¢.
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Solution
(a) Suppose

3 3 3
Fi dx+ F, dy + Fs dz_dd)_—d) dx—l—a—d) dy +i§ dz,

an exact differential. Then, since x, y, and z are independent variables,

o ¢ ¢
Fil==", Fp=—", Fy=—
T 2 ay T

and so F = Fi 4 Fj + Fsk = (3¢/0x)i + (3/dy)j + (3¢/d)k = V. Thus V x F = V x Ve = 0.

Conversely, if V x F =0, then by Problem 5.11, F = V¢ and so F+dr = V¢ + dr = d¢, that is,
F, dx + F, dy + F3 dz = d¢, an exact differential.

(b) F = (%2} cos x — 4x32)i + 223y sinxj + (3y%z? sinx — x*)k and V x F is computed to be zero, so that by
part (a)

(v*2% cosx — 4x3z) dx 4+ 223y sinx dy + (3y°2* sinx — x*) dz = d¢

By any of the methods of Problem 5.12, we find ¢ = y?z’ sinx — x*z + constant.

5.15. Let F be a conservative force field such that F = —V ¢. Suppose a particle of constant mass m to
move in this field. If A and B are any two points in space, prove that

HA) +1mv} = $(B) +Lmv}

where v4 and vp are the magnitudes of the velocities of the particle at A and B, respectively.

Solution
d2
F=ma= md—;
Then
p.dr_ dr d'r _md (dr :
ar” "ar R T 2ai\dr)
Integrating,
T 1 1
m B
JF dr = EVZ‘A = Emvf; —Emvi
A
IfF=-V¢,

B B
JF-dr: J V- dr = —Jdd):d:(A)—q,’)(B).

Then ¢(A) — H(B) = muB — %va and the result follows.

d(A) is called the potential energy at A and 1 imv 4 1s the kinetic energy at A. The result states that the total
energy at A equals the total energy at B (conservation of energy). Note the use of the minus sign in F = —V¢.
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5.16. Suppose ¢ = 2xyz>, F = xyi — zj + x’k and C is the curve x = 2,y = 2t,z =’ fromt =0 to t = 1.
Evaluate the line integrals (a) [.. ¢ dr, (b) [ F x dr.

Solution
(a) Along C, ¢ =2xyz = 22 = 47,
r=xi+yj+zk="ri+2tj+7k and
dr = (24 + 2j + 3¢°Kk) dt.
Then

Jqﬁdr: J4t9(2ri+2j+3t2k) di
C t=0
1 1
: 10 : 9 11 8 . 4-
=i|8 " dt+j|8 dt+k|12t dt=ﬁl+g,]+k
0 0 0

(b) Along C, we have F = xyi — zj + x’k = 2£%i — £’j + t*k. Then

F x dr = 2% — £j + k) x (24i + 2j + 3°k) dt

i j k
=20 = 4 dr=[(=30 =2+ 2F — 6)j + (4 + 21 k] dt
2t 2 32

and

1 1

1
JF x dr = iJ(—3t5 -2t dt —l—j[(—4t5) dr + kJ(4t3 +2¢*) dt
0

C 0 0

_ 9, 2.7,
T 10 375

Surface Integrals

5.17. Give a definition of HS A n dS over a surface S in terms of limit of a sum (see Fig. 5-6).

Solution

Subdivide the area S into M elements of area AS, where p =1,2,3,...,M. Choose any point P, within
AS,, whose coordinates are (xp, y,, z,). Define A(x,,y,,2,) = A,. Let n, be the positive unit normal to AS, at
P. From the sum

M
Z A, n, AS,
p=1

where A, n, is the normal component of A, at P,.
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5.18.

Now take the limit of this sum as M — oo in such a way that the largest dimension of each AS,
approaches zero. This limit, if it exists, is called the surface integral of the normal component of A over S

and is denoted by
JJA- n ds

N

Suppose that the surface S has projection R on the xy-plane (see Fig. 5-6). Show that

[[a-nas=[[a-nic

N R

Solution

By Problem 5.17, the surface integral is the limit of the sum

M
Z A,+n,AS, 1)
p=1

The projection of AS, on the xy-plane is |(n, AS,)+ K| or |n,*K|AS,, which is equal to Ax,Ay, so that

AS, = Ax,Ay, /I, K|. Thus sum (1) becomes

M
ZAp.n M )

By the fundamental theorem of integral calculus, the limit of this sum as M — oo in such a manner that the
largest Ax, and Ay, approach zero is
dx dy
A
” "in- k]

and so the required result follows.

Strictly speaking, the result AS, = Ax,Ay,/[n,* k| is only approximately true but it can be shown on closer
examination that they differ from each other by infinitesimals of order higher than Ax,Ay,, and using this the
limits of (1) and (2) can in fact be shown equal.

Z

Fig. 56 Fig. 57
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5.19.

5.20.

Evaluate [[, A+ n dS, where A = 18zi — 12j + 3yk and § is that part of the plane 2x + 3y + 6z = 12,
which is located in the first octant.

Solution

The surface S and its projection R on the xy-plane are shown in Fig. 5-7.

From Problem 5.18,
”A-n ds = JJA-ndx dy
n- K|
R

N

To obtain n, note that a vector perpendicular to the surface 2x + 3y 4+ 6z = 12 is given by V(2x + 3y 4 62) =
2i 4 3j + 6k (see Problem 4.5 of Chapter 4). Then a unit normal to any point of S (see Fig. 5-7) is

2i+3j+6k

NS ErEae AT
Thus n -k = (3i +3j 4 8k)- k =$ and so
dxdy 7
= —dx dy.
m-k 67 %

Also

36z — 36418y 36— 12
A-n = (182 — 12) + 3yk)+ (2i 43 +6k) = = 7+ Y~ 7 x,

using the fact that z = (12 — 2x — 3y)/6 from the equation of S. Then

[ 4. dxdy 36 — 12x 7 _ _
HA ndS_JJA nIn-kl_JJ< 7 >6dxdy_ﬂ(6 2x) dx dy
s R R R

To evaluate this double integral over R, keep x fixed and integrate with respect to y from y = O (P in the figure
above) to y = (12 — 2x)/3 (Q in the figure above); then integrate with respect to x from x = 0 to x = 6. In this
manner, R is completely covered. The integral becomes

12—2x)/3
6 ( )/ )

6
4
(6 — 2x) dy dx = J (24— 12x+%) dx = 24

x=0 y=0 x=0
If we had chosen the positive unit normal n opposite to that in Fig. 5-7, we would have obtained the result —24.

Evaluate [[(A+n dS, where A = zi + xj — 3y’zk and S is the surface of the cylinder x> +y* = 16
included in the first octant between z = 0 and z = 5.
Solution

Project S on the xz-plane as in Fig. 5-8 and call the projection R. Note that the projection of S on the xy-plane
cannot be used here. Then

”A- n ds = JJA- nZE%
! n- j|

N
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A normal to x> +y? = 16 is V(x> + y?) = 2xi + 2yj. Thus as shown in Fig. 5-8 the unit normal to S is

2i+2yj A4

ety 4

since x> +y> = 16 on S.

L. i+ yj 1
A-n = (7 +xj — 3y°2k) - (Jﬂ 4y']) :Z(xz+xy)
Lo x4y Ly
nj=—7 =5
Then the surface integral equals
5 4 5
e | ] ()= |
—— dxdz = ————+x)dxdz= | 4z24+8)dz=90
JJ y oo 16 — x2 .
z=0 x=! z=l

N

_— ———————————

’d

Fig. 58

5.21. Evaluate ([ ¢n dS where ¢ = 2xyz and S is the surface of Problem 5.20.

Solution
We have

foms- o

N
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Using n = (xi + yj)/4,n * j = y/4 as in Problem 5.20, this last integral becomes

5 4

3 3
JJ gxz(xi +yj)dx dz = 3 J J (%20 + xzv16 — x2j) dx dz
R 720 x=0
5
3 64 . 64

=3 J <?Zl+?2\]> dz = 100i 4 100j

7=

5.22. Suppose F = yi + (x — 2xz)j — xyk. Evaluate Hs (V x F)+n dS where S is the surface of the sphere
x? 4+ y? 4+ 72 = a® above the xy-plane (see Fig. 5-9).

Solution

=xi+yj—2zk

A normal to x> +y*> 4+ 72 = a? is
VP 4y 4+ 22) = 2xi + 2yj + 27k

Then the unit normal n of Fig. 5-9 is given by

_ 2xi+2yj 422k xi+yj+zk

/A 42 142 a

since x> 4+ y* + 72 = a?

The projection of S on the xy-plane is the region R bounded by the circle x> + y?> = a?,z = 0 (see Fig. 5-9).
Then

H(VxF)-ndS:JJ(VxF)-ndXdy
[n- K|
S

R

L. xi+yj + zk\ dxdy
—27k).
JJ(Xl+yJ &) ( a ) z/a
R
« JER
J J 3(x% 4+ %) — 2a?

ar — a2 — 2

dy dx
Y=—ay— a2
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using the fact that z = \/a? — x2 — y2. To evaluate the double integral, transform to polar coordinates (p, ¢)
where x = pcos ¢,y = psin ¢, and dy dx is replaced by p dp d¢. The double integral becomes

2T a 2T a
3p? — 24d? 3(p* — a®) +a®
2 g = | = dpas
a? — p? a? — p?
$=0 p=0 $=0 p=0
2T a y
- j —3p az_p2+L dp d¢
m
¢=0 p=0

2

= [(02—P2)3/2—a2 a? — p? :|d¢
¢= p=0

2w

= | @—-pHdp=0
#=0

Fig. 5-9 Fig. 5-10

5.23. Let F = 4xzi — y%j + yzk. Evaluate J/¢F+ndS where S is the surface of the cube bounded by
x=0,x=1,y=0,y=1,z=0, z= 1. (See Fig. 5-10).

Solution
Face DEFG: n =i, x = 1. Then

Face ABCO: n = —i, x = 0. Then

11
JJ F-ndS= ”(—yﬁ' + yzK)+ (—i) dy dz = 0
ABCO 00
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Face ABEF:n=j, y= 1. Then

JJF-ndS:
ABEF

Face OGDC: n = —j, y = 0. Then

1 I
J(4xzi—j+zk)-j dxdz:JJ—dx dz =—1
0 00

O e

11
J FendS= JJ(4xzi). (=j)dxdz=0
00

0GDC
Face BCDE: n =Kk, z=1. Then

11 11
” F-ndS:JJ(4xi—y2j+yk)-kdxdy:ijdxdy:%
BCDE 00 00

Face AFGO: n = —k,z = 0. Then

[| Fonas=

AFGO

Adding, [[(F+ndS=2+0+(-D)+0+3+0=4

[SY S

1
J(—yﬁ')- (—K) dx dy = 0
0

5.24. In dealing with surface integrals, we have restricted ourselves to surfaces that are two-sided. Give an
example of a surface that is not two-sided.

Solution

Take a strip of paper such as ABCD as shown in Fig. 5-11. Twist the strip so that points A and B fall on D and C,
respectively, as in Fig. 5-11. If n is the positive normal at point P of the surface, we find that as n moves
around the surface, it reverses its original direction when it reaches P again. If we tried to color only one
side of the surface, we would find the whole thing colored. This surface, called a Moebius strip, is an
example of a one-sided surface. This is sometimes called a non-orientable surface. A two-sided surface
is orientable.

AD

Fig. 511

Volume Integrals

5.25. Let ¢» = 45x%y and let V denote the closed region bounded by the planes 4x +2y +z =8, x =0,
y =0, z=0. (a) Express [[[, ¢ dV as the limit of a sum. (b) Evaluate the integral in (a).

Solution

(a) Subdivide region V into M cubes having volume AV, = Ax Ay Az, k =1,2,...,M as indicated in
Fig. 5-12 and let (xy, Y&, zx) be a point within this cube. Define ¢(xg, yk,zx) = ¢;. Consider the sum

M
AN ¢))
k=1
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taken over all possible cubes in the region. The limit of this sum, when M — oo in such a manner that the
largest of the quantities AV} will approach zero, if it exists, is denoted by ﬂjvd) dV . It can be shown that this
limit is independent of the method of subdivision if ¢ is continuous throughout V.

In forming the sum (1) over all possible cubes in the region, it is advisable to proceed in an orderly
fashion. One possibility is to first add all terms in (1) corresponding to volume elements contained in a
column such as PQ in the above figure. This amounts to keeping x; and y; fixed and adding over all zs.
Next, keep x; fixed but sum over all ys. This amounts to adding all columns such as PQ contained in a
slab RS, and consequently amounts to summing over all cubes contained in such a slab. Finally, vary x;.
This amounts to addition of all slabs such as RS.

In the process outlined, the summation is taken first over z;s, then over y;s, and finally over x;s. However,
the summation can clearly be taken in any other order.

AV = Axy Ay Az

Fig. 512

(b) The ideas involved in the method of summation outlined in (a) can be used in evaluating the integral.
Keeping x and y constant, integrate from z = 0 (base of column PQ) to z = 8 — 4x — 2y (top of column
PQ). Next keep x constant and integrate with respect to y. This amounts to addition of columns having
bases in the xy-plane (z = 0) located anywhere from R (where y =0) to S (where 4x 42y =8 or
y =4 — 2x), and the integration is from y =0 to y =4 — 2x. Finally, we add all slabs parallel to the
yz-plane, which amounts to integration from x = 0 to x = 2. The integration can be written

2 4-2x 8—4x—2y 2 4-2x

[ J J 45x2ydzdydx:45j szy(8—4x—2y)dydx

x=0 y=0 z=0 x=0 y=0

2
1
=45 J gx2(4 —2x)° dx = 128
=0

x=l

Note: Physically, the result can be interpreted as the mass of the region V in which the density ¢ varies
according to the formula ¢ = 45x2y.
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5.26. Let F = 2xzi — xj + y’k. Evaluate [[[,, FdV where V is the region bounded by the surfaces
x=0,y=0,y =6, z=1x% z=4, as pictured in Fig. 5-13.

Solution

The region V is covered (a) by keeping x and y fixed and integrating from z = x? to z = 4 (base to top of column
PQ), (b) then by keeping x fixed and integrating from y = 0 to y = 6 (R to S in the slab), (c) finally integrating
from x = 0 to x = 2 (where z = x> meets z = 4). Then the required integral is

2 6 4
j J J(szi—xj+y2k)dzdydx

x=0 y=0 z=x2

26 4 26 4 26 4
=iJ“2xzdzdydx—jJ“xdzdyderk“Jf dz dy dx = 128i — 24j + 384k
002 00 x2 002

Fig. 513 Fig. 5-14

5.27. Find the volume of the region common to the intersecting cylinders x> + y*> = a* and x> + 7> = a°.

Solution

Required volume = 8 times volume of region shown in Fig. 5-14

a Na*—x* vJa*—x?

=SJ J szdydx

x=0 y=0 z=0

a var—x a 16 5
=8J J \/az—xzdydx=8j(a2—x2)dx=Ta
x=0 y=0 x=0

SUPPLEMENTARY PROBLEMS
5.28. Suppose R() = (3% — 1)i + (2 — 61)j — 4tk. Find (a) [R(7) dt and (b) [} R(?) dt.

5.29. Evaluate [ (3 sinui + 2 cos uj) du.

5.30. Let A(r) = fi — £2j + (r — 1)k and B() = 2/%i + 67k. Evaluate (a) [; A+ B dt, (b) [ A x B dr.

5.31. Let A = fi — 3j + 2rk, B = i — 2j 4 2k, C = 3i + 7j — k. Evaluate (2) [T A+ B x C dr, (b) [T A x (B x C) d.
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5.32. The acceleration a of a particle at any time r > 0 is given by a = e~'i — 6(¢ + 1)j + 3 sin zk. If the velocity v and
displacement r are zero at t = 0, find v and r at any time.
5.33. The acceleration a of an object at any time ¢ is given by a = —gj, where g is a constant. At t = 0, the velocity is

5.34.

5.35.

5.36.

5.37.

5.38.

5.39.

5.40.

5.41.

5.42.

5.43.

given by v = v, cos 6,i + v, sin 6,j and the displacement r = 0. Find v and r at any time ¢ > 0. This describes the
motion of a projectile fired from a cannon inclined at angle 6, with the positive x-axis with initial velocity of
magnitude v,.

Suppose A(2) = 2i — j + 2k and A(3) = 4i — 2j + 3k. Evaluate f; A« (dA/dr) dr.

Find the areal velocity of a particle that moves along the path r = a cos wfi + b sin wtj where a, b, and w are
constants and ¢ is time.

Prove that the squares of the periods of the planets in their motion around the Sun are proportional to the cubes of
the major axes of their elliptical paths (Kepler’s third law).

Let A = 2y 4+ 3)i + xzj + (yz — x)k. Evaluate .[c A dr along the following paths C:
(a) x:2t2,y:t,z:t3 fromt=0totr=1,

(b) the straight lines from (0, 0, 0) to (0, 0, 1), then to (0, 1, 1), and then to (2, 1, 1),
(c) the straight line joining (0, 0, 0) and (2, 1, 1).

Suppose F = (5xy — 6x%)i + (2y — 4x)j. Evaluate fc F- dr along the curve Cin the xy-plane, y = x> from the point
(1, ) to (2, 8).

Let F = (2x + y)i + (3y — x)j. Evaluate Jc F- dr where C is the curve in the xy-plane consisting of the straight
lines from (0, 0) to (2, 0) and then to (3, 2).

Find the work done in moving a particle in the force field F = 3x%i + (2xz — y)j + zk along
(a) the straight line from (0, 0, 0) to (2, 1, 3).

(b) the space curve x =212, y =1,z =4> —tfromt=0tot = 1.

(c) the curve defined by x*> =4y, 3x*> = 8z fromx =0 to x = 2.

Evaluate §CF- dr where F = (x — 3y)i+ (y — 2x)j and C is the closed curve in the xy-plane, x = 2cost,
y=3sint from t =0 to t = 2.

Suppose T is a unit tangent vector to the curve C,r = r(x). Show that the work done in moving a particle in a

force field F along C is given by jc F- T ds where s is the arc length.

LetF = (2x 4+ y»)i + (3y — 4x)j. Evaluate §C F - dr around the triangle C of Fig. 5-15 (a) in the indicated direction,
(b) opposite to the indicated direction.

P 1

2,1

X
o (2,0) x

Fig. 515 Fig. 5-16
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5.44.

545.

5.46.

5.47.

5.48.

5.49.

5.50.

5.51.

5.52.

5.53.

5.54.

5.55.

5.56.

5.57.

5.58.

5.59.

5.60.

Let A = (x — y)i + (x + y)j. Evaluate 390 A dr around the closed curve C of Fig. 5-16.

Let A = (y — 2x)i 4+ (3x + 2y)j. Compute the circulation of A about a circle C in the xy-plane with center at the
origin and radius 2, if C is traversed in the positive direction.

(a) Suppose A = (4xy — 3x?z)i + 2x%j — 2x’zk. Prove that [. A« dr is independent of the curve C joining two
given points. (b) Show that there is a differentiable function ¢ such that A = V¢ and find it.

(a) Prove that F = (y? cosx + 2°)i + 2y sinx — 4)j + (3xz> + 2)k is a conservative force field.

(b) Find the scalar potential for F.

(c) Find the work done in moving an object in this field from (0,1, —1) to (7/2, —1,2).

Prove that F = /°r is conservative and find the scalar potential.

Determine whether the force field F = 2xzi + (x> — y)j + (2z — x¥?)K is conservative or non-conservative.

Show that the work done on a particle in moving it from A to B equals its change in kinetic energies at these points
whether the force field is conservative or not.

Given A = (yz + 2x)i + xzj + (xy + 22)k. Evaluate [. A+ dr along the curve x* + y* = 1, z = 1 in the positive
direction from (0, 1, 1) to (1, 0, 1).

(a) Let E = rr4. Is there a function ¢ such that E = —V¢? If so, find it. (b) Evaluate §c E- dr if Cis any simple
closed curve.

Show that (2xcosy + zsiny) dx + (xzcosy — x? siny) dy + xsin y dz is an exact differential. Hence, solve the
differential equation (2xcosy + zsiny)dx + (xzcosy — x% siny) dy + xsinydz = 0.

Solve (a) (e™ + 3x%y?) dx + (2x>y —xe™)dy = 0,

(b) (z—e*siny)dx+ (1 + e *cosy)dy+ (x — 82)dz = 0.

Given ¢ = 2xy’z + x°y. Evaluate .. ¢ dr where C

(a) isthecurve x =t, y =1, z=1 fromt=0tot = I,

(b) consists of the straight lines from (0, 0, 0) to (1, 0, 0), then to (1, 1, 0), and then to (1, 1, 1).

Let F = 2yi — zj + xk. Evaluate fc F X dr along the curve x = cost, y = sint, z = 2costfromt =0tot = /2.

Suppose A = (3x + y)i — xj + (v — 2)k and B = 2i — 3j + k. Evaluate 39C (A x B) x dr around the circle in the
xy-plane having center at the origin and radius 2 traversed in the positive direction.

Evaluate [[ A+ n dS for each of the following cases.
(a) A =yi+ 2xj — zk and S is the surface of the plane 2x + y = 6 in the first octant cut off by the plane z = 4.
(b) A = (x+y?)i — 2xj + 2yzk and S is the surface of the plane 2x + y + 2z = 6 in the first octant.

Suppose F = 2yi — zj + 1’k and § is the surface of the parabolic cylinder y*> = 8x in the first octant bounded by
the planes y = 4 and z = 6. Evaluate [[(F-n dS.

Suppose A = 6zi + (2x 4 y)j — xk. Evaluate ﬂs A~ n dS over the entire surface S of the region bounded by the
cylindf:r)cz—l—z2 =9,x=0,y=0,z=0,and y = 8.
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5.61. Evaluate Hs r- n dS over: (a) the surface S of the unit cube bounded by the coordinate planes and the planes x = 1,
y =1, z = 1; (b) the surface of a sphere of radius a with center at (0, 0, 0).

5.62. Suppose A = 4xzi + xyz2j + 3zk. Evaluate Hs A~ n dS over the entire surface of the region above the xy-plane
bounded by the cone z2 = x> + y? and the plane z = 4.

5.63. (a) Let R be the projection of a surface S on the xy-plane. Prove that the surface area of S is given by

a2\* ()

” 1+ & + %) ax dy if the equation for S is z = f(x, ).
ox ay

R

(b) What is the surface area if S has the equation F(x,y,z) = 0?

5.64. Find the surface area of the plane x +2y +2z =12 cutoff by: (a) x =0, y=0,x=1,y=1;
b)x=0,y=0, andxz—i—y2 = 16.

5.65. Find the surface area of the region common to the intersecting cylinders x> + y*> = a? and x> 4 7> = a@°.

5.66. Evaluate (a) [[((V x F)*n dS and (b) [[; ¢n dS if F = (x4 2y)i — 3zj + xk, ¢ = 4x + 3y — 2z, and S is the
surface of 2x +y+2z =6 bounded by x=0,x=1,y=0and y = 2.

5.67. Solve the preceding problem if S is the surface of 2x + y 4+ 2z = 6 bounded by x =0, y =0, and z = 0.
5.68. Evaluate [[,/x> 4+ y* dx dy over the region R in the xy-plane bounded by x* + y* = 36.

5.69. Evaluate Jﬂv (2x +y) dV, where V is the closed region bounded by the cylinder z = 4 — x? and the planes x = 0,
y=0,y=2,andz =0.

5.70. Suppose F = (2x* — 32)i — 2xyj — 4xk. Evaluate (a) [[[,,V+F dV and (b) [[[,V x F dV, where V is the closed
region bounded by the planes x =0, y =0, z =0, and 2x + 2y + z = 4.

ANSWERS TO SUPPLEMENTARY PROBLEMS

5.28. (a) (£ — 2/2)i+ (2t — 32)j — 2%k + ¢, 5.40. (a) 16, (b) 14.2, (c) 16
(b) 50i — 32j — 24k
5.29. 3i +2j 5.41. 6, if C is traversed in the positive
(counter-clockwise) direction
. 40, 65
5.30. (a) 12, (b) —24i — ?J +?k 5.43. (a) —14/3, (b) 14/3
87, 44 15
531. ()0, (b) ——i——j+—Kk 5.44. 2/3
2 3 2
532. v=(1—e")i— (31> + 61)j + (3 — 3cos 1k, 545. 87
r=>0—14+e"i— (@ +32)j+ 3t —3sinnk
5.33. v = v, cos Ooi + (v, sin 0, — g1)j, 5.46. (b) ¢ = 2x*y — x°z% + constant
r = (1 cos O,)i + [(v, sin ,)r — 1g1*]j
5.34. 10 5.47. (b) ¢ = y?>sinx + xz> — 4y + 2z + constant,
() 15+ 4
4
5.35. Labwk 5.48. ¢ = % -+ constant
5.37. (a) 288/35, (b) 10, (c) 8 5.49. non-conservative
5.38. 35 5.51. 1

3
539. 11 552 (a) b= — % + constant, (b) 0
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5.53.

5.54.

5.55.

5.56.
5.57.

5.58.
5.59.
5.60.
5.61.

x% cosy + xzsiny = constant

(a) xe™ + x>y? = constant,
(b) xz 4+ e *siny + y — 47> = constant

19 11 75 1
it —j+—k (b)=j+2k
(a) 451+15J+77 , (b) 2_]+

(e (r3)
4 (7i + 3j)

(a) 108, (b) 81

132

187

(a) 3, (b) 47a®

5.62.

5.63.

5.64.

5.65.
5.66.

5.67.
5.68.
5.69.
5.70.

ﬂ/@z) <> ()

(a) 372, (b) 67

164>

(a)1,(b)2i+j+ 2k

(a) 972, (b) 72i + 36j + 72k
1444

80/3

8 8 .
@3 03—k

dx

dy



CHAPTER 6

Divergence Theorem,
Stokes’ Theorem, and Related
Integral Theorems

6.1 Introduction

Elementary calculus tells us that the value of the definite integral of a continuous function f(x) on a closed
interval [a, b] can be obtained from the anti-derivative of the function evaluated on the endpoints a and b
(boundary) of the interval.

There is an analogous situation in the plane and space. That is, there is a relationship between a double
integral over certain regions R in the plane, and a line integral over the boundary of the region R. Similarly,
there is a relationship between the volume integral over certain volumes V in space and the double integral
over the surface of the boundary of V.

We discuss these theorems and others in this chapter.

6.2 Main Theorems

The following theorems apply.

THEOREM 6.1  (Divergence Theorem of Gauss) Suppose V is the volume bounded by a closed surface
S and A is a vector function of position with continuous derivatives. Then

J‘JJV~AdV:JSJA-ndS:ﬁA'dS

where n is the positive (outward drawn) normal to S.
THEOREM 6.2 (Stokes’ Theorem) Suppose S is an open, two-sided surface bounded by a closed,

nonintersecting curve C (simple closed curve), and suppose A is a vector function of
position with continuous derivatives. Then

#A-dr: H(V x A)*ndS = ”(V x A)+ dS
C s s

where C is traversed in the positive direction.
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The direction of C is called positive if an observer, walking on the boundary of § in that direction, with
his head pointing in the direction of the positive normal to S, has the surface on his left.

THEOREM 6.3  (Green’s Theorem in the Plane) Suppose R is a closed region in the xy-plane bounded
by a simple closed curve C, and suppose M and N are continuous functions of x and y
having continuous derivatives in R. Then

oN oM
%de—l—Ndy:ﬂ — —— ) dxdy
ox  dy
c R

where C is traversed in the positive (counter-clockwise) direction.

Unless otherwise stated, we shall always assume § to mean that the integral is described in the positive
sense.

Green’s theorem in the plane is a special case of Stokes’ theorem (see Problem 6.4). Also, it is of interest
to notice that Gauss’ divergence theorem is a generalization of Green’s theorem in the plane where
the (plane) region R and its closed boundary (curve) C are replaced by a (space) region V and its closed
boundary (surface) S. For this reason, the divergence theorem is often called Green’s theorem in space
(see Problem 6.4).

Green’s theorem in the plane also holds for regions bounded by a finite number of simple closed curves
that do not intersect (see Problems 6.10 and 6.11).

6.3 Related Integral Theorems

The following propositions apply.

PROPOSITION 6.4:  The following laws hold:

() ﬂj [SV20+ (V) - (V)] dV = ﬂ ($Vy) - dS

Vv N

This is called Green’s first identity or theorem.
i ||| @veo-wviarav = [[@vu-ywer-as
14 s

This is called Green’s second identity or symmetrical theorem. See Problem
6.21.

(iii) HJVxAdV:H(nxA) dszﬂds x A
|4 S S

Note that here the dot product of Gauss’ divergence theorem is replaced by the
cross product (see Problem 6.23).

(iv) iwr: JSJ(n x V) dS = Ljds x Vo

PROPOSITION 6.5:  Let s represent either a vector or scalar function according as the symbol o denotes a
dot or cross product, or an ordinary multiplication. Then

(i) JﬂVolpdV:JjnowdS:Jstsolp
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(i) %drmlr:”(nxV)m,de:”(deV)ow

C N N

Gauss’ divergence theorem, Stokes’ theorem and Proposition 6.4 (iii) and (iv) are special cases of these
results (see Problems 6.22, 6.23, and 6.34).

Integral Operator Form for V

It is of interest that, using the terminology of Problem 6.19, the operator V can be expressed symbolically in
the form

1
Vo= lim —ﬂ;ds o
AV—0AV
AS

where o denotes a dot, cross, or an ordinary multiplication (see Problem 6.25). The result proves useful in
extending the concepts of gradient, divergence and curl to coordinate systems other than rectangular (see
Problems 6.19 and 6.24, and Chapter 7).

SOLVED PROBLEMS

Green’s Theorem in the Plane

6.1. Prove Green’s theorem in the plane where C is a closed curve which has the property that any straight
line parallel to the coordinate axes cuts C in at most two points.

Solution

Let the equations of the curves AEB and AFB (see Fig. 6-1) be y = Y;(x) and y = Y»(x), respectively. If R is the
region bounded by C, we have

- b [ nw o 7 b Ya(x) b
JJET dx dy = J J m dy | dx = J M(x,y) dx = | [M(x,Y,) — M(x,Y,)]dx
R Y x=a | y=Y;(x) 4 | x=a y=Y1(x) a
b a
:—JM(x,Yl)dx— M(x,Yz)dx:—i;de
Then a b c
[ oM
+de: —H— dxdy (D
dy
c R

Similarly, let the equations of curves EAF and EBF be x = X;(y) and x = X,(y), respectively. Then
X>(y)

f !
oN oN

X
R y=e | x=Xi(y) e

e f
= JN(Xl,y)der JN(Xz,y)dy =jL N dy
C
f e

Then

ﬂ@Na’y:Haa—];’dxdy )
c

R
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Adding (1) and (2),

oN oM
C R
y
y
1,1
y=x
| I \y:xz
X
X
o
Fig. 6-1 Fig. 6-2

6.2. Verify Green’s theorem in the plane for 3§c (xy + y?) dx + x* dy where C is the closed curve of the
region bounded by y = x and y = x? (see Fig. 6-2).
Solution

In Fig. 6-2,y = xand y = x? intersect at (0, 0) and (1, 1), and the positive direction in traversing C is also shown.
Along y = x?, the line integral equals

1 1
J [)G7) + x*] dx + (P)(2x) dx = J(3x3 +x*)dx = %
0 0
Along y = x from (1, 1) to (0, 0), the line integral equals
0 0
J[(x)(x) +x*) dx + X dx = J3x2dx =-1
1 1
Then the required line integral 19 1 !
1 1 1 =———1=——=
au g =20 20
ON oM d d
——— ) dxdy= || | =(H - = %) | dx d
ﬂ <ax ay) x dy JJ [ax(x ) 8y(xy +y )] x dy
R R
1 X
= JJ(x —2y)dxdy = J J (x —2y)dydx
R x=0 y=x2
N 1
[ e-mas]a= o[ @
o 0 '
1
= J(x4 — ) dx = —i
20
0

so that the theorem is verified.
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6.3. Extend the proof of Green’s theorem in the plane given in Problem 6.1 to the curves C for which lines
parallel to the coordinate axes may cut C in more than two points.

Solution

Consider a closed curve C such as shown in Fig. 6-3, in which lines parallel to the axes may meet C in more than
two points. By constructing line S7, the region is divided into two regions (R; and R;), which are of the type
considered in Problem 6.1 and for which Green’s theorem applies, that is,

y

U
T
N
v
X
o
Fig. 6-3
oN oM
J de—{—Ndy:ﬂ — — — ) dxdy (D
ox  dy
STUS R
oN oM
J de+Na’y:ﬂ —— | dxdy 2)
ox  dy
SVTS R,

Adding the left-hand sides of (1) and (2), we have, omitting the integrand M dx + N dy in each case,
[« =]« ]+]+]-]+]- ]
STUS  SVTS ST TUS SVT TS  TUS SVT  TUSVT

using the fact that

Adding the right-hand sides of (1) and (2), omitting the integrand,

[+1-1

R, Ry R

where R consists of regions R; and R;. Then

oN oM
Mdx+Ndy = JJ — —— ) dxdy
dx  dy
TUSVT R
and the theorem is proved.
A region R such as considered here and in Problem 6.1, for which any closed curve lying in R can be
continuously shrunk to a point without leaving R, is called a simply-connected region. A region that is not
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6.4

simply-connected is called multiply-connected. We have shown here that Green’s theorem in the plane applies to
simply-connected regions bounded by closed curves. In Problem 6.10, the theorem is extended to multiply-con-

nected regions.
For more complicated simply-connected regions, it may be necessary to construct more lines, such as S7, to
establish the theorem.

Express Green’s theorem in the plane in vector notation.

Solution

We have Mdx+ Ndy = (Mi+ Nj) + (dxi + dyj) = A+dr, where A=Mi+ Nj and r=xi+yj so that
dr = dxi + dyj.
Also, if A = Mi + Nj, then

i j k
9 9 9 N, oM. (N oM
vxA=|— L O 8 M (M
x x By o o T o) <8x 8y>
M N O

so that (V x A) « k = (dN/dx) — (oM /dy).

Then Green’s theorem in the plane can be written

%A-dr:ﬂ(VxA)-de

c R

where dR = dx dy.
A generalization of this to surfaces S in space having a curve C as a boundary leads quite naturally to Stokes’
theorem, which is proved in Problem 6.31.

Another Method
As above, Mdx + Ndy = A+dr = A- (dr/ds)ds = A+ T ds, where dr/ds = T = unit tangent vector to C (see
Fig. 6-4). If n is the outward drawn unit normal to C, then T = k x n so that

Mdx+Ndy=A-Tds=A-(kxn)ds=(A xKk)-nds

Since A = Mi+ Nj,B =A xk = (Mi+ Nj) x k=Ni— Mj and (dN/dx) — (0M/dy) = V « B. Then Green’s
theorem in the plane becomes

where dR = dx dy.

Fig. 6-4



6.5.

6.6.

6.7.
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Generalization of this to the case where the differential arc length ds of a closed curve C is replaced by the
differential of surface area dS of a closed surface S, and the corresponding plane region R enclosed by C is
replaced by the volume V enclosed by S, leads to Gauss’ divergence theorem or Green’s theorem in space.

”B.ndszﬂvjv-sdv

N

Interpret physically the first result of Problem 6.4.

Solution

If A denotes the force field acting on a particle, then §. A - dr is the work done in moving the particle around a
closed path C and is determined by the value of V x A. It follows, in particular, that if V x A = 0 or, equiva-
lently, if A = V¢, then the integral around a closed path is zero. This amounts to saying that the work done in
moving the particle from one point in the plane to another is independent of the path in the plane joining the
points or that the force field is conservative. These results have already been demonstrated for force fields
and curves in space (see Chapter 5).

Conversely, if the integral is independent of the path joining any two points of a region, that is, if the integral
around any closed path is zero, then V x A = 0. In the plane, the condition V x A = 0 is equivalent to the
condition 0M/dy = oN/dx where A = Mi + Nj.

Evaluate f(z‘ D

0.0y (10x* = 2xy®) dx — 3x?y> dy along the path x* — 6xy* = 4y”.

Solution

A direct evaluation is difficult. However, noting that M = 10x* — 2xy®, N = —3x%y? and
M /3y = —6xy* = dN/dx, it follows that the integral is independent of the path. Then we can use any path, for
example the path consisting of straight line segments from (0, 0) to (2, 0) and then from (2, 0) to (2, 1).

Along the straight line path from (0, 0) to (2, 0), y =0, dy = 0 and the integral equals Jf:o 10x* dx = 64.

Along the straight line path from (2, 0) to (2, 1), x = 2, dx = 0 and the integral equals fvl:o —12y* dy = —4.

Then the required value of the line integral = 64 — 4 = 60.
Another Method
Since aM/dy = dN/dx, (10x* — 2xy®) dx — 3x?y* dy is an exact differential (of 2x> — x?y?). Then

@0 [€9))
2.1

(10x* — 2xy%) dx — 3x*y? dy = J dQ2x® — x5y =2x° — xzyB'(o 0 =60
(0,0) (0,0) ’

Show that the area bounded by a simple closed curve C is given by % §dey — ydx.

Solution

In Green’s theorem, put M = —y, N = x. Then

ﬂ;xdy —ydx = H (3();) _3(—y)> dxdy = 2JJ dxdy = 2A
ox ay
C R R

where A is the required area. Thus A = 1§.x dy —y dx.
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6.8. Find the area of the ellipse x = acos 6,y = bsin 6.

Solution

2

1 1
Area = EjEXdy —ydx = 3 J(acos 0)(b cos 0) dO — (b sin H)(—asin 0) dO
C 0

T 2
1 1
=3 J ab(cos® 0 + sin® 0) df = 3 J abd® = mab
0 0

6.9. Evaluate j;C (y — sinx) dx + cosxdy, where C is the triangle shown in Fig. 6-5, (a) directly, and
(b) by using Green’s theorem in the plane.

Solution

(a) Along OA,y =0, dy = 0 and the integral equals

/2 /2

/2
J (0 — sinx) dx + (cosx)(0) = j —sinxdx:cosx0 =-1
0 0

Along AB, x = 7/2, dx = 0, and the integral equals

1

J(y—l)O—i—Ody:O
0

Along BO,y = 2x/, dy = (2/7) dx, and the integral equals

0
. 2 2 2\ )
— —sinx | dx +—cosx dx = | — 4+ cosx + —sinx =1—-———
T T T T 2 4 T
/2
2 2
ThentheintegralalongC:—1+0+1—7—T——:—7—T——.
4 T 4 T
(b) M =y—sinx, N=cosx,dN/dx = —sinx,dM/dy = 1 and
oN oM
{)de—i—Ndy:J — —— ) dxdy = J(—sinx—l)dydx
dx  dy
c R R
a2 [ 2x/m T /2 2w
= J (—sinx — 1)dy [ dx = J (—ysinx —y) dx
x=0] y=0 i x=0 0
/2
2x . 2x 2 . x2|™? 2 @
= ——sinx —— | dx = ——(—xcosx + sinx) — — =————
T T T N T 4

0

in agreement with part (a).



CHAPTER 6 Divergence, Stokes’, and Related Integral Theorems

Note that although there exist lines parallel to the coordinate axes (coincident with the coordinate axes in
this case), which meet C in an infinite number of points, Green’s theorem in the plane still holds. In general,
the theorem is valid when C is composed of a finite number of straight line segments.

y
B 2, 1)
_ A
Lal X
0 (2, 0) B
0
Fig. 65 Fig. 6-6

6.10. Show that Green’s theorem in the plane is also valid for a multiply-connected region R such as shown
in Fig. 6-6.

Solution

The shaded region R, shown in Fig. 6-6, is multiply-connected since not every closed curve lying in R can be
shrunk to a point without leaving R, as is observed by considering a curve surrounding DEFGD for example.
The boundary of R, which consists of the exterior boundary AHJKLA and the interior boundary DEFGD, is
to be traversed in the positive direction, so that a person traveling in this direction always has the region on
his left. Positive directions are those indicated in Fig. 6-6.

In order to establish the theorem, construct a line, such as AD, called a cross-cut, connecting the exterior and
interior boundaries. The region bounded by ADEFGDALKJHA is simply-connected, and so Green’s theorem is
valid. Then

oN oM

ADEFGDALKJHA R
But the integral on the left, leaving out the integrand, is equal to

[+ ] ] ] =]+
AD  DEFGD DA  ALKJHA DEFGD  ALKJHA

since JAD = —fDA. Thus, if C; is the curve ALKJHA, C, is the curve DEFGD, and C is the boundary of R
consisting of Cy and C; (traversed in the positive directions), then [, + [, = J. and so

oN oM
%de—f-Ndy:ﬂ — —— ) dxdy
dx  dy
c R



CHAPTER 6 Divergence, Stokes’, and Related Integral Theorems —@

6.11. Show that Green’s theorem in the plane holds for the region R, of Fig. 6-7, bounded by the simple
closed curves C{(ABDEFGA), Co,(HKLPH), C3(QSTUQ), and C4(VWXYV).

Fig. 6-7

Solution

Construct the cross-cuts AH, LQ, and TV. Then the region bounded by AHKLOSTVWXYVTUQLPHABDEFGA is
simply-connected and Green’s theorem applies. The integral over this boundary is equal to

[« fefeJufe [ ofe [e]e]e]s |
AH HKL LQ QST TV VWXYV VI TUQ QL LPH HA ABDEFGA
Since the integrals along AH and HA, LQ and QL, and TV and VT cancel out in pairs, this becomes

[« ] )]~

HKL QST VWXYV  TUQ LPH ABDEFGA

[« 1) e L) e

HKL  LPH, oSsT  TUQ VWXYV  ABDEFGA

+ J + J +
HKLPH  QSTUQ VWXYV  ABDEFGA

[ ]

G G G ¢ C

where C is the boundary consisting of Cj, C;, C3, and C4. Then

M

jEMdHNdy:” N _ MY iedy
dx  dy

c R

as required.
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6.13.
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Consider a closed curve C in a simply-connected region. Prove that Sgc M dx 4+ N dy = 0 if and only if
oM /dy = N /ox everywhere in the region.

Solution

Assume that M and N are continuous and have continuous partial derivatives everywhere in the region R bounded
by C, so that Green’s theorem is applicable. Then

M
%de%—Ndy:ﬂ(a—N—a—)dxdy
ox  dy
c R

If 8M /38y = ON/dx in R, then clearly §. M dx + N dy = 0.

Conversely, suppose §Cde+ Ndy =0 for all curves C. If (ON/dx) — (dM/dy) > 0 at a point P, then
from the continuity of the derivatives it follows that (dN/dx) — (dM/dy) > 0 in some region A surrounding
P.If T is the boundary of A, then

oN oM
%de%—Ndy:‘” — ——)dxdy>0
ox  dy
r A

which contradicts the assumption that the line integral is zero around every closed curve. Similarly, the assump-
tion (IN/dx) — (dM/dy) < 0 leads to a contradiction. Thus, (dN/dx) — (0M /dy) = O at all points.

Note that the condition (M /dy) = (dN/dx) is equivalent to the condition V x A = 0 where A = Mi + Nj
(see Problems 5.10 and 5.11). For a generalization to space curves, see Problem 6.31.

Let F = —yi +xj/ (x? +y?). (a) Calculate V x F. (b) Evaluate 3§F + dr around any closed path and
explain the results.
Solution
i ik
ad d ad
@ VxF=| dy 9z | = 0 in any region excluding (0, 0).
—y X
0

x2 +y2 x2 +y2

—yd. d
(b) f’; F-dr = f]; %—i—iy Let x = pcos ¢,y = psin ¢, where (p, ¢) are polar coordinates. Then
X2y
dx = —psin¢pdd+dp cos¢p, dy = pcos¢ddd+dpsine
and so
—yd d
yaxtxay de = d(arc tanX)
X2+ y? X
For a closed curve ABCDA (see Fig. 6-8a) surrounding the origin, ¢» = 0 at A and ¢ = 2 after a complete
circuit back to A. In this case, the line integral equals joz Tde = 2.

y y

0 X
\\/ e R §
D 5 x

(a) (b)
Fig. 6-8
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For a closed curve PORSP (see Fig. 6-8b) not surrounding the origin, ¢ = ¢, at P and ¢ = ¢, after a
complete circuit back to P. In this case, the line integral equals | b d¢ =0.

Since F = Mi + Nj,V x F = 0 is equivalent to 0M /dy = 0N /dx and the results would seem to contradict
those of Problem 6.12. However, no contradiction exists since M = —y/(x* + y?) and N = x/(x> + y*) do not
have continuous derivatives throughout any region including (0, 0), and this was assumed in Problem 6.12.

The Divergence Theorem
6.14. (a) Express the divergence theorem in words and (b) write it in rectangular form.

Solution

(a) The surface integral of the normal component of a vector A taken over a closed surface is equal to the
integral of the divergence of A taken over the volume enclosed by the surface.

0A; 0A, O0A
(b) Let A=A;i+Aj+Ask ThendivA=V:A=""'4"2473
ox ay 0z
The unit normal to S is n =nji+nj+nik. Then ny =n+i=cosa,n, =n-j=cosfB, and
n3 =n -k = cosvy, where «, 8, and vy are the angles that n makes with the positive x, y, z axes or i, j, k

directions, respectively. The quantities cos «, cos 8, and cos 7y are the direction cosines of n. Then

A +n=(Aji+ Ayj+ AsK) * (cos ai + cos Bj + cos yk)
=Ajcosa+ Aycos B+ Azcosy

and the divergence theorem can be written

0A; 0A, 0A
J” el e dxdydz = ”(Al cos a + Aj cos B+ Az cosy) dS
ox ay 0z
v s
6.15. Demonstrate the divergence theorem physically.
Solution
Let A = velocity v at any point of a moving fluid. From Figure 6.9(a), we have:

Volume of fluid crossing dS in At seconds
= volume contained in cylinder of base dS and slant height vA¢
=(VA)*ndS=v-ndSAt

Then, volume per second of fluid crossing dS = v *n dS

Fig. 69
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From Figure 6-9(b), we have
Total volume per second of fluid emerging from closed surface S = H vendS

From Problem 4.21 of Chapter 4, V- v dV is the volume per second of fluid emerging from a volume element
dV. Then

Total volume per second of fluid emerging from all volume elements in S = JJJ VevdV

Thus

6.16. Prove the divergence theorem.

— S1:z2=f1 ()

Fig. 6-10

Solution

Let S be a closed surface such that any line parallel to the coordinate axes cuts S in, at most, two points. Assume
the equations of the lower and upper portions, S; and S, to be z = f1(x, y) and z = f>(x, y), respectively. Denote
the projection of the surface on the xy-plane by R (see Fig. 6-10). Consider:

A A P oA
m JdV:JJszdydx:” J 2z |dydx
0z 0z 0z

14 Vv R | z=fix,y)

£
J As(ey 9| dydr = ﬂ [A(x. 3. 2) = sy fi)) dydx
R R

For the upper portion S,, dy dx = cos y, dS, = k * n, dS, since the normal n, to S, makes an acute angle y,
with k.

For the lower portion S}, dy dx = —cos y; dS; = —k + n; dS; since the normal n; to S| makes an obtuse angle
v, with k.
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Then
[ 4strporay e = [[ ask- maas:
R S>
[ sty ay e == [[ sk m as
R M
and
JJA3(X, y,fz) dy dx — JJA3(X, y,fl) dy dx = J]A3k b 1 ) dSz =+ -”A3k *ng dS]
R R S Mt
= J Ask-ndS
S
so that

Jﬂ%dV:”Agk-ndS M
0z
S

14

Similarly, by projecting S on the other coordinate planes,

5= s

JJ—dV:J Azj+ndS 3)
14

Adding (1), (2), and (3),

m (%+@+%>dv: ”(Ali—i-Azj+A3k) “nds
ox ay 0z
\4 S

or

[[[v-aav=|a-nas

Vv N

The theorem can be extended to surfaces where lines parallel to the coordinate axes meet them in more than
two points. To establish this extension, subdivide the region bounded by S into subregions whose surfaces do
satisfy this condition. The procedure is analogous to that used in Green’s theorem for the plane.
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6.17. Evaluate ﬂSF *ndS, where F = 4xzi — y?j + yzk and S is the surface of the cube bounded by
x=0x=1,y=0,y=1,z=0,z=1.

Solution

By the divergence theorem, the required integral is equal to

m V-FdvV = J J [3(4)61) +E(—y2) + 3(yz)] av
ox dy 0z
\%4 \%4
1 1 1

J(4z—y)dV: J J J(4z—y)dzdydx

x=0 y=0 z=0

I
N —
<

I 1 1 1

1 3
= JZzz—yz dydx = J J(2—y)dydx:f

z=0 2
x=0 y=0 x=0 y=0

The surface integral may also be evaluated directly as in Problem 5.23.

6.18. Verify the divergence theorem for A = 4xi — 2y%j + z°k taken over the region bounded by x> 4 y*> = 4,
z=0,and z = 3.

Solution

Volume integral = ”J V-AdV = JJJ |:3 (4x) + %(—2})2) + a%(Zz)]dV

ax
1% 1%
2 Va2 3
:Hj(4—4y+21)dV: J J J 4 —4y+27)dzdydx = 84w
14 X==2 /a7 =0

The surface S of the cylinder consists of a base S; (z=0), the top S, (z=3) and the convex portion
S3 (x2 +y? = 4). Then

Surface integral = ”A ‘ndS = JJA *ndS; + ”A *ndS, + ”A *n dSs
M N 3

On S; (z=0),n= —k,A =4xi — 2y*j and A - n = 0, so that ”A-na’Sl =0.
M
On S (z=3),n=Kk A =4xi —2y*j+ 9k and A - n =9, so that

JJA *ndS, = 9” dS, = 36, since area of S, =47

S, S>

On S; (x*> + y> = 4). A perpendicular to x> 4+ y> = 4 has the direction V(x*> + y?) = 2xi + 2yj.

2 +2yj  xi+yj
VAx2 + 4y? 2

Acn = (i — 2% + 2K)- (XHTyJ> =y

since x> +y> = 4.

Then a unit normal is n =
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6.19.

/__ ____ \}<S2 z=3
U ____T___/*/Ss
S 13 I 7 R
L] A =4 4s,:2d6dz
| ‘
dV=dxdy dz——— S -
// 1 \\
\ | 0 y
T e S1:2=0
X
Fig. 6-11
From Fig. 6-11, x = 2cos 6,y = 2sin 0,dSs = 2d6 dz and so
27 3
HA-nazs3 = J [2(2 cos 0)* — (2sin 0)*12 dz d6
S3 0=0 z=0
2 2
= J (48 cos® 6 — 48 sin® 0) dO = J 48 cos? 0 do = 487
6=0 6=0

Then the surface integral = 0 + 367 + 487 = 847, agreeing with the volume integral and verifying the

divergence theorem.
Note that evaluation of the surface integral over S3 could also have been done by projection of S3 on the xz- or

yz-coordinate planes.

Suppose div A denotes the divergence of a vector field A at a point P. Show that

A-nds
divA — lim JasA-ndS
AV—0 AV

where AV is the volume enclosed by the surface AS and the limit is obtained by shrinking AV to the
point P.

Solution

By the divergence theorem,

[[[aiva av = [[a-nas

AV AS

By the mean-value theorem for integrals, the left side can be written
div AJ” dV =divA AV
AV

where div A is some value intermediate between the maximum and minimum of div A throughout AV. Then

——  JJ;sA-ndS
divA —T



6.20.

6.21.
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Taking the limit as AV — 0 such that P is always interior to AV, div A approaches the value div A at point P;
hence

JJas A -ndS
A= lim =& ——
dva= Jm iy

This result can be taken as a starting point for defining the divergence of A, and from it all the properties may
be derived including proof of the divergence theorem. In Chapter 7, we use this definition to extend the concept
of divergence of a vector to coordinate systems other than rectangular. Physically,

HAS *nds
AV

represents the flux or net outflow per unit volume of the vector A from the surface AS. If div A is positive in the
neighborhood of a point P, it means that the outflow from P is positive and we call P a source. Similarly, if div A
is negative in the neighborhood of P, the outflow is really an inflow and P is called a sink. If in a region there are
no sources or sinks, then div A = 0 and we call A a solenoidal vector field.

Evaluate ([ r+ndS, where S is a closed surface.

Solution

By the divergence theorem,

”r nds = mv rav = Jﬂ<31+aj—i-ak)-(xi—i—yj—i—zk)dv
o oy @

Vv

[ o=l

v

where V is the volume enclosed by S.

Prove m(¢v2¢ — YV P)dv = ﬂ(d)w — YV¢) - dS.
Vv N

Solution

Let A = ¢V in the divergence theorem. Then

wv.wvwv: L[(d’v‘l/)'ndS: Lj(d,w)_ds

But
" V- (V) = $(V - Vi) + (V) - (Vi) = V2 + (V) - (Vi)
us
m V- ¢V dV = m (V2 + (V) - (V)] dV
14 14
or
m (V2 + (V) - (VipldV = H (GV) - dS )
\%4 S

which proves Green’s first identity. Interchanging ¢ and ¢ in (1),

[[Jrowo+ @ - wonav = [|wve-as @
|4 S
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Subtracting (2) from (1), we have
[[[ 6w ww0rav = [[6vu - w9)-as 3
v S

which is Green’s second identity or symmetrical theorem. In the proof, we have assumed that ¢ and ¢ are scalar
functions of position with continuous derivatives of the second order at least.

6.22. Prove HJ Vo dV = JSJ ¢nds.

Solution

In the divergence theorem, let A = ¢C where C is a constant vector. Then

JJVJV - (¢pC)dV = ﬁ ¢C +nds

Since V + (¢C) = (V) + C = C + V¢ and ¢C +n = C + (¢m),

Jﬂc-wp dV:JSJC-(dm)dS

Taking C outside the integrals,

C- ”Vd) dv=C- ”(bnds
14 s
and since C is an arbitrary constant vector,
” V¢ dv = JJ éndS
14 s

6.23. Prove Hj VxBdV = ﬂn x B dS.
1% S

Solution

In the divergence theorem, let A = B x C where C is a constant vector. Then
JHV-(BX (0)) dV:JJ(B x C)*ndS
14 S
Since V. BxC)=C-(VxB)and BxC)*n=B-(Cxn=(Cxn)-B=C-(nxB),

JJJC-(VX B)dVv = ”C°(n x B)dS
14 s

Taking C outside the integrals,

C-JJJVdeV:C-L[nXBdS

14

and since C is an arbitrary constant vector,

J‘J/JVdeV:JSJandS



CHAPTER 6 Divergence, Stokes’, and Related Integral Theorems

6.24. Show that at any point P

- JasdndS  JJasn x AdS
V= lim =—==—— d (b) VxA= lim =2——
@ Ve NN and  (b) V' x VR0 AV
where AV is the volume enclosed by the surface AS, and the limit is obtained by shrinking AV to the
point P.
Solution

(a) From Problem 6.22, [[[,, V¢ dV = [[ o ¢ndS. Then [[[,, Vd-idV = [[ s én-idS. Using the same
principle employed in Problem 6.19, we have

7.._HAS¢n-idS
Véri=""

where V¢ - i is some value intermediate between the maximum and minimum of V¢ - i throughout AV.
Taking the limit as AV — 0 in such a way that P is always interior to AV, V¢ « i approaches the value

. HS én -idS
Véri= dim Sy ®
Similarly, we find
.. JJg¢m-jas
Vori= AI\}TO AV 2)
o st én - kdS
Vérk=lm =y ®

Multiplying (1), (2), and (3) by i, j, and k, respectively, and adding, using
Vo=(Vo-i+ (Vo j+(Vo-Kkk, n=m i+ mjj+m Kk
(see Problem 2.17) the result follows.

(b) From Problem 6.23, replacing B by A, [[[,, V x AdV = [[,¢n x AdS. Then, as in part (a), we can show
that

(VxA)-iz lim Jas@xA)1dS
AV—0 AV

and similar results with j and k replacing i. Multiplying by i, j, and k adding, the result follows.

The results obtained can be taken as starting points for definition of gradient and curl. Using these definitions,
extensions can be made to coordinate systems other than rectangular.

6.25. Establish the operator equivalence

1
Vo= lim — dSo
AV—0 AV
AS

where o indicates a dot product, cross product, or ordinary product.

Solution

To establish the equivalence, the results of the operation on a vector or scalar field must be consistent with
already established results.
If o is the dot product, then for a vector A,

1
VoA = lim — [||dScA
A‘}I—I}o AV H S
AS
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6.26.

or

divA = lim L ”dS A
AV—0 AV

1
A\}TO AV n

established in Problem 6.19.
Similarly, if o is the cross product,

curl A=V x A= lim L”deA
AV—0 AV
AS

= lim L nx AdS
AV—0 AV

established in Problem 6.24(b).
Also, if o is ordinary multiplication, then for a scalar ¢,

. 1 . 1
Ved=lim v ﬂds c¢ or Vo= lim iy ”‘f"’s
AS AS

established in Problem 6.24(a).

Let S be a closed surface and let r denote the position vector of any point (x, y, z) measured from an
origin O. Prove that
n.r
ds
%

N

is equal to (a) zero if O lies outside S; (b) 4 if O lies inside S. This result is known as Gauss’ theorem.
Solution

(a) By the divergence theorem,

ﬂ “r;rds - wv- r%dv

N

But V + (r/r*) = 0 (Problem 4.19) everywhere within V provided  # 0 in V, that is, provided O is outside
of V and thus outside of S. Then
” L lis=o0
/3

N

(b) If O is inside S, surround O by a small sphere s of radius a. Let 7 denote the region bounded by S and s.
Then, by the divergence theorem

JJ n;rdS:”n—;rdS—i—ﬂn—;rdS:va- Zav=0
I r r r
N

S+s

©
9

since r # 0 in 7. Thus
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n‘r (—r/a)-r rer a 1
3 =5 =g =—=-—and
- a’ a

n-r n-r 1 1 41a*
N

s 5 s

r
Now on s,7 = a,n = — — so that
a

6.27. Interpret Gauss’ theorem (Problem 6.26) geometrically.

Solution

Let dS denote an element of surface area and connect all points on the boundary of dS to O (see Fig. 6-12),
thereby forming a cone. Let d() be the area of that portion of a sphere with O as center and radius r which is
cut out by this cone; then the solid angle subtended by dS at O is defined as dw = dQ/r* and is numerically
equal to the area of that portion of a sphere with center O and unit radius cut out by the cone. Let n be the positive
unit normal to dS and call 6 the angle between n and r; then cos § =n - r/r. Also,

dQ = +dScos § = +(n - r/r)dS so that do = +(m - r/r)dS,

the 4+ or — being chosen according as n and r form an acute or an obtuse angle 6 with each other.

Fig. 6-12

Let S be a surface, as in Fig. 6-13(a), such that any line meets S in not more than two points. If O lies outside S,
then at a position such as 1, (n * r/r*) dS = dw; whereas at the corresponding position 2, (n * r/r?) dS = —dw.
An integration over these two regions gives zero, since the contributions to the solid angle cancel out. When the
integration is performed over S, it thus follows that ﬂs (- r/r?)dS = 0, since for every positive contribution,
there is a negative one.

In case O is inside S, however, then at a position such as 3, (n * r/r*)dS = dwand at 4, (n * r/r*)dS = dw so
that the contributions add instead of cancel. The total solid angle in this case is equal to the area of a unit sphere,
which is 477, so that [[((m-r/r’)dS = 4.

(a) (b)
Fig. 6-13
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6.28.

For surfaces S, such that a line may meet S in more than two points, an exactly similar situation holds as
is seen by reference to Fig. 6-13. If O is outside S, for example, then a cone with vertex at O intersects S at
an even number of places and the contribution to the surface integral is zero since the solid angles subtended
at O cancel out in pairs. If O is inside S, however, a cone having vertex at O intersects S at an old number
of places and since cancellation occurs only for an even number of these, there will always be a contribution
of 4 for the entire surface S.

A fluid of density p(x,y, z, f) moves with velocity v(x, y, z, #). If there are no sources or sinks, prove
that

0
v-I+L=0
ot
where J = pv.
Solution

Consider an arbitrary surface enclosing a volume V of the fluid. At any time, the mass of fluid within V is

M:JJVdev

The time rate of increase of this mass is
oM 9 ap
a o Jﬂ P Jﬂ ot
v 1%

The mass of fluid per unit time leaving V is

ﬂpv *ndS
s

(see Problem 6.15) and the time rate of increase in mass is therefore

—JSJ pv+ndS = —JJVJ V- (pv) dV

by the divergence theorem. Then

m v = —m V- (pv) v

Vv 14

or

Jﬂ (V (V) + %f)dv o

Since V is arbitrary, the integrand, assumed continuous, must be identically zero, by reasoning similar to that
used in Problem 6.12. Then

_
ot
where J = pv. The equation is called the continuity equation. If p is a constant, the fluid is incompressible and
V v =0, that is, v is solenoidal.

The continuity equation also arises in electromagnetic theory, where p is the charge density and J = pv is the
current density.

vV-J+
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6.29. If the temperature at any point (x, y, z) of a solid at time ¢ is U(x, y, z, #) and if «, p, and ¢ are, respect-
ively, the thermal conductivity, density, and specific heat of the solid, assumed constant, show that

oUu
— =kV?U
ot

where k = k/pc.

Solution

Let V be an arbitrary volume lying within the solid and let S denote its surface. The total flux of heat across S, or
the quantity of heat leaving S per unit time, is

” (—kVU) +ndS
s
Thus, the quantity of heat entering S per unit time is

JJ(KVU).ndS:JJJV.(KVU)dV (1)
S 14

by the divergence theorem. The heat contained in a volume V is given by

[[[cotrav

Vv

] ou
&”J cpUdV = Hj cp Edv 2)
v

Vv

Then the time rate of increase of heat is

Equating the right hand sides of (1) and (2),

J” [cp aa—lt] —V- (KVU):| dv =0
1%

and since V is arbitrary, the integrand, assumed continuous, must be identically zero so that
oU
cp — =V +(«kVU)
ot
or if k, c, p are constants,

W _Kg.vu=iviu
at  cp

The quantity & is called the diffusivity. For steady-state heat flow (i.e. 9U /9t = 0 or U is independent of time), the
equation reduces to Laplace’s equation VU = 0.

Stokes’ Theorem
6.30. (a) Express Stokes’ theorem in words and (b) write it in rectangular form.

Solution

(a) The line integral of the tangential component of a vector A taken around a simple closed curve C is equal to
the surface integral of the normal component of the curl of A taken over any surface S having C as its
boundary.

(b) As in Problem 6.14(b),

A =Aji+ Ayj+ Ask, n = cosai+ cosBj+ cos yk
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Then
i j k
d ad 0 0A;  0Az\. 0A;  0A3z). 0A;  0Ay
“A=% v <8y az>'+<az 8x)‘l+<8x ay)
Al Ay A;
0A 0A 0A 0A 0A 0A
(VxA)-n:(ﬁ—a—;>cosa+(3—;—3—;)cosﬁ+(a—;—#)cosy

Avdr = (A1l + Asj + AsK)+ (dxi + dyj + dik) = A dx + Ay dy + As dz

and Stokes’ theorem becomes

A3 94 A1 3A; 3, 9A
T 5 o - =¢A A A
”[(ay az>008a+(8z ax)cosﬁ'+(8x 8y)cosy]dS f’; 1dx +Aydy + Az dz
s

C

6.31. Prove Stokes’ theorem.

Solution
Let S be a surface such that its projections on the xy-, yz-, and xz-planes are regions bounded by simple closed

curves, as indicated in Fig. 6-14. Assume S to have representation z = f(x, y) or x = g(y,z) or y = h(x, z), where
f, g, and h are single-valued, continuous, and differentiable functions, respectively. We must show that

JJ(V x A)*ndS = JJ[V X (Aji+Azj+AsK)] -ndS
N N

:i; A < dr
c

where C is the boundary of S.

Fig. 6-14

Consider first [[([V x (A1)] » n dS. Since

i j k

V x (Ayi) = 33 % aﬂ :%j_%k
29 4 Z
A0 0
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then

A A
[V x (A1i)]* ndS = Dn-j _
0z ay

n- k) ds M

If z =f(x,y) is taken as the equation of S, then the position vector to any point of S is r = xi + yj + zk =
xi+yj+ f(x,y)k so that dr/dy = j+ (dz/dy)k = j+ (If/dy)k. But dr/dy is a vector tangent to S (see
Problem 3.25) and is thus perpendicular to n, so that

a a a
n-—r:n-j+—zn-k:0 or n-j:——zn-k
dy dy dy

Substitute in (1) to obtain

9A 9A 34, B aA
(—ln-j——ln-k>dS: <——1—Zn-k——ln-k>dS

0z ay dz dy dy
or
94, 9A, 0
[V x (Ai)]+ndS=—(2L 225 )y ik ds )
ay dz dy

0A; 0A, 0 oF
Now on S, Aj(x,y,2) = A1(x,y,f(x,y)) = F(x,y); hence el + o _ o and (2) becomes
ay az dy  dy

F F
[Vx(Ai)]*ndS = —a—n-de: —a—dxdy
ay ay
Then
F
JJ[V X (A1i)] *ndS = ﬂ —%dxdy

N R

where R is the projection of S on the xy-plane. By Green’s theorem for the plane, the last integral equals §F Fdx
where I is the boundary of R. Since at each point (x, y) of I" the value of F is the same as the value of A; at each
point (x, y, z) of C, and since dx is the same for both curves, we must have

i’\)FdxziAldx

r C

or

” [VXxAD]+ndS = %Al dx

N c

Similarly, by projections on the other coordinate planes,

”[VX (A2 )] -ndS:f{;Azdy and JJ[VX (A3K)] -ndS:ffA3 dz

N C N C

Thus, by addition,

JJ(VXA)-ndS:ff;A-dr

N C

The theorem is also valid for surfaces S which may not satisfy the restrictions imposed above. Specifically
suppose S can be subdivided into surfaces S, S, ..., Sy with boundaries Cj, C,, ..., Cy which do satisfy the
restrictions. Then Stokes’ theorem holds for each such surface. Adding these surface integrals, the total
surface integral over S is obtained. Adding the corresponding line integrals over Cy, Cy, ..., Gy, the line integral
over C is obtained.
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6.32. Verify Stokes’ theorem for A = (2x — y)i — yz2j — y*zk, where S is the upper half surface of the

6.33.

sphere x*> + y? 4+ z2 = 1 and C is its boundary. Let R be the projection of S on the xy-plane.

Solution

The boundary C of S is a circle in the xy-plane of radius one and center at the origin. Let x = cost,y = sint,
7=0,0 <t < 27 be parametric equations of C. Then

%A-dr:%(Zx—y)dx—yzzdy—yzzdz
c c

27
= J (2cost —sint)(—sint) dt = 7

Also,
i j Kk
V< A 9 a3 K
ATy e |
-y —yr -z
Then

JJ(VxA)-ndS:JJk-ndS:ﬂdxdy
s S R

since n* k dS = dxdy and R is the projection of S on the xy-plane. This last integral equals

1 V1-x2 1 V1-x2 1
J J dydx:4[ J dyd 4Jv1—x2dxzw
x==1y—_ /1= 0 0 0

and Stokes’ theorem is verified.

Prove that a necessary and sufficient condition that §. A + dr = 0 for every closed curve C is that
V x A = 0 identically.

Solution

Sufficiency. Suppose V x A = 0. Then, by Stokes’ theorem
%A-dr:JJ(VxA)-ndS:O
c s

Necessity. Suppose §C A + dr = 0 around every closed path C, and assume V x A # 0 at some point P. Then,
assuming V x A is continuous, there will be a region with P as an interior point, where V x A# 0. Let S be
a surface contained in this region whose normal n at each point has the same direction as V x A, that is,
where V X A = an where « is a positive constant. Let C be the boundary of S. Then, by Stokes’ theorem

%A'dr:JJ(VxA)-ndS:a”n-ndS>0
C s s

which contradicts the hypothesis that fﬁc A + dr = 0 and shows that V x A = 0.

It follows that V x A = 0 is also a necessary and sufficient condition for a line integral Lf,z A +dr to be
independent of the path joining points P; and P, (see Problems 5.10 and 5.11).
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6.34.

6.35.

6.36.

Prove §dr x B = [[¢(n x V) x B dS.

Solution
In Stokes’ theorem, let A = B x C where C is a constant vector. Then
i{)dr'(B XxXCO)=[|[VxBxC)]-ndS

JJ

N

f{)C-(dpr): [(C-V)B—-C(V:B)]-ndS

N

C- i{)dpr: [(C-V)B]-ndS—ﬂ[C(V-B)]-ndS
S s

C-[VB-n)]dS— JJC *[n(V-B)] dS
s s

=C-JJ[V(B-n)—n(V-B)]dS=C'”(nXV)XBdS
S

Since C is an arbitrary constant vector §dr x B = [[; (n x V) x B dS.

Suppose AS is a surface bounded by a simple closed curve C, P is any point of AS not on C, and n is a
unit normal to AS at P. Show that at P

L $cA - dr
(curlA)+m = lim =g —

where the limit is taken in such a way that AS shrinks to P.

Solution
By Stokes’ theorem, [[,,(curl A) *ndS = §. A - dr.

Using the mean value theorem for integrals as in Problems 6.19 and 6.24, this can be written

$c A - dr

(curl A) *n = AS

and the required result follows upon taking the limit as AS — 0.

This can be used as a starting point for defining curl A (see Problem 6.36) and is useful in obtaining curl A in
coordinate systems other than rectangular. Since jﬁc A « dr is called the circulation of A about C, the normal com-
ponent of the curl can be interpreted physically as the limit of the circulation per unit area, thus accounting for
the synonym rotation of A (rot A) instead of curl of A.

Suppose curl A is defined according to the limiting process of Problem 6.35. Find the z component
of curl A.

Fig. 6-15
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Let EFGH be a rectangle parallel to the xy-plane with interior point P(x, y, z) taken as midpoint, as shown in
Fig. 6-15. Let A; and A, be the components of A at P in the positive x and y directions, respectively.
If C is the boundary of the rectangle, then

%A-dr: JA-dr—l— JA-dr+ JA-dr—i— JA-dr
C EF FG GH HE

But

| a-ar— <A1 _E%Ay)m J Avdr= —(A1 +1%Ay)m

2 dy 2 dy
EF GH
10A 10A
JA-dr: As + =2 Ax )Ay JA-dr: —( 4> —==2Ax ) Ay
2 ox 2 ox
FG HE
except for infinitesimals of higher order than Ax Ay.
Adding, we have approximately
A, 0A
J)A*dr: 222 Ax Ay
ax ay
c
Then, since AS = Ax Ay,
. $A-dr
t of curl A = 1A)-k=1
z component of cur (curl A) A ;go AS
0A, 0A
22 T )Ax Ay
im0 O
Frac] Ax Ay
Ay A
T ay

SUPPLEMENTARY PROBLEMS

6.37. Verify Green’s theorem in the plane for f’;c (3x* — 8y%) dx + (4y — 6xy) dy, where C is the boundary of the region
defined by: (a) y = ﬁ,y:xz; ®x=0,y=0,x+y=1.

6.38. Evaluate 390 (Bx +4y)dx + (2x — 3y) dy where C, a circle of radius two with center at the origin of the xy-plane,
is traversed in the positive sense.

6.39. Work the previous problem for the line integral SEC (% +y?) dx + 3xy?* dy.

6.40. Evaluate §(x2 — 2xy)dx + (x*y + 3)dy around the boundary of the region defined by y*> = 8x and x =2
(a) directly, and (b) by using Green’s theorem.

(7.2)

6.41. Evaluate ©.0)

(6xy — y*) dx + (3x* — 2xy) dy along the cycloid x = § —sin 6, y = 1 — cos #.

6.42. Evaluate §(3x2 +2y)dx — (x + 3 cosy) dy around the parallelogram having vertices at (0, 0), (2, 0), (3, 1),
and (1, 1).



6.43.
6.44.

6.45.
6.46.
6.47.
6.48.

6.49.

6.50.

6.51.

6.52.
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Find the area bounded by one arch of the cycloid x = a(6 — sin 0), y = a(1 — cos 6), a > 0, and the x axis.

Find the area bounded by the hypocycloid x> + y*3 = a?/3,a > 0.
Hint: Parametric equations are x = acos> 6, y = asin® 6.

Show that in polar coordinates (p, ¢), the expression xdy — y dx = p* d¢. Interpret %fxdy — ydx.

Find the area of a loop of the four-leafed rose p = 3sin2¢.

Find the area of both loops of the lemniscate p*> = a® cos 2¢.
Find the area of the loop of the folium of Descartes x* + y> = 3axy, a > 0 (see Fig. 6-16).
y
(5034
54
X
Tx o
2

X

Q\\O

Fig. 6-16

Hint: Let y = tx and obtain the parametric equations of the curve. Then use the fact that

_1 L sy 1
Area_zﬁ;xdy—ydx_zix d(x)_2§x dt

Verify Green’s theorem in the plane for 3§C (2x — y*)dx — xy dy, where C is the boundary of the region enclosed
by the circles x> +y?> = 1 and x> +y*> = 9.

LYy dx + xd
Evaluate J yzxi—l—);y along the following paths:

o Xty

(a) Straight line segments from (1, 0) to (1, 1), then to (—1, 1), then to (—1,0).

(b) Straight line segments from (1, 0) to (1, —1), then to (—1, —1), then to (—1,0).
Show that although dM/dy = 0N /0x, the line integral is dependent on the path joining (1, 0) to (—1,0) and
explain.

By changing variables from (x, y) to (&, v) according to the transformation x = x(u, v), y = y(u, v), show that the
area A of a region R bounded by a simple closed curve C is given by

o 3

A=l (E22) auav where J(22) = [0u du
u,v u,v ax  dy

R ov v

is the Jacobian of x and y with respect to « and v. What restrictions should you make? Illustrate the result where u
and v are polar coordinates.
Hint: Use the result A = %fxdy — ydx, transform to u, v coordinates and then use Green’s theorem.

Evaluate [[(F - ndS, where F = 2xyi + yz%j + xzk and § is:

(a) The surface of the parallelepiped bounded by x =0,y =0,z =0,x =2,y =1, and z = 3.
(b) The surface of the region bounded by x =0,y =0,y =3,z =0, and x + 2z = 6.
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6.53.

6.54.

6.55.

6.56.

6.57.

6.58.

6.59.

6.60.

6.61.

6.62.

6.63.

6.64.

6.65.

6.66.

6.67.

6.68.

6.69.

6.70.

6.71.

6.72.

Verify the divergence theorem for A = 2x?yi — y?j + 4xz°k taken over the region in the first octant bounded by
Y +72=9and x = 2.

Evaluate jfsr +n dS where (a) S is the sphere of radius 2 with center at (0, 0, 0), (b) S is the surface of the
cube bounded by x = -1,y =—1,z=—-1,x =1,y =1,z =1, (c) S is the surface bounded by the paraboloid
7z =4 — (x> +y?) and the xy-plane.

Suppose S is any closed surface enclosing a volume V and A = axi+ byj+ czk. Prove that

J[¢A-ndS=(a+b+c)V.

Suppose H = curl A. Prove that [[¢H + ndS = 0 for any closed surface S.

Suppose n is the unit outward drawn normal to any closed surface of area S. Show that Jﬂv divndV =S§.

Prove Jﬂ a%/ = ” r -zn ds.
& I Ky r

Prove [[¢r"ndS = [[[,5rrdV.

Prove [[¢ndS = 0 for any closed surface S.

d d
Show that Green’s second identity can be written Jﬂ (VP — YyV2 ) dV = ” < dfw - ll,%’) ds.
n n
4 s

Prove [[¢r x dS = 0 for any closed surface S.

Verify Stokes’ theorem for A = (y — z+ 2)i + (yz + 4)j — xzk, where S is the surface of the cube x =0,
y=0,z=0,x=2,y=2, z=2 above the xy-plane.

Verify Stokes’ theorem for F = xzi — yj + x>yk, where S is the surface of the region bounded by x =0,
y=0,z=0,2x +y + 2z = 8, which is not included in the xz-plane.

Evaluate ﬂs (V x A) + ndS, where A = (x> +y — )i + 3xyj + (2xz + z>)k and S is the surface of (a) the hemi-
sphere x* + y> 4 72 = 16 above the xy-plane, (b) the paraboloid z = 4 — (x> 4 y*) above the xy-plane.

Let A = 2yzi — (x + 3y — 2)j + (x> + 2)k. Evaluate ﬂs (V x A) - n dS over the surface of intersection of the
cylinders 24 y2 = a2, x> + 72 = 42, which is included in the first octant.

A vector B is always normal to a given closed surface S. Show that va curl B dV =0, where V is the region
bounded by S.
190 . 10H
Let pE-dr = 2o H - dS, where S is any surface bounded by the curve C. Show that V x E = T
c c

c s
Prove 3§C ¢ dr = ﬂs dS x V.

Use the operator equivalence of Solved Problem 6.25 to arrive at (a) Vé, (b) V- A, (c) V x A in rectangular
coordinates.

Prove [[[, V$+AdV = [[;pA-ndS— [[[, $V+ A dV.

Let r be the position vector of any point relative to an origin O. Suppose ¢ has continuous derivatives of order
two, at least, and let S be a closed surface bounding a volume V. Denote ¢ at O by ¢,. Show that

[[rve-ov(s)]ros= [ T =

where o = 0 or 47¢, according as O is outside or inside S.
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6.74.
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The potential ¢(P) at a point P(x,y,z) due to a system of charges (or masses) g1, ¢z, - ..,g, having position
vectors ry,r, ..., I, with respect to P is given by

4=>

Prove Gauss’ law

HE-dS:MrQ
N

where E = —V¢ is the electric field intensity, S is a surface enclosing all the charges and Q = > _| gy, is the
total charge within S.

If aregion V bounded by a surface S has a continuous charge (or mass) distribution of density p, then the potential
¢(P) at a point P is defined by

Deduce the following under suitable assumptions:

(@) [J;E-dS =4 [[[,pdV, where E = V.

(b) V2¢ = —4mp (Poisson’s equation) at all points P where charges exist, and V2¢ = 0 (Laplace’s equation)
where no charges exist.

ANSWERS TO SUPPLEMENTARY PROBLEMS

6.37.

6.38.
6.39.
6.40.
6.41.
6.42.
6.43.
6.44.
6.46.
6.47.

(a) common value = 3/2, 6.48. 3a%/2

(b) common value = 5/3

—8m 6.49. common value = 607
127 6.50. (a) m, (b) —7

128/5 6.52. (a) 30, (b) 351/2

6m — 4 6.53. 180

—6 6.54. (a) 32, (b) 24, (c) 247
3ma? 6.63. common value = —4
37ma*/8 6.64. common value = 32/3
97/8 6.65. (a) —16m, (b) —4m

a? 6.66. —a>(3m+ 8a)/12



Curvilinear Coordinates

7.1 Introduction

The reader is familiar with the rectangular coordinate system, (x, y), and the polar coordinate system, (r, 6),
in the plane. The two systems are related by the equations

x=rcosf, y=rsinf and r=+/x2+y%, 6= arc tan(y/x)

This chapter treats general coordinate systems in space.

7.2 Transformation of Coordinates

Suppose the rectangular coordinates (x, y, z) of any point in space are each expressed as functions of
(ur, uz, u3). Say,
x = x(uy,uz,u3), y =y, uz,u3),  z=z(ur,uz,u3) ey

Suppose that (1) can be solved for u;, uy, #3 in terms of x, y, z, that is,

uy =u1(x,y,2), up=ux(x,y,2), uz=u3(x,y,z) )

The functions in (1) and (2) are assumed to be single-valued and to have continuous derivatives so that the
correspondence between (x, y, z) and (], up, u3) is unique. In practice, this assumption may not apply at
certain points and special consideration is required.

Given a point P with rectangular coordinates (x, y, z), we can, from (2), associate a unique set of coor-
dinates (u1, up, u3) called the curvilinear coordinates of P. The sets of equations (1) or (2) define a trans-
formation of coordinates.

7.3 Orthogonal Curvilinear Coordinates

The surfaces u; = ¢y, u, = ¢, u3 = c3, where ¢y, ¢, c3 are constants, are called coordinate surfaces and
each pair of these surfaces intersect in curves called coordinate curves or lines (see Fig. 7-1). If the coor-
dinate surfaces intersect at right angles, the curvilinear coordinate system is called orthogonal. The uy, u,,
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and u3 coordinate curves of a curvilinear system are analogous to the x, y, and z coordinate axes of a
rectangular system.

Fig. 7-1

7.4 Unit Vectors in Curvilinear Systems

Let r = xi + yj + zk be the position vector of a point P in space. Then (1) can be written r = r(uy, u, u3). A
tangent vector to the u; curve at P (for which u, and u3; are constants) is dr/du;. Then a unit tangent vector
in this direction is e; = (9r/du;)/|dr/0u; | so that dr/du; = hye; where hy = |dr/du; |. Similarly, if e, and
ez are unit tangent vectors to the u, and u3 curves at P, respectively, then dr/du; = hye; and or/du; = hses
where hy = |3r/ 8u2| and h; = |8r/ 8u3|. The quantities &1, hy, h3 are called scale factors. The unit vectors
ej, e, e; are in the directions of increasing uy, uy, u3, respectively.

Since Vu; is a vector at P normal to the surface u; = ¢, a unit vector in this direction is given by
E| = Vu;/|Vu,|. Similarly, the unit vectors E, = Vu,/|Vu,| and E3 = Vus/|Vus| at P are normal to
the surfaces u, = ¢, and u3 = c3, respectively.

Thus, at each point P of a curvilinear system, there exist, in general, two sets of unit vectors, ej, e;, €3
tangent to the coordinate curves and E;, E,, E; normal to the coordinate surfaces (see Fig. 7-2). The sets
become identical if and only if the curvilinear coordinate system is orthogonal (see Problem 7.19). Both
sets are analogous to the i, j, k unit vectors in rectangular coordinates but are unlike them in that they
may change directions from point to point. It can be shown (see Problem 7.15) that the sets
or/ouy, or/duy, or/duz and Vuy, Vu,, Vus constitute reciprocal systems of vectors.

A vector A can be represented in terms of the unit base vectors ey, e;,e; or E, E,, E; in the form

A =Are; +Are; +Aze; = alE| + mE; + a;E3
where A1, A»,As and ay, ap, az are the respective components of A in each system.

We can also represent A in terms of the base vectors dr/du;, or/du,, or/dus or Vuy, Vuy, Vus, which are
called unitary base vectors but are not unit vectors in general. In this case

ar ar ar
A=C—+C,—+C— =Cio; + Cron + C303
8141 Buz 8u3

and
A= C]Vul + szuz + C3Vu3 = Clﬁ] + C2B2 + C3B3

where Cj, C,, C3 are called the contravariant components of A and cy,cy,c3 are called the covariant
components of A (see Problems 7.33 and 7.34). Note that &, = 9r/0u,, B, = Vu,, p =1,2,3.
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7.5 Arc Length and Volume Elements

Recall first that the position vector of a point P can be written in the form r = r(uy, uy, u3). Then

b or or
dr idul + —duy + —duz = hy duje, + hy dure; + hz duses

ouy ouy ous
Then the differential of arc length ds is determined from ds> = dr « dr. For orthogonal systems,
€1*€) =€°€3 =€3°€ =0 and

ds* = hi duj + b3 dus + h3 duj
For non-orthogonal or general curvilinear systems, see Problem 7.17.
Along a u; curve, u; and u3 are constants so that dr = h; duje;. Then the differential of arc length ds;

along u; at P is h;du;. Similarly, the differential arc lengths along u, and u3 at P are ds; =

h2 duz, dS3 = /’l3 du3.
Referring to Fig. 7-3, the volume element for an orthogonal curvilinear coordinate system is given by

dv = |(h1 dulel) . (]’l2 duzez) X (h3 du3e3)| = h1h2h3 du1 dM2 du3

since |e;+ e, x e3| = 1.

Fig. 7-3

7.6 Gradient, Divergence, Curl

The operations of gradient, divergence, and curl can be expressed in terms of curvilinear coordinates.
Specifically, the following proposition applies.

PROPOSITION 7.1:  Suppose ® is a scalar function and A = Aje; + Aje; + Asze; is a vector function of
orthogonal curvilinear coordinates u;, u,, u3. Then the following laws hold.

BCD 1 o 1 o®
VO =grad ®=——e +——e, +——
(1) gra h] 81,{1 ]’lz 3u2 €+ ]’l3 81/!3 e

1

i) VeA=divA=
(i1) iv I

[ (hah3Ay) + —(h3h1A2) + —(h1h2A3):|

h1e1 ]’lzez h3e3
Ll 6 0
h1h2h3 8u1 3142 8143
/’l]Al /’l2A2 /’l3A3

(iii) Vx A =curl A =
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(iv) V?>® = Laplacian of ®

U [0 (hehs 00 0 (o 00 0 (i 0
o h1h2h3 8141 h] 8u1 81/{2 /’l2 3142 8143 h3 8143
Observe that if iy = hy = h3 = 1, and ey, e,, e3 are replaced by 1, j, Kk, then the above laws reduce to the
usual expressions in rectangular coordinates where (1, u, u3) is replaced by (x, y, z).

Extensions of the above results are achieved by a more general theory of curvilinear systems using the
methods of tensor analysis, which is considered in Chapter 8.

7.7 Special Orthogonal Coordinate Systems

The following is a list of nine special orthogonal coordinate systems beside the usual rectangular coordi-
nates (x, y, 2).

1. Cylindrical Coordinates ( p, ¢, z).
See Fig. 7-4. Here

x=pcos¢, y=psined, z=z
where p >0, 0 < ¢ <2m, —0 <z< o0, h,=1, hy =p, and h; = 1.

2. Spherical Coordinates (r, 6, ¢).
See Fig. 7-5. Here

x=rsinfcos¢d, y=rsinfsingd, z=rcosb

where r > 0,0< ¢ <2m, 0<0=<m, h. =1, hg=r, and hy = rsin 6.

b4 €, < e,
| w ¢ €
(P} ¢, 2) PONG, 6)
z \Aep a6
z
------ y
X0
€g

L) , Y

¢ //
RS

X X

Fig. 7-4 Fig. 7-5

3. Parabolic Cylindrical Coordinates (u, v, 7).
See Fig. 7-6. Here

x=3u’ =), y=w, z=z

where —co <y < o0, v>0, —o0o <z<oo, h, =h, =~u?+v? and h, = 1.
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In cylindrical coordinates, u = /2p cos (¢/2), v = /2psin(¢p/2), z = z.

The traces of the coordinate surfaces on the xy-plane are shown in Fig. 7-6. They are confocal
parabolas with a common axis.

_ .5 /N
wE

Fig. 7-6

4. Paraboloidal Coordinates (u, v, ¢).
Here

x=uvcosd, y=uvsing, z=7iu?—1?)
where u > 0,v>0,0 < ¢ <2, h, = hy = Vu?> + v?, and hy = uv.
Two sets of coordinate surfaces are obtained by revolving the parabolas of Fig. 7-6 above about the

x-axis which is relabeled the z-axis. The third set of coordinate surfaces are planes passing through
this axis.

5. Elliptic Cylindrical Coordinates (u, v, ).
See Fig. 7-7. Here

x =acoshu cosv, y=asinhusinv, z=1z

where u > 0,0 < v < 2, —00< 7 <00, h, = h, = av/sinh? u + sin> v, and h, =1.
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The traces of the coordinate surfaces on the xy-plane are shown in Fig. 7-7. They are confocal
ellipses and hyperbolas.

7 v=3n/2

Fig. 7-7

Prolate Spheroidal Coordinates (&, 7, ¢).
Here:

x = asinh ésinncos ¢, y =asinhésinnsing, z=acoshécosn

where > 0,0 <71 <m 0 < ¢ <2m, hy = h, = ay/sinh*&+ sin® m, and hg = asinh Esin 7.

Two sets of coordinate surfaces are obtained by revolving the curves of Fig. 7-7 about the
x-axis which is relabeled the z-axis. The third set of coordinate surfaces are planes passing through
this axis.

Oblate Spheroidal Coordinates (£, 1, ¢).
Here:

x =acoshécosncosp, y=acoshécosnsing, z=asinhésiny

where £>0, —w/2<n=<w/2,0< b <2m hg=hy = a,/sinh2 &+ sin? 7, and hy = a cosh £ cos 7.
Two sets of coordinate surfaces are obtained by revolving the curves of Fig. 7-7 about the y-axis
which is relabeled the z-axis. The third set of coordinate surfaces are planes passing through this axis.
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Ellipsoidal Coordinates (A, u, v).

Here
2 2 2
X y z 2 2 2
—1, \<3E<b<

o L R Ry ¢ “
x? + Y 3 =1, E<u<b*<da
ad—uw b—p t—u H*

2 2 2

X y < _ 2 2 2
a2—-—v b2—v cz—v_l’ c<b<v<a
L _1\/ (k=D =N

ATV (@ = DB = N — A

1

P v —wA—w
2\ (@ — w(b? — (e — )
h _1\/ (A —v)(u—v)
V2V (@ — )0 —v)(c2 —v)

Bipolar Coordinates (u, v, 7).
See Fig. 7-8. Here

X+ (y —acot u? = a*esc>u, (x —acothv)® + y2 = d’csch’v, 7=z

or

asinhv asinu
X=————, y=———, =7
coshv — cosu coshv — cosu

where 0 < u <27, —00 < p <00, —0 < z< 00, h, =h, =a/(coshv—cosu), and h, = 1.
The traces of the coordinate surfaces on the xy-plane are shown in Fig. 7-8. By revolving the curves
of Fig. 7-8 about the y-axis and relabeling this the z-axis, a toroidal coordinate system is obtained.
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SOLVED PROBLEMS

7.1. Describe the coordinate surfaces and coordinate curves for (a) cylindrical and (b) spherical
coordinates.
Solution
(a) The coordinate surfaces (or level surfaces) are:

p=c; cylinders coaxial with the z-axis (or z-axis if ¢; = 0).
¢ = c, planes through the z-axis.
z=c3 planes perpendicular to the z-axis.

The coordinate curves are:

Intersection of p =¢; and ¢ = ¢, (z curve) is a straight line.
Intersection of p=c¢; and z = c3 (¢ curve) is a circle (or point).
Intersection of ¢ = ¢, and z = c3 (p curve) is a straight line.

(b) The coordinate surfaces are:

r =c; spheres having center at the origin (or origin if ¢; = 0).

0 = ¢, cones having vertex at the origin (lines if ¢, = 0 or 7, and the xy-plane if
cy = m/2).

¢ = c3 planes through the z-axis.

The coordinate curves are:

Intersection of r =¢; and 6 = ¢; (¢ curve) is a circle (or point).
Intersection of r = c¢; and ¢ = c3 (6 curve) is a semi-circle (c; # 0).
Intersection of 6 = ¢, and ¢ = c3 (r curve) is a line.

7.2. Determine the transformation from cylindrical to rectangular coordinates.

Solution

The equations defining the transformation from rectangular to cylindrical coordinates are

X =pcos¢ (D
y=psin¢ (2)
2=z 3)

Squaring (1) and (2) and adding p*(cos® ¢ + sin? ¢) = x% +y% or p = /x2 + 2, since cos® ¢ + sin? ¢ = 1
and p is positive.
Dividing equation (2) by (1),

y _psing

X pcos¢

=tan¢ or ¢ =arc tanX
X

Then the required transformation is

p= x2 + y2 (4)

¢ = arc tan? ®)
X

7=z (6)

For points on the z-axis (x = 0, y = 0), note that ¢ is indeterminate. Such points are called singular points of
the transformation.
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7.3. Prove that a cylindrical coordinate system is orthogonal.

Solution
The position vector of any point in cylindrical coordinates is
r = xi + yj + zk = pcos ¢i + psin ¢j + zk
The tangent vectors to the p, ¢, and z curves are given respectively by ar/dp, dar/d¢, and dr/dz where

0 a d
8—;:cos¢i+sin¢j, gl;):—psin(bi—i—pcosd)j, a—;:k
The unit vectors in these directions are
/9 S
e —e, = I‘/p: cos ¢i + sin ¢j — cos i + sin
1or/dpl  \/cos? ¢+ sin”
9r/9 o .
e =ey= r/d$ = psin i + peos 9 = — sin ¢i + cos ¢j
[or/0l  \/p? sin? ¢ + p? cos? ¢
e e or/dz
P T Jorjoz]

Then

e+ e; = (cos ¢i + sin ¢j) « (—sin ¢i + cos ¢j) =0
e e3 = (cos ¢i +sinj) - (k) =0
€+ e3 = (—sin ¢i + cos ¢j) + (k) =0

and so e, e, and e3 are mutually perpendicular and the coordinate system is orthogonal.

7.4. Represent the vector A = zi — 2xj 4 yk in cylindrical coordinates. Thus determine A,, Ay, and A,.

Solution

From Problem 7.3,

€, = cos ¢i + sin Pj (€))
€4 = — sin @i + cos ¢j 2)
e, =Kk 3

Solving (1) and (2) simultaneously,

i =cos ¢e, —sindes, j=sin e, + cos Pey.

Then
A=zi—2xj+yk
= z(cos ¢e, — sin pey) — 2pcos ¢(sin ¢e, + cos ¢ey) + psin Pe;
= (zcos ¢ — 2pcos ¢psin p)e, — (zsin p + 2p cos® P)ey + psin ¢e,
and

A, =zcos ¢ — 2pcos ¢sin ¢, Ay = —zsinp— 2pcos2 b, A, = psin ¢.

d - d - . - . .
7.5. Prove &= dey, 76 = —d¢e, where dots denote differentiation with respect to time .

Solution
From Problem 7.3

e, =cos ¢i +sindj, ey = —sin @i+ cos ¢j



7.6.

7.7.
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Then & ey = —(sin )i + (cos )i = (—sin di + cos )b = ey

7 & = —(cos )i — (sin p)j = —(cos Pi + sin pj)p = —dpe,,

Express the velocity v and acceleration a of a particle in cylindrical coordinates.
Solution

In rectangular coordinates, the position vector is r = xi + yj + zk and the velocity and acceleration vectors are

dr ’r

v=—=3xi+yj+zk and a=—=3Xi+yj+7k
d ) P Yl

In cylindrical coordinates, using Problem 7.4.

r = xi + yj + zk = (pcos ¢p)(cos ¢e, — sin ¢ey) + (psin P)(sin e, + cos Pey) + ze,

:pep+zez
Then dr d d dz
) e ) - .
v=_=e dzijEeZ pe, + poey, + ze;

using Problem 7.5. Differentiating again,

&Pr d . : .
=W=*(Pep+l)¢e¢+zez)

de
= pz+pep +pq’>—+p¢e¢ +p¢e¢ + Ze,

= pdey + pe, + pd(—de,) + pdey + pdeg + Ze.
= (p— pde, + (pd + 2pd)ey + Ze;
using Problem 7.5.

Find the square of the element of arc length in cylindrical coordinates and determine the correspond-
ing scale factors.

Solution
First Method.
x=pcos¢p, y=psing, z=z
dx = —psinpdp+cosdpdp, dy=pcosdpdd+sinddp, dz=dz
Then

ds* = dx® + dy* + dz* = (—psin ¢ d + cos ¢ dp)* + (pcos ¢ d + sin ¢ dp)* + (dz)*
= (dp)’ + p*(dP)* + (dz)* = hi(dp)’ + h3(dp)” + h3(dz)

and hy = h, =1, hy = hgy = p, h3 = h, = 1 are the scale factors.

Second Method.  The position vector is r = pcos ¢i 4 psin ¢j + zk. Then

8
dr d —d d
+8¢> ¢>+ z

= (cos ¢i + sin ¢j) dp + (—psin @i + pcos ¢j)dd + k dz
= (cos ¢ dp — psinp dep)i+ (sind dp + pcos p dd)j + k dz
Thus
ds® = dr + dr = (cos ¢ dp — psin ¢ dd)* + (sin ¢ dp + pcos ¢ dd)* + (dz)°
= (dp)’ + p*(d)’ + (d2)?
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7.8. Work Problem 7.7 for (a) spherical and (b) parabolic cylindrical coordinates.

Solution
(@ x=rsinfcos¢p, y=rsinfsingd, z=rcosb
Then
dx = —rsin 0 sin ¢ d¢p + rcos 6 cos ¢ d + sin 0 cos ¢ dr
dy = rsin 6 cos ¢ d¢ + rcos 0 sin ¢ d6 + sin 6 sin ¢ dr
dz = —rsin0d0+ cos 0 dr
and

(ds)? = (dx)* + (dy)* + (dz)* = (dr)* + r*(d6)* + r* sin® 8(d¢)*
The scale factors are hy =h, =1, hy =hg=r, h3 =hg = rsin 6.
(b) x=30 -0, y=uw, z=2

Then
dx = u du — v dv, dy=udv+vdu, dz = dz

and
(ds)* = (dx)* + (dy)* + (d2)* = (u* + v*)(du)* + (u* + v*)(dv)* + (d2)®
The scale factors are hy = h, = Vu> + 02, hy = hy = VJu2 +v2, h3 = h, = 1.

7.9. Sketch a volume element in (a) cylindrical and (b) spherical coordinates giving the magnitudes of
its edges.

Solution

(a) The edges of the volume element in cylindrical coordinates (Fig. 7-9(a)) have magnitudes p d¢, dp, and dz.
This could also be seen from the fact that the edges are given by

ds) = hdu; = (1)(dp) =dp, dsy =hyduy =pde, ds3=(1)dz) =dz

using the scale factors obtained from Problem 7.7.

dV = (r sin 0 do)(r db)(dr)
dV = (p d¢)(dp)(dz) =2 sin @ dr do do
=pdpdddz
de, _pdo do ] rsin 6d¢
dp B dr
dz r sin 60— P
0 P . rd@
o)/ AL y
o
y do
x
(a) Volume element in cylindrical coordinates. (b) Volume element in spherical coordinates.

Fig. 7-9
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(b) The edges of the volume element in spherical coordinates (Fig. 7-9(b)) have magnitudes dr, r d6, and
rsin 6 d¢. This could also be seen from the fact that the edges are given by

dsy = hy duy = (1)(dr) =dr, ds) =hyduy =rdb, ds3s=hsdus=rsinfdeo

using the scale factors obtained from Problem 7.8(a).

Find the volume element dV in (a) cylindrical, (b) spherical, and (c) parabolic cylindrical coordinates.
Solution
The volume element in orthogonal curvilinear coordinates u, u,, u3 is

dVv = h1h2h3 dul duz du3

(a) In cylindrical coordinates, u; = p, uy = ¢, us =z, hy = 1, hy = p, hs = 1 (see Problem 7.7). Then
dv =)(p)(1)dp dp dz =p dp dd dz

This can also be observed directly from Fig. 7-9(a) of Problem 7.9.
(b) In spherical coordinates, u; =r, up = 0, us = ¢, hy = 1, hp = r, h3 = rsin 0 (see Problem 7.8(a)). Then

dV = ()(")(rsin ) dr d6 d¢ = r*sin 0 dr d6 d¢
This can also be observed directly from Fig. 7-9(b).

(¢) In parabolic cylindrical coordinates, u; = u, up = v, uz3 = z, hy = Vu? + v, hy = ~Ju? + 12, h3 = 1 (see
Problem 7.8(b)). Then

dV = Wi + )W u? + ®)(1) du dv dz = i + v*) du dv dz

Find (a) the scale factors and (b) the volume element dV in oblate spheroidal coordinates.

Solution
(a) x =acosh§ cosmcos¢p, y=acoshécosnsing, z=asinhésinn
dx = —acosh ¢ cos 1) sin ¢ d¢p — acosh § sin 1) cos ¢p dn + asinh & cos 1) cos ¢ d§
dy = acosh & cos m cos ¢ d¢p — acosh € sinm sin ¢ dn + asinh & cos 7 sin ¢ dé
dz = asinh € cos ndm + acosh € sinm d€
Then

(ds)® = (dx)? + (dy)* + (dz)* = a*(sinh? & + sin® n)(d&)?
+ @*(sinh? E+ sin? n)(d 7;)2
+ a? cosh? & cos? n(dq’))2

and by = hg = ay/ sinh? &+ sin®m, hy = hy = ay/sinh? &+ sin®m, hy = hg = acosh & cos 7.

(b) dV = (a\/sinh2 £+ sin? n)(a\/sinhz &+ sin® p)(acosh & cos ) dé dn d¢
= a’(sinh? £ + sin? n)cosh & cosm dé dn dd
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7.12. Find expressions for the elements of area in orthogonal curvilinear coordinates.

Solution
Referring to Fig. 7-3, the area elements are given by
dA; = |(hy duzey) x (hs duzes)| = hohsley x eslduy dus = hyhs duy dus
since |e; x e3| = |e;| = 1. Similarly
dA; = |(hy duyey) x (h3 duzes)| = hihs duy dus
dAz = |(hy duyey) x (hy duzey)| = hihy duy duy

7.13. Suppose uj, up, uz are orthogonal curvilinear coordinates. Show that the Jacobian of x, y, z with
respect to uy, up, uz is

ox dy oz
duy our oy

J( X,V 2 >: ax, y, 2) _ ox dy 0z — Ik
uy, Uz, U3 8(141, uy, u3) Z)uz 8”2 Buz
ox dy oz
dus Ous dus

Solution
By Problem 2.38, the given determinant equals

0. 0 0z a 0. o 0 0.
(ii_;’_iyj_i_izk) . (ii_;’_ﬂj_i_ik) X (ii_i_iyj_i_izk)
1

8142 8u2 Buz 3143 8u3 8143
_dr  or ar

= e — X ——=hje;s e, x h
ouy  oup x ous 117 1262 X 11a€3
= h1h2h3e1 € X e3 = h1h2h3

If the Jacobian equals zero identically, then or/du;, dr/du,, or/dus are coplanar vectors and the curvilinear
coordinate transformation breaks down, that is, there is a relation between x, y, z having the form F(x, y, z) = 0.
We shall therefore require the Jacobian to be different from zero.

7.14. Evaluate fﬂv (x? +y* + 7%) dx dy dz where V is a sphere having center at the origin and radius
equal to a.

Solution

The required integral is equal to eight times the integral evaluated over that part of the sphere contained in the
first octant (see Fig. 7-10(a)).

Z

< 2iiR=a?
<\ T r=a
dV=dxdy dz o dW\= r sin Odr d6 d¢
| \\)/ Y < y
[

K x2+y2=a2,z=0

@ ®)
Fig. 7-10
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Then, in rectangular coordinates, the integral equals

a a2 @ —x*=y?
8 J J J 2 +y? + P dzdy dx
x=0 y=0 z=0

but the evaluation, although possible, is tedious. It is easier to use spherical coordinates for the evaluation.
In changing to spherical coordinates, the integrand x*> +y? 4 72 is replaced by its equivalent 7> while the
volume element dx dy dz is replaced by the volume element 7> sin 0 dr d6 d¢ (see Problem 7.10(b)). To cover
the required region in the first octant, fix 6 and ¢ (see Fig. 7-10(b)) and integrate from r = 0 to r = a; then
keep ¢ constant and integrate from 6 = 0 to 7r/2; finally, integrate with respect to ¢ from ¢ =0 to ¢ = 7/2.
Here, we have performed the integration in the order r, 6, ¢ although any order can be used. The result is

w2 w2 a w2 w2 a
8 j J J () sin 0 dr dO dp) =8 J J J r*sin 6 dr d6 d¢
$=0 0=0 r=0 $=0 6=0 r=0
/2 /2 w/2 /2
P 8a° )
=8 gsme d0dd>=? sin 0 d6 d¢
$=0 6=0 r=0 $=0 6=0
/2 /2
8a’ /2 8a° 4ma®
5 J cos o [0 5 J o) 5
¢=0 ¢=0

Physically, the integral represents the moment of inertia of the sphere with respect to the origin, that is, the
polar moment of inertia, if the sphere has unit density.

In general, when transforming multiple integrals from rectangular to orthogonal curvilinear coordinates, the
volume element dx dy dz is replaced by hyhyhs du; du, dus or the equivalent

J(M)dul duy dus
Uy, U, U3z

where J is the Jacobian of the transformation from x, y, z to uy, uy, us (see Problem 7.13).

Let u;, uy, us be general coordinates. Show that or/ou;, or/du,, dr/dus and Vu;, Vu,, Vus are reci-
procal systems of vectors.

Solution

We must show that

or 1 ifp=g
—+Vu, = .

du, Yq { 0 ifp#gqg

where p and ¢ can have any of the values 1, 2, 3. We have

Multiply by Vu; - . Then

3 3 3
Vi dre = duy = (Vg s —)duy + ( Vir o —=duy + ( Viey + =) dus
duy ouy ouz

or

3 3 3
X v o0, vy
Bul

VM] =
3142 8u3

=0

Similarly, upon multiplying by Vu,+ and Vusz« the remaining relations are proved.
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ar o
7.16. Prove{ r.ax —r}{Vu1-Vu2XVu3}:1.

. X
8u1 81/!2 8”3
Solution

From Problem 7.15, dr/du;, dr/du,, or/ous and Vu;, Vu,, Vus are reciprocal systems of vectors. Then, the
required result follows from Problem 2.53(c).
The result is equivalent to a theorem on Jacobians for

ou; Oduy oug

ox 87y 3
a d d
Vi Vip x Vi = |22 22 22 _ (1 i, 15
ox dy 0z X, ¥, 2
ox dy 0z
and so J( LYz )J(ul’ 12, u3) = 1 using Problem 7.13.
uy, Uz, U3 X, ¥, 2
7.17. Show that the square of the element of arc length in general curvilinear coordinates can be
expressed by s s
2
=D D 8pq dup duy
p=1 g=1
Solution
We have
dr 8 du1 +a—du2 +87du3 = o du; + o duy + o3 dus
23]
Then

ds* =dr«dr = a;* o du%—i—oq-az duy duy + o+ o3 duy dus
+ o o duy dup + oxe 0 du% + oy e a3 duy dus
+ a3 o dus duy + a3+ o dus dus + oz o du%
33
=2 8 dity duy
p=1 g=1
where g,, = o+ a.

This is called the fundamental quadratic form or metric form. The quantities g, are called metric coefficients
and are symmetric, that is, g,, = g4p- If g,y =0, p # g, then the coordinate system is orthogonal. In this
case, g1 = h%, gn = h%, g33 = h%. The metric form extended to higher dimensional space is of fundamental
importance in the theory of relativity (see Chapter 8).

Gradient, Divergence, and Curl in Orthogonal Coordinates

7.18. Derive an expression for V® in orthogonal curvilinear coordinates.

Solution

Let VO = fie| + f>e, + f3e3 where fi, f>, f3 are to be determined. Since

ar
dr=—d d dus
r 31/{] u1+32 u2+83

= hie, duy + hoe; duy + hze; dus
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we have

d® = VO - dr = hf] duy + hyfs dup + hafs dus (1)
But

[} [} [}
=22 gy + 2 gy + 2 )
ouy ouy ous
Equating (1) and (2),
1 0® 1 od 1 od
=

houw T houw 7T hsous
Then

e1 od ez odb e3 b

Vo =
h1 8111 ]’l2 8142 h3 8143
This indicates the operator equivalence

613 e28 838

V=
hl 8141 an ]’lz 8142 T h3 8u3

which reduces to the usual expression for the operator V in rectangular coordinates.

Let uy, up, us be orthogonal coordinates. (a) Prove that |Vu,| = h;l, p=1,2,3. (b) Show that

e, =E,.

Solution

(a) Let ® = u; in Problem 7.18. Then Vu; = e;/h; and so |Vuy| = |e;|/h = hl’l, since |e;| = 1. Similarly,
by letting ® = u, and u3, |Vua| = h5!' and |Vus| = k3l

Vu,
(b) By definition, E, =
7 pl

. From part (a), this can be written E, = h,Vu, = e, and the result is proved.
Prove e; = hyh3Vu, x Vus with similar equations for e, and e3, where u, uy, u3 are orthogonal
coordinates.

Solution

From Problem 7.19,

€ € €3
Vu, = —, Vu, = —, \'%
u I uy I u3 I
Then
e € ¢
Vu, x Vuz = 2]’1;13 3 = ?1113 and e, = hoh3Vu, x Vus.
Similarly

€ = h3h1Vu3 X VM] and €3 = h1h2VM1 X Vuz.

Show that in orthogonal coordinates

1
() V-(Are)) = Tl 8 (A hahs3)
(b)VX(Alel)_M (Aq 1)—ﬁ82(141 1)

with similar results for vectors A,e, and Ases.
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Solution

(a) From Problem 7.20,

V. (A]el) =V (A1h2h3VM2 X Vu';)
= V(A 1hyh3) « Vuy, x Vuz +A1hohzV « (Vuy x Vuz)

= V(Aihah3) « — X *+ 0= V(A hyh3) -

h3
ela(Ahh)+ (Ahh)—l———(Ahh)
Tty o, 2h3 " 1hahs 2h3 hh;
19
= hhahs ouy au, A1)

(b) Vx (Are;) =V x (A1hVuy)
= V(Alhl) X VM1 +A1h1V X VM]

= V(A k) x Z—‘ +0
|

e 0 e 0 e; 0 e
= | 2T Ak + 2 M) + S (Arhy) | x -
[hlau (A 1)+h o (A 1)+h 8u3( 1 1)i|><h1

&2 2 & % A
h3h18u(11) hh8 (11)

7.22. Express div A = V « A in orthogonal coordinates.

Solution
V-A=V-(Ae +Are; +Aze3) =V - (Are) + V- (Are2) + V - (Aze3)

1

= e s |: (Arhahs) +*(A2h3h1) +*(A3h1h2)i|

using Problem 7.21(a).

7.23. Express curl A = V x A in orthogonal coordinates.

Solution
VXxA=Vx(Ae +Ae +A3e3) =V x(Aje)) + V x (Arer) + V x (A3€3)

hgh183( thi) = hlhza e 1)+hh ” 2 s — hh3 (A2h2)
+hz%a—2( 3 z)—ﬁa—l(A3h3)

hj;z[ (Ash 3)—f(A2hz)} %[ (Alhl)—f(A3h3)}
+%[7( 2hy) — 2(A1h1)}

using Problem 7.21(b). This can be written

h]el hzez h3e3
1 ad a ad

]’l]/’lz/’l3 87111 37112 3143
Athy  Ayhy  Ashs

VXxA=
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7.24. Express V2 in orthogonal curvilinear coordinates.

Solution
From Problem 7.18,

e 0 e O e30Y

Vi = .
dj ]’l] 8u1 /’lz 8112 h3 al/t3

19 19 19
IfA=Vy,thenA; = ——l’lj, Ay = ——dj, Az = df and by Problem 7.22,
hy Ouy hy dup h3 U3

V-A=V.V§=V?
1 0 (hhsdw\ 9 (hsh O\ 8 (hih oy
_h1h2h3 8“1 h] 31/!1 8u2 hz 3142 8143 h3 8143

7.25. Use the integral definition

-nds
GivA— VA lim HasA ndS
AV—0 AV

(see Problem 6.19) to express V « A in orthogonal curvilinear coordinates.

Solution

Consider the volume element AV (see Fig. 7-11) having edges i Auy, hy Auy, hs Aus.
Let A =A e +Ase; + Azes and let n be the outward drawn unit normal to the surface AS of AV. On face
JKLP, n = —e,;. Then, we have approximately,

[JA +ndS = (A - n at point P)(Area of JKLP)

JKLP
= [(Are; +Are; + Azes) « (—e)](hahs Auy Auz)
= —A1h2h3 Auz Au3

On face EFGH, the surface integral is
0
Arhohsy Auy Aus + T(Alhth Auy Auz) Auy
iy

apart from infinitesimals of order higher than Au; Au, Aus. Then the net contribution to the surface integral from
these two faces is

0 d
7(141]’12]’13 Au2 AM}) Am = 7(A1h2h2) Aul Auz Au3
o ouy
The contribution from all six faces of AV is
[7 (Arhahs) ton (Azh hs) + f(A3h hz)} Auy Aupy Aus

Dividing this by the volume hyhyhs Auy Auy Aus and taking the limit as Auy, Aup, Aus approach zero, we find

. 1
divA=V-A=—— |: (A1hyh3) ~|— (Azh]hz) + (A3h1h2)j|
hihahs U3
Note that the same result would be obtained had we chosen the volume element AV such that P is at its center.
In this case, the calculation would proceed in a manner analogous to that of Problem 4.21.
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€3

M @ n
EI S
h, Au
. Rl 0 ,e,
€
Fig. 7-12
7.26. Use the integral definition
(curl A)-n= (V x A)-n— lim S 4r
crt Ayen =V = 0 As

(see Problem 6.35) to express V x A in orthogonal curvilinear coordinates.

Solution
Let us first calculate (curl A) - e;. To do this, consider the surface S; normal to e; at P, as shown in Fig. 7-12.
Denote the boundary of S; by C;. Let A = Aje; + Ajze; + Aze;. We have

%A-dr: JA-dr—i— JA-dr—i— JA-dr—i— JA-dr

ol PO oL M MP

The following approximations hold

J A +dr = (A at P)- (hy Auzey) (D)
PO
= (Are; + Are; + Azes) - (hy Auzer) = Arhy Auy
Then
d
J A < dr =Ayh Auy + 87(142/12 Auz) Au3
u
ML ’
or
d
J A«dr = —A2h2 Au2 — T(Azhz Auz) Au3 (2)
i3
Similarly, LM
J A-dr = (A at P)- (hsAuze3) = Azhs Aus
PM
or

J Aedr = —A3/’l3 Au3 (3)

MP
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and

d

J A«dr = A3]’l3 AM3 + T(A3h3 Au3) Au2 (4)
125]

oL

Adding (1), (2), (3), and (4), we have

} A-dr = i(A3/’l3 AM3) Abtz — i(Az]’lz Auz) Aug
3142 81/[3
C

0 d
= | z—(A3h3) — —(A2hy) |Auy Aus
3142 3u3

apart from infinitesimals of order higher than Au, Aus.
Dividing by the area of S; equal to hyhz Auy Auz and taking the limit as Au, and Aus approach zero,

1 0 d
1A) e = — |- (Ashy) — (A
(curl A)- e Il [8142( 3h3) 8143( 2h2)]

Similarly, by choosing areas S, and S; perpendicular to e, and e; at P, respectively, we find (curl A) - e, and
(curl A) - e3. This leads to the required result

€ 0 d
1A =—|—(Azh3) ——(Arh
cur I |:8u2( 3h3) 8u3( 2 2):|
€ ] 0
—— | —(A1h) —— (A3h
I, _8u3( 1h1) Bul( 3 3)]

€3 M9 0
— | —(A2h)) ——(A1h
+h1h2 _au,( 2h2) auz( 1 1)]

hlel h2e2 h3e3
1 d d d

:h1h2h3 37141 3142 3143
hlAl thz h3A3

The result could also have been derived by choosing P as the center of area S;; the calculation would then
proceed as in Problem 6.36.

Express in cylindrical coordinates the quantities (a) V®, (b) V- A, (¢c) Vx A, (d) V2.

Solution

For cylindrical coordinates (p, ¢, 2),

uy=p, up=¢, uz=z e =e, € =¢e; € =e;
and
ho=hy=1, hy=hy=p hy=h. =1
1 ad 1 b 1 0®
(@ Vo=

oo hy oy T g ous
10D 10D 10D
1o 506 Tk
P 10d P
za—pep—i—;%ed,—i—a—zez
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1 0 0 0
(b) V-:A= ol [aTtl(hzlhAl) + 872(}13}11142) + 873(}11}12143)]

! d
DA D(DAg) +—((D(pA
(1)(p)(1)[3p((p)() o)t ¢(( HDA) + 2 (D(p) »]
1

_I1a dAg | 0
—p[ap( p)+a¢+ (A)]

where A = Ape; +Ager +Aes, thatis, Ay = A, Ay = Ay, Az = A
hie; hye, hses € peyp €
© VxA=_| 6o 08 ) _1ja 8 0

hilohs | dui  uy  dus | plop 9 oz
/’llAl h2A2 /’l3A3 Ap pAd) A

I (A0 ay oA, ,
L (5 oo (o505 oot (o0 -5 )e
1 9 (hyhs 0D o (hzh; 0O 0 (hihy 00
d 2 _ 0 (ran3 0% &101 112
( ) ve /’l]/’lz/’l3 |:3141 < hl 3141) . 3142 ( /’l2 8142) t o 3143 ( /’l3 8143)]
! [ <(p)(1)8cl>>Jr ((1)(1)3‘19)Jr ((D(P) 343)]
“ WM e\ D) ) e\ s 9o (1 oz

_1a<a<1>)+132q>+32c1>
“pop\Pop) T e a2

7.28. Express (a) V x A and (b) V24 in spherical coordinates.
Solution

Here uy =r,uo =6, us = ;e; =e,, e, =eg, e3 =e4; hy =h, =1, hp =hg=r, h3 = hg =rsiné.

h1e1 ]’lez ]’Z3E3 €. Treg rsin 6 ()
1 0 0 0 1 d 0 0
(a) V x A = —_— —_— _ = — - -
hihyhs | ouy ouy  Ouz (D(r)(rsin6) | or 960 Rl
hiAy hAy  h3Aj A, 1Ay rsinfAy,
1 0 d
= 2 (rsin 6Ag) — - (rAg) te,
72 sin 0 Hao(”m ? =550 ")}e
9 reg + (rA ) — BA rsinf e
¢ or 0 0 ¢

3 (hohs 0y hshy 0 hihy 0
b) V2 = (2B
( ) v ll’ h h2h3 |:3 [Z5} ( h1 8141) + 8142( h2 8142) o Bug ( /’l3 8u;>:|
((r)(r sin 0) a¢) 49 ((r sin 6)(1) 81,[;) i ((1)(r) %)
(1)(r)(r sin 0) [ar (1) or a0 r d¢ \rsin 09¢p :|
1 5 0 Wy 1 &y
—rzsme[ "5( 5) +ae(“ 9@) +m37,2}

19 (,00 1 ap L&y
= —" — 6
2 or (r 3,,) + 2 sin 690 (S n a0 + r2 sin’ 03¢2
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7.29. Write Laplace’s equation in parabolic cylindrical coordinates.

Solution

From Problem 7.8(b),

w=u, uy=v, UuU3=7z h=vVut+1% h=+vVu:t+v?, h=1

S S B WY KA WY P SN
v (/l_uz—i—vz [814 <8u> +Bv<81)> +8z ((M +o) Bz)i|

1 (321,// 324;) 3y

T2 402 072

Then

w2 a2
and Laplace’s equation is V¢ = 0 or

32!’0 82 ) , aZl’[l
R S ~—7_0
8u2+avz + +U)312

7.30. Express the heat conduction equation 9U/dr = kV>U in elliptic cylindrical coordinates.

Solution

Here u; = u, u» = v, us = z; by = ho = av/sinh? u + sin’> v, h3 = 1. Then

1 a [oU a (U d U
VUU=———— | [ += = +—(a2 sinhzu—i—sinzv—)}
a2(sinh? u + sin® v) [au (814) v (81)) oz ( ) oz

_ 1 [aZU & U} FU
T a@2(sinh? u +sinv) | w2 a? 372
and the heat conduction equation is
U 1 FPU U U
—_ Kk | — 4 — -
ot a*(sinh? u + sin®v) | ou? ~ d? 072

Surface Curvilinear Coordinates

7.31. Show that the square of the element of arc length on the surface r = r(u, v) can be written

ds* = Edu* + 2F dudv + G dv*

Solution
We have
ar ar
dr = £du + %dv
Then
ds> = dr « dr
_dr or or odr or or ,
“ou ™ T At g

=E du® + 2F du dv + Gdv*
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7.32. Show that the element of surface area of the surface r = r(u, v) is given by

=+VEG — F?du dv
Solution

The element of area is given by

ar ar ar Jr ar or

The quantity under the square root sign is equal to (see Problem 2.48)

oar dr\/or or gr dr)or or 2
—e— = =)= (== —EG-F
ou du/\ov v u ov)\ov  ou

ar
ou

and the result follows.

Miscellaneous Problems on General Coordinates

7.33. Let A be a given vector defined with respect to two general curvilinear coordinate systems
(uy, up, us) and (uy, uy, uz). Find the relation between the contravariant components of the vector
in the two coordinate systems.

Solution

Suppose the transformation equations from a rectangular (x, y, z) system to the (u;, uy, u3) and (i, up, u3)
systems are given by

x=x1(u, ua, w3), ¥y =yi1(u1, uz, u3), z=2z1(u, Uz, u3) )
x =xo(y, U, uz), y=y(uy, Uz, u3), 2z =220y, Uz, u3)

Then there exists a transformation directly from the (u;, u,, us) system to the (u;, u,, u3) system defined by
up = u (U, Uy, W3), up = up(Uy, U, U3), uz = u3(Uy, o, U3) 2)

and conversely. From (1),

or or or
dr 3 —du +— oy du, +— oty dus = o duy + o duy + o3 dus
1231
ar or or
dr a—dul—i—zrdu2+—du3_a1du1+a2f2+a3f3
up
Then
o duy + oo duy + oz dus = @ diy + &, diip + &3 diiz 3)
From (2),
d “ g+ 2 iy 1+ 2
= L et 3 it
1 a i up 87 up a, us
uy _ Oup Ouy
du, = —d du, + —du
up aﬁl u +— 3 Uy + T us

ou3 0 a
duz = *d 1+£d 2+£f3
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Substituting into (3) and equating coefficients of du,, duy, dus on both sides, we find

— au] 3142 au3

o) = alﬁ+a2ﬁ+a3ﬁ

S B S @
31/{2 Buz Buz

— 8u1 3142 3143

o3 = Q] aiﬁs (5] ﬁ o3 87%

Now A can be expressed in the two coordinate systems as
A=Cia+Co +Czoz3 and A= a&l +62&2 +?3&3 (5)

where C|, C;, C3 and Cj, C;, C; are the contravariant components of A in the two systems. Substituting (4)
into (5),

Cia; + Cran + Csa3 = 61&1 + 62&2 —{—63&3

— aM] — 3141 — 3u1 — 8M2 — 8u2 — 3142
=|Ci—+C,—+C3— Ci—+C—+C3—
( 'an1+ 28ﬁ2+ 38ﬁ3)0£1+( ]8ﬁ1+ 28ﬁ2+ 38%)012
8u3 — 8ug 31/{3
Ci—+Cy—+C3—
+( 13ﬁ1+ 28ﬁ2+ %Bug)a%
Then
[Z5] — 3M1 aLl]
Ci=Ci—+C,—+C3—
1 1 i + o1, + (3 e
— 8142 — 31/[2 — 8u2
CG=C—+C,—+C;3— 6
2 18ﬁ1+ 28E2+ 38&3 (6)
3]43 81/{3 81/[3
CG=Ci—+C,—+C3—
3 ! T] + 2 3ﬁ2 3 Bug
or in shorter notation
—_ ou — ou — Jdu
C,=C,=2+C,—2L+C3 =L =1,2,3 7
i’ 1 3ﬁ1 + (2 8&2 + C3 8&; p ( )
and in even shorter notation
3 u
_ - % _
c,,—Z_jcqaﬁ p=123 ®)
g=1 a
Similarly, by interchanging the coordinates, we see that
f—icaﬁ” =1,273 )
p_qzl qauq P=n

The above results lead us to adopt the following definition. If three quantities C;, C,, C3 of a co-ordinate
system (u1, us, u3) are related to three other quantities C;, C,, C3 of another coordinate system (i, iy, i3)
by the transformation equations (6), (7), (8) or (9), then the quantities are called components of a contravariant
vector or a contravariant tensor of the first rank.

Work Problem 7.33 for the covariant components of A.

Solution

Write the covariant components of A in the systems (u;, uy, u3) and (uy, up, u3) as cy, ¢, c3 and ¢y, ¢z, Cs,
respectively. Then

A =c;Vu; + caVuy + c3Vuz = ¢, Vi, + ¢, Vi, + 3 Vi (1)
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Now since u, = u,(uy, up, uz) withp =1, 2, 3,
Wy _ Oy Dy | Oy Oy | Oty Sty
ax  duy Ox  dupy Ox  dus Ox
Gy _ Oy Oy | Oty Dy | Oty Outs

= =1,2 2
dy  Ou; dy  Ouy dy  Ouz dy p=123 @
Bﬁp _ 3ﬁ[, ouy 3ﬁ[, oup 3&,, ous
8z Ou; 9z Oup 0z Ouz Oz
Also,
ouy ou ou
c1Vuy + o Vuy + ¢3Vuz = ( 1af+czafz+03 83>l
3u1 8 3u3 3 3142 8u3
— — — k 3
+<Cl ay-l-cza +c3 3y>']+<|8 +Cza +c Bz) 3)
and
ou; o
c1Vuy +¢c,Vu, +¢c3Vuz = c1ﬂ czﬂ aﬂ i
a 0x ox
_ odu; _ Oup _ Juz\. _ouy _ dup _ Ous
—_— — —_— — — — ]k 4
~|—<01 3y+C2 8y+€3 ay>J+<cl 8Z~I—Cz 31+C3 Bz) “4)
Equating coefficients of i, j, k in (3) and (4)
duy oun dus  _ Ouy 75} o3
c c 3—=C—+C—+C3—
Par T % T P ar T e T T
ouy N 3u2+ ous  _ 0 47 3ﬁ2+, o3 5)
Cl——TCOQ——TC3——=C—71TCQ —TC——
ay dy ay ay ay dy
oy ouy Jus duy o, _ 0uj

CITZ+0287Z+C3TZ:C187Z+6‘2872+ 387Z

Substituting equations (2) with p = 1, 2, 3 in any of the equations (5) and equating coefficients of

Bul 8u2 3L£3 8u1 auz Bu; 8141 auz Bug

on each side, we find

C1 —Cla ] 6287141 C33Tt|
iy Oty 8u3
= 6
c) = c182+ 8u2+c o1ty (6)
8u1 _ 8ﬁ2 {f;
c3==¢C C) — C
3 18 us 23113 33143

which can be written
61,2517-’-527'}‘6‘37 p=123 (7)

or

cp = Co p=1,273 (8)
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Similarly, we can show that

3
=2 Cq  P=L23 ©)

The above results lead us to adopt the following definition. If three quantities c;, c;, ¢3 of a co-ordinate
system (u;, uy, u3) are related to three other quantities ¢, ¢,, ¢3 of another coordinate system (#;, %, #3) by
the transformation equations (6), (7), (8), or (9), then the quantities are called components of a covariant
vector or a covariant tensor of the first rank.

In generalizing the concepts in this Problem and in Problem 7.33 to higher dimensional spaces, and in
generalizing the concept of vector, we are led to fensor analysis which we treat in Chapter 8. In the process
of generalization, it is convenient to use a concise notation in order to express fundamental ideas in compact
form. It should be remembered, however, that despite the notation used, the basic ideas treated in Chapter 8
are intimately connected with those treated in this chapter.

7.35. (a) Prove that, in general, coordinates (i1, uz, us),

_ _ (. X —
g= 181 &» &» ou; Oup,  Ous

811 812 £13 <8r or 81')2
831 832 4§33

where g, are the coefficients of du, du, in ds* (Problem 7.17).
(b) Show that the volume element in general coordinates is /g du; duy dus.

Solution

(a) From Problem 7.17,
or Or ox dx | Jy Oy dz 0z

=, = —=— — — ,q=1,2,3 1
Epg = % * A ow, Ouy, Oupdu, Oupdu,  Ouy,duy p-a M
Then, using the following theorem on multiplication of determinants,
a a a3||A1 B C A + aAry +a3As aiBr +aBy +a3Bs a1Ci + a,Cr + a3Cs

by by b3||Ay By Cy|=|biA1+DbyAr+b3A; b1By +b2By +b3B;  bi1Ci + byCy + b3
C1 Cy C3 A3 B3 C3 ClAl + C‘2A2 + C3A3 C]Bl + C2B2 + C3B3 61C1 + CzCz + C3C3

we have
&y k)
8141 81/!1 81/{1
(81‘ or ar)2 x dy

ouy  Jduy 87143

y Our  un
ooy
8143 8143 8u3
ox dy Oz || ox Ox Ox
ou; Ouy Ouy ||ouy Oup Ous

8 8 8
e ay ey oy oy
- 8142 8u2 8142 3141 8142 8”3 - g2] g22 g23
Ox dy Oz || 0z 9z Oz 831 83 833

8143 8143 8143 3u1 3142 8143

(b) The volume element is given by

or or ar
dV = |l —du |- | —d —d =
(g ) () = (o)

= ./gdu; duy duz by part (a).

Jgr Or or

X
ou; Oup  Ous

du1 du2 du';

Note that /g is the absolute value of the Jacobian of x, y, z with respect to u;, uz, u3 (see Problem 7.13).
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SUPPLEMENTARY PROBLEMS

7.36.

7.37.

7.38.

7.39.

7.40.

741.

7.42.

7.43.
7.44.

7.45.

7.46.
747.

7.48.

7.49.
7.50.
7.51.
7.52.

7.53.

7.54.

7.55.

7.56.

7.57.

Describe and sketch the coordinate surfaces and coordinate curves for (a) elliptic cylindrical, (b) bipolar, and
(c) parabolic cylindrical coordinates.

Determine the transformation from (a) spherical to rectangular coordinates, (b) spherical to cylindrical
coordinates.

Express each of the following loci in spherical coordinates: (a) the sphere x> +y> + 72 = 9;
(b) the cone z? = 3(x> + y?); (c) the paraboloid z = x> + y?; (d) the plane z = 0; (e) the plane y = x.

Suppose p, ¢, z are cylindrical coordinates. Describe each of the following loci and write the equation of each
locus in rectangular coordinates: (a) p=4,z=0;(b) p=4;(c) p =7/2;(d) p = 7/3, z= 1.

Suppose u, v, z are elliptic cylindrical coordinates where a = 4. Describe each of the following loci and write the
equation of each locus in rectangular coordinates:

@uv=m/4;,b)u=0,z2=0;c)u=In2,z=2;(d)v=0,z=0.

Suppose u, v, z are parabolic cylindrical coordinates. Graph the curves or regions described by each of the
following: (@ u=2,z=0;(b)v=1,z2=2;(c) 1 <u<2,2<0v<3,z=0dD1<u<2,2<v<3,z=0.

(a) Find the unit vectors e,, ey, and e4 of a spherical coordinate system in terms of i, j, and k.
(b) Solve for i, j, and k in terms of e,, e, and e.

Represent the vector A = 2yi — zj + 3xk in spherical coordinates and determine A,, Ay, and Ag.
Prove that a spherical coordinate system is orthogonal.

Prove that (a) parabolic cylindrical, (b) elliptic cylindrical, and (c) oblate spheroidal coordinate systems are
orthogonal.

Prove &, = fey + sin 6<Z>e¢, é; = —0e, + cos 6<l>e¢, ey = —sin 0<Z>e, — cos 0(},’)«30.
Express the velocity v and acceleration a of a particle in spherical coordinates.

Find the square of the element of arc length and the corresponding scale factors in
(a) paraboloidal, (b) elliptic cylindrical, and (c) oblate spheroidal coordinates.

Find the volume element dV in (a) paraboloidal, (b) elliptic cylindrical, and (c) bipolar coordinates.

Find (a) the scale factors and (b) the volume element dV for prolate spheroidal coordinates.

Derive expressions for the scale factors in (a) ellipsoidal and (b) bipolar coordinates.

Find the elements of area of a volume element in (a) cylindrical, (b) spherical, and (c) paraboloidal coordinates.

Prove that a necessary and sufficient condition that a curvilinear coordinate system be orthogonal is that g,, = 0
forp # q.
X, Y, 2

Find the Jacobian J <
Uup, Uz, us

) for (a) cylindrical, (b) spherical, (c) parabolic cylindrical,
(d) elliptic cylindrical, and (e) prolate spheroidal coordinates.

Evaluate [[[,, /x> + y?>dx dy dz, where V is the region bounded by z = x* + y? and z = 8 — (x> + y*). Hint: Use
cylindrical coordinates.
Find the volume of the smaller of the two regions bounded by the sphere x?> 4+ y> 4 z2 = 16 and the cone
2_ 2.2
T =x"+y.

Use spherical coordinates to find the volume of the smaller of the two regions bounded by a sphere of radius a and
a plane intersecting the sphere at a distance & from its center.
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7.59.

7.60.

7.61.

7.62.
7.63.
7.64.
7.65.
7.66.

7.67.

7.68.

7.69.

7.70.
7.71.

7.72.

7.73.

7.74.

7.75.

7.76.
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(a) Describe the coordinate surfaces and coordinate curves for the system
2 2 _ : _
x° —y° = 2u; cosuy, Xy = uj sin up, 7= uj
. . X, ¥, Z
(b) Show that the system is orthogonal. (c) Determine J (7> for the system. (d) Show that u; and u; are
ug, U, U3

related to the cylindrical coordinates p and ¢ and determine the relationship.

Find the moment of inertia of the region bounded by =y =2,x*—-y’=4,xy=1,xy=2,z=1landz=3
with respect to the z-axis if the density is constant and equal to k. Hint: Let x> — y? = 2u, xy = v.

Find or/ou,;, or/du,, or/dus, Vu;, Vu,, Vus in (a) cylindrical, (b) spherical, and (c) parabolic cylindrical

coordinates. Show that e; = E;, e; = E,, es = E; for these systems.

Given the coordinate transformation u; = xy, 2u; = x> + y, u3 = z. (a) Show that the coordinate system is not
orthogonal. (b) Find J (u) (c) Find ds?.
up, Up, U3z

Find V®, div A and curl A in parabolic cylindrical coordinates.

Express (a) Vi and (b) V- A in spherical coordinates.

Find V24 in oblate spheroidal coordinates.

Write the equation (8°®/ax?) + (8*°®/9y?) = ® in elliptic cylindrical coordinates.
Express Maxwell’s equation V x E = —(1/¢)(dH/dt) in prolate spheroidal coordinates.

Express Schroedinger’s equation of quantum mechanics V2 + (8772m/h*)[E — V(x, v, )] = 0 in parabolic
cylindrical coordinates where m, h, and E are constants.

Write Laplace’s equation in paraboloidal coordinates.

Express the heat equation 9U/df = kV>U in spherical coordinates if U is independent of (a) ¢, (b) ¢ and 6,
(c)randt, (d) ¢, 6, and 1.

Find the element of arc length on a sphere of radius a.
Prove that in any orthogonal curvilinear coordinate system, div curl A = 0 and curl grad ® = 0.

Prove that the surface area of a given region R of the surface r = r(u, v) is ffRVEG — F2 du dv. Use this to
determine the surface area of a sphere.

Prove that a vector of length p, which is everywhere normal to the surface r = r(u, v), is given by

0 0

A= ip(—rx—r>/x/EG—F2
ou v

(a) Describe the plane transformation x = x (u, v), y = y (4, v).

(b) Under what conditions will the u, v coordinate lines be orthogonal?

Let (x, y) be coordinates of a point P in a rectangular xy-plane and (1, v) the coordinates of a point Q in a rectangular uv-
plane. If x = x(u, v), and y = y(u, v), we say that there is a correspondence or mapping between points P and Q.

(a) If x =2u+ v and y = u — 2v, show that the lines in the xy-plane correspond to lines in the uv-plane.
(b) What does the square bounded by x =0, x =5, y =0, and y = 5 correspond to in the uv-plane?

(c) Compute the Jacobian J (x, Y
u, v

) and show that this is related to the ratios of the areas of the square and its

image in the uv-plane.

Let x = %(u2 —1?), and y = uv. Determine the image (or images) in the uv-plane of a square bounded by
x=0,x=1,y=0,y=1 in the xy-plane.
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7.77.

7.78.

7.79.

7.80.

Show that under suitable conditions on F and G,

t

J JeﬂW”F(x)G(y) dxdy = Je*” JF(u)G(t —wdu pdt
00 0 0

Hint: Use the transformation x 4+ y = ¢, x = v from the xy-plane to the vs-plane. The result is important in the
theory of Laplace transforms.

(a) Let x =3u; +up —u3, y = uy + 2uy + 2u3, 7 = 2u; — uy — u3. Find the volume of the cube bounded by
x=0,x=15,y=0,y=10,z=0 and z = 5, and the image of this cube in the uu,u3 rectangular coor-
dinate system.

(b) Relate the ratio of these volumes to the Jacobian of the transformation.

Let (x, y, z) and (u;, u, uz) be the rectangular and curvilinear coordinates of a point, respectively.
(@) Ifx=3u; +up —uz, y=u; + 2up + 2us, z = 2u; — up — us, is the system u;uu3 orthogonal?
(b) Find ds® and g for the system.

(c) What is the relation between this and the preceding problem?

ax, y, 2)

— 22 Verify that J2 = g.
a(ula uz, u3) Y &

Letx = u% +2,y=u;+u, 7= u% — u;. Find (a) g and (b) the Jacobian J =

ANSWERS TO SUPPLEMENTARY PROBLEMS

7.36.

7.37.

7.38.

7.39.

7.40.

741.

(a) u = c; and v = ¢; are elliptic and hyperbolic cylinders respectively, having z-axis as common axis. z = ¢3
are planes. See Fig. 7-7.

(b) u = c; and v = ¢, are circular cylinders whose intersections with the xy-plane are circles with centers on the
y- and x-axis, respectively, and intersecting at right angles. The cylinders u = ¢ all pass through the points
(—a, 0, 0) and (a, 0, 0). z = c3 are planes. See Fig. 7-8.

(¢c) u=c; and v = ¢, are parabolic cylinders whose traces on the xy-plane are intersecting mutually perpen-
dicular coaxial parabolas with vertices on the x-axis but on opposite sides of the origin. z = c3 are planes.
See Fig. 7-6.

The coordinate curves are the intersections of the coordinate surfaces.

/2 12
(@) r=+/x2+y*+ 72, 6 = arc tan Ay , ¢ = arc tan’X.
X

=
(b) r=./p> +22, 6 =arc tang, ¢ =4
(a) r=3.

(C) rSin20=COS 6.

(e) The plane y = x is made up of the two half planes ¢ = 7/4 and ¢ = 57/4.

(a) Circle in the xy-plane x> +y? = 16, z = 0.

(b) Cylinder x> 4+ y> = 16 whose axis coincides with z-axis.
(c) The yz-plane where y > 0.

(d) The straight line y = v/3x, z=1 where x > 0, y > 0.

(a) Hyperbolic cylinder x> — y* = 8.
(b) The line joining points (—4, 0, 0) and (4, 0, 0), thatis, x =1, y =0, z = 0 where —4 <1 < 4.
2 2
(c) Ellipse ;—5 + % =1,z=2. (d) The portion of the x-axis defined by x >4,y =0, z=0.
(a) Parabola y?> = —8(x —2), z=0. (b) Parabola y> =2x+ 1, z=2. (c) Region in xy-plane bounded by
parabolas y?> = —2(x — 1/2), y> = —8(x — 2), ¥> = 8(x +2) and y* = 18(x + 9/2) including the boundary.
(d) Same as (c) but excluding the boundary.
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7.59.
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(a) & = sin 6 cos ¢i + sin 6 sin ¢j + cos Ok, ey = cos 6 cos ¢i + cos 6 sin ¢pj — sin 6k
ey = —sin ¢i + cos ¢j.

®) § —sin 6 cos e, + cos O cos pey — sin pey, j = sin 6 sin Pe, 4 cos 6 sin pey + cos ey
Kk = cos fe, — sin Oe,.

A=Ae +Apey +A¢e¢ where

A, = 2rsin’ 6 sin ¢ cos ¢ — rsin 8 cos 6 sin ¢ + 3rsin 8 cos 6 cos ¢
Ag = 2rsin 0 cos 6 sin ¢ cos ¢ — rcos® 6 sin ¢ — 3rsin’ @ cos ¢

Ay = —2rsin6 sin? ¢ — rcos 0 cos ¢.

V = v,e, + vgeg + vgpey Where v, =7, vg = 10, vy = 7sin Op

a = a,e, + ageg + agey where a, =7 — r6* — rsin? 0¢2

1d . y
ag = =—(r*6) — rsin 6 cos 6¢?,
rdt

_ d 5.5
= sin OE(V sin” 6¢).

e

(a) ds? = (u* + v*)(du? + dv®) + *v* dd?, hy = hy, = Vu + 12, hgy = uv.
(b) ds® = a*(sinh® u + sin? v)(du® + dv?) + d2, hy, = hy, = ay/sinh? u + sin’v, h, = 1.
(¢) ds* = a?(sinh? &+ sin® n)(d& + dn?) + a® cosh? £ cos? 1 d¢?,

hg=hy = a\/m, hg = acosh & cos .

(@) uv(u?® + v?®) du dv de, (b) a>(sinh® u + sin®v) dudvdz, (c)

@) hg=hy= ay/sinh? &+ sin” 7, hg = asinh & sin 7.

(b) @>(sinh? &+ sin® m) sinh & sin 1 d¢€ dn d .

a® dudvdz
(coshv — cosu)?’

(a) pdpdo, pdddx, dpdz, (b) rsin 0 drdd, r2sin 0 d0 de, r drdb,
(©) i+ v®)du dv, uvu? +v2 duddp, u/u?>+v2dvde

@ p, (b) sinh, () u*+v?, (d) a*( sinh? u + sin®v), (e) @*(sinh® E+ sin’ m) sinh £sin
256 64m(2 — /2
1—5”, 7.56. M 7.57. 7§T Qa® = 3aPh+ 1), 7.58. () & (@) w =1p% ur =24
2k

5 L
(@) —rzcos¢i+sind>j, V,J:M:COSd)i-i‘Sind)j:

7 ey

or _sinditoosdj o

— = —psin ¢i+ pcosdj, v R
5= P ¢itpcosdj ¢ P o
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0
(b) a—r:sinﬂ cos ¢i—+sin 0 sin ¢j + cos Ok
-

l:rcos@ cos ¢pi+ rcos 6 sin¢pj— rsin 0k

00
oar . . . .
— = —rsinf sin 0i+ rsin 6 cos ¢pj
o
v ok
V,:M:sine cos ¢pi+sin sin 6j + cos O k
N
_xzdi+yzj — @ +y)k __cos fcos @i + cos Osin ¢ j — sin Ok
(x2 +y2+22) /x2 +y2 r
V. — —yi+xj —singi+cosdj
¢~ 24y rsin 6

© or o o i ui ar_k
C 8u_u1 vJ, P vl + uyj, o=
ul—i—v.]’ VU:_UI+M‘] V.—k
u? + 12

V.= — ,
u ],{2+1]2’ <

2+ y2)(du% + du%) — 4xy duduy

u (du1 + duz) — 2uy duyduy

1
7.61. ®) F— © ds* = =y +dui =
1 odb 1 od od
7.62. Vb = e e+
Vu? + v? ou +VM2+02 w T "
1 d a 0A
~ — I 2 2 —_ 2 2 =
leA_u2+02 |:8u( M+UA">+8U( u+UAv):|+Bz
1 0A,
curlA:uz_H)2 [[E—f(\/ +02A>]\/u2+u2eu
ad 0A,
+ —( u? +U2Au> — —tu? + v?e,
0z ou
ad ad
(S 2AaN (S 2
* au( ”+”A”) au( ! +”A“)}ez}
¢ Loy, 1 o
7.63. () Vif = re, +-—v L %
@ V= e 6% T i oa¢e"’
19 1 1 0A
b) V-A=——("A, haka
®) A AT 930 A0+ i 0 00
1 ) "
7.64. Vi = h
4 a? cosh &(sinh? &+ sin” 1) 8§< cosh ¢ 85)
N 1 ( ) N 1 i
—(cosn—=)|+—-"—"—%
a? cos ( sinh? &+ sin® 1) 9 " om/) = a2 cosh® £cos? n o’
Fo PO
7.65. + — = a*(sinh® u + sin® v)®

T

2(142 — uz)

+ du%
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I d
e H%(RE(,)) - %(SEn)}Seg

+ {i(SEg) - aﬁ(REd,)}Se,, + {ﬁ

el 3 0&
10H;  10H,  10Hg

=———2¢———€,———¢
c ot ¢ ca " o

where R = sinh £sin v and S = /sinh® £+ sin® 7.

1 [32¢/ a%q Py 8mm

u? + 0?2

ol
(SE,,) — % (SEg)}Re¢j|

072 h2

o2 T o [E — W(u,v,z)]y = 0, where W(u,v,7) = V(x,y,2).

a ( oY a9 ( oY >

2 2 2, .2

o o " a — A — 0
“ o (u 8u> o <U 81)) (v )8¢2

U [19(,0U 19/, U U [19(,0U
- @ _K[ﬂar(r ar)+r2sineae(“neaeﬂ ® _K[ﬂar(r w)]

2
(c)sin 6i (sin OB—U) +;7l2] =0 (d)% (r2 d—U> =0

30 30 dr
axox  dyd

. ds* = P[dP + sin® 0dd?], 774 (b) ~E LYY
Judv oJudv

. (a) 750, 75; (b) Jacobian = 10
. (a) No, (b) ds* = 14du% + 6du§ + 6du§ + 6duyduy — 6duydus + 8durdus, g = 100
. (a) g = 16uu3, (b) J =4uju;



CHAPTER 8

Tensor Analysis

8.1 Introduction

Physical laws, if they are to be valid, must be independent of any particular coordinate system used to
describe them mathematically. A study of the consequence of this requirement leads to tensor analysis,
which is of great use in general relativity theory, differential geometry, mechanics, elasticity, hydrodyn-
amics, electromagnetic theory, and numerous other fields of science and engineering.

8.2 Spaces of N Dimensions

A point in three-dimensional space is a set of three numbers, called coordinates, determined by specifying a
particular coordinate system or frame of reference. For example (x, y, z), (p, ¢, 2), (r, 6, ¢) are coordi-
nates of a point in rectangular, cylindrical, and spherical coordinate systems, respectively. A point in
N-dimensional space is, by analogy, a set of N numbers denoted by ! X2, ) where 1, 2,..., N
are taken not as exponents but as superscripts, a policy which will prove useful.

The fact that we cannot visualize points in spaces of dimension higher than three has of course nothing
whatsoever to do with their existence.

8.3 Coordinate Transformations

Let (x', x2,..., xY) and (&', ¥%,..., ¥") be coordinates of a point in two different frames of reference.
Suppose there exists N independent relations between the coordinates of the two systems having the form
o= LA
@2 = Xz(xl,xz,...,xN)

(D
o= e

which we can indicate briefly by

=302 ) k=1,2,...,N )

where it is supposed that the functions involved are single-valued, continuous, and have continuous deriva-
tives. Then, conversely to each set of coordinates &', %2, ..., 7), there will correspond a unique set
(', x%,..., xN) given by

* =2, k=1,2,...,N 3)

The relations (2) or (3) define a transformation of coordinates from one frame of reference to another.
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Summation Convention

Consider the expression a;x' 4+ a;x*> + - - - + ayx". This can be written using the short notation Zﬁvzl ajx’.
An even shorter notation is simply to write it as a;x/ where we adopt the convention that whenever an index
(subscript or superscript) is repeated in a given term, we are to sum over that index from 1 to N unless other-
wise specified. This is called the summation convention. Clearly, instead of using the index j, we could have
used another letter, say p, and the sum could be written a,x”. Any index that is repeated in a given term, so
that the summation convention applies, is called a dummy index or umbral index.

An index occurring only once in a given term is called a free index and can stand for any of the numbers
1,2,..., N such as k in equation (2) or (3), each of which represents N equations.

8.4 Contravariant and Covariant Vectors

Suppose N quantitiesA', A%,..., AV ina coordlnate system (x!, x2, ..., xV) are related to N other quantities

TN . .
A ,A ,..., A 1n another coordmate system &L, ) by the transformatlon equations

_Zaxq p=12,...,N

which by the conventions adopted can simply be written as

AY = o A4
ox4
Then they are called components of a contravariant vector or contravariant tensor of the first rank or first
order. To provide motivation for this and later transformations, see Problems 7.33 and 7. 34
On the other hand, suppose N quantities Ay, Aj,..., Ay in a coordinate system (!, x? , xV) are
related to N other quantities Ay, Ay, ..., Ay in another coordmate system LR, ) by the transform—
ation equations

N

— ax4
AP=ZZr—pAq p=12,...,N
=1
or
ax4
P :8)_7’Aq

Then they are called components of a covariant vector or covariant tensor of the first rank or first order.
Note that a superscript is used to indicate contravariant components whereas a subscript is used to
indicate covariant components; an exception occurs in the notation for coordinates.
Instead of speaking of a tensor whose components are A” or A, we shall often refer simply to the tensor
AP or A,. No confusion should arise from this.

8.5 Contravariant, Covariant, and Mixed Tensors

Suppose N2 quantities A% in a coordinate system (x', x2, ..., x") are related to N? other quantities A’ in
another coordinate system (fl, 2,0, %1 ) by the transformation equations
— axP ox”
pr _
A Zzaxqaxs por=12..N
or

ox4 ox’
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by the adopted conventions, they are called contravariant components of a tensor of the second rank
or rank two.
The N? quantities Ay are called covariant components of a tensor of the second rank if

— ox? ox*®

Similarly, the N? quantities A9 are called components of a mixed tensor of the second rank if
y q s

oW A

Kronecker Delta
The Kronecker delta, denoted by 5/ , 1s defined as follows:

si_ [0 ifj#k
ETV ifj=k

As its notation indicates, it is a mixed tensor of the second rank.

8.6 Tensors of Rank Greater Than Two, Tensor Fields

Tensors of rank three or more are easily defined. Specifically, for example, AZ‘;’ are the components of a
mixed tensor of rank 5, contravariant of order 3 and covariant of order 2, where they transform according
to the relations

= I Qxm k 1§
—prm __ OXPOX" X" Ox" OX" 4

U7 9xq xS ax! axlax/ M

Scalars or Invariants

Suppose ¢ is a function of the coordinates x*, and let ¢ denote the functional value under a transformation
to a new set of coordinates x*. Then ¢ is called a scalar or invariant with respect to the coordinate trans-

formation if ¢ = ¢. A scalar or invariant is also called a tensor of rank zero.

Tensor Fields

If to each point of a region in N-dimensional space there corresponds a definite tensor, we say that a tensor
field has been defined. This is a vector field or a scalar field according as the tensor is of rank one or zero. It
should be noted that a tensor or tensor field is not just the set of its components in one special coordinate
system but all the possible sets under any transformation of coordinates.

Symmetric and Skew-Symmetric Tensors

A tensor is called symmetric with respect to two contravariant or two covariant indices if its components
remain unaltered upon interchange of the indices. Thus, if AJP" = AZ", the tensor is symmetric in m and p.
If a tensor is symmetric with respect to any two contravariant and any two covariant indices, it is called
symmetric.

A tensor is called skew-symmetric with respect to two contravariant or two covariant indices if its
components change sign upon interchange of the indices. Thus, if AyY" = —AF, the tensor is skew-
symmetric in m and p. If a tensor is skew-symmetric with respect to any two contravariant and any

two covariant indices, it is called skew-symmetric.
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8.7 Fundamental Operations with Tensors

The following operations apply.

1. Addition. The sum of two or more tensors of the same rank and type (i.e. same number of contra-
variant indices and same number of covariant indices) is also a tensor of the same rank and type.
Thus, if AZ”’ and BZ"’ are tensors, then C;"p = Af{”” + BZ’P is also a tensor. Addition of tensors is
commutative and associative.

2. Subtraction. The difference of two tensors of the same rank and type is also a tensor of the same
rank and type. Thus, if A7” and B are tensors, then D = Aj? — By is also a tensor.

3.  Outer Multiplication. The product of two tensors is a tensor whose rank is the sum of the ranks of
the given tensors. This product, which involves ordinary multiplication of the components of the
tensor, is called the outer product. For example, AP"B{" = CI™ is the outer product of AP" and BY'.
However, note that not every tensor can be written as a product of two tensors of lower rank. For
this reason, division of tensors is not always possible.

4. Contraction. If one contravariant and one covariant index of a tensor are set equal, the result
indicates that a summation over the equal indices is to be taken according to the summation
convention. This resulting sum is a tensor of rank two less than that of the original tensor. The
process is called contraction. For example, in the tensor of rank 5, AZ’SP’, set r = s to obtain
A?}” = BZ”’ , a tensor of rank 3. Further, by setting p = ¢, we obtain BI’;”’ = C™, a tensor of rank 1.

5. Inner Multiplication. By the process of outer multiplication of two tensors followed by a contrac-
tion, we obtain a new tensor called an inner product of the given tensors. The process is called
inner multiplication. For example, given the tensors A7” and By, the outer product is A77Bj.
Letting ¢ =r, we obtain the inner product A'”B},. Letting g =r and p = s, another inner
product A7”B;, is obtained. Inner and outer multiplication of tensors is commutative and
associative.

6. Quotient Law. Suppose it is not known whether a quantity X is a tensor or not. If an inner
product of X with an arbitrary tensor is itself a tensor, then X is also a tensor. This is called the
quotient law.

8.8 Matrices

A matrix A of order m by n is an array of quantities a,,, called elements, which are arranged in m rows and
n columns and generally denoted by

a dap - A a di - A
a dxp -+ Ay ay a4z - dxy
or
Am] am2 ccc Amp aml am? s Amn
or in abbreviated form by [a,,] or (a,), p=1,...,m; g=1,..., n. We use the former notation, [a,,],

unless otherwise stated or implied. If m = n, the matrix is a square matrix of order u or simply order m.
If m = 1, it is a row matrix or row vector; if n = 1, it is a column matrix or column vector.

The diagonal of a square matrix containing the elements a1, as, . . . , Gy, is called the principal or main
diagonal. A square matrix whose elements are equal to one in the principal diagonal and zero elsewhere
is called a unit matrix and is denoted by I. A null matrix, denoted by O, is a matrix whose elements are
all zero.

Matrix Algebra

Suppose A = [a,,] and B = [b,,] are matrices having the same order (m by n). Then the following
definitions apply:
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(1) A =Bif a,; = by, for all p and q.
(2) The sum S and difference D of A and B are the matrices defined by

S=A+B=dp+bpl. D=A—B={[ap,— byl

That is, the sum S = A + B [difference D = A — B] is obtained by adding (subtracting) corre-
sponding elements of A and B.

(3) The product of a scalar A by a matrix A = [a,,], denoted by AA, is the matrix [Aa,,] where each
element of A is multiplied by A.

(4) The transpose of a matrix A is a matrix A”, which is formed from A by interchanging its rows and
columns. Thus, if A = [a,,], then AT = [a,,].

Matrix Multiplication

Now suppose A and B are two matrices such that the number of columns of A is equal to the number of rows
of B, say A is an m X p matrix and B is a p x n matrix. Then the product of A and B is defined and the
product, denoted by AB, is the matrix whose ij-entry is obtained by multiplying the elements of row i of
A by the corresponding elements of column j of B and then adding. Thus, if A = [ay] and B = [by],
then AB = [c;;] where

p
cj = anby + apby + -+ apby; = E aikby;
k=1

Matrices whose product is defined are called conformable.

Determinants

Consider an n-square matrix A = [a;;]. The determinant of A is denoted by |A|, det A, |a;j|, or det [a;;]. The
reader may be familiar with the definition of det A when n < 3. The general definition of det A follows:

Al =" (5en Oa1o@2o0) - dnotmy
gES,

Here S, consists of all permutations o of {1, 2, ..., n}, and sign o = +1 according as ¢ is an even or odd
permutation.
One main property of the determinant follows.

PROPOSITION 8.1:  Let P = AB where A and B are n-square matrices. Then

det P = (det A)(det B)

Inverses

The inverse of a square matrix A is a matrix, denoted by A~!, such that
AAT =ATA=T

where [ is the unit matrix. A necessary and sufficient condition that A~! exists is that det A # 0. If det A = 0,
then A is called singular, otherwise A is called nonsingular.
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8.9 Line Element and Metric Tensor

The differential of arc length ds in rectangular coordinates (x, y, z) is obtained from ds* = dx* + dy* + dz*.
By transforming to general curvilinear coordinates (see Problem 7.17), this becomes

33
ds* = Z Z 8pq dup duy

p=1g=1

Such spaces are called three-dimensional Euclidean spaces.
A generalization to N-dimensional space with coordinates !, 22, ..., x¥) is immediate. We define the
line element ds in this space to be given by the quadratic form, called the metric form or metric,

N N
ds* = Z ngq dx? dx?
p=1 g=1

or, using the summation convention,
2 _ P gy
ds® = gpqdxPdx

In the special case where there exists a transformation of coordinates from x/ to X* such that the metric
form is transformed into (dX")? + (dx2)* + - - - + (dx")? or dx*dx*, then the space is called N-dimensional
Euclidean space. In the general case, however, the space is called Riemannian.

The quantities g,, are the components of a covariant tensor of rank two called the metric tensor or funda-
mental tensor. We can, and always will, choose this tensor to be symmetric (see Problem 8.29).

Conjugate or Reciprocal Tensors
Let g = | gpq| denote the determinant with elements g, and suppose g # 0. Define g’ by

_ cofactor of g,,

gl =
8

Then g7 is a symmetric contravariant tensor of rank two called the conjugate or reciprocal tensor of g,,
(see Problem 8.34). It can be shown (see Problem 8.33) that

gpqgrq = 5rp

8.10 Associated Tensors

Given a tensor, we can derive other tensors by raising or lowering indices. For example, given the tensor
Apg, by raising the index p, we obtain the tensor A? , the dot indicating the original position of the moved
index. By raising the index ¢ also, we obtain A”?. Where no confusion can arise, we shall often omit the
dots; thus AP? can be written APY. These derived tensors can be obtained by forming inner products of
the given tensor with the metric tensor g,, or its conjugate g"?. Thus, for example

A{)q = grpArq’ AP = grpgqurS, AI.JrS = gl‘qA.eg’ Aq};,ntk = gpkgsngrmA?r.f;

These become clear if we interpret multiplication by g’ as meaning: let r = p (or p = r) in whatever
follows and raise this index. Similarly, we interpret multiplication by g,, as meaning: let r =g
(or ¢ = r) in whatever follows and lower this index.
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All tensors obtained from a given tensor by forming inner products with the metric tensor and its con-
jugate are called associated tensors of the given tensor. For example A™ and A,, are associated tensors, the
first are contravariant and the second covariant components. The relation between them is given by

Ap = gpA? or AP =gPiA,

For rectangular coordinates g,, = 1 if p =g, and 0 if p # g, so that A, = AP, which explains why no
distinction was made between contravariant and covariant components of a vector in earlier chapters.

8.11 Christoffel’s Symbols

The following symbols

Lpg. 1= 2\ T o

S
{ } =g"[pq, r]
rq

are called the Christoffel symbols of the first and second kind, respectively. Other symbols used instead

1 (agpr + agqr 8gpq>

s .
of g are {pq, s} and F;q. The latter symbol suggests, however, a tensor character, which is not true

in general.

Transformation Laws of Christoffel’s Symbols

Suppose we denote by a bar a symbol in a coordinate system x*. Then
oxP ax? ox” . oxP  9%x4
ax) axk A P g gx
n] [ s | &aad o Fx
jk |\ pg | oxs o ox*  oxe o ox*

Uk, m] = [pq, r]

are the laws of transformation of the Christoffel symbols showing that they are not tensors unless the second
terms on the right are zero.

8.12 Length of a Vector, Angle between Vectors, Geodesics

The quantity A”B,,, which is the inner product of A” and B,,, is a scalar analogous to the scalar product in
rectangular coordinates. We define the length L of the vector A” or A, as given by

[* = APA, = g"A A, = g,,ATA
We can define the angle ¢ between A” and B, as given by

APB,

J@APA,)BB,)

Geodesics

The distance s between two points #; and #, on a curve x” = x”(¢) in a Riemannian space is given by

15}
dx? dx1
S= 8

n
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That curve in the space, which makes the distance a minimum, is called a geodesic of the space. By use of
the calculus of variations (see Problems 8.50 and 8.51), the geodesics are found from the differential
equation

d*x" r | dxP dx?
ds? ds ds
where s is the arc length parameter. As examples, the geodesics on a plane are straight lines whereas the
geodesics on a sphere are arcs of great circles.

Physical Components

The physical components of a vector A” or A, denoted by A,, A,, A,,, are the projections of the vector on the
tangents to the coordinate curves and are given in the case of orthogonal coordinates by

Az
/833

A
A, = JgnA' = L A= JEnA? = A, = JgnA =

Az
N/ /822 '
Similarly, the physical components of a tensor A7 or A, are given by

Az

v = JENngnA® = ——, etc.

Al Ay
Au = gnA' = = V81gnA"” =
! ! /811833

811 «/811822

8.13 Covariant Derivative

The covariant derivative of a tensor A, with respect to x4 is denoted by A, , and is defined by

_ 4y §
Apyg = o {pq }As
a covariant tensor of rank two.

The covariant derivative of a tensor A? with respect to x? is denoted by Af’q and is defined by

AP | p
14 = _____ s
w= {qs }A

a mixed tensor of rank two.

For rectangular systems, the Christoffel symbols are zero and the covariant derivatives are the usual
partial derivatives. Covariant derivatives of tensors are also tensors (see Problem 8.52).

The above results can be extended to covariant derivatives of higher rank tensors. Thus

aApl Pm
PrPm = 1T
Fyern, q x4
§ prep 5 piep 5 prep
— m __ m .. m
Asrz---r” AV1SV3~-I‘,, Arlmrn_ls
rq rq 'nq

4 { P1 }A:]p? rlpm + { }Afllv/;s ooy { Pm }Aflll:;ﬁpmls
qs ' qs " gs n

is the covariant derivative of AP! "I with respect to x9.

The rules of covariant dlfferentlatlon for sums and products of tensors are the same as those for ordinary
differentiation. In performing the differentiations, the tensors g,,, g7, and 81; may be treated as constants
since their covariant derivatives are zero (see Problem 8.54). Since covariant derivatives express rates of
change of physical quantities independent of any frames of reference, they are of great importance in
expressing physical laws.
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8.14 Permutation Symbols and Tensors

The symbol e, is defined by the following relations:

ey =eni=en=+1, epn=exn=en=-1, €, =0
if two or more indices are equal.
The symbol e”?" is defined in the same manner. The symbols e, and e’ are called permutation symbols
in three-dimensional space.
Further, let us define

1
_ par _ par
€pgr = ﬁepq,, e’ = /ge

It can be shown that €,,, and €”?" are respectively, covariant and contravariant tensors, called permutation
tensors in three-dimensional space. Generalizations to higher dimensions are possible.

8.15 Tensor Form of Gradient, Divergence, and Curl

1. Gradient. If ® is a scalar or invariant, the gradient of ® is defined by

o
V‘D:grad@:d),p:ﬁ
x

where ® , is the covariant derivative of ® with respect to x”.

2. Divergence. The divergence of A” is the contraction of its covariant derivative with respect to x4,
ie. the contraction of A” . Then

1 9

: _ar k
divA? =47, =g (VBA)
. 0A, 04,
3. Curl. The curl of A, is Ay 4y — Ay p = e a—p a tensor of rank two. The curl is also defined
x x

—ehar
as —ePTA, .

4. Laplacian. The Laplacian of ® is the divergence of grad ® or

\/— Jk 9P
f o Ak
In case g <0, ,/g must be replaced by ,/—g. Both cases g > 0 and g < 0 can be included by
writing +/|g| in place of ,/g.

V2P =div @, =

8.16 Intrinsic or Absolute Derivative

. L 0A, . .
The intrinsic or absolute derivative of A, along a curve x? = x9(¢), denoted by Ttp’ is defined as the inner

dx4 dx?
product of the covariant derivative of A, and ——, that is A i, and is given by

dt’ L
B, _dh,_[r], dv
&  dt pq |7 dr

Similarly, we define

8AP dAI’ Py %
S5t dt qr dt
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The vectors A, or A? are said to move parallelly along a curve if their intrinsic derivatives along the curve
are zero, respectively.
Intrinsic derivatives of higher rank tensors are similarly defined.

8.17 Relative and Absolute Tensors

A tensor AP is called a relative tensor of weight w if its components transform according to the equation

ox|" ., BX OXI X"
ax| T o9xPr QxPm oxX®t Ox™

A9 dm
SiSn

0.
where J = ‘Bx' is the Jacobian of the transformation. If w = 0, the tensor is called absolute and is the type of
X

tensor with which we have been dealing above. If w = 1, the relative tensor is called a tensor density. The
operations of addition, multiplication, etc., of relative tensors are similar to those of absolute tensors. See,
for example, Problem 8.64.

SOLVED PROBLEMS

Summation Convention

8.1. Write each of the following using the summation convention.

0
(a) d¢ d)d +3—qu + - _{__d)d)av (d) ds? = g11(dx1)2 +g22(dx2)2 +g33(dx3)2,
dx*  oxFdx!  ox*dx? axk dxN 3.3
b) — =gt ot dxPdxd
®) dr o dt+8x2 dz+ +3N dr’ () D D gpgdxldx

p=lg=1

©) )+ )2+ 3P+ 4+ (M)

Solution
_ 9 i dx* Eﬁk dx™"
(@) dé =75, 0 Z-=gnr © >t

(d) ds®> = gudx*dx*, N =3, (e) 8pg dx’ dx1, N =3

8.2. Write the terms in each of the following indicated sums.
. . ax’ axk
(a) ajkxka (b) quAq P (C) 8rs = 8jk ﬁﬁ? N=3

Solution

N
(@) Y apxt = apx! +ap® + - +awnx, (b) Z Ap AT = Ap AV + ApA® + -+ ApyAN
k=1

3 3 i k
ox ox

©) &= 8k oy o
s Z; X’ ax

Z A ox! & d n o ax3
— 8il oy %" o 82 o " o &3 o

\..

~.

ax! ox! ax? ax! a3 ax!

" Pl Swar
ax! ax2 a2 0x2 a3 ax2
e T8 e T8 e e
ax! A’ a2 a3 x> a3
T e T
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8.3.

Suppose x*, k =1, 2,..., N, are rectangular coordinates. What locus, if any, is represented by each
of the following equations for N = 2, 3, and N > 4. Assume that the functions are single-valued,
have continuous derivatives and are independent, when necessary.

(a) apx* = 1, where a;, are constants (c) x* =x*w)
(b) x*x* =1 d) x* = x*u, v)
Solution

(a) For N =2, a;x' 4+ a,x* = 1, a line in two dimensions, that is, a line in a plane.
ForN =3, aix' + x> +asx®* =1, a plane in three dimensions.
For N > 4, ax' + apx®> + - - - + ayx™ = 1 is a hyperplane.

(b) For N =2, (x")? + (?)*> = 1, a circle of unit radius in the plane.
ForN=3, )Y +0)>+x®)?=1,a sphere of unit radius.
For N > 4, (x')? + (2% + - - - + (x")? = 1, a hypersphere of unit radius.

(c) For N =2, x! = x'(u), x> = x*(u), a plane curve with parameter u.
For N =3, x' = x'(u), x¥*> = x*(u), x¥* = x*(u), a three-dimensional space curve.

For N > 4, an N-dimensional space curve.

(d) For N =2, x' = x'(u, v), x> = x*(u, v) is a transformation of coordinates from (u, v) to (x!, x?).

For N =3, x! = x'(u, v), x> = x*(u, v), x* = x*(u, v) is a three-dimensional surface with parameters u
and v.

For N > 4, a hypersurface.

Contravariant and Covariant Vectors and Tensors

8.4.

8.5.

Write the law of transformation for the tensors (a) A’ i (b) Bl]k, (c) ™.
Solution
P o axk
@) Ay, =AY
ox’ ox? ax” Y
As an aid for remembering the transformation, note that the relative positions of indices p, g, r on the left side
of the transformation are the same as those on the right side. Since these indices are associated with the X coor-
dinates and since indices i, j, k are associated, respectively, with indices p, g, r, the required transformation is
easily written.
- o axd ' ax _p o
b qu 777an, c CI — Cm
®) B = g o aw a e Do (© xm
A quantity A(j, k, I, m), which is a function of coordinates x', transforms to another coordinate

system X' according to the rule

Bx/ qu Bx ox*

A(] k, I, m)

(a) Is the quantity a tensor? (b) If so, write the tensor in suitable notation and (c) give the contra-
variant and covariant order and rank.

Solution

(a) Yes, (b) A}‘l’”, (c) Contravariant of order 3, covariant of order 1 and rank 34+ 1 =4
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8.6. Determine whether each of the following quantities is a tensor. If so, state whether it is contravariant

8.7.

. .. Ap(x, ..., N
or covariant and give its rank: (a) dx*, (b) %
X
Solution
. ) )
(a) Assume the transformation of coordinates X/ = ¥/(x!, ..., x"). Then dx/ = a—xkdxk and so dx* is a contra-
x

(b)

variant tensor of rank one or a contravariant vector. Note that the location of the index k is appropriate.

Under the transformation x* =x*®',...,x), ¢ is a function of x* and hence X such that

o, ... 2N = qb(x L., %N, that is, (() is a scalar or invariant (tensor of rank zero). By the chain rule
b 9 A ax* 8 ] 0 N )

for partial differentiation, —d) d) = —d) " ¥ 3¢ and —d) transforms like A; = — A. Then —d)
%/ o/ oxkox/  aw oxk axk oax/ oxk

is a covariant tensor of rank one or a covariant vector.

Note that in a—d; the index appears in the denominator and thus acts like a subscript which indicates its
X

. 0 . . 0
covariant character. We refer to the tensor 78(?‘ or equivalently, the tensor with components —a(i, as the
X x

gradient of ¢, written grad ¢ or V.

A covariant tensor has components xy, 2y — z2, xz in rectangular coordinates. Find its covariant
components in spherical coordinates.

Solution

Let A; denote the covariant components in rectangular coordinates xl=x, x

2 =y, x> =z Then

Al =xy = xx2, Ay =2y — Z =27 — (x3)2, Az = xx?

where care must be taken to distinguish between superscripts and exponents.

Let A; denote the covariant components in spherical coordinates ¥! = r, X2 = 6, ¥ = ¢. Then

The transformation equations between coordinate systems are

x' =% sinFcos®, x* =% sin®sin®, x =X cos¥

Then equations (1) yield the required covariant components

— Bxl ox? a3
Al =—A A Az
1 =3 1-|-a 2-|—a

= (sin¥ cos ®)(x'x?) + (sin ¥ sin®)(2x% — (°)?) + (cos ) (x' %)
= (sin 6 cos ci))(r2 sin® 6 sin ¢ cos ¢p)
+ (sin @ sin ¢)(2r sin @ sin ¢ — r* cos? 6)
+ (cos 0)(r” sin 0 cos 0 cos ®)
! ax? ox’

A A A Az
2= e, 1+a, 2+a, 3

= (rcos 6 cos ¢)(+? sin® 6 sin ¢ cos ¢)
~+ (rcos 6 sin ¢)(2rsin 0 sin ¢ — 7 cos? 6)
+ (—rsin 6)(7% sin O cos 6 cos @)
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8.8.

8.9.

— ! 2 3
Ay =—A —A —A
sttt

= (—rsin 6 sin d;)(r2 sin’ 6 sin ¢ cos ¢p)
+ (rsin 6 cos ¢)(2rsin 6 sin ¢ — r* cos? 6)
+ (0)(#? sin 6 cos 6 cos ®)

0A, . . .
Show that a—xg is not a tensor even though A, is a covariant tensor of rank one.
Solution

o
By hypothesis, A; = %AP. Differentiating with respect to x*.
X

aXJ _ ox? 8A[1 apr . oxP BAP ax? 82){” oxP 0x? 0, Ap 82 P

oxk ~ ax oxk | oxfax T on ol axk | oxfoxd T o ox* oxd | oxkon) "

Since the second term on the right is present, g;% does not transform as a tensor should. Later, we shall show
how the addition of a suitable quantity to g;% causes the result to be a tensor (Problem 8.52).

Show that the velocity of a fluid at any point is a contravariant tensor of rank one.

Solution

. . , dx* . . , :
The velocity of a fluid at any point has components u in the coordinate system x*. In the coordinate system %/,

dx/
the velocity is % But, by the chain rule,

dx/  ox/ dx*
dt — oxk dr

and it follows that the velocity is a contravariant tensor of rank one or a contravariant vector.

The Kronecker Delta

8.10.

8.11.

Evaluate (a) 8‘; A7, (b) 85 8.
Solution
Since 55 = 1if p =qand 0 if p # g, we have

(a) SPAT = AP, (b) 8061 = &)

oxP?
Show that — = &7.
ox4 a
Solution
P
Ifp=yg, o _ 1 since x¥ = x9. If p # q, — = 0 since x” and x? are independent.
oxa ox?
P
Then o = 3.

x4
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i 9%l
8.12. Prove that 8— ox = 6%,
oo

Solution

Coordinates x” are functions of coordinates X?, which are in turn functions of coordinates x". Then, by the chain
rule and Problem 8.11,

WP o ox
W oxdoxt T

— oax? ox? —
8.13. Let A” = iAq. Prove that A = — A"
ox4 oxP

Solution
— ax? ox"
. . P q
Multiply equation A = qA by — "
Then ad — A" = Ox” Ox" A? = § A1 = A" by Problem 8.12. Placin, the result follows. This indicates
— A1 = 2. r=gq, .
W T o o A Y gr=4

that in the transformation equations for the tensor components, the quantities with bars and quantities
without bars can be interchanged, a result which can be proved in general.

8.14. Prove that S‘q’ is a mixed tensor of the second rank.
Solution

It 6;’ is a mixed tensor of the second rank, it must transform according to the rule

5 _ o o
kT 9k 4

ox/ oxP . _ .
The right side equals a—xp% = 8] by Problem 8.12. Since §] = 8/ = 1ifj = k, and 0if j # k, it follows that h
XP %

is a mixed tensor of rank two, justifying the notation used.
Note that we sometimes use 6,;, = 1 if p = g and 0 if p # g, as the Kronecker delta. This is, however, not a
covariant tensor of the second rank as the notation would seem to indicate.

Fundamental Operations with Tensors

8.15. Suppose A2? and B¢ are tensors. Prove that their sum and difference are tensors.
Solution

By hypothesis A?Y and BP? are tensors, so that

—jk o/ oxt o —k o axk ax
qu d B = rq
D oo MY Thp o
Adding,
k= ax/ ax* ax”
Ak By = L qpay pra
A+ Br) axpaxqafc’(’_‘_')
Subtracting,
ax/ 9x* ox”
A Jk AP9 _ BP4
([ B = axl’axqafc’(’ )

Then AP9 4- B9 and AP? — BP9 are tensors of the same rank and type as A?? and BY9.
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8.16. Suppose A?? and B; are tensors. Prove that C)/"* = AP4B? is also a tensor.

Solution

We must prove that C”" is a tensor whose components are formed by taking the products of components of
tensors A?Y and BJ. Since A?Y and B] are tensors,

. ¥/ 97k 9T t

a*— aiaiaiAPq and B = A

Do e " o

Multiplying,

X ] vk roo=m
g

which shows that A?YBY is a tensor of rank 5, with contravariant indices p, g, s and covariant indices r, ¢, thus
warranting the notation Ch¥. We call Cb* = APYBS the outer product of AP? and B:.

8.17. Let A”% be a tensor. (a) Choose p =t and show that AP, where the summation convention is
employed, is a tensor. What is its rank? (b) Choose p =1 and g = s and show similarly that A%,
is a tensor. What is its rank?

Solution
(a) Since A% is a tensor,

—j ax/ axk ax" ox* ot
T = A ol e At (€]
oxP x4 ax' ox™ ox"

We must show that A?Y is a tensor. Place the corresponding indices j and n equal to each other and sum

over this index. Then
ok ow axt o At o o o axt o Ayt

7K 94" 945 k94
, Oxtox"oxt . oxtoxTax' .

= p@g " rst T Oxd 3)?1 axm rsp

and so A7, is a tensor of rank 3 and can be denoted by Bf,. The process of placing a contravariant index
equal to a covariant index in a tensor and summing is called contraction. By such a process a tensor is
formed whose rank is two less than the rank of the original tensor.

(b) We must show that A‘,’gp is a tensor. Placing j = n and k = m in equation (1) of part (a) and summing over j
and k, we have

ke o% axt o axt o o' ox/ ax® axf Ay,

W xp axa ot axk ax/ T T axd o ok oxd ol T

ox" ox”
_sts _
= 8,8 A = AT

which shows that A%Z is a tensor of rank one and can be denoted by C;. Note that by contracting twice, the
rank was reduced by 4.

8.18. Prove that the contraction of the tensor AZ is a scalar or invariant.

Solution
We have

o o
£ owank e



8.19.

8.20.

8.21.
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Putting j = k and summing,

i ox o
S T AP = P — AP
Aj T o o/ Aq - SZAq - Ap
Then A} = A? and it follows that A? must be an invariant. Since A? is a tensor of rank two and contraction
with respect to a single index lowers the rank by two, we are led to define an invariant as a tensor of rank zero.

Show that the contraction of the outer product of the tensors A” and B, is an invariant.

Solution
. o ox?

Since A” and B, are tensors, A’ = —A” B, = B,. Then

ax? ox*

B, — ox/ 8f ,
oxP axk

By contraction (putting j = k and summing)

—i— o d

7B, = g, — A’B, = A’B,

axP ox/

and so APB,, is an invariant. The process of multiplying tensors (outer multiplication) and then contracting is
called inner multiplication and the result is called an inner product. Since A”B,, is a scalar, it is often called the
scalar product of the vectors A” and B,,.

Show that any inner product of the tensors A? and B{" is a tensor of rank three.

Solution

Outer product of A? and Bf® = A?B}".
Let us contract with respect to indices p and z, that is, let p = t and sum. We must show that the resulting
inner product, represented by A?BJ', is a tensor of rank three.

By hypothesis, A? and B{* are tensors; then
g, waa
oxP 9k T T Oxd axs oxt !

Multiplying, letting j = n and summing, we have

i 0% x Ox o™ Ax'

AB" =" T APp®
kK oxP 9xk axa axs axl !
g,
P oxk oxa oxs !
roavl
ax” ox' ax™ P s

T oaxkoxd e TP
showing that APB]" is a tensor of rank three. By contracting with respect to ¢ and r or s and r in the product
APBY, we can 31mllarly show that any inner product is a tensor of rank three.

Another Method. The outer product of two tensors is a tensor whose rank is the sum of the ranks of the given
tensors. Then APBY" is a tensor of rank 3 + 2 = 5. Since a contraction results in a tensor whose rank is two less
than that of the given tensor, it follows that any contraction of A?B?" is a tensor of rank 5 —2 = 3.

Let X(p, g, r) be a quantity such that X(p, g, r)B?" = 0 for an arbitrary tensor B!". Prove that
X(p, g, r) = 0 identically.

Solution

Since B?" is an arbitrary tensor, choose one particular component (say the one with g = 2, r = 3) not equal to
zero, while all other components are zero. Then X(p, 2, 3)B§" =0, so that X(p, 2, 3) = 0 since B%” #0. By
similar reasoning with all possible combinations of ¢ and r, we have X(p, ¢, r) = 0 and the result follows.
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8.22. Suppose in the coordinate system x', a quantity A(p, g, r) is A(p, g, r)B? = C, where B’ is an
arbitrary tensor and C;, is a tensor. Prove that A(p, g, r) is a tensor.

Solution

In the transformed coordinates ¥, A(j, k, l)Bkm f;".

axk o™ ax” ax™ ox? ax™ ox?

Then A(, k, I B =22 o 2 A, g, B
enAGE Do o av el P oo g )
or
ox™ [ 0x Bxf
k, —A . N |BF =0
ax-v[axqa* AG & D= (pqr)}

n n

a
Inner multiplication by (i.e. multiplying by % and then contracting with t = m) yields

7"1

X" ox oxP
n[@zﬂ G, k, 1)—*A(P q, V)j|BqS_0

or

ox"* ox" — oxP
Al kD) = A B = 0.
[axqa, Gk D) — (pq,n]

Since BJ" is an arbitrary, tensor, we have by Problem 8.21,

axk ax" — o
——A(, k, ) ——A =
T g AU kD= AP g. 1) =0
q 9y
Inner multiplication by — — yields
ax™ ox”
" oxP ox? ox"
8 SIAG, k, l)—WFm o A, g, 1) =
or
7 ox? ox"
A ==
G m, m) = axfaxm g AP 4 1)

which shows that A(p, ¢, r) is a tensor and justifies use of the notation A}, .
In this problem we have established a special case of the quotient law which states that if an inner product of
a quantity X with an arbitrary tensor B is a tensor C, then X is a tensor.

Symmetric and Skew-Symmetric Tensors

8.23. Suppose atensor A% is symmetric (skew-symmetric) with respect to indices p and g in one coordinate
system. Show that it remains symmetric (skew-symmetric) with respect to p and ¢ in any coordinate
system.

Solution
Since only indices p and ¢ are involved, we shall prove the results for B”9. If B’ is symmetric, B’? = B%. Then

7 o/ ox* B axkox
T o e ax4 oxP -

and B” remains symmetric in the X' coordinate system.

If B4 is skew-symmetric, B’? = —B%. Then
B = aijaikqu - _aikaiqup — _BY
oxP ox4 x4 oxP

and B” remains skew-symmetric in the X' coordinate system.
The above results are, of course, valid for other symmetric (skew-symmetric) tensors.



8.24.

8.25.
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Show that every tensor can be expressed as the sum of two tensors, one of which is symmetric and
the other skew-symmetric in a pair of covariant or contravariant indices.

Solution

Consider, for example, the tensor B7Y. We have
BPd — %(qu + B%) _|_% BP? — BP)

But RP? = %(B”q + B%) = R? is symmetric, and S"? = %(B”q — B?) = —S% i3 skew-symmetric. By similar

reasoning, the result is seen to be true for any tensor.
Let ® = aA/A*. Show that we can always write ® = by A/A¥ where by is symmetric.
Solution

O = a AAF = qyA* A = ayA A

Then
20 = apAA" + ayAAY = (aj + a)AAY and @ = Yaj + ay)ATAF = b AIAF

_ ] _ . .
where bj, = 5(ajx + ai;) = by; is symmetric.

Matrices

8.26.

Write the sum S = A + B, difference D = A — B, and products P = AB, Q = BA of the matrices

31 =2 2 0 -1
A=| 4 -2 3|, B=|-4 1
-2 1 -1 1 -1 0
Solution

342 140 —2—-17 [ 5 1 =37
S=A+B=| 4-4 241 342|=| 0 -1 5
| —2+1 1-1 —-140] [-1 0 —1|
3-2 1-0 2417 [ 1 1 —-17
D=A-B=| 444 —2—-1 3-2|=| 8 =3 1
|—2-1 141 —-1-0| -3 2 -1

[ B +MHEH+ED(D) GO+ D)+ 2D B+ (1D(Q2) + (=2)(0)
P=AB=| DD+ EED=H+O)1) DO+ DM +BG)ED HED +2)2) +(3)(0)
L =2)2)+ (D=4 + =DA)  =2)0) + (D) + (D1 (21D + (1)(2) + (= 1)(0)

0 3 -1
=19 -5 -8

-9 2 4

[ 8 1 -3
Q=BA=|-12 —4 9
-1 3 -5

This shows that AB # BA, that is, multiplication of matrices is not commutative in general.
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8.27. LetA:[_f ;]andB:[_; _;].Showthat(A—i-B)(A—B);ﬁAZ—BZ.

Solution

1 3 3 —1 13 3 —1 -9 14
A+B:[2 1],A_B:[_4 5]. Then(A+B>(A_B>:[2 1}[_4 5]:[ ; 3].
AZZ[ 2 1][ 2 1]:[ 3 5] BZZ[—l 2][—1 2]:[ 7 —6]

-1 3]l-1 3 -5 8/ 3 2 3 2 -9 10 ]

-4 11
2_p2_
Then A B _|: 4 _2:|.

Therefore, (A + B)(A — B) # A% — B2. However, (A + B)(A — B) = A2 — AB + BA — B%.

8.28. Express in matrix notation the transformation equations for (a) a covariant vector, (b) a contravar-
iant tensor of rank two, assuming N = 3.

Solution

. . — x4 .
(a) The transformation equations A, = BT”A’] can be written
X

Zl a)?l %l a)?l

A
— | !t aw? ad !
A=l 5 S ||4%
_ ox- ox° ox A
As axl ax? ’

wow o

in terms of column vectors, or equivalently in terms of row vectors

' ax! !
axl 8)?2 8)?3
_ 2 2 2
[A1 A3 A3] =[A; Ay A3] oox
ol o o
axl BXZ ax'i
—pr  OXP X" .
(b) The transformation equations AT = —iAqs can be written
oxd Ox*
.Z“ Klz XB axl 8x2 8x3 All A12 A13 3)(1 8x1 axl
221 XZZ 1123 — 3%2 3%2 3)72 A21 A22 A23 3)?1 3%2 sz
4w axlax? 9w || 431 432 43 || P ax2 ox?
AT AT AT w x o ax o ox
oxl o ox? o3 o axd

Extensions of these results can be made for N > 3. For higher rank tensors, however, the matrix notation
fails.
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The Line Element and Metric Tensor

8.29.

8.30.

8.31.

Suppose ds* = gj dx/ dx* is an invariant. Show that gjk is a symmetric covariant tensor of rank two.
Solution

By Problem 8.25, ® = ds?, AV = d¥ and AF = dx¥; it follows that gjk can be chosen symmetric. Also, since ds?
is an invariant,

. b ax/ axk
% ¥ = o0 dédyt = 01 —— dx’ —— — o, — q
8y A dx! = gy dddx” = gy g dx %qd?’ = 8k o dx® dx
_ ' ox* . . . .
Then g, = gt Pt and gjx is a symmetric covariant tensor of rank two, called the metric tensor.
X

Determine the metric tensor in (a) cylindrical and (b) spherical coordinates.

Solution

(a) As in Problem 7.7, ds® = dp* + p* d¢* + d22.
Ifx'=pxX*=¢, =z theng=18r=p"83=180=81=0,83=g3=0,831=gi3 =0.

gn g & 1 00
In matrix form, the metric tensor can be written | g2; g» g3 | =0 p* 0
831 8xn 831 0 0 1
(b) As in Problem 7.8(a), ds* = dr? + r2 d&* + r* sin’ 6 d¢*”.
1 0 0
Ifx'=r,x2=6,x = ¢, the metric tensor can be written | 0 r? 0
0 0 #2sin’6
In general, for orthogonal coordinates, gix = 0 for j # k.
811 812 813
(a) Express the determinant g = | g»; g2 g3 | in terms of the elements in the second row and
831 832 833

their corresponding cofactors. (b) Show that gxG(j, k) = g where G(j, k) is the cofactor of gj in
g and where summation is over k only.

Solution

(a) The cofactor of gj is the determinant obtained from g by (1) deleting the row and column in which gj
appears and (2) associating the sign (—1Y** to this determinant. Thus,

Cofactor of g = (— 1)>*1[812 813| " Cofactor of gy = (—1)>+2| 81 813 |
832 &3 831 83
Cofactor of gry = (—1)**+3| 811 812
831 832

Denote these cofactors by G(2, 1), G(2, 2), and G(2, 3) respectively. Then, by an elementary principle of
determinants

82162, 1) + g0nG(2, 2) + g»G(2,3) =g

(b) By applying the result of (a) to any row or column, we have gjxG(j, k) = g where the summation is over k
only. These results hold where g = | gjk| is an Nth order determinant.



CHAPTER 8 Tensor Analysis

8.32.

8.33.

8.34.

8.35.

(a) Prove that £,G(3, 1) + g22G(3, 2) + g13G(3, 3) = 0.
(b) Prove that gxG(p, k) = 01if j # p.
Solution
g1 812 813
(a) Consider the determinant | g; g2 g»3 | Which is zero since its last two rows are identical. Expanding
821 822 823

according to elements of the last row we have
22163, 1) + 026G, 2) +223G3,3) =0

(b) By setting the corresponding elements of any two rows (or columns) equal, we can show, as in part
(a), that gxG(p, k) = 0if j # p. This result holds for Nth-order determinants as well.

G(, k . . .
G0. b where G(j, k) is the cofactor of gy in the determinant g = | gjk| # 0. Prove

Define g/ =
that g g™ = &.

Solution
G(j, k)

By Problem 8.31, gj =1or g_,«kg/k = 1, where summation is over k only.

G, k

By Problem 8.32, gjx ) =0or gjkgpk =0ifp #j.

Then gug™ (= 1if p=j, and 0if p #j) = &.

We have used the notation g/* although we have not yet shown that the notation is warranted (i.e. that g/ is a
contravariant tensor of rank two). This is established in Problem 8.34. Note that the cofactor has been written
G(j, k) and not G’ since we can show that it is not a tensor in the usual sense. However, it can be shown to be a
relative tensor of weight two which is contravariant and with this extension of the tensor concept the notation
G* can be justified (see Supplementary Problem 8.152).

Prove that g/ is a symmetric contravariant tensor of rank two.

Solution

Since gj is symmetric, G(j, k) is symmetric and so &% = G(j, k)/g is symmetric.
If B is an arbitrary contravariant vector, B, = g,,B" is an arbitrary covariant vector. Multiplying by g/,

g/"B, = ghg,,B" = B-LB"’ =B or g'B,=8

Since B, is an arbitrary vector, g/ is a contravariant tensor of rank two, by application of the quotient law. The
tensor g/ is called the conjugate metric tensor.

Determine the conjugate metric tensor in (a) cylindrical and (b) spherical coordinates.

Solution

1 0 0
(a) From Problem 8.30(a), g=|0 p> 0|=p’
0 0 1

11 cofactor of g;; 1 [p* 0 | 43 cofactorof g3z 1]1 O
= = — =1, g = = — =
g P20 1 g PAlo P
2 _ cofactor of g2 _ i‘ 1 0‘ _1 o= cofactor of g 1|0 O‘ _o
g P10 1] p* g P10 1
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Similarly, g* = 0 if j # k. In matrix form, the conjugate metric tensor can be represented by

1 0 O
0 1/p2 0
o o0 1
1 0 0
(b) From Problem 8.30(b), g = |0 0 = r*sin? 0
0 0 r2sin’@

i 11 n_1 » 1 ik . . . .
Asinpart (a), we find g'! = 1, g% = L g = Trlzoand g = 0forj # k, and in matrix form this can
be written e

1 0 0
0 1/r? 0
0 0 1//”sin’6

8.36. Find (a) g and (b) g/ corresponding to ds*> = 5(dx")* 4 3(dx?)* + 4(dx®)* — 6 dx'dx* + 4 dx*dx>.

Solution

@ gn=35gn2=3g3=4g80=8g1=-3,83=¢2=2,83=¢gu=0.

5 =30
Then g =| -3 3 2|=4.
0 2 4

(b) The cofactors G(j, k) of gj. are

G(1,1)=8,G(2,2)=20,G3,3)=6,G(1,2) =G2, 1) =12, G2, 3) = G3, 2) = —10,
G(1,3)=G3,1)=—-6

Then gll — 2’ g22 — 5’ g’i'i — 3/2, g12 — g21 =3, g23 — g32 — _5/2’ g13 — g3l — _3/2
Note that the product of the matrices (gj) and (g™) is the unit matrix I, that is

5 =30 2 3 32 100
-3 32 3 5 —s5n2(=|010
0 2 4| =32 -52 32 00 1

Associated Tensors
8.37. Let A; = giAX. Show that A% = giA;.

Solution

Multiply A; = gxA* by g¥. Then giA; = gigy Ak = 8]AF = A9, that is A7 = gl"A; or A* = g*A;.
The tensors of rank one, A; and AF, are called associated. They represent the covariant and contravariant
components of a vector.

8.38. (a) Show that 1.7 = 8pgAPA? is an invariant. (b) Show that L’ = grALA,.
Solution

(a) LetA;and A be the covariant and contravariant components of a vector. Then

o
a A

ox?
TA_/‘, 1= TAk
ox? o

i, =
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8.39.

8.40.

8.41.

and
- 5P L i 4 Ak j

so that A;A’ is an invariant which we call L2. Then we can write

[P = AN = gy A'A = g, APAY

(b) From (a), L? = AjA) = A;gMA, = g*AjAr = gPA A,
The scalar or invariant quantity L = ,/A,A? is called the magnitude or length of the vector with covari-
ant components A, and contravariant components A”.

(a) Suppose A? and B? are vectors. Show that g,,A”B? is an invariant.

AP B4
(b) Show that —_ 50 0" s an invariant.

J@r4,)(B7B,)

Solution

(a) By Problem 8.38, APB, = APg,,B? = g,,APB? is an invariant.
AP B1
(b) Since A’A, and BB, are invariants, ,/(A”?A,)(BYB,) is an invariant and so i
We define V(APA)(BBy)
gp APBI

J@PA,)BB,)

as the cosine of the angle between vectors AP and BY. If g,,A’B? = A’B, = 0, the vectors are called
orthogonal.

is an invariant.

cos 0 =

Express the relationship between the associated tensors:

(a) A and A, (b) A]k, and A% (c) A" and Aji;l',il .

-q-t
Solution

(a) Ajkl - gjpgkqgerpqr or qur = g_/:pgkqgerjkl
(b) A% = giognA?"  or AT = gl1ghrAk

(©) Al = glg™guAis! or Al = gyigng" Al

Prove that the angles 6,,,0,3, and 63, between the coordinate curves in a three-dimensional coordi-
nate system are given by

812

\/811822’

823 831
cos 651 =

/822833 ’ /833811

cos 0, = cos 63 =

Solution

Along the x! coordinate curve, x> = constant and x> = constant.

. dx’! 1
Then, from the metric form, ds* = gll(dxl)2 or— = .
ds  /gn
1
Thus, a unit tangent vector along the x! curve is A} = ——§]. Similarly, unit tangent vectors along the x* and
V811

1 " ro__ 1 "
Eﬁz and A3 —763.

/833

x> coordinate curves are A =



8.42.

8.43.
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The cosine of the angle 6, between A} and A} is given by

1 g12

1
=gyy———0808! )
gpq«/gn\/gzz 12 /811822

cos 012 = g,,ATAS

Similarly, we obtain the other results.

Prove that for an orthogonal coordinate system, g2 = g2z = g31 = 0.

Solution

This follows at once from Problem 8.41 by placing 61, = 6,3 = 631 = 90°. From the fact that g,, = g, it also
follows that 821 =832 =813 = 0.

1 1 1
Prove that for an orthogonal coordinate system, g1 = —7, €22 = 5, 833 = —33-
8 8 8

Solution

From Problem 8.33, g”"g,, = 8/1;
Ifp=g=1g"g1=1org"gn+g"g +g" =1

1
Then, using Problem 8.42, g;; = -
8

1

Similarly, if p =g =2, gon = andif p=¢q =3, g3 = —3.
PEE

1.
?’

Christoffel’s Symbols

8.44.

8.45.

Prove (a) [pg, r] = [gp, r], (b) {psq} — {qsp }, ©) Ipg, r1 = grs{psq }

Solution

_1 agpr agqr agpq _1 agqr agpr agqp _
@ lpg. r]_z(aquraxp o ) =2\ aw T ar ) TP 71

b S :sr s :sr s — S}
(b) {pq} &"pq, r1 = ¢"lqp, 1] [qp

© gks{ psq} = 818" [pq, 1 = 8 [pg, r1 = [pq, kI

or
lpg. k1 =g { y }~thatis [pg. rl =g { y }
B ks pq B 5 5 rs pq .

Note that multiplying [ pg, r] by g* has the effect of replacing r by s, raising this index and replacing square
brackets by braces to yield { psq } Similarly, multiplying { psq ] by g, or g, has the effect of replacing s by r,

lowering this index and replacing braces by square brackets to yield [pg, r].

Prove

%rq = 0g™ _ _.m] 4 gn) P
(a) o [pm, ql + [gm, pl, (b) R A TR L I

pl_2
© {7 ] =g

Solution

1/9 08mg  08m 1(9 0gmp  0gqm dgp
(@) me,q]+[qm,p]=—< Spg g S )+7<@+ Sy _ B )— s

2\ T r xe AC A T A
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9 3
(b) 5 (¢"8y) = 5 (8) = 0. Then

ox
gy 0" o 98 s
oxm - gxm ©Y Y gom axm
Multiplying by g,
. oghk .08
ir, .. — ir jk oy
8 8 gm o
that is
agh i kore o
5 557 = —g"g"(lim, j1 + [jm. i])
or

3grk _ . r k ik r
w8 lim J jm

and the result follows on replacing r, k, i, j by p, g, n, n, respectively.
(c) From Problem 8.31, g = gixG(j, k) (sum over k only).

0,
Since G(j, k) does not contain g explicitly, s _ G(j, r). Then, summing over j and r,

agjr
dg g Ogr .\ 08r
= — = G N
ax™  dgj, ox™ (Jir) ox™
i 0 ir ir re .
= gg”a% = gg”" ([jm, r1+ [rm, j1)

=l nl) =)

1 og J J 9
2g " {Jm} * {Jm o V8

The result follows on replacing j by p and m by q.

Thus

8.46. Derive transformation laws for the Christoffel symbols of (a) the first kind, (b) the second kind.

Solution
. oxP ox4

(a) Since gy = o ok S
gk _ OxP x? Bgpg Bx” | P Fx! + PP (D
X o o v oX" | a%d aeawk o e awd ok o

By cyclic permutation of indices j, k, m and p, g, r,

98im — aiq il agqr% % Fx' + &Fxt aixr 2)
o%  oxk v ox av | axk awax o | ook et o
R . S . ®
oxk o v ot oxF | ax” oxkax o | oxkaw” o o



8.47.

8.48.

CHAPTER 8 Tensor Analysis

Subtracting (1) from the sum of (2) and (3) and multiplying by %, we obtain on using the definition of the
Christoffel symbols of the first kind,

— oxP ox? ox" PxP o
Uk, ml = 557 ok g P9 T Gk o S0 @
37}1 87m
(b) Multiply (4) by g™ = ai?g to obtain
——  Ox” ox? ox” ox" ox” oPxP Oxd "
—nm 'k, — - T , i S st
gk Ml = ok e aw v § PP TN ek e e © S
Then
n O” O X" o Px o
{jk} ¥ 9k ax® o8 pa. 7 ]+8 %/ 0% kax‘é;lg 8pa

Pt ox" [ s FA’ X"
o/ oxk o %/ %" o

. )
since 6trgst[pq, rl = gsr[pq’ rl = {pq] and 3?gﬂtgpq = g‘vquq = 5;,

azxm Bx oxP ox? | m
Prove ——— T ook .

9%/ 9xck Jk ox’ ox* | pq
Solution

_— oxP ox4 ox" 821)8}"
From Problem 8.46(b), {J’]’(} _ W axox { s } X

o oxk oxs | pq | T awiaxk o’

o’
Multiplying by — P

nox" _ ot o, [ s N xP o
jk | o ax axk > | pg | axiaxk P
_ oxP ox? [ m 92xm
T o ox | pg | ox/axk

2 .m
Solving for 7.7)671(, the result follows.
ox’ ox

Evaluate the Christoffel symbols of (a) the first kind, (b) the second kind, for spaces where g,, = 0 if
P#q

Solution

@ Ifp=g=r, [pq,rlz[pp,p]=%<%+%%_%%):%E;%'
Ifp=q#r, [pq,rlz[pp,r]=%(%if %iir_aaii)f):_%aag;f'
If p=r+#gq, [pq,r]z[pq,p]=%(%+%_%):%aag%'

If p, g, r are distinct, [pg, r] = 0.
We have not used the summation convention here.
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" 1
(b) By Problem 8.43, g/ = — (not summed). Then

8jj
s : [pg, 5]
4 =g"[pq, r1 =0 if r #s, and = ¢g*[pq, s] = ——— (not summed) if r = s.
By (a):
Ifp=g=sy, R [pp, Pl 71 % = 19 N &pp-
Pq pp 8pp 28pp WP 2007
Ifp=qg+#s, S1_)® Z[pp,s]z_ L %
pq pp 8ss 28 Ox*
Ifp=sq. s _[p]_lpepl_ 1 9gp 10 N g
14} prq P e

L. s
If p, g, s are distinct, =0.
pa {ol

8.49. Determine the Christoffel symbols of the second kind in (a) rectangular, (b) cylindrical, and

(c) spherical coordinates.

Solution

We can use the results of Problem 8.48, since for orthogonal coordinates g,, = 0 if p # q.

(a) In rectangular coordinates, g,, = 1 so that {psq } =0.

(b) In cylindrical coordinates,

d=pr=¢x =z

we have by Problem 8.30(a), g1 =1,

g2 = p’, g33 = 1. The only non-zero Christoffel symbols of the second kind can occur where p = 2.

These are
1 1 9 10
[ == 2D =,
22 2811 ox! 2 dp
21 2g22 Bxl 2p2 8p - pP
(c) In spherical coordinates, x' =r, x> = 6, x> = ¢, we have by Problem 8.30(b), g1, =1, go» =2,
g33 = 12 sin® . The only non-zero Christoffel symbols of the second kind can occur where p = 2 or 3.
These are
Ll 1 dgn ( 2
22 2g11 oxl 28r -
21 (21 3822 1 9 2) = 1
21 |12 2822 oxl 212 o
1 1 agn d 2 .2 + 2
— —_ = - 0 = - 0
3 22 ol 28r(r sin” 6) rsin
2 1 3g33 .
3 = _Eﬁ = —pa—e(r sin? 6) = —sin Hcos 0
3 3 1 8g33 1
= ————(r*sin* 0
31 { 13} 2g3 ax!  2/2sin® r ( A
3 3 1 3g33 1
— _7—rsm9—cot0
32 { 23 } 2g3 02 22 sin? 039( )
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Geodesics

8.50.

8.51.

Prove that a necessary condition that / = f: F(t, x, x) dt be an extremum (maximum or minimum)

Solution

Let the curve which makes / an extremum be x = X(r), t; <t < t,. Then, x = X(¢) + en(t), where € is
independent of 7, is a neighboring curve through #, and #, so that n(#;) = n(t,) = 0. The value of I for the neigh-
boring curve is
5}
I(e) = JF(t, X+ en, X+ en) dt

al

di
This is an extremum for € = 0. A necessary condition that this be so is that —
. . . . . de
under the integral sign, assuming this valid,
oF oF
—n)dt=0
J(Bx + ox )

n
et ogoF T oroF d
ot + L — | & (L) ar= | (- di =0
Jax M, J”d;(afc) [ <8x dt( ))

n n n

= (. But by differentiation
e=0

dl
de|._,

which can be written as

153
[ OF oF

oF d oF
Since 7 is arbitrary, the integrand — — — | —

The result is easily extended to the mtegral ja F@, x', &', %2, 22, ..., &N, &) dr and yields

ar_dony_
ok dr h
called Euler’s or Lagrange’s equations (see also Problem 8.73).

d*x" dx’ dx?
Show that the geodesics in a Riemannian space are given by —- a + { }

ds? ds ds
Solution

[5)

We must determine the extremum of J v/ 8pgX’ X" dt using Euler’s equations (Problem 8.50) with

F = ,/gps¥"x?. We have

OF _ 1 o 120800 g OF

a9 _ 2 Pid o9&
axk — 2 G XD TR X

t
1 pign—1/2 .
= E(gpqxpx ) 2gpkxp

ds
Usmg = \/&pgX’x4, Euler’s equations can be written

d (gpx” 1 9gpq Pl —
dat\ 5 ) 25 o

or

gpk - 1 agpq gpkxpf
X+ == i L xl =
B F e TN T 3 5
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9 1/9 9
Writing 98k ipia — ~ ((%8nk + 984k ) 1034 this equation becomes
ax4 2\ x4 oxP

. e (XS
gk + [pg, ki1 = ng
If we use arc length as parameter, s = 1, § = 0 and the equation becomes

B g
L) @M ds

Multiplying by g’*, we obtain

Px [ r|avde
ds? pq| ds ds

The Covariant Derivative

0A
8.52. Suppose A, and A? are tensors. Show that (a) A,, = 8—5 - {psq }AS
X
0AP p
P o= K
and (b) A’q o + { gs }A are tensors.
Solution
N
(a) Since A; = P A,

9A; X" 9A, ox' o*x"

axk o/ ax' axk | awoxk

A, ()]

From Problem 8.47,

*x" N s
axioxk | Jk | oxt  ax/oxk | il

0A;  Ox” ox' 0A, { n } i ax’ ox! { r }A

Substituting in (1),

ox* — aw ox* ox' w o oxk |l

0P x 0A, { n }Z P axd { s }

T axk axe |k % 3% | pq
or

0A; — ox? x4 (0A

Ti - n An = é% - N As

ox Jk ox’/ ox* \ ox? rq

aAp ) . . . . . .
d i pq Ay is a covariant tensor of second rank, called the covariant derivative of A, with respect
X

to x7 and written A, ;.
. o
(b) Since A = A",
ox"
dA AW 0AT X' W '
=k T Ao e —A
axk  oxr ax' gx* oo’ gxt

(€3

From Problem 8.47, interchanging x and X coordinates,

Bzij_ n) ox/ @37761 i
araxt |t axr ot |l
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Substituting in (2),

o o' oar
oxk ~ ox” axk ot

n

i e ae o ()
ox" ox” dx! gxk

Bt
0w/ ox' 0A” N n) ax/ Bx
T oxk ot rt | axn ax Bxf k

_ 3%/ 9x? QAP o/ Bx‘f J T
sq ) oxP 8x ik

~ ow oxk o
or
A [\ 0% oxt (a4 [ p
— A =——|— A’
8}"+{kl} axpaxk<axq+[qs] )
0A? pl.s. . . L .
and o + g5 A® is a mixed tensor of second rank, called the covariant derivative of AP with respect to
X S

x? and written A”q.

8.53. Write the covariant derivative with respect to x? of each of the following tensors:
@) A, (b) A%, (c) A, (d) 4}, (e) Al

Solution

aAJk s s ]k 0A ]k j sk k Jjs
(@) Ajrg = {jq }Ask - { ka }A]S (b) Alp ==+ qs AT A
. 0A] s oA
J Tk j s ke J J s
(C) Ak,q - axd {kq} + { }A (d) Ak[q axd {kq }A { lq }Aks + {qs }Akl

(e) AR 314% ) s A S Al 4 Askl + k AL 4 l Ak
mnq axq mq sn nq ms qs qs mn qs mn
8.54. Prove that the covariant derivatives of the following are zero: (a) g, (b) &, (c) 6§<

Solution
@ gy =8k Ll b 8k Lk kg, /1= 0 by Problem 8.45(a)
8jkg = 3 jq 8sk kq 8js = E q, q, ]l = y . .
b) &= 8gj i e 1k ¢° =0 by Problem 8.45(b)
qs & qs N y ' ’

© F/k.q:a*x;_{ksq}gﬁ{qjs}aizo_{lgq}+{qjk}zo'

8.55. Find the covariant derivative of A'QBZ" with respect to x9.

Solution
; a(A,B™ ; j / ; ;
wwo=(k”—{}NW—{W%W1+{WMW+{}%wwrﬂ%w
4 0xq kq nq qs qs qs
A , By !
(i 3 N TS T B””+Af< S VT B V7 Bf)
oxq kq qs oxq nq qs qs
_A] Blm +A} Blm

k.g—n nq
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8.56.

This illustrates the fact that the covariant derivatives of a product of tensors obey rules like those of ordinary
derivatives of products in elementary calculus.

Prove (gjkAﬁ”) = gAY
Solution

(¢ jkAﬁm),q: ikgAy" + gjkAln(:Z = gjkAﬁfZ

since gjx, = 0 by Problem 8.54(a). In covariant differentiation, gj, g, and 8,{ can be treated as constants.

Gradient, Divergence and Curl in Tensor Form

8.57.

8.58.

8.59.

8.60.

Prove that divA? = 7W([ k.

Solution

The divergence of A” is the contraction of the covariant derivative of A”, that is, the contraction of A”, or A”.
Then, using Problem 8.45(c),

aAk
divA? = A7 = 4 { b }A"

ok pk
aak (9 . Ak 1 0% 9 ;
= T (@‘“ﬁ)A =t (f axk) faxk (V&)
a od
Prove that V>® = 77 («/ggkr .
/8 X ox”
Solution

The gradient of ® is grad ® = V& = d®/ax’, a covariant tensor of rank one (see Problem 8.6(b)) defined as the
covariant derivative of ®, written ®,. The contravariant tensor of rank one associated with @, is
A% = g 5® /3x". Then, from Problem 8.57,

oD\ 1
2(D — di kr kr
Vie=dvietie ) = & axk Ves o

A, oA,
axa  oxp

0A s 0A s 0A 0A
Apy—Agy=-2L— Ay ) — (2 - A ) =L
pe <8xq {Pq} ) <8x" {qp} ) ot o

This tensor of rank two is defined to be the curl of A,.

Prove that A, , — A, =

Solution

Express the divergence of a vector A? in terms of its physical components for
(a) cylindrical coordinates, (b) spherical coordinates.

Solution

(a) For cylindrical coordinates x' = p, x> = ¢, x* =z,

0
0| =p’ and /& =p (see Problem 8.30(a))
1

o, o

1
g=1|0
0
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The physical components, denoted by A,, Ay, A, are given by
A, = JenA' = A, Ay = JenA =pA?, A, = Al =A°

Then
d

div AP = —— (ﬁAk) ; |: (PAy) +—

f = A (pA»]

¢

(b) For spherical coordinates =rx=6x=¢,

10 0
=0 0 |=r*sin®@ and ./g=r"sin6 (see Problem 8.30(b))
0 0 r2sin’6

The physical components, denoted by A,, Ag, Ay are given by
Ar = 4/g]IAl :Al, Ag = 4/gzzAz = VAZ, Ad’ = 4/g33A3 = rsin 6A3

Then
div A? = Tﬂ(\/— AR
r2 slln 5 |:—(r sin 0A,) + (r sin 0Ag) + ¢(rA¢):|
:%; r)+%9379(5m0A9)+rsi1n0%

8.61. Express the Laplacian of ®, V2®, in (a) cylindrical coordinates, (b) spherical coordinates.

Solution
(a) In cylindrical coordinates g'! = 1, g2 = 1/p?, g = 1 (see Problem 8.35(a)). Then from Problem 8.58,

1 9 4 0D
- Jeaw (V¢ 3¢)

19 9D 9 (19D o/ oD
‘B[a*p<7> a¢<pa¢> <8z>]
19 /[ a® 1 O PP
ia?(’)a?)*?a?*a?

Av2Li)

(b) In spherical coordinates g'' = 1, g2 = 1/12, g** = 1/#? sin” 6 (see Problem 8.35(b)). Then

v~ e (V¢ 5e)

! 0 snO@ —i—3 sinB@ -i-i 71 @
i o) T 96 36 ) " 3¢ \sin 6 9¢

Lo (L0@) 1 B ad) 1 Fo
= ——\\r"— nov— -5
Par\" or) T rsneao\"" % 59) T i g g
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Intrinsic Derivatives

8.62. Calculate the intrinsic derivatives of each of the following tensors assumed to be differentiable
functions of #: () an invariant ®, (b) A/, (c) &), (d) Ak

Imn*
Solution

5P dd abd  dd

5= T T A the ordinary derivative.

(a)

(b) Sij_Aj%_ % J A* dﬁ_%% J AS%
& hdr T \owe qs dt e dr qs dt

dA’ j q
=—+4 J A di
dt qs dt
84, odxi (oA s j dx4
=4 =|—*- Al AS
ot ke gr (3)6‘1 {kq} +{q } ) dt
dA, det [ ), dx
=—=— A A —
dt {kq} de+{qs}’<dt
(d) 6A1]r]:m _ Ajk dxt _ aA{r]jm S Ajk S AJk
5Z Imn.,q dt - x4 lq smn mq Isn
k o\ dxd
nq qs qs dt
— dAljnlfm _ $ Ajk % _ $ Ajk dxll s Ajk ﬂ
dt Ig ) ™ dt mq lsn gy ng Ims gy

J ) d¥ [k, d
Ay — Ay —
+ { gs } Imn dt + { gs Imn dt

8.63. Prove the intrinsic derivatives of gj, g, and 62 are zero.

(©)

Solution
82t dxd dghk L dxd 55/; - dx
o Bika) g o S dr o CkaTgy T o oY Trovem

Relative Tensors

8.64. Let A” and B}® be relative tensors of weights wy and w,, respectively. Show that their inner and outer
products are relative tensors of weight w; + w,.

Solution

By hypothesis,

_; ax/ ox? —im %! X" At
Al =J" —— A B'=J"———
k oxp gxk T X" x* ax"

The outer product is
ngl”’ — ]W|+W2 77777APB”
k=n P 9xk axr dxs axt 4!

a relative tensor of weight w; + w,. Any inner product, which is a contraction of the outer product, is also a
relative tensor of weight w; + w,.



8.65.

8.66.
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Prove that ,/g is a relative tensor of weight one, i.e. a tensor density.
Solution

oxP ox?
The elements of determinant g given by g, transform according to gy = Fﬁg’)q'
X/ 0X
ox? || x4

| [k |8 = J?g or \/g = J./g, which shows that /g is a relative

Taking determinants of both sides, g = P
X

tensor of weight one.

Prove that dV = /g dx'dx? - --dx" is an invariant.
Solution

By Problem 8.65,
dV = g di'dz* - dx" = JgJ dx'dx* - - - dx

a
- Jg‘a—f‘ dRdP - d = Jgdi'di® - dx" = dV
X
From this it follows that if ® is an invariant, then
J...Jadvzj...Jcpdv
v v

4
for any coordinate systems where the integration is performed over a volume in N-dimensional space. A
similar statement can be made for surface integrals.

Miscellaneous Applications

8.67.

8.68.

8.69.

Express in tensor form (a) the velocity and (b) the acceleration of a particle.
Solution
. k . . k dxk . . .

(a) If the particle moves along a curve x* = x*(f) where ¢ is the parameter time, then v* = —— is its velocity

and is a contravariant tensor of rank one (see Problem 8.9).

L odk dRE . . .

(b) The quantity e is not in general a tensor and so cannot represent the physical quantity accelera-

tion in all %oordinate systems. We define the acceleration a* as the intrinsic derivative of the velocity, that

. v L. .

is a* = 5 which is a contravariant tensor of rank one.
Write Newton’s law in tensor form.
Solution
Assume the mass M of the particle to be an invariant independent of time . Then, Md* = F*, a contravariant
tensor of rank one, is called the force on the particle. Thus Newton’s law can be written

Sk
Ff =Md" =M —
ot
i Sk dPxk k | dxf dxd
Prove that @" = — = —+ —_—
ot dt pq ) de dt

Solution

k

Since v* is a contravariant tensor, we have by Problem 8.62(b)

Bt (k) e B[k B[k | e
8t dt gs Yar T an gp|  dr  ar pq | ar dt
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8.70. Find the physical components of (a) the velocity and (b) the acceleration of a particle in cylindrical
coordinates.
Solution
(a) From Problem 8.67(a), the contravariant components of the velocity are

dx! _ @ dx? _ @ dx’ _ dz

= - d ===
de dt a ~ar " dt dt
Then the physical components of the velocity are

dx' d dx? do dx®  dz

D
_—— —_— = p— d - =
VENWTT T g V82T TP M Ve Ty

using g11 =1, g» = p*, g3 = 1.
(b) From Problems 8.69 and 8.49(b), the contravariant components of the acceleration are
e [1)adad_dp (s’
“a? T\ 2 d a a2 P
PP [2)dilde (2| dld! o 2dpds
T 12] dt dt 21

“ d

¢ dt dt — d ' pdt di
and
oo
T dr T ar
Then the physical components of the acceleration are
Jena' =p— pd)z, JEnd =pb+2pp and Jgpd® =%

where dots denote differentiations with respect to time.

8.71. Suppose the kinetic energy T of a particle of constant mass M moving with velocity having magni-
tude v is given by T = 1 Mv? = 1 Mg,,x"x?. Prove that

d (0T oT M

Y~ Mma

dr\ox*)  axk ¢
where a; denotes the covariant components of the acceleration.

Solution

Since T = I Mg, x"x?, we have
o | 08y, T , d (T g
P EMﬁx”xq, P = Mgi,x? and ai\5F = M| gig%? +wxfxq
Then

d (0T oT .. kg . ;. 10g,, ..
—=)-——=M q 7? Jy4 _ Z20P4 ;p1q
di (ax") ak (g’“’x T Y T Y

. 1 agk 3gk Bg ip-
-M q 4 — (28K TOMP ZOPG )P4
<gkqx *2 (Bxl’ oo Tk )

= M(gx? + [pq, k1x"x7)
= Mg, <Jv'r + { " })'cp)'cq> = Mgy,.a" = May,
prq

using Problem 8.69. The result can be used to express the acceleration in different coordinate systems.



8.72.

8.73.

8.74.

8.75.
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Use Problem 8.71 to find the physical components of the acceleration of a particle in cylindrical
coordinates.
Solution
Since ds® = dp® + p* dd? +d?, v* = (ds/d)= p* + p*¢? + 2 and T = L M> = IM(P* + p*¢* + ).
From Problem 8.71 with x! = p, x> = ¢, x* = z, we find
. y 2 d 2 y .
a; = p—ped°, flzzd*(P ¢, az=:
t
Then the physical components are given by
a) ay as .. Y2 1 d 2 ..
, , or p—pd°, ——(p"P), 2
V81 /822 /833 p=pd pdt pé
since gi; = 1, g2 = p?, g33 = 1. Compare with Problem 8.70.
. . S av .
Suppose the covariant force acting on a particle is given by F = — o where V(x!,..., x") is the
X
. d (oL oL
potential energy. Show that —| — | ——=0where L=T —V.
dt \ ox oxk
Solution
oL . - ok
FromL=T-V, P = Y since V is independent of x". Then, from Problem 8.71,
X X
d (dT aT av d (oL oL
—N—=|——==May =F,=—— d —|(—)—=—==0
di (axk> ok T M= ER=TRa e g (axk) ok
The function L is called the Lagrangean. The equations involving L, called the Lagrange equations, are
important in mechanics. By Problem 8.50, it follows that the results of this problem are equivalent to the state-
ment that a particle moves in such a way that fttlz L dt is an extremum. This is called Hamilton’s principle.
Express the divergence theorem in tensor form.
Solution
Let A* define a tensor field of rank one and let v, denote the outward drawn unit normal to any point of a closed
surface S bounding a volume V. Then the divergence theorem states that
J”Af; dv = JJAkvk ds
14 s
For N-dimensional space, the triple integral is replaced by an N tuple integral, and the double integral by an
N — 1 tuple integral. The invariant Afck is the divergence of A* (see Problem 8.57). The invariant A*v; is the
scalar product of A* and vy, analogous to A - n in the vector notation of Chapter 2.
We have been able to express the theorem in tensor form; hence it is true for all coordinate systems since it
is true for rectangular systems (see Chapter 6). Also see Problem 8.66.
Express in tensor form Maxwell’s equations: (a) div B =0, (b) div D = 4mp,
10B 4l
©OOVXE=—— (dVxH=——
c ot c

Solution

Define the tensors B, DX, E;, Hy, I* and suppose that p and c are invariants. Then the equations can be written

(@ B%=0 and (b) DX =4mp
198/

_1331‘
c ot

c) —eME, =— =-—
() k.q q c ot

or €k .
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8.76.

; Al , 47l
d) —eMH, =" or €“H,=———
¢ ¢
These equations form the basis for electromagnetic theory.

(a) Prove that A, , — A, 4 = R;q,A,, where A, is an arbitrary covariant tensor of rank one.

(b) Prove that R r is a tensor. (c) Prove that R, = g,sR). . is a tensor.

Ll
(axq Ll) Lol G L)
w Lol L

P

Solution

ox”
9 (04, J J
8x’ E pq 4 pr
_ A0 j
T xraxd  x'

i | 9A
—{’}*”{’H .}A,
qr} & Lgr)lpj

By interchanging ¢ and r and subtracting, we find
01 1 A P A YV AR P
Apgr —Aprg = A —— A — AL+ — A;
pq p.rq {pr}{]q axr Pq J pq jr axq pr J
k i a i k j a i
gl P81 e A s P P AR P
pr) lkq " | pq pq ) Lkr e pr

= R}, A

P LT B P A LFA Rt P

Replace j by n and the result follows.

0A,
(a) Ap,qr = (Ap,q),r =—P24_ [ ]

where

(b) SinceA,, — A, is atensor, R” ,An is a tensor; and since A,, is an arbitrary tensor, R” » is a tensor by the

quotient law. This tensor is called the Riemann— Christoffel tensor, and is sometlmes wrltten R,

or simply Ry, .

©) Rygs = g,,stqr is an associated tensor of R;’)qr and thus is a tensor. It is called the covariant curvature

tensor and is of fundamental importance in Einstein’s general theory of relativity.

SUPPLEMENTARY PROBLEMS

8.77.

8.78.

8.79.

Write each of the following using the summation convention.

@) @' + a4 ayae ) &g + 8782 + 87831 + 878
(b) A2'B; + A22B, + ABBy + .. + ANNBy (e) BI2! 4 BI2 4 B2 4 p22

(c) A\B' + A\B* + ALB> + - + A\ BY

Write the terms in each of the following indicated sums.

ax/ ax*
A, N =3 (b) A*BIC;, N=2 —
(a) (f ) (b) J (©) kg
What locus is represented by ax*x* = 1 where X, k=1,2,..., N are rectangular coordinates, a; are positive

constants and N = 2, 3, or 4?



8.80.
8.81.

8.82.

8.83.
8.84.

8.85.

8.86.

8.87.

8.88.

8.89.
8.90.

8.91.

8.92.

8.93.

8.94.
8.95.
8.96.
8.97.
8.98.

8.99.

8.100.

8.101.

8.102.

8.103.

8.104.
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Let N = 2. Write the system of equations represented by a,,x? = b,,.

Write the law of transformation for the tensors (a) A}f , (b) Bi* (c) Cpn, (d) App.

m>?

Suppose the quantities B(j, k, m) and C(j, k, m, n) transform from a coordinate system x’ to another ¥ accord-
ing to the rules

— ox/ axk ox" — X 0x7 Ox™ ax*
(@) B(p,q, 1) = %%&%B(L k,m) (b) C(p,q,r,s)= @é%% C(j, k, m, n). Determine whether

they are tensors. If so, write the tensors in suitable notation and give the rank and the covariant and contravar-
iant orders.

How many components does a tensor of rank 5 have in a space of 4 dimensions?
Prove that if the components of a tensor are zero in one coordinate system, they are zero in all coordinate systems.

Prove that if the components of two tensors are equal in one coordinate system, they are equal in all co-ordinate
systems.

Show that the velocity dx* /dt = v* of a fluid is a tensor, but that dv* /dt is not a tensor.

Find the covariant and contravariant components of a tensor in (a) cylindrical coordinates p, ¢, z, (b) spherical
coordinates r, 6, ¢ if its covariant components in rectangular coordinates are 2x — z, x%y, yz.

The contravariant components of a tensor in rectangular coordinates are yz, 3, 2x + y. Find its covariant com-
ponents in parabolic cylindrical coordinates.

Evaluate (a) SZBIT, (b) 858§A‘”, ©) 828‘,’8;, (d) 85’1838:8;
Suppose AP? is a tensor. Show that A?” is a contravariant tensor of rank one.

1 j=k . . . Lo
Show that oy = { 0 j £k is not a covariant tensor as the notation might indicate.

oL P
LetA, = ﬁA‘i' Prove that A, = ﬂAp_
X

oax’ ox* axd ax” —,
= —éA‘j. Prove that A? = ity
oxd ox" ;

AP
bet4, T

Suppose @ is an invariant. Determine whether 3°®/8x”9x? is a tensor.

Let AZ and B, be tensors, prove that AZB’ and A{;B‘I are tensors and determine the rank of each.

Suppose APd is a tensor. Show that A?Y + A% is a symmetric tensor and AZJ — A% is a skew-symmetric tensor.
Suppose AP? and B, are skew-symmetric tensors. Show that C?¢ = APYB, is symmetric.

Suppose a tensor is symmetric (skew-symmetric). Are repeated contractions of the tensor also
symmetric (skew-symmetric)?

Prove that A,,x"x7 = 0 if A, is a skew-symmetric tensor.

What is the largest number of different components that a symmetric contravariant tensor of rank two can have
when (a) N = 4, (b) N = 6? What is the number for any value of N?

How many distinct non-zero components, apart from a difference in sign, does a skew-symmetric covariant
tensor of the third rank have?

Suppose AP is a tensor. Prove that a double contraction yields an invariant.

Prove that a necessary and sufficient condition for a tensor of rank R to become an invariant by
repeated contraction is that R be even and that the number of covariant and contravariant indices be equal
to R/2.

Given A,, and B" are tensors. Show that the outer product is a tensor of rank four and that two inner products
can be formed of rank two and zero, respectively.
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8.105.

8.106.

8.107.

8.108.

8.109.

8.110.

8.111.

8.112.

8.113.

8.114.

8.115.

8.116.

8.117.

8.118.

8.119.

8.120.

8.121.

Let A(p, 9)B, = C? where B, is an arbitrary covariant tensor of rank one and C? is a contravariant tensor of
rank one. Show that A(p, g) must be a contravariant tensor of rank two.

Let A” and B,, be arbitrary tensors. Show that if A’ B,C(p, g) is an invariant, then C(p, g) is a tensor that can be
written Cg.

Find the sum S = A + B, difference D = A — B, and products P = AB and Q = BA, where A and B are the
matrices

2 0 1 1 -1 2
(a)AZB _i], B:[_;l _ﬂ ®A=|-1 =2 2|, B=| 3 2 -4
-1 3 -1 -1 =2 2

Find (3A — 2B)(2A — B), where A and B are the matrices in the preceding problem.

(a) Verify that det(AB) = {det A}{det B} for the matrices in Problem 8.107.
(b) Is det(AB) = det(BA)?

-3 2 -1
LetA:[i _; ﬂ B= 1 3 =2
21 2

Show that (a) AB is defined and find it, (b) BA and A + B are not defined.

2 -1 30 x 1
Find x, y, and z such that 1 2 —4 y|=|-3
-1 3 21|z 6
The inverse of a square matrix A, written A~! is defined by the equation AA~! = I, where I is the unit matrix
having ones down the main diagonal and zeros elsewhere.
3 o 1 -1 1
Find A~! if (a) A = , B)A=|2 1 —1|.IsA7'A =1 in these cases?
-5 4
1 -1 2
2 1 -2
Prove thatA=|1 -2 3 | has no inverse.
4 -3 4

Prove that (AB)™' = B~!A~!, where A and B are non-singular square matrices.

Express in matrix notation the transformation equations for (a) a contravariant vector (b) a covariant tensor of
rank two (c) a mixed tensor of rank two.

2
-3
(depending on A). These values of A are called characteristic values or eigenvalues of the matrix A.

. -2 . .
Given A = |: | i|, determine the values of the constant A such that AX = AX, for some nonzero matrix X

The equation F'(A) = 0 of the previous problem for determining the characteristic values of a matrix A is called
the characteristic equation for A. Show that F(A) = O, where F(A) is the matrix obtained by replacing A by A
in the characteristic equation and where the constant term c is replaced by the matrix c/, and O is a matrix
whose elements are zero (called the null matrix). The result is a special case of the Hamilton—Cayley theorem,
which states that a matrix satisfies its own characteristic equation.

Prove that (AB)T = BTAT.

Determine the metric tensor and conjugate metric tensor in (a) parabolic cylindrical and (b) elliptic cylindrical
coordinates.

Consider the affine transformation X" = a;x” + b", where a; and b" are constants such that a’r’a; = SZ Prove
that there is no distinction between the covariant and contravariant components of a tensor. In the special
case where the transformations are from one rectangular coordinate system to another, the tensors are called
Cartesian tensors.

Find g and g/* corresponding to ds® = 3(dx")? + 2(dx?)* + 4(dx®)* — 6(dx"dx).
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8.123.

8.124.

8.125.

8.126.
8.127.
8.128.

8.129.

8.130.

8.131.

8.132.
8.133.
8.134.

8.135.

8.136.

8.137.
8.138.

8.139.

8.140.

8.141.

8.142.
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Let AF = g/ A;. Show that A; = gyA* and conversely.
Express the relationship between the associated tensors

q . .
(a) AP and Al (b) A{’q and qu,,

r jk

() A[,q and A”).

Show that (a) A;’B_Pm. = APIB,,,, (b) A{’_‘r’B;,’ = A;f_er’ = A;”B{’r. Hence demonstrate the general result that a
dummy symbol in a term may be lowered from its upper position and raised from its lower position

without changing the value of the term.

Show that if APq,_ = B%’qC,, then A, = B,,C, and A;f" = BI',"C ”. Hence demonstrate the result that a free index
in a tensor equation may be raised or lowered without affecting the validity of the equation.

Show that the tensors g,,, g’ and SZ are associated tensors.

o/ e P oxk

Prove (a) gjk@ = 8 b ==¢"—

ox/ oxa’
Let A? be a vector field. Find the corresponding unit vector.

Show that the cosines of the angles which the three-dimensional unit vector U’ make with the coordinate curves
U, U, Us;

N TR/ ST RN/ FT

Determine the Christoffel symbols of the first kind in (a) rectangular, (b) cylindrical, and (c) spherical

coordinates.

are given by

Determine the Christoffel symbols of the first and second kinds in (a) parabolic cylindrical,
(b) elliptic cylindrical coordinates.

Find differential equations for the geodesics in (a) cylindrical, (b) spherical coordinates.
Show that the geodesics on a plane are straight lines.
Show that the geodesics on a sphere are arcs of great circles.
Write the Christoffel symbols of the second kind for the metric
ds® = (dx')? + [(xz)z _ (x1)2](dx2)2
and the corresponding geodesic equations.
Write the covariant derivative with respect to x? of each of the following tensors:

(a) A, (b) A}

Im>

©) Ay () AN, () Al
Find the covariant derivative of (a) gjkAk , (b) A’By, and (c) S/I;Aj with respect to x9.
Use the relation A/ = g”‘Ak to obtain the covariant derivative of A’ from the covariant derivative of Ay.

Suppose P is an invariant. Prove that ® ,, = ® ,; that is, the order of covariant differentiation of an invariant
is immaterial.

Show that €, and €”4" are covariant and contravariant tensors, respectively.

Express the divergence of a vector A” in terms of its physical components for (a) parabolic cylindrical,
(b) paraboloidal coordinates.

Find the physical components of grad ® in (a) parabolic cylindrical, (b) elliptic cylindrical coordinates.
Find V2® in parabolic cylindrical coordinates.

Using the tensor notation, show that (a) div curl A" = 0, (b) curl grad ® = 0.
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8.145.

8.146.
8.147.

8.148.

8.149.

8.150.

8.151.

8.152.
8.153.

8.154.

8.155.

8.156.

8.157.
8.158.
8.159.
8.160.
8.161.

8.162.

8.163.

8.164.

Calculate the intrinsic derivatives of the following tensor fields, assumed to be differentiable functions of t:
(a) Ay, (b) A%, (c) A;BY, (d) @A), where ¢ is an invariant.

Find the intrinsic derivative of (a) gjkAk, (b) 8£Aj, (©) gj 8’,A;

d 0A
Prove E(gqu,,A,,) = 2gMA, th
Show that if no external force acts, a moving particle of constant mass travels along a geodesic given by

o (dx’
(Yo
6s(ds>

Prove that the sum and difference of two relative tensors of the same weight and type is also a relative tensor of
the same weight and type.

Suppose AP? is a relative tensor of weight w. Prove that g 2Alr"1 is an absolute tensor.

LetA(p, ¢)Bl* = C,,,
weight w,. Prove that A(p, g) is a relative tensor of weight w, — wy. This is an example of the quotient law for

where B}* is an arbitrary relative tensor of weight wy and C;,, is a known relative tensor of

relative tensors.
Show that the quantity G(j, k) of Solved Problem 8.31 is a relative tensor of weight two.
Find the physical components of (a) the velocity and (b) the acceleration of a particle in spherical coordinates.

Let A" and B" be 2 vectors in 3-dimensional space. Show that if A and w are constants, then C" = AA" + uB” is
a vector lying in the plane of A” and B". What is the interpretation in higher dimensional space?

Show that a vector normal to the surface ¢(x', x%, x*) = constant is given by AP = gl 3874;. Find the corre-
sponding unit normal.

The equation of continuity is given by V - (av) + %—(: = 0 where o is the density and v is the velocity of a fluid.
Express the equation in tensor form.

Express the continuity equation in (a) cylindrical and (b) spherical coordinates.

Express Stokes’ theorem in tensor form.

Prove that the covariant curvature tensor R, is skew-symmetric in (a) p and g, (b) r and s, (c) g and s.
Prove Ryyrs = Rigpq.

Prove (a) Rygrs + Rpsgr + Rprsg =0, (b) Rpgrs + Rygps + Rygpg + Rpsrg = 0.

Prove that covariant differentiation in a Euclidean space is commutative. Thus show that the Riemann—
Christoffel tensor and curvature tensor are zero in a Euclidean space.
dx? . .
Let 7P = T be the tangent vector to curve C whose equation is X’ = x”(s) where s is the arc length. (a) Show
s
q

o1 18T
that g,,7°T? = 1. (b) Prove that g,,T7 T 0 and thus show that N7 = P is a unit normal to C for
s K Os

ON1
suitable k. (c¢) Prove that 3 is orthogonal to NY.
X

With the notation of the previous problem, prove:

N1 oN1
(@) gpqTPN? =0, (b) gqul’(S— = —Kor g, I" (8— + KTq) =0.
s s

r

1 /8N
Hence show that B" = — (
T

5 + KT’) is a unit vector for suitable 7 orthogonal to both 77 and NY.
S



8.165.

8.166.

8.167.
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Prove the Frenet—Serret formulas

8TP ONP 124
haha—" 3 Z1 B — kTP,
os K Os E K os

where 77, NP, and BP are the unit tangent, unit normal, and unit binormal vectors to C, and « and 7 are the
curvature and torsion of C.

Show that ds? = ¢2(dx*)? — dx*dx* (N = 3) is invariant under the linear (affine) transformation

X = y()c1 — vx4), 7 :xz, b :x3, 7= y(x4 —§x1>
where 7, B3, ¢, and v are constants, 8 = v/c and y = (1 — 8>)~"/2. This is the Lorentz transformation of special
relativity. Physically, an observer at the origin of the x’ system sees an event occurring at position x!, x?, x* at
time x* while an observer at the origin of the X' system sees the same event occurring at position X', x>
time x*. It is assumed that (1) the two systems have the x! and X' axes coincident, (2) the positive x> and x> axes
are parallel respectively to the positive X¥> and X° axes, (3) the X system moves with velocity v relative to the x’
system, and (4) the velocity of light c is a constant.

,X2, % at

Show that to an observer fixed in the x/(¥') system, a rod fixed in the ¥'(x) system lying parallel to the x'(x')

axis and of length L in this system appears to have the reduced length L/1 — 8%. This phenomena is called the
Lorentz—Fitzgerald contraction.

ANSWERS TO SUPPLEMENTARY PROBLEMS

8.77.

8.78.

8.79.

8.80.

8.81.

8.82.

8.83.
8.87.

8.88.
8.89.
8.94.
8.95.

(@) ax*x® (b) A¥B; (c) AJB* (d) g%7g. N =4 (e) B, N =2

(a) %(\/EAI) + %(\/EAZ) + %(@A% (b) AV'BIC) 4+ A2'BIC, + ABLCy + APB,C,
ox/ ax!  ox/ ax? ax/ axN

o Tarar T

Ellipse for N = 2, ellipsoid for N = 3, hyperellipsoid for N = 4.

(©

allxl + 6112X2 = b]

1 2
ax + apx” =b;

g A A e P 0RO oy R WE
qu = Al] b qu) =TT Buk = A a—g “mn d) A, = 7Aln
@4 = iawar ™ OB =iavadae o © Ci= g Cm DA =55

(a) B(j, k, m) is a tensor of rank three and is covariant of order two and contravariant of order one. If can be
written Bj”,z. (b) C(j, k, m, n) is not a tensor.

4 =1024
(a) 2pcos’ ¢ — zcos ¢ + p° sin® ¢ cos® ¢, —2p” sin ¢ cos P + pzsin d + p* sin @ cos’ ¢, pzsin ¢.

(b) 2rsin? @ cos? ¢ — rsin B cos 6 cos ¢ + r° sin 6 sin? ¢ cos® ¢ + 12 sin 6 cos? 6 sin ¢,
212 sin 6 cos @ cos® ¢ — 1> cos® B cos @ + r* sin® O cos Bsin’ ¢ cos> ¢ — r sin® H cos 6 sin ¢,
— 2% sin® 6 sin ¢ cos ¢ + r* sin O cos 6 sin ¢ + 7* sin* 6 sin ¢ cos® ¢
w?vz + 30, 3u — uv?z, u* + uv — v?
(@) By, (b) A", (¢) &, (D N 8.98. Yes.
It is not a tensor. 8.100. (a) 10, (b) 21, (c) N(N +1)/2
Rank 3 and rank 1, respectively. 8.101. N(N — 1)(N —2)/6
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(7 2 -1 —4 14 10 18 8
8.107. (a)S:_O 3], Dz[ 4 5], Pz[o 2], Q=[_8 _2}
F 3 -1 3 1 1 -1 1 —4 6
®s=| 2 0 =2|, b=|-4 -4 6|, P=|-9 -7 10|,
-2 1 1 0 5 -3 9 9 —16
1 8 =3
o=| 8 —-16 11
|2 10 -7

3 -16 20
8.108. (a) [{055 _86} ® | 9 163 —136|  8110. [_6 > 3}

76 61 —135 132 -4 17 =2
) | 1/3 1/3 0
8111. x=-1,y=3,z=2 8.112. (a)|: } () | =5/3 1/3 1 ].Yes
5/2 32 . o
axl ' ol
1 w2 ad .
A 2 a2 a2 A
8115. (a) | A2 |=| & & & ||
e ax!  ox2  oxd A3
w w o
ax!  ox?  oxd
o ax? ! ' ax!
- ol ol P )
An A A aﬁl aiz a§3 A A An aﬁz aiz aﬁz
) A An Ay |=| 5 = — | |An An Ax = = =
Az1 An A 8)?1 3)?2 a)*c% Azl An A 3)?3 3)?3 %g
ox  ox” Ox ox’  ox’  Ox
w o o x o ow o
! ax ox! ! !
—1 =1 =l a1 9.2 9.3 ael ax2 93
A A A ox!  ox*  Ox Al Al Al ox' ox- ox
o 2 | | W 1 °3 3 R
© |A] A, A5 |=| = 5 == | |AT A A3 r = —
-3 -3 -3 ol o | | A3 A3 A3 ox! ox? o
A Ay Ay x> X o ! 2 3 o wd
axl w2 ol oxl o

8.116. A =4,-1

1
u? +1? 0 0 W2+ 12 0 0
8.119. (a) 0 w4+t 0, 0 1
0 0 1 M2 + UZ
0 0 1
1 0
a®(sinh? u + sin? v) 0 0 a*(sinh? u + sin” v)
(b) 0 a*(sinh® u +sin’>v) 0 |, 0 1
0 0 1 a?(sinh® u + sin’ v)
0 0
4/73 0 1
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. . . AP AP
8.123. (a) AP = glAY, (b) APT = gligA,, (c) AT = grigmg’A%  8.128. or
j q Jq Pq PIS g 1 A[’Ap \/W

8.130. (a) They are all zero. (b) [22, 1] = —p, [12, 2] = [21, 2] = p. All others are zero.
(©) [22,1]1 = —r, [33, 1] = —rsin® 6, [33, 2] = —r*sin Hcos 0

[21,2] =[12,2] = r, [31, 3] = [13, 3] = rsin® 6
[32, 3] = [23, 3] = r*sin 6 cos 6.  All others are zero.

8.131. (a) [11,1] =u, [22,2] = v, [11,2] = —v, [22, 1] = —u,
[12, 1] =21, 1] = v, [21,2] =[12, 2] = u.

1 u 2 v 1 —u 2 —v
1 w4+ | 22] w2+ |22 w4+ 11T wd e’
1 1 v 2 2 u
= =—, = =———. All others are zero.
21 12 u? + 0?2’ | 21 12 u? + 12

(b) [11, 1] = 24 sinhu coshu, [22, 2] = 2a% sinv cos v, [11, 2] = —2a” sinv cos v
[22, 1] = —2a® sinhu coshu, [12, 1] = [21, 1] = 24’ sinv cos v, [21, 2] = [12, 2] = 24” sinh u cosh u
1 sinh u# cosh u { 2 } _ sinv cosv { 1 }_ —sinhu coshu

11 sinh? u + sin® v’ | 22 sinh?u +sin?v’ |22~ sinh®u +sin? v’

2| —sinvcoso {1}_{1}_ sinv cos v
11 sinh?u+sin?v’ |21 | 12)  sinh®u +sin®v’

2 { 2 } sinh u coshu

=——>————. All others are zero.
21 12 sinh” u + sin” v

ds?

d*p do\> ¢ 2dpdd d*z
8.132. —pl—1]) =0 -———=0, —=0
(@ p(ds) " ds? +pds ds 7 ds?

&r (d6\’ , (dd\? 20 2drdo do\>
) —rsin?o(=—) =0 = _sinfcosf(—) =0
® 7= r(ds) rsim (ds) a2 Trdsas  Smoeos (ds>

d’¢ 2drdo dodd¢
TP 1 g cotp il — 0
ds2+rdsd + ds ds
8.135 G G B QU —L 2 —L All others are zero
I =0 B ReS A B2 _(xl)z—(xz)” 2[7 @y -6 |
et 2 adtad 2 ' _
ds2 ()cl)2 22 ds ds (22— \ds)

ik
jko_ aAJI _ jk S‘k Jjs
8.136. () Afy = A‘ Al Al
(b) A _ 8Ajl]r(n s Ajk _ s A]k + Ask + k AJS
Img — Ixd lq sm mq Is qs qs Im
A, [ s). s, s J s
(C) Aklmq 8}2(‘11 - {kq }Ajslm - { lq A]ksm - mq A]kls + gs Aklm

ikl
(d) AN — oA, | s AM 4 J AN 4 k prm l A5
4 ot mq gs qs qs
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oAl s ), s ) i k
mn __ jk jk o _ Jjk sk Js
(e) lmnq e { lq Asmn mq Alxn ng A]mr + qS Almn + gs A]mn

8.137. (a) guAX,. (b) A/ Bi+ABy 4. (©) §A;,

1 0 0 0A,
8.141. (a) —— | —Wu? +1%A,) + — W u? +v?A,) | +
u? + v? | ou o

2
(b) - [ (uvvu? +v%4A,) +—(uv\/u +v2A )i| 1 74,

uv(u® + v2) | 9 v 072
1 Bl 1 od od
8.142. —— e t—=— e, +—
® Vu? +v? ou ¢ +«/u2+vz w 6
1 oD oD oD
(b)—( u+7ev)+7 e;
av/sinh? u + sin? v \ dv dz

where e,, e, and e, are unit vectors in the directions of increasing u, v, and z, respectively.

1 RRLONERR) P
8.143. m |:8Lt2 +W + (I/t +v )(D:I
6Ak dx? 0A, s dx?  dAg s dx?
.145. —_— =|—— AT _ = Ayi
8 @ Anagr (Bx‘i {kq}‘) dr — dt {kq}‘dt
SAK  dA Jl,gdx k|, dxt
b) —=— AR A —
®) ot dt+{qs} dt+{qs} dt
8A; 8Bk dA; s dx1 dB* k dx?
—ABk = ka A— |BX + A — B —
© 5B = A= (dt {jq}‘dt> TAar T gs)]  dt
6A] &P dA}, J dx? s dd do
d) —(PA}) = by —A =0 Al — — A=) +—A4]
@ ( 0 =C5 5 A <dt+{s}kt [kq}‘dz>+dzk
8.146. (a) oa" =g dik + k A"%
o 8k = 8 ar gs [ dt
- OA; (dA; s dx? dA; s dx?
§—2=8§-2L-] 1A,—)=""T-— A
®) 5 k(dz {jq} ‘dt) dt {kq} *dt
A, dA,, s |, dx r|,,dx?
© a5 g*( i {pq }Aq * { as }Ap Z)
8.153. (a) 7, r6, rsin0¢ (b)F — r6® — rsin 9(;’)2 (r 6) — rsin 6 cos 0(;’)2 Odt (r sin® O¢b)
q q
8.156. Hovh) | ovf B + o = 0 where v7 are the contravariant components of the velocity.
x4 2g oxa ot
8.157. () - ( M+ )+ ( o+ I8 o
157. —(o —(o — —+—
ap p ot

20! 0
(b) —(crv )_,_7(0.” )+—¢)(0'v )+ cr( Y+ cot 0) +a—(tr = 0 where v', v%, and v® are the contravariant
r

components of the velocity.

P ds
c s
unit normal to the surface S, which has C as boundary.

dx? dx? . -
8.158. JA —ds = —”e”q’Aq, +Up dS where = is the unit tangent vector to the closed curve C and ” is the positive
S
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absolute:

derivative, 197

tensor, 198
acceleration, 45
addition of vectors, 2
affine transformation, 73
algebra of vectors, 3
angle, 1, 77

between tensors, 195
angular:

momentum, 62

velocity, 33, 41
anti-derivative, 97
arbitrary constant vector, 97
areal velocity, 102
arc length, 159
associated tensors, 197
associative law, 3

base vectors, 9, 10
binormal vector B, 49, 56
bipolar coordinates, 163

calculus of variations, 196
cancellation law, 3
Cartesian tensors, 227
central force, 66, 102
centripetal acceleration, 54, 62, 68
charge density, 147
Christoffel symbol:

of the first kind, 195

of the second kind, 195
circular helix, 59
circulation, 98
circumcenter, 41
column matrix (vector), 192
commutative law, 3
components, 158

of a vector, 4, 10
conformable matrices, 193
conjugate tensor, 194
conservative vector field, 87, 99, 108, 199
continuity equation, 81, 147
continuous function, 46

Index

contraction, 192
constant of integration, 97
contravariant:
components, 158
tensor of the first order (rank), 190, 199
vector, 180
coordinate:
surfaces, 72
transformation, 72, 189
Cortiolis acceleration, 68
cosine, law of, 26, 42
covariant:
components, 158
curvature tensor, 225
derivative, 196
tensor of the first order (rank), 190
vector, 182, 190
cross product, 22
cross-cut, 134
curl, 71, 81, 197
current density, 147
curvature, 49, 56
curve (space), 45
curvilinear coordinates, 57
cycloid, 154
cylindrical coordinates, 160

A, (del), 69
A?, (Laplacian), 72
definite integral, 97
del, 69, 128
dependence, linear 5, 14
derivative, 44
partial, 47
Descartes, folium of, 154
determinant, 193
dextral system, 4
difference of vectors, 2
diffential geometry, 48
differentiable function, 46, 47
of order n, 46
diffusivity, 148
direction cosines, 15, 25



directional derivative, 62
distributive law, 3
divergence, 70

theorem, 126
dot product, 21
dummy index, 190
dyadic, 87
dynamics, 49

eigenvalue, 227
ellipsoidal coordinates, 163
elliptic cylindrical coordinates, 161
energy, 112
equal:
vectors, 1
matrices, 193
equilibriant, 8

field, (scalar, vector), 5

flux, 100

folium of Descartes, 154
four-leafed rose, 154

free index, 190

Frenet—Serret formulas, 49, 56
fundamental quadratic form, 171
fundamental tensor, 194

Gauss’ theorem, 145
geodesic, 196
gradient, 69, 159, 197
Green’s first identity (theorem), 127, 142
Green’s second identity, 127, 143
Green’s symmetrical theorem, 127, 143
Green’s theorem, 127, 130

in space, 127

Hamilton—Cayley theorem, 227
heat equation, 148

helix, circular, 59
hyperellipsoid, 230

hyperplane, 199

hypersphere, 199

hypersurface, 199

hypocycloid, 154

ijk coordinates, 3
indefinite integral, 97
independence, linear, 5
initial point, 1

inner multiplication, 192
integral, 97

Index

intrinsic derivative, 197
invariant, 73, 90, 191
inverse matrix, 193
irrotational vector, 86, 108

Jacobian, 92

Kepler’s laws, 103, 122

kinematics, 49

kinetic energy, 112

Kronecker’s (delta) symbol,
91, 191, 201

Lagrange:

equation, 216

multiplier, 70
Laplace’s equation, 79, 156
Laplacian operator (A%), 72, 197
law of cosines, 26

for spherical triangles, 42
law of sines, 31

for spherical triangles, 37
leminscat, 154
length of a:

tensor, 195

vector, 22
linear combination, 5
linear dependence, 5, 14
linear independence, 5
line:

element, 194, 208

integral, 98, 104
Lorentz—Fitzgerald contraction, 230

magnitude of a vector, 22
main (principal) diagonal, 192
matrix, 88, 192, 206
column matrix, 192
nonsingular matrix, 193
null matrix, 192
row matrix, 192
singular matrix, 193
square matrix, 192
unit matrix, 192
matrix transpose, 193
Maxwell’s equations, 86, 94, 224
mechanics, 49
metric, 194
coefficient, 171
form, 171, 194
tensor, 194
mixed tensor, 190



Index

Moebias strip, 119

moment, 33

momentum, 49

moving trihedral, 49
multiply-connected region, 131

nabla, 69
N-dimensional Euclidean spaces, 194
negative, 3

of a vector, 1
Newton’s law, 49, 102, 222
non-orientable surface, 119
non-singular matrix, 193
normal:

plane, 49

vector N, 49
null matrix, 192

oblate spheroidal coordinates, 162
orientable surface, 119
origin, 1
orthocenter, 41
orthogonal, 157
curvilinear coordinate
systems, 157
transformation, 73
osculating plane, 49
outer multiplication, 192
outward drawn unit normal, 61, 99

parabolic cylindrical coordinates, 160
paraboloidal coordinates, 161
paralellogram law, 2, 7
partial derivative, 47
permutation symbols, 197
physical component tensor, 196
Poisson’s equation, 156
position vector, 4, 45
positive:

direction, 107, 127

unit normal, 99
potential energy, 112
principal (main) diagonal, 192
principal normal, 48, 56
product of matrices, 194
projection, 23
prolate spherical coordinates, 162
proper vector, 2
pure rotation, 73

quadratic forms, 171
quotient law, 192, 205

radius:

of curvature, 49, 56

of torsion, 49, 56

vector, 4
rank (of a tensor), 91
reciprocal sets (systems) of

vectors, 22

reciprocal tensor, 194
rectifying plane, 49
rectangular coordinates, 3
repulsive force, 100
resultant vector, 2
Riemann—Christoffel tensor, 225
Riemannian spaces, 194
right-handed coordinate system, 3, 4
rotation, 71, 73

pure, 73
rotation plus translation, 73
row matrix (vector), 192

scalar, 1, 6, 191
field, 5
function of position, 5
multiplication, 2, 6
potential, 87, 94, 99
product, 21
scale factors, 158
Schroedinger’s equation, 184
simple closed curve, 98
simply-connected region, 130
sines, law of, 31
singular:
matrix, 193
points, 164
sink, 17
sink field, 17
skew symmetry, 191
skew-symmetric tensor, 191
solenoidal vector, 82
solid angle, 146
source, 17, 142
source field, 17
space:
curve, 45
integral, 100
spherical:
coordinates, 160
triangles, 42
spheroidal coordinates, 160
square matrices, 192
stationary scalar field, 5
stationary vector field, 6



steady state
scalar field, 5
vector field, 6
Stokes’ theorem, 126
sum:
of matrices, 193
of vectors, 2
summation convention, 190
superscripts, 189
surface:
curvilinear coordinates, 178
integral, 99, 113
symmetric tensor, 191
symmetry, 191

tangent vector T, 48
tensor:
addition, 192
analysis, 88, 182, 189
contraction, 192
density, 198
inner multiplication, 192
first rank, 190
outer multiplication, 192
quotient law, 192
rank zero, 191
subtraction, 192
terminal point, 1

three-dimensional Euclidean spaces, 194

toroidal coordinate system, 163
torsion, 49, 56

transformation of coordinates, 157, 189

translation, 73
triad, 49, 88
triadic, 88
triangle law, 7
trihedral, 49
triple product, 22
twisted cubic, 65

umbral index, 190
unitary base vectors, 158
unit:
dyads, 87
matrix, 192
multiplication, 3
vector, 3, 158

vector, 1, 6
area, 32
column, 192
difference, 2
elements, 159
end of, 1
field, 5
function of position, 5
initial point of, 1
null, 2
origin of, 1
potential, 94
proper, 2
resultant, 2
row, 192
space, 3, 6
sum, 2, 6
terminal point of, 1
terminus of, 1
unit, 3

velocity, 45

volume integral, 100

vortex field, 86

wave equation, 86
work, 27

Z€ero:
matrix, 192
vector, 2

Index
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