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Preface

The main purpose of this second edition is essentially the same as the first edition with changes noted below.
Accordingly, first we quote from the preface by Murray R. Spiegel in the first edition of this text.

“This book is designed to be used either as a textbook for a formal course in vector analysis or as a useful
supplement to all current standard texts.”

“Each chapter begins with a clear statement of pertinent definitions, principles and theorems together
with illustrated and other descriptive material. This is followed by graded sets of solved and supplementary
problems. . . .Numerous proofs of theorems and derivations of formulas are included among the solved pro-
blems. The large number of supplementary problems with answers serve as complete review of the material
of each chapter.”

“Topics covered include the algebra and the differential and integral calculus of vectors, Stokes’
theorem, the divergence theorem, and other integral theorems together with many applications drawn
from various fields. Added features are the chapters on curvilinear coordinates and tensor analysis . . . .”

“Considerable more material has been included here than can be covered in most first courses. This has
been done to make the book more flexible, to provide a more useful book of reference, and to stimulate
further interest in the topics.”

Some of the changes we have made to the first edition are as follows: (a) We expanded many of the sec-
tions to make it more accessible for out readers. (b) We reformatted the text, such as, the chapter number is
included in the label of all problems and figures. (c) Many results are restated formally as Propositions and
Theorems. (d) New material was added, such as, a discussion of linear dependence and linear independence,
and a discussion of Rn as a vector space.

Finally, we wish to express our gratitude to the staff of McGraw-Hill, particularly to Charles Wall, for
their excellent cooperation at every stage in preparing this second edition.

SEYMOUR LIPSCHUTZ

DENNIS SPELLMAN

Temple University
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CHAP T E R 1

Vectors and Scalars

1.1 Introduction

The underlying elements in vector analysis are vectors and scalars. We use the notation R to denote the
real line which is identified with the set of real numbers, R2 to denote the Cartesian plane, and R3 to
denote ordinary 3-space.

Vectors

There are quantities in physics and science characterized by both magnitude and direction, such as dis-

placement, velocity, force, and acceleration. To describe such quantities, we introduce the concept of a

vector as a directed line segment PQ
�!

from one point P to another point Q. Here P is called the initial

point or origin of PQ
�!

, and Q is called the terminal point, end, or terminus of the vector.

We will denote vectors by bold-faced letters or letters with an arrow over them. Thus the vector PQ
�!

may

be denoted by A or A
!

as in Fig. 1-1(a). The magnitude or length of the vector is then denoted by

jPQ�!j, jAj, jA!j, or A.
The following comments apply.

(a) Two vectors A and B are equal if they have the same magnitude and direction regardless of their initial
point. Thus A ¼ B in Fig. 1-1(a).

(b) A vector having direction opposite to that of a given vectorA but having the same magnitude is denoted
by �A [see Fig. 1-1(b)] and is called the negative of A.

(b)

A

–A

A

(a)

B

Fig. 1-1

Scalars

Other quantities in physics and science are characterized by magnitude only, such as mass, length, and
temperature. Such quantities are often called scalars to distinguish them from vectors. However, it must
be emphasized that apart from units, such as feet, degrees, etc., scalars are nothing more than real
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numbers. Thus we can denote them, as usual, by ordinary letters. Also, the real numbers 0 and 1 are part of
our set of scalars.

1.2 Vector Algebra

There are two basic operations with vectors: (a) Vector Addition; (b) Scalar Multiplication.

(a) Vector Addition

Consider vectors A and B, pictured in Fig. 1-2(a). The sum or resultant of A and B, is a vector C formed by
placing the initial point of B on the terminal point of A and then joining the initial point of A to the terminal
point of B, pictured in Fig. 1-2(b). The sumC is writtenC ¼ Aþ B. This definition here is equivalent to the
Parallelogram Law for vector addition, pictured in Fig. 1-2(c).

BA

C = A + B

(b)

B

A

(a)

B

A
C = A + B

(c)

Fig. 1-2

Extensions to sums of more than two vectors are immediate. Consider, for example, vectors A, B, C, D
in Fig. 1-3(a). Then Fig. 1-3(b) shows how to obtain the sum or resultant E of the vectors A, B, C, D, that is,
by connecting the end of each vector to the beginning of the next vector.

A

C

D

B

(a)

A

B

C

D

(b)

E = A + B + C + D

Fig. 1-3

The difference of vectors A and B, denoted by A� B, is that vector C, which added to B, gives
A. Equivalently, A� B may be defined as Aþ (�B).

If A ¼ B, then A� B is defined as the null or zero vector; it is represented by the symbol 0 or 0. It has
zero magnitude and its direction is undefined. A vector that is not null is a proper vector. All vectors will
be assumed to be proper unless otherwise stated.

(b) Scalar Multiplication

Multiplication of a vector A by a scalar m produces a vector mA with magnitude jmj times the magnitude of
A and the direction of mA is in the same or opposite of A according as m is positive or negative. If m ¼ 0,
then mA ¼ 0, the null vector.

2 CHAPTER 1 Vectors and Scalars



Laws of Vector Algebra

The following theorem applies.

THEOREM 1.1: Suppose A, B, C are vectors and m and n are scalars. Then the following laws hold:

[A1] (Aþ B)þ C ¼ (Aþ B)þ C Associative Law for Addition

[A2] There exists a zero vector 0 such that, for

every vector A,

Aþ 0 ¼ 0þ A ¼ A Existence of Zero Element

[A3] For every vector A, there exists a vector

�A such that

Aþ (�A) ¼ (�A)þ A ¼ 0 Existence of Negatives

[A4] Aþ B ¼ Bþ A Commutative Law for Addition

[M1] m(Aþ B) ¼ mAþ mB Distributive Law

[M2] (mþ n)A ¼ mAþ nA Distributive Law

[M3] m(nA) ¼ (mn)A Associative Law

[M4] 1(A) ¼ A Unit Multiplication

The above eight laws are the axioms that define an abstract structure called a vector space.
The above laws split into two sets, as indicated by their labels. The first four laws refer to vector addition.

One can then prove the following properties of vector addition.

(a) Any sum A1 þ A2 þ � � � þ An of vectors requires no parentheses and does not depend on the order of
the summands.

(b) The zero vector 0 is unique and the negative �A of a vector A is unique.
(c) (Cancellation Law) If Aþ C ¼ Bþ C, then A ¼ B.

The remaining four laws refer to scalar multiplication. Using these additional laws, we can prove the
following properties.

PROPOSITION 1.2: (a) For any scalar m and zero vector 0, we have m0 ¼ 0.
(b) For any vector A and scalar 0, we have 0A ¼ 0.
(c) If mA ¼ 0, then m ¼ 0 or A ¼ 0.
(d) For any vector A and scalar m, we have (�m)A ¼ m(�A) ¼ �(mA).

1.3 Unit Vectors

Unit vectors are vectors having unit length. Suppose A is any vector with length jAj . 0. Then A=jAj
is a unit vector, denoted by a, which has the same direction as A. Also, any vector A may be represented
by a unit vector a in the direction of A multiplied by the magnitude of A. That is, A ¼ jAja.

EXAMPLE 1.1 Suppose jAj ¼ 3. Then a ¼ jAj=3 is a unit vector in the direction of A. Also, A ¼ 3a.

1.4 Rectangular Unit Vectors i, j, k

An important set of unit vectors, denoted by i, j, and k, are those having the directions, respectively, of the
positive x, y, and z axes of a three-dimensional rectangular coordinate system. [See Fig. 1-4(a).]

The coordinate system shown in Fig. 1-4(a), which we use unless otherwise stated, is called a right-
handed coordinate system. The system is characterized by the following property. If we curl the fingers
of the right hand in the direction of a 908 rotation from the positive x-axis to the positive y-axis, then
the thumb will point in the direction of the positive z-axis.

CHAPTER 1 Vectors and Scalars 3



Generally speaking, suppose nonzero vectors A, B, C have the same initial point and are not
coplanar. Then A, B, C are said to form a right-handed system or dextral system if a right-threaded screw
rotated through an angle less than 1808 from A to B will advance in the direction C as shown in Fig. 1-4(b).

x

O

(a)

j

k

i
y

z

(b)

A

B

C

(c)

x

A2 j

A1 i A3 k

A

z

y
O

Fig. 1-4

Components of a Vector

Any vector A in three dimensions can be represented with an initial point at the origin O ¼ (0, 0, 0) and its
end point at some point, say, (A1, A2, A3). Then the vectors A1i, A2j, A3k are called the component vectors
of A in the x, y, z directions, and the scalars A1, A2, A3 are called the components of A in the x, y, z
directions, respectively. (See Fig. 1-4(c).)

The sum of A1i, A2j, and A3k is the vector A, so we may write

A ¼ A1iþ A2 jþ A3k

The magnitude of A follows:

jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ A2

2 þ A2
3

q
Consider a point P(x, y, z) in space. The vector r from the origin O to the point P is called the position

vector (or radius vector). Thus r may be written

r ¼ xiþ yjþ zk

It has magnitude jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

The following proposition applies.

PROPOSITION 1.3: Suppose A ¼ A1iþ A2jþ A3k and B ¼ B1iþ B2jþ B3k. Then

(i) Aþ B ¼ (A1 þ B1)iþ (A2 þ B2)jþ (A3 þ B3)k
(ii) mA ¼ m(A1iþ A2jþ A3k) ¼ (mA1)iþ (mA2)jþ (mA3)k

EXAMPLE 1.2 Suppose A ¼ 3iþ 5j� 2k and B ¼ 4i� 8jþ 7k.

(a) To find Aþ B, add corresponding components, obtaining Aþ B ¼ 7i� 3jþ 5k
(b) To find 3A� 2B, first multiply by the scalars and then add:

3A� 2B ¼ (9iþ 15j� 6k)þ (�8iþ 16j� 14k) ¼ iþ 31j� 20k

(c) To find jAj and jBj, take the square root of the sum of the squares of the components:

jAj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 25þ 4

p ¼
ffiffiffiffiffi
38

p
and jBj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16þ 64þ 49
p ¼

ffiffiffiffiffiffiffiffi
129

p
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1.5 Linear Dependence and Linear Independence

Suppose we are given vectorsA1, A2, . . . ,An and scalars a1, a2, . . . , an. We can multiply the vectors by the
corresponding scalars and then add the corresponding scalar products to form the vector

B ¼ a1A1 þ a2A2 þ � � � þ anAn

Such a vector B is called a linear combination of the vectors A1, A2, . . . ,An.
The following definition applies.

DEFINITION Vectors A1, A2, . . . , An are linearly dependent if there exist scalars a1, a2, . . . , an, not all
zero, such that

a1A1 þ a2A2 þ � � � þ anAn ¼ 0

Otherwise, the vectors are linearly independent.

The above definition may be restated as follows. Consider the vector equation

x1A1 þ x2A2 þ � � � þ xnAn ¼ 0

where x1, x2, . . . , xn are unknown scalars. This equation always has the zero solution x1 ¼ 0,
x2 ¼ 0, . . . , xn ¼ 0. If this is the only solution, the vectors are linearly independent. If there is a solution
with some xj=0, then the vectors are linearly dependent.

Suppose A is not the null vector. Then A, by itself, is linearly independent, since

mA ¼ 0 and A=0, implies m ¼ 0

The following proposition applies.

PROPOSITION 1.4: Two or more vectors are linearly dependent if and only if one of them is a linear
combination of the others.

COROLLARY 1.5: Vectors A and B are linearly dependent if and only if one is a multiple of the other.

EXAMPLE 1.3
(a) The unit vectors i, j, k are linearly independent since neither of them is a linear combination of the other two.

(b) Suppose aAþ bBþ cC ¼ a0Aþ b0Bþ c0C where A, B, C are linearly independent. Then a ¼ a0, b ¼ b0,
c ¼ c0.

1.6 Scalar Field

Suppose that to each point (x, y, z) of a region D in space, there corresponds a number (scalar) f(x, y, z).
Then f is called a scalar function of position, and we say that a scalar field f has been defined on D.

EXAMPLE 1.4
(a) The temperature at any point within or on the Earth’s surface at a certain time defines a scalar field.

(b) The function f(x, y, z) ¼ x3y� z2 defines a scalar field. Consider the point P(2, 3, 1). Then

f(P) ¼ 8(3)� 1 ¼ 23.

A scalar field f, which is independent of time, is called a stationary or steady-state scalar field.

1.7 Vector Field

Suppose to each point (x, y, z) of a region D in space there corresponds a vector V(x, y, z). Then V is called a
vector function of position, and we say that a vector field V has been defined on D.

CHAPTER 1 Vectors and Scalars 5



EXAMPLE 1.5
(a) Suppose the velocity at any point within amoving fluid is known at a certain time. Then a vector field is defined.

(b) The function V(x, y, z) ¼ xy2i� 2yz3jþ x2zk defines a vector field. Consider the point P(2, 3, 1). Then

V(P) ¼ 18i� 6jþ 4k.

A vector field V which is independent of time is called a stationary or steady-state vector field.

1.8 Vector Space Rn

Let V ¼ Rn where Rn consists of all n-element sequences u ¼ (a1, a2, . . . , an) of real numbers called the
components of u. The term vector is used for the elements of V and we denote them using the letters u,
v, and w, with or without a subscript. The real numbers we call scalars and we denote them using
letters other than u, v, or w.

We define two operations on V ¼ Rn:

(a) Vector Addition

Given vectors u ¼ (a1, a2, . . . , an) and v ¼ (b1, b2, . . . , bn) in V, we define the vector sum uþ v by

uþ v ¼ (a1 þ b1, a2 þ b2, . . . , an þ bn)

That is, we add corresponding components of the vectors.

(b) Scalar Multiplication

Given a vector u ¼ (a1, a2, . . . , an) and a scalar k in R, we define the scalar product ku by

ku ¼ (ka1, ka2, . . . , kan)

That is, we multiply each component of u by the scalar k.

PROPOSITION 1.6: V ¼ Rn satisfies the eight axioms of a vector space listed in Theorem 1.1.

SOLVED PROBLEMS

1.1. State which of the following are scalars and which are vectors:

(a) specific heat, (b) momentum, (c) distance, (d) speed, (e) magnetic field intensity

Solution

(a) scalar, (b) vector, (c) scalar, (d) scalar, (e) vector

1.2. Represent graphically: (a) a force of 10 lb in a direction 308 north of east,
(b) a force of 15 lb in a direction 308 east of north.

Solution

Choosing the unit of magnitude shown, the required vectors are as indicated in Fig. 1-5.

Unit = 5 lb

N

S

(a)

30°

10 lb

W E W

N

S

(b)

30° 15
lb

E

Fig. 1-5
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1.3. An automobile travels 3 miles due north, then 5 miles northeast. Represent these displacements
graphically and determine the resultant displacement: (a) graphically, (b) analytically.

Solution

Figure 1.6 shows the required displacements.

Vector OP or A represents displacement of 3 miles due north.

Vector PQ or B represents displacement of 5 miles north east.

Vector OQ or C represents the resultant displacement or sum of vectors A and B, i.e. C ¼ Aþ B. This is the
triangle law of vector addition.

The resultant vectorOQ can also be obtained by constructing the diagonal of the parallelogramOPQR having

vectors OP ¼ A and OR (equal to vector PQ or B) as sides. This is the parallelogram law of vector addition.

(a) Graphical Determination of Resultant. Lay off the 1 mile unit on vector OQ to find the magnitude 7.4 miles

(approximately). Angle EOQ ¼ 61:58, using a protractor. Then vector OQ has magnitude 7.4 miles and

direction 61.58 north of east.

(b) Analytical Determination of Resultant. From triangle OPQ, denoting the magnitudes of A, B, C by A, B, C,

we have by the law of cosines

C2 ¼ A2 þ B2 � 2AB cos/OPQ ¼ 32 þ 52 � 2(3)(5) cos 1358 ¼ 34þ 15
ffiffiffi
2

p
¼ 55:21

and C ¼ 7:43 (approximately).

By the law of sines,
A

sin/OQP
¼ C

sin/OPQ
. Then

sin/OQP ¼ A sin/OPQ

C
¼ 3(0:707)

7:43
¼ 0:2855 and /OQP ¼ 168350:

Thus vector OQ has magnitude 7.43 miles and direction (458þ 168350) ¼ 618350 north of east.

B A

Q

R

B

O

A

P
45°

S

N

C
= 

A
 +

 B

W E

Unit = 1 mile

135°

Unit = 5 ft

Q

O

D

CA

B

R

P

45°

S

N

W E

30°

60°

Fig. 1-6 Fig. 1-7

1.4. Find the sum (resultant) of the following displacements:

A: 10 ft northwest, B: 20 ft 308 north of east, C: 35 ft due south.

Solution

Figure 1-7 shows the resultant obtained as follows (where one unit of length equals 5 feet).

Let A begin at the origin. At the terminal point of A, place the initial point of B. At the terminal point of B,
place the initial point of C. The resultant D is formed by joining the initial point of A to the terminal point of C,
that is, D ¼ Aþ Bþ C. Graphically, the resultant D is measured to have magnitude 4.1 units ¼ 20.5 ft and

direction 608 south of east.

CHAPTER 1 Vectors and Scalars 7



1.5. Show that addition of vectors is commutative, that is, Aþ B ¼ Bþ A. (Theorem 1.1 [A4].)

Solution

As indicated by Fig. 1-8,

OPþ PQ ¼ OQ or Aþ B ¼ C and ORþ RQ ¼ OQ or Bþ A ¼ C

Thus Aþ B ¼ Bþ A.

O

A

P

R

A

C = B
+ A

C = A
+ B

B

B

Q

O

A

P

R

C

(B + C)(A
+ B)

D

B
Q

Fig. 1-8 Fig. 1-9

1.6. Show that addition of vectors is associative, that is, Aþ (Bþ C) ¼ (Aþ B)þ C. (Theorem1.1 [A1].)

Solution

As indicated by Fig. 1-9,

OPþ PQ ¼ OQ ¼ (Aþ B) and PQþ QR ¼ PR ¼ (Bþ C)

OPþ PR ¼ OR ¼ D or Aþ (Bþ C) ¼ D and OQþ QR ¼ OR ¼ D or (Aþ B)þ C ¼ D

Then Aþ (Bþ C) ¼ (Aþ B)þ C.

1.7. Forces F1, F2, . . . ,F6 act on an object P as shown in Fig. 1-10(a). Find the force that is needed to
prevent P from moving.

Solution

Since the order of addition of vectors is immaterial, we may start with any vector, say F1. To F1 add F2, then F3,

and so on as pictured in Fig. 1-10(b). The vector drawn from the initial point of F1 to the terminal point of F6 is

the resultant R, that is, R ¼ F1 þ F2 þ � � � þ F6.

The force needed to prevent P from moving is �R, sometimes called the equilibrant.

F5

F5

F1 F1

F2

F2

F3

F3

F4

F4

P

P

Resu
lta

nt =
 R

(a) (b)

F6
F6

Fig. 1-10
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1.8. Given vectors A, B, and C in Fig. 1-11(a), construct A� Bþ 2C.

Solution

Beginning with A, we add �B and then add 2C as in Fig. 1-11(b). The resultant is A� Bþ 2C.

A
B

C

(a)

A

2C

A – B + 2C = A + (–B) + 2C

–B

(b)

Fig. 1-11

1.9. Given two non-collinear vectors a and b, as in Fig. 1-12. Find an expression for any vector r lying in
the plane determined by a and b.

Solution

Non-collinear vectors are vectors that are not parallel to the same line. Hence, when their initial points

coincide, they determine a plane. Let r be any vector lying in the plane of a and b and having its initial

point coincident with the initial points of a and b at O. From the terminal point R of r, construct lines parallel
to the vectors a and b and complete the parallelogram ODRC by extension of the lines of action of a and b if

necessary. From Fig. 1-12,

OD ¼ x(OA) ¼ xa, where x is a scalar

OC ¼ y(OB) ¼ yb, where y is a scalar:

But by the parallelogram law of vector addition

OR ¼ ODþOC or r ¼ xaþ yb

which is the required expression. The vectors xa and yb are called component vectors of r in the directions a
and b, respectively. The scalars x and y may be positive or negative depending on the relative orientations

of the vectors. From the manner of construction, it is clear that x and y are unique for a given a, b, and r.
The vectors a and b are called base vectors in a plane.

D

A

O

C
B

R

a r

b

U

a

c
r

T
S

P

b

V

A

C

O

R

B

Q

Fig. 1-12 Fig. 1-13
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1.10. Given three non-coplanar vectors a, b, and c, find an expression for any vector r in three-dimensional
space.

Solution

Non-coplanar vectors are vectors that are not parallel to the same plane. Hence, when their initial points

coincide, they do not lie in the same plane.

Let r be any vector in space having its initial point coincident with the initial points of a, b, and c atO. Through
the terminal point of r, pass planes parallel respectively to the planes determined by a and b, b and c, and a and c;
Refer to Fig. 1-13. Complete the parallelepiped PQRSTUV by extension of the lines of action of a, b, and c, if
necessary. From

OV ¼ x(OA) ¼ xa where x is a scalar

OP ¼ y(OB) ¼ yb where y is a scalar

OT ¼ x(OC) ¼ zc where z is a scalar:

But OR ¼ OVþ VQþQR ¼ OVþOPþOT or r ¼ xaþ ybþ zc.
From the manner of construction, it is clear that x, y, and z are unique for a given a, b, c, and r.
The vectors xa, yb, and zc are called component vectors of r in directions a, b, and c, respectively. The vectors

a, b, and c are called base vectors in three dimensions.

As a special case, if a, b, and c are the unit vectors i, j, and k, which are mutually perpendicular, we see that

any vector r can be expressed uniquely in terms of i, j, k by the expression r ¼ xiþ yjþ zk.
Also, if c ¼ 0, then r must lie in the plane of a and b, and so the result of Problem 1.9 is obtained.

1.11. Suppose a and b are non-collinear. Prove xaþ yb ¼ 0 implies x ¼ y ¼ 0.

Solution

Suppose x=0. Then xaþ yb ¼ 0 implies xa ¼ �yb or a ¼ �(y=x)b, that is, a and b must be parallel to the

same line (collinear) contrary to hypothesis. Thus, x ¼ 0; then yb ¼ 0, from which y ¼ 0.

1.12. Suppose x1aþ y1b ¼ x2aþ y2b, where a and b are non-collinear. Prove x1 ¼ x2 and y1 ¼ y2.

Solution

Note that x1aþ y1b ¼ x2aþ y2b can be written

x1aþ y1b� (x2aþ y2b) ¼ 0 or (x1 � x2)aþ (y1 � y2)b ¼ 0:

Hence, by Problem 1.11, x1 � x2 ¼ 0, y1 � y2 ¼ 0 or x1 ¼ x2, y1 ¼ y2.

1.13. Suppose a, b, and c are non-coplanar. Prove xaþ ybþ zc ¼ 0 implies x ¼ y ¼ z ¼ 0.

Solution

Suppose x=0. Then xaþ ybþ zc ¼ 0 implies xa ¼ �yb� zc or a ¼ �(y=x)b� (z=x)c. But �(y=x)b� (z=x)c
is a vector lying in the plane of b and c (Problem 1.10); that is, a lies in the plane of b and c, which is clearly a con-
tradiction to the hypothesis that a, b, and c are non-coplanar. Hence, x ¼ 0. By similar reasoning, contradictions are

obtained upon supposing y=0 and z=0.

1.14. Suppose x1aþ y1bþ z1c ¼ x2aþ y2bþ z2c, where a, b, and c are non-coplanar. Prove x1 ¼ x2,
y1 ¼ y2, and z1 ¼ z2.

Solution

The equation can be written (x1 � x2)aþ (y1 � y2)bþ (z1 � z2)c ¼ 0. Then, by Problem 1.13,

x1 � x2 ¼ 0, y1 � y2 ¼ 0, z1 � z2 ¼ 0 or x1 ¼ x2, y1 ¼ y2, z1 ¼ z2:
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1.15. Suppose the midpoints of the consecutive sides of a quadrilateral are connected by straight lines.
Prove that the resulting quadrilateral is a parallelogram.

Solution

Let ABCD be the given quadrilateral and P, Q, R, S the midpoints of its sides. Refer to Fig. 1-14.

Then, PQ ¼ 1
2
(aþ b), QR ¼ 1

2
(bþ c), RS ¼ 1

2
(cþ d), SP ¼ 1

2
(dþ a).

But, aþ bþ cþ d ¼ 0. Then

PQ ¼ 1
2
(aþ b) ¼ � 1

2
(cþ d) ¼ SR and QR ¼ 1

2
(bþ c) ¼ � 1

2
(dþ a) ¼ PS

Thus, opposite sides are equal and parallel and PQRS is a parallelogram.

A

a

b

D

Q

R

S

P

d

B

C

c

(c 
+ d)

1
2

(a
 +

 b)

1
2

(d + a)

1
2

(b + c)

1
2

O v

r2

r1 r'1

r'3

O'

P1 P2

P3

r'2

r3

Fig. 1-14 Fig. 1-15

1.16. Let P1, P2, and P3 be points fixed relative to an originO and let r1, r2, and r3 be position vectors from
O to each point. Suppose the vector equation a1r1 þ a2r2 þ a3r3 ¼ 0 holds with respect to origin O.
Show that it will hold with respect to any other origin O0 if and only if a1 þ a2 þ a3 ¼ 0.

Solution

Let r01, r
0
2, and r

0
3 be the position vectors of P1, P2, and P3 with respect toO

0 and let v be the position vector ofO0

with respect to O. We seek conditions under which the equation a1r
0
1 þ a2r

0
2 þ a3r

0
3 ¼ 0 will hold in the new

reference system.

From Fig. 1-15, it is clear that r1 ¼ vþ r01, r2 ¼ vþ r02, r3 ¼ vþ r03 so that a1r1 þ a2r2 þ a3r3 ¼ 0
becomes

a1r1 þ a2r2 þ a3r3 ¼ a1(vþ r01)þ a2(vþ r02)þ a3(vþ r03)
¼ (a1 þ a2 þ a3)vþ a1r

0
1 þ a2r

0
2 þ a3r

0
3 ¼ 0

The result a1r
0
1 þ a2r

0
2 þ a3r

0
3 ¼ 0 will hold if and only if

(a1 þ a2 þ a3)v ¼ 0, i:e: a1 þ a2 þ a3 ¼ 0:

The result can be generalized.

1.17. Prove that the diagonals of a parallelogram bisect each other.

Solution

Let ABCD be the given parallelogram with diagonals intersecting at P as in Fig. 1-16.

Since BDþ a ¼ b, BD ¼ b� a. Then BP ¼ x(b� a).
Since AC ¼ aþ b, AP ¼ y(aþ b).
But AB ¼ APþ PB ¼ AP� BP,
that is, a ¼ y(aþ b)� x(b� a) ¼ (xþ y)aþ (y� x)b.
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Since a and b are non-collinear, we have by Problem 1.12, xþ y ¼ 1 and y� x ¼ 0 (i.e., x ¼ y ¼ 1
2
) and P is

the mid-point of both diagonals.

A

B
C

D
b

b

a
a

P

O
B

A

P

a

r

b

Fig. 1-16 Fig. 1-17

1.18. Find the equation of the straight line that passes through two given points A and B having position
vectors a and b with respect to the origin.

Solution

Let r be the position vector of a point P on the line through A and B as in Fig. 1-17. Then

OAþ AP ¼ OP or aþ AP ¼ r (i:e:, AP ¼ r� a)

and

OAþ AB ¼ OB or aþ AB ¼ b (i:e:, AB ¼ b� a)

Since AP and AB are collinear, AP ¼ tAB or r� a ¼ t(b� a). Then the required equation is

r ¼ aþ t(b� a) or r ¼ (1� t)aþ tb

If the equation is written (1� t)aþ tb� r ¼ 0, the sum of the coefficients of a, b, and r is 1� t þ t � 1 ¼ 0.

Hence, by Problem 18, it is seen that the point P is always on the line joining A and B and does not depend on the

choice of origin O, which is, of course, as it should be.

Another Method. Since AP and PB are collinear, we have for scalars m and n:

mAP ¼ nPB or m(r� a) ¼ n(b� r)

Solving r ¼ (maþ nb)=(mþ n), which is called the symmetric form.

1.19. Consider points P(2, 4, 3) and Q(1,�5, 2) in 3-space R3, as in Fig. 1-18.

(a) Find the position vectors r1 and r2 for P and Q in terms of the unit vectors i, j, k.
(b) Determine graphically and analytically the resultant of these position vectors.

Solution

(a) r1 ¼ OP ¼ OCþ CBþ BP ¼ 2iþ 4jþ 3k

r2 ¼ OQ ¼ ODþ DEþ EQ ¼ i� 5jþ 2k
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(b) Graphically, the resultant of r1 and r2 is obtained as the diagonalOR of parallelogram OPRQ. Analytically,

the resultant of r1 and r2 is given by

r1 þ r2 ¼ (2iþ 4jþ 3k)þ (i� 5jþ 2k) ¼ 3i� jþ 5k

O

F

E

Q (1, –5, 2) P (2, 4, 3)

r1
r2

j
i

x

z

R

y
k

B

A

C
D

(A1, A2, A3)

A2 j

A3 k
A1 i

Q

S

Rx

y

z

O
A

Fig. 1-18 Fig. 1-19

1.20. Prove that the magnitude of the vector A ¼ A1iþ A2jþ A3k, pictured in Fig. 1-19, is

jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ A2

2 þ A2
3

p
.

Solution

By the Pythagorean theorem,

(OP)2 ¼ (OQ)2 þ (QP)2

where OP denotes the magnitude of vector OP, and so on. Similarly, (OQ)2 ¼ (OR)2 þ (RQ)2.

Then (OP)2 ¼ (OR)2 þ (RQ)2 þ (QP)2 or A2 ¼ A2
1 þ A2

2 þ A2
3 (i.e., A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ A2

2 þ A2
3

p
).

1.21. Given the radius vectors r1 ¼ 3i� 2jþ k, r2 ¼ 3iþ 4jþ 9k, r3 ¼ �iþ 2jþ 2k. Find the
magnitudes of: (a) r3, (b) r1 þ r2 þ r3, (c) r1 � r2 þ 4r3.

Solution

(a) jr3j ¼ j �iþ 2jþ 2kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�1)2 þ (2)2 þ (2)2

p
¼ 3.

(b) r1 þ r2 þ r3 ¼ 3iþ 4jþ 12k, hence jr1 þ r2 þ r3j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16þ 144

p ¼ ffiffiffiffiffiffiffiffi
169

p ¼ 13.

(c) r1 � r2 þ 4r3 ¼ 2iþ 2j ¼ ffiffiffiffiffiffiffiffiffiffiffi
4þ 4

p ¼ ffiffiffi
8

p ¼ 2
ffiffiffi
2

p
.

1.22. Find a unit vector u parallel to the resultant R of vectors r1 ¼ 2iþ 4j� 5k and r2 ¼ �i� 2jþ 3k.

Solution

Resultant R ¼ r1 þ r2 ¼ (2iþ 4j� 5k)þ (�i� 2jþ 3k) ¼ iþ 2j� 2k. Also,

Magnitude of R ¼ jRj ¼ jiþ 2j� 2kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1)2 þ (2)2 þ (�2)2

q
¼ 3:

Then u is equal to R=jRj. That is,

u ¼ R=jRj ¼ (iþ 2j� 2k)=3 ¼ (1=3)iþ (2=3)j� (2=3)k

Check: j(1=3)iþ (2=3)j� (2=3)kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=3)2 þ (2=3)2 þ (�2=3)2

p
¼ 1:
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1.23. Suppose r1 ¼ 2i� jþ k, r2 ¼ i� 3j� 2k, r3 ¼ �2iþ j� 3k. Write r4 ¼ iþ 3jþ 2k as a
linear combination of r1, r2, r3; that is, find scalars a, b, c such that r4 ¼ ar1 þ br2 þ cr3.

Solution

We require

iþ 3jþ 2k ¼ a(2i� jþ k)þ b(i� 3j� 2k)þ c(�2iþ j� 3k)

¼ (2aþ b� 2c)iþ (�aþ 3bþ c)jþ (a� 2b� 3c)k

Since i, j, k are non-coplanar, by Problem 1.13, we set corresponding coefficients equal to each other obtaining

2aþ b� 2c ¼ 1, �aþ 3bþ c ¼ 3, a� 2b� 3c ¼ 2

Solving, a ¼ �2, b ¼ 1, c ¼ �2. Thus r4 ¼ �2r1 þ r2 � 2r3.
The vector r4 is said to be linearly dependent on r1, r2, and r3; in other words r1, r2, r3, and r4 constitute a

linearly dependent set of vectors. On the other hand, any three (or fewer) of these vectors are linearly

independent.

1.24. Determine the vector having initial point P(x1, y1, z1) and terminal point Q(x2, y2, z2), and find its
magnitude.

Solution

Consider Fig. 1-20. The position vectors of P and Q are, respectively,

r1 ¼ x1iþ y1jþ z1k and r2 ¼ x2iþ y2jþ z2k

Then r1 þ PQ ¼ r2 or

PQ ¼ r2 � r1 ¼ (x2iþ y2jþ z2k)� (x1iþ y1jþ z1k)

¼ (x2 � x1)iþ (y2 � y1)jþ (z2 � z1)k:

Magnitude of PQ ¼ PQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 � x1)

2 þ (y2 � y1)
2 þ (z2 � z1)

2
p

: Note that this is the distance between

points P and Q.

O

Q(x2, y2, z2)

P(x1, y1, z1)

r1

r2

x

z

y

C

O

A

Bb

P(x, y, z)

y

x

z

g r

a

Fig. 1-20 Fig. 1-21

1.25. Determine the angles a, b, and g that the vector r ¼ xiþ yjþ zk makes with the positive directions
of the coordinate axes and show that

cos2 aþ cos2 bþ cos2 g ¼ 1:

Solution

Referring to Fig. 1-21, triangle OAP is a right triangle with right angle at A; then cosa ¼ x=jrj. Similarly,

from right triangles OBP and OCP, cosb ¼ y=jrj and cos g ¼ z=jrj, respectively. Also,

jrj ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.
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Then, cosa ¼ x=r, cosb ¼ y=r, and cos g ¼ z=r, from which a, b, and g can be obtained. From these, it

follows that

cos2 aþ cos2 bþ cos2 g ¼ x2 þ y2 þ z2

r2
¼ 1:

The numbers cosa, cosb, cos g are called the direction cosines of the vector OP.

1.26. Forces A, B, and C acting on an object are given in terms of their components by the vector
equations A ¼ A1iþ A2jþ A3k, B ¼ B1iþ B2jþ B3k, C ¼ C1iþ C2jþ C3k. Find the magnitude
of the resultant of these forces.

Solution

Resultant force R ¼ Aþ Bþ C ¼ (A1 þ B1 þ C1)iþ (A2 þ B2 þ C2)jþ (A3 þ B3 þ C3)k.

Magnitude of resultant ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A1 þ B1 þ C1)

2 þ (A2 þ B2 þ C2)
2 þ (A3 þ B3 þ C3)

2
p

.

The result is easily extended to more than three forces.

1.27. Find a set of equations for the straight lines passing through the points P(x1, y1, z1) and Q(x2, y2, z2).

Solution

Let r1 and r2 be the position vectors of P and Q, respectively, and r the position vector of any point R on the line

joining P and Q, as pictured in Fig. 1-22

r1 þ PR ¼ r or PR ¼ r� r1

r1 þ PQ ¼ r2 or PQ ¼ r2 � r1

But PR ¼ tPQ where t is a scalar. Then, r� r1 ¼ t(r2 � r1) is the required vector equation of the straight

line (compare with Problem 1.14).

In rectangular coordinates, we have, since r ¼ xiþ yjþ zk,

(xiþ yjþ zk)� (x1iþ y1jþ z1k) ¼ t[(x2iþ y2jþ z2k)� (x1iþ y1jþ z1k)]

or

(x� x1)iþ (y� y1)jþ (z� z1)k ¼ t[(x2 � x1)iþ (y2 � y1)jþ (z2 � z1)k]

P (x1, y1, z1)

Q (x2, y2, z2)

R

O

r1
r

r2

y

x

z

Fig. 1-22
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Since i, j, k are non-coplanar vectors, we have by Problem 1.14,

x� x1 ¼ t(x2 � x1), y� y1 ¼ t(y2 � y1), z� z1 ¼ t(z2 � z1)

as the parametric equations of the line, t being the parameter. Eliminating t, the equations become

x� x1

x2 � x1
¼ y� y1

y2 � y1
¼ z� z1

z2 � z1
:

1.28. Prove Proposition 1.4: Two or more vectors,A1, A2, . . . ,Am, are linearly dependent if and only if one
of them is a linear combination of the others.

Solution

Suppose, say, Aj is a linear combination of the others,

Aj ¼ a1A1 þ � � � þ aj�1Aj�1 þ ajþ1Ajþ1 þ � � � þ amAm

Then, by adding �Aj to both sides, we obtain

a1A1 þ � � � þ aj�1Aj�1 � Aj þ ajþ1Ajþ1 þ � � � þ amAm ¼ 0

where the coefficient of Aj is not 0. Thus the vectors are linearly dependent.

Conversely, suppose the vectors are linearly dependent, say

b1A1 þ � � � þ bjAj þ � � � þ bmAm ¼ 0 where bj=0

Then we can solve for Aj obtaining

Aj ¼ (b1=bj)A1 þ � � � þ (bj�1=bj)Aj�1 þ (bjþ1=bj)Ajþ1 þ � � � þ (bm=bj)Am

Thus Aj is a linear combination of the others.

1.29. Consider the scalar field w defined by w(x, y, z) ¼ 3x2z2 � xy3 � 15. Find w at the points

(a) (0, 0, 0), (b) (1, �2, 2), (c) (�1, �2, �3).

Solution

(a) w(0, 0, 0) ¼ 3(0)2(0)2 � (0)(0)3 � 15 ¼ 0� 0� 15 ¼ �15.

(b) w(1, �2, 2) ¼ 3(1)2(2)2 � (1)(�2)3 � 15 ¼ 12þ 8� 15 ¼ 5.

(c) w(�1, �2, �3) ¼ 3(�1)2(�3)2 � (�1)(�2)3 � 15 ¼ 27� 8þ 15 ¼ 4:

1.30. Describe the vector fields defined by:

(a) V(x, y) ¼ xiþ yj, (b) V(x, y) ¼ �xi� yj, (c) V(x, y, z) ¼ xiþ yjþ zk

Solution

(a) At each point (x, y), except (0, 0), of the xy plane, there is defined a unique vector xiþ yj of

magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
having direction passing through the origin and outward from it. To simplify graphing
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procedures, note that all vectors associated with points on the circles x2 þ y2 ¼ a2, a . 0 have magnitude

a. The field therefore appears in Fig. 1-23(a) where an appropriate scale is used.

(a)

O x

y

(b)

O x

y

Fig. 1-23

(b) Here each vector is equal to but opposite in direction to the corresponding one in Part (a). The field therefore

appears in Fig. 1-23(b).

In Fig. 1-23(a), the field has the appearance of a fluid emerging from a point source O and flowing in the

directions indicated. For this reason, the field is called a source field and O is a source.

In Fig. 1-23(b), the field seems to be flowing toward O, and the field is therefore called a sink field and O

is a sink.

In three dimensions, the corresponding interpretation is that a fluid is emerging radially from (or pro-

ceeding radially toward) a line source (or line sink).

The vector field is called two-dimensional since it is independent of z.

(c) Since the magnitude of each vector is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, all points on the sphere x2 þ y2 þ z2 ¼ a2, a . 0 have

vectors of magnitude a associated with them. The field therefore takes on the appearance of that of a fluid

emerging from source O and proceeding in all directions in space. This is a three-dimensional source field.

SUPPLEMENTARY PROBLEMS

1.31. Determine which of the following are scalar and which are vectors:

(a) Kinetic energy, (b) electric field intensity, (c) entropy, (d) work, (e) centrifugal force, (f) temperature,

(g) charge, (h) shearing stress, (i) frequency.

1.32. An airplane travels 200 miles due west, and then 150 miles 608 north of west. Determine the resultant

displacement.

1.33. Find the resultant of the following displacements: A: 20 miles 308 south of east; B: 50 miles due west;

C: 40 miles 308 northeast; D: 30 miles 608 south of west.

1.34. Suppose ABCDEF are the vertices of a regular hexagon. Find the resultant of the forces represented by the

vectors AB, AC, AD, AE, and AF.

1.35. Consider vectors A and B. Show that: (a) jAþ Bj � jAj þ jBj; (b) jA� Bj � jAj � jBj.

1.36. Show that: jAþ Bþ Cj � jAj þ jBj þ jCj.
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1.37. Two towns, A and B, are situated directly opposite each other on the banks of a river whose width is 8 miles

and which flows at a speed of 4 mi/hr. A man located at Awishes to reach town Cwhich is 6 miles upstream from

and on the same side of the river as town B. If his boat can travel at a maximum speed of 10 mi/hr and if he

wishes to reach C in the shortest possible time, what course must he follow and how long will the trip take?

1.38. Simplify: 2Aþ Bþ 3C� fA� 2B� 2(2A� 3B� C)g.

1.39. Consider non-collinear vectors a and b. Suppose

A ¼ (xþ 4y)aþ (2xþ yþ 1)b and B ¼ (y� 2xþ 2)aþ (2x� 3y� 1)b

Find x and y such that 3A ¼ 2B.

1.40. The base vectors a1, a2, and a3 are given in terms of the base vectors b1, b2, and b3 by the relations

a1 ¼ 2b1 þ 3b2 � b3, a2 ¼ b1 � 2b2 þ 2b3, a3 ¼ �2b1 þ b2 � 2b3

Suppose F ¼ 3b1 � b2 þ 2b3. Express F in terms of a1, a2, and a3.

1.41. An object P is acted upon by three coplanar forces as shown in Fig. 1-24. Find the force needed to prevent

P from moving.

P

100 lb

150 lb

30°

200 lb

T T

100 lb

60°60°

Fig. 1-24 Fig. 1-25

1.42. A 100 lb weight is suspended from the center of a rope as shown in Fig. 1-25. Determine the tension T in

the rope.

1.43. Suppose a, b, and c are non-coplanar vectors. Determine whether the following vectors are linearly independent

or linearly dependent:

r1 ¼ 2a� 3bþ c, r2 ¼ 3a� 5bþ 2c, r3 ¼ 4a� 5bþ c:

1.44. (a) IfO is any point within triangle ABC and P,Q, and R are midpoints of the sides AB, BC, and CA, respectively,

prove that OAþOBþOC ¼ OPþOQþOR.

(b) Does the result hold if O is any point outside the triangle? Prove your result.

1.45. In Fig. 1-26, ABCD is a parallelogram with P and Q the midpoints of sides BC and CD, respectively. Prove
that AP and AQ trisect diagonal BD at points E and F.

F

B

P

C
Q

D

E

A

Fig. 1-26
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1.46. Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and has one

half of its magnitude.

1.47. Prove that the medians of a triangle meet in a common point, which is a point of trisection of the medians.

1.48. Prove that the angle bisectors of a triangle meet in a common point.

1.49. Let the position vectors of points P and Q relative to the origin O is given by vectors p and q, respectively.
Suppose R is a point which divides PQ into segments that are in the ratiom : n. Show that the position vector of R

is given by r ¼ (mpþ nq)=(mþ n) and that this is independent of the origin.

1.50. A quadrilateral ABCD has masses of 1, 2, 3, and 4 units located, respectively, at its vertices

A(�1, �2, 2), B(3, 2, �1), C(1, �2, 4), and D(3, 1, 2). Find the coordinates of the centroid.

1.51. Show that the equation of a plane which passes through three given points A, B, and C not in the same straight

line and having position vectors a, b, and c relative to an origin O, can be written

r ¼ maþ nbþ pc

mþ nþ p

where m, n, p are scalars. Verify that the equation is independent of the origin.

1.52. The position vectors of points P and Q are given by r1 ¼ 2iþ 3j� k, r2 ¼ 4i� 3jþ 2k. Determine PQ in

terms of i, j, and k, and find its magnitude.

1.53. Suppose A ¼ 3i� j� 4k, B ¼ �2iþ 4j� 3k, C ¼ iþ 2j� k. Find

(a) 2A� Bþ 3C, (b) jAþ Bþ Cj, (c) j3A� 2Bþ 4Cj, (d) a unit vector parallel to 3A� 2Bþ 4C.

1.54 The following forces act on a particle P: F1 ¼ 2iþ 3j� 5k, F2 ¼ �5iþ jþ 3k, F3 ¼ i� 2jþ 4k,
F4 ¼ 4i� 3j� 2k, measured in pounds. Find (a) the resultant of the forces, (b) the magnitude of the resultant.

1.55. In each case, determine whether the vectors are linearly independent or linearly dependent:

(a) A ¼ 2iþ j� 3k, B ¼ i� 4k, C ¼ 4iþ 3j� k, (b) A ¼ i� 3jþ 2k, B ¼ 2i� 4j� k, C ¼ 3iþ 2j� k.

1.56. Prove that any four vectors in three dimensions must be linearly dependent.

1.57. Show that a necessary and sufficient condition that the vectors A ¼ A1iþ A2jþ A3k,
B ¼ B1iþ B2jþ B3k, C ¼ C1iþ C2jþ C3k be linearly independent is that the determinant

A1 A2 A3

B1 B2 B3

C1 C2 C3

������
������ be different from zero.

1.58. (a) Prove that the vectors A ¼ 3iþ j� 2k, B ¼ �iþ 3jþ 4k, C ¼ 4i� 2j� 6k can form the sides of a

triangle.

(b) Find the lengths of the medians of the triangle.

1.59. Given the scalar field defined by f(x, y, z) ¼ 4yx3 þ 3xyz� z2 þ 2. Find (a) f(1, �1, �2), (b) f(0, �3, 1).

ANSWERS TO SUPPLEMENTARY PROBLEMS

1.31. (a) s, (b) v, (c) s, (d) s, (e) v, (f) s, (g) s, (h) v, (i) s.

1.32. Magnitude 304.1 (50
ffiffiffiffiffi
37

p
), direction 258170 north of east (arcsin 3

ffiffiffiffiffiffiffiffi
111

p
=74).

1.33. Magnitude: 20.9 mi, direction 218390 south of west.

1.34. 3AD.

1.37. Straight line course upstream making an angle 348280 with the shore line. 1 hr 25 min.
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1.38. 5A� 3Bþ C. 1.52. 2i� 6jþ 3k, 7.

1.39. x ¼ 2, y ¼ �1. 1.53. (a) 11i� 8k, (b)
ffiffiffiffiffi
93

p
,

1.40. 2a1 þ 5a2 þ 3a3. 1.54. (a) 2i� j, (b)
ffiffiffi
5

p
.

1.41. 323 lb directly opposite 150 lb force. (c)
ffiffiffiffiffiffiffiffi
398

p
, (3A� 2Bþ 4C)=

ffiffiffiffiffiffiffiffi
398

p
.

1.42. 100 lb 1.55. (a) Linearly dependent, (b) Linearly independent.

1.43. Linearly dependent since r3 ¼ 5r1 � 2r2. 1.58. (b)
ffiffiffi
6

p
, (1=2)

ffiffiffiffiffiffiffiffi
114

p
, (1=2)

ffiffiffiffiffiffiffiffi
150

p
.

1.44. Yes. 1.59. (a) 36, (b) �11.

1.50. (2, 0, 2).
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CHAP T E R 2

The DOT and CROSS Product

2.1 Introduction

Operations of vector addition and scalar multiplication were defined for our vectors and scalars in
Chapter 1. Here, we define two new operations of multiplication for our vectors. One of the operations,
the DOT product, yields a scalar, while the other operation, the CROSS product yields a vector. We
then combine these operations to define certain triple products.

2.2 Dot or Scalar Product

The dot or scalar product of two vectors A and B, denoted byA �B (read: A dot B), is defined as the product
of the magnitudes of A and B and the cosine of the angle u between them. In symbols,

A �B ¼ jAjjBj cos u, 0 � u � p

We emphasize that A �B is a scalar and not a vector.
The following proposition applies.

PROPOSITION 2.1: Suppose A, B, and C are vectors and m is a scalar. Then the following laws hold:

(i) A �B ¼ B �A Commutative Law for Dot Products
(ii) A � (Bþ C) ¼ A �Bþ A �C Distributive Law
(iii) m(A �B) ¼ (mA) �B ¼ A � (mB) ¼ (A �B)m
(iv) i � i ¼ j � j ¼ k � k ¼ 1, i � j ¼ j � k ¼ k � i ¼ 0
(v) If A �B ¼ 0 and A and B are not null vectors, then A and B are perpendicular.

There is a simple formula for A �B when the unit vectors i, j, k are used.

PROPOSITION 2.2: Given A ¼ A1iþ A2jþ A3k and B ¼ B1iþ B2jþ B3k. Then

A �B ¼ A1B1 þ A2B2 þ A3B3

COROLLARY 2.3: Suppose A ¼ A1iþ A2jþ A3k. Then A �A ¼ A2
1 þ A2

2 þ A2
3.

EXAMPLE 2.1 Given A ¼ 4iþ 2j� 3k, B ¼ 5i� j� 2k, C ¼ 3iþ jþ 7k. Then:

A �B ¼ (4)(5)þ (2)(�1)þ (�3)(�2) ¼ 20� 2þ 6 ¼ 24, A �C ¼ 12þ 2� 21 ¼ �7,

B �C ¼ 15� 1� 14 ¼ 0, A �A ¼ 42 þ 22 þ (�3)2 ¼ 16þ 4þ 9 ¼ 29

Thus vectors B and C are perpendicular.
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2.3 Cross Product

The cross product of vectors A and B is a vector C ¼ A� B (read: A cross B) defined as follows. The
magnitude of C ¼ A� B is equal to the product of the magnitudes of A and B and the sine of the
angle u between them. The direction of C ¼ A� B is perpendicular to the plane of A and B so that A,
B, and C form a right-handed system. In symbols,

A� B ¼ jAjjBj sin u u 0 � u � p

where u is a unit vector indicating the direction of A� B. [Thus A, B, and u form a right-handed system.]
If A ¼ B, or if A is parallel to B, then sin u ¼ 0 and we define A� B ¼ 0.

The following proposition applies.

PROPOSITION 2.4: Suppose A, B, and C are vectors and m is a scalar. Then the following laws hold:

(i) A� B ¼ �(B� A) Commutative Law for Cross Products Fails
(ii) A� (Bþ C) ¼ A� Bþ A� C Distributive Law
(iii) m(A� B) ¼ (mA)� B ¼ A� (mB) ¼ (A� B)m
(iv) i� i ¼ j� j ¼ k� k ¼ 0, i� j ¼ k, j� k ¼ i, k� i ¼ j
(v) If A� B ¼ 0 and A and B are not null vectors, then A and B are parallel.
(vi) The magnitude ofA� B is the same as the area of a parallelogram with sidesA

and B.

There is a simple formula for A� B when the unit vectors i, j, k are used.

PROPOSITION 2.5: Given A ¼ A1iþ A2jþ A3k and B ¼ B1iþ B2jþ B3k. Then

A� B ¼
i j k

A1 A2 A3

B1 B2 B3

������
������ ¼

A2 A3

B2 B3

����
����i� A1 A3

B1 B3

����
����jþ A1 A2

B1 B2

����
����k

EXAMPLE 2.2 Given: A ¼ 4iþ 2j� 3k and B ¼ 3iþ 5jþ 2k. Then

A� B ¼
i j k

4 2 �3

3 5 2

������
������ ¼ 19i� 17jþ 14k

2.4 Triple Products

Dot and cross multiplication of three vectors A, B, and C may produce meaningful products, called triple
products, of the form (A �B)C, A � (B� C), and A� (B� C).

The following proposition applies.

PROPOSITION 2.6: Suppose A, B, and C are vectors and m is a scalar. Then the following laws hold:

(i) In general, (A �B)C = A(B �C).
(ii) A � (B�C) ¼ B � (C�A) ¼ C � (A�B) ¼ volume of a parallelepiped having

A,B, andC as edges, or the negative of this volume, according asA,B, andC do
or do not form a right-handed system.

(iii) In general, A� (B� C) = (A� B)� C
(Associative Law for Cross Products Fails)

(iv) A� (B� C) ¼ (A �C)B� (A �B)C
(A� B)� C ¼ (A �C)B� (B �C)A

There is a simple formula for A � (B� C) when the unit vectors i, j, k are used.
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PROPOSITION 2.7: Given A ¼ A1iþ A2jþ A3k, B ¼ B1iþ B2jþ B3k, C ¼ C1iþ C2jþ C3k. Then

A � (B� C) ¼
A1 A2 A3

B1 B2 B3

C1 C2 C3

������
������

EXAMPLE 2.3 Given A ¼ 4iþ 2j� 3k, B ¼ 5iþ j� 2k, C ¼ 3i� jþ 2k. Then:

A � (B� C) ¼
4 2 �3

5 1 �2

3 �1 2

������
������ ¼ 8� 12þ 15þ 9� 8� 20 ¼ �8:

2.5 Reciprocal Sets of Vectors

The sets a, b, c and a0, b0, c0 are called reciprocal sets or reciprocal systems of vectors if:

a � a0 ¼ b � b0 ¼ c � c0 ¼ 1

a0 � b ¼ a0 � c ¼ b0 � a ¼ b0 � c ¼ c0 � a ¼ c0 � b ¼ 0

That is, each vector is orthogonal to the reciprocal of the other two vectors in the system.

PROPOSITION 2.8: The sets a, b, c and a0, b0, c0 are reciprocal sets of vectors if and only if

a0 ¼ b� c

a � b� c
, b0 ¼ c� a

a � b� c
, c0 ¼ a� b

a � b� c

where a � b� c=0.

SOLVED PROBLEMS

Dot or Scalar Product

2.1. Prove Proposition 2.1(i): A �B ¼ B �A.
Solution

A �B ¼ jAjjBj cos u ¼ jBjjAj cos u ¼ B �A:
Thus the commutative law for dot products is valid.

2.2. Prove that the projection of A on B is equal to A �b where b is a unit vector in the direction of B.

Solution

Through the initial and terminal points of A pass planes perpendicular to B at G and H as in Fig. 2-1. Thus

Projection of A on B ¼ GH ¼ EF ¼ A cos u ¼ A � b

E

G
H

F

B

A
θ

E
F

G

B C

A

B + C

Fig. 2-1 Fig. 2-2
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2.3. Prove Proposition 2.1(ii): A � (Bþ C) ¼ A �Bþ A �C.
Solution

Let a be a unit vector in the direction of A. Then, as pictured in Fig. 2-2

Proj(Bþ C) on A ¼ Proj(B) on Aþ Proj(C) on A and so (Bþ C) � a ¼ B � aþ C � a
Multiplying by A,

(Bþ C) �Aa ¼ B �Aaþ C �Aa and (Bþ C) �A ¼ B �Aþ C �A
Then by the commutative law for dot products,

A � (Bþ C) ¼ A �Bþ A �C
Thus the distributive law is valid.

2.4. Prove that (Aþ B) � (Cþ D) ¼ A �Cþ A �Dþ B �Cþ B �D.
Solution

By Problem 2.3, (Aþ B) � (Cþ D) ¼ A � (Cþ D)þ B � (Cþ D) ¼ A �Cþ A �Dþ B �Cþ B �D.
The ordinary laws of algebra are valid for dot products.

2.5. Evaluate: (a) i . i, (b) i . k, (c) k . j, (d) j . (2j2 3jþ k), (e) (2i2 j) . (3iþ k).

Solution

(a) i � i ¼ jijjij cos 08 ¼ (1)(1)(1) ¼ 1

(b) i � k ¼ jijjkj cos 908 ¼ (1)(1)(0) ¼ 0

(c) k � j ¼ jkjjjj cos 908 ¼ (1)(1)(0) ¼ 0

(d) j � (2i� 3jþ k) ¼ 2j � i� 3j � jþ j � k ¼ 0� 3þ 0 ¼ �3

(e) (2i� j) � (3iþ k) ¼ 2i � (3iþ k)� j � (3iþ k) ¼ 6i � iþ 2i � k� 3j � i� j � k ¼ 6þ 0� 0� 0 ¼ 6

2.6. Suppose A ¼ A1iþ A2jþ A3k and B ¼ B1iþ B2jþ B3k. Prove that A �B ¼ A1B1 þ A2B2 þ A3B3.

Solution

Since i � i ¼ j � j ¼ k � k ¼ 1, and all other dot products are zero, we have:

A �B ¼ (A1iþ A2jþ A3k) � (B1iþ B2jþ B3k)

¼ A1i � (B1iþ B2jþ B3k)þ A2j � (B1iþ B2jþ B3k)þ A3k � (B1iþ B2jþ B3k)

¼ A1B1i � iþ A1B2i � jþ A1B3i � kþ A2B1j � iþ A2B2j � jþ A2B3j � k
þ A3B1k � iþ A3B2k � jþ A3B3k � k

¼ A1B1 þ A2B2 þ A3B3

2.7. Let A ¼ A1iþ A2jþ A3k. Show that A ¼ ffiffiffiffiffiffiffiffiffiffiffi
A �Ap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ A2

2 þ A2
3

p
.

Solution

A �A ¼ (A)(A) cos 08 ¼ A2. Then A ¼ ffiffiffiffiffiffiffiffiffiffiffi
A �Ap

.

By Problem 2.6 and taking B ¼ A, we have

A �A ¼ (A1iþ A2jþ A3k) � (A1iþ A2jþ A3k)

¼ (A1)(A1)þ (A2)(A2)þ (A3)(A3) ¼ A2
1 þ A2

2 þ A2
3

Then A ¼ ffiffiffiffiffiffiffiffiffiffiffi
A �Ap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ A2

2 þ A2
3

p
is the magnitude of A. Sometimes A �A is written A2.

2.8. Suppose A �B ¼ 0 and A and B are not zero. Show that A is perpendicular to B.

Solution

If A �B ¼ AB cos u ¼ 0, then cos u ¼ 0 or u ¼ 908. Conversely, if u ¼ 908, A �B ¼ 0.
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2.9. Find the angle between A ¼ 2iþ 2j� k and B ¼ 7iþ 24k.

Solution

We have A �B ¼ jAjjBj cos u.

jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2)2 þ (2)2 þ (�1)2

q
¼ 3 and jBj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(7)2 þ (0)2 þ (24)2

q
¼ 25

A �B ¼ (2)(7)þ (2)(0)þ (�1)(24) ¼ �10

Therefore,

cos u ¼ A � B
jAjjBj ¼

�10

(3)(25)
¼ �2

15
¼ �0:1333 and u ¼ 988 (approximately):

2.10. Determine the value of a so that A ¼ 2iþ ajþ k and B ¼ iþ 3j� 8k are perpendicular.

Solution

By Proposition 2.1(v), A and B are perpendicular when A �B ¼ 0. Thus,

A �B ¼ (2)(1)þ (a)(3)þ (1)(�8) ¼ 2þ 3a� 8 ¼ 0

and if a ¼ 2.

2.11. Show that the vectors A ¼ �iþ j, B ¼ �i� j� 2k, C ¼ 2jþ 2k form a right triangle.

Solution

First we show that the vectors form a triangle. From Fig. 2-3, we see that the vectors form a triangle if:

(a) one of the vectors, say (3), is the sum of (1) and (2) or

(b) the sum of the vectors (1)þ (2)þ (3) is zero

according as (a) two vectors have a common terminal point, or (b) none of the vectors have a common terminal

point. By trial, we find A ¼ Bþ C so the vectors do form a triangle.

SinceA �B ¼ (�1)(�1)þ (1)(�1)þ (0)(�2) ¼ 0, it follows that A and B are perpendicular and the triangle

is a right triangle.

(3)

(1)

(a)

(2)

(b)

(2)

(1)

(3)

Fig. 2-3

2.12. Find the angles that the vector A ¼ 4i� 8jþ k makes with the coordinate axes.

Solution

Let a, b, g be the angles that A makes with the positive x, y, z axes, respectively.

A � i ¼ jAj(1) cosa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4)2 þ (�8)2 þ (1)2

q
cosa ¼ 9 cosa

A � i ¼ (4i� 8jþ k) � i ¼ 4

Then cosa ¼ 4=9 ¼ 0:4444 and a ¼ 63:68 approximately. Similarly,

cosb ¼ �8=9, b ¼ 152:78 and cos g ¼ 1=9, g ¼ 83:68

The cosines of a, b, g are called the direction cosines of the vector A.
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2.13. Find the projection of the vector A ¼ i� 2jþ 3k on the vector B ¼ iþ 2jþ 2k.

Solution

We use the result of Problem 2.2. A unit vector in the direction of B is

b ¼ B=jBj ¼ (iþ 2jþ 2k)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4þ 4

p ¼ i=3þ 2j=3þ 2k=3

The projection of A on vector B is

A � b ¼ (i� 2jþ 3k) � (i=3þ 2j=3þ 2k=3) ¼ (1)(1=3)þ (�2)(2=3)þ (3)(2=3) ¼ 1:

2.14. Without making use of the cross product, determine a unit vector perpendicular to the plane of
A ¼ 2i� 6j� 3k and B ¼ 4iþ 3j� k.

Solution

Let vector C ¼ c1iþ c2jþ c3k be perpendicular to the plane of A and B. Then C is perpendicular to A and also

to B. Hence,

C �A ¼ 2c1 � 6c2 � 3c3 ¼ 0 or (1) 2c1 � 6c2 ¼ 3c3

C �B ¼ 4c1 þ 3c2 � c3 ¼ 0 or (2) 4c1 þ 3c2 ¼ c3

Solving (1) and (2) simultaneously: c1 ¼ 1

2
c3, c2 ¼ � 1

3
c3, C ¼ c3

1

2
i� 1

3
jþ k

� �
.

Then a unit vector in the direction of C is
C

jCj ¼
c3

1

2
i� 1

3
jþ k

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c23

1

2

� �2

þ � 1

3

� �2

þ(1)2

" #vuut
¼ +

3

7
i� 2

7
jþ 6

7
k

� �
.

2.15. Prove the law of cosines for plane triangles.

Solution

From Fig. 2-4,

Bþ C ¼ A or C ¼ A� B

Then

C �C ¼ (A� B) � (A� B) ¼ A �Aþ B �B� 2A �B
and

C2 ¼ A2 þ B2 � 2AB cos u

A

B C

q

B

B

AA

P Q

R
O

Fig. 2-4 Fig. 2-5
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2.16. Prove the diagonals of a rhombus are perpendicular. (Refer to Fig. 2-5.)

Solution

OQ ¼ OPþ PQ ¼ Aþ B

ORþ RP ¼ OP or Bþ RP ¼ A and RP ¼ A� B

Then, since jAj ¼ jBj,
OQ � RP ¼ (Aþ B) � (A� B) ¼ jAj2 � jBj2 ¼ 0

Thus OQ is perpendicular to RP.

2.17. Let A ¼ A1iþ A2jþ A3k be any vector. Prove that A ¼ (A � i)iþ (A � j)jþ (A � k)k.
Solution

Since A ¼ A1iþ A2jþ A3k,

A � i ¼ A1i � iþ A2j � iþ A3k � i ¼ A1

Similarly, A � j ¼ A2 and A � k ¼ A3. Then

A ¼ A1iþ A2jþ A3k ¼ (A � i)iþ (A � j)j� (A � k)k:
2.18. Find the work done in moving an object along a vector r ¼ 3iþ j� 5k if the applied force is

F ¼ 2i� j� k.

Solution

Consider Fig. 2-6.

Work done ¼ (magnitude of force in direction of motion)(distance moved)

¼ (F cos u)(r) ¼ F � r ¼ (2i� j� k) � (3iþ j� 5k)

¼ 6� 1þ 5 ¼ 10

F

r

q
Q

O

A

B

y

x

r

z

P(x, y, z)

Fig. 2-6 Fig. 2-7

2.19. Find an equation of the plane perpendicular to the vector A ¼ 2i� 3jþ 6k and passing through the
terminal point of the vector B ¼ iþ 2jþ 3k. [See Fig. 2-7.]
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Solution

Since PQ ¼ B� r is perpendicular to A, we have (B� r) �A ¼ 0 or r �A ¼ B �A is the required equation of

the plane in vector form. In rectangular form this becomes

(xiþ yjþ zk) � (2i� 3jþ 6k) ¼ (iþ 2jþ 3k) � (2i� 3jþ 6k)

or

2x� 3yþ 6z ¼ 2� 6þ 18 ¼ 14

2.20. Find the distance from the origin to the plane in Problem 2.19.

Solution

The distance from the origin to the plane is the projection of B on A. A unit vector in the direction of A is

a ¼ A=jAj ¼ 2i� 3jþ 6kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2)2 þ (�3)2 þ (6)2

p ¼ 2

7
i� 3

7
jþ 6

7
k

Then the projection of B on A is equal to

B � a ¼ (iþ 2jþ 3k)
2

7
i� 3

7
jþ 6

7
k

� �
¼ (1)

2

7
� (2)

3

7
þ (3)

6

7
¼ 2:

Cross or Vector Product

2.21. Prove A� B ¼ �(A� B).

Solution

A� B ¼ C has magnitude AB sin u and direction such that A, B, C form a right-handed system as in Fig. 2-8(a).

B� A ¼ D has magnitude BA sin u and direction such that B, A,D form a right-handed system as in Fig. 2-8(b).

Then D has the same magnitude as C but in the opposite direction, i.e. C ¼ �D. Thus A� B ¼ �(A� B).
Accordingly, the commutative law for cross products is not valid.

A
B

(a)

A × B = C

(b)

A B

B × A = D

q

q

Fig. 2-8

2.22. Suppose A� B ¼ 0 and A and B are not zero. Show that A is parallel to B.

Solution

Since A� B ¼ AB sin u u ¼ 0, we have sin u ¼ 0 and hence u ¼ 08 or 1808.
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2.23. Show that jA� Bj2 þ jA �Bj2 ¼ jAj2jBj2.
Solution

jA� Bj2 þ jA �Bj2 ¼ jAB sin u uj2 þ jAB cos uj2

¼ A2B2 sin2 uþ A2B2 cos2 u

¼ A2B2 ¼ jAj2jBj2

2.24. Evaluate: (a) 2j � 3k (b) 2j � 2k (c) 23i � 22k, 2j � 3i2 k

Solution

(a) (2j)� (3k) ¼ 6(j� k) ¼ 6i

(b) (2j)� (�k) ¼ �2(j� k) ¼ �2i

(c) (�3i)� (�2k) ¼ 6(i� k) ¼ �6j

(d) 2j� 3i� k ¼ 6(j� i)� k ¼ �6k� k ¼ �7k:

2.25. Prove that A� (Bþ C) ¼ A� Bþ A� C for the case where A is perpendicular to both B and C.
[See Fig. 2-9.]

Solution

Since A is perpendicular to B, A� B is a vector perpendicular to the plane of A and B and having magnitude

AB sin 908 ¼ AB or magnitude of AB. This is equivalent to multiplying vector B by A and rotating the resultant

vector through 908 to the position shown in Fig. 2-9.

Similarly,A� C is the vector obtained by multiplyingC by A and rotating the resultant vector through 908 to
the position shown.

In like manner, A� (Bþ C) is the vector obtained by multiplying Bþ C by A and rotating the resultant

vector through 908 to the position shown.

Since A� (Bþ C) is the diagonal of the parallelogram with A� B and A� C as sides, we have

A� (Bþ C) ¼ A� Bþ A� C.

(B + C)
A × B

CB + A

AC
B

CÍÍ

B⊥

C⊥

BÍÍ

Fig. 2-9 Fig. 2-10

2.26. Prove that A� (Bþ C) ¼ A� Bþ A� C for the general case where A, B, and C are non-coplanar.
[See Fig. 2-10.]

Solution

Resolve B into two component vectors, one perpendicular to A and the other parallel to A, and denote them by

B? and Bk, respectively. Then B ¼ B? þ Bk.
If u is the angle between A and B, then B? ¼ B sin u. Thus the magnitude of A� B? is AB sin u, the same as

the magnitude of A� B. Also, the direction of A� B? is the same as the direction of A� B. Hence

A� B? ¼ A� B.
Similarly, if C is resolved into two component vectors Ck and C?, parallel and perpendicular respectively to

A, then A� C? ¼ A� C.
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Also, since Bþ C ¼ B? þ Bk þ C? þ Ck ¼ (B? þ C?)þ (Bk þ Ck) it follows that

A� (B? þ C?) ¼ A� (Bþ C):

Now B? and C? are vectors perpendicular to A and so by Problem 2.25,

A� (B? þ C?) ¼ A� B? þ A� C?

Then

A� (Bþ C) ¼ A� Bþ A� C

and the distributive law holds. Multiplying by �1, using Problem 2.21, this becomes (Bþ C)� A ¼
B� Aþ C� A. Note that the order of factors in cross products is important. The usual laws of algebra

apply only if proper order is maintained.

2.27. Suppose A ¼ A1iþ A2jþ A3k and B ¼ B1iþ B2jþ B3k. Prove A� B ¼
i j k

A1 A2 A3

B1 B2 B3

������
������.

Solution

A� B ¼ (A1iþ A2jþ A3k)� (B1iþ B2jþ B3k)

¼ A1i� (B1iþ B2jþ B3k)þ A2j� (B1iþ B2jþ B3k)þ A3k� (B1iþ B2jþ B3k)

¼ A1B1i� iþ A1B2i� jþ A1B3i� kþ A2B1j� iþ A2B2j� jþ A2B3j� k

þ A3B1k� iþ A3B2k� jþ A3B3k� k

¼ (A2B3 � A3B2)iþ (A3B1 � A1B3)jþ (A1B2 � A2B1)k ¼
i j k

A1 A2 A3

B1 B2 B3

�������
�������:

2.28. Suppose A ¼ jþ 2k and B ¼ iþ 2jþ 3k. Find: (a) A� B, (b) B� A, (c) (Aþ B)� (A� B).

Solution

(a) A� B ¼ (jþ 2k)� (iþ 2jþ 3k) ¼
i j k

0 1 2

1 2 3

�������
�������

¼ 1 2

2 3

����
����i� 0 2

1 3

����
����jþ 0 1

1 2

����
����k ¼ �iþ 2j� k:

(b) B� A ¼ (iþ 2jþ 3k)� (jþ 2k) ¼
i j k

1 2 3

0 1 2

�������
�������

¼ 2 3

1 2

����
����i� 1 3

0 2

����
����jþ 1 2

0 1

����
����k ¼ i� 2jþ k:

Comparing with (a), we have A� B ¼ �(B� A). Note this is equivalent to the theorem: If two rows of a

determinant are interchanged, the determinant changes sign.

(c) Aþ B ¼ iþ 3jþ 5k and A� B ¼ �i� j� k. Then

(Aþ B)� (A� B) ¼
i j k

1 3 5

�1 �1 �1

�������
������� ¼

3 5

�1 �1

����
����i� 1 5

�1 �1

����
����jþ 1 3

�1 �1

����
����k

¼ 2i� 4jþ 2k:
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2.29. Suppose A ¼ �iþ jþ k, B ¼ i� jþ k, C ¼ iþ j� k. Find: (a) (A� B)� C, (b) A� (B� C).

Solution

(a) A� B ¼
i j k

�1 1 1

1 �1 1

������
������ ¼ 2iþ 2j

Then (A� B)� C ¼ (2iþ 2j)� (iþ j� k) ¼
i j k

2 2 0

1 1 �1

������
������ ¼ �2iþ 2j

(b) B� C ¼ (i� jþ k)� (iþ j� k) ¼
i j k

1 �1 1

1 1 �1

������
������ ¼ 2jþ 2k:

Then A� (B� C) ¼ (�iþ jþ k)� (2jþ 2k) ¼
i j k

�1 1 1

0 2 2

������
������ ¼ 2j� 2k.

Thus (A� B)� C = A� (B� C). This shows the need for parentheses in A� B� C to avoid ambiguity.

2.30. Prove: (a) The area of a parallelogram with touching sides A and B, as in Fig. 2-11, is jA� Bj.
(b) The area of a triangle with sides A and B is 1

2
jA� Bj.

Solution

(a) Area of parallelogram ¼ hjBj ¼ jAj sin u jBj ¼ jA� Bj.
(b) Area of triangle ¼ 1

2
area of parallelogram ¼ 1

2
jA� Bj.

A

B

h

q

B C

A

c b

a

A

(B – A)

C

(C – A)

B

Fig. 2-11 Fig. 2-12 Fig. 2-13

2.31. Prove the law of sines for plane triangles.

Solution

Let a, b, c represent the sides of a triangle ABC as in Fig. 2-12. Then, aþ bþ c ¼ 0. Multiplying by a�, b�,

and c� in succession, we find

a� b ¼ b� c ¼ c� a

that is

ab sinC ¼ bc sinA ¼ ca sinB

or
sinA

a
¼ sinB

b
¼ sinC

c
:

2.32. Consider a tetrahedron, as in Fig. 2-13, with faces F1, F2, F3, F4. Let V1,V2,V3,V4 be vectors whose
magnitudes are equal to the areas of F1, F2, F3, F4, respectively, and whose directions are perpen-
dicular to these faces in the outward direction. Show that V1 þ V2 þ V3 þ V4 ¼ 0.

Solution

By Problem 2.30, the area of a triangular face determined by R and S is 1
2
jR� Sj.
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The vectors associated with each of the faces of the tetrahedron are

V1 ¼ 1
2
A� B, V2 ¼ 1

2
B� C, V3 ¼ 1

2
C� A, V4 ¼ 1

2
(C� A)� (B� A)

Then

V1 þ V2 þ V3 þ V4 ¼ 1
2
[A� Bþ B� Cþ C� Aþ (C� A)� (B� A)]

¼ 1
2
[A� Bþ B� Cþ C� Aþ C� B� C� A� A� Bþ A� A] ¼ 0:

This result can be generalized to closed polyhedra and in the limiting case to any closed surface.

Because of the application presented here, it is sometimes convenient to assign a direction to area and we

speak of the vector area.

2.33. Find the area of the triangle having vertices at P(1, 3, 2), Q(2,�1, 1), R(�1, 2, 3).

Solution

PQ ¼ (2�1)iþ (�1�3)jþ (1�2)k ¼ i� 4j� k

PR ¼ (�1�1)iþ (2�3)jþ (3�2)k ¼ �2i� jþ k

From Problem 2.30,

area of triangle ¼ 1

2

��PQ� PR
�� ¼ 1

2

��(i� 4j� k)� (�2i� jþ k)
��

¼ 1

2

i j k

1 �4 �1

�2 �1 1

�������
������� ¼

1

2

���5iþ j� 9k
�� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�5)2 þ (1)2 þ (�9)2

q
¼ 1

2

ffiffiffiffiffiffiffiffi
107

p
:

2.34. Determine a unit vector perpendicular to the plane of A ¼ 2i� 6j� 3k and B ¼ 4iþ 3j� k.

Solution

A� B is a vector perpendicular to the plane of A and B.

A� B ¼
i j k

2 �6 �3

4 3 �1

������
������ ¼ 15i� 10jþ 30k

A unit vector parallel to A� B is
A� B

jA� Bj ¼
15i� 10jþ 30kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(15)2 þ (�10)2 þ (30)2
p ¼ 3

7
i� 2

7
jþ 6

7
k.

Another unit vector, opposite in direction, is (�3iþ 2j� 6k)=7. Compare with Problem 2.14.

2.35. Find an expression for the moment of a force F about a point P as in Fig. 2-14.

Solution

The momentM of F about P is in magnitude equal to P to the line of action of F. Then, if r is the vector from P

to the initial point Q of F,

M ¼ F(r sin u) ¼ rF sin u ¼ jr� Fj
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Ifwe thinkof a right-threaded screwatPperpendicular to theplaneofr andF, thenwhen the forceF acts, the screw

will move in the direction of r� F. Because of this, it is convenient to define the moment as the vectorM ¼ r� F.

r

r sin q

F

Q

P

q O

P

r

v

q

q

w

w

Fig. 2-14 Fig. 2-15

2.36. As in Fig. 2-15, a rigid body rotates about an axis through point O with angular speed v. Prove that
the linear velocity v of a point P of the body with position vector r is given by v ¼ v� r, wherev is
the vector with magnitude v whose direction is that in which a right-handed screw would advance
under the given rotation.

Solution

Since P travels in a circle of radius r sin u, the magnitude of the linear velocity v is v(r sin u) ¼ jv� rj. Also, v
must be perpendicular to both v and r and is such that r, v, and v form a right-handed system.

Then v agrees both in magnitude and direction with v� r; hence v ¼ v� r. The vector v is called the

angular velocity.

Triple Products

2.37. Suppose A ¼ A1iþ A2jþ A3k, B ¼ B1iþ B2jþ B3k, C ¼ C1iþ C2jþ C3k.
Show that

A � (B� C) ¼
A1 A2 A3

B1 B2 B3

C1 C2 C3

������
������

Solution

A � (B� C) ¼ A �
i j k

B1 B2 B3

C1 C2 C3

�������
�������

¼ (A1iþ A2jþ A3k) � [(B2C3 � B3C2)iþ (B3C1 � B1C3)jþ (B1C2 � B2C1)k]

¼ A1(B2C3 � B3C2)þ A2(B3C1 � B1C3)þ A3(B1C2 � B2C1)

¼
A1 A2 A3

B1 B2 B3

C1 C2 C3

�������
�������

2.38. Evaluate (iþ 2jþ 3k) � (iþ 3jþ 5k)� (iþ jþ 6k).

Solution

By Problem 2.37, the result is

1 2 3

1 3 5

1 1 6

������
������ ¼ 5:
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2.39. Prove that A � (B� C) ¼ B � (C� A) ¼ C � (A� B).

Solution

By Problem 2.37, A � (B� C) ¼
A1 A2 A3

B1 B2 B3

C1 C2 C3

������
������.

By a theorem of determinants which states that interchange of two rows of a determinant changes its sign, we have

A1 A2 A3

B1 B2 B3

C1 C2 C3

�������
������� ¼ �

B1 B2 B3

A1 A2 A3

C1 C2 C3

�������
������� ¼

B1 B2 B3

C1 C2 C3

A1 A2 A3

�������
������� ¼ B � (C� A)

A1 A2 A3

B1 B2 B3

C1 C2 C3

�������
������� ¼ �

C1 C2 C3

B1 B2 B3

A1 A2 A3

�������
������� ¼

C1 C2 C3

A1 A2 A3

B1 B2 B3

�������
������� ¼ C � (A� B)

2.40. Show that A � (B� C) ¼ (A� B) �C.
Solution

From Problem 2.39, A � (B� C) ¼ C � (A� B) ¼ (A� B) �C.
Occasionally, A � (B� C) is written without parentheses as A �B� C. In such a case, there cannot be any

ambiguity since the only possible interpretations are A � (B� C) and (A �B)� C. The latter, however, has no
meaning since the cross product of a scalar with a vector is undefined.

The result A �B� C ¼ A� B �C is sometimes summarized in the statement that the dot and cross can be

interchanged without affecting the result.

2.41. Show that A � (A� C) ¼ 0.

Solution

From Problem 2.40 and that A� A ¼ 0, we have A � (A� C) ¼ (A� A) �C ¼ 0.

2.42. Prove that a necessary and sufficient condition for the vectors A, B, and C to be coplanar is that
A �B� C ¼ 0.

Solution

Note that A �B� C can have no meaning other than A � (B� C).
If A, B, and C are coplanar, the volume of the parallelepiped formed by them is zero. Then, by Problem 2.43,

A �B� C ¼ 0.

Conversely, ifA �B� C ¼ 0, the volume of the parallelepiped formed by vectors A, B, and C is zero, and so

the vectors must lie in a plane.

2.43. Show that the absolute value of the triple product A � (B� C) is the volume of a parallelepiped with
sides A, B, and C.

Solution

Let n be a unit normal to a parallelogram I, having the direction of B� C, and let h be the height of the terminal

point of A above the parallelogram I. [See Fig. 2-16.]

Volume of parallelepiped ¼ (height h)(area of parallelogram I)

¼ (A � n)(jB� Cj)
¼ A � fjB� Cjng ¼ A � (B� C)

If A, B, and C do not form a right-handed system, A � n , 0 and the volume ¼ A � (B� C)j j.
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B

A h

C I
n

P1

P2

P3

P

rr1

r2

r3

z

x

y
O

Fig. 2-16 Fig. 2-17

2.44. Let r1 ¼ x1iþ y1jþ z1k, r2 ¼ x2iþ y2jþ z2k, and r3 ¼ x3iþ y3jþ z3k be the position vectors of
points P1(x1, y1, z1), P2(x2, y2, z2), and P3(x3, y3, z3). Find an equation for the plane passing through
P1, P2, and P3.

Solution

We assume that P1, P2, and P3 do not lie in the same straight line; hence they determine a plane.

Let r ¼ xiþ yjþ zk denote the position vector of any point P(x, y, z) in the plane. Consider vectors

P1P2 ¼ r2 � r1, P1P3 ¼ r3 � r1, and P1P ¼ r� r1, which all lie in the plane. [See Fig. 2-17.]

By Problem 2.42, P1P �P1P2 � P1P3 ¼ 0 or (r� r1) � (r2 � r1)� (r3 � r1) ¼ 0.

In terms of rectangular coordinates, this becomes

[(x� x1)iþ (y� y1)jþ (z� z1)k] � [(x2 � x1)iþ (y2 � y1)jþ (z2 � z1)k]� [(x3 � x1)iþ (y3 � y1)j

þ (z3 � z1)k] ¼ 0

or, using Problem 2.37,

x� x1 y� y1 z� z1
x2 � x1 y2 � y1 z2 � z1
x3 � x1 y3 � y1 z3 � z1

������
������ ¼ 0:

2.45. Find an equation for the plane determined by the points P1(2, �1, 1), P2(3, 2, �1), and
P3(�1, 3, 2).

Solution

The position vectors of P1, P2, P3 and any point P(x, y, z) are, respectively, r1 ¼ 2i� jþ k, r2 ¼ 3iþ 2j� k,
r3 ¼ �iþ 3jþ 2k, and r ¼ xiþ yjþ zk.

Then PP1 ¼ r� r1, P2P1 ¼ r2 � r1, P3P1 ¼ r3 � r1 all lie in the required plane, so that

(r� r1) � (r2 � r1)� (r3 � r1) ¼ 0
that is,

[(x� 2)iþ (yþ 1)jþ (z� 1)k] � [iþ 3j� 2k]� [�3iþ 4jþ k] ¼ 0

[(x� 2)iþ (yþ 1)jþ (z� 1)k] � [11iþ 5jþ 13k] ¼ 0

11(x� 2)þ 5(yþ 1)þ 13(z� 1) ¼ 0 or 11xþ 5yþ 13z ¼ 30:

2.46. Suppose the points P, Q, and R, not all lying on the same straight line, have position vectors a, b, and
c relative to a given origin. Show that a� bþ b� cþ c� a is a vector perpendicular to the plane of
P, Q, and R.

Solution

Let r be the position vector of any point in the plane of P, Q, and R. Then the vectors r� a, b� a, and c� a are
coplanar, so that by Problem 2.42

(r� a) � (b� a)� (c� a) ¼ 0 or (r� a) � (a� bþ b� cþ c� a) ¼ 0:

Thus a� bþ b� cþ c� a is perpendicular to r� a and is therefore perpendicular to the plane of P, Q, and R.
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2.47. Prove: (a) A� (B� C) ¼ B(A �C)� C(A �B), (b) (A� B)� C ¼ B(A �C)� A(B �C).
Solution

(a) Let A ¼ A1iþ A2jþ A3k, B ¼ B1iþ B2jþ B3k, C ¼ C1iþ C2jþ C3k: Then

A� (B� C) ¼ (A1iþ A2jþ A3k)�
i j k

B1 B2 B3

C1 C2 C3

�������
�������

¼ (A1iþ A2jþ A3k)� ([B2C3 � B3C2]iþ [B3C1 � B1C3]jþ [B1C2 � B2C1]k)

¼
i j k

A1 A2 A3

B2C3 � B3C2 B3C1 � B1C3 B1C2 � B2C1

�������
�������

¼ (A2B1C2 � A2B2C1 � A3B3C1 þ A3B1C3)iþ (A3B2C3 � A3B3C2 � A1B1C2 þ A1B2C1)j

þ (A1B3C1 � A1B1C3 � A2B2C3 þ A2B3C2)k
Also

B(A �C)� C(A �B) ¼ (B1iþ B2jþ B3k)(A1C1 þ A2C2 þ A3C3)� (C1iþ C2jþ C3k)(A1B1 þ A2B2 þ A3B3)

¼ (A2B1C2 þ A3B1C3 � A2C1B2 � A3C1B3)iþ (B2A1C1 þ B2A3C3 � C2A1B1 � C2A3B3)j

þ (B3A1C1 þ B3A2C2 � C3A1B1 � C3A2B2)k

and the result follows.

(b) (A� B)� C ¼ �C� (A� B) ¼ �fA(C �B)� B(C �A)g ¼ B(A �C)� A(B �C) upon replacing A, B,

and C in (a) by C, A, and B, respectively.

Note that A� (B� C) = (A� B)� C, that is, the associative law for vector cross products is not valid for

all vectors A, B, and C.

2.48. Prove: (A� B) � (C� D) ¼ (A �C)(B �D)� (A �D)(B �C).
Solution

From Problem 2.41, X � (C� D) ¼ (X� C) �D. Let X ¼ A� B; then

(A� B) � (C� D) ¼ f(A� B)� Cg �D
¼ fB(A �C)� A(B �C)g �D
¼ (A �C)(B �D)� (A �D)(B �C), using Problem 2:47(b):

2.49. Prove: A� (B� C)þ B� (C� A)þ C� (A� B) ¼ 0.

Solution

By Problem 2.47(a), A� (B� C) ¼ B(A �C)� C(A �B)
B� (C� A) ¼ C(B �A)� A(B �C)
C� (A� B) ¼ A(C �B)� B(C �A)

Adding, the result follows.

2.50. Prove: (A� B)� (C� D) ¼ B(A �C� D)� A(B �C� D) ¼ C(A �B� D)� D(A �B� C).

Solution

By Problem 2.47(a), X� (C� D) ¼ C(X �D)� D(X �C). Let X ¼ A� B; then

(A� B)� (C� D) ¼ C(A� B �D)� D(A� B �C)
¼ C(A �B� D)� D(A �B� C)
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By Problem 2.47(b), (A� B)� Y ¼ B(A �Y)� A(B �Y). Let Y ¼ C� D; then

(A� B)� (C� D) ¼ B(A �C� D)� A(B �C� D):

2.51. Let PQR be a spherical triangle whose sides p, q, r are arcs of great circles. Prove that

sinP

sin p
¼ sinQ

sin q
¼ sinR

sin r

Solution

Suppose that the sphere, pictured in Fig. 2-18, has unit radius. Let unit vectors A, B, C be drawn from the center

O of the sphere to P, Q, R, respectively. From Problem 2.50,

(A� B)� (A� C) ¼ (A �B� C)A (1)

A unit vector perpendicular to A� B and A� C is A, so that (1) becomes

(sin r sin q sinP) A ¼ (A �B� C)A or (2)

sin r sin q sinP ¼ A �B� C (3)

By cyclic permutation of p, q, r, P, Q, R and A, B, and C, we obtain

sin p sin r sinQ ¼ B �C� A (4)

sin q sin p sinR ¼ C �A� B (5)

Then, since the right-hand sides of (3), (4), and (5) are equal (Problem 2.39)

sin r sin q sinP ¼ sin p sin r sinQ ¼ sin q sin p sinR

from which we find

sinP

sin p
¼ sinQ

sin q
¼ sinR

sin r

This is called the law of sines for spherical triangles.

O

Q

P

R

C

A

B

Fig. 2-18
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2.52. Prove: (A� B) � (B� C)� (C� A) ¼ (A �B� C)2.

Solution

By Problem 2.47(a), X� (C� A) ¼ C(X �A)� A(X �C). Let X ¼ B� C; then

(B� C)� (C� A) ¼ C(B� C �A)� A(B� C �C)
¼ C(A �B� C)� A(B �C� C)

¼ C(A �B� C)

Thus

(A� B) � (B� C)� (C� A) ¼ (A� B) �C(A �B� C)

¼ (A� B �C)(A �B� C)

¼ (A �B� C)2

2.53. Given the vectors a0 ¼ b� c

a � b� c
, b0 ¼ c� a

a � b� c
and c0 ¼ a� b

a � b� c
, suppose a � b� c = 0. Show that

(a) a0 � a ¼ b0 � b ¼ c0 � c ¼ 1,

(b) a0 � b ¼ a0 � c ¼ 0, b0 � a ¼ b0 � c ¼ 0, c0 � a ¼ c0 � b ¼ 0,

(c) if a � b� c ¼ V , then a0 � b0 � c0 ¼ 1=V ,

(d) a0, b0, and c0 are non-coplanar if a, b, and c are non-coplanar.

Solution

(a) a0 � a ¼ a � a0 ¼ a � b� c

a � b� c
¼ a � b� c

a � b� c
¼ 1

b0 � b ¼ b � b0 ¼ b � c� a

a � b� c
¼ b � c� a

a � b� c
¼ a � b� c

a � b� c
¼ 1

c0 � c ¼ c � c0 ¼ c � a� b

a � b� c
¼ c � a� b

a � b� c
¼ a � b� c

a � b� c
¼ 1

(b) a0 � b ¼ b � a0 ¼ b � b� c

a � b� c
¼ b � b� c

a � b� c
¼ b� b � c

a � b� c
¼ 0

Similarly, the other results follow. The results can also be seen by noting, for example, that a0 has the direction of
b� c and so must be perpendicular to both b and c, from which a0 � b ¼ 0 and a0 � c ¼ 0.

From (a) and (b), we see that the sets of vectors a, b, c and a0, b0, c0 are reciprocal vectors. See also

Supplementary Problems 2.104 and 2.106.

(c) a0 ¼ b� c

V
, b0 ¼ c� a

V
, c0 ¼ a� b

V

Then a0 � b0 � c0 ¼ (b� c) � (c� a)� (a� b)

V3
¼ (a� b) � (b� c)� (c� a)

V3

¼ (a � b� c)2

V3
¼ V2

V3
¼ 1

V
using Problem 2:52:

(d) By Problem 2.42, if a, b, and c are non-coplanar a � b� c=0. Then, from part (c), it follows that

a0 � b0 � c0=0, so that a0, b0, and c0 are also non-coplanar.
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2.54. Show that any vector r can be expressed in terms of the reciprocal vectors of Problem 2.53 as

r ¼ (r � a0)aþ (r � b0)bþ (r � c0)c:
Solution
From Problem 2.50, B(A �C� D)� A(B �C� D) ¼ C(A �B� D)� D(A �B� C): Then

D ¼ A(B �C� D)

A �B� C
� B(A �C� D)

A �B� C
þ C(A �B� D)

A �B� C

Let A ¼ a, B ¼ b, C ¼ c, and D ¼ r. Then

r ¼ r � b� c

a � b� c
aþ r � c� a

a � b� c
bþ r � a� b

a � b� c
c

¼ r � b� c

a � b� c

� �
aþ r � c� a

a � b� c

� �
bþ r � a� b

a � b� c

� �
c

¼ (r � a0)aþ (r � b0)bþ (r � c0)c:

SUPPLEMENTARY PROBLEMS

2.55. Evaluate: (a) k � (iþ j), (b) (i� 2k) � (jþ 3k), (c) (2i� jþ 3k) � (3iþ 2j� k).

2.56. Suppose A ¼ iþ 3j� 2k and B ¼ 4i� 2jþ 4k. Find: (a) A �B, (b) A, (c) B, (d) j3Aþ 2Bj,
(e) (2Aþ B) � (A� 2B).

2.57. Find the angle between (a) A ¼ 3iþ 2j� 6k and B ¼ 4i� 3jþ k; (b) C ¼ 4i� 2jþ 4k and

D ¼ 3i� 6j� 2k.

2.58. Find the values of a for which vectors A and B are perpendicular where:

(a) A ¼ ai� 2jþ k and B ¼ 2aiþ aj� 4k, (b) A ¼ 2iþ jþ ak and B ¼ 2iþ ajþ k.

2.59. Find the acute angles that the line joining the points (1, �3, 2) and (3, �5, 1) makes with the coordinate axes.

2.60. Find the direction cosines of the line joining the points:

(a) (3, 2, �4) and (1, �1, 2), (b) (�5, 3, 3) and (�2, 7, 15).

2.61. Determine the angles of a triangle where two sides of a triangle are formed by the vectors:

(a) A ¼ 3i� 4j� k and B ¼ 4i� jþ 3k, (b) A ¼ �2iþ 5jþ 6k and B ¼ 3iþ jþ 2k.

2.62. The diagonals of a parallelogram are given by A ¼ 3i� 4j� k and B ¼ 2iþ 3j� 6k. Show that the paralle-

logram is a rhombus and determine the length of its sides and angles.

2.63. Find the projection of the vector A on the vector B where:

(a) A ¼ 2i� 3jþ 6k and B ¼ iþ 2jþ 2k, (b) A ¼ 2iþ j� k and B ¼ �6iþ 2j� 3k.

2.64. Find the projection of the vector A ¼ 4i� 3jþ k on the line passing through the points (2, 3, �1) and

(�2, �4, 3).

2.65. Find a unit vector perpendicular to both vector A and vector B where:

(a) A ¼ 4i� jþ 3k and B ¼ �2iþ j� 2k, (b) A ¼ 6iþ 22j� 5k and B ¼ iþ 6j� 2k.

2.66. Find the acute angle formed by two diagonals of a cube.

CHAPTER 2 The DOT and CROSS Product 39



2.67. Find a unit vector parallel to the xy-plane and perpendicular to the vector 4i� 3jþ k.

2.68. Show that A, B, and C are mutually orthogonal unit vectors where:

(a) A ¼ (2i� 2jþ k)=3, B ¼ (iþ 2jþ 2k)=3, and C ¼ (2iþ j� 2k)=3

(b) A ¼ (12i� 4j� 3k)=13, B ¼ (4iþ 3jþ 12k)=13, and C ¼ (3iþ 12j� 4k)=13.

2.69. Find the work done in moving an object along a straight line:

(a) from (3, 2, �1) to (2, �1, 4) in a force field given by F ¼ 4i� 3jþ 2k.

(b) from (3, 4, 5) to (�1, 9, 9) in a force field given by F ¼ �3iþ 5j� 6k.

2.70. Let F be a constant vector field force. Show that the work done in moving an object around any closed polygon

in this force field is zero.

2.71. Prove that an angle inscribed in a semicircle is a right angle.

2.72. Let ABCD be a parallelogram. Prove that AB
2 þ BC

2 þ CD
2 þ DA

2 ¼ AC
2 þ BD

2

2.73. Let ABCD be any quadrilateral where P and Q are the midpoints of its diagonal. Prove that

AB
2 þ BC

2 þ CD
2 þ DA

2 ¼ AC
2 þ BD

2 þ 4PQ
2

This is a generalization of the preceding problem.

2.74. Consider a plane P perpendicular to a given vector A and distance p from the origin. (a) Find an equation of the

plane P. (b) Express the equation in (a) in rectangular coordinates.

2.75. Let r1 and r2 be unit vectors in the xy-plane making angles a and b with the positive x-axis.

(a) Prove that r1 ¼ cosaiþ sinaj and r2 ¼ cosbiþ sinbj.

(b) By considering r1 � r2, prove the trigonometric formulas

cos(a� b) ¼ cosa cosbþ sina sinb and cos(aþ b) ¼ cosa cosbþ sina sinb

2.76. Let a be the position vector of a given point (x1, y1, z1), and let r be the position vector of any point (x, y, z).

Describe the locus of r if: (a) jr� aj ¼ 3, (b) (r� a) � a ¼ 0, (c) (r� a) � r ¼ 0.

2.77. Suppose A ¼ 3iþ jþ 2k and B ¼ i� 2j� 4k are the position vectors of points P and Q, respectively.

(a) Find an equation for the plane passing through Q and perpendicular to the line PQ.

(b) Find the distance from the point (�1, 1, 1) to the plane.

2.78. Evaluate each of the following: (a) 2j� (3i� 4k), (b) (iþ 2j)� k, (c) (2i� 4k)� (iþ 2j),

(d) (4iþ j� 2k)� (3iþ k), (e) (2iþ j� k)� (3i� 2jþ 4k).

2.79. Suppose A ¼ 3i� j� 2k and B ¼ 2iþ 3jþ k. Find: (a) jA� Bj, (b) (Aþ 2B)� (2A� B),

(c) j(Aþ B)� (A� B)j.
2.80. Suppose A ¼ i� 2j� 3k, B ¼ 2iþ j� k, C ¼ iþ 3j� 2k. Find:

(a) j(A� B)� Cj (c) A � (B� C), (e) (A� B)� (B� C)

(b) jA� (B� C)j (d) (A� B) �C, (f) (A� B)(B �C)
2.81. Suppose A=0 and both of the following conditions hold simultaneously: (a) A �B ¼ A �C,

and (b) A� B ¼ A� C. Show that B ¼ C but, if only one of the conditions holds, then B=C necessarily.

2.82. Find the area of a parallelogram having diagonals: (a) A ¼ 3iþ j� 2k and B ¼ i� 3j� 4k,

(b) A ¼ 2iþ 4j and B ¼ �4iþ 4k.
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2.83. Find the area of a triangle with vertices at: (a) (3, �1, 2), (1, �1, �3), and (4, �3, 1),

(b) (2, �3, �2), (�2, 3, 2), and (4, 3, �1).

2.84. Suppose A ¼ 2iþ j� 3k and B ¼ i� 2jþ k. Find a vector of magnitude 5 perpendicular to both A and B.

2.85. Use Problem 2.75 to derive the formulas:

sin(a� b) ¼ sina cosb� cosa sinb and sin(aþ b) ¼ sina cosbþ cosa sinb

2.86. Suppose a force F ¼ 3iþ 2j� 4k is applied at the point (1, �1, 2). Find the moment of F about the point:

(a) (2, �1, 3), (b) (4, �6, 3).

2.87. The angular velocity of a rotating rigid body about an axis of rotation is given by v ¼ 4iþ j� 2k. Find the

linear velocity of a point P on the body whose position vector relative to a point on the axis of rotation is

2i� 3jþ k.

2.88. Simplify: (a) (Aþ B) � (Bþ C)� (Cþ A), (b) A � (2Aþ B)� C.

2.89. Prove that (A �B� C)(a � b� c) ¼
A � a A � b A � c
B � a B � b B � c
C � a C � b C � c

������
������

2.90. Find the volume of the parallelepiped whose edges are represented by:

(a) A ¼ 2i� 3jþ 4k, B ¼ iþ 2j� k, and C ¼ 3i� jþ 2k.

(b) A ¼ i� jþ 2k, B ¼ iþ j� k, and C ¼ i� j� 4k.

2.91. Suppose A �B� C ¼ 0. Show that either (a) A, B, and C are coplanar but no two of them are collinear,

or (b) two of the vectors A, B, and C are collinear, or (c) all the vectors A, B, and C are collinear.

2.92. Find the constant a so that the following vectors are coplanar:

(a) 2i� jþ k, iþ 2j� 3k, 3iþ ajþ 5k, (b) 3i� 3j� k, �3i� 2jþ 2k, 6iþ aj� 3k.

2.93. Suppose A ¼ x1aþ y1bþ z1c, B ¼ x2aþ y2bþ z2c, and C ¼ x3aþ y3bþ z3c. Prove that

A �B� C ¼
x1 y1 z1
x2 y2 z2
x3 y3 z3

������
������(a � b� c)

2.94. Prove that (A� C)� B ¼ 0 is a necessary and sufficient condition that A� (B� C) ¼ (A� B)� C. Discuss

the cases where A �B ¼ 0 or B �C ¼ 0.

2.95. Let points P, Q, and R have position vectors r1 ¼ 3i� 2j� k, r2 ¼ iþ 3jþ 4k and r3 ¼ 2iþ j� 2k relative

to an origin O. Find the distance from P to the plane OQR.

2.96. Find the shortest distance: (a) from (6, �4, 4) to the line joining (2, 1, 2) and (3, �1, 4),

(b) from (1, �7, 5) to the line joining (13, �12, 5) and (23, 12, 5).

2.97. Consider points P(2, 1, 3), Q(1, 2, 1), R(�1, �1, �2), S(1, �4, 0). Find the shortest distance between lines

PQ and RS.

2.98. Prove that the perpendiculars from the vertices of a triangle to the opposite sides (extended if necessary) meet

at a point (called the orthocenter of the triangle).

2.99. Prove that the perpendicular bisectors of the sides of a triangle meet at a point (called the circumcenter of the

triangle).

2.100. Prove that (A� B) � (C� D)þ (B� C) � (A� D)þ (C� A) � (B� D) ¼ 0.
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2.101. Let PQR be a spherical triangle whose sides p, q, r are arcs of great circles. Prove the law of cosines for spheri-

cal triangles,

cos p ¼ cos q cos r þ sin q sin r

with analogous formulas for cos q and cos r obtained by cyclic permutation of the letters. Hint: Interpret both

sides of the identity

(A� B) � (A� C) ¼ (B �C)(A �A)� (A �C)(B �A)
2.102. Find a set of vectors reciprocal to the set vectors:

(a) 2iþ 3j� k, i� j� 2k, � iþ 2jþ 2k, (b) iþ 2jþ 3k, 5i� j� k, iþ j� k.

2.103. Suppose a0 ¼ b� c

a � b� c
, b0 ¼ c� a

a � b� c
, c0 ¼ a� b

a � b� c
. Prove that

a ¼ b0 � c0

a0 � b0 � c0
, b ¼ c0 � a0

a0 � b0 � c0
, c ¼ a0 � b0

a0 � b0 � c0

2.104. Suppose a, b, c and a0, b0, c0 have the following properties:

a0 � a ¼ b0 � b ¼ c0 � c ¼ 1

a0 � b ¼ a0 � c ¼ b0 � a ¼ b0 � c ¼ c0 � a ¼ c0 � b ¼ 0

Prove that the hypothesis of Problem 2.103 holds, that is,

a0 ¼ b� c

a � b� c
, b0 ¼ c� a

a � b� c
, c0 ¼ a� b

a � b� c
:

2.105. Prove that the only right-handed self-reciprocal sets of vectors are i, j, k.

2.106. Prove that there is one and only one set of vectors reciprocal to a given set of non-coplanar vectors a, b, c.

ANSWERS TO SUPPLEMENTARY PROBLEMS

2.55. (a) 0, (b) �6, (c) 1 2.57. (a) 908, arc cos 8=21 ¼ 678360

2.56. (a) �10, (b)
ffiffiffiffiffi
14

p
, (c) 6, (d)

ffiffiffiffiffiffiffiffi
150

p
, (e) �14 2.58. (a) a ¼ 2, �1, (b) a ¼ 2

2.59. arc cos 2=3, arc cos 2=3, arc cos 1=3 or 488120, 488120, 708320

2.60. (a) 2/7, 3/7, �6=7 or �2=7, �3=7, 6=7, (b) 3/13, 4/13, 12/13 or 23/13, 24/13, 212/13

2.61. (a) arc cos 7=
ffiffiffiffiffi
75

p
, arc cos

ffiffiffiffiffi
26

p
=
ffiffiffiffiffi
75

p
, 908 or 36840, 538560, 908 (b) 68:68, 83:98, 27:58

2.62. 5
ffiffiffi
3

p
=2, arc cos 23/75, 1808� arc cos 23=75; or 4.33, 72880, 1078520

2.63. (a) 8/3, (b) �1 2.66. arc cos 1=3 or 708320

2.64. 1 2.67. +(3iþ 4j)=5

2.65. (a) +(i� 2j� 2k)=3, (b) +(2i� j� 2k)=3 2.69. (a) 15, (b) 13

2.74. (a) r � n ¼ p where n ¼ A=jAj ¼ A=A, (b) A1xþ A2yþ A3z ¼ Ap

2.76. (a) Sphere with center at (x1, y1, z1) and radius ¼ 3.

(b) Plane perpendicular to a and passing through its terminal point.

(c) Sphere with center at (x1=2, y1=2, z1=2) and radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21 þ z21

p
=2; or a sphere with a as diameter.

2.77. (a) (r� B) � (A� B) ¼ 0 or 2xþ 3yþ 6z ¼ �28; (b) 5
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2.78. (a) �8i� 6k, (b) 2i� j, (c) 8i� 4jþ 4k, (d) i� 10j� 3k, (e) 2i� 11j� 7k

2.79. (a)
ffiffiffiffiffiffiffiffi
195

p
, (b) �25iþ 34j� 55k, (c) 2

ffiffiffiffiffiffiffiffi
195

p

2.80. (a) 5
ffiffiffiffiffi
26

p
, (b) 3

ffiffiffiffiffi
10

p
, (c) �20, (d) �20, (e) �40i� 20jþ 20k, (f) 35i� 35jþ 35k

2.82. (a) 5
ffiffiffi
3

p
, (b) 12 2.92. (a) a ¼ �4, (b) a ¼ �13

2.83. (a)
ffiffiffiffiffiffiffiffi
165

p
=2, (b) 21 2.95. 3

2.84. +[5
ffiffiffi
3

p
=3](iþ jþ k) 2.96. (a) 3, (b) 13

2.86. (a) 2i� 7j� 2k, (b) �3(6iþ 5jþ 7k) 2.97. 3
ffiffiffi
2

p

2.87. �5i� 8j� 14k 2.102. (a)
2

3
iþ 1

3
k, � 8

3
iþ j� 7

3
k, � 7

3
iþ j� 5

3
k

(b) (2iþ 4jþ 6k)=28, (5i� 4jþ k)=28,

(iþ 9j� 11k)=28

2.88. (a) 2A �B� C, (b) A �B� C

2.90. (a) 7, (b) 12
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CHAP T E R 3

Vector Differentiation

3.1 Introduction

The reader is familiar with the differentiation of real valued functions f(x) of one variable. Specifically,
we have:

f 0(x) ¼ df

dx
¼ lim

h!0

f (xþ h)� f (x)

h

Here we extend this definition to vector-valued functions of a single variable.

3.2 Ordinary Derivatives of Vector-Valued Functions

Suppose R(u) is a vector depending on a single scalar variable u. Then

DR

Du
¼ R(uþ Du)� R(u)

Du

where Du denotes an increment in u as shown in Fig. 3-1.
The ordinary derivative of the vector R(u) with respect to the scalar u is given as follows when the limit

exists:
dR

du
¼ lim

Du!0

DR

Du
¼ lim

Du!0

R(uþ Du)� R(u)

Du

Since dR=du is itself a vector depending on u, we can consider its derivative with respect to u. If this

derivative exists, we denote it by d2R=du2. Similarly, higher-order derivatives are described.

ΔR = R(u + Δu) – R(u)

R(u
+ Δu)

R(u)
O

Δr = r(u + Δu) – r(u)

0

x

y

z

(x, y, z)

r(u
)

r(
u 

+ 
Δu

)

Fig. 3-1 Fig. 3-2
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Space Curves

Consider now the position vector r(u) joining the origin O of a coordinate system and any point (x, y, z).
Then

r(u) ¼ x(u)iþ y(u)jþ z(u)k

and the specification of the vector function r(u) defines x, y, and z as functions of u.
As u changes, the terminal point of r describes a space curve having parametric equations

x ¼ x(u), y ¼ y(u), z ¼ z(u)

Then the following is a vector in the direction of Dr if Du . 0 and in the direction of �Dr if Du , 0
[as pictured in Fig. 3-2]:

Dr

Du
¼ r(uþ Du)� r(u)

Du

Suppose

lim
Du!0

Dr

Du
¼ dr

du

exists. Then the limit will be a vector in the direction of the tangent to the space curve at (x, y, z) and it is
given by

dr

du
¼ dx

du
iþ dy

du
jþ dz

du
k

Motion: Velocity and Acceleration

Suppose a particle P moves along a space curve C whose parametric equations are x ¼ x(t), y ¼ y(t),
z ¼ z(t), where t represents time. Then the position vector of the particle P along the curve is

r(t) ¼ x(t)iþ y(t)jþ z(t)k

In such a case, the velocity v and acceleration a of the particle P is given by:

v ¼ v(t) ¼ dr

dt
¼ dx

dt
iþ dy

dt
jþ dz

dt
k

a ¼ a(t) ¼ d2r

dt2
¼ dv

dt
¼ d2x

dt2
iþ d2y

dt2
jþ d2z

dt2
k

EXAMPLE 3.1 Suppose a particle Pmoves along a curve whose parametric equations, where t is time, follows:

x ¼ 40t2 þ 8t, y ¼ 2 cos 3t, z ¼ 2 sin 3t

(a) Determine its velocity and acceleration at any time.

(b) Find the magnitudes of the velocity and acceleration at t ¼ 0.

(a) The position vector of the particle P is

r ¼ xiþ yjþ zk ¼ (40t2 þ 8t)iþ (2 cos 3t)jþ (2 sin 3t)k
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Then the velocity v and acceleration a of P follow:

v ¼ dr

dt
¼ (80t þ 8)iþ (�6 sin 3t)jþ (6 cos 3t)k

a ¼ dv

dt
¼ 80iþ (�18 cos 3t)jþ (�18 sin 3t)k:

(b) At t ¼ 0, v ¼ 8iþ 6k, and a ¼ 80i� 18j. Magnitudes of velocity v and acceleration a follow:

jvj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(8)2 þ (6)2

q
¼ 10 and jaj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(80)2 þ (�18)2

q
¼ 82

3.3 Continuity and Differentiability

A scalar function f(u) is called continuous at u if

lim
Du!0

f(uþ Du) ¼ f(u)

Equivalently, f(u) is continuous at u if, for each positive number e, we can find a positive number d
such that

jf(uþ Du)� f(u)j , e whenever jDuj , d

A vector function R(u) ¼ R1(u)iþ R2(u)jþ R3(u)k is called continuous at u if the three functions
R1(u), R2(u), R3(u) are continuous at u or if limDu!0 R(uþ Du) ¼ R(u). Equivalently, R(u) is continuous
at u if, for each positive number e, we can find a positive number d such that

jR(uþ Du)� R(u)j , e whenever jDuj , d

A scalar or vector function of u is called differentiable of order n if its nth derivative exists. A function
that is differentiable is necessarily continuous but the converse is not true. Unless otherwise stated, we
assume that all functions considered are differentiable to any order needed in a particular discussion.

The following proposition applies.

PROPOSITION 2.1 Suppose A, B, and C are differentiable vector functions of a scalar u, and f is a
differentiable scalar function of u. Then the following laws hold:

(i)
d

du
(Aþ B) ¼ dA

du
þ dB

du

(ii)
d

du
(A�B) ¼ A� dB

du
þ dA

du
�B

(iii)
d

du
(A� B) ¼ A� dB

du
þ dA

du
� B

(iv)
d

du
(fA) ¼ f

dA

du
þ df

du
A

(v)
d

du
(A�B� C) ¼ A�B� dC

du
þ A� dB

du
� Cþ dA

du
�B� C

(vi)
d

du
fA� (B� C)g ¼ A� B� dC

du

� �
þ A� dB

du
� C

� �
þ dA

du
� (B� C)

The order of the products in Proposition 2.1 may be important.
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EXAMPLE 3.2 Suppose A ¼ 5u2iþ uj� u3k and B ¼ sin ui� cos uj. Find
d

du
(A�B)

d

du
(A�B) ¼ A� dB

du
þ dA

du
�B

¼ (5u2iþ uj� u3k)� (cos uiþ sin uj)þ (10uiþ j� 3u2k)� (sin ui� cos uj)

¼ [5u2 cos uþ u sin u]þ [10u sin u� cos u]

¼ (5u2 � 1) cos uþ 11u sin u

Another Method

A�B ¼ 5u2 sin u� u cos u: Then

d

du
(A�B) ¼ d

du
(5u2 sin u� ut cos u) ¼ 5u2 cos uþ 10u sin uþ u sin u� cos u

¼ (5u2 � 1) cos uþ 11u sin u

3.4 Partial Derivative of Vectors

Suppose A is a vector depending on more than one variable, say x, y, z, for example. Then we write
A ¼ A(x, y, z). The partial derivative of A with respect to x is denoted and defined as follows when the
limit exists:

@A

@x
¼ lim

Dx!0

A(xþ Dx, y, z)� A(x, y, z)

Dx

Similarly, the following are the partial derivatives of A with respect to y and z, respectively, when the
limits exist:

@A

@y
¼ lim

Dy!0

A(x, yþ Dy, z)� A(x, y, z)

Dy

@A

@z
¼ lim

Dz!0

A(x, y, zþ Dz)� A(x, y, z)

Dz

The remarks on continuity and differentiability of functions of one variable can be extended to functions
of two or more variables. For example, f(x, y) is called continuous at (x, y) if

lim
Dx!0
Dy!0

f(xþ Dx, yþ Dy) ¼ f(x, y)

or if for each positive number e we can find a positive number d such that

jf(xþ Dx, yþ Dy)� f(x, y)j , e whenever jDxj , d and jDyj , d

Similar definitions hold for vector functions of more than two variables.
For functions of two or more variables, we use the term differentiable to mean the function has continu-

ous first partial derivatives. (The term is used by others in a slightly weaker sense.)
Higher derivatives can be defined as in calculus. Thus, for example:

@2A

@x2
¼ @

@x

@A

@x

� �
,

@2A

@y2
¼ @

@y

@A

@y

� �
,

@2A

@z2
¼ @

@z

@A

@z

� �

@2A

@x@y
¼ @

@x

@A

@y

� �
,

@2A

@y@x
¼ @

@y

@A

@x

� �
,

@3A

@x@z2
¼ @

@x

@2A

@z2

� �
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In the case that A has continuous partial derivatives of the second order at least, we have

@2A

@x@y
¼ @2A

@y@x

That is, the order of differentiation does not matter.

EXAMPLE 3.3 Suppose f(x, y, z) ¼ xy2z and A ¼ xiþ jþ xyk. Find
@3

@x2@z
(fA) at the point P(1, 2, 2).

fA ¼ x2y2ziþ xy2zjþ x2y3zk

@

@z
(fA) ¼ x2y2iþ xy2jþ x2y3k

@2

@x@z
(fA) ¼ 2xy2iþ y2jþ 2xy3k

@3

@x2@z
(fA) ¼ 2y2iþ 2y3k

When x ¼ 1, y ¼ 2, and z ¼ 2,
@3

@x2@z
(fA) ¼ 8iþ 16k:

Rules for partial differentiation of vectors are similar to those in elementary calculus for scalar functions.
In particular, the following proposition applies.

PROPOSITION 3.2 Suppose A and B are vector functions of x, y, z. Then the following laws hold:

(i)
@

@x
(A�B) ¼ A� @B

@x
þ @A

@x
�B

(ii)
@

@x
(A� B) ¼ A� @B

@x
þ @A

@x
� B

(iii) @2

@y@x
(A�B) ¼ @

@y

@

@x
(A�B)� �

¼ @

@y
A� @B

@x
þ @A

@x
�B� �

¼ A� @2B

@y@x
þ @A

@y
� @B
@x

þ @A

@x
� @B
@y

þ @2A

@y@x
�B, and so on:

The rules for the differentials of vectors are essentially the same as those of elementary calculus as seen
in the following proposition.

PROPOSITION 3.3 Suppose A and B are functions of x, y, z. Then the following laws hold.

(i) If A ¼ A1iþ A2jþ A3k, then dA ¼ dA1iþ dA2jþ dA3k
(ii) d(A�B) ¼ A� dBþ dA�B
(iii) d(A� B) ¼ A� dBþ dA� B

(iv) If A ¼ A(x, y, z), then dA ¼ @A

@x
dxþ @A

@y
dyþ @A

@z
dz, and so on.

3.5 Differential Geometry

Differential geometry involves the study of curves and surfaces. Suppose C is a space curve defined by the
function r(u). Then, we have seen that dr=du is a vector in the direction of the tangent to C. Suppose the
scalar u is taken as the arc length smeasured from some fixed point on C. Then dr=ds is a unit tangent vector
to C and it is denoted by T (see Fig. 3-3). The rate at which T changes with respect to s is a measure of the
curvature of C and is given by dT=ds. The direction of dT=ds at any given point on C is normal to the curve
at that point (see Problem 3.9). If N is a unit vector in this normal direction, it is called the principal normal
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to the curve. Then dT=ds ¼ kN, where k is called the curvature of C at the specified point. The quantity
r ¼ 1=k is called the radius of curvature.

C
N

O

T
B

y

z

x

Fig. 3-3

A unit vector B perpendicular to the plane of T and N and such that B ¼ T� N, is called the binormal
to the curve. It follows that directions T, N, B form a localized right-handed rectangular coordinate system
at any specified point of C. This coordinate system is called the trihedral or triad at the point. As s changes,
the coordinate system moves and is known as the moving trihedral.

Frenet–Serret Formulas

A set of relations involving derivatives of the fundamental vectors T, N, and B is known collectively as the
Frenet–Serret formulas given by

dT

ds
¼ kN,

dN

ds
¼ tB� kT,

dB

ds
¼ �tN

where t is a scalar called the torsion. The quantity s ¼ 1=t is called the radius of torsion.
The osculating plane to a curve at a point P is the plane containing the tangent and principal normal at P.

The normal plane is the plane through P perpendicular to the tangent. The rectifying plane is the plane
through P, which is perpendicular to the principal normal.

Mechanics

Mechanics often includes the study of the motion of particles along curves. (This study being known as
kinematics.) In this area, some of the results of differential geometry can be of value.

A study of forces on moving objects is considered in dynamics. Fundamental to this study is Newton’s
famous law which states that if F is the net force acting on an object of mass mmoving with velocity v, then

F ¼ d

dt
(mv)

where mv is the momentum of the object. If m is constant, this becomes F ¼ m(dv=dt) ¼ ma, where a is the
acceleration of the object.

SOLVED PROBLEMS

3.1. Suppose R(u) ¼ x(u)iþ y(u)jþ z(u)k, where x, y, and z are differentiable functions of a scalar u.
Prove that

dR

du
¼ dx

du
iþ dy

du
jþ dz

du
k:
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Solution

dR

du
¼ lim

Du!0

R(uþ Du)� R(u)

Du

¼ lim
Du!0

[x(uþ Du)iþ y(uþ Du)jþ z(uþ Du)k]� [x(u)iþ y(u)jþ z(u)k]

Du

¼ lim
Du!0

x(uþ Du)� x(u)

Du
iþ y(uþ Du)� y(u)

Du
jþ z(uþ Du)� z(u)

Du
k

¼ dx

du
iþ dy

du
jþ dz

du
k

3.2. Given R ¼ (3 cos t)iþ (3 sin t)jþ (4t)k. Find: (a)
dR

dt
, (b)

d2R

dt
, (c)

dR

dt

����
����, (d) d2R

dt

����
����.

Solution

(a)
dR

dt
¼ d

dt
(3 cos t)iþ d

dt
(3 sin t)jþ d

dt
(4t)k ¼ (�3 sin t)iþ (3 cos t)jþ 4k.

(b)
d2R

dt
¼ d

dt

dR

dt

� �
¼ d

dt
(�3 sin t)iþ d

dt
(3 cos t)jþ d

dt
(4)k ¼ (�3 cos t)iþ (�3 sin t)j.

(c)
dR

dt

����
���� ¼ [(�3 sin t)2 þ (3 cos t)2 þ (4)2]1=2 ¼ 5.

(d)
d2R

dt

����
���� ¼ [(�3 cos t)2 þ (�3 sin t)2 þ (0)2]1=2 ¼ 3.

3.3. A particle moves along a curve whose parametric equations are x ¼ e�t, y ¼ 2 cos 3t, z ¼ 2 sin 3t,
where t is the time.

(a) Determine its velocity and acceleration at any time.

(b) Find the magnitudes of the velocity and acceleration at t ¼ 0.

Solution

(a) The position vector r of the particle is r ¼ xiþ yjþ zk ¼ e�tiþ 2 cos 3tjþ 2 sin 3tk. Then the velocity is v ¼
dr=dt ¼ �e�ti� 6 sin 3tjþ 6 cos 3tk and the acceleration is a ¼ d2r=dt2 ¼ e�ti� 18 cos 3tj� 18 sin 3tk:

(b) At t ¼ 0, dr=dt ¼ �iþ 6k and d2r=dt2 ¼ i� 18j. Then

magnitude of velocity at t ¼ 0 is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�1)2 þ (6)2

q
¼

ffiffiffiffiffi
37

p

magnitude of acceleration at t ¼ 0 is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1)2 þ (�18)2

q
¼

ffiffiffiffiffiffiffiffi
325

p
:

3.4. A particle moves along the curve x ¼ 2t2, y ¼ t2 � 4t, z ¼ �t � 5 where t is the time.
Find the components of its velocity and acceleration at time t ¼ 1 in the direction i� 2jþ 2k.

Solution

Velocity ¼ dr

dt
¼ d

dt
[(2t2)iþ (t2 � 4t)jþ (�t � 5)k]

¼ (4t)iþ (2t � 4)j� k ¼ 4i� 2j� k at t ¼ 1:

Unit vector in direction i� 2jþ 2k is
i� 2jþ 2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1)2 þ (�2)2 þ (2)2
p ¼ 1

3
i� 2

3
jþ 2

3
k:
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Then the component in the given direction is (4i� 2j� k)� 1
3
i� 2

3
jþ 2

3
k

� 	 ¼ 2

Acceleration ¼ d2r

dt2
¼ d

dt

dr

dt

� �
¼ d

dt
[(4t)iþ (2t � 4)j� k] ¼ 4iþ 2j:

Then the component of the acceleration in the given direction is (4iþ 2j)� 1
3
i� 2

3
jþ 2

3
k

� 	 ¼ 0.

3.5. A curve C is defined by parametric equations x ¼ x(s), y ¼ y(s), z ¼ z(s), where s is the arc length of
C measured from a fixed point on C. If r is the position vector of any point on C, show that dr/ds is a
unit vector tangent to C.

Solution

The vector

dr

ds
¼ d

ds
(xiþ yjþ zk) ¼ dx

ds
iþ dy

ds
jþ dz

ds
k

is tangent to the curve x ¼ x(s), y ¼ y(s), z ¼ z(s). To show that it has unit magnitude, we note that

dr

ds

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

ds

� �2

þ dy

ds

� �2

þ dz

ds

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dx)2 þ (dy)2 þ (dz)2

(ds)2

s
¼ 1

since (ds)2 ¼ (dx)2 þ (dy)2 þ (dz)2 from the calculus.

3.6. (a) Find the unit tangent vector to any point on the curve x ¼ t2 � t, y ¼ 4t � 3, z ¼ 2t2 � 8t:

(b) Determine the unit tangent at the point where t ¼ 2.

Solution

(a) A tangent to the curve at any point is

dr

dt
¼ d

dt
[(t2 � t)iþ (4t � 3)jþ (2t2 � 8t)k] ¼ (2t � 1)iþ 4jþ (4t � 8)k:

The magnitude of the vector is dr=dt
�� �� ¼ [(2t � 1)2 þ (4)2 þ (4t � 8)2]1=2. Then the required unit tangent

vector is

T ¼ [(2t � 1)iþ 4jþ (4t � 8)k]=[(2t � 1)2 þ (4)2 þ (4t � 8)2]1=2:

Note that since dr=dt
�� �� ¼ ds=dt, we have

T ¼ dr=dt

ds=dt
¼ dr

ds
:

(b) At t ¼ 2, the unit tangent vector is T ¼ 3iþ 4jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3)2 þ (4)2 þ 02

p ¼ 3
5
iþ 4

5
j.

3.7. Suppose A and B are differentiable functions of a scalar u. Prove:

(a)
d

du
(A�B) ¼ A� dB

du
þ dA

du
�B, (b)

d

du
(A� B) ¼ A� dB

du
þ dA

du
� B
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Solution

(a)
d

du
(A�B) ¼ lim

Du!0

(Aþ DA)� (Bþ DB)� A�B
Du

¼ lim
Du!0

A�DBþ DA�Bþ DA�DB
Du

¼ lim
Du!0

A� DB
Du

þ DA

Du
�Bþ DA

Du
�DB ¼ A� dB

du
þ dA

du
�B

Another Method

Let A ¼ A1iþ A2jþ A3k, B ¼ B1iþ B2jþ B3k. Then

d

du
(A�B) ¼ d

du
(A1B1 þ A2B2 þ A3B3)

¼ A1

dB1

du
þ A2

dB2

du
þ A3

dB3

du

� �
þ dA1

du
B1 þ dA2

du
B2 þ dA3

du
B3

� �

¼ A� dB
du

þ dA

du
�B

(b)
d

du
(A� B) ¼ lim

Du!0

(Aþ DA)� (Bþ DB)� A� B

Du

¼ lim
Du!0

A� DBþ DA� Bþ DA� DB

Du

¼ lim
Du!0

A� DB

Du
þ DA

Du
� Bþ DA

Du
� DB

¼ A� dB

du
þ dA

du
� B

Another Method
d

du
(A� B) ¼ d

du

i j k

A1 A2 A3

B1 B2 B3

������
������

Using a theorem on differentiation of a determinant, this becomes

i j k

A1 A2 A3

dB1

du

dB2

du

dB3

du

��������

��������þ
i j k

dA1

du

dA2

du

dA3

du

B1 B2 B3

���������

���������
¼ A� dB

du
þ dA

du
� B

3.8. Suppose A ¼ 5t2iþ tj� t3k and B ¼ sin ti� cos tj. Find: (a)
d

dt
(A� B), (b)

d

dt
(A�A).

Solution

(a)
d

dt
(A�B) ¼ A� dB

dt
þ dA

dt
�B

¼ (5t2iþ tj� t3k) � (cos tiþ sin tj)þ (10tiþ j� 3t2k) � (sin ti� cos tj)

¼ 5t2 cos t þ t sin t þ 10t sin t � cos t ¼ (5t2 � 1) cos t þ 11t sin t

52 CHAPTER 3 Vector Differentiation



Another Method

A�B ¼ 5t2 sin t � t cos t. Then
d

dt
(A�B) ¼ d

dt
(5t2 sin t � t cos t) ¼ 5t2 cos t þ 10t sin t þ t sin t � cos t

¼ (5t2 � 1) cos t þ 11t sin t

(b) d

dt
(A� B) ¼ A� dB

dt
þ dA

dt
� B ¼

i j k

5t2 t �t3

cos t sin t 0

�������
�������þ

i j k

10t 1 �3t2

sin t �cos t 0

�������
�������

¼ [t3 sin ti� t3 cos tjþ (5t2 sin t � t cos t)k]

þ [�3t2 cos ti� 3t2 sin tjþ (�10t cos t � sin t)k]

¼ (t3 sin t � 3t2 cos t)i� (t3 cos t þ 3t2 sin t)jþ (5t2 sin t � sin t � 11t cos t)k

Another Method

A� B ¼
i j k

5t2 t �t3

sin t � cos t 0

������
������ ¼ �t3 cos ti� t3 sin tjþ (�5t2 cos t � t sin t)k

Then
d

dt
(A� B) ¼ (t3 sin t � 3t2 cos t)i� (t3 cos t þ 3t2 sin t)jþ (5t2 sin t � 11t cos t � sin t)k

(c)
d

dt
(A�A) ¼ A� dA

dt
þ dA

dt
�A ¼ 2A� dA

dt

¼ 2(5t2iþ tj� t3k)� (10tiþ j� 3t2k) ¼ 100t3 þ 2t þ 6t5

Another Method

A�A ¼ (5t2)2 þ (t)2 þ (�t3)2 ¼ 25t4 þ t2 þ t6

Then
d

dt
(25t4 þ t2 þ t6) ¼ 100t3 þ 2t þ 6t5:

3.9. Suppose A has constant magnitude. Show that A . dA=dt ¼ 0 and that A and dA/dt are perpendicular
provided dA=dt

�� ��= 0.

Solution

Since A has constant magnitude, A�A ¼ constant.

Then
d

dt
(A�A) ¼ A� dA

dt
þ dA

dt
�A ¼ 2A� dA

dt
¼ 0.

Thus A� dA
dt

¼ 0 and A is perpendicular to
dA

dt
provided

dA

dt

����
����= 0.

3.10. Suppose A, B, and C are differentiable functions of a scalar u. Prove

d

du
(A�B� C) ¼ A�B� dC

du
þ A� dB

du
� Cþ dA

du
�B� C:

Solution

By Problems 3:7(a) and 3:7(b),
d

du
A� (B� C) ¼ A� d

du
(B� C)þ dA

du
�B� C

¼ A� B� dC

du
þ dB

du
� C


 �
þ dA

du
�B� C

¼ A�B� dC

du
þ A� dB

du
� Cþ dA

du
�B� C
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3.11. A particle moves so that its position vector is given by r ¼ cosvtiþ sinvtj where v is a constant.
Show that (a) the velocity v of the particle is perpendicular to r, (b) the acceleration a is directed
toward the origin and has magnitude proportional to the distance from the origin, (c) r� v ¼ a
constant vector.

Solution

(a) v ¼ dr

dt
¼ �v sinvtiþ v cosvtj. Then

r� v ¼ [cosvtiþ sinvtj]� [�v sinvtiþ v cosvtj]

¼ (cosvt)(�v sinvt)þ (sinvt)(v cosvt) ¼ 0

and r and v are perpendicular.

(b) d2r

dt2
¼ dv

dt
¼ �v2 cosvti� v2 sinvtj

¼ �v2[cosvtiþ sinvtj] ¼ �v2r

Then the acceleration is opposite to the direction of r, that is, it is directed toward the origin. Its magnitude is

proportional to jrj, which is the distance from the origin.

(c) r� v ¼ [cosvtiþ sinvtj]� [�v sinvtiþ v cosvtj]

¼
i j k

cosvt sinvt 0

�v sinvt v cosvt 0

�������
�������

¼ v(cos2vt þ sin2vt)k

¼ v k, a constant vector:

Physically, the motion is that of a particle moving on the circumference of a circle with constant angular

speed v. The acceleration, directed toward the center of the circle, is the centripetal acceleration.

3.12. Show that A� dA
dt

¼ A
dA

dt
.

Solution

Let A ¼ A1iþ A2jþ A3k. Then A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ A2

2 þ A2
3

p
.

dA

dt
¼ 1

2
(A2

1 þ A2
2 þ A2

3)
�1=2 2A1

dA1

dt
þ 2A2

dA2

dt
þ 2A3

dA3

dt

� �

¼
A1

dA1

dt
þ A2

dA2

dt
þ A3

dA3

dt
(A2

1 þ A2
2 þ A2

3)
1=2

¼
A� dA

dt
A

, i:e:, A
dA

dt
¼ A� dA

dt

:

Another Method

Since A�A ¼ A2,
d

dt
(A�A) ¼ d

dt
(A2):

d

dt
(A�A) ¼ A� dA

dt
þ dA

dt
�A ¼ 2A� dA

dt
and

d

dt
(A2) ¼ 2A

dA

dt

Then 2A� dA
dt

¼ 2A
dA

dt
or A� dA

dt
¼ A

dA

dt
:

Note that if A is a constant vector A� dA
dt

¼ 0 as in Problem 3.9.

54 CHAPTER 3 Vector Differentiation



3.13. Let A ¼ (2x2y� x4)iþ (exy � y sin x)jþ (x2 cos y)k. Find: (a)
@A

@x
, (b)

@A

@y
.

Solution

(a) @A

@x
¼ @

@x
(2x2y� x4)iþ @

@x
(exy � y sin x)jþ @

@x
(x2 cos y)k

¼ (4xy� 4x3)iþ (yexy � y cos x)jþ 2x cos yk

(b) @A

@y
¼ @

@y
(2x2y� x4)iþ @

@y
(exy � y sin x)jþ @

@y
(x2 cos y)k

¼ 2x2iþ (xexy � sin x)j� x2 sin yk

3.14. Let A be the vector in Problem 3.13. Find: (a)
@2A

@x2
, (b)

@2A

@y2
.

Solution

(a) @2A

@x2
¼ @

@x
(4xy� 4x3)iþ @

@x
(yexy � y cos x)jþ @

@x
(2x cos y)k

¼ (4y� 12x2)iþ (y2exy þ y sin x)jþ 2 cos yk

(b) @2A

@y2
¼ @

@y
(2x2)iþ @

@y
(xexy � sin x)j� @

@y
(x2 sin y)k

¼ 0þ x2exyj� x2 cos yk ¼ x2exyj� x2 cos yk

3.15. Let A be the vector in Problem 3.13. Find: (a)
@2A

@x@y
, (b)

@2A

@y@x
.

Solution

(a) @2A

@x@y
¼ @

@x

@A

@y

� �
¼ @

@x
(2x2)iþ @

@x
(xexy � sin x)j� @

@x
(x2 sin y)k

¼ 4xiþ (xyexy þ exy � cos x)j� 2x sin yk

(b)
@2A

@y@x
¼ @

@y

@A

@x

� �
¼ @

@y
(4xy� 4x3)iþ @

@y
(yexy � y cos x)jþ @

@y
(2x cos y)k

¼ 4xiþ (xyexy þ exy � cos x)j� 2x sin yk

Note that @2A=@y@x ¼ @2A=@x@y, that is, the order of differentiation is immaterial. This is true in general if A has

continuous partial derivatives of the second order at least.

3.16. Suppose f(x, y, z) ¼ xy2z and A ¼ xzi� xy2jþ yz2k. Find
@3

@x2@z
(fA) at the point (2,�1, 1).

Solution

fA ¼ (xy2z)(xzi� xy2jþ yz2k) ¼ x2y2z2i� x2y4zjþ xy3z3k

@

@z
(fA) ¼ @

@z
(x2y2z2i� x2y4zjþ xy3z3k) ¼ 2x2y2zi� x2y4jþ 3xy3z2k

@2

@x@z
(fA) ¼ @

@x
(2x2y2zi� x2y4jþ 3xy3z2k) ¼ 4xy2zi� 2xy4jþ 3y3z2k

@3

@x2@z
(fA) ¼ @

@x
(4xy2zi� 2xy4jþ 3y3z2k) ¼ 4y2zi� 2y4j

If x ¼ 2, y ¼ �1, and z ¼ 1, this becomes 4(�1)2(1)i� 2(�1)4j ¼ 4i� 2j.
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3.17. Let F depend on x, y, z, t where x, y, and z depend on t. Prove that

dF

dt
¼ @F

@t
þ @F

@x

dx

dt
þ @F

@y

dy

dt
þ @F

@z

dz

dt

under suitable assumptions of differentiability.

Solution

Suppose that F ¼ F1(x, y, z, t)iþ F2(x, y, z, t)jþ F3(x, y, z, t)k. Then

dF ¼ dF1iþ dF2jþ dF3k

¼ @F1

@t
dt þ @F1

@x
dxþ @F1

@y
dyþ @F1

@z
dz


 �
iþ @F2

@t
dt þ @F2

@x
dxþ @F2

@y
dyþ @F2

@z
dz


 �
j

þ @F3

@t
dt þ @F3

@x
dxþ @F3

@y
dyþ @F3

@z
dz


 �
k

¼ @F1

@t
iþ @F2

@t
jþ @F3

@t
k

� �
dt þ @F1

@x
iþ @F2

@x
jþ @F3

@x
k

� �
dx

þ @F1

@y
iþ @F2

@y
jþ @F3

@y
k

� �
dyþ @F1

@z
iþ @F2

@z
jþ @F3

@z
k

� �
dz

¼ @F

@t
dt þ @F

@x
dxþ @F

@y
dyþ @F

@z
dz

and so
dF

dt
¼ @F

@t
þ @F

@x

dx

dt
þ @F

@y

dy

dt
þ @F

@z

dz

dt
.

Differential Geometry

3.18. Prove the Frenet–Serret formulas: (a)
dT

ds
¼ kN, (b)

dB

ds
¼ �tN, (c)

dN

ds
¼ tB� kT.

Solution

(a) Since T�T ¼ 1, it follows from Problem 3.9 that T� dT
ds

¼ 0, that is,
dT

ds
is perpendicular to T.

If N is a unit vector in the direction
dT

ds
, then

dT

ds
¼ kN. We call N the principal normal, k the curvature

and r ¼ 1=k the radius of curvature.

(b) Let B ¼ T� N, so that
dB

ds
¼ T� dN

ds
þ dT

ds
� N ¼ T� dN

ds
þ kN� N ¼ T� dN

ds
.

Then T� dB
ds

¼ T�T� dN

ds
¼ 0, so that T is perpendicular to

dB

ds
.

But from B�B ¼ 1, it follows that B� dB
ds

¼ 0 (Problem 3.9), so that
dB

ds
is perpendicular to B and is thus

in the plane of T and N.

Since
dB

ds
is in the plane of T and N and is perpendicular to T, it must be parallel to N; then

dB

ds
¼ �tN.

We call B the binormal, t the torsion, and s ¼ 1=t the radius of torsion.

(c) Since T, N, B form a right-handed system, so do N, B, and T, that is, N ¼ B� T.

Then
dN

ds
¼ B� dT

ds
þ dB

ds
� T ¼ B� kN� tN� T ¼ �kTþ tB ¼ tB� kT.
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3.19. Prove that the radius of curvature of the curve with parametric equations x ¼ x(s), y ¼ y(s), and
z ¼ z(s) is given by

r ¼ d2x

ds2

� �2

þ d2y

ds2

� �2

þ d2z

ds2

� �2
" #�1=2

:

Solution

The position vector of any point on the curve is r ¼ x(s)iþ y(s)jþ z(s)k. Then

T ¼ dr

ds
¼ dx

ds
iþ dy

ds
jþ dz

ds
k and

dT

ds
¼ d2x

ds2
iþ d2y

ds2
jþ d2z

ds2
k:

But dT=ds ¼ kN so that

k ¼ dT

ds

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x

ds2

� �2

þ d2y

ds2

� �2

þ d2z

ds2

� �2
s

and the result follows since r ¼ 1=k.

3.20. Show that
dr

ds
� d2r
ds2

� d3r

ds3
¼ t

r2
.

Solution

dr

ds
¼ T,

d2r

ds2
¼ dT

ds
¼ kN,

d3r

ds3
¼ k

dN

ds
þ dk

ds
N ¼ k(tB� kT)þ dk

ds
N ¼ ktB� k2Tþ dk

ds
N

dr

ds
� d2r
ds2

� d3r

ds3
¼ T� kN� ktB� k2Tþ dk

ds
N

� �

¼ T� k2tN� B� k3N� Tþ k
dk

ds
N� N

� �

¼ T� (k2tTþ k3B)

¼ k2t ¼ t

r2

The result can be written

t ¼ (x00)2 þ (y00)2 þ (z00)2
� 
�1

x0 y0 z0

x00 y00 z00

x000 y000 z000

������
������

where primes denote derivatives with respect to s, by using the result of Problem 3.19.

3.21. Given the space curve x ¼ t, y ¼ t2, z ¼ 2
3
t3. Find: (a) the curvature k, (b) the torsion t.

Solution

(a) The position vector is r ¼ tiþ t2jþ 2
3
t3k. Then

dr

dt
¼ iþ 2tjþ 2t2k and

ds

dt
¼ dr

dt

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dr

dt
� dr
dt

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1)2 þ (2t)2 þ (2t2)2

q
¼ 1þ 2t2
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and

T ¼ dr

ds
¼ dr=dt

ds=dt
¼ iþ 2tjþ 2t2k

1þ 2t2

dT

dt
¼ (1þ 2t2)(2jþ 4tk)� (iþ 2tjþ 2t2k)(4t)

(1þ 2t2)2
¼ �4tiþ (2� 4t2)jþ 4tk

(1þ 2t2)2

Then

dT

ds
¼ dT=dt

ds=dt
¼ �4tiþ (2� 4t2)jþ 4tk

(1þ 2t2)3
:

Since dT=ds ¼ kN,

k ¼ dT

ds

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�4t)2 þ (2� 4t2)2 þ (4t)2

p
(1þ 2t2)3

¼ 2

(1þ 2t2)2

(b) From (a), N ¼ 1

k

dT

ds
¼ �2tiþ (1� 2t2)jþ 2tk

1þ 2t2

Then

B ¼ T� N ¼

i j k

1

1þ 2t2
2t

1þ 2t2
2t2

1þ 2t2

�2t

1þ 2t2
1� 2t2

1þ 2t2
2t

1þ 2t2

����������

����������
¼ 2t2i� 2tjþ k

1þ 2t2

Now
dB

dt
¼ 4tiþ (4t2 � 2)j� 4tk

(1þ 2t2)2
and

dB

ds
¼ dB=dt

ds=dt
¼ 4tiþ (4t2 � 2)j� 4tk

(1þ 2t2)3

Also, �tN ¼ �t
�2tiþ (1� 2t2)jþ 2tk

1þ 2t2


 �
. Since

dB

ds
¼ �tN, we find t ¼ 2

(1þ 2t2)2
.

Note that k ¼ t for this curve.

3.22. Find equations in vector and rectangular form for the (a) tangent, (b) principal normal, and
(c) binormal to the curve of Problem 3.21 at the point where t ¼ 1.

Solution

Let TO,NO, and BO denote the tangent, principal normal, and binormal vectors at the required point. Then, from

Problem 3.21,

TO ¼ iþ 2jþ 2k

3
, NO ¼ �2i� jþ 2k

3
, BO ¼ 2i� 2jþ k

3

If A denotes a given vector while rO and r denote, respectively, the position vectors of the initial point and an
arbitrary point of A, then r� rO is parallel to A and so the equation of A is (r� rO)� A ¼ 0. Then

Equation of tangent is

Equation of principal normal is

Equation of binormal is

(r� rO)� TO ¼ 0

(r� rO)� NO ¼ 0

(r� rO)� BO ¼ 0
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In rectangular form, with r ¼ xiþ yjþ zk, rO ¼ iþ jþ 2
3
k, these become, respectively,

x� 1

1
¼ y� 1

2
¼ z� 2=3

2
,

x� 1

�2
¼ y� 1

�1
¼ z� 2=3

2
,

x� 1

2
¼ y� 1

�2
¼ z� 2=3

1
:

These equations can also be written in parametric form (see Problem 1.28, Chapter 1).

3.23. Sketch the space curve x ¼ 3 cos t, y ¼ 3 sin t, z ¼ 4t and find (a) the unit tangent T, (b) the principal
normalN, curvature k, and radius of curvature r, (c) the binormal B, torsion t, and radius of torsion s.

Solution

The space curve is a circular helix (see Fig. 3-4). Since t ¼ z=4, the curve has equations x ¼ 3 cos(z=4),
y ¼ 3 sin(z=4) and therefore lies on the cylinder x2 þ y2 ¼ 9.

(a) The position vector for any point on the curve is

r ¼ 3 cos tiþ 3 sin tjþ 4tk

Then
dr

dt
¼ �3 sin tiþ 3 cos tjþ 4k

ds

dt
¼ dr

dt

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dr

dt
� dr
dt

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�3 sin t)2 þ (3 cos t)2 þ 42

q
¼ 5

Thus T ¼ dr

ds
¼ dr=dt

ds=dt
¼ � 3

5
sin tiþ 3

5
cos tjþ 4

5
k.

(b)
dT

dt
¼ d

dt
� 3

5
sin tiþ 3

5
cos tjþ 4

5
k

� �
¼ � 3

5
cos ti� 3

5
sin tj

dT

ds
¼ dT=dt

ds=dt
¼ � 3

25
cos ti� 3

25
sin tj

Since
dT

ds
¼ kN,

dT

ds

����
���� ¼ kj j Nj j ¼ k as k^ 0.

Then k ¼ dT

ds

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3

25
cos t

� �2

þ � 3

25
sin t

� �2
s

¼ 3

25
and r ¼ 1

k
¼ 25

3
.

From
dT

ds
¼ kN, we obtain N ¼ 1

k

dT

ds
¼ �cos ti� sin tj.

(c) B ¼ T� N ¼
i j k

� 3
5
sin t 3

5
cos t 4

5

� cos t � sin t 0

������
������ ¼ 4

5
sin ti� 4

5
cos tjþ 3

5
k

dB

dt
¼ 4

5
cos tiþ 4

5
sin tj,

dB

ds
¼ dB=dt

ds=dt
¼ 4

25
cos tiþ 4

25
sin tj

�tN ¼ �t(�cos ti� sin tj) ¼ 4

25
cos tiþ 4

25
sin tj or t ¼ 4

25
and s ¼ 1

t
¼ 25

4
:

O

x

y

z

Normal Plane

C

P
To

Osculating Plane

Rectifying Plane

Fig. 3-4 Fig. 3-5
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3.24. Find equations in vector and rectangular form for the (a) osculating plane, (b) normal plane, and
(c) rectifying plane to the curve of Problems 3.21 and 3.22 at the point where t ¼ 1.

Solution

(a) The osculating plane is the plane which contains the tangent and principal normal. If r is the position vector

of any point in this plane and rO is the position vector of the point t ¼ 1, then r� rO is perpendicular to BO,

the binormal at the point t ¼ 1, i.e. (r� rO)�BO ¼ 0.

(b) The normal plane is the plane which is perpendicular to the tangent vector at the given point. Then the

required equation is (r� rO)�TO ¼ 0.

(c) The rectifying plane is the plane which is perpendicular to the principal normal at the given point. The

required equation is (r� rO)�NO ¼ 0.

In rectangular form the equation of (a), (b) and (c) become respectively,

2(x� 1)� 2(y� 1)þ 1(z� 2=3) ¼ 0,

1(x� 1)þ 2(y� 1)þ 2(z� 2=3) ¼ 0,

�2(x� 1)� 1(y� 1)þ 2(z� 2=3) ¼ 0:

Fig. 3-5 shows the osculating, normal and rectifying planes to a curve C at the point P.

3.25. (a) Show that the equation r ¼ r(u, v) represents a surface.

(b) Show that
@r

@u
� @r

@v
represents a vector normal to the surface.

Solution

(a) If we consider u to have a fixed value, say uO, then r ¼ r(uO, v) represents a curve which can be denoted by

u ¼ uO. Similarly u ¼ u1 defines another curve r ¼ r(u1, v). As u varies, therefore, r ¼ r(u, v) represents

a curve which moves in space and generates a surface S. Then r ¼ r(u, v) represents the surface S thus

generated, as shown in Fig. 3-6(a).

The curves u ¼ uO, u ¼ u1, . . . represent definite curves on the surface. Similarly v ¼ vO, v ¼ v1, . . .
represent curves on the surface.

By assigning definite values to u and v, we obtain a point on the surface. Thus curves u ¼ uO and v ¼ vO,

for example, intersect and define the point (uO, vO) on the surface. We speak of the pair of numbers (u, v) as

defining the curvilinear coordinates on the surface. If all the curves u ¼ constant and v ¼ constant are

perpendicular at each point of intersection, we call the curvilinear coordinate system orthogonal. For

further discussion of curvilinear coordinates see Chapter 7.

S

u = u
o

u = u
1

u = u
2

(uo, uo)
u = uo

u = u1

u = u2

∂r
∂u

∂r
∂u∂r

∂u
∂r
∂u×

u = uo

P(uo, uo)

u
= u

oS

Fig. 3-6a Fig. 3-6b

(b) Consider point P having coordinates (uO, vO) on a surface S, as shown in Fig. 3-6(b). The vector @r=@u at P is

obtained by differentiating r with respect to u, keeping v ¼ constant ¼ vO. From the theory of space curves,

it follows that @r=@u at P represents a vector tangent to the curve v ¼ vO at P, as shown in the adjoining
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figure. Similarly, @r=@v at P represents a vector tangent to the curve u ¼ constant ¼ uO. Since @r=@u and

@r=@v represent vectors at P tangent to curves which lie on the surface S at P, it follows that these

vectors are tangent to the surface at P. Hence it follows that
@r

@u
� @r

@v
is a vector normal to S at P.

3.26. Determine a unit normal to the following surface, where a . 9:

r ¼ a cos u sin viþ a sin u sin vjþ a cos vk

Solution
@r

@u
¼ �a sin u sin viþ a cos u sin vj

@r

@v
¼ a cos u cos viþ a sin u cos vj� a sin vk

Then @r

@u
� @r

@v
¼

i j k

�a sin u sin v a cos u sin v 0

a cos u cos v a sin u cos v �a sin v

�������
�������

¼ �a2 cos u sin2 vi� a2 sin u sin2 vj� a2 sin v cos vk

represents a vector normal to the surface at any point (u, v).

A unit normal is obtained by dividing
@r

@u
� @r

@v
by its magnitude,

@r

@u
� @r

@v

����
����, given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 cos2 u sin4 vþ a4 sin2 u sin4 vþ a4 sin2 v cos2 v

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4( cos2 uþ sin2 u) sin4 vþ a4 sin2 v cos2 v

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 sin2 v( sin2 vþ cos2 v)

q

¼ a2 sin v if sin v . 0

�a2 sin v if sin v , 0

�

Then there are two unit normals given by

+(cos u sin viþ sin u sin vjþ cos vk) ¼ +n

It should be noted that the given surface is defined by x ¼ a cos u sin v, y ¼ a sin u sin v, z ¼ a cos v from

which it is seen that x2 þ y2 þ z2 ¼ a2, which is a sphere of radius a. Since r ¼ an, it follows that

n ¼ cos u sin viþ sin u sin vjþ cos vk

is the outward drawn unit normal to the sphere at the point (u, v).

3.27. Find an equation of the tangent plane to the surface x2 þ 2xy2 � 3z3 ¼ 6 at the point P(1, 2, 1).

Solution

The normal direction N to a surface F(x, y, z) ¼ k, where k is a constant, follows:

N ¼ [Fx,Fy,Fz]

We have Fx ¼ 2xþ 2y2,Fy ¼ 2x,Fz ¼ 3z2. Thus, at the point P, the normal to the surface (and the tangent

plane) is N(P) ¼ [10, 2, 3].

The tangent plane E at P has the form 10xþ 2yþ 3z ¼ b. Substituting P in the equation gives

b ¼ 10þ 4þ 3 ¼ 17. Thus 10xþ 2yþ 3z ¼ 17 is an equation for the tangent plane at P.
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Mechanics

3.28. Show that the acceleration a of a particle which travels along a space curve with velocity v is given by

a ¼ dv

dt
Tþ v2

r
N

where T is the unit tangent vector to the space curve, N is its unit principal normal, and r is the radius
of curvature.

Solution

Velocity v ¼ magnitude of v multiplied by unit tangent vector T

or v ¼ vT

Differentiating,

a ¼ dv

dt
¼ d

dt
(vT) ¼ dv

dt
Tþ v

dT

dt

But by Problem 3.18(a),
dT

dt
¼ dT

ds

ds

dt
¼ kN

ds

dt
¼ kvN ¼ vN

r

Then

a ¼ dv

dt
Tþ v

vN

r

� �
¼ dv

dt
Tþ v2

r
N

This shows that the component of the acceleration is dv/dt in a direction tangent to the path and v2=r in a direc-
tion of the principal normal to the path. The latter acceleration is often called the centripetal acceleration. For a

special case of this problem see Problem 3.11.

3.29. If r is the position vector of a particle of mass m relative to point O and F is the external force on the
particle, then r� F ¼ M is the torque or moment of F about O. Show that M ¼ dH=dt, where H ¼
r� mv and v is the velocity of the particle.

Solution

M ¼ r� F ¼ r� d

dt
(mv) by Newton’s law:

But
d

dt
(r� mv) ¼ r� d

dt
(mv)þ dr

dt
� mv

¼ r� d

dt
(mv)þ v� mv ¼ r� d

dt
(mv)þ 0

i.e., M ¼ d

dt
(r� mv) ¼ dH

dt

Note that the result holds whether m is constant or not. H is called the angular momentum. The result states that

the torque is equal to the time rate of change of angular momentum.

This result is easily extended to a system of n particles having respective masses m1,m2, . . . ,mn and position

vectors r1, r2, . . . , rn with external forces F1,F2, . . . ,Fn. For this case, H ¼ Pn
k¼1

mkrk � vk is the total angular

momentum, M ¼ Pn
k¼1

rk � Fk is the total torque, and the result is M ¼ dH

dt
as before.

3.30. An observer stationed at a point which is fixed relative to an xyz coordinate system with origin O, as
shown in Fig 3-7, observes a vector A ¼ A1iþ A2jþ A3k and calculates its time derivative to be
dA1

dt
iþ dA2

dt
jþ dA3

dt
k. Later, he finds out that he and his coordinate system are actually rotating

with respect to an XYZ coordinate system taken as fixed in space and having origin also at O. He
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asks, ‘What would be the time derivative of A for an observer who is fixed relative to the XYZ coor-
dinate system?’

Z

A

O
i

j

k

z

X

Y

y

x

Fig. 3-7

(a) Let
dA

dt

����
f

and
dA

dt

����
m

denote respectively the time derivatives of A with respect to the fixed and

moving systems. Show that there exists a vector quantity v such that

dA

dt

����
f

¼ dA

dt

����
m

þv� A

(b) Let Df and Dm be symbolic time derivative operators in the fixed and moving systems respect-
ively. Demonstrate the operator equivalence

Df ; Dm þv�
Solution

(a) To the fixed observer the unit vectors i, j, k actually change with time. Hence such an observer would

compute the time derivative of A as

dA

dt
¼ dA1

dt
iþ dA2

dt
jþ dA3

dt
kþ A1

di

dt
þ A2

dj

dt
þ A3

dk

dt
(1)

that is,
dA

dt

����
f

¼ dA

dt

����
m

þA1

di

dt
þ A2

dj

dt
þ A3

dk

dt
(2)

Since i is a unit vector, di=dt is perpendicular to i (see Problem 3.9) and must therefore lie in the plane of j

and k. Then

di

dt
¼ a1jþ a2k (3)

Similarly,

dj

dt
¼ a3kþ a4i (4)

dk

dt
¼ a5iþ a6j (5)

From i� j ¼ 0, differentiation yields i� dj
dt

þ di

dt
� j ¼ 0. But i� dj

dt
¼ a4 from (4), and

di

dt
� j ¼ a1 from (3);

then a4 ¼ �a1.

Similarly from i� k ¼ 0, i� dk
dt

þ di

dt
� k ¼ 0 and a5 ¼ �a2;

from j� k ¼ 0, j� dk
dt

þ dj

dt
� k ¼ 0 and a6 ¼ �a3.
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Then
di

dt
¼ a1jþ a2k,

dj

dt
¼ a3k� a1i,

dk

dt
¼ �a2i� a3j and

A1

di

dt
þ A2

dj

dt
þ A3

dk

dt
¼ (�a1A2 � a2A3)iþ (a1A1 � a3A3)jþ (a2A1 þ a3A2)k which can be written as

i j k

a3 �a2 a1

A1 A2 A3

������
������

Then if we choose a3 ¼ v1, �a2 ¼ v2,a1 ¼ v3 the determinant becomes

i j k

v1 v2 v3

A1 A2 A3

������
������ ¼ v� A

where v ¼ v1iþ v2jþ v3k. The quantity v is the angular velocity vector of the moving system with

respect to the fixed system.

(b) By definition DfA ¼ dA

dt

����
f

¼ derivative in fixed system

DmA ¼ dA

dt

����
m

¼ derivative in moving system:

From (a),

DfA ¼ DmAþv� A ¼ (Dm þv� )A

and shows the equivalence of the operators Df ; Dm þv�.

SUPPLEMENTARY PROBLEMS

3.31. Suppose R ¼ e�tiþ ln(t2 þ 1)j� tan tk. Find: (a) dR/dt, (b) d2R=dt2, (c) jdR=dtj, (d) jd2R=dt2j at t ¼ 0.

3.32. Suppose a particle moves along the curve x ¼ 2 sin 3t, y ¼ 2 cos 3t, z ¼ 8t at any time t . 0.

(a) Find the velocity and acceleration of the particle.

(b) Find the magnitude of the velocity and acceleration.

3.33. Find a unit tangent vector to any point on the curve x ¼ a cosvt, y ¼ a sinvt, z ¼ bt where a, b, and v are

constants.

3.34. Suppose A ¼ t2i� tjþ (2t þ 1)k and B ¼ (2t � 3)iþ j� tk. Find

(a)
d

dt
(A�B), (b) d

dt
(A� B), (c)

d

dt
jAþ Bj, (d) d

dt
A� dB

du

� �
at t ¼ 1.

3.35. Suppose A ¼ sin uiþ cos ujþ uk, B ¼ cos ui� sin uj� 3k, and C ¼ 2iþ 3j� k.

Find
d

du
(A� (B� C)) at u ¼ 0.

3.36. Show: (a)
d

ds
A� dB

ds
� dA

ds
�B� �

¼ A
d2B

ds2
� d2A

ds2
�B where A and B are differential functions of s.

(b)
d

ds
A� dB

ds
� dA

ds
� B

� �
¼ A� d2B

ds2
� d2A

ds2
� B

(c)
d

dt
V� dV

dt
� d2V

dt2

� �
¼ V� dV

dt
� d3V

dt3

3.37. Suppose A(t) ¼ 3t2i� (t þ 4)jþ (t2 � 2t)k and B(t) ¼ sin tiþ 3e�tj� 3 cos tk. Find
d2

dt2
(A� B) at t ¼ 0.

3.38. Let
d2A

dt2
¼ 6ti� 24t2jþ 4 sin tk. Find A given that A ¼ 2iþ j and

dA

dt
¼ �i� 3k at t ¼ 0.

3.39. Show that r ¼ e�t(C1 cos 2t þ C2 sin 2t), where C1 and C2 are constant vectors, is a solution of the differential

equation
d2r

dt2
þ 2

dr

dt
þ 5r ¼ 0.
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3.40. Show that the general solution of the differential equation
d2r

dt2
þ 2a

dr

dt
þ v2r ¼ 0, where a and v are

constants, is

(a) r ¼ e�at C1e
ffiffiffiffiffiffiffiffiffiffi
a2�v2

p
t þ C2e

�
ffiffiffiffiffiffiffiffiffiffi
a2�v2

p
t

� �
if a2 � v2 . 0

(b) r ¼ e�at(C1 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � a2

p
t þ C2 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � a2

p
t) if a2 � v2 , 0.

(c) r ¼ e�at(C1 þ C2t) if a
2 � v2 ¼ 0.

where C1 and C2 are arbitrary constant vectors.

3.41. Solve: (a)
d2r

dt2
� 4

dr

dt
� 5r ¼ 0, (b)

d2r

dt2
þ 2

dr

dt
þ r ¼ 0, (c)

d2r

dt2
þ 4r ¼ 0.

3.42. Solve
dY

dt
¼ X,

dX

dt
¼ �Y.

3.43. Suppose A ¼ cos xyiþ (3xy� 2x2)j� (3xþ 2y)k. Find
@A

@x
,
@A

@y
,
@2A

@x2
,
@2A

@y2
,
@2A

@x@y
,
@2A

@y@x
.

3.44. Suppose A ¼ x2yzi� 2xz3jþ xz2k and B ¼ 2ziþ yj� x2k. Find
@2

@x@y
(A� B) at (1, 0, �2).

3.45. Suppose C1 and C2 are constant vectors and l is a constant scalar. Show that

H ¼ e�lx(C1 sinlyþ C2 cos ly) satisfies the partial differential equation
@2H

@x2
þ @2H

@y2
¼ 0:

3.46. Suppose p0 is a constant vector, v and c are constant scalars and i ¼ ffiffiffiffiffiffiffi�1
p

. Prove that A ¼ [p0e
iv(t�r=c)]=r

satisfies the equation
@2A

@r2
þ 2

r

@A

@r
¼ 1

c2
@2A

@t2
. [This result is of importance in electromagnetic theory.]

Differential Geometry
3.47. Consider the space curve x ¼ t � t3=3, y ¼ t2, z ¼ t þ t3=3. Find: (a) the unit tangent T, (b) the curvature k,

(c) the principal normal N, (d) the binormal B, (e) the torsion t.

3.48. Suppose a space curve is defined in terms of the arc length parameter s by the equations

x ¼ arc tan s, y ¼ 1
2

ffiffiffi
2

p
(s2 þ 1), z ¼ s� arc tan s

Find (a) T, (b) N, (c) B, (d) k, (e) t, (f) r, (g) s.

3.49. Consider the space curve x ¼ t, y ¼ t2, z ¼ t3 (called the twisted cubic). Find k and t.

3.50. Show that for a plane curve the torsion t ¼ 0.

3.51. Consider the radius of curvature r ¼ 1=k of a plane curve with equations y ¼ f (x), z ¼ 0, that is, a curve in the xy

plane. Show that r ¼ f[1þ (y0)2]3=2g=jy00j.

3.52. Consider the curve with position vector r ¼ a cos uiþ b sin uj, where a and b are positive constants. Find its

curvature k and radius of curvature r ¼ 1=k. Interpret the case where a ¼ b:

3.53. Show that the Frenet–Serret formulas can be written in the form
dT

ds
¼ v� T,

dN

ds
¼v� N,

dB

ds
¼ v� B. Also,

determine v.

3.54. Prove that the curvature of the space curve r ¼ r(t) is given numerically by k ¼ j_r� €rj
j_rj3 , where dots denote

differentiation with respect to t.

3.55. (a) Consider the space curve r ¼ r(t). Prove that t ¼ _r � €r� r
...

j_r� €rj2 for the space curve r ¼ r(t).

(b) Suppose the parameter t is the arc length s. Show that

t ¼
dr

ds
� d2r
ds2

� d3r

ds3

(d2r=ds2)2
:
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3.56. Let Q ¼ _r� €r. Show that k ¼ Q

j_rj3 , t ¼
Q� r...
Q2

.

3.57. Find k and t for the space curve x ¼ u� sin u, y ¼ 1� cos u, z ¼ 4 sin(u=2).

3.58. Find the torsion of the curve x ¼ 2t þ 1

t � 1
, y ¼ t2

t � 1
, z ¼ t þ 2. Explain your answer.

3.59. Consider the equations of the tangent line, principal normal, and binormal to the space curve r ¼ r(t) at the point
t ¼ t0. Show they can be written, respectively, r ¼ r0 þ tT0, r ¼ r0 þ tN0, r ¼ r0 þ tB0 where t is a parameter.

3.60. Consider the curve x ¼ 3 cos t, y ¼ 3 sin t, z ¼ 4t. Find equations for the (a) tangent, (b) principal normal and

(c) binormal at the point where t ¼ p.

3.61. Find equations for the (a) osculating plane, (b) normal plane, and (c) rectifying plane to the curve

x ¼ 3t � t3, y ¼ 3t2, z ¼ 3t þ t3 at the point where t ¼ 1.

3.62. (a) Show that the differential of arc length on the surface r ¼ r(u, v) is given by

ds2 ¼ E du2 þ 2F du dvþ Gdv2

where E ¼ @r

@u
� @r
@u

¼ @r

@u

� �2

, F ¼ @r

@u
� @r
@v
, G ¼ @r

@v
� @r
@v

¼ @r

@v

� �2

.

(b) Prove that a necessary and sufficient condition that the u, v curvilinear coordinate system be orthogonal is

F ; 0.

3.63. Find an equation of the tangent plane to the surface z ¼ xy at the point (2, 3, 6).

3.64. Find equations of the tangent plane and normal line to the surface 4z ¼ x2 � y2 at the point (3, 1, 2).

3.65. Assuming E, F, and G are defined as in Problem 3.62, prove that a unit normal to the surface r ¼ r(u, v) is

n ¼ +

@r

@u
� @r

@vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F2

p

Mechanics
3.66. Suppose a particle moves along a curve r ¼ (t3 � 4t)iþ (t2 þ 4t)jþ (8t2 � 3t3)k. Find the magnitudes of the

tangential and normal components of its acceleration when t ¼ 2.

3.67. Suppose a particle has velocity v and acceleration a along a space curve C. Prove that the radius of curvature r of

its path is given numerically by r ¼ v3

jv� aj.

3.68. An object is attracted to a fixed point O with a force F ¼ f (r)r, called a central force, where r is the position
vector of the object relative to O. Show that r� v ¼ h where h is a constant vector. Prove that the angular

momentum is constant.

3.69. Prove that the acceleration vector of a particle moving along a space curve always lies in the osculating plane.

3.70. (a) Find the acceleration of a particle moving in the xy plane in terms of polar coordinates (r,f).

(b) What are the components of the acceleration parallel and perpendicular to r?

3.71. Determine the (a) velocity and (b) acceleration of a moving particle as seen by the two observers

in Problem 3.30.
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ANSWERS TO SUPPLEMENTARY PROBLEMS

3.31. (a) �i� k, (b) iþ 2j, (c)
ffiffiffi
2

p
, (d)

ffiffiffi
5

p

3.32. v ¼ 6 cos 3ti� 6 sin 3tjþ 8k, a ¼ �18 sin 3ti� 18 cos 3tj, jvj ¼ 10, jaj ¼ 18

3.33.
�av sinvtiþ av cosvtjþ bkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2v2 þ b2
p 3.35. 7iþ 6j� 6k

3.34. (a) �6, (b) 7jþ 3k, (c) 1, (d) iþ 6jþ 2k 3.37. �30iþ 14jþ 20k

3.38. A ¼ (t3 � t þ 2)iþ (1� 2t4)jþ (t � 4 sin t)k

3.41. (a) r ¼ C1e
5t þ C2e

�t, (b) r ¼ e�t(C1 þ C2t), (c) r ¼ C1 cos 2t þ C2 sin 2t

3.42. X ¼ C1 cos t þ C2 sin t, Y ¼ C1 sin t � C2 cos t

3.43. @A

@x
¼ �y sin xyiþ (3y� 4x)j� 3k,

@A

@y
¼ �x sin xyiþ 3xj� 2k,

@2A

@x2
¼ �y2 cos xyi� 4j,

@2A

@y2
¼ �x2 cos xyi,

@2A

@x@y
¼ @2A

@y@x
¼ �(xy cos xyþ sin xy)iþ 3j

3.44. �4i� 8j

3.47. (a) T ¼ (1� t2)iþ 2tjþ (1þ t2)kffiffiffi
2

p
(1þ t2)

(c) N ¼ � 2t

1þ t2
iþ 1� t2

1þ t2
j

(b) k ¼ 1

(1þ t2)2
(d) B ¼ (t2 � 1)i� 2tjþ (t2 þ 1)kffiffiffi

2
p

(1þ t2)
(e) t ¼ 1

(1þ t2)2

3.48. (a) T ¼ iþ ffiffiffi
2

p
sjþ s2k

s2 þ 1
(d) k ¼

ffiffiffi
2

p

s2 þ 1

(b) N ¼ � ffiffiffi
2

p
siþ (1� s2)jþ ffiffiffi

2
p

sk

s2 þ 1
(e) t ¼

ffiffiffi
2

p

s2 þ 1
(g) s ¼ s2 þ 1ffiffiffi

2
p

(c) B ¼ s2i� ffiffiffi
2

p
sjþ k

s2 þ 1
( f) r ¼ s2 þ 1ffiffiffi

2
p

3.49. k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9t4 þ 9t2 þ 1

p

(9t4 þ 4t2 þ 1)3=2
, t ¼ 3

9t4 þ 9t2 þ 1

3.52. k ¼ ab

(a2 sin2 uþ b2 cos2 u)3=2
¼ 1

r
; if a ¼ b, the given curve, which is an ellipse, becomes a circle of radius a and

its radius of curvature r ¼ a.

3.53. v ¼ tTþ kB

3.57. k ¼ 1
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 2 cos u

p
, t ¼ (3þ cos u) cos u=2þ 2 sin u sin u=2

12 cos u� 4

3.58. t ¼ 0. The curve lies on the plane x� 3yþ 3z ¼ 5.

3.60. (a) Tangent: r ¼ �3iþ 4pkþ t � 3
5
jþ 4

5
k

� 	
or x ¼ �3, y ¼ � 3

5
t, z ¼ 4pþ 4

5
t.

(b) Normal: r ¼ �3iþ 4pjþ ti or x ¼ �3þ t, y ¼ 4p, z ¼ 0.

(c) Binormal: r ¼ �3iþ 4pjþ t 4
5
jþ 3

5
k

� 	
or x ¼ �3, y ¼ 4pþ 4

5
t, z ¼ 3

5
t.
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3.61. (a) y� zþ 1 ¼ 0, (b) yþ z� 7 ¼ 0, (c) x ¼ 2. 3.64. 3x� y� 2z ¼ 4; x ¼ 3t þ 3, y ¼ 1� t,

z ¼ 2� 2t.

3.63. 3xþ 2y� z ¼ 6. 3.66. Tangential, 16; normal 2
ffiffiffiffiffi
73

p
.

3.70. (a) €r ¼[(€r� r _f
2
) cosf� (r €fþ 2_r _f) sinf]iþ [(€r� r _f

2
) sinfþ (r €fþ 2_r _f) cosf]j

(b) €r� r _f
2
, r €fþ 2_r _f

3.71. (a) vpjf ¼ vpjm þv� r, (b) apjf ¼ apjm þ amjf . For many cases, v is a constant, i.e., the rotation proceeds with

constant angular velocity. Then Dmv ¼ 0 and

amjf ¼ 2v� Dmrþv� (v� r) ¼ 2v� vm þv� (v� r)

The quantity 2v� vm is called the Cortiolis acceleration andv� (v� r) is called the centripetal acceleration.
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CHAP T E R 4

Gradient, Divergence, Curl

4.1 Introduction

The vector differential operator del, written r, is defined as follows:

r ¼ @

@x
iþ @

@y
jþ @

@z
k ¼ i

@

@x
þ j

@

@y
þ k

@

@z

This vector operator possesses properties analogous to those of ordinary vectors. It is useful in defining
three quantities that appear in applications and which are known as the gradient, the divergence, and the
curl. The operator r is also known as nabla.

4.2 Gradient

Let f(x, y, z) be a scalar function defined and differentiable at each point (x, y, z) in a certain region of
space. [That is, f defines a differentiable scalar field.] Then the gradient of f, written rf or grad f is
defined as follows:

rf ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
f ¼ @f

@x
iþ @f

@y
jþ @f

@z
k

Note that rf defines a vector field.

EXAMPLE 4.1 Suppose f(x, y, z) ¼ 3xy3 � y2z2. Find rf (or grad f) at the point P(1, 1, 2).

rf ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
(3xy3 � y2z2)

¼ 3y3iþ (9xy2 � 2yz2)j� 2y2zk

Therefore rf(1, 1, 2) ¼ 3(1)3iþ [9(1)(1)2 � 2(1)(2)2]j� 2(1)2(2)k ¼ 3iþ j� 4k.

Directional Derivatives

Consider a scalar function f ¼ f(x, y, z). Then the directional derivative of f in the direction of a vector A
is denoted by DA(f). Letting a ¼ A=jAj, the unit vector in the direction of A,

DA(f) ¼ rf � a
We emphasize that a must be a unit vector.
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EXAMPLE 4.2 Consider the scalar function f(x, y, z) ¼ x2 þ y2 þ xz:
(a) Find grad f. (b) Find grad f at the point P ¼ P(2, �1, 3). (c) Find the direction derivative of f at the

point P in the direction of A ¼ iþ 2jþ k.

(a) grad f ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
(x2 þ y2 þ xz) ¼ (2xþ z)iþ 2yjþ xk:

(b) At P(2, �1, 3), grad f ¼ 7i� 2jþ 3k.
(c) First we find the unit vector a ¼ A=jAj ¼ (iþ 2jþ k)=

ffiffiffi
6

p
in the direction of A. Then the directional

derivative of f at the point P(2, �1, 3) in the direction of A follows:

rf � a ¼ (7i� 2jþ 3k) � (iþ 2jþ k)=
ffiffiffi
6

ph i
¼ 6=

ffiffiffi
6

p
¼

ffiffiffi
6

p
=6:

Lagrange Multiplier

Here we want to find the points (x, y) that give the extrema (maximum or minimum value) of a function
f(x, y) subject to the constraint g(x, y) ¼ d, where d is a constant. [More generally, we want to find
the points (x1, x2, . . . , xn) that give the extrema (maximum or minimum value) of a function
f (x1, x2, . . . , xn) subject to the constraint g(x1, x2, . . . , xn) ¼ d, where d is a constant.]

This will occur only when the gradients rf and rg (directional derivatives) are orthogonal to the given
curve [surface] g(x, y) ¼ d. Thus rf and rg are parallel; and hence there must is a constant l such that
rf ¼ lrg.

The Greek letter l (lamda) introduced above is called a Lagrange multiplier. The condition rf ¼ lrg
together with the original constraint yield three (nþ 1) equations in the unknowns x, y and l:

f x(x, y) ¼ lgx(x, y), f y(x, y) ¼ lgy(x, y), g(x, y) ¼ d

Solutions of the system for x and y give the candidates for the extrema of f(x, y) subject to the constraint
g(x, y) ¼ d.

EXAMPLE 4.3 Minimize the function f (x, y) ¼ x2 þ 2y2 subject to the constraint g(x, y) ¼ 2xþ y ¼ 9.

Using the condition that rf ¼ lrg and the constraint, we obtain the three equations

2x ¼ 2l, 4y ¼ l, 2xþ y ¼ 9

Eliminating l from the first two equations, we obtain x ¼ 4y. This and 2xþ y ¼ 9 gives 9y ¼ 9. Thus we obtain

the solution y ¼ 1 and x ¼ 4. Thus f (4, 1) ¼ 16þ 2 ¼ 18 is the minimum value of f subject to the constraint

2xþ y ¼ 9.

4.3 Divergence

Suppose V(x, y, z) ¼ V1iþ V2 jþ V3k is defined and differentiable at each point (x, y, z) in a region of
space. (That is, V defines a differentiable vector field.) Then the divergence of V, written r�V or div V
is defined as follows:

r�V ¼ @

@x
iþ @

@y
jþ @

@z
k

� �� (V1iþ V2 jþ V3k)

¼ @V1

@x
þ @V2

@y
þ @V3

@z

Although V is a vector, r�V is a scalar.
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EXAMPLE 4.4 Suppose A ¼ x2z2i� 2y2z2jþ xy2zk. Find r�A (or div A) at the point P(1, �1, 1).

r�A ¼ @

@x
iþ @

@y
jþ @

@z
k

� �� (x2z2i� 2y2z2jþ xy2zk)

¼ @

@x
(x2z2)þ @

@y
(�2y2z2)þ @

@z
(xy2z) ¼ 2xz2 � 4yz2 þ xy2

At the point P(1, �1, 1),

r�A ¼ 2(1)(1)2 � 4(�1)(1)2 þ (1)(�1)2 ¼ 7

4.4 Curl

Suppose V(x, y, z) ¼ V1iþ V2 jþ V3k is a differentiable vector field. Then the curl or rotation of V,
written r � V, curl V or rot V, is defined as follows:

r � V ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
� (V1iþ V2 jþ V3k)

¼
i j k
@

@x

@

@y

@

@z
V1 V2 V3

��������

��������
¼

@

@y

@

@z
V2 V3

������
������i�

@

@x

@

@z
V1 V3

������
������jþ

@

@x

@

@y
V1 V2

������
������k

¼ @V3

@y
� @V2

@z

� �
iþ @V1

@z
� @V3

@x

� �
jþ @V2

@x
� @V1

@y

� �
k

Note that in the expansion of the determinant the operators
@

@x
,
@

@y
,
@

@z
must precede V1, V2, V3.

EXAMPLE 4.5 Suppose A ¼ x2z2i� 2y2z2jþ xy2zk. Find r � A (or curl A) at the point P(1, �1, 1).

r � A ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
� (x2z2i� 2y2z2jþ xy2zk)

¼
i j k
@

@x

@

@y

@

@z

x2z2 �2y2z2 xy2z

��������

��������
¼ @

@y
(xy2z)� @

@z
(�2y2z2)


 �
i� @

@x
(xy2z)� @

@z
(x2z2)


 �
jþ @

@x
(�2y2z2)� @

@y
(x2z2)


 �
k

¼ (2xyzþ 4y2z)i� (y2z� 2x2z)jþ 0k

At the point P(1, �1, 1), r � A ¼ 2iþ j.

4.5 Formulas Involving rrrrr
The following propositions give many of the properties of the del operator r.
PROPOSITION 4.1: Suppose A and B are differentiable vector functions, and f and c are differentiable

scalar functions of position (x, y, z). Then the following laws hold.

(i) r(fþ c) ¼ rfþ rc or grad(fþ c) ¼ gradfþ gradc
(ii) r� (Aþ B) ¼ r�Aþ r�B or div(Aþ B) ¼ divAþ divB
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(iii) r � (Aþ B) ¼ r� Aþ r� B or curl(Aþ B) ¼ curlAþ curlB
(iv) r� (fA) ¼ (rf)�Aþ f(r�A)
(v) r � (fA) ¼ (rf)� Aþ f(r � A)
(vi) r� (A� B) ¼ B � (r � A)� A� (r � B)
(vii) r � (A� B) ¼ (B �r)A� B(r�A)� (A�r)Bþ A(r�B)
(viii) r(A�B) ¼ (B �r)Aþ (A�r)Bþ B� (r � A)þ A� (r � B)

PROPOSITION 4.2: Suppose f andA are differentiable scalar and vector functions, respectively, and both
have continuous second partial derivatives. Then the following laws hold.

(i) r� (rf) ¼ r2f ¼ @2f

@x2
þ @2f

@y2
þ @2f

@z2

where r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
is called the Laplacian operator.

(ii) r � (rf) ¼ 0. The curl of the gradient of f is zero.
(iii) r� (r � A) ¼ 0. The divergence of the curl of A is zero.
(iv) r � (r � A) ¼ r(r�A)� r2A:

4.6 Invariance

Consider two rectangular coordinate systems or frames of reference xyz and x0y0z0 having the same origin O
but with axes rotated with respect to each other. (See Fig. 4-1.)

z

O

kk′

xx′

i

x

i′
j

y
j′ y′

z′
P • 

(x, y, z)

(xx′, y′, z′)

Fig. 4-1

A point P in space has coordinates (x, y, z) or (x0, y0, z0) relative to these coordinate systems. The
equations of transformation between coordinates of both systems or the coordinate transformations are
given as follows:

x0 ¼ l11xþ l12yþ l13z

y0 ¼ l21xþ l22yþ l23z

z0 ¼ l31xþ l32yþ l33z

(1)

Here ljk, j, k ¼ 1, 2, 3 represent direction cosines of the x0, y0, z0 axes with respect to the x, y, z axes. (See
Problem 4.38.) In case the origins of the two coordinate systems are not coincident the equations of
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transformation become

x0 ¼ l11xþ l12yþ l13zþ a01
y0 ¼ l21xþ l22yþ l23zþ a02
z0 ¼ l31xþ l32yþ l33zþ a03

(2)

where the origin O of the xyz coordinate system is located at (a01, a
0
2, a

0
3) relative to the x0y0z0 coordinate

system.
The transformation equations (1) define a pure rotation, while equations (2) define a rotation plus

translation. Any rigid body motion has the effect of a translation followed by a rotation. The transformation
(1) is also called an orthogonal transformation. A general linear transformation is called an affine
transformation.

Physically, a scalar point function or scalar field f(x, y, z) evaluated at a particular point should be inde-
pendent of the coordinates of the point. Thus the temperature at a point is not dependent on whether
coordinates (x, y, z) or (x0, y0, z0) are used. Then, if f(x, y, z) is the temperature at point P with coordinates
(x, y, z) while f0(x0, y0, z0) is the temperature at the same point P with coordinates (x0, y0, z0), we must have
f(x, y, z) ¼ f0(x0, y0, z0). If f(x, y, z) ¼ f0(x0, y0, z0), where x, y, z and x0, y0, z0 are related by the transform-
ation equations (1) or (2), we call f(x, y, z) an invariant with respect to the transformation. For example,
x2 þ y2 þ z2 is invariant under the transformation of rotation (1), since x2 þ y2 þ z2 ¼ x02 þ y02 þ z02.

Similarly, a vector point function or vector field A(x, y, z) is called an invariant if A(x, y, z) ¼
A0(x0, y0, z0). This will be true if

A1(x, y, z)iþ A2(x, y, z)jþ A3(x, y, z)k ¼ A0
1(x

0, y0, z0)i0 þ A0
2(x

0, y0, z0)j0 þ A0
3(x

0, y0, z0)k0

In Chapters 7 and 8, more general transformations are considered and the above concepts are extended.
It can be shown (see Problem 4.41) that the gradient of an invariant scalar field is an invariant vector field

with respect to the transformations (1) or (2). Similarly, the divergence and curl of an invariant vector field
are invariant under this transformation.

SOLVED PROBLEMS

4.1. Suppose f(x, y, z) ¼ 3x2y� y2z2. Find rf (or grad f) at the point (1, �2, �1).

Solution

rf ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
(3x2y� y3z2)

¼ i
@

@x
3x2y� y3z2
� 	þ j

@

@y
3x2y� y3z2
� 	þ k

@

@z
3x2y� y3z2
� 	

¼ 6xyiþ 3x2 � 3y2z2
� 	

j� 2y3zk

¼ 6(1)(�2)iþ 3(1)2 � 3(�2)2(�1)2
� �

j� 2(�2)3(�1)k

¼ �12i� 9j� 16k
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4.2. Suppose F and G are differentiable scalar functions of x, y and z. Prove (a) r(F þ G) ¼ rF þ rG,
(b) r(FG) ¼ FrGþ GrF.
Solution

(a) r(F þ G) ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
(F þ G)

¼ i
@

@x
(F þ G)þ j

@

@y
(F þ G)þ k

@

@z
(F þ G)

¼ i
@F

@x
þ i

@G

@x
þ j

@F

@y
þ j

@G

@y
þ k

@F

@z
þ k

@G

@z

¼ i
@F

@x
þ j

@F

@y
þ k

@F

@z
þ i

@G

@x
þ j

@G

@y
þ k

@G

@z

¼ i
@

@x
þ j

@

@y
þ k

@

@z

� �
F þ i

@

@x
þ j

@

@y
þ k

@

@z

� �
G ¼ rF þrG

(b) r(FG) ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
(FG) ¼ @

@x
(FG)iþ @

@y
(FG)jþ @

@z
(FG)k

¼ F
@G

@x
þ G

@F

@x

� �
iþ F

@G

@y
þ G

@F

@y

� �
jþ F

@G

@z
þ G

@F

@z

� �
k

¼ F
@G

@x
iþ @G

@y
jþ @G

@z
k

� �
þ G

@F

@x
iþ @F

@y
jþ @F

@z
k

� �
¼ FrGþ GrF

4.3. Find rf if (a) f ¼ ln jrj, (b) f ¼ 1

r
.

Solution

(a) r ¼ xiþ yjþ zk. Then jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and f ¼ ln jrj ¼ 1

2
ln (x2 þ y2 þ z2).

rf ¼ 1

2
r ln (x2 þ y2 þ z2)

¼ 1

2
i
@

@x
ln(x2 þ y2 þ z2)þ j

@

@y
ln(x2 þ y2 þ z2)þ k

@

@z
ln(x2 þ y2 þ z2)

� �

¼ 1

2
i

2x

x2 þ y2 þ z2
þ j

2y

x2 þ y2 þ z2
þ k

2z

x2 þ y2 þ z2

� �
¼ xiþ yjþ zk

x2 þ y2 þ z2
¼ r

r2

(b) rf ¼ r 1

r

� �
¼ r 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

 !
¼ r (x2 þ y2 þ z2)�1=2

� �

¼ i
@

@x
(x2 þ y2 þ z2)�1=2 þ j

@

@y
(x2 þ y2 þ z2)�1=2 þ k

@

@z
(x2 þ y2 þ z2)�1=2

¼ i � 1

2
(x2 þ y2 þ z2)�3=22x

� �
þ j � 1

2
(x2 þ y2 þ z2)�3=22y

� �
þ k � 1

2
(x2 þ y2 þ z2)�3=22z

� �

¼ �xi� yj� zk

(x2 þ y2 þ z2)3=2
¼ � r

r3
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4.4. Show that rrn ¼ nrn�2 r.

Solution

rrn ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p� �n
¼ r(x2 þ y2 þ z2)n=2

¼ i
@

@x
f(x2 þ y2 þ z2)n=2g þ j

@

@y
f(x2 þ y2 þ z2)n=2g þ k

@

@z
f(x2 þ y2 þ z2)n=2g

¼ i
n

2
(x2 þ y2 þ z2)n=2�1 2x

n o
þ j

n

2
(x2 þ y2 þ z2)n=2�1 2y

n o
þ k

n

2
(x2 þ y2 þ z2)n=2�1 2z

n o
¼ n(x2 þ y2 þ z2)n=2�1(xiþ yjþ zk) ¼ n(r2)n=2�1r ¼ nrn�2r

Note that if r ¼ rr1 where r1 is a unit vector in the direction r, then rrn ¼ nrn�1 r1.

4.5. Show that rrrrrf is a vector perpendicular to the surface f(x, y, z) ¼ c where c is a constant.

Solution

Let r ¼ xiþ yjþ zk be the position vector to any point P(x, y, z) on the surface. Then dr ¼ dxiþ dyjþ dzk lies

in the tangent plane to the surface at P.

But df ¼ @f

@x
dxþ @f

@y
dyþ @f

@z
dz ¼ 0 or

@f

@x
iþ @f

@y
jþ @f

@z
k

� �� (dxiþ dyjþ dzk) ¼ 0, that is,

rrrrrf�dr ¼ 0, so that rrrrrf is perpendicular to dr and therefore to the surface.

4.6. Find a unit normal to the surface �x2yz2 þ 2xy2z ¼ 1 at the point P(1, 1, 1).

Solution

Let f ¼ �x2yz2 þ 2xy2z. Using Problem 4.5, rrrrrf(1, 1, 1) is normal to the surface �x2yz2 þ 2xy2z ¼ 1 at the

point P(1, 1, 1); hence,
rf(1, 1, 1)
jrf(1, 1, 1)j will suffice.

rf ¼ (�2xyz2)iþ (�x2z2 þ 4xyz)jþ (�2x2yzþ 2xy2)k:

Thenrf(1, 1, 1) ¼ 3j. jrf(1, 1, 1)j ¼ j3jj ¼ 3jjj ¼ 3. Thus, at the point P(1, 1, 1)
3j

3
¼ j is a unit normal

to �x2yz2 þ 2xy2z ¼ 1.

4.7. Find an equation for the tangent plane to the surface x2yz� 4xyz2 ¼ �6 at the point P(1, 2, 1).

Solution

r(x2yz� 4xyz2) ¼ (2xyz� 4yz2)iþ (x2z� 4xz2)jþ (x2y� 8xyz)k:

Evaluating the gradient at the point P(1, 2, 1), we get �4i� 3j� 14k. Then 4iþ 3jþ 14k is normal to the

surface at P. An equation of the plane with normal N ¼ aiþ bjþ ck has the form

axþ byþ cz ¼ k

Thus the equation has the form 4xþ 3yþ 14z ¼ k. Substituting P in the equation, we get k ¼ 24. Thus the

required equation is 4xþ 3yþ 14z ¼ 24.

4.8. Let f(x, y, z) and f(xþ Dx, yþ Dy, zþ Dz) be the temperatures at two neighboring points P(x, y, z)
and Q(xþ Dx, yþ Dy, zþ Dz) of a certain region.

(a) Interpret physically the quantity
Df

Ds
¼ f(xþ Dx, yþ Dy, zþ Dz)� f(x, y, z)

Ds
where Ds is the

distance between points P and Q.
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(b) Evaluate lim
Ds!0

Df

Ds
¼ df

ds
and interpret physically.

(c) Show that
df

ds
¼ rrrrrf � dr

ds
:

Solution

(a) Since Df is the change in temperature between points P and Q and Ds is the distance between these points,

Df=Ds represents the average rate of change in temperature per unit distance in the direction from P to Q.

(b) From the calculus,

Df ¼ @f

@x
Dxþ @f

@y
Dyþ @f

@z
Dzþ infinitesimals of order higher than Dx, Dy, and Dz:

Then

lim
Ds!0

Df

Ds
¼ lim

Ds!0

@f

@x

Dx

Ds
þ @f

@y

Dy

Ds
þ @f

@z

Dz

Ds

or

df

ds
¼ @f

@x

dx

ds
þ @f

@y

dy

ds
þ @f

@z

dz

ds

where
df

ds
represents the rate of change of temperature with respect to distance at point P in a direction

toward Q. This is also called the directional derivative of f.

(c)
df

ds
¼ @f

@x

dx

ds
þ @f

@y

dy

ds
þ @f

@z

dz

ds
¼ @f

@x
iþ @f

@y
jþ @f

@z
k

� �� dx

ds
iþ dy

ds
jþ dz

ds
k

� �
¼ rrrrrf� dr

ds
:

Note that since
dr

ds
is a unit vector, rrrrrf� dr

ds
is the component of rrrrrf in the direction of this unit vector.

4.9. Show that the greatest rate of change of f, i.e. the maximum directional derivative, takes place in the
direction of, and has the magnitude of, the vector rrrrrf.
Solution

By Problem 4.8(c),
df

ds
¼ rrrrrf � dr

ds
is the projection of rrrrrf in the direction

dr

ds
. This projection will be a

maximum when rrrrrf and
dr

ds
have the same direction. Then the maximum value of

df

ds
takes place in the

direction of rrrrrf and its magnitude is jrrrrrfj.

4.10. Let f ¼ x2yz� 4xyz2. Find the directional derivative of f at P(1, 3, 1) in the direction of 2i� j� 2k.

Solution

First find rf ¼ (2xyz� 4yz2)iþ (x2z� 4xz2)jþ (x2y� 8xyz)k. Then rf(1, 3, 1) ¼ �6i� 3j� 21k. The unit
vector in the direction of 2i� j� 2k is

a ¼ 2i� j� 2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2)2 þ (�1)2 þ (�2)2

p ¼ 2
3
i� 1

3
j� 2

3
k:

Thus the required directional derivative is

rf(1, 3, 1) � a ¼ (�6i� 3j� 21k)� 2
3
i� 1

3
j� 2

3
k

� 	 ¼ �4þ 1þ 14 ¼ 11:
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4.11. Let f ¼ x2y3z6. (a) In what direction from the point P(1, 1, 1) is the directional derivative of f a
maximum? (b) What is the magnitude of this maximum?

Solution

rf ¼ r(x2y3z6) ¼ 2xy3z6iþ 3x2y2z6jþ 6x2y3z5k. Then rf(1, 1, 1) ¼ 2iþ 3jþ 6k: Then, by Problem 4.9:

(a) The directional derivative is a maximum in the direction rf(1, 1, 1) ¼ 2iþ 3jþ 6k.

(b) The magnitude of this maximum is jrf(1, 1, 1)j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2)2 þ (3)2 þ (6)2

p
¼ 7.

4.12. Find the angle between the surfaces z ¼ x2 þ y2 and z ¼ x�
ffiffiffi
6

p

6

� �2

þ y�
ffiffiffi
6

p

6

� �2

at the point

P ¼
ffiffiffi
6

p

12
,

ffiffiffi
6

p

12
,
1

12

� �
.

Solution

The angle between the surfaces at the point is the angle between the normals to the surfaces at the point.

Let f1 ¼ x2 þ y2 � z and f2 ¼ x�
ffiffiffi
6

p

6

� �2

þ y�
ffiffiffi
6

p

6

� �2

� z.

A normal to z ¼ x2 þ y2 is

rf1 ¼ 2xiþ 2yj� k and rf1(P) ¼
ffiffiffi
6

p

6
iþ

ffiffiffi
6

p

6
j� k:

A normal to z ¼ x�
ffiffiffi
6

p

6

� �2

þ y�
ffiffiffi
6

p

6

� �2

is

rf2 ¼ 2 x�
ffiffiffi
6

p

6

� �2

iþ 2 y�
ffiffiffi
6

p

6

� �2

j� k and rf2(P) ¼ �
ffiffiffi
6

p

6
i�

ffiffiffi
6

p

6
j� k:

Now (rf1(P)) � (rf2(P)) ¼ jrf1(P)jjrf2(P)j cos u where u is the required angle.ffiffiffi
6

p

6
iþ

ffiffiffi
6

p

6
j� k

� �� �
ffiffiffi
6

p

6
i�

ffiffiffi
6

p

6
j� k

� �
¼
����
ffiffiffi
6

p

6
iþ

ffiffiffi
6

p

6
j� k

�����
ffiffiffi
6

p

6
i�

ffiffiffi
6

p

6
j� k

���� cos u
� 1

6
� 1

6
þ 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
þ 1

6
þ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
þ 1

6
þ 1

r
cos u and cos u ¼ 2=3

4=3
¼ 1

2
:

Thus the acute angle is u ¼ arc cos
1

2

� �
¼ 608.

4.13. Let R be the distance from a fixed point A(a, b, c) to any point P(x, y, z). Show that rrrrrR is a unit
vector in the direction AP ¼ R.

Solution

If rA and rP are the position vectors aiþ bjþ ck and xiþ yjþ zk of A and P, respectively, then

R ¼ rP � rA ¼ (x� a)iþ ( y� b)jþ (z� c)k, so that R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� a)2 þ ( y� b)2 þ (z� c)2

p
. Then

rrrrrR ¼ rrrrr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� a)2 þ ( y� b)2 þ (z� c)2

q� �
¼ (x� a)iþ ( y� b)jþ (z� c)kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x� a)2 þ ( y� b)2 þ (z� c)2
p ¼ R

R

is a unit vector in the direction R.

4.14. Let P be any point on an ellipse whose foci are at points A and B, as shown in Fig. 4.2. Prove that lines
AP and BP make equal angles with the tangent to the ellipse at P.

Solution

LetR1 ¼ AP andR2 ¼ BP denote vectors drawn respectively from foci A and B to point P on the ellipse, and let

T be a unit tangent to the ellipse at P.
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Since an ellipse is the locus of all points P, the sum of whose distances from two fixed points A and B is a

constant p, it is seen that the equation of the ellipse is R1 þ R2 ¼ p.

By Problem 4.5,rrrrr(R1 þ R2) is a normal to the ellipse; hence [rrrrr(R1 þ R2)]�T ¼ 0 or (rrrrrR2)�T ¼�(rrrrrR1)�T.

T

R2

R1

P

BA

Fig. 4-2

SincerrrrrR1 andrrrrrR2 are unit vectors in directionR1 andR2 respectively (Problem 4.13), the cosine of the angle

between rrrrrR2 and T is equal to the cosine of the angle between rrrrrR1 and �T; hence the angles themselves are

equal.

The problem has a physical interpretation. Light rays (or sound waves) originating at focus A, for example,

will be reflected from the ellipse to focus B.

Divergence

4.15. Suppose A ¼ x2z2i� 2y2z2jþ xy2zk. Find rrrrr�A (or div A) at the point P(1, �1, 1).

Solution

rrrrr�A ¼ @

@x
iþ @

@y
jþ @

@z
k

� �� (x2z2i� 2y2z2jþ xy2zk)

¼ @

@x
(x2z2)þ @

@y
(�2y2z2)þ @

@z
(xy2z) ¼ 2xz2 � 4yz2 þ xy2

rrrrr�A(1, �1, 1) ¼ 2(1)(1)2 � 4(�1)(1)2 þ (1)(�1)2 ¼ 7

4.16. Given f ¼ 6x3y2z. (a) Find rrrrr�rrrrrf (or div grad f).

(b) Show that rrrrr�rrrrrf ¼ rrrrr2f where rrrrr2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
denotes the Laplacian operator.

Solution

(a) rrrrrf ¼ @

@x
(6x3y2z)iþ @

@y
(6x3y2z)jþ @

@z
(6x3y2z)k ¼ 18x2y2ziþ 12x3yzjþ 6x3y2k:

Then rrrrr�rrrrrf ¼ @

@x
iþ @

@y
jþ @

@z
k

� �� (18x2y2ziþ 12x3yzjþ 6x3y2k)

¼ @

@x
(18x2y2z)þ @

@y
(12x3yz)þ @

@z
(6x3y2) ¼ 36xy2zþ 12x3z:

(b) rrrrr�rrrrrf ¼ @

@x
iþ @

@y
jþ @

@z
k

� �� @f

@x
iþ @f

@y
jþ @f

@z
k

� �

¼ @

@x

@f

@x

� �
þ @

@y

@f

@y

� �
þ @

@z

@f

@z

� �
¼ @2f

@x2
þ @2f

@y2
þ @2f

@z2

¼ @2

@x2
þ @2

@y2
þ @2

@z2

� �
f ¼ rrrrr2f
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4.17. Prove that rrrrr2 1

r

� �
¼ 0.

Solution

rrrrr2 1

r

� �
¼ @2

@x2
þ @2

@y2
þ @2

@z2

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

 !

@

@x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
 !

¼ @

@x
(x2 þ y2 þ z2)�1=2 ¼ �x(x2 þ y2 þ z2)�3=2

@2

@x2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

 !
¼ @

@x
�x(x2 þ y2 þ z2)�3=2
� 


¼ 3x2(x2 þ y2 þ z2)�5=2 � (x2 þ y2 þ z2)�3=2 ¼ 2x2 � y2 � z2

(x2 þ y2 þ z2)5=2

Similarly,

@2

@y2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

 !
¼ 2y2 � z2 � x2

(x2 þ y2 þ z2)5=2
and

@2

@z2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

 !
¼ 2z2 � x2 � y2

(x2 þ y2 þ z2)5=2

Then, by addition,

@2

@x2
þ @2

@y2
þ @2

@z2

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

 !
¼ 0:

The equation rrrrr2f ¼ 0 is called Laplace’s equation. It follows that f ¼ 1=r is a solution of this equation.

4.18. Prove: (a) rrrrr� (Aþ B) ¼ rrrrr�Aþ rrrrr�B, (b) rrrrr� (fA) ¼ (rrrrrf)�Aþ f(rrrrr�A).
Solution

(a) Let A ¼ A1iþ A2 jþ A3k, B ¼ B1iþ B2 jþ B3k.
Then

rrrrr� (Aþ B) ¼ @

@x
iþ @

@y
jþ @

@z
k

� �� [(A1 þ B1)iþ (A2 þ B2)jþ (A3 þ B3)k]

¼ @

@x
(A1 þ B1)þ @

@y
(A2 þ B2)þ @

@z
(A3 þ B3)

¼ @A1

@x
þ @A2

@y
þ @A3

@z
þ @B1

@x
þ @B2

@y
þ @B3

@z

¼ @

@x
iþ @

@y
jþ @

@z
k

� �� (A1iþ A2jþ A3k)þ @

@x
iþ @

@y
jþ @

@z
k

� �� (B1iþ B2jþ B3k)

¼ rrrrr�Aþ rrrrr�B
(b) rrrrr� (fA) ¼ rrrrr� (fA1iþ fA2jþ fA3k) ¼ @

@x
(fA1)þ @

@y
(fA2)þ @

@z
(fA3)

¼ @f

@x
A1 þ f

@A1

@x
þ @f

@y
A2 þ f

@A2

@y
þ @f

@z
A3 þ f

@A3

@z

¼ @f

@x
A1 þ @f

@y
A2 þ @f

@z
A3 þ f

@A1

@x
þ @A2

@y
þ @A3

@z

� �

¼ @f

@x
iþ @f

@y
jþ @f

@z
k

� �� (A1iþ A2jþ A3k)þ f
@

@x
iþ @

@y
jþ @

@z
k

� �� (A1iþ A2jþ A3k)

¼ (rrrrrf)�Aþ f(rrrrr�A)

CHAPTER 4 Gradient, Divergence, Curl 79



4.19. Prove rrrrr� r

r3

� �
¼ 0.

Solution

Let f ¼ r�3 and A ¼ r in the result of Problem 4.18(b).

Then rrrrr�(r�3r) ¼ (rrrrrr�3)�rþ (r�3)rrrrr�r
¼ �3r�5r�rþ 3r�3 ¼ 0, using Problem 4:4:

4.20. Prove rrrrr� (UrrrrrV � VrrrrrU) ¼ Urrrrr2V � Vrrrrr2U.

Solution

From Problem 4.18(b), with f ¼ U and A ¼ rrrrrV ,
rrrrr�(UrrrrrV) ¼ (rrrrrU)�(rrrrrV)þ U(rrrrr�rrrrrV) ¼ (rrrrrU)�(rrrrrV)þ Urrrrr2V

Interchanging U and V yields

rrrrr�(VrrrrrU) ¼ (rrrrrV)�(rrrrrU)þ Vrrrrr2U:

Then subtracting,

rrrrr�(UrrrrrV)� rrrrr�(VrrrrrU) ¼ rrrrr�(UrrrrrV � VrrrrrU)

¼ (rrrrrU)�(rrrrrV)þ U rrrrr2V � [(rrrrrV)�(rrrrrU)þ Vrrrrr2U]

¼ Urrrrr2V � Vrrrrr2U

4.21. A fluid moves so that its velocity at any point is v(x, y, z). Show that the loss of fluid per unit volume
per unit time in a small parallelepiped having center at P(x, y, z) and edges parallel to the coordinate
axes and having magnitude 4x, 4y, 4z respectively, is given approximately by div v ¼ rrrrr� v.

B G

E

P(x, y, z)

D

A HC

x

Δy

Δx Δz v

y
F

v

vvv

v
v

z

v

Fig. 4-3

Solution

Referring to Fig. 4-3,

x component of velocity v at P ¼ v1

x component of v at center of face AFED ¼ v1 � 1

2

@v1
@x

4x approx:

x component of v at center of face GHCB ¼ v1 þ 1

2

@v1
@x

4x approx:
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Then (1) volume of fluid crossing AFED per unit time ¼ v1 � 1

2

@v1
@x

4x

� �
4y4z,

(2) volume of fluid crossing GHCB per unit time ¼ v1 þ 1

2

@v1
@x

4x

� �
4y4z:

Loss in volume per unit time in x direction ¼ (2)� (1) ¼ @v1
@x

4x4y4z:

Similarly, loss in volume per unit time in y direction ¼ @v2
@y

4x4y4z

loss in volume per unit time in z direction ¼ @v3
@z

4x4y4z:

Then, total loss in volume per unit volume per unit time

¼
@v1
@x

þ @v2
@y

þ @v3
@z

� �
4x4y4z

4x4y4z
¼ div v ¼ rrrrr� v

This is true exactly only in the limit as the parallelepiped shrinks to P, i.e. as 4x, 4y, and 4z approach zero.

If there is no loss of fluid anywhere, then rrrrr� v ¼ 0. This is called the continuity equation for an incompressible

fluid. Since fluid is neither created nor destroyed at any point, it is said to have no sources or sinks. A vector such

as v whose divergence is zero is sometimes called solenoidal.

4.22. Determine the constant a so that the following vector is solenoidal.

V ¼ (�4x� 6yþ 3z)iþ (�2xþ y� 5z)jþ (5xþ 6yþ az)k

Solution

A vector V is solenoidal if its divergence is zero.

rrrrr�V ¼ @

@x
(�4x� 6yþ 3z)þ @

@y
(�2xþ y� 5z)þ @

@z
(5xþ 6yþ az) ¼ �4þ 1þ a ¼ �3þ a:

Then rrrrr�V ¼ �3þ a ¼ 0 when a ¼ 3.

The Curl

4.23. Suppose A ¼ x2z2i� 2y2z2jþ xy2zk. Find rrrrr � A (or curl A) at the point P ¼ (1, �1, 1).

Solution

rrrrr � A ¼
i j k
@

@x

@

@y

@

@z

x2z2 �2y2z2 xy2z

��������

��������
¼ @

@y
(xy2z)� @

@z
(�2y2z2)


 �
i� @

@x
(xy2z)� @

@z
(x2z2)


 �
j

@

@x
(�2y2z2)þ @

@y
(x2z2)


 �
k

¼ (2xyzþ 4yz2)i� (y2z� 2x2z)j

Thus rrrrr � A(P) ¼ 2iþ j.
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4.24. Suppose A ¼ x2z2i� 2y2z2jþ xy2zk. Find curl curl A ¼ rrrrr � (rrrrr � A).

Solution

By the previous problem, rrrrr � A ¼ (2xyzþ 4yz2)i� (y2z� 2x2z)j. Then

rrrrr � (rrrrr � A) ¼ rrrrr � (2xyzþ 4y2z)i� ( y2z� 2x2z)j
� 


¼
i j k
@

@x

@

@y

@

@z

2xyzþ 4y2z �y2zþ 2x2z 0

��������

��������
¼ @

@y
(0)� @

@z
(�y2zþ 2x2z)


 �
i� @

@x
(0)� @

@z
(2xyzþ 4y2z)


 �
j

þ @

@x
(�y2zþ 2x2z)þ @

@y
(2xyzþ 4y2z)


 �
k

¼ ( y2 � 2x2)iþ (2xyþ 4y2)jþ (2xz� 8yz)k:

4.25. Let A ¼ A1iþ A2 jþ A3k, B ¼ B1iþ B2 jþ B3k. Show (a) rrrrr � (Aþ B) ¼ rrrrr � Aþ rrrrr � B,

(b) rrrrr � (fA) ¼ (rrrrrf)� Aþ f(rrrrr � A).

Solution

(a) rrrrr � (Aþ B) ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
� [(A1 þ B1)iþ (A2 þ B2)jþ (A3 þ B3)k]

¼
i j k
@

@x

@

@y

@

@z
A1 þ B1 A2 þ B2 A3 þ B3

��������

��������
¼ @

@y
(A3 þ B3)� @

@z
(A2 þ B2)


 �
iþ @

@z
(A1 þ B1)� @

@x
(A3 þ B3)


 �
j

þ @

@x
(A2 þ B2)� @

@y
(A1 þ B1)


 �
k

¼ @A3

@y
� @A2

@z


 �
iþ @A1

@z
� @A3

@x


 �
jþ @A2

@x
� @A1

@y


 �
k

þ @B3

@y
� @B2

@z


 �
iþ @B1

@z
� @B3

@x


 �
jþ @B2

@x
� @B1

@y


 �
k

¼ rrrrr � Aþ rrrrr � B

(b) rrrrr � (fA) ¼ rrrrr � (fA1iþ fA2 jþ fA3k)

¼
i j k
@

@x

@

@y

@

@z
fA1 fA2 fA3

��������

��������
¼ @

@y
(fA3)� @

@z
(fA2)


 �
iþ @

@z
(fA1)� @

@x
(fA3)


 �
jþ @

@x
(fA2)� @

@y
(fA1)


 �
k
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¼ f
@A3

@y
þ @f

@y
A3 � f

@A2

@z
� @f

@z
A2


 �
i

þ f
@A1

@z
þ @f

@z
A1 � f

@A3

@x
� @f

@x
A3


 �
jþ f

@A2

@x
þ @f

@x
A2 � f

@A1

@y
� @f

@y
A1


 �
k

¼ f
@A3

@y
� @A2

@z

� �
iþ @A1

@z
� @A3

@x

� �
jþ @A2

@x
� @A1

@y

� �
k


 �

þ @f

@y
A3 � @f

@z
A2

� �
iþ @f

@z
A1 � @f

@x
A3

� �
jþ @f

@x
A2 � @f

@y
A1

� �
k


 �

¼ f(rrrrr � A)þ
i j k
@f

@x

@f

@y

@f

@z
A1 A2 A3

��������

��������
¼ f(rrrrr � A)þ (rrrrrf)� A:

4.26. Suppose rrrrr � A ¼ 0. Evaluate rrrrr� (A� r).

Solution

Let A ¼ A1iþ A2jþ A3k, r ¼ xiþ yjþ zk. Then

A� r ¼
i j k

A1 A2 A3

x y z

�������
�������

¼ (zA2 � yA3)iþ (xA3 � zA1)jþ ( yA1 � xA2)k

and

rrrrr� (A� r) ¼ @

@x
(zA2 � yA3)þ @

@y
(xA3 � zA1)þ @

@z
( yA1 � xA2)

¼ z
@A2

@x
� y

@A3

@x
þ x

@A3

@y
� z

@A1

@y
þ y

@A1

@z
� x

@A2

@z

¼ x
@A3

@y
� @A2

@z

� �
þ y

@A1

@z
� @A3

@x

� �
þ z

@A2

@x
� @A1

@y

� �

¼ xiþ yjþ zk½ �� @A3

@y
� @A2

@z

� �
iþ @A1

@z
� @A3

@x

� �
jþ @A2

@x
� @A1

@y

� �
k


 �

¼ r� (rrrrr � A) ¼ r� curl A:
If rrrrr � A ¼ 0, this reduces to zero:

4.27. Prove: (a) rrrrr � (rrrrrf) ¼ 0 (curl grad f ¼ 0), (b) rrrrr� (rrrrr � A) ¼ 0 (div curl A ¼ 0).

Solution

(a) rrrrr � (rrrrrf) ¼ rrrrr � @f

@x
iþ @f

@y
jþ @f

@z
k

� �
¼

i j k
@

@x

@

@y

@

@z
@f

@x

@f

@y

@f

@z

����������

����������
¼ @

@y

@f

@z

� �
� @

@z

@f

@y

� �
 �
iþ @

@z

@f

@x

� �
� @

@x

@f

@z

� �
 �
jþ @

@x

@f

@y

� �
� @

@y

@f

@x

� �
 �
k

¼ @2f

@y@z
� @2f

@z@y

� �
iþ @2f

@z@x
� @2f

@x@z

� �
jþ @2f

@x@y
� @2f

@y@x

� �
k ¼ 0

provided we assume that f has continuous second partial derivatives so that the order of differentiation is

immaterial.
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(b) rrrrr� (rrrrr � A) ¼ rrrrr�
i j k
@

@x

@

@y

@

@z
A1 A2 A3

��������

��������
¼ rrrrr� @A3

@y
� @A2

@z

� �
iþ @A1

@z
� @A3

@x

� �
jþ @A2

@x
� @A1

@y

� �
k


 �

¼ @

@x

@A3

@y
� @A2

@z

� �
þ @

@y

@A1

@z
� @A3

@x

� �
þ @

@z

@A2

@x
� @A1

@y

� �

¼ @2A3

@x@y
� @2A2

@x@z
þ @2A1

@y@z
� @2A3

@y@x
þ @2A2

@z@x
� @2A1

@z@y
¼ 0

assuming that A has continuous second partial derivatives.

Note the similarity between the above results and the results (C� Cm) ¼ (C� C)m ¼ 0, where m is a

scalar and C� (C� A) ¼ (C� C)�A ¼ 0.

4.28. Find curl (rf (r)) where f(r) is differentiable.

Solution

curl(rf (r)) ¼ rrrrr � (rf (r))

¼ rrrrr � (x f (r)iþ y f (r)jþ z f (r)k)

¼
i j k
@

@x

@

@y

@

@z
x f (r) y f (r) z f (r)

��������

��������
¼ z

@f

@y
� y

@f

@z

� �
iþ x

@f

@z
� z

@f

@x

� �
jþ y

@f

@x
� x

@f

@y

� �
k

But
@f

@x
¼ @f

@r

� �
@r

@x

� �
¼ @f

@r

@

@x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p� �
¼ f 0(r)xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ x2
p ¼ f 0x

r
.

Similarly,
@f

@y
¼ f 0y

r
and

@f

@z
¼ f 0z

r
.

Then, the result = z
f 0y
r
� y

f 0z
r

� �
iþ x

f 0z
r
� z

f 0x
r

� �
jþ y

f 0x
r
� x

f 0y
r

� �
k ¼ 0.

4.29. Prove rrrrr � (rrrrr � A) ¼ �r2Aþ rrrrr(rrrrr�A).
Solution

rrrrr � (rrrrr � A) ¼ rrrrr �
i j k
@

@x

@

@y

@

@z
A1 A2 A3

��������

��������
¼ rrrrr � @A3

@y
� @A2

@z

� �
iþ @A1

@z
� @A3

@x

� �
jþ @A2

@x
� @A1

@y

� �
k


 �

¼

i j k
@

@x

@

@y

@

@z
@A3

@y
� @A2

@z

@A1

@z
� @A3

@x

@A2

@x
� @A1

@y

����������

����������
¼ @

@y

@A2

@x
� @A1

@y

� �
� @

@z

@A1

@z
� @A3

@x

� �
 �
i
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þ @

@z

@A3

@y
� @A2

@z

� �
� @

@x

@A2

@x
� @A1

@y

� �
 �
j

þ @

@x

@A1

@z
� @A3

@x

� �
� @

@y

@A3

@y
� @A2

@z

� �
 �
k

¼ � @2A1

@y2
� @2A1

@z2

� �
iþ � @2A2

@z2
� @2A2

@x2

� �
jþ � @2A3

@x2
� @2A3

@y2

� �
k

þ @2A2

@y@x
þ @2A3

@z@x

� �
iþ @2A3

@z@y
þ @2A1

@x@y

� �
jþ @2A1

@x@z
þ @2A2

@y@z

� �
k

¼ � @2A1

@x2
� @2A1

@y2
� @2A1

@z2

� �
iþ � @2A2

@x2
� @2A2

@y2
� @2A2

@z2

� �
jþ � @2A3

@x2
� @2A3

@y2
� @2A3

@z2

� �
k

þ @2A1

@x2
þ @2A2

@y@x
þ @2A3

@z@x

� �
iþ @2A1

@x@y
þ @2A2

@y2
þ @2A3

@z@y

� �
jþ @2A1

@x@z
þ @2A2

@y@z
þ @2A3

@z2

� �
k

¼ � @2

@x2
þ @2

@y2
þ @2

@z2

� �
A1iþ A2 jþ A3kð Þ

þ i
@

@x

@A1

@x
þ @A2

@y
þ @A3

@z

� �
þ j

@

@y

@A1

@x
þ @A2

@y
þ @A3

@z

� �
þ k

@

@z

@A1

@x
þ @A2

@y
þ @A3

@z

� �

¼ �rrrrr2Aþ rrrrr @A1

@x
þ @A2

@y
þ @A3

@z

� �
¼ �rrrrr2Aþ rrrrr(rrrrr�A)

If desired, the labor of writing can be shortened in this as well as other derivations by writing only the i
components since the others can be obtained by symmetry.

The result can also be established formally as follows. From Problem 47(a), Chapter 2,

A� (B� C) ¼ B(A�C)� (A�B)C (1)

Placing A ¼ B ¼ rrrrr and C ¼ F,

rrrrr � (rrrrr � F) ¼ rrrrr(rrrrr�F)� (rrrrr�rrrrr)F ¼ rrrrr(rrrrr�F)� rrrrr2F

Note that the formula (1) must be written so that the operators A and B precede the operand C, otherwise the
formalism fails to apply.

4.30. Suppose v ¼ v� r. Prove v ¼ 1
2
curl v where v is a constant vector.

Solution

curl v ¼ rrrrr � v ¼ rrrrr � (v� r) ¼ rrrrr �
i j k

v1 v2 v3

x y z

�������
�������

¼ rrrrr � [(v2z� v3y)iþ (v3x� v1z)jþ (v1y� v2x)k]

¼
i j k
@

@x

@

@y

@

@z
v2z� v3y v3x� v1z v1y� v2x

�������
������� ¼ 2(v1iþ v2jþ v3k) ¼ 2v:

Then v ¼ 1
2
rrrrr � v ¼ 1

2
curl v.

This problem indicates that the curl of a vector field has something to do with rotational properties of the

field. This is confirmed in Chapter 6. If the field F is that due to a moving fluid, for example, then a

paddle wheel placed at various points in the field would tend to rotate in regions where curl F=0, while if

curl F ¼ 0 in the region, there would be no rotation and the field F is then called irrotational. A field that is

not irrotational is sometimes called a vortex field.
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4.31. Suppose rrrrr�E ¼ 0, rrrrr�H ¼ 0, rrrrr � E ¼ � @H

@t
, rrrrr �H ¼ @E

@t
. Show that E and H satisfy rrrrr2u ¼ @2u

@t2
.

Solution

rrrrr � (rrrrr � E) ¼ rrrrr � � @H

@t

� �
¼ � @

@t
(rrrrr �H) ¼ � @

@t

@E

@t

� �
¼ � @2E

@t2

By Problem 4.29, rrrrr � (rrrrr � E) ¼ �rrrrr2Eþ rrrrr(rrrrr�E) ¼ �rrrrr2E. Then rrrrr2E ¼ @2E

@t2
.

Similarly, rrrrr � (rrrrr �H) ¼ rrrrr � @E

@t

� �
¼ @

@t
(rrrrr � E) ¼ @

@t
� @H

@t

� �
¼ � @2H

@t2
.

But rrrrr � (rrrrr �H) ¼ �rrrrr2Hþ rrrrr(rrrrr�H) ¼ �rrrrr2H. Then rrrrr2H ¼ @2H

@t2
.

The given equations are related to Maxwell’s equations of electromagnetic theory. The equation

@2u

@x2
þ @2u

@y2
þ @2u

@z2
¼ @2u

@t2

is called the wave equation.

Miscellaneous Problems

4.32. A vector V is called irrotational if curlV ¼ 0. (a) Find constants a, b, and c so that

V ¼ (�4x� 3yþ az)iþ (bxþ 3yþ 5z)jþ (4xþ cyþ 3z)k

is irrotational. (b) Show that V can be expressed as the gradient of a scalar function.

Solution

(a) curlV ¼ rrrrr � V

rrrrr � V ¼
i j k
@

@x

@

@y

@

@z
�4x� 3yþ az bxþ 3yþ 5z 4xþ cyþ 3z

��������

��������
¼

@

@y

@

@z
bþ 3yþ 5z 4xþ cyþ 3z

������
������i�

@

@x

@

@z
�4x� 3yþ az 4xþ cyþ 3z

������
������j

þ
@

@x

@

@y
�4x� 3yþ az bxþ 3yþ 5z

������
������k

¼ (c� 5)i� (4� a)jþ (bþ 3)k:

This equals the zero vector when a ¼ 4, b ¼ �3, and c ¼ 5. So

V ¼ (�4x� 3yþ 4z)iþ (�3xþ 3yþ 5z)jþ (4xþ 5yþ 3z)k:

(b) Assume V ¼ rrrrrf ¼ @f

@x
iþ @f

@y
jþ @f

@z
k. Then

@f

@x
¼ �4x� 3yþ 4z (1)

@f

@y
¼ �3xþ 3yþ 5z (2)

@f

@z
¼ 4xþ 5yþ 3z (3)
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Integrating (1) partially with respect to x keeping y and z constant, we obtain

f ¼ �2x2 � 3xyþ 4xzþ f (y, z) (4)

where f ( y, z) is an arbitrary function of y and z. Similarly, we obtain from (2) and (3)

f ¼ �3xyþ 3

2
y2 þ 5yzþ g(x, z) (5)

and

f ¼ 4xzþ 5yzþ 3

2
z2 þ h(x, y): (6)

Comparison of (4), (5), and (6) shows that there will be a common value of f if we choose

f (y, z) ¼ 3

2
y2 þ 5yzþ 3

2
z2, g(x, z) ¼ �2x2 þ 4xzþ 3

2
z2, h(x, y) ¼ �2x2 � 3xyþ 3

2
y2

so that

f ¼ �2x2 þ 3

2
y2 þ 3

2
z2 � 3xyþ 4xzþ 5yz

Note that we can add any constant to f. In general, if rrrrr � V ¼ 0, then we can find f so that V ¼ rrrrrf.
A vector field V, which can be obtained from a scalar field f, so that V ¼ rrrrrf is called a conservative vector

field and f is called the scalar potential. Note conversely that, ifV ¼ rrrrrf, then rrrrr � V ¼ 0 (see Problem 4.27a).

4.33. Show that if f(x, y, z) is any solution of Laplace’s equation, then rrrrrf is a vector that is both
solenoidal and irrotational.

Solution

By hypothesis, f satisfies Laplace’s equation rrrrr2f ¼ 0, that is, rrrrr� (rrrrrf) ¼ 0. Then rrrrrf is solenoidal (see

Problems 4.21 and 4.22).

From Problem 4.27a, rrrrr � (rrrrrf) ¼ 0, so that rrrrrf is also irrotational.

4.34. Give a possible definition of grad B.

Solution

Assume B ¼ B1iþ B2 jþ B3k. Formally, we can define grad B as

rrrrrB ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
B1iþ B2jþ B3kð Þ

¼ @B1

@x
iiþ @B2

@x
ijþ @B3

@x
ik

þ @B1

@y
jiþ @B2

@y
jjþ @B3

@y
jk

þ @B1

@z
kiþ @B2

@z
kjþ @B3

@z
kk

The quantities ii, ij, and so on, are called unit dyads. (Note that ij, for example, is not the same as ji.)
A quantity of the form

a11iiþ a12ijþ a13ikþ a21jiþ a22 jjþ a23jkþ a31kiþ a32kjþ a33kk

is called a dyadic and the coefficients a11, a12, . . . are its components. An array of these nine components in

the form

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5

CHAPTER 4 Gradient, Divergence, Curl 87



is called a 3 by 3 matrix. A dyadic is a generalization of a vector. Still further generalization leads to

triadics, which are quantities consisting of 27 terms of the form a111iiiþ a211jiiþ � � �. A study of how the com-

ponents of a dyadic or triadic transform from one system of coordinates to another leads to the subject of tensor

analysis, which is taken up in Chapter 8.

4.35. Let a vector A be defined by A ¼ A1iþ A2jþ A3k and a dyadic F by

F ¼ a11iiþ a12ijþ a13ikþ a21jiþ a22jjþ a23jkþ a31kiþ a32kjþ a33kk

Give a possible definition of A�F.

Solution

Formally, assuming the distributive law to hold,

A�F ¼ (A1iþ A2 jþ A3k)�F ¼ A1i�Fþ A2 j�Fþ A3k�F
As an example, consider i�F. This product is formed by taking the dot product of i with each term ofF and

adding results. Typical examples are i� a11ii, i� a12ij, i� a21ji, i� a32kj, and so on. If we give meaning to these

as follows

i� a11ii ¼ a11(i� i)i ¼ a11i since i� i ¼ 1

i� a12ij ¼ a12(i� i)j ¼ a12j since i� i ¼ 1

i� a21ji ¼ a21(i� j)i ¼ 0 since i� j ¼ 0

i� a32kj ¼ a32(i� k)j ¼ 0 since i� k ¼ 0

and give analogous interpretation to the terms of j�F and k�F, then

A�F ¼ A1(a11iþ a12 jþ a13k)þ A2(a21iþ a22jþ a23k)þ A3(a31iþ a32jþ a33k)

¼ (A1a11 þ A2a21 þ A3a31)iþ (A1a12 þ A2a22 þ A3a32)jþ (A1a13 þ A2a23 þ A3a33)k

which is a vector.

4.36. (a) Interpret the symbol A�rrrrr. (b) Give a possible meaning to (A�rrrrr)B. (c) Is it possible to write this
as A�rrrrrB without ambiguity?

Solution

(a) Let A ¼ A1iþ A2jþ A3k. Then, formally,

A�rrrrr ¼ (A1iþ A2 jþ A3k)� @

@x
iþ @

@y
jþ @

@z
k

� �

¼ A1

@

@x
þ A2

@

@y
þ A3

@

@z

is an operator. For example,

(A�rrrrr)f ¼ A1

@

@x
þ A2

@

@y
þ A3

@

@z

� �
f ¼ A1

@f

@x
þ A2

@f

@y
þ A3

@f

@z

Note that this is the same as A�rrrrrf.
(b) Formally, using (a) with f replaced by B ¼ B1iþ B2jþ B3k,

(A�rrrrr)B ¼ A1

@

@x
þ A2

@

@y
þ A3

@

@z

� �
B ¼ A1

@B

@x
þ A2

@B

@y
þ A3

@B

@z

¼ A1

@B1

@x
þ A2

@B1

@y
þ A3

@B1

@z

� �
iþ A1

@B2

@x
þ A2

@B2

@y
þ A3

@B2

@z

� �
j

þ A1

@B3

@x
þ A2

@B3

@y
þ A3

@B3

@z

� �
k
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(c) Use the interpretation of rrrrrB as given in Problem 4.34. Then, according to the symbolism established in

Problem 4.35,

A�rrrrrB ¼ (A1iþ A2 jþ A3k)�rrrrrB ¼ A1i�rrrrrBþ A2j�rrrrrBþ A3k�rrrrrB
¼ A1

@B1

@x
iþ @B2

@x
jþ @B3

@x
k

� �
þ A2

@B1

@y
iþ @B2

@y
jþ @B3

@y
k

� �
þ A3

@B1

@z
iþ @B2

@z
jþ @B3

@z
k

� �

which gives the same result as that given in part (b). It follows that (A�rrrrr)B ¼ A�rrrrrB without ambiguity

provided the concept of dyadics is introduced with properties as indicated.

4.37. Suppose A ¼ 2yzi� x2yjþ xz2k, B ¼ x2iþ yzj� xyk, and f ¼ 2x2yz3. Find (a) (A�rrrrr)f,
(b) A�rrrrrf, (c) (B�rrrrr)A, (d) (A� rrrrr)f, (e) A�rrrrrf.
Solution

(a) (A�rrrrr)f ¼ 2yzi� x2yjþ xz2k
� 	� @

@x
iþ @

@y
jþ @

@z
k

� �
 �
f

¼ 2yz
@

@x
� x2y

@

@y
þ xz2

@

@z

� �
(2x2yz3)

¼ 2yz
@

@x
(2x2yz3)� x2y

@

@y
(2x2yz3)þ xz2

@

@z
(2x2yz3)

¼ (2yz)(4xyz3)� (x2y)(2x2z3)þ (xz2)(6x2yz2)

¼ 8xy2z4 � 2x4yz3 þ 6x3yz4

(b) A�rrrrrf ¼ (2yzi� x2yjþ xz2k)� @f

@x
iþ @f

@y
jþ @f

@z
k

� �

¼ (2yzi� x2yjþ xz2k)� (4xyz3iþ 2x2z3jþ 6x2yz2k)

¼ 8xy2z4 � 2x4yz3 þ 6x3yz4

Comparison with (a) illustrates the result (A�rrrrr)f ¼ A�rrrrrf.
(c) (B�rrrrr)A ¼ (x2iþ yz j� xyk)� @

@x
iþ @

@y
jþ @

@z
k

� �
 �
A

¼ x2
@

@x
þ yz

@

@y
� xy

@

@z

� �
A ¼ x2

@A

@x
þ yz

@A

@y
� xy

@A

@z

¼ x2(�2xyjþ z2k)þ yz(2z i� x2j)� xy(2yiþ 2xzk)

¼ (2yz2 � 2xy2)i� (2x3yþ x2yz)jþ (x2z2 � 2x2yz)k

For comparison of this with B�rrrrrA, see Problem 4.36(c).

(d) (A�rrrrr)f ¼ (2yzi� x2yjþ xz2k)� @

@x
iþ @

@y
jþ @

@z
k

� �
 �
f

¼
i j k

2yz �x2y xz2

@

@x

@

@y

@

@z

��������

��������f

¼ i �x2y
@

@z
� xz2

@

@y

� �
þ j xz2

@

@x
� 2yz

@

@z

� �
þ k 2yz

@

@y
þ x2y

@

@x

� �
 �
f

¼ � x2y
@f

@z
þ xz2

@f

@y

� �
iþ xz2

@f

@x
� 2yz

@f

@z

� �
jþ 2yz

@f

@y
þ x2y

@f

@x

� �
k

¼ �(6x4y2z2 þ 2x3z5)iþ (4x2yz5 � 12x2y2z3)jþ (4x2yz4 þ 4x3y2z3)k
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(e) A� rrrrrf ¼ (2yzi� x2yjþ xz2k)� @f

@x
iþ @f

@y
jþ @f

@z
k

� �

¼
i j k

2yz �x2y xz2

@f

@x

@f

@y

@f

@z

��������

��������
¼ �x2y

@f

@z
� xz2

@f

@y

� �
iþ xz2

@f

@x
� 2yz

@f

@z

� �
jþ 2yz

@f

@y
þ x2y

@f

@x

� �
k

¼ �(6x4y2z2 þ 2x3z5)iþ (4x2yz5 � 12x2y2z3)jþ (4x2yz4 þ 4x3y2z3)k

Comparison with (d) illustrates the result (A� rrrrr)f ¼ A� rrrrrf.

Invariance

4.38. Two rectangular xyz and x0y0z0 coordinate systems having the same origin are rotated with respect
to each other. Derive the transformation equations between the coordinates of a point in the two
systems.

Solution

Let r and r0 be the position vectors of any point P in the two systems (see Fig. 4-1 on page 72). Then, since

r ¼ r0,

x0i0 þ y0j0 þ z0k0 ¼ xiþ yjþ zk (1)

Now, for any vector A, we have (Problem 4.20, Chapter 2),

A ¼ (A� i0)i0 þ (A� j0)j0 þ (A� k0)k0
Then, letting A ¼ i, j, and k in succession,

i ¼ (i� i0)i0 þ (i� j0)j0 þ (i� k0)k0 ¼ l11i
0 þ l21j

0 þ l31k
0

j ¼ ( j� i0)i0 þ ( j� j0)j0 þ ( j� k0)k0 ¼ l12i
0 þ l22j

0 þ l32k
0

k ¼ (k� i0)i0 þ (k� j0)j0 þ (k� k0)k0 ¼ l13i
0 þ l23j

0 þ l33k
0

8><
>: (2)

Substituting equations (2) into (1) and equating coefficients of i0, j0, and k0, we find

x0 ¼ l11xþ l12yþ l13z, y0 ¼ l21xþ l22yþ l23z, z0 ¼ l31xþ l32yþ l33z (3)

the required transformation equations.

4.39. Prove

i0 ¼ l11iþ l12 jþ l13k

j0 ¼ l21iþ l22 jþ l23k

k0 ¼ l31iþ l32 jþ l33k

Solution

For any vector A, we have A ¼ (A� i)iþ (A� j)jþ (A� k)k.
Then, letting A ¼ i0, j0, and k0 in succession,

i0 ¼ (i0� i)iþ (i0� j)jþ (i0� k)k ¼ l11iþ l12 jþ l13k

j0 ¼ ( j0� i)iþ ( j0� j)jþ ( j0� k)k ¼ l21iþ l22 jþ l23k

k0 ¼ (k0� i)iþ (k0� j)jþ (k0� k)k ¼ l31iþ l32 jþ l33k
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4.40. Prove that
P3

p¼1 lpmlpn ¼ 1 if m ¼ n, and 0 if m = n, where m and n can assume any of the values
1, 2, or 3.

Solution

From equation (2) of Problem 4.38,

i� i ¼ 1 ¼ (l11i
0 þ l21j

0 þ l31k
0)� (l11i0 þ l21j

0 þ l31k
0) ¼ l211 þ l221 þ l231

i� j ¼ 0 ¼ (l11i
0 þ l21j

0 þ l31k
0)� (l12i0 þ l22j

0 þ l32k
0) ¼ l11l12 þ l21l22 þ l31l32

i� k ¼ 0 ¼ (l11i
0 þ l21j

0 þ l31k
0)� (l13i0 þ l23j

0 þ l33k
0) ¼ l11l13 þ l21l23 þ l31l33

These establish the required result where m ¼ 1. By considering j� i, j� j, j� k, k� i, k� j, and k� k, the result

can be proved for m ¼ 2 and m ¼ 3.

By writing

dmn ¼ 1 if m ¼ n

0 if m=n

�
the result can be written

X3
p¼1

l pml pn ¼ dmn:

The symbol dmn is called Kronecker’s symbol.

4.41. Suppose f(x, y, z) is a scalar invariant with respect to a rotation of axes. Prove that grad f is a vector
invariant under this transformation.

Solution

By hypothesis, f(x, y, z) ¼ f0(x0, y0, z0). To establish the desired result, we must prove that

@f

@x
iþ @f

@y
jþ @f

@z
k ¼ @f0

@x0
i0 þ @f0

@y0
j0 þ @f0

@z0
k0

Using the chain rule and the transformation equations (3) of Problem 4.38, we have

@f

@x
¼ @f0

@x0
@x0

@x
þ @f0

@y0
@y0

@x
þ @f0

@z0
@z0

@x
¼ @f0

@x0
l11 þ @f0

@y0
l21 þ @f0

@z0
l31

@f

@y
¼ @f0

@x0
@x0

@y
þ @f0

@y0
@y0

@y
þ @f0

@z0
@z0

@y
¼ @f0

@x0
l12 þ @f0

@y0
l22 þ @f0

@z0
l32

@f

@z
¼ @f0

@x0
@x0

@z
þ @f0

@y0
@y0

@z
þ @f0

@z0
@z0

@z
¼ @f0

@x0
l13 þ @f0

@y0
l23 þ @f0

@z0
l33

Multiplying these equations by i, j, and k, respectively, adding, and usingProblem4.39, the required result follows.

SUPPLEMENTARY PROBLEMS

4.42. Suppose f ¼ 2xz4 � x2y. Find rrrrrf and jrrrrrfj at the point (2, �2, �1).

4.43. Suppose A ¼ 2x2i� 3yzjþ xz2k and f ¼ 2z� x3y. Find A�rrrrrf and A�rrrrrf at the point (1, �1, 1).

4.44. Suppose F ¼ x2zþ ey=x and G ¼ 2z2y� xy2. Find (a) rrrrr(F þ G) and (b) rrrrr(FG) at the point (1, 0, �2).

4.45. Find rrrrr rj j3.

4.46. Prove rrrrrf (r) ¼ f 0(r)r
r

.

4.47. Evaluate rrrrr 3r2 � 4
ffiffi
r

p þ 6ffiffi
r3

p
� �

.

4.48. Let rrrrrU ¼ 2r4r. Find U.

4.49. Find f(r) such that rrrrrf ¼ r=r5 and f(1) ¼ 0.
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4.50. Find rrrrrc where c ¼ (x2 þ y2 þ z2)e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
.

4.51. Let rrrrrf ¼ 2xyz3iþ x2z3jþ 3x2yz2k. Find f(x, y, z) if f(1, �2, 2) ¼ 4.

4.52. Suppose rrrrrc ¼ ( y2 � 2xyz3)iþ (3þ 2xy� x2z3)jþ (6z3 � 3x2yz2)k. Find c.

4.53. Let U be a differentiable function of x, y, and z. Prove rrrrrU� dr ¼ dU.

4.54. Suppose F is a differentiable function of x, y, z, t where x, y, z are differentiable functions of t. Prove that

dF

dt
¼ @F

@t
þ rrrrrF� dr

dt

4.55. Let A be a constant vector. Prove rrrrr(r�A) ¼ A.

4.56. Suppose A(x, y, z) ¼ A1iþ A2jþ A3k. Show that dA ¼ (rrrrrA1� dr)iþ (rrrrrA2� dr)jþ (rrrrrA3� dr)k.
4.57. Prove rrrrr F

G

� �
¼ GrrrrrF � FrrrrrG

G2
if G = 0.

4.58. Find a unit vector that is perpendicular to the surface of the paraboloid of revolution z ¼ x2 þ y2 at the point

(1, 2, 5).

4.59. Find the unit outward drawn normal to the surface (x� 1)2 þ y2 þ (zþ 2)2 ¼ 9 at the point (3, 1, �4).

4.60. Find an equation for the tangent plane to the surface xz2 þ x2y ¼ z� 1 at the point (1, �3, 2).

4.61. Find equations for the tangent plane and normal line to the surface z ¼ x2 þ y2 at the point (2, �1, 5).

4.62. Find the directional derivative of f ¼ 4xz3 � 3x2y2z at (2, �1, 2) in the direction 2i� 3jþ 6k.

4.63. Find the directional derivative of P ¼ 4e2x�yþz at the point (1, 1, �1) in a direction toward the point (�3, 5, 6).

4.64. In what direction from the point (1, 3, 2) is the directional derivative of f ¼ 2xz� y2 a maximum? What is the

magnitude of this maximum?

4.65. Find the values of the constants a, b, and c so that the directional derivative of f ¼ axy2 þ byzþ cz2x3 at

(1, 2, �1) has a maximum of magnitude 64 in a direction parallel to the z axis.

4.66. Find the acute angle between the surfaces xy2z ¼ 3xþ z2 and 3x2 � y2 þ 2z ¼ 1 at the point (1, �2, 1).

4.67. Find the constants a and b so that the surface ax2 � byz ¼ (aþ 2)x will be orthogonal to the surface

4x2yþ z3 ¼ 4 at the point (1, �1, 2).

4.68. (a) Let u and v be differentiable functions of x, y, and z. Show that a necessary and sufficient condition that u

and v are functionally related by the equation F(u, v) ¼ 0 is that rrrrru�rrrrrv ¼ 0.

(b) Determine whether u ¼ arc tan xþ arc tan y and v ¼ xþ y

1� xy
are functionally related.

4.69. (a) Show that rrrrru�rrrrrv�rrrrrw ¼ 0 a necessary and sufficient condition that u(x, y, z), v(x, y, z), and w(x, y, z)

be functionally related through the equation F(u, v, w) ¼ 0.

(b) Express rrrrru�rrrrrv�rrrrrw in determinant form. This determinant is called the Jacobian of u, v, and w with

respect to x, y, and z, and is written
@(u, v, w)

@(x, y, z)
or J

u, v, w

x, y, z

� �
.

(c) Determine whether u ¼ xþ yþ z, v ¼ x2 þ y2 þ z2 and w ¼ xyþ yzþ zx are functionally related.

4.70. Let A ¼ 3xyz2iþ 2xy3j� x2yzk and f ¼ 3x2 � yz. Find, at the point (1, �1, 1), (a) rrrrr�A, (b) A�rrrrrf,
(c) rrrrr�(fA), (d) rrrrr�(rrrrrf), .

4.71. Evaluate div(2x2zi� xy2z jþ 3yz2k).
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4.72. Let f ¼ 3x2z� y2z3 þ 4x3yþ 2x� 3y� 5. Find rrrrr2f.

4.73. Evaluate rrrrr2(ln r).

4.74. Prove rrrrr2rn ¼ n(nþ 1)rn�2 where n is a constant.

4.75. Let F ¼ (3x2y� z)iþ (xz3 þ y4)j� 2x3z2k. Find rrrrr(rrrrr�F) at the point (2, �1, 0).

4.76. Suppose v is a constant vector and v ¼ v� r. Prove that div v ¼ 0.

4.77. Prove rrrrr2(fc) ¼ frrrrr2cþ 2rrrrrf�rrrrrcþ crrrrr2f.

4.78. Let U ¼ 3x2y and V ¼ xz2 � 2y. Evaluate grad[(gradU)� (gradV)].
4.79. Evaluate rrrrr� (r3r).
4.80. Evaluate rrrrr� [rrrrrr(1=r3)].
4.81. Evaluate rrrrr2[rrrrr� (r=r2)].
4.82. If A ¼ r=r, find grad div A.

4.83. (a) Prove rrrrr2f (r) ¼ d2f

dr2
þ 2

r

df

dr
. (b) Find f (r) such that rrrrr2f (r) ¼ 0.

4.84. Prove that the vector A ¼ 3y4z2iþ 4x3z2j� 3x2y2k is solenoidal.

4.85. Show that A ¼ (2x2 þ 8xy2z)iþ (3x3y� 3xy)j� (4y2z2 þ 2x3z)k is not solenoidal but B ¼ xyz2A is

solenoidal.

4.86. Find the most general differentiable function f (r) so that f (r)r is solenoidal.

4.87. Show that the vector field V ¼ �xi� yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p is a “sink field”. Plot and give a physical interpretation.

4.88. Suppose U and V are differentiable scalar fields. Prove that rrrrrU �rrrrrV is solenoidal.

4.89. Let A ¼ 2xz2i� yz jþ 3xz3k and f ¼ x2yz. Find, at the point (1, 1, 1):

(a) rrrrr � A, (b) curl(fA), (c) rrrrr � (rrrrr � A), (d) rrrrr[A� curlA], (e) curl grad(fA) .

4.90. Let F ¼ x2yz, G ¼ xy� 3z2. Find (a) rrrrr[(rrrrrF)� (rrrrrG)], (b) rrrrr� [(rrrrrF)� (rrrrrG)], (c) rrrrr � [(rrrrrF)� (rrrrrG)].

4.91. Evaluate rrrrr � (r=r2).

4.92. For what value of the constant a will the vector A ¼ (axy� z3)iþ (a� 2)x2jþ (1� a)xz2k have its curl iden-

tically equal to zero?

4.93. Prove curl(f gradf) ¼ 0.

4.94. Graph the vector fields A ¼ xiþ yj and B ¼ yi� xj. Compute the divergence and curl of each vector field and

explain the physical significance of the results obtained.

4.95. Given A ¼ x2ziþ yz3j� 3xyk, B ¼ y2i� yz jþ 2xk and f ¼ 2x2 þ yz. Find:

(a) A� (rrrrrf), (b) (A�rrrrr)f, (c) (A�rrrrr)B, (d) B(A�rrrrr), (e) (rrrrr�A)B.
4.96. Suppose A ¼ yz2i� 3xz2jþ 2xyzk, B ¼ 3xiþ 4zj� xyk, and f ¼ xyz. Find (a) A� (rrrrrf), (b) (A�rrrrr)f,

(c) (rrrrr � A)� B, (d) B�rrrrr � A.

4.97. Given A ¼ xz2iþ 2yj� 3xzk and B ¼ 3xziþ 2yzj� z2k. Find A� (rrrrr � B) and (A� rrrrr)� B at the point

(1, �1, 2).

4.98. Prove (v�rrrrr)v ¼ 1
2
rrrrrv2 � v� (rrrrr � v).

4.99. Prove rrrrr� (A� B) ¼ B� (rrrrr � A)� A� (rrrrr � B).
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4.100. Prove rrrrr � (A� B) ¼ (B�rrrrr)A� B(rrrrr�A)� (A�rrrrr)Bþ A(rrrrr�B).
4.101. Prove rrrrr(A�B) ¼ (B�rrrrr)Aþ (A�rrrrr)Bþ B� (rrrrr � A)þ A� (rrrrr � B).

4.102. Show that A ¼ (6xyþ z3)iþ (3x2 � z)jþ (3xz2 � y)k is irrotational. Find f such that A ¼ rrrrrf.
4.103. Show that E ¼ r=r2 is irrotational. Find f such that E ¼ �rrrrrf and such that f(a) ¼ 0 where a . 0.

4.104. Suppose A and B are irrotational. Prove that A� B is solenoidal.

4.105. Suppose f (r) is differentiable. Prove that f (r)r is irrotational.

4.106. Is there a differentiable vector function V such that (a) curl V ¼ r, (b) curl V ¼ 2iþ jþ 3k? If so, find V.

4.107. Show that solutions to Maxwell’s equations

rrrrr �H ¼ 1

c

@E

@t
, rrrrr � E ¼ � 1

c

@H

@t
, rrrrr�H ¼ 0, rrrrr�E ¼ 4pr

where r is a function of x, y, and z, and c is the velocity of light, assumed constant, are given by

E ¼ �rrrrrf� 1

c

@A

@t
, H ¼ rrrrr � A

where A and f, called the vector and scalar potentials, respectively, satisfy the equations

rrrrr�Aþ 1

c

@f

@t
¼ 0, (1)

rrrrr2f� 1

c2
@2f

@t2
¼ �4pr, (2)

rrrrr2A ¼ 1

c2
@2A

@t2
(3)

4.108. (a) Given the dyadic F ¼ iiþ jjþ kk, evaluate r� (F� r) and (r�F)� r. (b) Is there any ambiguity in writing

r�F� r? (c) What does r�F� r ¼ 1 represent geometrically?

4.109. (a) Suppose A ¼ xzi� y2jþ yz2k and B ¼ 2z2i� xyjþ y3k. Give a possible significance to (A�rrrrr)B at the

point (1, �1, 1).

(b) Is it possible to write the result as A� (rrrrrB) by use of dyadics?

4.110. Prove that f(x, y, z) ¼ x2 þ y2 þ z2 is a scalar invariant under a rotation of axes.

4.111. Let A(x, y, z) be an invariant differentiable vector field with respect to a rotation of axes. Prove that (a) div A

and (b) curl A are invariant scalar and vector fields, respectively.

4.112. Solve equation (3) of Solved Problem 4.38 for x, y, and z in terms of x0, y0, and z0.

4.113. Suppose A and B are invariant under rotation. Show that A�B and A� B are also invariant.

4.114. Show that under a rotation

rrrrr ¼ i
@

@x
þ j

@

@y
þ k

@

@z
¼ i0

@

@x0
þ j0

@

@y0
þ k0

@

@z0
¼ rrrrr0

4.115. Show that the Laplacian operator is invariant under a rotation.

4.116. Suppose A ¼ x2z2i� 2y2z2jþ xy2zk, B ¼ x2iþ yzj� xyk, and f ¼ 2x2yz3. Find:

(a) (A�rrrrr)f, (b) A�rrrrrf, (c) (B�rrrrr)f, (d) (A� rrrrr)f, and (e) A� rrrrrf.
4.117. Prove: (a) rrrrr � (Aþ B) ¼ rrrrr � Aþ rrrrr � B, (b) rrrrr � (fA) ¼ (rrrrrf)� Aþ f(rrrrr � A).
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ANSWERS TO SUPPLEMENTARY PROBLEMS

4.42. 10i� 4j� 16k, 2
ffiffiffiffiffi
93

p
4.64. In the direction of 4i� 6jþ 2k, 2

ffiffiffiffiffi
14

p

4.43. 5, 7i� j� 11k 4.65. a ¼ 6, b ¼ 24, c ¼ �8

4.44. (a) �4iþ 9jþ k, (b) �8j 4.66. arc cos
3ffiffiffiffiffi

14
p ffiffiffiffiffi

21
p ¼ arc cos

ffiffiffi
6

p

14
¼ 798550

4.45. 3rr 4.67. a ¼ 5=2, b ¼ 1

4.47. (6� 2r�3=2 � 2r�7=3)r 4.68. (b) Yes (v ¼ tan u)

4.48. r6=3þ constant

4.49. f(r) ¼ 1

3
1� 1

r3

� �
4.50. (2� r)e�rr 4.69. (b)

@u

@x

@u

@y

@u

@z
@v

@x

@v

@y

@v

@z
@w

@x

@w

@y

@w

@z

������������

������������
(c) Yes (u2 � v� 2w ¼ 0)

4.51. f ¼ x2yz3 þ 20 4.70. (a) 4, (b) �15, (c) 1, (d) 6

4.52. v ¼ xy2 � x2yz3 þ 3yþ (3=2)z4 þ constant 4.71. 4xz� 2xyzþ 6y2z

4.58. (2iþ 4j� k)=+
ffiffiffiffiffi
21

p
4.72. 6zþ 24xy� 2z3 � 6y2z

4.59. (2iþ j� 2k)=3 4.73. 1=r2

4.60. 2x� y� 3zþ 1 4.75. �6iþ 24j� 32k

4.61. 4x� 2y� z ¼ 5,
x� 2

4
¼ yþ 1

�2
¼ z� 5

�1

or x ¼ 4t þ 2, y ¼ �2t � 1, z ¼ �t þ 5

4.78. (6yz2 � 12x)iþ 6xz2jþ 12xyzk

4.62. 376/7

4.79. 6r3

4.63. �20=9

4.80. 3r�4

4.81. 2r�4 4.82. �2r�3r

4.83. f (r) ¼ Aþ B=r where A and B are arbitrary constants.

4.86. f (r) ¼ C=r3 where C is an arbitrary constant.

4.89. (a) iþ j, (b) 5i� 3j� 4k, (c) 5iþ 3k, (d) �2iþ jþ 8k, (e) 0

4.90. (a) (2y2zþ 3x2z� 12xyz)iþ (4xyz� 6x2z)jþ (2xy2 þ x3 � 6x2y)k

(b) 0

(c) (x2z� 24xyz)i� (12x2zþ 2xyz)jþ (2xy2 þ 12yz2 þ x3)k

4.91. 0 4.92. a ¼ 4

4.95. (a) 4x3zþ yz4 � 3xy2

(b) 4x3zþ yz4 � 3xy2 (same as (a))

(c) 2y2z3iþ (3xy2 � yz4)jþ 2x2zk

ðdÞ the operator (x2y2zi� x2yz2jþ 2x3zk)
@

@x
þ ( y3z3i� y2z4jþ 2xyz3k)

@

@y
þ (�3xy3iþ 3xy2z j� 6x2yk)

@

@z

(e) (2xy2zþ y2z3)i� (2xyz2 þ yz4)jþ (4x2zþ 2xz3)k
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4.96. (a) �5x2yz2iþ xy2z2jþ 4xyz3k

(b) �5x2yz2iþ xy2z2jþ 4xyz3k (same as (a))

(c) 16z3iþ (8x2yz� 12xz2)jþ 32xz2k (d) 24x2zþ 4xyz2

4.97. A� (rrrrr � B) ¼ 18i� 12jþ 16k, (A�rrrrr)� B ¼ 4jþ 76k

4.102. f ¼ 3x2 þ xz3 � yzþ constant 4.103. f ¼ ln(a=r)

4.106. (a) No, (b) V ¼ 3xjþ (2y� x)kþrrrrrf, where f is an arbitrary twice differentiable function.

4.108. (a) r�(F�r) ¼ (r�F)�r ¼ x2 þ y2 þ z2, (b) No, (c) Sphere of radius one with center at the origin.

4.109. (a) �4ii� ijþ 3ik� jj� 4jiþ 3kk

(b) Yes, if the operations are suitably performed.

4.112. x ¼ l11x
0 þ l21y

0 þ l31z
0, y ¼ l12x

0 þ l22y
0 þ l32z

0, z ¼ l13x
0 þ l23y

0 þ l33z
0

4.116. (a) ¼ ðbÞ 4x3yz5 � 4x2y2z5 þ 6x3y3z3

(c) (2x3z2 � 2x3yz)iþ (�4y2z3 þ 4xy3z)jþ (x2y2zþ 2xy2z2 � x3y3)k

(d) ¼ ðeÞ (�12x2y3z4 � 2x3y2z4)iþ (�6x4yz4 þ 4x2y3z4)jþ (2x4z5 þ 8xy3z5)k
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CHAP T E R 5

Vector Integration

5.1 Introduction

The reader is familiar with the integration of real-valued functions f(x) of one variable. Specifically, we
have the indefinite integral or anti-derivative, denoted byð

f (x) dx

and the definite integral on a closed interval, say [a, b], denoted by

ðb
a

f (x) dx

Here we extend these definitions to vector value functions of a single variable.

5.2 Ordinary Integrals of Vector Valued Functions

Let R(u) ¼ R1(u)iþ R2(u)jþ R3(u)k be a vector depending on a single scalar variable u, where
R1(u), R2(u), R3(u) are assumed to be continuous in a specific interval. Thenð

R(u) du ¼ i

ð
R1(u) duþ j

ð
R2(u) duþ k

ð
R3(u) du

is called an indefinite integral of R(u). If there exists a vector S(u) such that

R(u) ¼ d

du
(S(u)),

then ð
R(u) du ¼

ð
d

du
(S(u)) du ¼ S(u)þ c

where c is an arbitrary constant vector independent of u. The definite integral between limits u ¼ a and
u ¼ b can in such case be written

ðb
a

R(u) du ¼
ðb
a

d

du
(S(u)) du ¼ S(u)þ c

����
b

a

¼ S(b)� S(a)
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This integral can also be defined as a limit of a sum in a manner analogous to that of elementary integral
calculus.

EXAMPLE 5.1 Suppose R(u) ¼ u2iþ 2u3j� 5k. Find: (a)
Ð
R(u) du, (b)

Ð 2
1
R(u) du:

(a)

ð
R(u) du ¼

ð
[u2iþ 2u3j� 5k] du ¼ i

ð
u2 duþ j

ð
2u3 duþ k

ð
�5 du

¼ u3

3
þ c1

� �
iþ u4

2
þ c2

� �
jþ (�5uþ c3)k

¼ u3

3
iþ u4

2
j� 5ukþ c

where c is the constant vector c1iþ c2 jþ c3k.

(b) From (a):

ð2
1

R(u) du ¼ u3

3
iþ u4

2
j� 5ukþ c

����
2

1

¼ [(8=3)iþ 4j� 10k]� [�(1=3)iþ (1=2)j� 5k]

¼ (7=3)iþ (7=2)j� 5k

5.3 Line Integrals

Suppose r(u) ¼ x(u)iþ y(u)jþ z(u)k is the position vector of points P(x, y, z) and suppose r(u) defines a
curve C joining points P1 and P2 where u ¼ u1 and u ¼ u2, respectively.

We assume that C is composed of a finite number of curves for each of which r(u) has a continuous
derivative. Let A(x, y, z) ¼ A1iþ A2jþ A3k be a vector function of position defined and continuous
along C. Then the integral of the tangential component of A along C from P1 to P2, written as

ðP2

P1

A� dr ¼ ð
C

A� dr ¼ ð
C

A1 dxþ A2 dyþ A3 dz

is an example of a line integral. If A is the force F on a particle moving along C, this line integral represents
the work done by the force. If C is a closed curve (which we shall suppose is a simple closed curve, that is, a
curve that does not intersect itself anywhere), the integral around C is often denoted by

þ
A� dr ¼ þ

A1 dxþ A2 dyþ A3 dz

In aerodynamics and fluid mechanics, this integral is called the circulation ofA about C, whereA represents
the velocity of a fluid.

In general, any integral that is to be evaluated along a curve is called a line integral. Such integrals can be
defined in terms of limits of sums as are the integrals of elementary calculus.

EXAMPLE 5.2 Suppose F ¼ �3x2iþ 5xyj and let C be the curve y ¼ 2x2 in the xy-plane. Evaluate the line

integral
Ð
C
F� dr from P1(0, 0) to P2(1, 2).

Since the integration is performed in the xy-plane (z ¼ 0), we may take r ¼ xiþ yj. Then:

ð
C

F � dr ¼ ð
C

(�3x2iþ 5xyj)� (dxiþ dyj) ¼
ð
C

(�3x2 dxþ 5xy dy):

98 CHAPTER 5 Vector Integration



First Method. Let x ¼ t in y ¼ 2x2. Then the parametric equations of C are x ¼ t, y ¼ 2t2. Points (0, 0) and (1, 2)

correspond to t ¼ 0 and t ¼ 1, respectively. Then:

ð
C

F � dr ¼
ð1
t¼0

[�3t2 dt þ 5t(2t2) d(2t2)] ¼
ð1
t¼0

(�3t2 þ 40t4) dt ¼ �t3 þ 8t5
� 
1

0
¼ 7:

Second Method. Substitute y ¼ 2x2 directly where x goes from 0 to 1. Then:

ð
C

F� dr ¼
ð1

x¼0

[�3x2 dxþ 5x(2x2) d(2x2)] ¼
ð1

x¼0

(�3x2 þ 40x4) dx ¼ �x3 þ 8x5
� 
1

0
¼ 7:

Conservative Fields

The following theorem applies.

THEOREM 5.1. Suppose A ¼ rrrrrf everywhere in a region R of space, where R is defined by a1 � x � a2,
b1 � y � b2, c1 � z � c2, and where f(x, y, z) is single-valued and has continuous
derivatives in R. Then:

(i)
Ð P2

P1
A� dr is independent of the path C in R joining P1 and P2.

(ii)
Þ
C
A� dr ¼ 0 around any closed curve C in R.

In such a case, A is called a conservative vector field and f is its scalar potential.

5.4 Surface Integrals

Let S be a two-sided surface, such as shown in Fig. 5-1. Let one side of S be considered arbitrarily as the
positive side. (If S is a closed surface, such as a sphere, then the outer side is considered the positive side.) A
unit normal n to any point of the positive side of S is called a positive or outward drawn unit normal.

S

O

x

z

y

dS

n

Fig. 5-1

Associate with the differential of surface area dS a vector dS whose magnitude is dS and whose direction
is that of n. Then dS ¼ n dS. The integralðð

S

A � dS ¼
ðð
S

A � n dS

CHAPTER 5 Vector Integration 99



is an example of a surface integral called the flux of A over S. Other surface integrals areðð
S

f dS,

ðð
S

fn dS,

ðð
S

A� dS

where f is a scalar function. Such integrals can be defined in terms of limits of sums as in elementary cal-
culus (see Problem 5.17).

The notationtS is sometimes used to indicate integration over the closed surface S. Where no confusion
can arise the notation

Þ
S
may also be used.

To evaluate surface integrals, it is convenient to express them as double integrals taken over the pro-
jected area of the surface S on one of the coordinate planes. This is possible if any line perpendicular to
the coordinate plane chosen meets the surface in no more than one point. However, this does not pose
any real problem since we can generally subdivide S into surfaces that do satisfy this restriction.

5.5 Volume Integrals

Consider a closed surface in space enclosing a volume V. Then the following denote volume integrals or
space integrals as they are sometimes called:

ððð
V

A dV and

ððð
V

f dV

The Solved Problems evaluate some such integrals.

SOLVED PROBLEMS

5.1. Suppose R(u) ¼ 3iþ (u3 þ 4u7)jþ uk. Find: (a)
Ð
R(u) du, (b)

Ð 2
1
R(u) du.

Solution

(a)

ð
R(u) du ¼

ð
3iþ (u3 þ 4u7)jþ uk
� 


du

¼ i

ð
3 duþ j

ð
(u3 þ 4u7) duþ k

ð
u du

¼ (3uþ c1)iþ 1

4
u4 þ 1

2
u8c2

� �
jþ 1

2
u2 þ c3

� �
k

¼ (3u)iþ 1

4
u4 þ 1

2
u8

� �
jþ 1

2
u2

� �
kþ c

where c is the constant vector c1iþ c2jþ c3k:

(b) From (a),

ð2
1

R(u) du ¼ (3u)iþ 1

4
u4 þ 1

2
u8

� �
jþ 1

2
u2

� �
kþ c


 �2
1

¼ 3iþ 525

4
jþ 3

2
k:

100 CHAPTER 5 Vector Integration



Another Method

ð2
1

R(u) du ¼ i

ð2
1

3 duþ j

ð2
1

(u3 þ 4u7) duþ k

ð2
1

u du

¼ 3u½ �21iþ
1

4
u4 þ 1

2
u8


 �2
1

þ 1

2
u2


 �2
1

k ¼ 3iþ 525

4
jþ 3

2
k:

5.2. The acceleration of a particle at any time t � 0 is given by

a ¼ dr

dt
¼ 25 cos 2tð Þiþ 16 sin 2tð Þjþ 9tð Þk:

Solution

Suppose the velocity v and the displacement r are the zero vector at t ¼ 0. Find v and r at any time.

Integrating:

v ¼ i

ð
25 cos 2tð Þ dt þ j

ð
(16 sin 2t) dt þ k

ð
(9t) dt

¼ 25

2
sin 2t

� �
iþ (�8 cos 2t)jþ 9

2
t2

� �
kþ c1:

Putting v ¼ 0 when t ¼ 0, we find 0 ¼ 0i� 8jþ 0kþ c1 and c1 ¼ 8j. Then

v ¼ dr

dt
¼ 25

2
sin 2t

� �
iþ (8� 8 cos 2t)jþ 9

2
t2

� �
k:

Integrating,

r ¼ i

ð
25

2
sin 2t

� �
dt þ j

ð
(8� 8 cos 2t) dt þ k

ð
9

2
t2

� �
dt

¼ � 25

4
cos 2t

� �
iþ (8t þ 4 sin 2t)jþ 3

2
t3

� �
jþ c2:

Putting r ¼ 0 when t ¼ 0, we get

0 ¼ � 25

4
iþ c2 and c2 ¼ 25

4
i:

Then

r ¼ 25

4
� 25

4
cos 2t

� �
iþ (8þ 4 sin 2t)jþ 3

2
t3

� �
k:

5.3. Evaluate

ð
A� d2A

dt2
dt.

Solution

d

dt
A� dA

dt

� �
¼ A� d2A

dt2
þ dA

dt
� dA

dt
¼ A� d2A

dt2

Integrating, ð
A� d2A

dt2
dt ¼

ð
d

dt
A� dA

dt

� �
dt ¼ A� dA

dt
þ c:
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5.4. The equation of motion of a particle P of mass m is given by

m
d2r

dt2
¼ f (r)r1

where r is the position vector of P measured from an origin O, r1 is a unit vector in the direction r,
and f(r) is a function of the distance of P from O.

(a) Show that r� (dr=dt) ¼ c where c is a constant vector.

(b) Interpret physically the cases f (r) , 0 and f (r) . 0.

(c) Interpret the result in (a) geometrically.

(d) Describe how the results obtained relate to the motion of the planets in our solar system.

Solution

(a) Multiply both sides of m(d2r=dt2) ¼ f (r)r1 by r�. Then

mr� d2r

dt2
¼ f (r)r� r1 ¼ 0

since r and r1 are collinear and so r� r1 ¼ 0. Thus

r� d2r

dt2
¼ 0 and

d

dt
r� dr

dt

� �
¼ 0

Integrating, r� dr

dt
¼ c, where c is a constant vector. (Compare with Problem 5.3.)

(b) If f (r) , 0, the acceleration d2r=dt2 has a direction opposite to r1; hence, the force is directed toward O and

the particle is always attracted toward O.

If f (r) . 0, the force is directed away from O and the particle is under the influence of a repulsive

force at O.

A force directed toward or away from a fixed point O and having magnitude depending only on the dis-

tance r from O is called a central force.

(c) In time Dt, the particle moves from M to N (see Fig. 5-2). The area swept out by the position vector in

this time is approximately half the area of a parallelogram with sides r and Dr, or 1
2
r� Dr. Then the

approximate area swept out by the radius vector per unit time is 1
2
r� Dr=Dt; hence, the instantaneous

time rate of change in area is

lim
Dt!0

1
2
r� Dr

Dt
¼ 1

2
r� dr

dt
¼ 1

2
r� v

where v is the instantaneous velocity of the particle. The quantity H ¼ 1
2
r� (dr=dt) ¼ 1

2
r� v is called the

areal velocity. From part (a),

areal velocity ¼ H ¼ 1
2
r� dr

dt
¼ constant

Since r �H ¼ 0, the motion takes place in a plane, which we take as the xy-plane in Fig. 5-2.

(d) A planet (such as Earth) is attracted toward the Sun according to Newton’s universal law of gravitation,

which states that any two objects of mass m and M, respectively, are attracted toward each other with a

force of magnitude F ¼ GMm=r2, where r is the distance between objects and G is a universal constant.
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Let m andM be the masses of the planet and sun, respectively, and choose a set of coordinate axes with the

origin O at the Sun. Then, the equation of motion of the planet is

m
d2r

dt2
¼ �GMm

r2
r1 or

d2r

dt2
¼ �GM

r2
r1

assuming the influence of the other planets to be negligible.

According to part (c), a planet moves around the Sun so that its position vector sweeps out equal areas in

equal times. This result and that of Problem 5.5 are two of Kepler’s three famous laws that he deduced

empirically from volumes of data compiled by the astronomer Tycho Brahe. These laws enabled

Newton to formulate his universal law of gravitation. For Kepler’s third law, see Problem 5.36.

H = areal velocity

M

N

O

r

y

x

z

= = constantr ×1–
2

dr
dt

Δr

Sun

Planet

y

x

a
r

O

θ

Ellipse r = a
1 +    cos θ

Fig. 5-2 Fig. 5-3

5.5. Show that the path of a planet around the Sun is an ellipse with the Sun at one focus.

Solution

From Problems 5.4(c) and 5.4(d),

dv

dt
¼ �GM

r2
r1 (1)

r� v ¼ 2H ¼ h (2)

Now r ¼ rr1, dr=dt ¼ r(dr1=dt)þ (dr=dt)r1 so that

h ¼ r� v ¼ rr1 � r
dr1

dt
þ dr

dt
r1

� �
¼ r2r1 � dr1

dt
(3)

From (1),

dv

dt
� h ¼ �GM

r2
r1 � h ¼ �GMr1 � r1 � dr1

dt

� �

¼ �GM r1� dr1
dt

� �
r1 � (r1� r1) dr1

dt


 �
¼ GM

dr1

dt

using equation (3) and the fact that r1� (dr1=dt) ¼ 0 (Problem 3.9). But since h is a constant vector,

dv

dt
� h ¼ d

dt
(v� h)

so that

d

dt
(v� h) ¼ GM

dr1

dt

Integrating,

v� h ¼ GMr1 þ p
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from which

r � (v� h) ¼ GMr � r1 þ r � p
¼ GMr þ rr1� p ¼ GMr þ rp cos u

where p is an arbitrary constant vector with magnitude p, and u is the angle between p and r1.
Since r � (v� h) ¼ (r� v)� h ¼ h � h ¼ h2, we have h2 ¼ GMr þ rp cos u and

r ¼ h2

GM þ p cos u
¼ h2=GM

1þ (p=GM) cos u

From analytic geometry, the polar equation of a conic section with focus at the origin and eccentricity e is r ¼
a=(1þ e cos u) where a is a constant. See Fig. 5-3. Comparing this with the equation derived, it is seen that the

required orbit is a conic section with eccentricity e ¼ p=GM. The orbit is an ellipse, parabola, or hyperbola

according as e is less than, equal to, or greater than one. Since orbits of planets are closed curves, it follows

that they must be ellipses.

Line Integrals

5.6. Suppose A ¼ (3x2 þ 6y)i� 14yzjþ 20xz2k. Evaluate
Ð
C
A � dr from (0, 0, 0) to (1, 1, 1) along the

following paths C:

(a) x ¼ t, y ¼ t2, z ¼ t3.

(b) the straight lines from (0, 0, 0) to (1, 0, 0), then to (1, 1, 0), and then to (1, 1, 1).

(c) the straight line joining (0, 0, 0) and (1, 1, 1).

Solution ð
C

A � dr ¼ ð
C

(3x2 þ 6y)i� 14yzjþ 20xz2k
� 
 � (dxiþ dyjþ dzk)

¼
ð
C

(3x2 þ 6y) dx� 14yz dyþ 20xz2 dz

(a) If x ¼ t, y ¼ t2, z ¼ t3, points (0, 0, 0) and (1, 1, 1) correspond to t ¼ 0 and t ¼ 1, respectively. Then

ð
C

A � dr ¼ ð1
t¼0

(3t2 þ 6t2) dt � 14(t2)(t3) d(t2)þ 20(t)(t3)2 d(t3)

¼
ð1
t¼0

9t2 dt � 28t6 dt þ 60t9 dt

¼
ð1
t¼0

(9t2 � 28t6 þ 60t9) dt ¼ 3t3 � 4t7 þ 6t10
���1
0
¼ 5

Another Method

Along C, A ¼ 9t2i� 14t5jþ 20t7k and r ¼ xiþ yjþ zk ¼ tiþ t2jþ t3k and dr ¼ (iþ 2tjþ 3t2k) dt.
Then ð

C

A � dr ¼ ð1
t¼0

(9t2i� 14t5jþ 20t7k)� (iþ 2tjþ 3t2k) dt

¼
ð1
0

(9t2 � 28t6 þ 60t9) dt ¼ 5
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(b) Along the straight line from (0, 0, 0) to (1, 0, 0), y ¼ 0, z ¼ 0, dy ¼ 0, dz ¼ 0 while x varies from

0 to 1. Then the integral over this part of the path is

ð1
x¼0

(3x2 þ 6(0)) dx� 14(0)(0)(0)þ 20x(0)2(0) ¼
ð1

x¼0

3x2 dx ¼ x3
���1
0
¼ 1

Along the straight line from (1, 0, 0) to (1, 1, 0), x ¼ 1, z ¼ 0, dx ¼ 0, dz ¼ 0 while y varies from

0 to 1. Then the integral over this part of the path is

ð1
y¼0

(3(1)2 þ 6y)0� 14y(0) dyþ 20(1)(0)20 ¼ 0

Along the straight line from (1, 1, 0) to (1, 1, 1), x ¼ 1, y ¼ 1, dx ¼ 0, dy ¼ 0 while z varies from

0 to 1. Then the integral over this part of the path is

ð1
z¼0

(3(1)2 þ 6(1))0� 14(1)z(0)þ 20(1)z2 dz ¼
ð1
z¼0

20z2 dz ¼ 20z3

3

���1
0
¼ 20

3

Adding, ð
C

A � dr ¼ 1þ 0þ 20

3
¼ 23

3

(c) The straight line joining (0, 0, 0) and (1, 1, 1) is given in parametric form by x ¼ t, y ¼ t, z ¼ t. Then

ð
C

A � dr ¼ ð1
t¼0

(3t2 þ 6t) dt � 14(t)(t) dt þ 20(t)(t)2 dt

¼
ð1
t¼0

(3t2 þ 6t � 14t2 þ 20t3) dt ¼
ð1
t¼0

(6t � 11t2 þ 20t3) dt ¼ 13

3

5.7. Find the total work done in moving a particle in the force field given by F ¼ ziþ zjþ xk along the
helix C given by x ¼ cos t, y ¼ sin t, z ¼ t from t ¼ 0 to t ¼ p=2.

Solution

Total work ¼
ð
C

F� dr ¼ ð
C

(ziþ zjþ xk)� (dxiþ dyjþ dzk) ¼
ð
C

(z dxþ z dyþ x dz)

¼
ðp=2
0

(t d(cos t)þ t d(sin t)þ cos t dt) ¼
ðp=2
0

(�t sin t) dt þ
ðp=2
0

(t þ 1) cos t dt

:

Evaluating
Ð p=2
0

(�t sin t) dt by parts we get

[t cos t]
p=2
0 �

ðp=2
0

cos t dt ¼ 0� [sin t]
p=2
0 ¼ �1:

Evaluating
Ð p=2
0

(t þ 1) cos t dt by parts we get

[(t þ 1) sin t]
p=2
0 �

ðp=2
0

sin t dt ¼ p

2
þ 1þ cos t½ �p=20 ¼ p

2
:

Thus the total work is (p=2)� 1.
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5.8. Suppose F ¼ �3x2iþ 5xyj. Evaluate
Ð
C
F � dr where C is the curve in the xy-plane, y ¼ 2x2, from

(0, 0) to (1, 2).

Solution

Since the integration is performed in the xy-plane (z ¼ 0), we may take r ¼ xiþ yj. Then:

ð
C

F � dr ¼ ð
C

(�3x2iþ 5xyj) � (dxiþ dyj) ¼
ð
C

(�3x2 dxþ 5xy dy):

First Method. Let x ¼ t in y ¼ 2x2. Then the parametric equations of C are x ¼ t, y ¼ 2t2. Points (0, 0) and (1, 2)

correspond to t ¼ 0 and t ¼ 1, respectively. Then:

ð
C

F � dr ¼ ð1
t¼0

[�3t2 dt þ 5t(2t2) d(2t2)] ¼
ð1
t¼0

(�3t2 þ 40t4) dt ¼ �t3 þ 8t5
� 
1

0
¼ 7:

Second Method. Substitute y ¼ 2x2 directly where x goes from 0 to 1. Then:

ð
C

F � dr ¼ ð1
x¼0

[�3x2 dxþ 5x(2x2) d(2x2)] ¼
ð1

x¼0

(�3x2 þ 40x4) dx ¼ �x3 þ 8x5
� 
1

0
¼ 7:

5.9. Suppose a force field is given by

F ¼ (2x� yþ z)iþ (xþ y� z2)jþ (3x� 2yþ 4z)k

Find the work done in moving a particle once around a circle C in the xy-plane with its center at the
origin and a radius of 3.

Solution

In the plane z ¼ 0,F ¼ (2x� y)iþ (xþ y)jþ (3x� 2y)k and dr ¼ dxiþ dyj so that the work done isð
C

F� dr ¼ ð
C

[(2x� y)iþ (xþ y)jþ (3x� 2y)k]� (dxiþ dyj)

¼
ð
C

(2x� y) dxþ (xþ y) dy

O
x

y

r

r = xi + yj
= 3 cos ti + 3 sin tj

t

Fig. 5-4
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Choose the parametric equations of the circle as x ¼ 3 cos t, y ¼ 3 sin t where t varies from 0 to 2p (as in

Fig. 5-4). Then the line integral equals

ð2p
t¼0

[2(3 cos t)� 3 sin t](�3 sin t) dt þ (3 cos t þ 3 sin t)(3 cos t) dt

¼
ð2p
0

(9� 9 sin t cos t) dt ¼ 9t � 9

2
sin2 t

���2p
0

¼ 18p

In traversing C, we have chosen the counterclockwise direction indicated in the adjoining figure. We call this the

positive direction, or say that C has been traversed in the positive sense. If C were traversed in the clockwise

(negative) direction the value of the integral would be �18p.

5.10. (a) Suppose F ¼ rrrrrf, where f is single-valued and has continuous partial derivatives. Show that
the work done in moving a particle from one point P1 ; (x1, y1, z1) in this field to another point
P2 ; (x2, y2, z2) is independent of the path joining the two points.

(b) Conversely, suppose
Ð
C
F� dr is independent of the path C joining any two points. Show that

there exists a function f such that F ¼ rrrrrf.
Solution

(a)

Work done ¼
ðP2

P1

F � dr ¼ ðP2

P1

rrrrrf � dr

¼
ðP2

P1

@f

@x
iþ @f

@y
jþ @f

@z
k

� �� dxiþ dyjþ dzkð Þ

¼
ðP2

P1

@f

@x
dxþ @f

@y
dyþ @f

@z
dz

¼
ðP2

P1

df ¼ f(P2)� f(P1) ¼ f(x2, y2, z2)� f(x1, y1, z1)

Then the integral depends only on points P1 and P2 and not on the path joining them. This is true of course

only if f(x, y, z) is single-valued at all points P1 and P2.

(b) Let F ¼ F1iþ F2jþ F3k. By hypothesis,
Ð
C
F � dr is independent of the path C joining any two points,

which we take as (x1, y1, z1) and (x, y, z), respectively. Then

f(x, y, z) ¼
ð(x, y, z)

(x1, y1, z1)

F � dr ¼ ð(x, y, z)

(x1, y1, z1)

F1 dxþ F2 dyþ F3 dz
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is independent of the path joining (x1, y1, z1) and (x, y, z). Thus

f(xþ Dx, y, z)� f(x, y, z) ¼
ð(xþDx, y, z)

(x1, y1, z1)

F� dr� ð(x, y, z)

(x1, y1, z1)

F� dr

¼
ð(x1, y1, z1)

(x, y, z)

F� drþ ð(xþDx, y, z)

(x1, y1, z1)

F� dr

¼
ð(xþDx, y, z)

(x, y, z)

F� dr ¼ ð(xþDx, y, z)

(x, y, z)

F1 dxþ F2 dyþ F3 dz

Since the last integral must be independent of the path joining (x, y, z) and (xþ Dx, y, z), we may choose the

path to be a straight line joining these points so that dy and dz are zero. Then

f(xþ Dx, y, z)� f(x, y, z)

Dx
¼ 1

Dx

ð(xþDx, y, z)

(x, y, z)

F1 dx

Taking the limit of both sides as Dx ! 0, we have @f=@x ¼ F1. Similarly, we can show that @f=@y ¼ F2

and @f=@z ¼ F3. Then

F ¼ F1iþ F2 jþ F3k ¼ @f

@x
iþ @f

@y
jþ @f

@z
k ¼ rrrrrf:

If
Ð P2

P1
F � dr is independent of the path C joining P1 and P2, then F is called a conservative field. It follows

that if F ¼ rrrrrf then F is conservative, and conversely.

Proof using vectors. If the line integral is independent of the path, then

f(x, y, z) ¼
ð(x, y, z)

(x1, y1, z1)

F� dr ¼ ð(x, y, z)

(x1, y1, z1)

F� dr
ds

ds

By differentiation, df=ds ¼ F� (dr=ds). But df=ds ¼ rrrrrf � (dr=ds) so that (rrrrrf� F) � (dr=ds) ¼ 0.

Since this must hold irrespective of dr=ds, we have F ¼ rrrrrf.

5.11. (a) Suppose F is a conservative field. Prove that curl F ¼ rrrrr � F ¼ 0 (i.e. F is irrotational).

(b) Conversely, if rrrrr � F ¼ 0 (i.e. F is irrotational), prove that F is conservative.

Solution

(a) If F is a conservative field, then by Problem 5.10, F ¼ rrrrrf.
Thus curl F ¼ rrrrr � rrrrrf ¼ 0 (see Problem 4.27(a), Chapter 4).
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(b) If rrrrr � F ¼ 0, then

i j k
@

@x

@

@y

@

@z
F1 F2 F3

��������

�������� ¼ 0 and thus

@F3

@y
¼ @F2

@z
,

@F1

@z
¼ @F3

@x
,

@F2

@x
¼ @F1

@y

We must prove that F ¼ rrrrrf follows as a consequence of this.

The work done in moving a particle from (x1, y1, z1) to (x, y, z) in the force field F isð
C

F1(x, y, z) dxþ F2(x, y, z) dyþ F3(x, y, z) dz

where C is a path joining (x1, y1, z1) and (x, y, z). Let us choose as a particular path the straight line segments

from (x1, y1, z1) to (x, y1, z1) to (x, y, z1) to (x, y, z) and call f(x, y, z) the work done along this particular path.

Then

f(x, y, z) ¼
ðx
x1

F1(x, y1, z1) dxþ
ðy
y1

F2(x, y, z1) dyþ
ðz
z1

F3(x, y, z) dz

It follows that

@f

@z
¼ F3(x, y, z)

@f

@y
¼ F2(x, y, z1)þ

ðz
z1

@F3

@y
(x, y, z) dz

¼ F2(x, y, z1)þ
ðz
z1

@F2

@z
(x, y, z) dz

¼ F2(x, y, z1)þ F2(x, y, z)

����
z

z1

¼ F2(x, y, z1)þ F2(x, y, z)� F2(x, y, z1) ¼ F2(x, y, z)

@f

@x
¼ F1(x, y1, z1)þ

ðy
y1

@F2

@x
(x, y, z1) dyþ

ðz
z1

@F3

@x
(x, y, z) dz

¼ F1(x, y1, z1)þ
ðy
y1

@F1

@y
(x, y, z1) dyþ

ðz
z1

@F1

@z
(x, y, z) dz

¼ F1(x, y1, z1)þ F1(x, y, z1)

����
y

y1

þ F1(x, y, z)

����
z

z1

¼ F1(x, y1, z1)þ F1(x, y, z1)� F1(x, y1, z1)þ F1(x, y, z)� F1(x, y, z1) ¼ F1(x, y, z)

Then

F ¼ F1iþ F2jþ F3k ¼ @f

@x
iþ @f

@y
jþ @f

@z
k ¼ rrrrrf:

Thus a necessary and sufficient condition that a field F be conservative is that curl F ¼ rrrrr � F ¼ 0.
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5.12. (a) Show thatF ¼ (2xyþ z3)iþ x2jþ 3xz2k is a conservative force field. (b) Find the scalar potential.
(c) Find the work done in moving an object in this field from (1, �2, 1) to (3, 1, 4).

Solution

(a) From Problem 5.11, a necessary and sufficient condition that a force will be conservative is that curl

F ¼ rrrrr � F ¼ 0. Now

rrrrr � F ¼
i j k
@

@x

@

@y

@

@z

2xyþ z3 x2 3xz2

��������

�������� ¼ 0:

Thus F is a conservative force field.

(b) First Method. By Problem 5.10,

F ¼ rrrrrf or
@f

@x
iþ @f

@y
jþ @f

@z
k ¼ (2xyþ z3)iþ x2jþ 3xz2k:

Then

@f

@x
¼ 2xyþ z3 (1)

@f

@y
¼ x2 (2)

@f

@z
¼ 3xz2 (3)

Integrating, we find from (1), (2), and (3), respectively, that

f ¼ x2y þ xz3 þ f (y, z)

f ¼ x2y þ g(x, z)

f ¼ xz3 þ h(x, y)

These agree if we choose f (y, z) ¼ 0, g(x, z) ¼ xz3, h(x, y) ¼ x2y so that f ¼ x2yþ xz3 to which may be

added any constant.

Second Method. Since F is conservative,
Ð
C
F � dr is independent of the path C joining (x1, y1, z1) and

(x, y, z). Using the method of Problem 5.11(b),

f(x, y, z) ¼
ðx
x1

2xy1 þ z31
� 	

dxþ
ðy
y1

x2 dyþ
ðz
z1

3xz2 dz

¼ x2y1 þ xz31
� 	����

x

x1

þ x2y

����
y

y1

þ xz3
����
z

z1

¼ x2y1 þ xz31 � x21y1 � x1z
3
1 þ x2y� x2y1 þ xz3 � xz31

¼ x2yþ xz3 � x21y1 � x1z
3
1 ¼ x2yþ xz3 þ constant

Third Method.

F � dr ¼ rrrrrf � dr ¼ @f

@x
dxþ @f

@y
dyþ @f

@z
dz ¼ df:
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Then

df ¼ F � dr ¼ (2xyþ z3) dxþ x2 dyþ 3xz2 dz

¼ (2xy dxþ x2 dy)þ (z3 dxþ 3xz2 dz)

¼ d(x2y)þ d(xz3) ¼ d(x2yþ xz3)

and f ¼ x2yþ xz3 þ constant.

(c) Work done ¼
ðP2

P1

F� dr
¼
ðP2

P1

(2xyþ z3) dxþ x2 dyþ 3xz2 dz

¼
ðP2

P1

d(x2yþ xz3) ¼ x2yþ xz3
����
P2

P1

¼ x2yþ xz3
����
(3, 1, 4)

(1,�2, 1)

¼ 202

Another Method. From part (b), f(x, y, z) ¼ x2yþ xz3 þ constant.

Then work done ¼ f(3, 1, 4)� f(1, � 2, 1) ¼ 202.

5.13. Prove that if
Ð P2

P1
F� dr is independent of the path joining any two points P1 and P2 in a given region,

then
Þ
F� dr ¼ 0 for all closed paths in the region and conversely.

Solution

A

B

P2

P1

Fig. 5-5

Let P1AP2BP1 (see Fig. 5-5) be a closed curve. Thenþ
F� dr ¼ ð

P1AP2BP1

F� dr ¼ ð
P1AP2

F� drþ ð
P2BP1

F� dr
¼

ð
P1AP2

F� dr� ð
P1BP2

F� dr ¼ 0

since the integral from P1 to P2 along a path through A is the same as that along a path through B, by hypothesis.

Conversely, if
Þ
F� dr ¼ 0, thenð

P1AP2BP1

F� dr ¼ ð
P1AP2

F� drþ ð
P2BP1

F� dr ¼ ð
P1AP2

F� dr� ð
P1BP2

F� dr ¼ 0

so that, ð
P1AP2

F� dr ¼ ð
P1BP2

F� dr:
5.14. (a) Show that a necessary and sufficient condition that F1 dxþ F2 dyþ F3 dz be an exact differential

is that rrrrr � F ¼ 0 where F ¼ F1iþ F2jþ F3k.

(b) Show that (y2z3 cos x� 4x3z) dxþ 2z3y sin x dyþ (3y2z2 sin x� x4) dz is an exact differential of a
function f and find f.
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Solution

(a) Suppose

F1 dxþ F2 dyþ F3 dz ¼ df ¼ @f

@x
dxþ @f

@y
dyþ @f

@z
dz,

an exact differential. Then, since x, y, and z are independent variables,

F1 ¼ @f

@x
, F2 ¼ @f

@y
, F3 ¼ @f

@z

and so F ¼ F1iþ F2jþ F3k ¼ (@f=@x)iþ (@f=@y)jþ (@f=@z)k ¼ rrrrrf. Thus rrrrr � F ¼ rrrrr � rrrrrf ¼ 0.

Conversely, if rrrrr � F ¼ 0, then by Problem 5.11, F ¼ rrrrrf and so F� dr ¼ rrrrrf � dr ¼ df, that is,

F1 dxþ F2 dyþ F3 dz ¼ df, an exact differential.

(b) F ¼ (y2z3 cos x� 4x3z)iþ 2z3y sin xjþ (3y2z2 sin x� x4)k and rrrrr � F is computed to be zero, so that by

part (a)

(y2z3 cos x� 4x3z) dxþ 2z3y sin x dyþ (3y2z2 sin x� x4) dz ¼ df

By any of the methods of Problem 5.12, we find f ¼ y2z3 sin x� x4zþ constant.

5.15. Let F be a conservative force field such that F ¼ �rrrrrf. Suppose a particle of constant mass m to
move in this field. If A and B are any two points in space, prove that

f(A)þ 1
2
mv2A ¼ f(B)þ 1

2
mv2B

where vA and vB are the magnitudes of the velocities of the particle at A and B, respectively.

Solution

F ¼ ma ¼ m
d2r

dt2
:

Then

F � dr
dt

¼ m
dr

dt
� d2r
dt2

¼ m

2

d

dt

dr

dt

� �2

:

Integrating,

ðB
A

F � dr ¼ m

2
v2
���B
A
¼ 1

2
mv2B �

1

2
mv2A:

If F ¼ �rrrrrf,
ðB
A

F � dr ¼ �
ðB
A

rrrrrf � dr ¼ �
ðB
A

df ¼ f(A)� f(B):

Then f(A)� f(B) ¼ 1
2
mv2B � 1

2
mv2A and the result follows.

f(A) is called the potential energy at A and 1
2
mv2A is the kinetic energy at A. The result states that the total

energy at A equals the total energy at B (conservation of energy). Note the use of the minus sign in F ¼ �rrrrrf.
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5.16. Suppose f ¼ 2xyz2,F ¼ xyi� zjþ x2k and C is the curve x ¼ t2, y ¼ 2t, z ¼ t3 from t ¼ 0 to t ¼ 1.
Evaluate the line integrals (a)

Ð
C
f dr, (b)

Ð
C
F� dr.

Solution

(a) Along C, f ¼ 2xyz2 ¼ 2(t2)(2t)(t3)2 ¼ 4t9,

r ¼ xiþ yjþ zk ¼ t2iþ 2tjþ t3k, and

dr ¼ (2tiþ 2jþ 3t2k) dt:

Then ð
C

f dr ¼
ð1
t¼0

4t9(2tiþ 2jþ 3t2k) dt

¼ i

ð1
0

8t10 dt þ j

ð1
0

8t9 dt þ k

ð1
0

12t11 dt ¼ 8

11
iþ 4

5
jþ k

(b) Along C, we have F ¼ xyi� zjþ x2k ¼ 2t3i� t3jþ t4k. Then

F� dr ¼ (2t3i� t3jþ t4k)� (2tiþ 2jþ 3t2k) dt

¼
i j k

2t3 �t3 t4

2t 2 3t2

�������
������� dt ¼ (�3t5 � 2t4)iþ (2t5 � 6t5)jþ (4t3 þ 2t4)k

� 

dt

and

ð
C

F� dr ¼ i

ð1
0

(�3t5 � 2t4) dt þ j

ð1
0

(�4t5) dt þ k

ð1
0

(4t3 þ 2t4) dt

¼ � 9

10
i� 2

3
jþ 7

5
k

Surface Integrals

5.17. Give a definition of
ÐÐ

S
A� n dS over a surface S in terms of limit of a sum (see Fig. 5-6).

Solution

Subdivide the area S into M elements of area DSp where p ¼ 1, 2, 3, . . . ,M. Choose any point Pp within

DSp whose coordinates are (xp, yp, zp). Define A(xp, yp, zp) ¼ Ap. Let np be the positive unit normal to DSp at

P. From the sum

XM
p¼1

Ap� np DSp
where Ap� np is the normal component of Ap at Pp.
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Now take the limit of this sum as M ! 1 in such a way that the largest dimension of each DSp
approaches zero. This limit, if it exists, is called the surface integral of the normal component of A over S

and is denoted by ðð
S

A� n dS

5.18. Suppose that the surface S has projection R on the xy-plane (see Fig. 5-6). Show that

ðð
S

A� n dS ¼
ðð
R

A�n dx dy

jn� kj
Solution

By Problem 5.17, the surface integral is the limit of the sum

XM
p¼1

Ap� np DSp (1)

The projection of DSp on the xy-plane is j(np DSp)� kj or jnp� kjDSp, which is equal to DxpDyp so that

DSp ¼ DxpDyp
�jnp� kj. Thus sum (1) becomes

XM
p¼1

Ap� np Dxp Dypjnp� kj (2)

By the fundamental theorem of integral calculus, the limit of this sum as M ! 1 in such a manner that the

largest Dxp and Dyp approach zero is

ðð
R

A� n dx dy

jn� kj
and so the required result follows.

Strictly speaking, the result DSp ¼ DxpDyp=jnp� kj is only approximately true but it can be shown on closer

examination that they differ from each other by infinitesimals of order higher than DxpDyp, and using this the

limits of (1) and (2) can in fact be shown equal.

Ap

Δxp Δyp

S

O

R

x

y

z

npΔSp
Pp

x

z

y

Q
dx dy

dS
n

k

R

P
S

z = 0, 2x + 3y = 12

Fig. 5-6 Fig. 5-7
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5.19. Evaluate
ÐÐ

S
A� n dS, where A ¼ 18zi� 12jþ 3yk and S is that part of the plane 2xþ 3yþ 6z ¼ 12,

which is located in the first octant.

Solution

The surface S and its projection R on the xy-plane are shown in Fig. 5-7.

From Problem 5.18, ðð
S

A� n dS ¼
ðð
R

A� n dx dy

jn� kj
To obtain n, note that a vector perpendicular to the surface 2xþ 3yþ 6z ¼ 12 is given by rrrrr(2xþ 3yþ 6z) ¼
2iþ 3jþ 6k (see Problem 4.5 of Chapter 4). Then a unit normal to any point of S (see Fig. 5-7) is

n ¼ 2iþ 3jþ 6kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ 32 þ 62

p ¼ 2
7
iþ 3

7
jþ 6

7
k

Thus n � k ¼ 2
7
iþ 3

7
jþ 6

7
k

� 	� k ¼ 6
7
and so

dx dy

jn � kj ¼ 7

6
dx dy:

Also

A � n ¼ (18zi� 12jþ 3yk)� 2
7
iþ 3

7
jþ 6

7
k

� 	 ¼ 36z� 36þ 18y

7
¼ 36� 12x

7
,

using the fact that z ¼ (12� 2x� 3y)=6 from the equation of S. Then

ðð
S

A � n dS ¼
ðð
R

A � n dx dy

jn � kj ¼
ðð
R

36� 12x

7

� �
7

6
dx dy ¼

ðð
R

(6� 2x) dx dy

To evaluate this double integral over R, keep x fixed and integrate with respect to y from y ¼ 0 (P in the figure

above) to y ¼ (12� 2x)=3 (Q in the figure above); then integrate with respect to x from x ¼ 0 to x ¼ 6. In this

manner, R is completely covered. The integral becomes

ð6
x¼0

ð(12�2x)=3

y¼0

(6� 2x) dy dx ¼
ð6

x¼0

24� 12xþ 4x2

3

� �
dx ¼ 24

If we had chosen the positive unit normal n opposite to that in Fig. 5-7, we would have obtained the result �24.

5.20. Evaluate
ÐÐ

S
A� n dS, where A ¼ ziþ xj� 3y2zk and S is the surface of the cylinder x2 þ y2 ¼ 16

included in the first octant between z ¼ 0 and z ¼ 5.

Solution

Project S on the xz-plane as in Fig. 5-8 and call the projection R. Note that the projection of S on the xy-plane

cannot be used here. Then

ðð
S

A� n dS ¼
ðð
R

A� n dx dzjn� jj
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A normal to x2 þ y2 ¼ 16 is rrrrr(x2 þ y2) ¼ 2xiþ 2yj. Thus as shown in Fig. 5-8 the unit normal to S is

n ¼ 2xiþ 2yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2x)2 þ (2y)2

p ¼ xiþ yj

4

since x2 þ y2 ¼ 16 on S.

A� n ¼ (ziþ xj� 3y2zk) � xiþ yj

4

� �
¼ 1

4
(xzþ xy)

n� j ¼ xiþ yj

4
� j ¼ y

4
:

Then the surface integral equals

ðð
R

xzþ xy

y
dx dz ¼

ð5
z¼0

ð4
x¼0

xzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� x2

p þ x

� �
dx dz ¼

ð5
z¼0

(4zþ 8) dz ¼ 90

z = 0

y

x

5

4

dS

n

S

z

z = 5

dx dz

R

O

Fig. 5-8

5.21. Evaluate
ÐÐ

S
fn dS where f ¼ 3

8
xyz and S is the surface of Problem 5.20.

Solution

We have ðð
S

fn dS ¼
ðð
R

fn
dx dz

jn� jj
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Using n ¼ (xiþ yj)=4,n � j ¼ y=4 as in Problem 5.20, this last integral becomes

ðð
R

3

8
xz(xiþ yj) dx dz ¼ 3

8

ð5
z¼0

ð4
x¼0

(x2ziþ xz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� x2

p
j) dx dz

¼ 3

8

ð5
z¼0

64

3
ziþ 64

3
zj

� �
dz ¼ 100iþ 100j

5.22. Suppose F ¼ yiþ (x� 2xz)j� xyk. Evaluate
ÐÐ

S
(rrrrr � F)� n dS where S is the surface of the sphere

x2 þ y2 þ z2 ¼ a2 above the xy-plane (see Fig. 5-9).

Solution

rrrrr � F ¼
i j k
@

@x

@

@y

@

@z
y x� 2xz �xy

��������

�������� ¼ xiþ yj� 2zk

A normal to x2 þ y2 þ z2 ¼ a2 is

rrrrr(x2 þ y2 þ z2) ¼ 2xiþ 2yjþ 2zk

Then the unit normal n of Fig. 5-9 is given by

n ¼ 2xiþ 2yjþ 2zkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 þ 4y2 þ 4z2

p ¼ xiþ yjþ zk

a

since x2 þ y2 þ z2 ¼ a2.

The projection of S on the xy-plane is the region R bounded by the circle x2 þ y2 ¼ a2, z ¼ 0 (see Fig. 5-9).

Then

ðð
S

(rrrrr � F) � n dS ¼
ðð
R

(rrrrr � F) � n dx dy

jn� kj
¼
ðð
R

(xiþ yj� 2zk)� xiþ yjþ zk

a

� �
dx dy

z=a

¼
ða

x¼�a

ðffiffiffiffiffiffiffiffiffia2�x2
p

y¼�
ffiffiffiffiffiffiffiffiffi
a2�x2

p

3(x2 þ y2)� 2a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2 � y2

p dy dx
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using the fact that z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2 � y2

p
. To evaluate the double integral, transform to polar coordinates (r,f)

where x ¼ r cosf, y ¼ r sinf, and dy dx is replaced by r dr df. The double integral becomes

ð2p
f¼0

ða
r¼0

3r2 � 2a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p r dr df¼
ð2p

f¼0

ða
r¼0

3(r2 � a2)þ a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p r dr df

¼
ð2p

f¼0

ða
r¼0

�3r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
þ a2rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � r2
p

 !
dr df

¼
ð2p

f¼0

(a2 � r2)3=2 � a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p ����
a

r¼0

" #
df

¼
ð2p

f¼0

(a3 � r3) df ¼ 0

x2 + y2 = a2, z = 0

dx dy

dS

O

n

R

z

x

y

S

G

x

F

y

z

D E

B

A
O

C

Fig. 5-9 Fig. 5-10

5.23. Let F ¼ 4xzi� y2jþ yzk. Evaluate
ÐÐ

S
F� n dS where S is the surface of the cube bounded by

x ¼ 0, x ¼ 1, y ¼ 0, y ¼ 1, z ¼ 0, z ¼ 1. (See Fig. 5-10).

Solution

Face DEFG: n ¼ i, x ¼ 1. Then

ðð
DEFG

F � n dS ¼
ð1
0

ð1
0

(4zi� y2jþ yzk)� i dy dz

¼
ð1
0

ð1
0

4z dy dz ¼ 2

Face ABCO: n ¼ �i, x ¼ 0. Then

ðð
ABCO

F � n dS ¼
ð1
0

ð1
0

(�y2jþ yzk)� (�i) dy dz ¼ 0
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Face ABEF: n ¼ j, y ¼ 1. Then

ðð
ABEF

F � n dS ¼
ð1
0

ð1
0

(4xzi� jþ zk)� j dx dz ¼
ð1
0

ð1
0

�dx dz ¼ �1

Face OGDC: n ¼ �j, y ¼ 0. Then

ðð
OGDC

F � n dS ¼
ð1
0

ð1
0

(4xzi)� (�j) dx dz ¼ 0

Face BCDE: n ¼ k, z ¼ 1. Then

ðð
BCDE

F � n dS ¼
ð1
0

ð1
0

(4xi� y2jþ yk)� k dx dy ¼
ð1
0

ð1
0

y dx dy ¼ 1
2

Face AFGO: n ¼ �k, z ¼ 0. Then

ðð
AFGO

F � n dS ¼
ð1
0

ð1
0

(�y2j)� (�k) dx dy ¼ 0

Adding,
ÐÐ

S
F � n dS ¼ 2þ 0þ (�1)þ 0þ 1

2
þ 0 ¼ 3

2
.

5.24. In dealing with surface integrals, we have restricted ourselves to surfaces that are two-sided. Give an
example of a surface that is not two-sided.

Solution

Take a strip of paper such as ABCD as shown in Fig. 5-11. Twist the strip so that points A and B fall on D and C,

respectively, as in Fig. 5-11. If n is the positive normal at point P of the surface, we find that as n moves

around the surface, it reverses its original direction when it reaches P again. If we tried to color only one

side of the surface, we would find the whole thing colored. This surface, called a Moebius strip, is an

example of a one-sided surface. This is sometimes called a non-orientable surface. A two-sided surface

is orientable.

A

A

B

P

D
D

C

C

Q

B
n

n

Fig. 5-11

Volume Integrals

5.25. Let f ¼ 45x2y and let V denote the closed region bounded by the planes 4xþ 2yþ z ¼ 8, x ¼ 0,

y ¼ 0, z ¼ 0. (a) Express
ÐÐÐ

V
f dV as the limit of a sum. (b) Evaluate the integral in (a).

Solution

(a) Subdivide region V into M cubes having volume DVk ¼ DxkDykDzk, k ¼ 1, 2, . . . ,M as indicated in

Fig. 5-12 and let (xk, yk, zk) be a point within this cube. Define f(xk, yk, zk) ¼ fk. Consider the sum

XM
k¼1

fkDVk (1)
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taken over all possible cubes in the region. The limit of this sum, when M ! 1 in such a manner that the

largest of the quantities DVk will approach zero, if it exists, is denoted by
ÐÐÐ

V
f dV . It can be shown that this

limit is independent of the method of subdivision if f is continuous throughout V.

In forming the sum (1) over all possible cubes in the region, it is advisable to proceed in an orderly

fashion. One possibility is to first add all terms in (1) corresponding to volume elements contained in a

column such as PQ in the above figure. This amounts to keeping xk and yk fixed and adding over all zks.

Next, keep xk fixed but sum over all yks. This amounts to adding all columns such as PQ contained in a

slab RS, and consequently amounts to summing over all cubes contained in such a slab. Finally, vary xk.

This amounts to addition of all slabs such as RS.

In the process outlined, the summation is taken first over zks, then over yks, and finally over xks. However,

the summation can clearly be taken in any other order.

x

y

ΔVk = Δxk Δyk Δzk

R
S

P

O

Q

z

Fig. 5-12

(b) The ideas involved in the method of summation outlined in (a) can be used in evaluating the integral.

Keeping x and y constant, integrate from z ¼ 0 (base of column PQ) to z ¼ 8� 4x� 2y (top of column

PQ). Next keep x constant and integrate with respect to y. This amounts to addition of columns having

bases in the xy-plane (z ¼ 0) located anywhere from R (where y ¼ 0) to S (where 4xþ 2y ¼ 8 or

y ¼ 4� 2x), and the integration is from y ¼ 0 to y ¼ 4� 2x. Finally, we add all slabs parallel to the

yz-plane, which amounts to integration from x ¼ 0 to x ¼ 2. The integration can be written

ð2
x¼0

ð4�2x

y¼0

ð8�4x�2y

z¼0

45x2y dz dy dx ¼ 45

ð2
x¼0

ð4�2x

y¼0

x2y(8� 4x� 2y) dy dx

¼ 45

ð2
x¼0

1

3
x2(4� 2x)3 dx ¼ 128

Note: Physically, the result can be interpreted as the mass of the region V in which the density f varies

according to the formula f ¼ 45x2y.
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5.26. Let F ¼ 2xzi� xjþ y2k. Evaluate
ÐÐÐ

V
F dV where V is the region bounded by the surfaces

x ¼ 0, y ¼ 0, y ¼ 6, z ¼ x2, z ¼ 4, as pictured in Fig. 5-13.

Solution

The region V is covered (a) by keeping x and y fixed and integrating from z ¼ x2 to z ¼ 4 (base to top of column

PQ), (b) then by keeping x fixed and integrating from y ¼ 0 to y ¼ 6 (R to S in the slab), (c) finally integrating

from x ¼ 0 to x ¼ 2 (where z ¼ x2 meets z ¼ 4). Then the required integral is

ð2
x¼0

ð6
y¼0

ð4
z¼x2

(2xzi� xjþ y2k) dz dy dx

¼ i

ð2
0

ð6
0

ð4
x2

2xz dz dy dx� j

ð2
0

ð6
0

ð4
x2

x dz dy dxþ k

ð2
0

ð6
0

ð4
x2

y2 dz dy dx ¼ 128i� 24jþ 384k

y

x

z

y = 0

y = 6

z = 4

QR

z = x2

P

O

S z

y

x

x2 + z2 = a2

x2 + y2 = a2

Fig. 5-13 Fig. 5-14

5.27. Find the volume of the region common to the intersecting cylinders x2 þ y2 ¼ a2 and x2 þ z2 ¼ a2.

Solution

Required volume ¼ 8 times volume of region shown in Fig. 5-14

¼ 8

ða
x¼0

ðffiffiffiffiffiffiffiffiffia2�x2
p

y¼0

ðffiffiffiffiffiffiffiffiffia2�x2
p

z¼0

dz dy dx

¼ 8

ða
x¼0

ðffiffiffiffiffiffiffiffiffia2�x2
p

y¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
dy dx ¼ 8

ða
x¼0

(a2 � x2) dx ¼ 16a3

3

SUPPLEMENTARY PROBLEMS

5.28. Suppose R(t) ¼ (3t2 � t)iþ (2� 6t)j� 4tk. Find (a)
Ð
R(t) dt and (b)

Ð 4
2
R(t) dt.

5.29. Evaluate
Ð p=2
0

(3 sin uiþ 2 cos uj) du.

5.30. Let A(t) ¼ ti� t2jþ (t � 1)k and B(t) ¼ 2t2iþ 6tk. Evaluate (a)
Ð 2
0
A�B dt, (b)

Ð 2
0
A� B dt.

5.31. Let A ¼ ti� 3jþ 2tk, B ¼ i� 2jþ 2k, C ¼ 3iþ tj� k. Evaluate (a)
Ð 2
1
A�B� C dt, (b)

Ð 2
1
A� (B� C) dt.

CHAPTER 5 Vector Integration 121



5.32. The acceleration a of a particle at any time t � 0 is given by a ¼ e�ti� 6(t þ 1)jþ 3 sin tk. If the velocity v and

displacement r are zero at t ¼ 0, find v and r at any time.

5.33. The acceleration a of an object at any time t is given by a ¼ �gj, where g is a constant. At t ¼ 0, the velocity is

given by v ¼ vo cos uoiþ vo sin uoj and the displacement r ¼ 0. Find v and r at any time t . 0. This describes the

motion of a projectile fired from a cannon inclined at angle uo with the positive x-axis with initial velocity of

magnitude vo.

5.34. Suppose A(2) ¼ 2i� jþ 2k and A(3) ¼ 4i� 2jþ 3k. Evaluate
Ð 3
2
A� (dA=dt) dt.

5.35. Find the areal velocity of a particle that moves along the path r ¼ a cosvtiþ b sinvtj where a, b, and v are

constants and t is time.

5.36. Prove that the squares of the periods of the planets in their motion around the Sun are proportional to the cubes of

the major axes of their elliptical paths (Kepler’s third law).

5.37. Let A ¼ (2yþ 3)iþ xz jþ (yz� x)k. Evaluate
Ð
C
A� dr along the following paths C:

(a) x ¼ 2t2, y ¼ t, z ¼ t3 from t ¼ 0 to t ¼ 1,

(b) the straight lines from (0, 0, 0) to (0, 0, 1), then to (0, 1, 1), and then to (2, 1, 1),

(c) the straight line joining (0, 0, 0) and (2, 1, 1).

5.38. SupposeF ¼ (5xy� 6x2)iþ (2y� 4x)j. Evaluate
Ð
C
F� dr along the curveC in the xy-plane, y ¼ x3 from the point

(1, 1) to (2, 8).

5.39. Let F ¼ (2xþ y)iþ (3y� x)j. Evaluate
Ð
C
F� dr where C is the curve in the xy-plane consisting of the straight

lines from (0, 0) to (2, 0) and then to (3, 2).

5.40. Find the work done in moving a particle in the force field F ¼ 3x2iþ (2xz� y)jþ zk along

(a) the straight line from (0, 0, 0) to (2, 1, 3).

(b) the space curve x ¼ 2t2, y ¼ t, z ¼ 4t2 � t from t ¼ 0 to t ¼ 1.

(c) the curve defined by x2 ¼ 4y, 3x3 ¼ 8z from x ¼ 0 to x ¼ 2.

5.41. Evaluate
Þ
C
F� dr where F ¼ (x� 3y)iþ (y� 2x)j and C is the closed curve in the xy-plane, x ¼ 2 cos t,

y ¼ 3 sin t from t ¼ 0 to t ¼ 2p.

5.42. Suppose T is a unit tangent vector to the curve C, r ¼ r(u). Show that the work done in moving a particle in a

force field F along C is given by
Ð
C
F�T ds where s is the arc length.

5.43. LetF ¼ (2xþ y2)iþ (3y� 4x)j. Evaluate
Þ
C
F� dr around the triangleC of Fig. 5-15 (a) in the indicated direction,

(b) opposite to the indicated direction.

(2, 1)

(2, 0)O

y

x

(1, 1)

O

y

x

y2 = x

y = x2

Fig. 5-15 Fig. 5-16
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5.44. Let A ¼ (x� y)iþ (xþ y)j. Evaluate
Þ
C
A� dr around the closed curve C of Fig. 5-16.

5.45. Let A ¼ (y� 2x)iþ (3xþ 2y)j. Compute the circulation of A about a circle C in the xy-plane with center at the

origin and radius 2, if C is traversed in the positive direction.

5.46. (a) Suppose A ¼ (4xy� 3x2z2)iþ 2x2j� 2x3zk. Prove that
Ð
C
A� dr is independent of the curve C joining two

given points. (b) Show that there is a differentiable function f such that A ¼ rrrrrf and find it.

5.47. (a) Prove that F ¼ (y2 cos xþ z3)iþ (2y sin x� 4)jþ (3xz2 þ 2)k is a conservative force field.

(b) Find the scalar potential for F.

(c) Find the work done in moving an object in this field from (0, 1, �1) to (p=2, �1, 2).

5.48. Prove that F ¼ r2r is conservative and find the scalar potential.

5.49. Determine whether the force field F ¼ 2xziþ (x2 � y)jþ (2z� x2)k is conservative or non-conservative.

5.50. Show that the work done on a particle in moving it from A to B equals its change in kinetic energies at these points

whether the force field is conservative or not.

5.51. Given A ¼ (yzþ 2x)iþ xz jþ (xyþ 2z)k. Evaluate
Ð
C
A� dr along the curve x2 þ y2 ¼ 1, z ¼ 1 in the positive

direction from (0, 1, 1) to (1, 0, 1).

5.52. (a) Let E ¼ rr4. Is there a function f such that E ¼ �rrrrrf? If so, find it. (b) Evaluate Þ
C
E� dr if C is any simple

closed curve.

5.53. Show that (2x cos yþ z sin y) dxþ (xz cos y� x2 sin y) dyþ x sin y dz is an exact differential. Hence, solve the

differential equation (2x cos yþ z sin y) dxþ (xz cos y� x2 sin y) dyþ x sin y dz ¼ 0.

5.54. Solve (a) (e�y þ 3x2y2) dxþ (2x3y� xe�y) dy ¼ 0,

(b) (z� e�x sin y) dxþ (1þ e�x cos y) dyþ (x� 8z) dz ¼ 0.

5.55. Given f ¼ 2xy2zþ x2y. Evaluate
Ð
C
f dr where C

(a) is the curve x ¼ t, y ¼ t2, z ¼ t3 from t ¼ 0 to t ¼ 1,

(b) consists of the straight lines from (0, 0, 0) to (1, 0, 0), then to (1, 1, 0), and then to (1, 1, 1).

5.56. Let F ¼ 2yi� zjþ xk. Evaluate
Ð
C
F� dr along the curve x ¼ cos t, y ¼ sin t, z ¼ 2 cos t from t ¼ 0 to t ¼ p=2.

5.57. Suppose A ¼ (3xþ y)i� xjþ (y� 2)k and B ¼ 2i� 3jþ k. Evaluate
Þ
C
(A� B)� dr around the circle in the

xy-plane having center at the origin and radius 2 traversed in the positive direction.

5.58. Evaluate
ÐÐ

S
A� n dS for each of the following cases.

(a) A ¼ yiþ 2xj� zk and S is the surface of the plane 2xþ y ¼ 6 in the first octant cut off by the plane z ¼ 4.

(b) A ¼ (xþ y2)i� 2xjþ 2yzk and S is the surface of the plane 2xþ yþ 2z ¼ 6 in the first octant.

5.59. Suppose F ¼ 2yi� zjþ x2k and S is the surface of the parabolic cylinder y2 ¼ 8x in the first octant bounded by

the planes y ¼ 4 and z ¼ 6. Evaluate
ÐÐ

S
F� n dS.

5.60. Suppose A ¼ 6ziþ (2xþ y)j� xk. Evaluate
ÐÐ

S
A� n dS over the entire surface S of the region bounded by the

cylinder x2 þ z2 ¼ 9, x ¼ 0, y ¼ 0, z ¼ 0, and y ¼ 8.
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5.61. Evaluate
ÐÐ

S
r� n dS over: (a) the surface S of the unit cube bounded by the coordinate planes and the planes x ¼ 1,

y ¼ 1, z ¼ 1; (b) the surface of a sphere of radius a with center at (0, 0, 0).

5.62. Suppose A ¼ 4xziþ xyz2jþ 3zk. Evaluate
ÐÐ

S
A� n dS over the entire surface of the region above the xy-plane

bounded by the cone z2 ¼ x2 þ y2 and the plane z ¼ 4.

5.63. (a) Let R be the projection of a surface S on the xy-plane. Prove that the surface area of S is given byðð
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

� �2

þ @z

@y

� �2
s

dx dy if the equation for S is z ¼ f (x, y).

(b) What is the surface area if S has the equation F(x, y, z) ¼ 0?

5.64. Find the surface area of the plane xþ 2yþ 2z ¼ 12 cut off by: (a) x ¼ 0, y ¼ 0, x ¼ 1, y ¼ 1;

(b) x ¼ 0, y ¼ 0, and x2 þ y2 ¼ 16.

5.65. Find the surface area of the region common to the intersecting cylinders x2 þ y2 ¼ a2 and x2 þ z2 ¼ a2.

5.66. Evaluate (a)
ÐÐ

S
(rrrrr � F)� n dS and (b)

ÐÐ
S
fn dS if F ¼ (xþ 2y)i� 3zjþ xk,f ¼ 4xþ 3y� 2z, and S is the

surface of 2xþ yþ 2z ¼ 6 bounded by x ¼ 0, x ¼ 1, y ¼ 0 and y ¼ 2.

5.67. Solve the preceding problem if S is the surface of 2xþ yþ 2z ¼ 6 bounded by x ¼ 0, y ¼ 0, and z ¼ 0.

5.68. Evaluate
ÐÐ

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
dx dy over the region R in the xy-plane bounded by x2 þ y2 ¼ 36.

5.69. Evaluate
ÐÐÐ

V
(2xþ y) dV , where V is the closed region bounded by the cylinder z ¼ 4� x2 and the planes x ¼ 0,

y ¼ 0, y ¼ 2, and z ¼ 0.

5.70. Suppose F ¼ (2x2 � 3z)i� 2xyj� 4xk. Evaluate (a)
ÐÐÐ

V
rrrrr�F dV and (b)

ÐÐÐ
V
rrrrr � F dV , where V is the closed

region bounded by the planes x ¼ 0, y ¼ 0, z ¼ 0, and 2xþ 2yþ z ¼ 4.

ANSWERS TO SUPPLEMENTARY PROBLEMS

5.28. (a) (t3 � t2=2)iþ (2t � 3t2)j� 2t2kþ c,

(b) 50i� 32j� 24k

5.40. (a) 16, (b) 14.2, (c) 16

5.29. 3iþ 2j 5.41. 6p, if C is traversed in the positive

(counter-clockwise) direction

5.30. (a) 12, (b) �24i� 40

3
jþ 65

5
k 5.43. (a) �14=3, (b) 14/3

5.31. (a) 0, (b) � 87

2
i� 44

3
jþ 15

2
k 5.44. 2/3

5.32. v ¼ (1� e�t)i� (3t2 þ 6t)jþ (3� 3 cos t)k,

r ¼ (t � 1þ e�t)i� (t3 þ 3t2)jþ (3t � 3 sin t)k

5.45. 8p

5.33. v ¼ vo cos uoiþ (vo sin uo � gt)j,

r ¼ (vo cos uo)tiþ [(vo sin uo)t � 1
2
gt2]j

5.46. (b) f ¼ 2x2y� x3z2 þ constant

5.34. 10 5.47. (b) f ¼ y2 sin xþ xz3 � 4yþ 2zþ constant,

(c) 15þ 4p

5.35. 1
2
abvk 5.48. f ¼ r4

4
þ constant

5.37. (a) 288/35, (b) 10, (c) 8 5.49. non-conservative

5.38. 35 5.51. 1

5.39. 11 5.52. (a) f ¼ � r3

3
þ constant, (b) 0
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5.53. x2 cos yþ xz sin y ¼ constant 5.62. 320p

5.54. (a) xe�y þ x3y2 ¼ constant,

(b) xzþ e�x sin yþ y� 4z2 ¼ constant

5.63.

ðð
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@F

@x

� �2

þ @F

@y

� �2

þ @F

@z

� �2
s

���� @F@z
����

dx dy

5.55. (a)
19

45
iþ 11

15
jþ 75

77
k, (b)

1

2
jþ 2k 5.64. (a) 3/2, (b) 6p

5.56. 2� p

4

� �
iþ p� 1

2

� �
j 5.65. 16a2

5.57. 4p (7iþ 3j) 5.66. (a) 1, (b) 2iþ jþ 2k

5.58. (a) 108, (b) 81 5.67. (a) 9/2, (b) 72iþ 36jþ 72k

5.59. 132 5.68. 144p

5.60. 18p 5.69. 80/3

5.61. (a) 3, (b) 4pa3 5.70. (a)
8

3
, (b)

8

3
( j� k)
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CHAP T E R 6

Divergence Theorem,
Stokes’ Theorem, and Related

Integral Theorems

6.1 Introduction

Elementary calculus tells us that the value of the definite integral of a continuous function f (x) on a closed
interval [a, b] can be obtained from the anti-derivative of the function evaluated on the endpoints a and b
(boundary) of the interval.

There is an analogous situation in the plane and space. That is, there is a relationship between a double
integral over certain regions R in the plane, and a line integral over the boundary of the region R. Similarly,
there is a relationship between the volume integral over certain volumes V in space and the double integral
over the surface of the boundary of V.

We discuss these theorems and others in this chapter.

6.2 Main Theorems

The following theorems apply.

THEOREM6.1 (Divergence Theorem of Gauss) Suppose V is the volume bounded by a closed surface
S and A is a vector function of position with continuous derivatives. Thenððð

V

rrrrr �A dV ¼
ðð
S

A � n dS ¼W
ðð
S

A � dS
where n is the positive (outward drawn) normal to S.

THEOREM 6.2 (Stokes’ Theorem) Suppose S is an open, two-sided surface bounded by a closed,
nonintersecting curve C (simple closed curve), and suppose A is a vector function of
position with continuous derivatives. Thenþ

C

A� dr ¼ ðð
S

(rrrrr � A)� n dS ¼
ðð
S

(rrrrr � A)� dS
where C is traversed in the positive direction.

126



The direction of C is called positive if an observer, walking on the boundary of S in that direction, with
his head pointing in the direction of the positive normal to S, has the surface on his left.

THEOREM 6.3 (Green’s Theorem in the Plane) Suppose R is a closed region in the xy-plane bounded
by a simple closed curve C, and suppose M and N are continuous functions of x and y
having continuous derivatives in R. Thenþ

C

M dxþ N dy ¼
ðð
R

@N

@x
� @M

@y

� �
dx dy

where C is traversed in the positive (counter-clockwise) direction.

Unless otherwise stated, we shall always assume
Þ
to mean that the integral is described in the positive

sense.
Green’s theorem in the plane is a special case of Stokes’ theorem (see Problem 6.4). Also, it is of interest

to notice that Gauss’ divergence theorem is a generalization of Green’s theorem in the plane where
the (plane) region R and its closed boundary (curve) C are replaced by a (space) region V and its closed
boundary (surface) S. For this reason, the divergence theorem is often called Green’s theorem in space
(see Problem 6.4).

Green’s theorem in the plane also holds for regions bounded by a finite number of simple closed curves
that do not intersect (see Problems 6.10 and 6.11).

6.3 Related Integral Theorems

The following propositions apply.

PROPOSITION 6.4: The following laws hold:

(i)
ððð
V

[frrrrr2cþ (rrrrrf) � (rrrrrc)] dV ¼
ðð
S

(frrrrrc) � dS
This is called Green’s first identity or theorem.

(ii)
ððð
V

(frrrrr2c� crrrrr2f) dV ¼
ðð
S

(frrrrrc� crrrrrf) � dS
This is called Green’s second identity or symmetrical theorem. See Problem
6.21.

(iii)
ððð
V

rrrrr � A dV ¼
ðð
S

(n� A) dS ¼
ðð
S

dS� A

Note that here the dot product of Gauss’ divergence theorem is replaced by the
cross product (see Problem 6.23).

(iv)
þ
C

f dr ¼
ðð
S

(n�rrrrrf) dS ¼
ðð
S

dS�rrrrrf

PROPOSITION 6.5: Let c represent either a vector or scalar function according as the symbol W denotes a
dot or cross product, or an ordinary multiplication. Then

(i)
ððð
V

rrrrr W c dV ¼
ðð
S

n W c dS ¼
ðð
S

dS W c
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(ii)
þ
C

dr W c ¼
ðð
S

(n� rrrrr) W c dS ¼
ðð
S

(dS�rrrrr) W c

Gauss’ divergence theorem, Stokes’ theorem and Proposition 6.4 (iii) and (iv) are special cases of these
results (see Problems 6.22, 6.23, and 6.34).

Integral Operator Form for rrrrr
It is of interest that, using the terminology of Problem 6.19, the operator rrrrr can be expressed symbolically in
the form

rrrrr W ; lim
DV!0

1

DV
W
ðð
DS

dS W

where W denotes a dot, cross, or an ordinary multiplication (see Problem 6.25). The result proves useful in
extending the concepts of gradient, divergence and curl to coordinate systems other than rectangular (see
Problems 6.19 and 6.24, and Chapter 7).

SOLVED PROBLEMS

Green’s Theorem in the Plane

6.1. Prove Green’s theorem in the plane where C is a closed curve which has the property that any straight
line parallel to the coordinate axes cuts C in at most two points.

Solution

Let the equations of the curves AEB and AFB (see Fig. 6-1) be y ¼ Y1(x) and y ¼ Y2(x), respectively. If R is the

region bounded by C, we have

ðð
R

@M

@y
dx dy ¼

ðb
x¼a

ðY2(x)
y¼Y1(x)

@M

@y
dy

2
64

3
75 dx ¼

ðb
x¼a

M(x, y)

�����
Y2(x)

y¼Y1(x)

dx ¼
ðb
a

M(x, Y2)�M(x,Y1)½ � dx

¼ �
ðb
a

M(x,Y1) dx�
ða
b

M(x,Y2) dx ¼ �
þ
C

M dx

Then þ
C

M dx ¼ �
ðð
R

@M

@y
dx dy (1)

Similarly, let the equations of curves EAF and EBF be x ¼ X1(y) and x ¼ X2(y), respectively. Then

ðð
R

@N

@x
dx dy ¼

ðf
y¼e

ðX2(y)

x¼X1(y)

@N

@x
dx

2
64

3
75dy ¼ ðf

e

N(X2, y)� N(X1, y)½ � dy

¼
ðe
f

N(X1, y) dyþ
ðf
e

N(X2, y) dy ¼
þ
C

N dy

Then þ
C

N dy ¼
ðð
R

@N

@x
dx dy (2)
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Adding (1) and (2),

þ
C

M dxþ N dy ¼
ðð
R

@N

@x
� @M

@y

� �
dx dy:

F

BR
A

b
x

a

E

O

e

f

y

y = x

y = x2

O

y

x

(1, 1)

Fig. 6-1 Fig. 6-2

6.2. Verify Green’s theorem in the plane for
Þ
C
(xyþ y2) dxþ x2 dy where C is the closed curve of the

region bounded by y ¼ x and y ¼ x2 (see Fig. 6-2).

Solution

In Fig. 6-2, y ¼ x and y ¼ x2 intersect at (0, 0) and (1, 1), and the positive direction in traversing C is also shown.

Along y ¼ x2, the line integral equals

ð1
0

(x)(x2)þ x4
� 


dxþ (x2)(2x) dx ¼
ð1
0

(3x3 þ x4) dx ¼ 19

20

Along y ¼ x from (1, 1) to (0, 0), the line integral equals

ð0
1

[(x)(x)þ x2] dxþ x2 dx ¼
ð0
1

3x2 dx ¼ �1

Then the required line integral ¼ 19

20
� 1 ¼ � 1

20
.

ðð
R

@N

@x
� @M

@y

� �
dx dy ¼

ðð
R

@

@x
(x2)� @

@y
(xyþ y2)


 �
dx dy

¼
ðð
R

(x� 2y) dx dy ¼
ð1

x¼0

ðx
y¼x2

(x� 2y) dy dx

¼
ð1
0

ðx
x2
(x� 2y) dy


 �
dx ¼

ð1
0

(xy� y2)
���x
x2
dx

¼
ð1
0

(x4 � x3) dx ¼ � 1

20

so that the theorem is verified.
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6.3. Extend the proof of Green’s theorem in the plane given in Problem 6.1 to the curves C for which lines
parallel to the coordinate axes may cut C in more than two points.

Solution

Consider a closed curve C such as shown in Fig. 6-3, in which lines parallel to the axes may meet C in more than

two points. By constructing line ST, the region is divided into two regions (R1 and R2), which are of the type

considered in Problem 6.1 and for which Green’s theorem applies, that is,

x

U

y

R1

R2

T

V

S

O

Fig. 6-3ð
STUS

M dxþ N dy ¼
ðð
R1

@N

@x
� @M

@y

� �
dx dy (1)

ð
SVTS

M dxþ N dy ¼
ðð
R2

@N

@x
� @M

@y

� �
dx dy (2)

Adding the left-hand sides of (1) and (2), we have, omitting the integrand M dxþ N dy in each case,ð
STUS

þ
ð

SVTS

¼
ð
ST

þ
ð

TUS

þ
ð

SVT

þ
ð
TS

¼
ð

TUS

þ
ð

SVT

¼
ð

TUSVT

using the fact that ð
ST

¼ �
ð
TS

Adding the right-hand sides of (1) and (2), omitting the integrand,ðð
R1

þ
ðð
R2

¼
ðð
R

where R consists of regions R1 and R2. Then

ð
TUSVT

M dxþ N dy ¼
ðð
R

@N

@x
� @M

@y

� �
dx dy

and the theorem is proved.

A region R such as considered here and in Problem 6.1, for which any closed curve lying in R can be

continuously shrunk to a point without leaving R, is called a simply-connected region. A region that is not
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simply-connected is calledmultiply-connected. We have shown here that Green’s theorem in the plane applies to

simply-connected regions bounded by closed curves. In Problem 6.10, the theorem is extended to multiply-con-

nected regions.

For more complicated simply-connected regions, it may be necessary to construct more lines, such as ST, to

establish the theorem.

6.4. Express Green’s theorem in the plane in vector notation.

Solution

We have M dxþ N dy ¼ (Miþ Nj) � (dxiþ dyj) ¼ A� dr, where A ¼ Miþ Nj and r ¼ xiþ yj so that

dr ¼ dxiþ dyj.
Also, if A ¼ Miþ Nj, then

rrrrr � A ¼
i j k
@

@x

@

@y

@

@z
M N 0

��������

�������� ¼ � @N

@z
iþ @M

@z
jþ @N

@x
� @M

@y

� �
k

so that (rrrrr � A) � k ¼ (@N=@x)� (@M=@y).

Then Green’s theorem in the plane can be writtenþ
C

A � dr ¼ ðð
R

(rrrrr � A) � k dR

where dR ¼ dx dy.

A generalization of this to surfaces S in space having a curve C as a boundary leads quite naturally to Stokes’

theorem, which is proved in Problem 6.31.

Another Method

As above, M dxþ N dy ¼ A� dr ¼ A� (dr=ds) ds ¼ A�T ds, where dr=ds ¼ T ¼ unit tangent vector to C (see

Fig. 6-4). If n is the outward drawn unit normal to C, then T ¼ k� n so that

M dxþ N dy ¼ A�T ds ¼ A� (k� n) ds ¼ (A� k) � n ds

Since A ¼ Miþ Nj,B ¼ A� k ¼ (Miþ Nj)� k ¼ Ni�Mj and (@N=@x)� (@M=@y) ¼ rrrrr �B. Then Green’s

theorem in the plane becomes þ
C

B � n ds ¼
ðð
R

rrrrr �B dR

where dR ¼ dx dy.

x

C

y

R

T
n

O

Fig. 6-4
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Generalization of this to the case where the differential arc length ds of a closed curve C is replaced by the

differential of surface area dS of a closed surface S, and the corresponding plane region R enclosed by C is

replaced by the volume V enclosed by S, leads to Gauss’ divergence theorem or Green’s theorem in space.

ðð
S

B � n dS ¼
ððð
V

rrrrr �B dV

6.5. Interpret physically the first result of Problem 6.4.

Solution

If A denotes the force field acting on a particle, then
Þ
C
A � dr is the work done in moving the particle around a

closed path C and is determined by the value of rrrrr � A. It follows, in particular, that if rrrrr � A ¼ 0 or, equiva-

lently, if A ¼ rrrrrf, then the integral around a closed path is zero. This amounts to saying that the work done in

moving the particle from one point in the plane to another is independent of the path in the plane joining the

points or that the force field is conservative. These results have already been demonstrated for force fields

and curves in space (see Chapter 5).

Conversely, if the integral is independent of the path joining any two points of a region, that is, if the integral

around any closed path is zero, then rrrrr � A ¼ 0. In the plane, the condition rrrrr � A ¼ 0 is equivalent to the

condition @M=@y ¼ @N=@x where A ¼ Miþ Nj.

6.6. Evaluate
Ð (2, 1)
(0, 0)

(10x4 � 2xy3) dx� 3x2y2 dy along the path x4 � 6xy3 ¼ 4y2.

Solution

A direct evaluation is difficult. However, noting that M ¼ 10x4 � 2xy3, N ¼ �3x2y2 and

@M=@y ¼ �6xy2 ¼ @N=@x, it follows that the integral is independent of the path. Then we can use any path, for

example the path consisting of straight line segments from (0, 0) to (2, 0) and then from (2, 0) to (2, 1).

Along the straight line path from (0, 0) to (2, 0), y ¼ 0, dy ¼ 0 and the integral equals
Ð 2
x¼0

10x4 dx ¼ 64.

Along the straight line path from (2, 0) to (2, 1), x ¼ 2, dx ¼ 0 and the integral equals
Ð 1
y¼0

�12y2 dy ¼ �4.

Then the required value of the line integral ¼ 64� 4 ¼ 60.

Another Method

Since @M=@y ¼ @N=@x, (10x4 � 2xy3) dx� 3x2y2 dy is an exact differential (of 2x5 � x2y3). Then

ð(2, 1)
(0, 0)

(10x4 � 2xy3) dx� 3x2y2 dy ¼
ð(2, 1)

(0, 0)

d(2x5 � x2y3) ¼ 2x5 � x2y3
���(2, 1)
(0, 0)

¼ 60

6.7. Show that the area bounded by a simple closed curve C is given by 1
2

Þ
C
x dy� y dx.

Solution

In Green’s theorem, put M ¼ �y,N ¼ x. Then

þ
C

x dy� y dx ¼
ðð
R

@

@x
(x)� @

@y
(�y)

� �
dx dy ¼ 2

ðð
R

dx dy ¼ 2A

where A is the required area. Thus A ¼ 1
2

Þ
C
x dy� y dx.
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6.8. Find the area of the ellipse x ¼ a cos u, y ¼ b sin u.

Solution

Area ¼ 1

2

þ
C

x dy� y dx ¼ 1

2

ð2p
0

ða cos uÞðb cos uÞ du� ðb sin uÞð�a sin uÞ du

¼ 1

2

ð2p
0

abðcos2 uþ sin2 uÞ du ¼ 1

2

ð2p
0

ab du ¼ pab

6.9. Evaluate
Þ
C
(y� sin x) dxþ cos x dy, where C is the triangle shown in Fig. 6-5, (a) directly, and

(b) by using Green’s theorem in the plane.

Solution

(a) Along OA, y ¼ 0, dy ¼ 0 and the integral equals

ðp=2
0

(0� sin x) dxþ (cos x)(0) ¼
ðp=2
0

� sin x dx ¼ cos x
���p=2
0

¼ �1

Along AB, x ¼ p=2, dx ¼ 0, and the integral equals

ð1
0

(y� 1)0þ 0 dy ¼ 0

Along BO, y ¼ 2x=p, dy ¼ (2=p) dx, and the integral equals

ð0
p=2

2x

p
� sin x

� �
dxþ 2

p
cos x dx ¼ x2

p
þ cos xþ 2

p
sin x

� �����
0

p=2

¼ 1� p

4
� 2

p

Then the integral along C ¼ �1þ 0þ 1� p

4
� 2

p
¼ �p

4
� 2

p
.

(b) M ¼ y� sin x, N ¼ cos x, @N=@x ¼ � sin x, @M=@y ¼ 1 and

þ
C

M dxþ N dy ¼
ðð
R

@N

@x
� @M

@y

� �
dx dy ¼

ðð
R

(�sin x� 1) dy dx

¼
ðp=2

x¼0

ð2x=p
y¼0

(�sin x� 1) dy

2
64

3
75 dx ¼

ðp=2
x¼0

(�y sin x� y)

�����
2x=p

0

dx

¼
ðp=2
0

� 2x

p
sin x� 2x

p

� �
dx ¼ � 2

p
(�x cos xþ sin x)� x2

p

����
p=2

0

¼ � 2

p
� p

4

in agreement with part (a).
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Note that although there exist lines parallel to the coordinate axes (coincident with the coordinate axes in

this case), which meet C in an infinite number of points, Green’s theorem in the plane still holds. In general,

the theorem is valid when C is composed of a finite number of straight line segments.

O

y

x
A

B (π/2, 1)

(π/2, 0)

y

O
x

KL

A

H J

E
FG

R
D

Fig. 6-5 Fig. 6-6

6.10. Show that Green’s theorem in the plane is also valid for a multiply-connected region R such as shown
in Fig. 6-6.

Solution

The shaded region R, shown in Fig. 6-6, is multiply-connected since not every closed curve lying in R can be

shrunk to a point without leaving R, as is observed by considering a curve surrounding DEFGD for example.

The boundary of R, which consists of the exterior boundary AHJKLA and the interior boundary DEFGD, is

to be traversed in the positive direction, so that a person traveling in this direction always has the region on

his left. Positive directions are those indicated in Fig. 6-6.

In order to establish the theorem, construct a line, such as AD, called a cross-cut, connecting the exterior and

interior boundaries. The region bounded by ADEFGDALKJHA is simply-connected, and so Green’s theorem is

valid. Then

þ
ADEFGDALKJHA

M dxþ N dy ¼
ðð
R

@N

@x
� @M

@y

� �
dx dy

But the integral on the left, leaving out the integrand, is equal to

ð
AD

þ
ð

DEFGD

þ
ð
DA

þ
ð

ALKJHA

¼
ð

DEFGD

þ
ð

ALKJHA

since
Ð
AD

¼ �Ð
DA
. Thus, if C1 is the curve ALKJHA, C2 is the curve DEFGD, and C is the boundary of R

consisting of C1 and C2 (traversed in the positive directions), then
Ð
C1
þ Ð

C2
¼ Ð

C
and so

þ
C

M dxþ N dy ¼
ðð
R

@N

@x
� @M

@y

� �
dx dy
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6.11. Show that Green’s theorem in the plane holds for the region R, of Fig. 6-7, bounded by the simple
closed curves C1(ABDEFGA),C2(HKLPH),C3(QSTUQ), and C4(VWXYV).

A

C3

C2

C1G F

E
R

DB

K

L

H

C4S

W

X

Y
V

T

U
Q

P

Fig. 6-7

Solution

Construct the cross-cuts AH, LQ, and TV. Then the region bounded by AHKLQSTVWXYVTUQLPHABDEFGA is

simply-connected and Green’s theorem applies. The integral over this boundary is equal to

ð
AH

þ
ð

HKL

þ
ð
LQ

þ
ð

QST

þ
ð
TV

þ
ð

VWXYV

þ
ð
VT

þ
ð

TUQ

þ
ð
QL

þ
ð

LPH

þ
ð
HA

þ
ð

ABDEFGA

Since the integrals along AH and HA, LQ and QL, and TV and VT cancel out in pairs, this becomes

ð
HKL

þ
ð

QST

þ
ð

VWXYV

þ
ð

TUQ

þ
ð

LPH

þ
ð

ABDEFGA

¼
ð

HKL

þ
ð

LPH

0
@

1
Aþ

ð
QST

þ
ð

TUQ

0
B@

1
CAþ

ð
VWXYV

þ
ð

ABDEFGA

¼
ð

HKLPH

þ
ð

QSTUQ

þ
ð

VWXYV

þ
ð

ABDEFGA

¼
ð
C2

þ
ð
C3

þ
ð
C4

þ
ð
C1

¼
ð
C

where C is the boundary consisting of C1,C2,C3, and C4. Then

þ
C

M dxþ N dy ¼
ðð
R

@N

@x
� @M

@y

� �
dx dy

as required.
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6.12. Consider a closed curve C in a simply-connected region. Prove that
Þ
C
M dxþ N dy ¼ 0 if and only if

@M=@y ¼ @N=@x everywhere in the region.

Solution

Assume thatM and N are continuous and have continuous partial derivatives everywhere in the region R bounded

by C, so that Green’s theorem is applicable. Thenþ
C

M dxþ N dy ¼
ðð
R

@N

@x
� @M

@y

� �
dx dy

If @M=@y ¼ @N=@x in R, then clearly
Þ
C
M dxþ N dy ¼ 0.

Conversely, suppose
Þ
C
M dxþ N dy ¼ 0 for all curves C. If (@N=@x)� (@M=@y) . 0 at a point P, then

from the continuity of the derivatives it follows that (@N=@x)� (@M=@y) . 0 in some region A surrounding

P. If G is the boundary of A, thenþ
G

M dxþ N dy ¼
ðð
A

@N

@x
� @M

@y

� �
dx dy . 0

which contradicts the assumption that the line integral is zero around every closed curve. Similarly, the assump-

tion (@N=@x)� (@M=@y) , 0 leads to a contradiction. Thus, (@N=@x)� (@M=@y) ¼ 0 at all points.

Note that the condition (@M=@y) ¼ (@N=@x) is equivalent to the condition rrrrr � A ¼ 0 where A ¼ Miþ Nj
(see Problems 5.10 and 5.11). For a generalization to space curves, see Problem 6.31.

6.13. Let F ¼ �yiþ xj=(x2 þ y2). (a) Calculate rrrrr � F. (b) Evaluate
Þ
F � dr around any closed path and

explain the results.

Solution

(a) rrrrr � F ¼

i j k
@

@x

@

@y

@

@z
�y

x2 þ y2
x

x2 þ y2
0

����������

����������
¼ 0 in any region excluding (0, 0).

(b)

þ
F � dr ¼ þ �y dxþ x dy

x2 þ y2
. Let x ¼ r cosf, y ¼ r sinf, where (r,f) are polar coordinates. Then

dx ¼ �r sinf dfþ dr cosf, dy ¼ r cosf dfþ dr sinf

and so

�y dxþ x dy

x2 þ y2
¼ df ¼ d arc tan

y

x

� �
For a closed curve ABCDA (see Fig. 6-8a) surrounding the origin, f ¼ 0 at A and f ¼ 2p after a complete

circuit back to A. In this case, the line integral equals
Ð 2p
0

df ¼ 2p.

A x
O

(a) (b)

f

D

B

C

y

P

S
R

x
O

f°
f

Q

y

Fig. 6-8
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For a closed curve PQRSP (see Fig. 6-8b) not surrounding the origin, f ¼ fo at P and f ¼ fo after a

complete circuit back to P. In this case, the line integral equals
Ð fo

fo
df ¼ 0.

Since F ¼ Miþ Nj,rrrrr � F ¼ 0 is equivalent to @M=@y ¼ @N=@x and the results would seem to contradict

those of Problem 6.12. However, no contradiction exists sinceM ¼ �y=(x2 þ y2) and N ¼ x=(x2 þ y2) do not

have continuous derivatives throughout any region including (0, 0), and this was assumed in Problem 6.12.

The Divergence Theorem

6.14. (a) Express the divergence theorem in words and (b) write it in rectangular form.

Solution

(a) The surface integral of the normal component of a vector A taken over a closed surface is equal to the

integral of the divergence of A taken over the volume enclosed by the surface.

(b) Let A ¼ A1iþ A2jþ A3k. Then div A ¼ rrrrr�A ¼ @A1

@x
þ @A2

@y
þ @A3

@z
.

The unit normal to S is n ¼ n1iþ n2jþ n3k. Then n1 ¼ n � i ¼ cosa, n2 ¼ n � j ¼ cosb, and

n3 ¼ n � k ¼ cos g, where a,b, and g are the angles that n makes with the positive x, y, z axes or i, j, k

directions, respectively. The quantities cosa, cosb, and cos g are the direction cosines of n. Then

A � n ¼ (A1iþ A2jþ A3k) � (cosaiþ cosbjþ cosg k)

¼ A1 cosaþ A2 cosbþ A3 cos g

and the divergence theorem can be written

ððð
V

@A1

@x
þ @A2

@y
þ @A3

@z

� �
dx dy dz ¼

ðð
S

(A1 cosaþ A2 cosbþ A3 cos g) dS

6.15. Demonstrate the divergence theorem physically.

Solution

Let A ¼ velocity v at any point of a moving fluid. From Figure 6.9(a), we have:

Volume of fluid crossing dS in Dt seconds

¼ volume contained in cylinder of base dS and slant height vDt

¼ (vDt) � n dS ¼ v � n dSDt

Then, volume per second of fluid crossing dS ¼ v � n dS

vΔt

dS

n

(a)

dS

S

dV = dx dy dz

n

(b)

Fig. 6-9
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From Figure 6-9(b), we have

Total volume per second of fluid emerging from closed surface S ¼
ðð
S

v � n dS

From Problem 4.21 of Chapter 4, rrrrr� v dV is the volume per second of fluid emerging from a volume element

dV. Then

Total volume per second of fluid emerging from all volume elements in S ¼
ððð
V

rrrrr � v dV

Thus ðð
S

v � n dS ¼
ððð
V

rrrrr � v dV

6.16. Prove the divergence theorem.

z
S2 : z = f2 (x, y)

S1 : z = f1 (x, y)dS1

dS2

g2

n2

n1

R

x

O

g1

y

Fig. 6-10

Solution

Let S be a closed surface such that any line parallel to the coordinate axes cuts S in, at most, two points. Assume

the equations of the lower and upper portions, S1 and S2, to be z ¼ f1(x, y) and z ¼ f2(x, y), respectively. Denote

the projection of the surface on the xy-plane by R (see Fig. 6-10). Consider:

ððð
V

@A3

@z
dV ¼

ððð
V

@A3

@z
dz dy dx ¼

ðð
R

ðf2(x, y)
z¼f1(x, y)

@A3

@z
dz

2
64

3
75dy dx

¼
ðð
R

A3(x, y, z)
��� f2
z¼f1

dy dx ¼
ðð
R

[A3(x, y, f2)� A3(x, y, f1)] dy dx

For the upper portion S2, dy dx ¼ cos g2 dS2 ¼ k � n2 dS2 since the normal n2 to S2 makes an acute angle g2
with k.

For the lower portion S1, dy dx ¼ �cos g1 dS1 ¼ �k � n1 dS1 since the normal n1 to S1 makes an obtuse angle

g1 with k.
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Then

ðð
R

A3(x, y, f2) dy dx ¼
ðð
S2

A3k� n2 dS2
ðð
R

A3(x, y, f1) dy dx ¼ �
ðð
S1

A3k� n1 dS1

and

ðð
R

A3(x, y, f2) dy dx�
ðð
R

A3(x, y, f1) dy dx ¼
ðð
S2

A3k� n2 dS2 þ ðð
S1

A3k� n1 dS1
¼
ðð
S

A3k� n dS

so that

ððð
V

@A3

@z
dV ¼

ðð
S

A3k� n dS (1)

Similarly, by projecting S on the other coordinate planes,

ððð
V

@A1

@x
dV ¼

ðð
S

A1i� n dS (2)

ððð
V

@A2

@y
dV ¼

ðð
S

A2j� n dS (3)

Adding (1), (2), and (3),

ððð
V

@A1

@x
þ @A2

@y
þ @A3

@z

� �
dV ¼

ðð
S

(A1iþ A2jþ A3k) � n dS

or

ððð
V

rrrrr�A dV ¼
ðð
S

A� n dS

The theorem can be extended to surfaces where lines parallel to the coordinate axes meet them in more than

two points. To establish this extension, subdivide the region bounded by S into subregions whose surfaces do

satisfy this condition. The procedure is analogous to that used in Green’s theorem for the plane.
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6.17. Evaluate
ÐÐ

S
F � n dS, where F ¼ 4xzi� y2jþ yzk and S is the surface of the cube bounded by

x ¼ 0, x ¼ 1, y ¼ 0, y ¼ 1, z ¼ 0, z ¼ 1.

Solution

By the divergence theorem, the required integral is equal to

ððð
V

rrrrr �F dV ¼
ððð
V

@

@x
(4xz)þ @

@y
(�y2)þ @

@z
(yz)


 �
dV

¼
ððð
V

(4z� y) dV ¼
ð1

x¼0

ð1
y¼0

ð1
z¼0

(4z� y) dz dy dx

¼
ð1

x¼0

ð1
y¼0

2z2 � yz
���1
z¼0

dy dx ¼
ð1

x¼0

ð1
y¼0

(2� y) dy dx ¼ 3

2

The surface integral may also be evaluated directly as in Problem 5.23.

6.18. Verify the divergence theorem forA ¼ 4xi� 2y2jþ z2k taken over the region bounded by x2 þ y2 ¼ 4,
z ¼ 0, and z ¼ 3.

Solution

Volume integral ¼
ððð
V

rrrrr �A dV ¼
ððð
V

@

@x
(4x)þ @

@y
(�2y2)þ @

@z
(z2)


 �
dV

¼
ððð
V

(4� 4yþ 2z) dV ¼
ð2

x¼�2

ðffiffiffiffiffiffiffiffi4�x2
p

y¼�
ffiffiffiffiffiffiffiffi
4�x2

p

ð3
z¼0

(4� 4yþ 2z) dz dy dx ¼ 84p

The surface S of the cylinder consists of a base S1 (z ¼ 0), the top S2 (z ¼ 3) and the convex portion

S3 (x
2 þ y2 ¼ 4). Then

Surface integral ¼
ðð
S

A � n dS ¼
ðð
S1

A � n dS1 þ ðð
S2

A � n dS2 þ ðð
S3

A � n dS3

On S1 (z ¼ 0), n ¼ �k,A ¼ 4xi� 2y2j and A � n ¼ 0, so that

ðð
S1

A � n dS1 ¼ 0.

On S2 (z ¼ 3), n ¼ k,A ¼ 4xi� 2y2jþ 9k and A � n ¼ 9, so that

ðð
S2

A � n dS2 ¼ 9

ðð
S2

dS2 ¼ 36p, since area of S2 ¼ 4p

On S3 (x
2 þ y2 ¼ 4). A perpendicular to x2 þ y2 ¼ 4 has the direction rrrrr(x2 þ y2) ¼ 2xiþ 2yj.

Then a unit normal is n ¼ 2xiþ 2yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 þ 4y2

p ¼ xiþ yj

2
since x2 þ y2 ¼ 4.

A� n ¼ (4xi� 2y2jþ z2k)� xiþ yj

2

� �
¼ 2x2 � y3
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S3

S2 : z = 3

dS3 : 2 dq dz

y

dV = dx dy dz

S1 : z = 0

z

x

q
dq

O

Fig. 6-11

From Fig. 6-11, x ¼ 2 cos u, y ¼ 2 sin u, dS3 ¼ 2 du dz and so

ðð
S3

A � n dS3 ¼ ð2p
u¼0

ð3
z¼0

[2(2 cos u)2 � (2 sin u)3]2 dz du

¼
ð2p

u¼0

(48 cos2 u� 48 sin3 u) du ¼
ð2p

u¼0

48 cos2 u du ¼ 48p

Then the surface integral ¼ 0þ 36pþ 48p ¼ 84p, agreeing with the volume integral and verifying the

divergence theorem.

Note that evaluation of the surface integral over S3 could also have been done by projection of S3 on the xz- or

yz-coordinate planes.

6.19. Suppose div A denotes the divergence of a vector field A at a point P. Show that

divA ¼ lim
DV!0

ÐÐ
DS A � n dS

DV

where DV is the volume enclosed by the surface DS and the limit is obtained by shrinking DV to the
point P.

Solution

By the divergence theorem, ððð
DV

divA dV ¼
ðð
DS

A � n dS

By the mean-value theorem for integrals, the left side can be written

divA

ððð
DV

dV ¼ divADV

where divA is some value intermediate between the maximum and minimum of div A throughout DV . Then

divA ¼
ÐÐ
DS A � n dS

DV
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Taking the limit as DV ! 0 such that P is always interior to DV , divA approaches the value div A at point P;

hence

divA ¼ lim
DV!0

ÐÐ
DS A � n dS

DV

This result can be taken as a starting point for defining the divergence of A, and from it all the properties may

be derived including proof of the divergence theorem. In Chapter 7, we use this definition to extend the concept

of divergence of a vector to coordinate systems other than rectangular. Physically,ÐÐ
DS A � n dS

DV

represents the flux or net outflow per unit volume of the vector A from the surface DS. If div A is positive in the

neighborhood of a point P, it means that the outflow from P is positive and we call P a source. Similarly, if divA
is negative in the neighborhood of P, the outflow is really an inflow and P is called a sink. If in a region there are

no sources or sinks, then divA ¼ 0 and we call A a solenoidal vector field.

6.20. Evaluate
ÐÐ

S
r � n dS, where S is a closed surface.

Solution

By the divergence theorem,ðð
S

r � n dS ¼
ððð
V

rrrrr � r dV ¼
ððð
V

@

@x
iþ @

@y
jþ @

@z
k

� �� (xiþ yjþ zk) dV

¼
ððð
V

@x

@x
þ @y

@y
þ @z

@z

� �
dV ¼ 3

ððð
V

dV ¼ 3V

where V is the volume enclosed by S.

6.21. Prove

ððð
V

(frrrrr2c� crrrrr2f) dV ¼
ðð
S

(frrrrrc� crrrrrf) � dS.
Solution

Let A ¼ frrrrrc in the divergence theorem. Thenððð
V

rrrrr � (frrrrrc) dV ¼
ðð
S

(frrrrrc) � n dS ¼
ðð
S

(frrrrrc) � dS
But

rrrrr � (frrrrrc) ¼ f(rrrrr �rrrrrc)þ (rrrrrf) � (rrrrrc) ¼ frrrrr2cþ (rrrrrf) � (rrrrrc)
Thus ððð

V

rrrrr � (frrrrrc) dV ¼
ððð
V

[frrrrr2cþ (rrrrrf) � (rrrrrc)] dV
or ððð

V

[frrrrr2cþ (rrrrrf) � (rrrrrc)] dV ¼
ðð
S

(frrrrrc) � dS (1)

which proves Green’s first identity. Interchanging f and c in (1),ððð
V

[crrrrr2fþ (rrrrrc) � (rrrrrf)] dV ¼
ðð
S

(crrrrrf) � dS (2)
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Subtracting (2) from (1), we haveððð
V

(frrrrr2c� crrrrr2f) dV ¼
ðð
S

(frrrrrc� crrrrrf) � dS (3)

which is Green’s second identity or symmetrical theorem. In the proof, we have assumed that f and c are scalar

functions of position with continuous derivatives of the second order at least.

6.22. Prove

ððð
V

rrrrrf dV ¼
ðð
S

fn dS:

Solution

In the divergence theorem, let A ¼ fC where C is a constant vector. Thenððð
V

rrrrr � (fC) dV ¼
ðð
S

fC � n dS
Since rrrrr � (fC) ¼ (rrrrrf) �C ¼ C �rrrrrf and fC � n ¼ C � (fn),ððð

V

C �rrrrrf dV ¼
ðð
S

C � (fn) dS
Taking C outside the integrals,

C � ððð
V

rrrrrf dV ¼ C � ðð
S

fn dS

and since C is an arbitrary constant vector, ððð
V

rrrrrf dV ¼
ðð
S

fn dS

6.23. Prove

ððð
V

rrrrr � B dV ¼
ðð
S

n� B dS.

Solution

In the divergence theorem, let A ¼ B� C where C is a constant vector. Thenððð
V

rrrrr � (B� C) dV ¼
ðð
S

(B� C) � n dS

Since rrrrr � (B� C) ¼ C � (rrrrr � B) and (B� C) � n ¼ B � (C� n) ¼ (C� n) �B ¼ C � (n� B),ððð
V

C � (rrrrr � B)dV ¼
ðð
S

C � (n� B) dS

Taking C outside the integrals,

C � ððð
V

rrrrr � B dV ¼ C � ðð
S

n� B dS

and since C is an arbitrary constant vector,ððð
V

rrrrr � B dV ¼
ðð
S

n� B dS
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6.24. Show that at any point P

(a) rrrrrf ¼ lim
DV!0

ÐÐ
DS fn dS

DV
and (b) rrrrr � A ¼ lim

DV!0

ÐÐ
DS n� A dS

DV

where DV is the volume enclosed by the surface DS, and the limit is obtained by shrinking DV to the
point P.

Solution

(a) From Problem 6.22,
ÐÐÐ

DV rrrrrf dV ¼ ÐÐ
DS fn dS. Then

ÐÐÐ
DV rrrrrf � i dV ¼ ÐÐ

DS fn � i dS. Using the same

principle employed in Problem 6.19, we have

rrrrrf � i ¼
ÐÐ

DS fn � i dS
DV

where rrrrrf � i is some value intermediate between the maximum and minimum of rrrrrf � i throughout DV .
Taking the limit as DV ! 0 in such a way that P is always interior to DV ,rrrrrf � i approaches the value

rrrrrf � i ¼ lim
DV!0

ÐÐ
S
fn � i dS
DV

(1)

Similarly, we find

rrrrrf � j ¼ lim
DV!0

ÐÐ
S
fn � j dS
DV

(2)

rrrrrf � k ¼ lim
DV!0

ÐÐ
S
fn � k dS
DV

(3)

Multiplying (1), (2), and (3) by i, j, and k, respectively, and adding, using

rrrrrf ¼ (rrrrrf � i)iþ (rrrrrf � j)jþ (rrrrrf � k)k, n ¼ (n� i)iþ (n� j)jþ (n� k)k
(see Problem 2.17) the result follows.

(b) From Problem 6.23, replacing B by A,
ÐÐÐ

DV rrrrr � A dV ¼ ÐÐ
DS n� A dS. Then, as in part (a), we can show

that

(rrrrr � A) � i ¼ lim
DV!0

ÐÐ
DS (n� A)� i dS

DV

and similar results with j and k replacing i. Multiplying by i, j, and k adding, the result follows.

The results obtained can be taken as starting points for definition of gradient and curl. Using these definitions,

extensions can be made to coordinate systems other than rectangular.

6.25. Establish the operator equivalence

rrrrr W ; lim
DV!0

1

DV
W
ðð
DS

dS W

where W indicates a dot product, cross product, or ordinary product.

Solution

To establish the equivalence, the results of the operation on a vector or scalar field must be consistent with

already established results.

If W is the dot product, then for a vector A,

rrrrr WA ¼ lim
DV!0

1

DV

ðð
DS

dS WA
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or

divA ¼ lim
DV!0

1

DV

ðð
DS

dS �A
¼ lim

DV!0

1

DV

ðð
DS

A � n dS
established in Problem 6.19.

Similarly, if W is the cross product,

curl A ¼ rrrrr � A ¼ lim
DV!0

1

DV

ðð
DS

dS� A

¼ lim
DV!0

1

DV

ðð
DS

n� A dS

established in Problem 6.24(b).

Also, if W is ordinary multiplication, then for a scalar f,

rrrrr Wf ¼ lim
DV!0

1

DV

ðð
DS

dS W f or rrrrrf ¼ lim
DV!0

1

DV

ðð
DS

f dS

established in Problem 6.24(a).

6.26. Let S be a closed surface and let r denote the position vector of any point (x, y, z) measured from an
origin O. Prove that ðð

S

n � r
r3

dS

is equal to (a) zero ifO lies outside S; (b) 4p ifO lies inside S. This result is known asGauss’ theorem.

Solution

(a) By the divergence theorem, ðð
S

n � r
r3

dS ¼
ðð
V

ð
rrrrr � r

r3
dV

But rrrrr � (r=r3) ¼ 0 (Problem 4.19) everywhere within V provided r = 0 in V, that is, provided O is outside

of V and thus outside of S. Then

ðð
S

n � r
r3

dS ¼ 0

(b) If O is inside S, surround O by a small sphere s of radius a. Let t denote the region bounded by S and s.

Then, by the divergence theoremðð
Sþs

n � r
r3

dS ¼
ðð
S

n � r
r3

dSþ
ðð
s

n � r
r3

dS ¼
ððð
t

rrrrr � r

r3
dV ¼ 0

since r= 0 in t. Thus ðð
S

n � r
r3

dS ¼ �
ðð
s

n � r
r3

dS
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Now on s, r ¼ a,n ¼ � r

a
so that

n � r
r3

¼ (� r=a) � r
a3

¼ � r � r
a4

¼ � a2

a4
¼ � 1

a2
andðð

S

n � r
r3

dS ¼ �
ðð
s

n � r
r3

dS ¼
ðð
s

1

a2
dS ¼ 1

a2

ðð
s

dS ¼ 4pa2

a2
¼ 4p

6.27. Interpret Gauss’ theorem (Problem 6.26) geometrically.

Solution

Let dS denote an element of surface area and connect all points on the boundary of dS to O (see Fig. 6-12),

thereby forming a cone. Let dV be the area of that portion of a sphere with O as center and radius r which is

cut out by this cone; then the solid angle subtended by dS at O is defined as dv ¼ dV=r2 and is numerically

equal to the area of that portion of a sphere with centerO and unit radius cut out by the cone. Let n be the positive

unit normal to dS and call u the angle between n and r; then cos u ¼ n � r=r. Also,
dV ¼ +dS cos u ¼ +(n � r=r) dS so that dv ¼ +(n � r=r3) dS,

the þ or � being chosen according as n and r form an acute or an obtuse angle u with each other.

dw = 
dΩ
r2

r

n

1
O

dΩ

dS

Fig. 6-12

Let S be a surface, as in Fig. 6-13(a), such that any line meets S in not more than two points. IfO lies outside S,

then at a position such as 1, (n � r=r3) dS ¼ dv; whereas at the corresponding position 2, (n � r=r3) dS ¼ �dv.
An integration over these two regions gives zero, since the contributions to the solid angle cancel out. When the

integration is performed over S, it thus follows that
ÐÐ

S
(n � r=r3) dS ¼ 0, since for every positive contribution,

there is a negative one.

In case O is inside S, however, then at a position such as 3, (n � r=r3) dS ¼ dv and at 4, (n � r=r3) dS ¼ dv so

that the contributions add instead of cancel. The total solid angle in this case is equal to the area of a unit sphere,

which is 4p, so that
ÐÐ

S
(n � r=r3) dS ¼ 4p.

n

n

3

4

(a)

dw

dw

OS

O

1

2

n

(b)

O

O

S
1

2
3

4

O

Fig. 6-13
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For surfaces S, such that a line may meet S in more than two points, an exactly similar situation holds as

is seen by reference to Fig. 6-13. If O is outside S, for example, then a cone with vertex at O intersects S at

an even number of places and the contribution to the surface integral is zero since the solid angles subtended

at O cancel out in pairs. If O is inside S, however, a cone having vertex at O intersects S at an old number

of places and since cancellation occurs only for an even number of these, there will always be a contribution

of 4p for the entire surface S.

6.28. A fluid of density r(x, y, z, t) moves with velocity v(x, y, z, t). If there are no sources or sinks, prove
that

rrrrr � Jþ @r

@t
¼ 0

where J ¼ rv:

Solution

Consider an arbitrary surface enclosing a volume V of the fluid. At any time, the mass of fluid within V is

M ¼
ððð
V

r dV

The time rate of increase of this mass is

@M

@t
¼ @

@t

ððð
V

r dV ¼
ððð
V

@r

@t
dV

The mass of fluid per unit time leaving V is

ðð
S

rv � n dS
(see Problem 6.15) and the time rate of increase in mass is therefore

�
ðð
S

rv � n dS ¼ �
ððð
V

rrrrr� (rv) dV
by the divergence theorem. Then

ððð
V

@r

@t
dV ¼ �

ððð
V

rrrrr � (rv) dV
or

ððð
V

rrrrr � (rv)þ @r

@t

� �
dV ¼ 0

Since V is arbitrary, the integrand, assumed continuous, must be identically zero, by reasoning similar to that

used in Problem 6.12. Then

rrrrr � Jþ @r

@t
¼ 0

where J ¼ rv: The equation is called the continuity equation. If r is a constant, the fluid is incompressible and

rrrrr � v ¼ 0, that is, v is solenoidal.

The continuity equation also arises in electromagnetic theory, where r is the charge density and J ¼ rv is the
current density.
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6.29. If the temperature at any point (x, y, z) of a solid at time t is U(x, y, z, t) and if k, r, and c are, respect-
ively, the thermal conductivity, density, and specific heat of the solid, assumed constant, show that

@U

@t
¼ krrrrr2U

where k ¼ k=rc:

Solution

Let V be an arbitrary volume lying within the solid and let S denote its surface. The total flux of heat across S, or

the quantity of heat leaving S per unit time, isðð
S

(�krrrrrU) � n dS
Thus, the quantity of heat entering S per unit time isðð

S

(krrrrrU) � n dS ¼
ððð
V

rrrrr � (krrrrrU) dV (1)

by the divergence theorem. The heat contained in a volume V is given byððð
V

crU dV

Then the time rate of increase of heat is

@

@t

ððð
V

crU dV ¼
ððð
V

cr
@U

@t
dV (2)

Equating the right hand sides of (1) and (2),ððð
V

cr
@U

@t
� rrrrr � (krrrrrU)


 �
dV ¼ 0

and since V is arbitrary, the integrand, assumed continuous, must be identically zero so that

cr
@U

@t
¼ rrrrr � (krrrrrU)

or if k, c, r are constants,

@U

@t
¼ k

cr
rrrrr �rrrrrU ¼ krrrrr2U

The quantity k is called the diffusivity. For steady-state heat flow (i.e. @U=@t ¼ 0 orU is independent of time), the

equation reduces to Laplace’s equation rrrrr2U ¼ 0.

Stokes’ Theorem

6.30. (a) Express Stokes’ theorem in words and (b) write it in rectangular form.

Solution

(a) The line integral of the tangential component of a vector A taken around a simple closed curve C is equal to

the surface integral of the normal component of the curl of A taken over any surface S having C as its

boundary.

(b) As in Problem 6.14(b),

A ¼ A1iþ A2jþ A3k, n ¼ cosaiþ cosbjþ cos gk
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Then

rrrrr � A ¼
i j k
@

@x

@

@y

@

@z
A1 A2 A3

��������

�������� ¼
@A3

@y
� @A2

@z

� �
iþ @A1

@z
� @A3

@x

� �
jþ @A2

@x
� @A1

@y

� �
k

(rrrrr � A)� n ¼ @A3

@y
� @A2

@z

� �
cosaþ @A1

@z
� @A3

@x

� �
cosbþ @A2

@x
� @A1

@y

� �
cos g

A� dr ¼ (A1iþ A2jþ A3k)� (dxiþ dyjþ dzk) ¼ A1 dxþ A2 dyþ A3 dz

and Stokes’ theorem becomesðð
S

@A3

@y
� @A2

@z

� �
cosaþ @A1

@z
� @A3

@x

� �
cosbþ @A2

@x
� @A1

@y

� �
cos g


 �
dS ¼

þ
C

A1 dxþ A2 dyþ A3 dz

6.31. Prove Stokes’ theorem.

Solution

Let S be a surface such that its projections on the xy-, yz-, and xz-planes are regions bounded by simple closed

curves, as indicated in Fig. 6-14. Assume S to have representation z ¼ f (x, y) or x ¼ g(y, z) or y ¼ h(x, z), where

f, g, and h are single-valued, continuous, and differentiable functions, respectively. We must show thatðð
S

(rrrrr � A) � n dS ¼
ðð
S

[rrrrr � (A1iþ A2jþ A3k)] � n dS

¼
þ
C

A � dr
where C is the boundary of S.

n

y

Γx

z

dx dy

O

C

S

R

dS

Fig. 6-14

Consider first
ÐÐ

S
[rrrrr � (A1i)] � n dS. Since

rrrrr � (A1i) ¼
i j k
@

@x

@

@y

@

@z
A1 0 0

��������

�������� ¼
@A1

@z
j� @A1

@y
k
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then

[rrrrr � (A1i)]� n dS ¼ @A1

@z
n� j� @A1

@y
n� k� �

dS (1)

If z ¼ f (x, y) is taken as the equation of S, then the position vector to any point of S is r ¼ xiþ yjþ zk ¼
xiþ yjþ f (x, y)k so that @r=@y ¼ jþ (@z=@y)k ¼ jþ (@f =@y)k. But @r=@y is a vector tangent to S (see

Problem 3.25) and is thus perpendicular to n, so that

n � @r
@y

¼ n � jþ @z

@y
n � k ¼ 0 or n � j ¼ � @z

@y
n � k

Substitute in (1) to obtain

@A1

@z
n � j� @A1

@y
n � k� �

dS ¼ � @A1

@z

@z

@y
n � k� @A1

@y
n � k� �

dS

or

[rrrrr � (A1i)] � n dS ¼ � @A1

@y
þ @A1

@z

@z

@y

� �
n � k dS (2)

Now on S, A1(x, y, z) ¼ A1(x, y, f (x, y)) ¼ F(x, y); hence
@A1

@y
þ @A1

@z

@z

@y
¼ @F

@y
and (2) becomes

[rrrrr � (A1i)] � n dS ¼ � @F

@y
n � k dS ¼ � @F

@y
dx dy

Then ðð
S

[rrrrr � (A1i)] � n dS ¼
ðð
R

� @F

@y
dx dy

where R is the projection of S on the xy-plane. By Green’s theorem for the plane, the last integral equals
Þ
G F dx

where G is the boundary of R. Since at each point (x, y) of G the value of F is the same as the value of A1 at each

point (x, y, z) of C, and since dx is the same for both curves, we must haveþ
G

F dx ¼
þ
C

A1 dx

or ðð
S

[rrrrr � (A1i)] � n dS ¼
þ
C

A1 dx

Similarly, by projections on the other coordinate planes,ðð
S

[rrrrr � (A2 j)] � n dS ¼
þ
C

A2 dy and

ðð
S

[rrrrr � (A3k)] � n dS ¼
þ
C

A3 dz

Thus, by addition, ðð
S

(rrrrr � A) � n dS ¼
þ
C

A � dr
The theorem is also valid for surfaces S which may not satisfy the restrictions imposed above. Specifically

suppose S can be subdivided into surfaces S1, S2, . . . , Sk with boundaries C1,C2, . . . ,Ck which do satisfy the

restrictions. Then Stokes’ theorem holds for each such surface. Adding these surface integrals, the total

surface integral over S is obtained. Adding the corresponding line integrals over C1,C2, . . . ,Ck, the line integral

over C is obtained.
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6.32. Verify Stokes’ theorem for A ¼ (2x� y)i� yz2j� y2zk, where S is the upper half surface of the
sphere x2 þ y2 þ z2 ¼ 1 and C is its boundary. Let R be the projection of S on the xy-plane.

Solution

The boundary C of S is a circle in the xy-plane of radius one and center at the origin. Let x ¼ cos t, y ¼ sin t,

z ¼ 0, 0 � t , 2p be parametric equations of C. Thenþ
C

A � dr ¼ þ
C

(2x� y) dx� yz2 dy� y2z dz

¼
ð2p
0

(2 cos t � sin t)(�sin t) dt ¼ p

Also,

rrrrr � A ¼
i j k
@

@x

@

@y

@

@z

2x� y �yz2 �y2z

��������

�������� ¼ k

Then ðð
S

(rrrrr � A) � n dS ¼
ðð
S

k � n dS ¼
ðð
R

dx dy

since n� k dS ¼ dx dy and R is the projection of S on the xy-plane. This last integral equals

ð1
x¼�1

ðffiffiffiffiffiffiffiffi1�x2
p

y¼�
ffiffiffiffiffiffiffiffi
1�x2

p
dy dx ¼ 4

ð1
0

ðffiffiffiffiffiffiffiffi1�x2
p

0

dy dx ¼ 4

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx ¼ p

and Stokes’ theorem is verified.

6.33. Prove that a necessary and sufficient condition that
Þ
C
A � dr ¼ 0 for every closed curve C is that

rrrrr � A ¼ 0 identically.

Solution

Sufficiency. Suppose rrrrr � A ¼ 0. Then, by Stokes’ theoremþ
C

A� dr ¼ ðð
S

(rrrrr � A) � n dS ¼ 0

Necessity. Suppose
Þ
C
A � dr ¼ 0 around every closed path C, and assume rrrrr � A= 0 at some point P. Then,

assuming rrrrr � A is continuous, there will be a region with P as an interior point, where rrrrr � A= 0. Let S be

a surface contained in this region whose normal n at each point has the same direction as rrrrr � A, that is,
where rrrrr � A ¼ an where a is a positive constant. Let C be the boundary of S. Then, by Stokes’ theoremþ

C

A � dr ¼ ðð
S

(rrrrr � A) � n dS ¼ a

ðð
S

n � n dS . 0

which contradicts the hypothesis that
Þ
C
A � dr ¼ 0 and shows that rrrrr � A ¼ 0.

It follows that rrrrr � A ¼ 0 is also a necessary and sufficient condition for a line integral
Ð P2

P1
A � dr to be

independent of the path joining points P1 and P2 (see Problems 5.10 and 5.11).

CHAPTER 6 Divergence, Stokes’, and Related Integral Theorems 151



6.34. Prove
Þ
dr� B ¼ ÐÐ

S
(n�rrrrr)� B dS.

Solution

In Stokes’ theorem, let A ¼ B� C where C is a constant vector. Thenþ
dr � (B� C) ¼

ðð
S

[rrrrr � (B� C)] � n dS

þ
C � (dr� B) ¼

ðð
S

[(C �rrrrr)B� C(rrrrr �B)] � n dS

C � þ dr� B ¼
ðð
S

[(C �rrrrr)B] � n dS�
ðð
S

[C(rrrrr �B)] � n dS

¼
ðð
S

C � [rrrrr(B � n)] dS� ðð
S

C � [n(rrrrr �B)] dS
¼ C � ðð

S

[rrrrr(B � n)� n(rrrrr �B)] dS ¼ C � ðð
S

(n�rrrrr)� B dS

Since C is an arbitrary constant vector
Þ
dr� B ¼ ÐÐ

S
(n�rrrrr)� B dS:

6.35. Suppose DS is a surface bounded by a simple closed curve C, P is any point of DS not on C, and n is a
unit normal to DS at P. Show that at P

(curlA) � n ¼ lim
DS!0

Þ
C
A � dr
DS

where the limit is taken in such a way that DS shrinks to P.

Solution

By Stokes’ theorem,
ÐÐ

DS (curl A) � n dS ¼ Þ
C
A � dr.

Using the mean value theorem for integrals as in Problems 6.19 and 6.24, this can be written

(curl A) � n ¼
Þ
C
A � dr
DS

and the required result follows upon taking the limit as DS ! 0.

This can be used as a starting point for defining curl A (see Problem 6.36) and is useful in obtaining curl A in

coordinate systems other than rectangular. Since
Þ
C
A � dr is called the circulation ofA about C, the normal com-

ponent of the curl can be interpreted physically as the limit of the circulation per unit area, thus accounting for

the synonym rotation of A (rot A) instead of curl of A.

6.36. Suppose curl A is defined according to the limiting process of Problem 6.35. Find the z component
of curl A.

G(x + , y + , z)Δx
2

Δy
2

H(x – , y + , z)Δx
2

Δy
2

F(x + , y – , z)Δx
2

Δy
2

E(x – , y – , z)Δx
2

Δy
2

y

z

O

x

k

P(x, y, z)

Fig. 6-15
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Let EFGH be a rectangle parallel to the xy-plane with interior point P(x, y, z) taken as midpoint, as shown in

Fig. 6-15. Let A1 and A2 be the components of A at P in the positive x and y directions, respectively.

If C is the boundary of the rectangle, then

þ
C

A � dr ¼ ð
EF

A � drþ ð
FG

A � drþ ð
GH

A � drþ ð
HE

A � dr
But

ð
EF

A � dr ¼ A1 � 1

2

@A1

@y
Dy

� �
Dx

ð
GH

A � dr ¼ � A1 þ 1

2

@A1

@y
Dy

� �
Dx

ð
FG

A � dr ¼ A2 þ 1

2

@A2

@x
Dx

� �
Dy

ð
HE

A � dr ¼ � A2 � 1

2

@A2

@x
Dx

� �
Dy

except for infinitesimals of higher order than Dx Dy.

Adding, we have approximately

þ
C

A � dr ¼ @A2

@x
� @A1

@y

� �
Dx Dy

Then, since DS ¼ Dx Dy,

z component of curl A ¼ (curl A) � k ¼ lim
DS!0

Þ
A � dr
DS

¼ lim
Dx!0
Dy!0

@A2

@x
� @A1

@y

� �
Dx Dy

Dx Dy

¼ @A2

@x
� @A1

@y

SUPPLEMENTARY PROBLEMS

6.37. Verify Green’s theorem in the plane for
Þ
C
(3x2 � 8y2) dxþ (4y� 6xy) dy, where C is the boundary of the region

defined by: (a) y ¼ ffiffiffi
x

p
, y ¼ x2; (b) x ¼ 0, y ¼ 0, xþ y ¼ 1.

6.38. Evaluate
Þ
C
(3xþ 4y) dxþ (2x� 3y) dy where C, a circle of radius two with center at the origin of the xy-plane,

is traversed in the positive sense.

6.39. Work the previous problem for the line integral
Þ
C
(x2 þ y2) dxþ 3xy2 dy.

6.40. Evaluate
Þ
(x2 � 2xy) dxþ (x2yþ 3) dy around the boundary of the region defined by y2 ¼ 8x and x ¼ 2

(a) directly, and (b) by using Green’s theorem.

6.41. Evaluate
Ð (p, 2)
(0, 0)

(6xy� y2) dxþ (3x2 � 2xy) dy along the cycloid x ¼ u� sin u, y ¼ 1� cos u.

6.42. Evaluate
Þ
(3x2 þ 2y) dx� (xþ 3 cos y) dy around the parallelogram having vertices at (0, 0), (2, 0), (3, 1),

and (1, 1).
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6.43. Find the area bounded by one arch of the cycloid x ¼ a(u� sin u), y ¼ a(1� cos u), a . 0, and the x axis.

6.44. Find the area bounded by the hypocycloid x2=3 þ y2=3 ¼ a2=3, a . 0.

Hint: Parametric equations are x ¼ a cos3 u, y ¼ a sin3 u.

6.45. Show that in polar coordinates (r,f), the expression x dy� y dx ¼ r2 df. Interpret 1
2

Ð
x dy� y dx.

6.46. Find the area of a loop of the four-leafed rose r ¼ 3 sin 2f.

6.47. Find the area of both loops of the lemniscate r2 ¼ a2 cos 2f.

6.48. Find the area of the loop of the folium of Descartes x3 þ y3 ¼ 3axy, a . 0 (see Fig. 6-16).

( a,   a)3
2

3
2

y

O
x + y + a = 0

x

Fig. 6-16

Hint: Let y ¼ tx and obtain the parametric equations of the curve. Then use the fact that

Area ¼ 1

2

þ
x dy� y dx ¼ 1

2

þ
x2d

� y
x

�
¼ 1

2

þ
x2 dt

6.49. Verify Green’s theorem in the plane for
Þ
C
(2x� y3) dx� xy dy, where C is the boundary of the region enclosed

by the circles x2 þ y2 ¼ 1 and x2 þ y2 ¼ 9.

6.50. Evaluate

ð(�1, 0)

(1, 0)

�y dxþ x dy

x2 þ y2
along the following paths:

(a) Straight line segments from (1, 0) to (1, 1), then to (�1, 1), then to (�1, 0).

(b) Straight line segments from (1, 0) to (1,�1), then to (�1,�1), then to (�1, 0).

Show that although @M=@y ¼ @N=@x, the line integral is dependent on the path joining (1, 0) to (�1, 0) and

explain.

6.51. By changing variables from (x, y) to (u, v) according to the transformation x ¼ x(u, v), y ¼ y(u, v), show that the

area A of a region R bounded by a simple closed curve C is given by

A ¼
ðð
R

J
x, y

u, v

� �����
���� du dv where J

x, y

u, v

� �
;

@x

@u

@y

@u
@x

@v

@y

@v

�������
�������

is the Jacobian of x and y with respect to u and v. What restrictions should you make? Illustrate the result where u

and v are polar coordinates.

Hint: Use the result A ¼ 1
2

Ð
x dy� y dx, transform to u, v coordinates and then use Green’s theorem.

6.52. Evaluate
ÐÐ

S
F � n dS, where F ¼ 2xyiþ yz2jþ xzk and S is:

(a) The surface of the parallelepiped bounded by x ¼ 0, y ¼ 0, z ¼ 0, x ¼ 2, y ¼ 1, and z ¼ 3.

(b) The surface of the region bounded by x ¼ 0, y ¼ 0, y ¼ 3, z ¼ 0, and xþ 2z ¼ 6.

154 CHAPTER 6 Divergence, Stokes’, and Related Integral Theorems



6.53. Verify the divergence theorem for A ¼ 2x2yi� y2jþ 4xz2k taken over the region in the first octant bounded by

y2 þ z2 ¼ 9 and x ¼ 2.

6.54. Evaluate
ÐÐ

S
r � n dS where (a) S is the sphere of radius 2 with center at (0, 0, 0), (b) S is the surface of the

cube bounded by x ¼ �1, y ¼ �1, z ¼ �1, x ¼ 1, y ¼ 1, z ¼ 1, (c) S is the surface bounded by the paraboloid

z ¼ 4� (x2 þ y2) and the xy-plane.

6.55. Suppose S is any closed surface enclosing a volume V and A ¼ axiþ byjþ czk. Prove thatÐÐ
S
A � n dS ¼ (aþ bþ c)V .

6.56. Suppose H ¼ curlA. Prove that
ÐÐ

S
H � n dS ¼ 0 for any closed surface S.

6.57. Suppose n is the unit outward drawn normal to any closed surface of area S. Show that
ÐÐÐ

V
div n dV ¼ S.

6.58. Prove

ððð
V

dV

r2
¼
ðð

S

r � n
r2

dS.

6.59. Prove
ÐÐ

S
r5n dS ¼ ÐÐÐ

V
5r3r dV .

6.60. Prove
ÐÐ

S
n dS ¼ 0 for any closed surface S.

6.61. Show that Green’s second identity can be written

ððð
V

(frrrrr2c� crrrrr2f) dV ¼
ðð
S

f
dc

dn
� c

df

dn

� �
dS:

6.62. Prove
ÐÐ

S
r� dS ¼ 0 for any closed surface S.

6.63. Verify Stokes’ theorem for A ¼ (y� zþ 2)iþ (yzþ 4)j� xzk, where S is the surface of the cube x ¼ 0,

y ¼ 0, z ¼ 0, x ¼ 2, y ¼ 2, z ¼ 2 above the xy-plane.

6.64. Verify Stokes’ theorem for F ¼ xzi� yjþ x2yk, where S is the surface of the region bounded by x ¼ 0,

y ¼ 0, z ¼ 0, 2xþ yþ 2z ¼ 8, which is not included in the xz-plane.

6.65. Evaluate
ÐÐ

S
(rrrrr � A) � n dS, where A ¼ (x2 þ y� 4)iþ 3xyjþ (2xzþ z2)k and S is the surface of (a) the hemi-

sphere x2 þ y2 þ z2 ¼ 16 above the xy-plane, (b) the paraboloid z ¼ 4� (x2 þ y2) above the xy-plane.

6.66. Let A ¼ 2yzi� (xþ 3y� 2)jþ (x2 þ z)k. Evaluate
ÐÐ

S
(rrrrr � A) � n dS over the surface of intersection of the

cylinders x2 þ y2 ¼ a2, x2 þ z2 ¼ a2, which is included in the first octant.

6.67. A vector B is always normal to a given closed surface S. Show that
ÐÐÐ

V
curl B dV ¼ 0, where V is the region

bounded by S.

6.68. Let

þ
C

E� dr ¼ � 1

c

@

@t

ðð
S

H � dS, where S is any surface bounded by the curve C. Show that rrrrr � E ¼ � 1

c

@H

@t
.

6.69. Prove
Þ
C
f dr ¼ ÐÐ

S
dS� rrrrrf.

6.70. Use the operator equivalence of Solved Problem 6.25 to arrive at (a) rrrrrf, (b) rrrrr�A, (c) rrrrr � A in rectangular

coordinates.

6.71. Prove
ÐÐÐ

V
rrrrrf �A dV ¼ ÐÐ

S
fA� n dS� ÐÐÐ

V
frrrrr�A dV .

6.72. Let r be the position vector of any point relative to an origin O. Suppose f has continuous derivatives of order

two, at least, and let S be a closed surface bounding a volume V. Denote f at O by fo. Show that

ðð
S

1

r
rrrrrf� frrrrr 1

r

� �
 �� dS ¼
ððð
V

rrrrr2f

r
dV þ a

where a ¼ 0 or 4pfo according as O is outside or inside S.
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6.73. The potential f(P) at a point P(x, y, z) due to a system of charges (or masses) q1, q2, . . . , qn having position

vectors r1, r2, . . . , rn with respect to P is given by

f ¼
Xn
m¼1

qm

rm

Prove Gauss’ law ðð
S

E� dS ¼ 4pQ

where E ¼ �rrrrrf is the electric field intensity, S is a surface enclosing all the charges and Q ¼Pn
m¼1 qm is the

total charge within S.

6.74. If a region V bounded by a surface S has a continuous charge (or mass) distribution of density r, then the potential

f(P) at a point P is defined by

f ¼
ððð
V

r dV

r
:

Deduce the following under suitable assumptions:

(a)
ÐÐ

S
E� dS ¼ 4p

ÐÐÐ
V
r dV , where E ¼ �rrrrrf.

(b) rrrrr2f ¼ �4pr (Poisson’s equation) at all points P where charges exist, and rrrrr2f ¼ 0 (Laplace’s equation)

where no charges exist.

ANSWERS TO SUPPLEMENTARY PROBLEMS

6.37. (a) common value ¼ 3=2,

(b) common value ¼ 5=3

6.48. 3a2=2

6.38. �8p 6.49. common value ¼ 60p

6.39. 12p 6.50. (a) p, (b) �p

6.40. 128/5 6.52. (a) 30, (b) 351/2

6.41. 6p2 � 4p 6.53. 180

6.42. �6 6.54. (a) 32p, (b) 24, (c) 24p

6.43. 3pa2 6.63. common value ¼ �4

6.44. 3pa2=8 6.64. common value ¼ 32=3

6.46. 9p=8 6.65. (a) �16p, (b) �4p

6.47. a2 6.66. �a2(3pþ 8a)=12
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CHAP T E R 7

Curvilinear Coordinates

7.1 Introduction

The reader is familiar with the rectangular coordinate system, (x, y), and the polar coordinate system, (r, u),
in the plane. The two systems are related by the equations

x ¼ r cos u, y ¼ r sin u and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, u ¼ arc tan(y=x)

This chapter treats general coordinate systems in space.

7.2 Transformation of Coordinates

Suppose the rectangular coordinates (x, y, z) of any point in space are each expressed as functions of
(u1, u2, u3). Say,

x ¼ x(u1, u2, u3), y ¼ y(u1, u2, u3), z ¼ z(u1, u2, u3) (1)

Suppose that (1) can be solved for u1, u2, u3 in terms of x, y, z, that is,

u1 ¼ u1(x, y, z), u2 ¼ u2(x, y, z), u3 ¼ u3(x, y, z) (2)

The functions in (1) and (2) are assumed to be single-valued and to have continuous derivatives so that the
correspondence between (x, y, z) and (u1, u2, u3) is unique. In practice, this assumption may not apply at
certain points and special consideration is required.

Given a point P with rectangular coordinates (x, y, z), we can, from (2), associate a unique set of coor-
dinates (u1, u2, u3) called the curvilinear coordinates of P. The sets of equations (1) or (2) define a trans-
formation of coordinates.

7.3 Orthogonal Curvilinear Coordinates

The surfaces u1 ¼ c1, u2 ¼ c2, u3 ¼ c3, where c1, c2, c3 are constants, are called coordinate surfaces and
each pair of these surfaces intersect in curves called coordinate curves or lines (see Fig. 7-1). If the coor-
dinate surfaces intersect at right angles, the curvilinear coordinate system is called orthogonal. The u1, u2,
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and u3 coordinate curves of a curvilinear system are analogous to the x, y, and z coordinate axes of a
rectangular system.

u2 = c2

u1 = c1

u3 = c3

u3 curve

u2 curveu1 curve

z

x

y

u3

u2

u1

E2

E1

E3

P

e3

e2
e1

Fig. 7-1 Fig. 7-2

7.4 Unit Vectors in Curvilinear Systems

Let r ¼ xiþ yjþ zk be the position vector of a point P in space. Then (1) can be written r ¼ r(u1, u2, u3). A
tangent vector to the u1 curve at P (for which u2 and u3 are constants) is @r=@u1. Then a unit tangent vector

in this direction is e1 ¼ (@r=@u1)
�
@r=@u1
�� �� so that @r=@u1 ¼ h1e1 where h1 ¼ @r=@u1

�� ��. Similarly, if e2 and

e3 are unit tangent vectors to the u2 and u3 curves at P, respectively, then @r=@u2 ¼ h2e2 and @r=@u3 ¼ h3e3
where h2 ¼ @r=@u2

�� �� and h3 ¼ @r=@u3
�� ��. The quantities h1, h2, h3 are called scale factors. The unit vectors

e1, e2, e3 are in the directions of increasing u1, u2, u3, respectively.
Since rrrrru1 is a vector at P normal to the surface u1 ¼ c1, a unit vector in this direction is given by

E1 ¼ rrrrru1=jrrrrru1j. Similarly, the unit vectors E2 ¼ rrrrru2=jrrrrru2j and E3 ¼ rrrrru3=jrrrrru3j at P are normal to
the surfaces u2 ¼ c2 and u3 ¼ c3, respectively.

Thus, at each point P of a curvilinear system, there exist, in general, two sets of unit vectors, e1, e2, e3
tangent to the coordinate curves and E1,E2,E3 normal to the coordinate surfaces (see Fig. 7-2). The sets
become identical if and only if the curvilinear coordinate system is orthogonal (see Problem 7.19). Both
sets are analogous to the i, j, k unit vectors in rectangular coordinates but are unlike them in that they
may change directions from point to point. It can be shown (see Problem 7.15) that the sets
@r=@u1, @r=@u2, @r=@u3 and rrrrru1,rrrrru2,rrrrru3 constitute reciprocal systems of vectors.

A vector A can be represented in terms of the unit base vectors e1, e2, e3 or E1,E2,E3 in the form

A ¼ A1e1 þ A2e2 þ A3e3 ¼ a1E1 þ a2E2 þ a3E3

where A1,A2,A3 and a1, a2, a3 are the respective components of A in each system.

We can also represent A in terms of the base vectors @r=@u1, @r=@u2, @r=@u3 or rrrrru1,rrrrru2,rrrrru3, which are
called unitary base vectors but are not unit vectors in general. In this case

A ¼ C1

@r

@u1
þ C2

@r

@u2
þ C3

@r

@u3
¼ C1a1 þ C2a2 þ C3a3

and

A ¼ c1rrrrru1 þ c2rrrrru2 þ c3rrrrru3 ¼ c1b1 þ c2b2 þ c3b3

where C1,C2,C3 are called the contravariant components of A and c1, c2, c3 are called the covariant
components of A (see Problems 7.33 and 7.34). Note that ap ¼ @r=@up,bp ¼ rrrrrup, p ¼ 1, 2, 3.
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7.5 Arc Length and Volume Elements

Recall first that the position vector of a point P can be written in the form r ¼ r(u1, u2, u3). Then

dr ¼ @r

@u1
du1 þ @r

@u2
du2 þ @r

@u3
du3 ¼ h1 du1e1 þ h2 du2e2 þ h3 du3e3

Then the differential of arc length ds is determined from ds2 ¼ dr � dr. For orthogonal systems,
e1� e2 ¼ e2� e3 ¼ e3� e1 ¼ 0 and

ds2 ¼ h21 du
2
1 þ h22 du

2
2 þ h23 du

2
3

For non-orthogonal or general curvilinear systems, see Problem 7.17.
Along a u1 curve, u2 and u3 are constants so that dr ¼ h1 du1e1. Then the differential of arc length ds1

along u1 at P is h1 du1. Similarly, the differential arc lengths along u2 and u3 at P are ds2 ¼
h2 du2, ds3 ¼ h3 du3.

Referring to Fig. 7-3, the volume element for an orthogonal curvilinear coordinate system is given by

dV ¼ j(h1 du1e1) � (h2 du2e2)� (h3 du3e3)j ¼ h1h2h3 du1 du2 du3

since je1� e2 � e3j ¼ 1.

h3 du3 e3

P
h 1

du 1
e 1

h2 du2 e2

u1

u2

u3

Fig. 7-3

7.6 Gradient, Divergence, Curl

The operations of gradient, divergence, and curl can be expressed in terms of curvilinear coordinates.
Specifically, the following proposition applies.

PROPOSITION 7.1: Suppose F is a scalar function and A ¼ A1e1 þ A2e2 þ A3e3 is a vector function of
orthogonal curvilinear coordinates u1, u2, u3. Then the following laws hold.

(i) rrrrrF ¼ grad F ¼ 1

h1

@F

@u1
e1 þ 1

h2

@F

@u2
e2 þ 1

h3

@F

@u3
e3

(ii) rrrrr�A ¼ div A ¼ 1

h1h2h3

@

@u1
(h2h3A1)þ @

@u2
(h3h1A2)þ @

@u3
(h1h2A3)


 �

(iii) rrrrr � A ¼ curl A ¼ 1

h1h2h3

h1e1 h2e2 h3e3
@

@u1

@

@u2

@

@u3
h1A1 h2A2 h3A3

��������

��������
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(iv) rrrrr2F ¼ Laplacian of F

¼ 1

h1h2h3

@

@u1

h2h3

h1

@F

@u1

� �
þ @

@u2

h3h1

h2

@F

@u2

� �
þ @

@u3

h1h2

h3

@F

@u3

� �
 �

Observe that if h1 ¼ h2 ¼ h3 ¼ 1, and e1, e2, e3 are replaced by i, j, k, then the above laws reduce to the
usual expressions in rectangular coordinates where (u1, u2, u3) is replaced by (x, y, z).

Extensions of the above results are achieved by a more general theory of curvilinear systems using the
methods of tensor analysis, which is considered in Chapter 8.

7.7 Special Orthogonal Coordinate Systems

The following is a list of nine special orthogonal coordinate systems beside the usual rectangular coordi-
nates (x, y, z).

1. Cylindrical Coordinates ( r, f, z).
See Fig. 7-4. Here

x ¼ r cosf, y ¼ r sinf, z ¼ z

where r � 0, 0 � f , 2p, �1 , z , 1, hr ¼ 1, hf ¼ r, and hz ¼ 1:

2. Spherical Coordinates (r, uuuuu, fffff).
See Fig. 7-5. Here

x ¼ r sin u cosf, y ¼ r sin u sinf, z ¼ r cos u

where r � 0, 0 � f , 2p, 0 � u � p, hr ¼ 1, hu ¼ r, and hf ¼ r sin u:

ez

ef

er

(r, f, z)

f

x

y
r

z

z

x

y

P(r, q, f)

y

z

x

x f

q
z

y

eq

ef

er

Fig. 7-4 Fig. 7-5

3. Parabolic Cylindrical Coordinates (u, vvvvv, z).
See Fig. 7-6. Here

x ¼ 1
2
(u2 � v2), y ¼ uv, z ¼ z

where �1 , u , 1, v � 0, �1 , z , 1, hu ¼ hv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, and hz ¼ 1:
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In cylindrical coordinates, u ¼ ffiffiffiffiffi
2r

p
cos (f=2), v ¼

ffiffiffiffiffi
2r

p
sin (f=2), z ¼ z.

The traces of the coordinate surfaces on the xy-plane are shown in Fig. 7-6. They are confocal
parabolas with a common axis.

u = 2

u = 3/2

u = 1

u = 1/2

u = 0P

eu

eu

u = 0

u = 1/2

u = 1

u = 3/2

u = 2

u = 5/2

u = 1/2

u = 1

u = 3/2

u = 2

u = 5/2u = –5/2

u = –2

u = –3/2

u = –1

u = –1/2

x

u = 5/2
y

Fig. 7-6

4. Paraboloidal Coordinates (u, vvvvv, f).
Here

x ¼ uv cosf, y ¼ uv sinf, z ¼ 1
2
(u2 � v2)

where u � 0, v � 0, 0 � f , 2p, hu ¼ hv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, and hf ¼ uv:

Two sets of coordinate surfaces are obtained by revolving the parabolas of Fig. 7-6 above about the
x-axis which is relabeled the z-axis. The third set of coordinate surfaces are planes passing through
this axis.

5. Elliptic Cylindrical Coordinates (u, vvvvv, z).
See Fig. 7-7. Here

x ¼ a cosh u cos v, y ¼ a sinh u sin v, z ¼ z

where u � 0, 0 � v , 2p, �1, z ,1, hu ¼ hv ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 uþ sin2 v

p
, and hz ¼ 1.
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The traces of the coordinate surfaces on the xy-plane are shown in Fig. 7-7. They are confocal
ellipses and hyperbolas.

u = 0 x

u
=

π/
2

u = 2π

u = π

u = 2

y

u = 3/2

u = 3/2

u = 3π/2u
= 

4π
/3

u = 5π/4

u = 7π/6

u = 5π/6

u
= 3π/4

u
= 2π/3

u = 1

u = 1

u = 2

u = π/6

u = 11π/6

u = 7π/4u
= 5π/3

u = π/4
u = π/3

P

eu
eu

(–a, 0) u = 0 (a, 0)

Fig. 7-7

6. Prolate Spheroidal Coordinates (j, h, f).
Here:

x ¼ a sinh j sinh cosf, y ¼ a sinh j sinh sinf, z ¼ a cosh j cosh

where j � 0, 0 � h � p, 0 � f , 2p, hj ¼ hh ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2jþ sin2 h

p
, and hf ¼ a sinh j sinh:

Two sets of coordinate surfaces are obtained by revolving the curves of Fig. 7-7 about the
x-axis which is relabeled the z-axis. The third set of coordinate surfaces are planes passing through
this axis.

7. Oblate Spheroidal Coordinates (j, h, f).
Here:

x ¼ a cosh j cosh cosf, y ¼ a cosh j cosh sinf, z ¼ a sinh j sinh

where j � 0, �p=2 � h � p=2, 0 � f, 2p, hj ¼ hh ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 jþ sin2 h

q
, and hf ¼ a cosh j cos h.

Two sets of coordinate surfaces are obtained by revolving the curves of Fig. 7-7 about the y-axis
which is relabeled the z-axis. The third set of coordinate surfaces are planes passing through this axis.
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8. Ellipsoidal Coordinates (l, m, n).
Here

x2

a2 � l
þ y2

b2 � l
þ z2

c2 � l
¼ 1, l , c2 , b2 , a2

x2

a2 � m
þ y2

b2 � m
þ z2

c2 � m
¼ 1, c2 , m , b2 , a2

x2

a2 � n
þ y2

b2 � n
þ z2

c2 � n
¼ 1, c2 , b2 , n , a2

hl ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m� l)(n� l)

(a2 � l)(b2 � l)(c2 � l)

r
,

hm ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� m)(l� m)

(a2 � m)(b2 � m)(c2 � m)

s

hn ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l� n)(m� n)

(a2 � n)(b2 � n)(c2 � n)

r

9. Bipolar Coordinates (u, vvvvv, z).
See Fig. 7-8. Here

x2 þ (y� a cot u)2 ¼ a2csc2 u, (x� a coth v)2 þ y2 ¼ a2csch2 v, z ¼ z

or

x ¼ a sinh v

cosh v� cos u
, y ¼ a sin u

cosh v� cos u
, z ¼ z

where 0 � u , 2p, �1 , v , 1, �1 , z , 1, hu ¼ hv ¼ a=(cosh v� cos u), and hz ¼ 1:
The traces of the coordinate surfaces on the xy-plane are shown in Fig. 7-8. By revolving the curves

of Fig. 7-8 about the y-axis and relabeling this the z-axis, a toroidal coordinate system is obtained.

u
=

π/
2

u = π/4

u = π/6

u
= 0.5P

u = 1

u
=

 0

u = 2

u
= 

3π
/2

u = 7π/4

u = 11π/6

u = –0
.5

u = –1

u = –2

eu

eu

y

x
(–a, 0) or u = –∞ (a, 0) or u = ∞

Fig. 7-8
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SOLVED PROBLEMS

7.1. Describe the coordinate surfaces and coordinate curves for (a) cylindrical and (b) spherical
coordinates.

Solution

(a) The coordinate surfaces (or level surfaces) are:

r ¼ c1 cylinders coaxial with the z-axis (or z-axis if c1 ¼ 0).

f ¼ c2 planes through the z-axis.

z ¼ c3 planes perpendicular to the z-axis.

The coordinate curves are:

Intersection of r ¼ c1 and f ¼ c2 (z curve) is a straight line.

Intersection of r ¼ c1 and z ¼ c3 (f curve) is a circle (or point).

Intersection of f ¼ c2 and z ¼ c3 (r curve) is a straight line.

(b) The coordinate surfaces are:

r ¼ c1 spheres having center at the origin (or origin if c1 ¼ 0).

u ¼ c2 cones having vertex at the origin (lines if c2 ¼ 0 or p, and the xy-plane if

c2 ¼ p=2).
f ¼ c3 planes through the z-axis.

The coordinate curves are:

Intersection of r ¼ c1 and u ¼ c2 (f curve) is a circle (or point).

Intersection of r ¼ c1 and f ¼ c3 (u curve) is a semi-circle (c1=0).

Intersection of u ¼ c2 and f ¼ c3 (r curve) is a line.

7.2. Determine the transformation from cylindrical to rectangular coordinates.

Solution

The equations defining the transformation from rectangular to cylindrical coordinates are

x ¼ r cosf (1)

y ¼ r sinf (2)

z ¼ z (3)

Squaring (1) and (2) and adding r2( cos2 fþ sin2 f) ¼ x2 þ y2 or r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, since cos2 fþ sin2 f ¼ 1

and r is positive:
Dividing equation (2) by (1),

y

x
¼ r sinf

r cosf
¼ tanf or f ¼ arc tan

y

x

Then the required transformation is

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
(4)

f ¼ arc tan
y

x
(5)

z ¼ z (6)

For points on the z-axis (x ¼ 0, y ¼ 0), note that f is indeterminate. Such points are called singular points of

the transformation.
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7.3. Prove that a cylindrical coordinate system is orthogonal.

Solution

The position vector of any point in cylindrical coordinates is

r ¼ xiþ yjþ zk ¼ r cosfiþ r sinfjþ zk

The tangent vectors to the r, f, and z curves are given respectively by @r=@r, @r=@f, and @r=@z where

@r

@r
¼ cosfiþ sinfj,

@r

@f
¼ �r sinfiþ r cosfj,

@r

@z
¼ k

The unit vectors in these directions are

e1 ¼ er ¼ @r=@r

j@r=@rj ¼
cosfiþ sinfjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 fþ sin2 f

p ¼ cosfiþ sinfj

e2 ¼ ef ¼ @r=@f

j@r=@fj ¼
�r sinfiþ r cosfjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 sin2 fþ r2 cos2 f

p ¼ � sinfiþ cosfj

e3 ¼ ez ¼ @r=@z

j@r=@zj ¼ k

Then

e1� e2 ¼ (cosfiþ sinfj) � (�sinfiþ cosfj) ¼ 0

e1� e3 ¼ (cosfiþ sinfj) � (k) ¼ 0

e2� e3 ¼ (�sinfiþ cosfj) � (k) ¼ 0

and so e1, e2, and e3 are mutually perpendicular and the coordinate system is orthogonal.

7.4. Represent the vector A ¼ zi� 2xjþ yk in cylindrical coordinates. Thus determine Ar, Af, and Az.

Solution

From Problem 7.3,

er ¼ cosfiþ sinfj (1)

ef ¼ � sinfiþ cosfj (2)

ez ¼ k (3)

Solving (1) and (2) simultaneously,

i ¼ cosfer � sinfef, j ¼ sinfer þ cosfef:

Then

A ¼ zi� 2xjþ yk

¼ z(cosfer � sinfef)� 2r cosf(sinfer þ cosfef)þ r sinfez

¼ (z cosf� 2r cosf sinf)er � (z sinfþ 2r cos2 f)ef þ r sinfez

and

Ar ¼ z cosf� 2r cosf sinf, Af ¼ �z sinf� 2r cos2 f, Az ¼ r sinf:

7.5. Prove
d

dt
er ¼ _fef,

d

dt
ef ¼ � _fer where dots denote differentiation with respect to time t.

Solution

From Problem 7.3

er ¼ cosfiþ sinfj, ef ¼ �sinfiþ cosfj
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Then
d

dt
er ¼ �(sinf) _fiþ (cosf) _fj ¼ (�sinfiþ cosfj) _f ¼ _fef

d

dt
ef ¼ �(cosf) _fi� (sinf) _fj ¼ �(cosfiþ sinfj) _f ¼ � _fer

7.6. Express the velocity v and acceleration a of a particle in cylindrical coordinates.

Solution

In rectangular coordinates, the position vector is r ¼ xiþ yjþ zk and the velocity and acceleration vectors are

v ¼ dr

dt
¼ _xiþ _yjþ _zk and a ¼ d2r

dt2
¼ €xiþ €yjþ €zk

In cylindrical coordinates, using Problem 7.4.

r ¼ xiþ yjþ zk ¼ (r cosf)(cosfer � sinfef)þ (r sinf)(sinfer þ cosfef)þ zez

¼ rer þ zez

Then
v ¼ dr

dt
¼ dr

dt
er þ r

der

dt
þ dz

dt
ez ¼ _rer þ r _fef þ _zez

using Problem 7.5. Differentiating again,

a ¼ d2r

dt2
¼ d

dt
(_rer þ r _fef þ _zez)

¼ _r
der

dt
þ €rer þ r _f

def

dt
þ r €fef þ _r _fef þ €zez

¼ _r _fef þ €rer þ r _f(� _fer)þ r €fef þ _r _fef þ €zez

¼ (€r� r _f2)er þ (r €fþ 2_r _f)ef þ €zez

using Problem 7.5.

7.7. Find the square of the element of arc length in cylindrical coordinates and determine the correspond-
ing scale factors.

Solution

First Method.

x ¼ r cosf, y ¼ r sinf, z ¼ z

dx ¼ �r sinf dfþ cosf dr, dy ¼ r cosf dfþ sinf dr, dz ¼ dz

Then

ds2 ¼ dx2 þ dy2 þ dz2 ¼ (�r sinf dfþ cosf dr)2 þ (r cosf dfþ sinf dr)2 þ (dz)2

¼ (dr)2 þ r2(df)2 þ (dz)2 ¼ h21(dr)
2 þ h22(df)

2 þ h23(dz)
2

and h1 ¼ hr ¼ 1, h2 ¼ hf ¼ r, h3 ¼ hz ¼ 1 are the scale factors.

Second Method. The position vector is r ¼ r cosfiþ r sinfjþ zk. Then

dr ¼ @r

@r
drþ @r

@f
dfþ @r

@z
dz

¼ (cosfiþ sinfj) drþ (�r sinfiþ r cosfj) dfþ k dz

¼ (cosf dr� r sinf df)iþ (sinf drþ r cosf df)jþ k dz

Thus

ds2 ¼ dr � dr ¼ (cosf dr� r sinf df)2 þ (sinf drþ r cosf df)2 þ (dz)2

¼ (dr)2 þ r2(df)2 þ (dz)2
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7.8. Work Problem 7.7 for (a) spherical and (b) parabolic cylindrical coordinates.

Solution

(a) x ¼ r sin u cosf, y ¼ r sin u sinf, z ¼ r cos u

Then

dx ¼ �r sin u sinf dfþ r cos u cosf duþ sin u cosf dr

dy ¼ r sin u cosf dfþ r cos u sinf duþ sin u sinf dr

dz ¼ �r sin u duþ cos u dr

and

(ds)2 ¼ (dx)2 þ (dy)2 þ (dz)2 ¼ (dr)2 þ r2(du)2 þ r2 sin2 u(df)2

The scale factors are h1 ¼ hr ¼ 1, h2 ¼ hu ¼ r, h3 ¼ hf ¼ r sin u.

(b) x ¼ 1
2
(u2 � v2), y ¼ uv, z ¼ z

Then

dx ¼ u du� v dv, dy ¼ u dvþ v du, dz ¼ dz

and

(ds)2 ¼ (dx)2 þ (dy)2 þ (dz)2 ¼ (u2 þ v2)(du)2 þ (u2 þ v2)(dv)2 þ (dz)2

The scale factors are h1 ¼ hu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, h2 ¼ hv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, h3 ¼ hz ¼ 1.

7.9. Sketch a volume element in (a) cylindrical and (b) spherical coordinates giving the magnitudes of
its edges.

Solution

(a) The edges of the volume element in cylindrical coordinates (Fig. 7-9(a)) have magnitudes r df, dr, and dz.

This could also be seen from the fact that the edges are given by

ds1 ¼ h1du1 ¼ (1)(dr) ¼ dr, ds2 ¼ h2du2 ¼ r df, ds3 ¼ (1)(dz) ¼ dz

using the scale factors obtained from Problem 7.7.

(a) Volume element in cylindrical coordinates. (b) Volume element in spherical coordinates.

dV = (ρ df)(dρ)(dz)
= ρ dρ df dz

f

df ρ df
dρ
dz

df

dr

r

x

y

z

dV = (r sin q df)(r dθ)(dr)
= r2 sin q dr dθ df

r sin q df

P

dq
r

O

df

df

f

f

r sin q

q

y

z

x

r dq

dr

Fig. 7-9
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(b) The edges of the volume element in spherical coordinates (Fig. 7-9(b)) have magnitudes dr, r du, and

r sin u df. This could also be seen from the fact that the edges are given by

ds1 ¼ h1 du1 ¼ (1)(dr) ¼ dr, ds2 ¼ h2 du2 ¼ r du, ds3 ¼ h3 du3 ¼ r sin u df

using the scale factors obtained from Problem 7.8(a).

7.10. Find the volume element dV in (a) cylindrical, (b) spherical, and (c) parabolic cylindrical coordinates.

Solution

The volume element in orthogonal curvilinear coordinates u1, u2, u3 is

dV ¼ h1h2h3 du1 du2 du3

(a) In cylindrical coordinates, u1 ¼ r, u2 ¼ f, u3 ¼ z, h1 ¼ 1, h2 ¼ r, h3 ¼ 1 (see Problem 7.7). Then

dV ¼ (1)(r)(1) dr df dz ¼ r dr df dz

This can also be observed directly from Fig. 7-9(a) of Problem 7.9.

(b) In spherical coordinates, u1 ¼ r, u2 ¼ u, u3 ¼ f, h1 ¼ 1, h2 ¼ r, h3 ¼ r sin u (see Problem 7.8(a)). Then

dV ¼ (1)(r)(r sin u) dr du df ¼ r2 sin u dr du df

This can also be observed directly from Fig. 7-9(b).

(c) In parabolic cylindrical coordinates, u1 ¼ u, u2 ¼ v, u3 ¼ z, h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, h2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, h3 ¼ 1 (see

Problem 7.8(b)). Then

dV ¼ (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
)(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
)(1) du dv dz ¼ (u2 þ v2) du dv dz

7.11. Find (a) the scale factors and (b) the volume element dV in oblate spheroidal coordinates.

Solution

(a) x ¼ a cosh j cosh cosf, y ¼ a cosh j cosh sinf, z ¼ a sinh j sinh

dx ¼ �a cosh j cosh sinf df� a cosh j sinh cosf dhþ a sinh j cosh cosf dj

dy ¼ a cosh j cosh cosf df� a cosh j sinh sinf dhþ a sinh j cosh sinf dj

dz ¼ a sinh j cosh dhþ a cosh j sinh dj

Then

(ds)2 ¼ (dx)2 þ (dy)2 þ (dz)2 ¼ a2(sinh2 jþ sin2 h)(dj)2

þ a2(sinh2 jþ sin2 h)(dh)2

þ a2 cosh2 j cos2 h(df)2

and h1 ¼ hj ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 jþ sin2 h

p
, h2 ¼ hh ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 jþ sin2 h

p
, h3 ¼ hf ¼ a cosh j cosh.

(b) dV ¼ (a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 jþ sin2 h

q
)(a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 jþ sin2 h

q
)(a cosh j cosh) dj dh df

¼ a3(sinh2 jþ sin2 h) cosh j cosh dj dh df
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7.12. Find expressions for the elements of area in orthogonal curvilinear coordinates.

Solution

Referring to Fig. 7-3, the area elements are given by

dA1 ¼ j(h2 du2e2)� (h3 du3e3)j ¼ h2h3je2 � e3jdu2 du3 ¼ h2h3 du2 du3

since je2 � e3j ¼ je1j ¼ 1. Similarly

dA2 ¼ j(h1 du1e1)� (h3 du3e3)j ¼ h1h3 du1 du3

dA3 ¼ j(h1 du1e1)� (h2 du2e2)j ¼ h1h2 du1 du2

7.13. Suppose u1, u2, u3 are orthogonal curvilinear coordinates. Show that the Jacobian of x, y, z with
respect to u1, u2, u3 is

J
x, y, z

u1, u2, u3

� �
¼ @(x, y, z)

@(u1, u2, u3)
¼

@x

@u1

@y

@u1

@z

@u1
@x

@u2

@y

@u2

@z

@u2
@x

@u3

@y

@u3

@z

@u3

������������

������������
¼ h1h2h3

Solution

By Problem 2.38, the given determinant equals

@x

@u1
iþ @y

@u1
jþ @z

@u1
k

� �
� @x

@u2
iþ @y

@u2
jþ @z

@u2
k

� �
� @x

@u3
iþ @y

@u3
jþ @z

@u3
k

� �

¼ @r

@u1
� @r

@u2
� @r

@u3
¼ h1e1� h2e2 � h3e3

¼ h1h2h3e1� e2 � e3 ¼ h1h2h3

If the Jacobian equals zero identically, then @r=@u1, @r=@u2, @r=@u3 are coplanar vectors and the curvilinear

coordinate transformation breaks down, that is, there is a relation between x, y, z having the form F(x, y, z) ¼ 0.

We shall therefore require the Jacobian to be different from zero.

7.14. Evaluate
ÐÐÐ

V
(x2 þ y2 þ z2) dx dy dz where V is a sphere having center at the origin and radius

equal to a.

Solution

The required integral is equal to eight times the integral evaluated over that part of the sphere contained in the

first octant (see Fig. 7-10(a)).

x2 + y2 + z2 = a2

x2 + y2 = a2, z = 0 

dV = dx dy dz

x

y

z

(a)

r = a

x

y

z

(b)

dV = r2 sin q dr dq df
q

f

r

Fig. 7-10
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Then, in rectangular coordinates, the integral equals

8

ða
x¼0

ðffiffiffiffiffiffiffiffiffia2�x2
p

y¼0

ðffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia2�x2�y2
p

z¼0

(x2 þ y2 þ z2) dz dy dx

but the evaluation, although possible, is tedious. It is easier to use spherical coordinates for the evaluation.

In changing to spherical coordinates, the integrand x2 þ y2 þ z2 is replaced by its equivalent r2 while the

volume element dx dy dz is replaced by the volume element r2 sin u dr du df (see Problem 7.10(b)). To cover

the required region in the first octant, fix u and f (see Fig. 7-10(b)) and integrate from r ¼ 0 to r ¼ a; then

keep f constant and integrate from u ¼ 0 to p=2; finally, integrate with respect to f from f ¼ 0 to f ¼ p=2.
Here, we have performed the integration in the order r, u, f although any order can be used. The result is

8

ðp=2
f¼0

ðp=2
u¼0

ða
r¼0

(r2)(r2 sin u dr du df) ¼ 8

ðp=2
f¼0

ðp=2
u¼0

ða
r¼0

r4 sin u dr du df

¼ 8

ðp=2
f¼0

ðp=2
u¼0

r5

5
sin u

����
a

r¼0

du df ¼ 8a5

5

ðp=2
f¼0

ðp=2
u¼0

sin u du df

¼ 8a5

5

ðp=2
f¼0

� cos u

����
p=2

u¼0

df ¼ 8a5

5

ðp=2
f¼0

df ¼ 4pa5

5

Physically, the integral represents the moment of inertia of the sphere with respect to the origin, that is, the

polar moment of inertia, if the sphere has unit density.

In general, when transforming multiple integrals from rectangular to orthogonal curvilinear coordinates, the

volume element dx dy dz is replaced by h1h2h3 du1 du2 du3 or the equivalent

J
x, y, z

u1, u2, u3

� �
du1 du2 du3

where J is the Jacobian of the transformation from x, y, z to u1, u2, u3 (see Problem 7.13).

7.15. Let u1, u2, u3 be general coordinates. Show that @r=@u1, @r=@u2, @r=@u3 and rrrrru1, rrrrru2, rrrrru3 are reci-
procal systems of vectors.

Solution

We must show that

@r

@up
�rrrrruq ¼ 1 if p ¼ q

0 if p=q

�

where p and q can have any of the values 1, 2, 3. We have

dr ¼ @r

@u1
du1 þ @r

@u2
du2 þ @r

@u3
du3

Multiply by rrrrru1� . Then
rrrrru1� dr ¼ du1 ¼ rrrrru1� @r

@u1

� �
du1 þ rrrrru1� @r

@u2

� �
du2 þ rrrrru1� @r

@u3

� �
du3

or

rrrrru1� @r

@u1
¼ 1, rrrrru1� @r

@u2
¼ 0, rrrrru1� @r

@u3
¼ 0

Similarly, upon multiplying by rrrrru2� and rrrrru3� the remaining relations are proved.
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7.16. Prove
@r

@u1
� @r

@u2
� @r

@u3

� �
rrrrru1�rrrrru2 � rrrrru3f g ¼ 1.

Solution

From Problem 7.15, @r=@u1, @r=@u2, @r=@u3 and rrrrru1, rrrrru2, rrrrru3 are reciprocal systems of vectors. Then, the

required result follows from Problem 2.53(c).

The result is equivalent to a theorem on Jacobians for

rrrrru1�rrrrru2 � rrrrru3 ¼

@u1
@x

@u1
@y

@u1
@z

@u2
@x

@u2
@y

@u2
@z

@u3
@x

@u3
@y

@u3
@z

������������

������������
¼ J

u1, u2, u3

x, y, z

� �

and so J
x, y, z

u1, u2, u3

� �
J

u1, u2, u3

x, y, z

� �
¼ 1 using Problem 7.13.

7.17. Show that the square of the element of arc length in general curvilinear coordinates can be
expressed by

ds2 ¼
X3
p¼1

X3
q¼1

gpq dup duq

Solution

We have

dr ¼ @r

@u1
du1 þ @r

@u2
du2 þ @r

@u3
du3 ¼ a1 du1 þ a2 du2 þ a3 du3

Then

ds2 ¼ dr � dr ¼ a1�a1 du21 þ a1�a2 du1 du2 þ a1�a3 du1 du3

þ a2�a1 du2 du1 þ a2�a2 du22 þ a2�a3 du2 du3

þ a3�a1 du3 du1 þ a3�a2 du3 du2 þ a3�a3 du23

¼
X3
p¼1

X3
q¼1

gpq dup duq

where gpq ¼ ap�aq:
This is called the fundamental quadratic form or metric form. The quantities gpq are called metric coefficients

and are symmetric, that is, gpq ¼ gqp. If gpq ¼ 0, p = q, then the coordinate system is orthogonal. In this

case, g11 ¼ h21, g22 ¼ h22, g33 ¼ h23. The metric form extended to higher dimensional space is of fundamental

importance in the theory of relativity (see Chapter 8).

Gradient, Divergence, and Curl in Orthogonal Coordinates

7.18. Derive an expression for rrrrrF in orthogonal curvilinear coordinates.

Solution

Let rrrrrF ¼ f1e1 þ f2e2 þ f3e3 where f1, f2, f3 are to be determined. Since

dr ¼ @r

@u1
du1 þ @r

@u2
du2 þ @r

@u3
du3

¼ h1e1 du1 þ h2e2 du2 þ h3e3 du3
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we have

dF ¼ rrrrrF � dr ¼ h1f1 du1 þ h2f2 du2 þ h3f3 du3 (1)

But

dF ¼ @F

@u1
du1 þ @F

@u2
du2 þ @F

@u3
du3 (2)

Equating (1) and (2),

f1 ¼ 1

h1

@F

@u1
, f2 ¼ 1

h2

@F

@u2
, f3 ¼ 1

h3

@F

@u3
:

Then

rrrrrF ¼ e1

h1

@F

@u1
þ e2

h2

@F

@u2
þ e3

h3

@F

@u3

This indicates the operator equivalence

rrrrr ;
e1

h1

@

@u1
þ e2

h2

@

@u2
þ e3

h3

@

@u3

which reduces to the usual expression for the operator rrrrr in rectangular coordinates.

7.19. Let u1, u2, u3 be orthogonal coordinates. (a) Prove that jrrrrrupj ¼ h�1
p , p ¼ 1, 2, 3. (b) Show that

ep ¼ Ep.

Solution

(a) Let F ¼ u1 in Problem 7.18. Then rrrrru1 ¼ e1=h1 and so jrrrrru1j ¼ je1j=h1 ¼ h�1
1 , since je1j ¼ 1. Similarly,

by letting F ¼ u2 and u3, jrrrrru2j ¼ h�1
2 and jrrrrru3j ¼ h�1

3 .

(b) By definition, Ep ¼ rrrrrup
jrrrrrupj. From part (a), this can be written Ep ¼ hprrrrrup ¼ ep and the result is proved.

7.20. Prove e1 ¼ h2h3rrrrru2 �rrrrru3 with similar equations for e2 and e3, where u1, u2, u3 are orthogonal
coordinates.

Solution

From Problem 7.19,

rrrrru1 ¼ e1

h1
, rrrrru2 ¼ e2

h2
, rrrrru3 ¼ e3

h3
:

Then

rrrrru2 � rrrrru3 ¼ e2 � e3

h2h3
¼ e1

h2h3
and e1 ¼ h2h3rrrrru2 �rrrrru3:

Similarly

e2 ¼ h3h1rrrrru3 � rrrrru1 and e3 ¼ h1h2rrrrru1 �rrrrru2:

7.21. Show that in orthogonal coordinates

(a) rrrrr � (A1e1) ¼ 1

h1h2h3

@

@u1
(A1h2h3)

(b) rrrrr � (A1e1) ¼ e2

h3h1

@

@u3
(A1h1)� e3

h1h2

@

@u2
(A1h1)

with similar results for vectors A2e2 and A3e3.

172 CHAPTER 7 Curvilinear Coordinates



Solution

(a) From Problem 7.20,

rrrrr � (A1e1) ¼ rrrrr � (A1h2h3rrrrru2 � rrrrru3)
¼ rrrrr(A1h2h3) �rrrrru2 �rrrrru3 þ A1h2h3rrrrr � (rrrrru2 �rrrrru3)

¼ rrrrr(A1h2h3) � e2
h2

� e3

h3
þ 0 ¼ rrrrr(A1h2h3) � e1

h2h3

¼ e1

h1

@

@u1
(A1h2h3)þ e2

h2

@

@u2
(A1h2h3)þ e3

h3

@

@u3
(A1h2h3)


 �
� e1

h2h3

¼ 1

h1h2h3

@

@u1
(A1h2h3)

(b) rrrrr � (A1e1) ¼ rrrrr � (A1h1rrrrru1)
¼ rrrrr(A1h1)� rrrrru1 þ A1h1rrrrr � rrrrru1
¼ rrrrr(A1h1)� e1

h1
þ 0

¼ e1

h1

@

@u1
(A1h1)þ e2

h2

@

@u2
(A1h1)þ e3

h3

@

@u3
(A1h1)


 �
� e1

h1

¼ e2

h3h1

@

@u3
(A1h1)� e3

h1h2

@

@u2
(A1h1)

7.22. Express div A ¼ rrrrr �A in orthogonal coordinates.

Solution

rrrrr �A ¼ rrrrr � (A1e1 þ A2e2 þ A3e3) ¼ rrrrr � (A1e1)þ rrrrr � (A2e2)þ rrrrr � (A3e3)

¼ 1

h1h2h3

@

@u1
(A1h2h3)þ @

@u2
(A2h3h1)þ @

@u3
(A3h1h2)


 �

using Problem 7.21(a).

7.23. Express curl A ¼ rrrrr � A in orthogonal coordinates.

Solution

rrrrr � A ¼ rrrrr � (A1e1 þ A2e2 þ A3e3) ¼ rrrrr � (A1e1)þrrrrr � (A2e2)þ rrrrr � (A3e3)

¼ e2

h3h1

@

@u3
(A1h1)� e3

h1h2

@

@u2
(A1h1)þ e3

h1h2

@

@u1
(A2h2)� e1

h2h3

@

@u3
(A2h2)

þ e1

h2h3

@

@u2
(A3h3)� e2

h3h1

@

@u1
(A3h3)

¼ e1

h2h3

@

@u2
(A3h3)� @

@u3
(A2h2)


 �
þ e2

h3h1

@

@u3
(A1h1)� @

@u1
(A3h3)


 �

þ e3

h1h2

@

@u1
(A2h2)� @

@u2
(A1h1)


 �

using Problem 7.21(b). This can be written

rrrrr � A ¼ 1

h1h2h3

h1e1 h2e2 h3e3

@

@u1

@

@u2

@

@u3

A1h1 A2h2 A3h3

���������

���������
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7.24. Express rrrrr2c in orthogonal curvilinear coordinates.

Solution

From Problem 7.18,

rrrrrc ¼ e1

h1

@c

@u1
þ e2

h2

@c

@u2
þ e3

h3

@c

@u3
:

If A ¼ rrrrrc, then A1 ¼ 1

h1

@c

@u1
, A2 ¼ 1

h2

@c

@u2
, A3 ¼ 1

h3

@c

@u3
and by Problem 7.22,

rrrrr�A ¼ rrrrr�rrrrrc ¼ rrrrr2c

¼ 1

h1h2h3

@

@u1

h2h3

h1

@c

@u1

� �
þ @

@u2

h3h1

h2

@c

@u2

� �
þ @

@u3

h1h2

h3

@c

@u3

� �
 �

7.25. Use the integral definition

div A ¼ rrrrr �A ¼ lim
DV!0

ÐÐ
DS A � n dS

DV

(see Problem 6.19) to express rrrrr �A in orthogonal curvilinear coordinates.

Solution

Consider the volume element DV (see Fig. 7-11) having edges h1 Du1, h2 Du2, h3 Du3.
Let A ¼ A1e1 þ A2e2 þ A3e3 and let n be the outward drawn unit normal to the surface DS of DV . On face

JKLP, n ¼ �e1. Then, we have approximately,ð ð
JKLP

A � n dS ¼ (A � n at point P)(Area of JKLP)

¼ [(A1e1 þ A2e2 þ A3e3) � (�e1)](h2h3 Du2 Du3)

¼ �A1h2h3 Du2 Du3

On face EFGH, the surface integral is

A1h2h3 Du2 Du3 þ @

@u1
(A1h2h3 Du2 Du3)Du1

apart from infinitesimals of order higher than Du1 Du2 Du3. Then the net contribution to the surface integral from
these two faces is

@

@u1
(A1h2h3 Du2 Du3)Du1 ¼ @

@u1
(A1h2h3)Du1 Du2 Du3

The contribution from all six faces of DV is

@

@u1
(A1h2h3)þ @

@u2
(A2h1h3)þ @

@u3
(A3h1h2)


 �
Du1 Du2 Du3

Dividing this by the volume h1h2h3 Du1 Du2 Du3 and taking the limit as Du1, Du2, Du3 approach zero, we find

div A ¼ rrrrr�A ¼ 1

h1h2h3

@

@u1
(A1h2h3)þ @

@u2
(A2h1h3)þ @

@u3
(A3h1h2)


 �

Note that the same result would be obtained had we chosen the volume element DV such that P is at its center.

In this case, the calculation would proceed in a manner analogous to that of Problem 4.21.
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7.26. Use the integral definition

(curl A) � n ¼ (rrrrr � A) � n ¼ lim
DS!0

Þ
C
A � dr
DS

(see Problem 6.35) to express rrrrr � A in orthogonal curvilinear coordinates.

Solution

Let us first calculate (curl A) � e1. To do this, consider the surface S1 normal to e1 at P, as shown in Fig. 7-12.
Denote the boundary of S1 by C1. Let A ¼ A1e1 þ A2e2 þ A3e3. We haveþ

C1

A � dr ¼ ð
PQ

A � drþ ð
QL

A � drþ ð
LM

A � drþ ð
MP

A � dr
The following approximations holdð

PQ

A � dr ¼ (A at P)� (h2 Du2e2) (1)

¼ (A1e1 þ A2e2 þ A3e3) � (h2 Du2e2) ¼ A2h2 Du2
Then ð

ML

A � dr ¼ A2h2 Du2 þ @

@u3
(A2h2 Du2)Du3

or ð
LM

A� dr ¼ �A2h2 Du2 � @

@u3
(A2h2 Du2)Du3 (2)

Similarly, ð
PM

A� dr ¼ (A at P)� (h3Du3e3) ¼ A3h3 Du3

or ð
MP

A� dr ¼ �A3h3 Du3 (3)
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and

ð
QL

A� dr ¼ A3h3 Du3 þ @

@u2
(A3h3 Du3)Du2 (4)

Adding (1), (2), (3), and (4), we have

þ
C1

A� dr ¼ @

@u2
(A3h3 Du3)Du2 � @

@u3
(A2h2 Du2)Du3

¼ @

@u2
(A3h3)� @

@u3
(A2h2)


 �
Du2 Du3

apart from infinitesimals of order higher than Du2 Du3.
Dividing by the area of S1 equal to h2h3 Du2 Du3 and taking the limit as Du2 and Du3 approach zero,

(curl A)� e1 ¼ 1

h2h3

@

@u2
(A3h3)� @

@u3
(A2h2)


 �

Similarly, by choosing areas S2 and S3 perpendicular to e2 and e3 at P, respectively, we find (curl A) � e2 and
(curl A) � e3. This leads to the required result

curl A ¼ e1

h2h3

@

@u2
(A3h3)� @

@u3
(A2h2)


 �

þ e2

h3h1

@

@u3
(A1h1)� @

@u1
(A3h3)


 �

þ e3

h1h2

@

@u1
(A2h2)� @

@u2
(A1h1)


 �

¼ 1

h1h2h3

h1e1 h2e2 h3e3
@

@u1

@

@u2

@

@u3
h1A1 h2A2 h3A3

��������

��������
The result could also have been derived by choosing P as the center of area S1; the calculation would then

proceed as in Problem 6.36.

7.27. Express in cylindrical coordinates the quantities (a) rrrrrF, (b) rrrrr �A, (c) rrrrr � A, (d) rrrrr2F.

Solution

For cylindrical coordinates (r, f, z),

u1 ¼ r, u2 ¼ f, u3 ¼ z; e1 ¼ er, e2 ¼ ef, e3 ¼ ez;

and

h1 ¼ hr ¼ 1, h2 ¼ hf ¼ r, h3 ¼ hz ¼ 1

(a) rrrrrF ¼ 1

h1

@F

@u1
e1 þ 1

h2

@F

@u2
e2 þ 1

h3

@F

@u3
e3

¼ 1

1

@F

@r
er þ 1

r

@F

@f
ef þ 1

1

@F

@z
ez

¼ @F

@r
er þ 1

r

@F

@f
ef þ @F

@z
ez
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(b) rrrrr �A ¼ 1

h1h2h3

@

@u1
(h2h3A1)þ @

@u2
(h3h1A2)þ @

@u3
(h1h2A3)


 �

¼ 1

(1)(r)(1)

@

@r
(r)(1)Ar

� 	þ @

@f
(1)(1)Af

� 	þ @

@z
(1)(r)Azð Þ


 �

¼ 1

r

@

@r
(rAr)þ @Af

@f
þ @

@z
(rAz)


 �

where A ¼ Are1 þ Afe2 þ Aze3, that is, A1 ¼ Ar, A2 ¼ Af, A3 ¼ Az.

(c) rrrrr � A ¼ 1

h1h2h3

h1e1 h2e2 h3e3
@

@u1

@

@u2

@

@u3
h1A1 h2A2 h3A3

��������

�������� ¼
1

r

er ref ez
@

@r

@

@f

@

@z
Ar rAf Az

��������

��������
¼ 1

r

@Az

@f
� @

@z
(rAf)

� �
er þ r

@Ar

@z
� r

@Az

@r

� �
ef þ @

@r
(rAf)� @Ar

@f

� �
ez


 �

(d) rrrrr2F ¼ 1

h1h2h3

@

@u1

h2h3

h1

@F

@u1

� �
þ @

@u2

h3h1

h2

@F

@u2

� �
þ @

@u3

h1h2

h3

@F

@u3

� �
 �

¼ 1

(1)(r)(1)

@

@r

(r)(1)

(1)

@F

@r

� �
þ @

@f

(1)(1)

r

@F

@f

� �
þ @

@z

(1)(r)

(1)

@F

@z

� �
 �

¼ 1

r

@

@r
r
@F

@r

� �
þ 1

r2
@2F

@f2
þ @2F

@z2

7.28. Express (a) rrrrr � A and (b) rrrrr2c in spherical coordinates.

Solution

Here u1 ¼ r, u2 ¼ u, u3 ¼ f; e1 ¼ er , e2 ¼ eu, e3 ¼ ef; h1 ¼ hr ¼ 1, h2 ¼ hu ¼ r, h3 ¼ hf ¼ r sin u.

(a) rrrrr � A ¼ 1

h1h2h3

h1e1 h2e2 h3e3
@

@u1

@

@u2

@

@u3
h1A1 h2A2 h3A3

��������

�������� ¼
1

(1)(r)(r sin u)

er reu r sin u ef
@

@r

@

@u

@

@f
Ar rAu r sin u Af

��������

��������
¼ 1

r2 sin u

@

@u
(r sin uAf)� @

@f
(rAu)

� �
er




þ @Ar

@f
� @

@r
(r sin u Af)

� �
reu þ @

@r
(rAu)� @Ar

@u

� �
r sin u ef

�

(b) rrrrr2c ¼ 1

h1h2h3

@

@u1

h2h3

h1

@c

@u1

� �
þ @

@u2

h3h1

h2

@c

@u2

� �
þ @

@u3

h1h2

h3

@c

@u3

� �
 �

¼ 1

(1)(r)(r sin u)

@

@r

(r)(r sin u)

(1)

@c

@r

� �
þ @

@u

(r sin u)(1)

r

@c

@u

� �
þ @

@f

(1)(r)

r sin u

@c

@f

� �
 �

¼ 1

r2 sin u
sin u

@

@r
r2
@c

@r

� �
þ @

@u
sin u

@c

@u

� �
þ 1

sin u

@2c

@f2


 �

¼ 1

r2
@

@r
r2
@c

@r

� �
þ 1

r2 sin u

@

@u
sin u

@c

@u

� �
þ 1

r2 sin2 u

@2c

@f2
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7.29. Write Laplace’s equation in parabolic cylindrical coordinates.

Solution

From Problem 7.8(b),

u1 ¼ u, u2 ¼ v, u3 ¼ z; h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, h2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, h3 ¼ 1

Then

rrrrr2c ¼ 1

u2 þ v2
@

@u

@c

@u

� �
þ @

@v

@c

@v

� �
þ @

@z
(u2 þ v2)

@c

@z

� �
 �

¼ 1

u2 þ v2
@2c

@u2
þ @2c

@v2

� �
þ @2c

@z2

and Laplace’s equation is rrrrr2c ¼ 0 or

@2c

@u2
þ @2c

@v2
þ (u2 þ v2)

@2c

@z2
¼ 0

7.30. Express the heat conduction equation @U=@t ¼ krrrrr2U in elliptic cylindrical coordinates.

Solution

Here u1 ¼ u, u2 ¼ v, u3 ¼ z; h1 ¼ h2 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 uþ sin2 v

p
, h3 ¼ 1. Then

rrrrr2U ¼ 1

a2(sinh2 uþ sin2 v)

@

@u

@U

@u

� �
þ @

@v

@U

@v

� �
þ @

@z
a2(sinh2 uþ sin2 v)

@U

@z

� �
 �

¼ 1

a2(sinh2 uþ sin2 v)

@2U

@u2
þ @2U

@v2


 �
þ @2U

@z2

and the heat conduction equation is

@U

@t
¼ k

1

a2(sinh2 uþ sin2 v)

@2U

@u2
þ @2U

@v2


 �
þ @2U

@z2

� �

Surface Curvilinear Coordinates

7.31. Show that the square of the element of arc length on the surface r ¼ r(u, v) can be written

ds2 ¼ E du2 þ 2F du dvþ Gdv2

Solution

We have

dr ¼ @r

@u
duþ @r

@v
dv

Then

ds2 ¼ dr � dr
¼ @r

@u
� @r
@u

du2 þ 2
@r

@u
� @r
@v

du dvþ @r

@v
� @r
@v

dv2

¼ E du2 þ 2F du dvþ Gdv2
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7.32. Show that the element of surface area of the surface r ¼ r(u, v) is given by

dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F2

p
du dv

Solution

The element of area is given by

dS ¼ @r

@u
du

� �
� @r

@v
dv

� �����
���� ¼ @r

@u
� @r

@v

����
���� du dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@r

@u
� @r

@v

� �
� @r

@u
� @r

@v

� �s
du dv

The quantity under the square root sign is equal to (see Problem 2.48)

@r

@u
� @r
@u

� �
@r

@v
� @r
@v

� �
� @r

@u
� @r
@v

� �
@r

@v
� @r
@u

� �
¼ EG� F2

and the result follows.

Miscellaneous Problems on General Coordinates

7.33. Let A be a given vector defined with respect to two general curvilinear coordinate systems
(u1, u2, u3) and (u1, u2, u3). Find the relation between the contravariant components of the vector
in the two coordinate systems.

Solution

Suppose the transformation equations from a rectangular (x, y, z) system to the (u1, u2, u3) and (u1, u2, u3)

systems are given by

x ¼ x1(u1, u2, u3), y ¼ y1(u1, u2, u3), z ¼ z1(u1, u2, u3)

x ¼ x2(u1, u2, u3), y ¼ y2(u1, u2, u3), z ¼ z2(u1, u2, u3)

�
(1)

Then there exists a transformation directly from the (u1, u2, u3) system to the (u1, u2, u3) system defined by

u1 ¼ u1(u1, u2, u3), u2 ¼ u2(u1, u2, u3), u3 ¼ u3(u1, u2, u3) (2)

and conversely. From (1),

dr ¼ @r

@u1
du1 þ @r

@u2
du2 þ @r

@u3
du3 ¼ a1 du1 þ a2 du2 þ a3 du3

dr ¼ @r

@ u1
d u1 þ @r

@u2
d u2 þ @r

@u3
d u3 ¼ a1 du1 þ a2 du2 þ a3 du3

Then

a1 du1 þ a2 du2 þ a3 du3 ¼ a1 du1 þ a2 du2 þ a3 du3 (3)

From (2),

du1 ¼ @u1
@u1

du1 þ @u1
@u2

du2 þ @u1
@u3

du3

du2 ¼ @u2
@u1

du1 þ @u2
@u2

du2 þ @u2
@u3

du3

du3 ¼ @u3
@u1

du1 þ @u3
@u2

du2 þ @u3
@u3

du3
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Substituting into (3) and equating coefficients of du1, du2, du3 on both sides, we find

a1 ¼ a1

@u1
@u1

þ a2

@u2
@u1

þ a3

@u3
@u1

a2 ¼ a1

@u1
@u2

þ a2

@u2
@u2

þ a3

@u3
@u2

a3 ¼ a1

@u1
@u3

þ a2

@u2
@u3

þ a3

@u3
@u3

8>>>>>>><
>>>>>>>:

(4)

Now A can be expressed in the two coordinate systems as

A ¼ C1a1 þ C2a2 þ C3a3 and A ¼ C1a1 þ C2a2 þ C3a3 (5)

where C1, C2, C3 and C1, C2, C3 are the contravariant components of A in the two systems. Substituting (4)

into (5),

C1a1 þ C2a2 þ C3a3 ¼ C1a1 þ C2a2 þ C3a3

¼ C1

@u1
@u1

þ C2

@u1
@u2

þ C3

@u1
@u3

� �
a1 þ C1

@u2
@u1

þ C2

@u2
@u2

þ C3

@u2
@u3

� �
a2

þ C1

@u3
@u1

þ C2

@u3
@u2

þ C3

@u3
@u3

� �
a3

Then

C1 ¼ C1

@u1
@u1

þ C2

@u1
@u2

þ C3

@u1
@u3

C2 ¼ C1

@u2
@u1

þ C2

@u2
@u2

þ C3

@u2
@u3

C3 ¼ C1

@u3
@u1

þ C2

@u3
@u2

þ C3

@u3
@u3

8>>>>>>><
>>>>>>>:

(6)

or in shorter notation

Cp ¼ C1

@up
@u1

þ C2

@up
@u2

þ C3

@up
@u3

p ¼ 1, 2, 3 (7)

and in even shorter notation

Cp ¼
X3
q¼1

Cq

@up
@uq

p ¼ 1, 2, 3 (8)

Similarly, by interchanging the coordinates, we see that

Cp ¼
X3
q¼1

Cq

@up
@uq

p ¼ 1, 2, 3 (9)

The above results lead us to adopt the following definition. If three quantities C1, C2, C3 of a co-ordinate

system (u1, u2, u3) are related to three other quantities C1, C2, C3 of another coordinate system (u1, u2, u3)

by the transformation equations (6), (7), (8) or (9), then the quantities are called components of a contravariant

vector or a contravariant tensor of the first rank.

7.34. Work Problem 7.33 for the covariant components of A.

Solution

Write the covariant components of A in the systems (u1, u2, u3) and (u1, u2, u3) as c1, c2, c3 and c1, c2, c3,

respectively. Then

A ¼ c1rrrrru1 þ c2rrrrru2 þ c3rrrrru3 ¼ c1rrrrru1 þ c2rrrrru2 þ c3rrrrru3 (1)
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Now since up ¼ up(u1, u2, u3) with p ¼ 1, 2, 3,

@up
@x

¼ @up
@u1

@u1
@x

þ @up
@u2

@u2
@x

þ @up
@u3

@u3
@x

@up
@y

¼ @up
@u1

@u1
@y

þ @up
@u2

@u2
@y

þ @up
@u3

@u3
@y

@up
@z

¼ @up
@u1

@u1
@z

þ @up
@u2

@u2
@z

þ @up
@u3

@u3
@z

8>>>>>>><
>>>>>>>:

p ¼ 1, 2, 3 (2)

Also,

c1rrrrru1 þ c2rrrrru2 þ c3rrrrru3 ¼ c1
@u1
@x

þ c2
@u2
@x

þ c3
@u3
@x

� �
i

þ c1
@u1
@y

þ c2
@u2
@y

þ c3
@u3
@y

� �
jþ c1

@u1
@z

þ c2
@u2
@z

þ c3
@u3
@z

� �
k (3)

and

c1rrrrru1 þ c2rrrrru2 þ c3rrrrru3 ¼ c1
@u1
@x

þ c2
@u2
@x

þ c3
@u3
@x

� �
i

þ c1
@u1
@y

þ c2
@u2
@y

þ c3
@u3
@y

� �
jþ c1

@u1
@z

þ c2
@u2
@z

þ c3
@u3
@z

� �
k (4)

Equating coefficients of i, j, k in (3) and (4),

c1
@u1
@x

þ c2
@u2
@x

þ c3
@u3
@x

¼ c1
@u1
@x

þ c2
@u2
@x

þ c3
@u3
@x

c1
@u1
@y

þ c2
@u2
@y

þ c3
@u3
@y

¼ c1
@u1
@y

þ c2
@u2
@y

þ c3
@u3
@y

c1
@u1
@z

þ c2
@u2
@z

þ c3
@u3
@z

¼ c1
@u1
@z

þ c2
@u2
@z

þ c3
@u3
@z

8>>>>>>><
>>>>>>>:

(5)

Substituting equations (2) with p ¼ 1, 2, 3 in any of the equations (5) and equating coefficients of

@u1
@x

,
@u2
@x

,
@u3
@x

,
@u1
@y

,
@u2
@y

,
@u3
@y

,
@u1
@z

,
@u2
@z

,
@u3
@z

on each side, we find

c1 ¼ c1
@u1
@u1

þ c2
@u2
@u1

þ c3
@u3
@u1

c2 ¼ c1
@u1
@u2

þ c2
@u2
@u2

þ c3
@u3
@u2

c3 ¼ c1
@u1
@u3

þ c2
@u2
@u3

þ c3
@u3
@u3

8>>>>>>><
>>>>>>>:

(6)

which can be written

cp ¼ c1
@u1
@up

þ c2
@u2
@up

þ c3
@u3
@up

p ¼ 1, 2, 3 (7)

or

cp ¼
X3
q¼1

cq
@uq
@up

p ¼ 1, 2, 3 (8)
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Similarly, we can show that

cp ¼
X3
q¼1

cq
@uq
@up

p ¼ 1, 2, 3 (9)

The above results lead us to adopt the following definition. If three quantities c1, c2, c3 of a co-ordinate

system (u1, u2, u3) are related to three other quantities c1, c2, c3 of another coordinate system (u1, u2, u3) by

the transformation equations (6), (7), (8), or (9), then the quantities are called components of a covariant

vector or a covariant tensor of the first rank.

In generalizing the concepts in this Problem and in Problem 7.33 to higher dimensional spaces, and in

generalizing the concept of vector, we are led to tensor analysis which we treat in Chapter 8. In the process

of generalization, it is convenient to use a concise notation in order to express fundamental ideas in compact

form. It should be remembered, however, that despite the notation used, the basic ideas treated in Chapter 8

are intimately connected with those treated in this chapter.

7.35. (a) Prove that, in general, coordinates (u1, u2, u3),

g ¼
g11 g12 g13
g21 g22 g23
g31 g32 g33

������
������ ¼

@r

@u1
� @r

@u2
� @r

@u3

� �2

where gpq are the coefficients of dup duq in ds2 (Problem 7.17).

(b) Show that the volume element in general coordinates is
ffiffiffi
g

p
du1 du2 du3.

Solution

(a) From Problem 7.17,

gpq ¼ ap �aq ¼ @r

@up
� @r

@uq
¼ @x

@up

@x

@uq
þ @y

@up

@y

@uq
þ @z

@up

@z

@uq
p, q ¼ 1, 2, 3 (1)

Then, using the following theorem on multiplication of determinants,

a1 a2 a3
b1 b2 b3
c1 c2 c3

������
������
A1 B1 C1

A2 B2 C2

A3 B3 C3

������
������ ¼

a1A1 þ a2A2 þ a3A3 a1B1 þ a2B2 þ a3B3 a1C1 þ a2C2 þ a3C3

b1A1 þ b2A2 þ b3A3 b1B1 þ b2B2 þ b3B3 b1C1 þ b2C2 þ b3C3

c1A1 þ c2A2 þ c3A3 c1B1 þ c2B2 þ c3B3 c1C1 þ c2C2 þ c3C3

������
������

we have

@r

@u1
� @r

@u2
� @r

@u3

� �2

¼

@x

@u1

@y

@u1

@z

@u1
@x

@u2

@y

@u2

@z

@u2
@x

@u3

@y

@u3

@z

@u3

������������

������������

2

¼

@x

@u1

@y

@u1

@z

@u1
@x

@u2

@y

@u2

@z

@u2
@x

@u3

@y

@u3

@z

@u3

������������

������������

@x

@u1

@x

@u2

@x

@u3
@y

@u1

@y

@u2

@y

@u3
@z

@u1

@z

@u2

@z

@u3

������������

������������
¼

g11 g12 g13

g21 g22 g23

g31 g32 g33

�������
�������

(b) The volume element is given by

dV ¼ @r

@u1
du1

� �
� @r

@u2
du2

� �
� @r

@u3
du3

� �����
���� ¼ @r

@u1
� @r

@u2
� @r

@u3

����
����du1 du2 du3

¼ ffiffiffi
g

p
du1 du2 du3 by part (a):

Note that
ffiffiffi
g

p
is the absolute value of the Jacobian of x, y, z with respect to u1, u2, u3 (see Problem 7.13).
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SUPPLEMENTARY PROBLEMS

7.36. Describe and sketch the coordinate surfaces and coordinate curves for (a) elliptic cylindrical, (b) bipolar, and

(c) parabolic cylindrical coordinates.

7.37. Determine the transformation from (a) spherical to rectangular coordinates, (b) spherical to cylindrical

coordinates.

7.38. Express each of the following loci in spherical coordinates: (a) the sphere x2 þ y2 þ z2 ¼ 9;

(b) the cone z2 ¼ 3(x2 þ y2); (c) the paraboloid z ¼ x2 þ y2; (d) the plane z ¼ 0; (e) the plane y ¼ x.

7.39. Suppose r, f, z are cylindrical coordinates. Describe each of the following loci and write the equation of each

locus in rectangular coordinates: (a) r ¼ 4, z ¼ 0; (b) r ¼ 4; (c) f ¼ p=2; (d) f ¼ p=3, z ¼ 1.

7.40. Suppose u, v, z are elliptic cylindrical coordinates where a ¼ 4. Describe each of the following loci and write the

equation of each locus in rectangular coordinates:

(a) v ¼ p=4; (b) u ¼ 0, z ¼ 0; (c) u ¼ ln 2, z ¼ 2; (d) v ¼ 0, z ¼ 0.

7.41. Suppose u, v, z are parabolic cylindrical coordinates. Graph the curves or regions described by each of the

following: (a) u ¼ 2, z ¼ 0; (b) v ¼ 1, z ¼ 2; (c) 1 � u � 2, 2 � v � 3, z ¼ 0; (d) 1 , u , 2, 2 , v , 3, z ¼ 0.

7.42. (a) Find the unit vectors er , eu, and ef of a spherical coordinate system in terms of i, j, and k.

(b) Solve for i, j, and k in terms of er , eu, and ef.

7.43. Represent the vector A ¼ 2yi� zjþ 3xk in spherical coordinates and determine Ar , Au, and Af.

7.44. Prove that a spherical coordinate system is orthogonal.

7.45. Prove that (a) parabolic cylindrical, (b) elliptic cylindrical, and (c) oblate spheroidal coordinate systems are

orthogonal.

7.46. Prove _er ¼ _u eu þ sin u _f ef, _eu ¼ �_u er þ cos u _f ef, _ef ¼ � sin u _f er � cos u _f eu.

7.47. Express the velocity v and acceleration a of a particle in spherical coordinates.

7.48. Find the square of the element of arc length and the corresponding scale factors in

(a) paraboloidal, (b) elliptic cylindrical, and (c) oblate spheroidal coordinates.

7.49. Find the volume element dV in (a) paraboloidal, (b) elliptic cylindrical, and (c) bipolar coordinates.

7.50. Find (a) the scale factors and (b) the volume element dV for prolate spheroidal coordinates.

7.51. Derive expressions for the scale factors in (a) ellipsoidal and (b) bipolar coordinates.

7.52. Find the elements of area of a volume element in (a) cylindrical, (b) spherical, and (c) paraboloidal coordinates.

7.53. Prove that a necessary and sufficient condition that a curvilinear coordinate system be orthogonal is that gpq ¼ 0

for p = q.

7.54. Find the Jacobian J
x, y, z

u1, u2, u3

� �
for (a) cylindrical, (b) spherical, (c) parabolic cylindrical,

(d) elliptic cylindrical, and (e) prolate spheroidal coordinates.

7.55. Evaluate
ÐÐÐ

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
dx dy dz, where V is the region bounded by z ¼ x2 þ y2 and z ¼ 8� (x2 þ y2). Hint: Use

cylindrical coordinates.

7.56. Find the volume of the smaller of the two regions bounded by the sphere x2 þ y2 þ z2 ¼ 16 and the cone

z2 ¼ x2 þ y2.

7.57. Use spherical coordinates to find the volume of the smaller of the two regions bounded by a sphere of radius a and

a plane intersecting the sphere at a distance h from its center.
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7.58. (a) Describe the coordinate surfaces and coordinate curves for the system

x2 � y2 ¼ 2u1 cos u2, xy ¼ u1 sin u2, z ¼ u3

(b) Show that the system is orthogonal. (c) Determine J
x, y, z

u1, u2, u3

� �
for the system. (d) Show that u1 and u2 are

related to the cylindrical coordinates r and f and determine the relationship.

7.59. Find the moment of inertia of the region bounded by x2 � y2 ¼ 2, x2 � y2 ¼ 4, xy ¼ 1, xy ¼ 2, z ¼ 1 and z ¼ 3

with respect to the z-axis if the density is constant and equal to k. Hint: Let x2 � y2 ¼ 2u, xy ¼ v.

7.60. Find @r=@u1, @r=@u2, @r=@u3, rrrrru1, rrrrru2, rrrrru3 in (a) cylindrical, (b) spherical, and (c) parabolic cylindrical

coordinates. Show that e1 ¼ E1, e2 ¼ E2, e3 ¼ E3 for these systems.

7.61. Given the coordinate transformation u1 ¼ xy, 2u2 ¼ x2 þ y2, u3 ¼ z. (a) Show that the coordinate system is not

orthogonal. (b) Find J
x, y, z

u1, u2, u3

� �
. (c) Find ds2.

7.62. Find rrrrrF, div A and curl A in parabolic cylindrical coordinates.

7.63. Express (a) rrrrrc and (b) rrrrr�A in spherical coordinates.

7.64. Find rrrrr2c in oblate spheroidal coordinates.

7.65. Write the equation (@2F=@x2)þ (@2F=@y2) ¼ F in elliptic cylindrical coordinates.

7.66. Express Maxwell’s equation rrrrr � E ¼ �(1=c)(@H=@t) in prolate spheroidal coordinates.

7.67. Express Schroedinger’s equation of quantum mechanics rrrrr2cþ (8p2m=h2)[E � V(x, y, z)]c ¼ 0 in parabolic

cylindrical coordinates where m, h, and E are constants.

7.68. Write Laplace’s equation in paraboloidal coordinates.

7.69. Express the heat equation @U=@t ¼ krrrrr2U in spherical coordinates if U is independent of (a) f, (b) f and u,
(c) r and t, (d) f, u, and t.

7.70. Find the element of arc length on a sphere of radius a.

7.71. Prove that in any orthogonal curvilinear coordinate system, div curl A ¼ 0 and curl grad F ¼ 0.

7.72. Prove that the surface area of a given region R of the surface r ¼ r(u, v) is
ÐÐ

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F2

p
du dv. Use this to

determine the surface area of a sphere.

7.73. Prove that a vector of length p, which is everywhere normal to the surface r ¼ r(u, v), is given by

A ¼ +p
@r

@u
� @r

@v

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F2

p

7.74. (a) Describe the plane transformation x ¼ x (u, v), y ¼ y (u, v).

(b) Under what conditions will the u, v coordinate lines be orthogonal?

7.75. Let (x, y) be coordinates of a pointP in a rectangular xy-plane and (u, v) the coordinates of a pointQ in a rectangularuv-

plane. If x ¼ x(u, v), and y ¼ y(u, v), we say that there is a correspondence or mapping between points P and Q.

(a) If x ¼ 2uþ v and y ¼ u� 2v, show that the lines in the xy-plane correspond to lines in the uv-plane.

(b) What does the square bounded by x ¼ 0, x ¼ 5, y ¼ 0, and y ¼ 5 correspond to in the uv-plane?

(c) Compute the Jacobian J
x, y

u, v

� �
and show that this is related to the ratios of the areas of the square and its

image in the uv-plane.

7.76. Let x ¼ 1
2
(u2 � v2), and y ¼ uv. Determine the image (or images) in the uv-plane of a square bounded by

x ¼ 0, x ¼ 1, y ¼ 0, y ¼ 1 in the xy-plane.
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7.77. Show that under suitable conditions on F and G,

ð1
0

ð1
0

e�s(xþy)F(x)G(y) dx dy ¼
ð1
0

e�st

ðt
0

F(u)G(t � u) du

8<
:

9=
;dt

Hint: Use the transformation xþ y ¼ t, x ¼ v from the xy-plane to the vt-plane. The result is important in the

theory of Laplace transforms.

7.78. (a) Let x ¼ 3u1 þ u2 � u3, y ¼ u1 þ 2u2 þ 2u3, z ¼ 2u1 � u2 � u3. Find the volume of the cube bounded by

x ¼ 0, x ¼ 15, y ¼ 0, y ¼ 10, z ¼ 0 and z ¼ 5, and the image of this cube in the u1u2u3 rectangular coor-

dinate system.

(b) Relate the ratio of these volumes to the Jacobian of the transformation.

7.79. Let (x, y, z) and (u1, u2, u3) be the rectangular and curvilinear coordinates of a point, respectively.

(a) If x ¼ 3u1 þ u2 � u3, y ¼ u1 þ 2u2 þ 2u3, z ¼ 2u1 � u2 � u3, is the system u1u2u3 orthogonal?

(b) Find ds2 and g for the system.

(c) What is the relation between this and the preceding problem?

7.80. Let x ¼ u21 þ 2, y ¼ u1 þ u2, z ¼ u23 � u1. Find (a) g and (b) the Jacobian J ¼ @(x, y, z)

@(u1, u2, u3)
. Verify that J2 ¼ g.

ANSWERS TO SUPPLEMENTARY PROBLEMS

7.36. (a) u ¼ c1 and v ¼ c2 are elliptic and hyperbolic cylinders respectively, having z-axis as common axis. z ¼ c3
are planes. See Fig. 7-7.

(b) u ¼ c1 and v ¼ c2 are circular cylinders whose intersections with the xy-plane are circles with centers on the

y- and x-axis, respectively, and intersecting at right angles. The cylinders u ¼ c1 all pass through the points

(�a, 0, 0) and (a, 0, 0). z ¼ c3 are planes. See Fig. 7-8.

(c) u ¼ c1 and v ¼ c2 are parabolic cylinders whose traces on the xy-plane are intersecting mutually perpen-

dicular coaxial parabolas with vertices on the x-axis but on opposite sides of the origin. z ¼ c3 are planes.

See Fig. 7-6.

The coordinate curves are the intersections of the coordinate surfaces.

7.37. (a) r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, u ¼ arc tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

, f ¼ arc tan
y

x
:

(b) r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
, u ¼ arc tan

r

z
, f ¼ f:

7.38. (a) r ¼ 3:
(b) u ¼ p=6:
(c) r sin2 u ¼ cos u:
(d) u ¼ p=2:

(e) The plane y ¼ x is made up of the two half planes f ¼ p=4 and f ¼ 5p=4.

7.39. (a) Circle in the xy-plane x2 þ y2 ¼ 16, z ¼ 0.

(b) Cylinder x2 þ y2 ¼ 16 whose axis coincides with z-axis.

(c) The yz-plane where y � 0.

(d) The straight line y ¼ ffiffiffi
3

p
x, z ¼ 1 where x � 0, y � 0.

7.40. (a) Hyperbolic cylinder x2 � y2 ¼ 8.

(b) The line joining points (�4, 0, 0) and (4, 0, 0), that is, x ¼ t, y ¼ 0, z ¼ 0 where �4 � t � 4.

(c) Ellipse
x2

25
þ y2

9
¼ 1, z ¼ 2. (d) The portion of the x-axis defined by x � 4, y ¼ 0, z ¼ 0.

7.41. (a) Parabola y2 ¼ �8(x� 2), z ¼ 0. (b) Parabola y2 ¼ 2xþ 1, z ¼ 2. (c) Region in xy-plane bounded by

parabolas y2 ¼ �2(x� 1=2), y2 ¼ �8(x� 2), y2 ¼ 8(xþ 2) and y2 ¼ 18(xþ 9=2) including the boundary.

(d) Same as (c) but excluding the boundary.
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7.42. (a) er ¼ sin u cosfiþ sin u sinfjþ cos uk, eu ¼ cos u cosfiþ cos u sinfj� sin uk

ef ¼ �sinfiþ cosfj:

(b) i ¼ sin u cosfer þ cos u cosfeu � sinfef, j ¼ sin u sinfer þ cos u sinfeu þ cosfef

k ¼ cos uer � sin ueu:

7.43. A ¼ Arer þ Aueu þ Afef where

Ar ¼ 2r sin2 u sinf cosf� r sin u cos u sinfþ 3r sin u cos u cosf

Au ¼ 2r sin u cos u sinf cosf� r cos2 u sinf� 3r sin2 u cosf

Af ¼ �2r sin u sin2 f� r cos u cosf:

7.47. v ¼ vrer þ vueu þ vfef where vr ¼ _r, vu ¼ r _u, vf ¼ r sin u _f

a ¼ arer þ aueu þ afef where ar ¼ €r � r _u2 � r sin2 u _f2

au ¼ 1

r

d

dt
(r2 _u)� r sin u cos u _f2,

af ¼ 1

r sin u

d

dt
(r2 sin2 u _f):

7.48. (a) ds2 ¼ (u2 þ v2)(du2 þ dv2)þ u2v2 df2, hu ¼ hv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, hf ¼ uv.

(b) ds2 ¼ a2(sinh2 uþ sin2 v)(du2 þ dv2)þ dz2, hu ¼ hv ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 uþ sin2 v

p
, hz ¼ 1:

(c) ds2 ¼ a2(sinh2 jþ sin2 h)(dj2 þ dh2)þ a2 cosh2 j cos2 h df2,

hj ¼ hh ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 jþ sin2 h

p
, hf ¼ a cosh j cosh:

7.49. (a) uv(u2 þ v2) du dv df, (b) a2(sinh2 uþ sin2 v) du dv dz, (c)
a2 du dv dz

(cosh v� cos u)2
:

7.50. (a) hj ¼ hh ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 jþ sin2 h

p
, hf ¼ a sinh j sinh:

(b) a3(sinh2 jþ sin2 h) sinh j sinh dj dh df:

7.52. (a) r dr df, r df dx, dr dz, (b) r sin u dr df, r2 sin u du df, r dr du,

(c) (u2 þ v2)du dv, uv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
du df, uv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
dv df

7.54. (a) r, (b) r2 sin u, (c) u2 þ v2, (d) a2( sinh2 uþ sin2 v), (e) a3( sinh2 jþ sin2 h) sinh j sinh

7.55.
256p

15
, 7.56.

64p(2� ffiffiffi
2

p
)

3
, 7.57.

p

3
(2a3 � 3a2hþ h3), 7.58. (c) 1

2
; (d) u1 ¼ 1

2
r2, u2 ¼ 2f

7.59. 2k

7.60. (a)
@ r

@r
¼ cosf iþ sinf j, rrrrrr ¼ xiþ yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ¼ cosf iþ sinf j,

@ r

@f
¼ �r sin f iþ r cosf j, rrrrrf ¼ �sinf iþ cosf j

r
,

@r

@z
¼ k, rrrrrz ¼ k
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(b)
@r

@r
¼ sin u cosf iþ sin u sinf jþ cos uk

@r

@u
¼ r cos u cosf iþ r cos u sinf j� r sin uk

@r

@f
¼ �r sin u sin u iþ r sin u cosf j

rrrrrr ¼ xiþ yjþ zkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ¼ sin u cosf iþ sin u sin u jþ cos u k

rrrrru ¼ xziþ yz j� (x2 þ y2)k

(x2 þ y2 þ z2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ cos u cosf iþ cos u sinf j� sin u k

r

rrrrrf ¼ �y iþ x j

x2 þ y2
¼ � sinf iþ cosf j

r sin u

(c)
@r

@u
¼ uiþ vj,

@r

@v
¼ �viþ uj,

@r

@x
¼ k

rrrrru ¼ uiþ vj

u2 þ v2
, rrrrrv ¼ �viþ uj

u2 þ v2
, rrrrrz ¼ k

7.61. (b)
1

y2 � x2
, (c) ds2 ¼ (x2 þ y2)(du21 þ du22)� 4xy du1du2

(x2 � y2)2
þ du23 ¼

u2(du21 þ du22)� 2u1 du1du2

2(u22 � u21)
þ du23

7.62. rrrrrF ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p @F

@u
eu þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p @F

@v
ev þ @F

@z
ez

divA ¼ 1

u2 þ v2
@

@u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Au

� �
þ @

@v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Av

� �
 �
þ @Az

@z

curlA ¼ 1

u2 þ v2
@Az

@v
� @

@z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Av

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
eu




þ @

@z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Au

� �
� @Az

@u

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
ev

þ @

@u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Av

� �
� @

@v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Au

� �� �
ez

�

7.63. (a) rrrrrc ¼ @c

@r
er þ 1

r

@c

@u
eu þ 1

r sin u

@c

@f
ef

(b) rrrrr � A ¼ 1

r2
@

@r
(r2Ar)þ 1

r sin u

@

@u
( sin uAu)þ 1

r sin u

@Af

@f

7.64. rrrrr2c ¼ 1

a2 cosh j( sinh2 jþ sin2 h)

@

@j
cosh j

@c

@j

� �

þ 1

a2 cosh( sinh2 jþ sin2 h)

@

@h
cosh

@c

@h

� �
þ 1

a2 cosh2 j cos2 h

@2c

@f2

7.65.
@2F

@u2
þ @2F

@v2
¼ a2( sinh2 uþ sin2 v)F
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7.66. 1

aRS2
@

@h
(REf)� @

@f
(SEh)

� �
Sej




þ @

@f
(SEj)� @

@j
(REf)

� �
Seh þ @

@j
(SEh)� @

@h
(SEj)

� �
Ref

�

¼ � 1

c

@Hj

@t
ej � 1

c

@Hh

@t
eh � 1

c

@Hf

@t
ef

where R ; sinh j sinh and S ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 jþ sin2 h

q
:

7.67. 1

u2 þ v2
@2c

@u2
þ @2c

@u2


 �
þ @2c

@z2
þ 8p2m

h2
[E �W(u, v, z)]c ¼ 0, where W(u, v, z) ¼ V(x, y, z):

7.68. uv2
@

@u
u
@c

@u

� �
þ u2v

@

@v
v
@c

@v

� �
þ (u2 þ v2)

@2c

@f2
¼ 0

7.69. (a)
@U

@t
¼ k

1

r2
@

@r
r2
@U

@r

� �
þ 1

r2 sin u

@

@u
sin u

@U

@u

� �
 �
(b)

@U

@t
¼ k

1

r2
@

@r
r2
@U

@r

� �
 �

(c) sin u
@

@u
sin u

@U

@u

� �
þ @2U

@f2
¼ 0 (d)

d

dr
r2
dU

dr

� �
¼ 0

7.70. ds2 ¼ a2½du2 þ sin2 u df2�, 7.74. (b)
@x

@u

@x

@v
þ @y

@u

@y

@v
¼ 0

7.78. (a) 750, 75; (b) Jacobian ¼ 10

7.79. (a) No, (b) ds2 ¼ 14du21 þ 6du22 þ 6du23 þ 6du1du2 � 6du1du3 þ 8du2du3, g ¼ 100

7.80. (a) g ¼ 16u21u
2
3, (b) J ¼ 4u1u3
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CHAP T E R 8

Tensor Analysis

8.1 Introduction

Physical laws, if they are to be valid, must be independent of any particular coordinate system used to
describe them mathematically. A study of the consequence of this requirement leads to tensor analysis,
which is of great use in general relativity theory, differential geometry, mechanics, elasticity, hydrodyn-
amics, electromagnetic theory, and numerous other fields of science and engineering.

8.2 Spaces of N Dimensions

A point in three-dimensional space is a set of three numbers, called coordinates, determined by specifying a
particular coordinate system or frame of reference. For example (x, y, z), (r, f, z), (r, u, f) are coordi-
nates of a point in rectangular, cylindrical, and spherical coordinate systems, respectively. A point in
N-dimensional space is, by analogy, a set of N numbers denoted by (x1, x2, . . . , xN) where 1, 2, . . . , N
are taken not as exponents but as superscripts, a policy which will prove useful.

The fact that we cannot visualize points in spaces of dimension higher than three has of course nothing
whatsoever to do with their existence.

8.3 Coordinate Transformations

Let (x1, x2, . . . , xN) and (x1, x2, . . . , xN) be coordinates of a point in two different frames of reference.
Suppose there exists N independent relations between the coordinates of the two systems having the form

x1 ¼ x1(x1, x2, . . . , xN)
x2 ¼ x2(x1, x2, . . . , xN)

..

. ..
.

xN ¼ xN(x1, x2, . . . , xN)

(1)

which we can indicate briefly by

xk ¼ xk(x1, x2, . . . , xN) k ¼ 1, 2, . . . , N (2)

where it is supposed that the functions involved are single-valued, continuous, and have continuous deriva-
tives. Then, conversely to each set of coordinates (x1, x2, . . . , xN), there will correspond a unique set
(x1, x2, . . . , xN) given by

xk ¼ xk(x1, x2, . . . , xN) k ¼ 1, 2, . . . , N (3)

The relations (2) or (3) define a transformation of coordinates from one frame of reference to another.
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Summation Convention

Consider the expression a1x
1 þ a2x

2 þ � � � þ aNx
N . This can be written using the short notation

PN
j¼1 ajx

j.

An even shorter notation is simply to write it as ajx
j where we adopt the convention that whenever an index

(subscript or superscript) is repeated in a given term, we are to sum over that index from 1 to N unless other-
wise specified. This is called the summation convention. Clearly, instead of using the index j, we could have
used another letter, say p, and the sum could be written apx

p. Any index that is repeated in a given term, so
that the summation convention applies, is called a dummy index or umbral index.

An index occurring only once in a given term is called a free index and can stand for any of the numbers
1, 2, . . . , N such as k in equation (2) or (3), each of which represents N equations.

8.4 Contravariant and Covariant Vectors

Suppose N quantities A1, A2, . . . , AN in a coordinate system (x1, x2, . . . , xN) are related to N other quantities
A
1
, A

2
, . . . , A

N
in another coordinate system (x1, x2, . . . , xN) by the transformation equations

A
p ¼

XN
q¼1

@xp

@xq
Aq p ¼ 1, 2, . . . , N

which by the conventions adopted can simply be written as

A
p ¼ @xp

@xq
Aq

Then they are called components of a contravariant vector or contravariant tensor of the first rank or first
order. To provide motivation for this and later transformations, see Problems 7.33 and 7.34.

On the other hand, suppose N quantities A1, A2, . . . , AN in a coordinate system (x1, x2, . . . , xN) are
related to N other quantities A1, A2, . . . , AN in another coordinate system (x1, x2, . . . , xN) by the transform-
ation equations

Ap ¼
XN
q¼1

@xq

@xp
Aq p ¼ 1, 2, . . . , N

or

Ap ¼ @x q

@x p Aq

Then they are called components of a covariant vector or covariant tensor of the first rank or first order.
Note that a superscript is used to indicate contravariant components whereas a subscript is used to

indicate covariant components; an exception occurs in the notation for coordinates.
Instead of speaking of a tensor whose components are Ap or Ap, we shall often refer simply to the tensor

Ap or Ap. No confusion should arise from this.

8.5 Contravariant, Covariant, and Mixed Tensors

Suppose N2 quantities Aqs in a coordinate system (x1, x2, . . . , xN) are related to N2 other quantities A
pr
in

another coordinate system (x1, x2, . . . , xN) by the transformation equations

A
pr ¼

XN
s¼1

XN
q¼1

@xp

@xq
@x r

@xs
Aqs p, r ¼ 1, 2, . . . , N

or

A
pr ¼ @xp

@xq
@xr

@xs
Aqs
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by the adopted conventions, they are called contravariant components of a tensor of the second rank
or rank two.

The N2 quantities Aqs are called covariant components of a tensor of the second rank if

Apr ¼ @xq

@xp
@x s

@xr
Aqs

Similarly, the N2 quantities Aq
s are called components of a mixed tensor of the second rank if

A
p
r ¼

@xp

@xq
@x s

@xr
Aq
s

Kronecker Delta

The Kronecker delta, denoted by d j
k , is defined as follows:

d j
k ¼ 0 if j=k

1 if j ¼ k

�

As its notation indicates, it is a mixed tensor of the second rank.

8.6 Tensors of Rank Greater Than Two, Tensor Fields

Tensors of rank three or more are easily defined. Specifically, for example, A
qst
kl are the components of a

mixed tensor of rank 5, contravariant of order 3 and covariant of order 2, where they transform according
to the relations

A
prm
ij ¼ @ x p

@x q

@ x r

@x s

@ xm

@x t

@x k

@x i

@x l

@x j
A
qst
kl

Scalars or Invariants

Suppose f is a function of the coordinates xk, and let f denote the functional value under a transformation
to a new set of coordinates x k. Then f is called a scalar or invariant with respect to the coordinate trans-
formation if f ¼ f. A scalar or invariant is also called a tensor of rank zero.

Tensor Fields

If to each point of a region in N-dimensional space there corresponds a definite tensor, we say that a tensor
field has been defined. This is a vector field or a scalar field according as the tensor is of rank one or zero. It
should be noted that a tensor or tensor field is not just the set of its components in one special coordinate
system but all the possible sets under any transformation of coordinates.

Symmetric and Skew-Symmetric Tensors

A tensor is called symmetric with respect to two contravariant or two covariant indices if its components
remain unaltered upon interchange of the indices. Thus, if Ampr

qs ¼ Apmr
qs , the tensor is symmetric in m and p.

If a tensor is symmetric with respect to any two contravariant and any two covariant indices, it is called
symmetric.

A tensor is called skew-symmetric with respect to two contravariant or two covariant indices if its
components change sign upon interchange of the indices. Thus, if Ampr

qs ¼ �Apmr
qs , the tensor is skew-

symmetric in m and p. If a tensor is skew-symmetric with respect to any two contravariant and any
two covariant indices, it is called skew-symmetric.
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8.7 Fundamental Operations with Tensors

The following operations apply.

1. Addition. The sum of two or more tensors of the same rank and type (i.e. same number of contra-
variant indices and same number of covariant indices) is also a tensor of the same rank and type.
Thus, if Amp

q and Bmp
q are tensors, then Cmp

q ¼ Amp
q þ Bmp

q is also a tensor. Addition of tensors is
commutative and associative.

2. Subtraction. The difference of two tensors of the same rank and type is also a tensor of the same
rank and type. Thus, if Amp

q and Bmp
q are tensors, then Dmp

q ¼ Amp
q � Bmp

q is also a tensor.
3. OuterMultiplication. The product of two tensors is a tensor whose rank is the sum of the ranks of

the given tensors. This product, which involves ordinary multiplication of the components of the
tensor, is called the outer product. For example, Apr

q B
m
s ¼ Cprm

qs is the outer product of Apr
q and Bm

s .
However, note that not every tensor can be written as a product of two tensors of lower rank. For
this reason, division of tensors is not always possible.

4. Contraction. If one contravariant and one covariant index of a tensor are set equal, the result
indicates that a summation over the equal indices is to be taken according to the summation
convention. This resulting sum is a tensor of rank two less than that of the original tensor. The
process is called contraction. For example, in the tensor of rank 5, Ampr

qs , set r ¼ s to obtain
Ampr
qr ¼ Bmp

q , a tensor of rank 3. Further, by setting p ¼ q, we obtain Bmp
p ¼ Cm, a tensor of rank 1.

5. InnerMultiplication. By the process of outer multiplication of two tensors followed by a contrac-
tion, we obtain a new tensor called an inner product of the given tensors. The process is called
inner multiplication. For example, given the tensors Amp

q and Br
st, the outer product is Amp

q Br
st.

Letting q ¼ r, we obtain the inner product Amp
r Br

st. Letting q ¼ r and p ¼ s, another inner
product Amp

r Br
pt is obtained. Inner and outer multiplication of tensors is commutative and

associative.
6. Quotient Law. Suppose it is not known whether a quantity X is a tensor or not. If an inner

product of X with an arbitrary tensor is itself a tensor, then X is also a tensor. This is called the
quotient law.

8.8 Matrices

A matrix A of order m by n is an array of quantities apq, called elements, which are arranged in m rows and
n columns and generally denoted by

a11 a12 � � � a1n
a21 a22 � � � a2n

..

. ..
. ..

.

am1 am2 � � � amn

2
6664

3
7775 or

a11 a12 � � � a1n
a21 a22 � � � a2n

..

. ..
. ..

.

am1 am2 � � � amn

0
BBB@

1
CCCA

or in abbreviated form by [apq] or (apq), p ¼ 1, . . . , m; q ¼ 1, . . . , n. We use the former notation, [apq],
unless otherwise stated or implied. If m ¼ n, the matrix is a square matrix of order u or simply order m.
If m ¼ 1, it is a row matrix or row vector; if n ¼ 1, it is a column matrix or column vector.

The diagonal of a square matrix containing the elements a11, a22, . . . , amm is called the principal or main
diagonal. A square matrix whose elements are equal to one in the principal diagonal and zero elsewhere
is called a unit matrix and is denoted by I. A null matrix, denoted by O, is a matrix whose elements are
all zero.

Matrix Algebra

Suppose A ¼ [apq] and B ¼ [bpq] are matrices having the same order (m by n). Then the following
definitions apply:
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(1) A ¼ B if apq ¼ bpq for all p and q.
(2) The sum S and difference D of A and B are the matrices defined by

S ¼ Aþ B ¼ [apq þ bpq], D ¼ A� B ¼ [apq � bpq]:

That is, the sum S ¼ Aþ B [difference D ¼ A� B] is obtained by adding (subtracting) corre-
sponding elements of A and B.

(3) The product of a scalar l by a matrix A ¼ [apq], denoted by lA, is the matrix [lapq] where each
element of A is multiplied by l.

(4) The transpose of a matrix A is a matrix AT , which is formed from A by interchanging its rows and
columns. Thus, if A ¼ [apq], then AT ¼ [aqp].

Matrix Multiplication

Now suppose A and B are two matrices such that the number of columns of A is equal to the number of rows
of B, say A is an m� p matrix and B is a p� n matrix. Then the product of A and B is defined and the
product, denoted by AB, is the matrix whose ij-entry is obtained by multiplying the elements of row i of
A by the corresponding elements of column j of B and then adding. Thus, if A ¼ [aik] and B ¼ [bkj],
then AB ¼ [cij] where

cij ¼ ai1b1j þ ai2b2j þ � � � þ aipb pj ¼
Xp
k¼1

aikbkj

Matrices whose product is defined are called conformable.

Determinants

Consider an n-square matrix A ¼ [aij]. The determinant of A is denoted by jAj, det A, jaijj, or det [aij]. The
reader may be familiar with the definition of det A when n � 3. The general definition of det A follows:

jAj ¼
X
s[Sn

(sgn s)a1s(1)a2s(2) � � � ans(n)

Here Sn consists of all permutations s of f1, 2, . . . , ng, and sign s ¼ +1 according as s is an even or odd
permutation.

One main property of the determinant follows.

PROPOSITION 8.1: Let P ¼ AB where A and B are n-square matrices. Then

det P ¼ (det A)(det B)

Inverses

The inverse of a square matrix A is a matrix, denoted by A�1, such that

AA�1 ¼ A�1A ¼ I

where I is the unit matrix. A necessary and sufficient condition that A�1 exists is that det A=0. If det A ¼ 0,
then A is called singular, otherwise A is called nonsingular.
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8.9 Line Element and Metric Tensor

The differential of arc length ds in rectangular coordinates (x, y, z) is obtained from ds2 ¼ dx2 þ dy2 þ dz2.
By transforming to general curvilinear coordinates (see Problem 7.17), this becomes

ds2 ¼
X3
p¼1

X3
q¼1

gpq dup duq

Such spaces are called three-dimensional Euclidean spaces.
A generalization to N-dimensional space with coordinates (x1, x2, . . . , xN) is immediate. We define the

line element ds in this space to be given by the quadratic form, called the metric form or metric,

ds2 ¼
XN
p¼1

XN
q¼1

gpq dx pdxq

or, using the summation convention,

ds2 ¼ gpq dx
pdxq

In the special case where there exists a transformation of coordinates from x j to xk such that the metric
form is transformed into (d x1)2 þ (dx 2)2 þ � � � þ (d xN)2 or dxkdxk, then the space is called N-dimensional
Euclidean space. In the general case, however, the space is called Riemannian.

The quantities gpq are the components of a covariant tensor of rank two called themetric tensor or funda-
mental tensor. We can, and always will, choose this tensor to be symmetric (see Problem 8.29).

Conjugate or Reciprocal Tensors

Let g ¼ gpq
�� �� denote the determinant with elements gpq and suppose g=0. Define gpq by

gpq ¼ cofactor of gpq

g

Then gpq is a symmetric contravariant tensor of rank two called the conjugate or reciprocal tensor of gpq
(see Problem 8.34). It can be shown (see Problem 8.33) that

gpqgrq ¼ d p
r

8.10 Associated Tensors

Given a tensor, we can derive other tensors by raising or lowering indices. For example, given the tensor
Apq, by raising the index p, we obtain the tensor Ap

�q, the dot indicating the original position of the moved
index. By raising the index q also, we obtain Apq

�� . Where no confusion can arise, we shall often omit the
dots; thus Apq

�� can be written Apq. These derived tensors can be obtained by forming inner products of
the given tensor with the metric tensor gpq or its conjugate g

pq. Thus, for example

Ap
�q ¼ grpArq, Apq ¼ grpgsqArs, Ap

�rs ¼ grqA
pq
��s , Aqm�tk

��n ¼ gpkgsng
rmAq�st

�r��p

These become clear if we interpret multiplication by grp as meaning: let r ¼ p (or p ¼ r) in whatever
follows and raise this index. Similarly, we interpret multiplication by grq as meaning: let r ¼ q
(or q ¼ r) in whatever follows and lower this index.
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All tensors obtained from a given tensor by forming inner products with the metric tensor and its con-
jugate are called associated tensors of the given tensor. For example Am and Am are associated tensors, the
first are contravariant and the second covariant components. The relation between them is given by

Ap ¼ gpqA
q or Ap ¼ gpqAq

For rectangular coordinates gpq ¼ 1 if p ¼ q, and 0 if p=q, so that Ap ¼ Ap, which explains why no
distinction was made between contravariant and covariant components of a vector in earlier chapters.

8.11 Christoffel’s Symbols

The following symbols

[ pq, r] ¼ 1

2

@gpr
@xq

þ @gqr
@xp

� @gpq
@xr

� �

s

pq

� �
¼ gsr[pq, r]

are called the Christoffel symbols of the first and second kind, respectively. Other symbols used instead

of
s

pq

� �
are fpq, sg and Gs

pq. The latter symbol suggests, however, a tensor character, which is not true

in general.

Transformation Laws of Christoffel’s Symbols

Suppose we denote by a bar a symbol in a coordinate system xk. Then

[jk, m] ¼ [pq, r]
@xp

@x j

@xq

@x k

@xr

@xm
þ gpq

@x p

@xm

@2xq

@x j@x k

n

jk

� �
¼ s

pq

� �
@xn

@xs
@xp

@xj
@xq

@xk
þ @xn

@xq
@2xq

@xj@xk

are the laws of transformation of the Christoffel symbols showing that they are not tensors unless the second
terms on the right are zero.

8.12 Length of a Vector, Angle between Vectors, Geodesics

The quantity ApBp, which is the inner product of Ap and Bp, is a scalar analogous to the scalar product in
rectangular coordinates. We define the length L of the vector Ap or Aq as given by

L2 ¼ ApAp ¼ gpqApAq ¼ gpqA
pAq

We can define the angle u between Ap and Bp as given by

cos u ¼ ApBpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ApAp)(BpBp)

p
Geodesics

The distance s between two points t1 and t2 on a curve x r ¼ x r(t) in a Riemannian space is given by

s ¼
ðt2
t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpq

dxp

dt

dxq

dt

r
dt
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That curve in the space, which makes the distance a minimum, is called a geodesic of the space. By use of
the calculus of variations (see Problems 8.50 and 8.51), the geodesics are found from the differential
equation

d2xr

ds2
þ r

pq

� �
dxp

ds

dxq

ds
¼ 0

where s is the arc length parameter. As examples, the geodesics on a plane are straight lines whereas the
geodesics on a sphere are arcs of great circles.

Physical Components

The physical components of a vector Ap or Ap, denoted by Au, Av, Aw, are the projections of the vector on the
tangents to the coordinate curves and are given in the case of orthogonal coordinates by

Au ¼ ffiffiffiffiffiffi
g11

p
A1 ¼ A1ffiffiffiffiffiffi

g11
p , Av ¼ ffiffiffiffiffiffi

g22
p

A2 ¼ A2ffiffiffiffiffiffi
g22

p , Aw ¼ ffiffiffiffiffiffi
g33

p
A3 ¼ A3ffiffiffiffiffiffi

g33
p

Similarly, the physical components of a tensor Apq or Apq are given by

Auu ¼ g11A
11 ¼ A11

g11
, Auv ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

g11g22
p

A12 ¼ A12ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p , Auw ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
g11g33

p
A13 ¼ A13ffiffiffiffiffiffiffiffiffiffiffiffi

g11g33
p , etc:

8.13 Covariant Derivative

The covariant derivative of a tensor Ap with respect to xq is denoted by Ap,q and is defined by

Ap,q ;
@Ap

@xq
� s

pq

� �
As

a covariant tensor of rank two.
The covariant derivative of a tensor Ap with respect to xq is denoted by Ap

,q and is defined by

Ap
,q ;

@Ap

@xq
þ p

qs

� �
As

a mixed tensor of rank two.
For rectangular systems, the Christoffel symbols are zero and the covariant derivatives are the usual

partial derivatives. Covariant derivatives of tensors are also tensors (see Problem 8.52).
The above results can be extended to covariant derivatives of higher rank tensors. Thus

Ap1���pm
r1���rn, q ;

@Ap1���pm
r1���rn
@x q

� s

r1q

� �
Ap1���pm
sr2���rn � s

r2q

� �
Ap1���pm
r1sr3���rn � � � � � s

rnq

� �
Ap1���pm
r1���rn�1s

þ p1

qs

� �
Asp2���pm
r1���rn þ p2

qs

� �
Ap1sp3���pm
r1���rn þ � � � þ pm

qs

� �
Ap1���pm�1s
r1���rn

is the covariant derivative of Ap1���pm
r1���rn with respect to xq.

The rules of covariant differentiation for sums and products of tensors are the same as those for ordinary
differentiation. In performing the differentiations, the tensors gpq, g

pq, and d p
q may be treated as constants

since their covariant derivatives are zero (see Problem 8.54). Since covariant derivatives express rates of
change of physical quantities independent of any frames of reference, they are of great importance in
expressing physical laws.
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8.14 Permutation Symbols and Tensors

The symbol epqr is defined by the following relations:

e123 ¼ e231 ¼ e312 ¼ þ1, e213 ¼ e132 ¼ e321 ¼ �1, epqr ¼ 0

if two or more indices are equal.
The symbol epqr is defined in the same manner. The symbols epqr and e

pqr are called permutation symbols
in three-dimensional space.

Further, let us define

epqr ¼ 1ffiffiffi
g

p epqr, e pqr ¼ ffiffiffi
g

p
e pqr

It can be shown that epqr and e pqr are respectively, covariant and contravariant tensors, called permutation
tensors in three-dimensional space. Generalizations to higher dimensions are possible.

8.15 Tensor Form of Gradient, Divergence, and Curl

1. Gradient. If F is a scalar or invariant, the gradient of F is defined by

rrrrrF ¼ grad F ¼ F, p ¼ @F

@xp

where F, p is the covariant derivative of F with respect to xp.

2. Divergence. The divergence of Ap is the contraction of its covariant derivative with respect to xq,
i.e. the contraction of Ap

, q. Then

div Ap ¼ Ap
, p ¼

1ffiffiffi
g

p @

@xk
ffiffiffi
g

p
Ak

� 	

3. Curl. The curl of Ap is Ap, q � Aq, p ¼ @Ap

@xq
� @Aq

@xp
, a tensor of rank two. The curl is also defined

as �e pqrAp,q.

4. Laplacian. The Laplacian of F is the divergence of grad F or

r2F ¼ div F, p ¼ 1ffiffiffi
g

p @

@x j

ffiffiffi
g

p
g jk @F

@xk

� �

In case g , 0,
ffiffiffi
g

p
must be replaced by

ffiffiffiffiffiffiffi�g
p

. Both cases g . 0 and g , 0 can be included by
writing

ffiffiffiffiffiffijgjp
in place of

ffiffiffi
g

p
.

8.16 Intrinsic or Absolute Derivative

The intrinsic or absolute derivative of Ap along a curve xq ¼ xq(t), denoted by
dAp

dt
, is defined as the inner

product of the covariant derivative of Ap and
dxq

dt
, that is Ap, q

dxq

dt
, and is given by

dAp

dt
;

dAp

dt
� r

pq

� �
Ar

dxq

dt

Similarly, we define

dAp

dt
;

dAp

dt
þ p

qr

� �
Ar dx

q

dt
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The vectors Ap or A
p are said tomove parallelly along a curve if their intrinsic derivatives along the curve

are zero, respectively.
Intrinsic derivatives of higher rank tensors are similarly defined.

8.17 Relative and Absolute Tensors

A tensor Ap1���pm
r1���rn is called a relative tensor of weight w if its components transform according to the equation

A
q1���qm
s1���sn ¼ @x

@x

����
����wAp1���pm

r1���rn
@xq1

@xp1
� � � @x

qm

@x pm

@xr1

@xs1
� � � @x

rn

@xsn

where J ¼ @x

@x

����
���� is the Jacobian of the transformation. If w ¼ 0, the tensor is called absolute and is the type of

tensor with which we have been dealing above. If w ¼ 1, the relative tensor is called a tensor density. The
operations of addition, multiplication, etc., of relative tensors are similar to those of absolute tensors. See,
for example, Problem 8.64.

SOLVED PROBLEMS

Summation Convention

8.1. Write each of the following using the summation convention.

(a) df ¼ @f

@x1
dx1 þ @f

@x2
dx2 þ � � � þ @f

@xN
dxN , (d) ds2 ¼ g11(dx

1)2 þ g22(dx
2)2 þ g33(dx

3)2,

(b)
dxk

dt
¼ @xk

@x1
dx1

dt
þ @xk

@x2
dx2

dt
þ � � � þ @xk

@xN
dxN

dt
, (e)

P3
p¼1

P3
q¼1

gpq dx
pdxq

(c) (x1)2 þ (x2)2 þ (x3)2 þ � � � þ (xN)2

Solution

(a) df ¼ @f

@x j
dx j, (b)

dxk

dt
¼ @xk

@xm
dxm

dt
, (c) xkxk

(d) ds2 ¼ gkk dx
kdxk, N ¼ 3, (e) gpq dxp dxq, N ¼ 3

8.2. Write the terms in each of the following indicated sums.

(a) ajkx
k, (b) ApqA

qr, (c) grs ¼ gjk
@x j

@xr
@xk

@xs
, N ¼ 3

Solution

(a)
PN
k¼1

ajkx
k ¼ aj1x

1 þ aj2x
2 þ � � � þ ajNx

N , (b)
PN
q¼1

ApqA
qr ¼ Ap1A

1r þ Ap2A
2r þ � � � þ ApNA

Nr

(c) grs ¼
X3
j¼1

X3
k¼1

gjk
@xj

@xr
@xk

@xs

¼
X3
j¼1

gj1
@xj

@xr
@x1

@xs
þ gj2

@xj

@xr
@x2

@xs
þ gj3

@xj

@xr
@x3

@xs

� �

¼ g11
@x1

@xr
@x1

@xs
þ g21

@x2

@xr
@x1

@xs
þ g31

@x3

@xr
@x1

@xs

þ g12
@x1

@xr
@x2

@xs
þ g22

@x2

@xr
@x2

@xs
þ g32

@x3

@xr
@x2

@xs

þ g13
@x1

@xr
@x3

@xs
þ g23

@x2

@xr
@x3

@xs
þ g33

@x3

@xr
@x3

@xs
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8.3. Suppose xk, k ¼ 1, 2, . . . , N, are rectangular coordinates. What locus, if any, is represented by each
of the following equations for N ¼ 2, 3, and N � 4. Assume that the functions are single-valued,
have continuous derivatives and are independent, when necessary.

(a) akx
k ¼ 1, where ak are constants (c) xk ¼ xk(u)

(b) xkxk ¼ 1 (d) xk ¼ xk(u, v)

Solution

(a) For N ¼ 2, a1x
1 þ a2x

2 ¼ 1, a line in two dimensions, that is, a line in a plane.

For N ¼ 3, a1x
1 þ a2x

2 þ a3x
3 ¼ 1, a plane in three dimensions.

For N � 4, a1x
1 þ a2x

2 þ � � � þ aNx
N ¼ 1 is a hyperplane.

(b) For N ¼ 2, (x1)2 þ (x2)2 ¼ 1, a circle of unit radius in the plane.

For N ¼ 3, (x1)2 þ (x2)2 þ (x3)2 ¼ 1, a sphere of unit radius.

For N � 4, (x1)2 þ (x2)2 þ � � � þ (xN )2 ¼ 1, a hypersphere of unit radius.

(c) For N ¼ 2, x1 ¼ x1(u), x2 ¼ x2(u), a plane curve with parameter u.

For N ¼ 3, x1 ¼ x1(u), x2 ¼ x2(u), x3 ¼ x3(u), a three-dimensional space curve.

For N � 4, an N-dimensional space curve.

(d) For N ¼ 2, x1 ¼ x1(u, v), x2 ¼ x2(u, v) is a transformation of coordinates from (u, v) to (x1, x2).

For N ¼ 3, x1 ¼ x1(u, v), x2 ¼ x2(u, v), x3 ¼ x3(u, v) is a three-dimensional surface with parameters u

and v.

For N � 4, a hypersurface.

Contravariant and Covariant Vectors and Tensors

8.4. Write the law of transformation for the tensors (a) Ai
jk, (b) B

mn
ijk , (c) C

m.

Solution

(a) A
p

qr ¼
@xp

@xi
@xj

@xq
@xk

@xr
Ai

jk

As an aid for remembering the transformation, note that the relative positions of indices p, q, r on the left side

of the transformation are the same as those on the right side. Since these indices are associated with the x coor-

dinates and since indices i, j, k are associated, respectively, with indices p, q, r, the required transformation is

easily written.

(b) B
pq

rst ¼
@xp

@xm
@xq

@xn
@xi

@xr
@xj

@xs
@xk

@xt
Bmn
ijk , (c) C

p ¼ @xp

@xm
Cm

8.5. A quantity A( j, k, l, m), which is a function of coordinates xi, transforms to another coordinate
system xi according to the rule

A(p, q, r, s) ¼ @xj

@xp
@xq

@xk
@xr

@xl
@xs

@xm
A(j, k, l, m)

(a) Is the quantity a tensor? (b) If so, write the tensor in suitable notation and (c) give the contra-
variant and covariant order and rank.

Solution

(a) Yes, (b) Aklm
j , (c) Contravariant of order 3, covariant of order 1 and rank 3þ 1 ¼ 4
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8.6. Determine whether each of the following quantities is a tensor. If so, state whether it is contravariant

or covariant and give its rank: (a) dxk, (b)
@f(x1, . . . , xN)

@xk
.

Solution

(a) Assume the transformation of coordinates x j ¼ x j(x1, . . . , xN). Then dx j ¼ @x j

@xk
dxk and so dxk is a contra-

variant tensor of rank one or a contravariant vector. Note that the location of the index k is appropriate.

(b) Under the transformation xk ¼ xk(x1, . . . , xN ), f is a function of xk and hence x j such that

f(x1, . . . , xN) ¼ f(x1, . . . , xN), that is, f is a scalar or invariant (tensor of rank zero). By the chain rule

for partial differentiation,
@f

@x j
¼ @f

@x j
¼ @f

@xk
@xk

@x j
¼ @xk

@x j
@f

@xk
and

@f

@xk
transforms like Aj ¼ @xk

@x j
Ak. Then

@f

@xk

is a covariant tensor of rank one or a covariant vector.

Note that in
@f

@xk
the index appears in the denominator and thus acts like a subscript which indicates its

covariant character. We refer to the tensor
@f

@xk
or equivalently, the tensor with components

@f

@xk
, as the

gradient of f, written grad f or rrrrrf.

8.7. A covariant tensor has components xy, 2y� z2, xz in rectangular coordinates. Find its covariant
components in spherical coordinates.

Solution

Let Aj denote the covariant components in rectangular coordinates x1 ¼ x, x2 ¼ y, x3 ¼ z. Then

A1 ¼ xy ¼ x1x2, A2 ¼ 2y� z2 ¼ 2x2 � (x3)2, A3 ¼ x1x3

where care must be taken to distinguish between superscripts and exponents.

Let Ak denote the covariant components in spherical coordinates x1 ¼ r, x2 ¼ u, x3 ¼ f. Then

Ak ¼ @xj

@xk
Aj (1)

The transformation equations between coordinate systems are

x1 ¼ x1 sin x2 cos x3, x2 ¼ x1 sin x2 sin x3, x3 ¼ x1 cos x2

Then equations (1) yield the required covariant components

A1 ¼ @x1

@x1
A1 þ @x2

@x1
A2 þ @x3

@x1
A3

¼ (sin x2 cos x3)(x1x2)þ (sin x2 sin x3)(2x2 � (x3)2)þ (cos x2)(x1x3)

¼ (sin u cosf)(r2 sin2 u sinf cosf)

þ (sin u sinf)(2r sin u sinf� r2 cos2 u)

þ (cos u)(r2 sin u cos u cosf)

A2 ¼ @x1

@x2
A1 þ @x2

@x2
A2 þ @x3

@x2
A3

¼ (r cos u cosf)(r2 sin2 u sinf cosf)

þ (r cos u sinf)(2r sin u sinf� r2 cos2 u)

þ (�r sin u)(r2 sin u cos u cosf)
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A3 ¼ @x1

@x3
A1 þ @x2

@x3
A2 þ @x3

@x3
A3

¼ (�r sin u sinf)(r2 sin2 u sinf cosf)

þ (r sin u cosf)(2r sin u sinf� r2 cos2 u)

þ (0)(r2 sin u cos u cosf)

8.8. Show that
@Ap

@xq
is not a tensor even though Ap is a covariant tensor of rank one.

Solution

By hypothesis, Aj ¼ @xp

@x j
Ap. Differentiating with respect to xk.

@Aj

@xk
¼ @xp

@x j

@Ap

@xk
þ @2xp

@xk@x j
Ap ¼ @xp

@x j

@Ap

@xq
@xq

@xk
þ @2xp

@xk@x j
Ap ¼ @xp

@x j
@xq

@xk
@Ap

@xq
þ @2xp

@xk@x j
Ap

Since the second term on the right is present,
@Ap

@x q
does not transform as a tensor should. Later, we shall show

how the addition of a suitable quantity to
@Ap

@xq
causes the result to be a tensor (Problem 8.52).

8.9. Show that the velocity of a fluid at any point is a contravariant tensor of rank one.

Solution

The velocity of a fluid at any point has components
dxk

dt
in the coordinate system xk. In the coordinate system x j,

the velocity is
dx j

dt
. But, by the chain rule,

dx j

dt
¼ @x j

@xk
dxk

dt

and it follows that the velocity is a contravariant tensor of rank one or a contravariant vector.

The Kronecker Delta

8.10. Evaluate (a) d p
q A

qr
s , (b) d

p
q d

q
r .

Solution

Since d p
q ¼ 1 if p ¼ q and 0 if p=q, we have

(a) d p
qA

qr
s ¼ Apr,

s , (b) d p
qd

q
r ¼ d p

r

8.11. Show that
@xp

@xq
¼ d p

q.

Solution

If p ¼ q,
@xp

@xq
¼ 1 since xp ¼ xq. If p=q,

@xp

@xq
¼ 0 since xp and xq are independent.

Then
@xp

@xq
¼ dpq.
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8.12. Prove that
@xp

@xq
@xq

@xr
¼ d p

r .

Solution

Coordinates xp are functions of coordinates xq, which are in turn functions of coordinates xr . Then, by the chain

rule and Problem 8.11,

@xp

@xr
¼ @xp

@xq
@xq

@xr
¼ dp

r

8.13. Let A
p ¼ @xp

@xq
Aq. Prove that Aq ¼ @xq

@xp
A
p
.

Solution

Multiply equation A
p ¼ @xp

@xq
Aq by

@xr

@xp
.

Then
@xr

@xp
A
p ¼ @xr

@xp
@xp

@xq
Aq ¼ drqA

q ¼ Ar by Problem 8.12. Placing r ¼ q, the result follows. This indicates

that in the transformation equations for the tensor components, the quantities with bars and quantities

without bars can be interchanged, a result which can be proved in general.

8.14. Prove that dpq is a mixed tensor of the second rank.

Solution

If d p
q is a mixed tensor of the second rank, it must transform according to the rule

d
j

k ¼ @x j

@xp
@xq

@xk
d p
q

The right side equals
@x j

@xp
@xp

@xk
¼ d j

k by Problem 8.12. Since d
j

k ¼ d j
k ¼ 1 if j ¼ k, and 0 if j=k, it follows that dp

q

is a mixed tensor of rank two, justifying the notation used.

Note that we sometimes use dpq ¼ 1 if p ¼ q and 0 if p=q, as the Kronecker delta. This is, however, not a

covariant tensor of the second rank as the notation would seem to indicate.

Fundamental Operations with Tensors

8.15. Suppose Apq
r and Bpq

r are tensors. Prove that their sum and difference are tensors.

Solution

By hypothesis Apq
r and Bpq

r are tensors, so that

A
jk

l ¼ @x j

@xp
@xk

@xq
@xr

@xl
Apq
r and B

jk

l ¼ @x j

@xp
@xk

@xq
@xr

@xl
Bpq
r

Adding,

(A
jk

l þ B
jk

l ) ¼
@x j

@xp
@xk

@xq
@xr

@xl
(Apq

r þ Bpq
r )

Subtracting,

(A
jk

l � B
jk

l ) ¼
@x j

@xp
@xk

@xq
@xr

@xl
(Apq

r � Bpq
r )

Then Apq
r þ Bpq

r and Apq
r � Bpq

r are tensors of the same rank and type as Apq
r and Bpq

r .
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8.16. Suppose Apq
r and Bs

t are tensors. Prove that C
pqs
rt ¼ Apq

r Bs
t is also a tensor.

Solution

We must prove that C
pqs
rt is a tensor whose components are formed by taking the products of components of

tensors Apq
r and Bs

t . Since A
pq
r and Bs

t are tensors,

A
jk

l ¼ @x j

@xp
@xk

@xq
@xr

@xl
Apq
r and B

m

n ¼ @xm

@xs
@xt

@xn
Bs
t

Multiplying,

A
jk

l B
m

n ¼ @x j

@xp
@xk

@xq
@xr

@xl
@xm

@xs
@xt

@xn
Apq
r Bs

t

which shows that Apq
r Bs

t is a tensor of rank 5, with contravariant indices p, q, s and covariant indices r, t, thus

warranting the notation C
pqs
rt . We call C

pqs
rt ¼ Apq

r Bs
t the outer product of A

pq
r and Bs

t .

8.17. Let A
pq
rst be a tensor. (a) Choose p ¼ t and show that Apq

rsp, where the summation convention is
employed, is a tensor. What is its rank? (b) Choose p ¼ t and q ¼ s and show similarly that Apq

rqp

is a tensor. What is its rank?

Solution

(a) Since A
pq
rst is a tensor,

A
jk

lmn ¼
@x j

@xp
@xk

@xq
@xr

@xl
@xs

@xm
@xt

@xn
Apq
rst (1)

We must show that Apq
rsp is a tensor. Place the corresponding indices j and n equal to each other and sum

over this index. Then

A
jk

lmj ¼
@x j

@xp
@xk

@xq
@xr

@xl
@xs

@xm
@xt

@x j
Apq
rst ¼

@xt

@x j

@x j

@xp
@xk

@xq
@xr

@xl
@xs

@xm
Apq
rst

¼ dtp
@xk

@xq
@xr

@xl
@xs

@xm
Apq
rst ¼

@xk

@xq
@xr

@xl
@xs

@xm
Apq
rsp

and so Apq
rsp is a tensor of rank 3 and can be denoted by Bq

rs. The process of placing a contravariant index

equal to a covariant index in a tensor and summing is called contraction. By such a process a tensor is

formed whose rank is two less than the rank of the original tensor.

(b) We must show that Apq
rqp is a tensor. Placing j ¼ n and k ¼ m in equation (1) of part (a) and summing over j

and k, we have

A
jk

lkj ¼
@x j

@xp
@xk

@xq
@xr

@xl
@xs

@xk
@xt

@x j
Apq
rst ¼

@xt

@x j

@x j

@xp
@xs

@xk
@xk

@xq
@xr

@xl
Apq
rst

¼ dtpd
s
q

@xr

@xl
Apq
rst ¼

@xr

@xl
Apq
rqp

which shows that Apq
rqp is a tensor of rank one and can be denoted by Cr . Note that by contracting twice, the

rank was reduced by 4.

8.18. Prove that the contraction of the tensor Ap
q is a scalar or invariant.

Solution

We have

A
j

k ¼
@x j

@xp
@xq

@xk
Ap
q
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Putting j ¼ k and summing,

A
j

j ¼
@x j

@xp
@xq

@x j
Ap
q ¼ dqpA

p
q ¼ Ap

p

Then A
j

j ¼ Ap
p and it follows that Ap

p must be an invariant. Since Ap
q is a tensor of rank two and contraction

with respect to a single index lowers the rank by two, we are led to define an invariant as a tensor of rank zero.

8.19. Show that the contraction of the outer product of the tensors Ap and Bq is an invariant.

Solution

Since Ap and Bq are tensors, A
j ¼ @x j

@xp
Ap, Bk ¼ @xq

@xk
Bq. Then

A
j
Bk ¼ @x j

@xp
@xq

@xk
ApBq

By contraction (putting j ¼ k and summing)

A
j
Bj ¼ @x j

@xp
@xq

@x j
ApBq ¼ dqpA

pBq ¼ ApBp

and so ApBp is an invariant. The process of multiplying tensors (outer multiplication) and then contracting is

called inner multiplication and the result is called an inner product. Since ApBp is a scalar, it is often called the

scalar product of the vectors Ap and Bq.

8.20. Show that any inner product of the tensors Ap
r and B

qs
t is a tensor of rank three.

Solution

Outer product of Ap
r and B

qs
t ¼ Ap

rB
qs
t .

Let us contract with respect to indices p and t, that is, let p ¼ t and sum. We must show that the resulting

inner product, represented by Ap
rB

qs
p , is a tensor of rank three.

By hypothesis, Ap
r and B

qs
t are tensors; then

A
j

k ¼
@x j

@xp
@xr

@xk
Ap
r , B

lm

n ¼ @xl

@xq
@xm

@xs
@xt

@xn
Bqs
t

Multiplying, letting j ¼ n and summing, we have

A
j

kB
lm

j ¼ @x j

@xp
@xr

@xk
@xl

@xq
@xm

@xs
@xt

@x j
Ap
rB

qs
t

¼ dtp
@xr

@xk
@xl

@xq
@xm

@xs
Ap
rB

qs
t

¼ @xr

@xk
@xl

@xq
@xm

@xs
Ap
rB

qs
p

showing that Ap
rB

qs
p is a tensor of rank three. By contracting with respect to q and r or s and r in the product

Ap
rB

qs
t , we can similarly show that any inner product is a tensor of rank three.

Another Method. The outer product of two tensors is a tensor whose rank is the sum of the ranks of the given

tensors. Then Ap
rB

qs
t is a tensor of rank 3þ 2 ¼ 5. Since a contraction results in a tensor whose rank is two less

than that of the given tensor, it follows that any contraction of Ap
rB

qs
t is a tensor of rank 5� 2 ¼ 3.

8.21. Let X(p, q, r) be a quantity such that X(p, q, r)Bqn
r ¼ 0 for an arbitrary tensor Bqn

r . Prove that
X(p, q, r) ¼ 0 identically.

Solution

Since Bqn
r is an arbitrary tensor, choose one particular component (say the one with q ¼ 2, r ¼ 3) not equal to

zero, while all other components are zero. Then X(p, 2, 3)B2n
3 ¼ 0, so that X(p, 2, 3) ¼ 0 since B2n

3 =0. By

similar reasoning with all possible combinations of q and r, we have X(p, q, r) ¼ 0 and the result follows.
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8.22. Suppose in the coordinate system xi, a quantity A(p, q, r) is A(p, q, r)Bqs
r ¼ Cs

p where Bqs
r is an

arbitrary tensor and Cs
p is a tensor. Prove that A(p, q, r) is a tensor.

Solution

In the transformed coordinates xi, A(j, k, l)B
km

l ¼ C
m

j .

Then A(j, k, l)
@xk

@xq
@xm

@xs
@xr

@xl
Bqs
r ¼ @xm

@xs
@xp

@x j
Cs
p ¼

@xm

@xs
@xp

@x j
A(p, q, r)Bqs

r

or

@xm

@xs
@xk

@xq
@xr

@xl
A(j, k, l)� @xp

@x j
A(p, q, r)


 �
Bqs
r ¼ 0

Inner multiplication by
@xn

@xm
(i.e. multiplying by

@xn

@xt
and then contracting with t ¼ m) yields

dns
@xk

@xq
@xr

@xl
A(j, k, l)� @xp

@x j
A(p, q, r)


 �
Bqs
r ¼ 0

or

@xk

@xq
@xr

@xl
A(j, k, l)� @xp

@x j
A(p, q, r)


 �
Bqn
r ¼ 0:

Since Bqn
r is an arbitrary, tensor, we have by Problem 8.21,

@xk

@xq
@xr

@xl
A(j, k, l)� @xp

@x j
A(p, q, r) ¼ 0

Inner multiplication by
@xq

@xm
@xn

@xr
yields

dkmd
n
l A(j, k, l)�

@xp

@x j
@xq

@xm
@xn

@xr
A(p, q, r) ¼ 0

or

A(j, m, n) ¼ @xp

@x j
@xq

@xm
@xn

@xr
A(p, q, r)

which shows that A(p, q, r) is a tensor and justifies use of the notation Ar
pq.

In this problem we have established a special case of the quotient lawwhich states that if an inner product of

a quantity X with an arbitrary tensor B is a tensor C, then X is a tensor.

Symmetric and Skew-Symmetric Tensors

8.23. Suppose a tensorA
pqr
st is symmetric (skew-symmetric)with respect to indices p and q in one coordinate

system. Show that it remains symmetric (skew-symmetric) with respect to p and q in any coordinate
system.

Solution

Since only indices p and q are involved, we shall prove the results for Bpq. If Bpq is symmetric, Bpq ¼ Bqp. Then

B
jk ¼ @x j

@xp
@xk

@xq
Bpq ¼ @xk

@xq
@x j

@xp
Bqp ¼ B

kj

and Bpq remains symmetric in the xi coordinate system.

If Bpq is skew-symmetric, Bpq ¼ �Bqp. Then

B
jk ¼ @x j

@xp
@xk

@xq
Bpq ¼ � @xk

@xq
@x j

@xp
Bqp ¼ �B

kj

and Bpq remains skew-symmetric in the xi coordinate system.

The above results are, of course, valid for other symmetric (skew-symmetric) tensors.
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8.24. Show that every tensor can be expressed as the sum of two tensors, one of which is symmetric and
the other skew-symmetric in a pair of covariant or contravariant indices.

Solution

Consider, for example, the tensor Bpq. We have

Bpq ¼ 1
2
(Bpq þ Bqp)þ 1

2
Bpq � Bqpð Þ

But Rpq ¼ 1
2
(Bpq þ Bqp) ¼ Rqp is symmetric, and Spq ¼ 1

2
Bpq � Bqpð Þ ¼ �Sqp is skew-symmetric. By similar

reasoning, the result is seen to be true for any tensor.

8.25. Let F ¼ ajkA
jAk. Show that we can always write F ¼ bjkA

jAk where bjk is symmetric.

Solution

F ¼ a jkA
jAk ¼ akjA

kAj ¼ akjA
jAk

Then

2F ¼ a jkA
jAk þ akjA

jAk ¼ (a jk þ akj)A
jAk and F ¼ 1

2
(a jk þ akj)A

jAk ¼ b jkA
jAk

where bjk ¼ 1
2
(ajk þ akj) ¼ bkj is symmetric.

Matrices

8.26. Write the sum S ¼ Aþ B, difference D ¼ A� B, and products P ¼ AB, Q ¼ BA of the matrices

A ¼
3 1 �2

4 �2 3

�2 1 �1

2
4

3
5, B ¼

2 0 �1

�4 1 2

1 �1 0

2
4

3
5

Solution

S ¼ Aþ B ¼
3þ 2 1þ 0 �2� 1

4� 4 �2þ 1 3þ 2

�2þ 1 1� 1 �1þ 0

2
64

3
75 ¼

5 1 �3

0 �1 5

�1 0 �1

2
64

3
75

D ¼ A� B ¼
3� 2 1� 0 �2þ 1

4þ 4 �2� 1 3� 2

�2� 1 1þ 1 �1� 0

2
64

3
75 ¼

1 1 �1

8 �3 1

�3 2 �1

2
64

3
75

P ¼ AB ¼
(3)(2)þ (1)(�4)þ (�2)(1) (3)(0)þ (1)(1)þ (�2)(�1) (3)(�1)þ (1)(2)þ (�2)(0)

(4)(2)þ (�2)(�4)þ (3)(1) (4)(0)þ (�2)(1)þ (3)(�1) (4)(�1)þ (�2)(2)þ (3)(0)

(�2)(2)þ (1)(�4)þ (�1)(1) (�2)(0)þ (1)(1)þ (�1)(�1) (�2)(�1)þ (1)(2)þ (�1)(0)

2
64

3
75

¼
0 3 �1

19 �5 �8

�9 2 4

2
64

3
75

Q ¼ BA ¼
8 1 �3

�12 �4 9

�1 3 �5

2
64

3
75

This shows that AB=BA, that is, multiplication of matrices is not commutative in general.
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8.27. Let A ¼ 2 1

�1 3


 �
and B ¼ �1 2

3 �2


 �
. Show that (Aþ B)(A� B)= A2 � B2.

Solution

Aþ B ¼ 1 3

2 1


 �
, A� B ¼ 3 �1

�4 5


 �
: Then (Aþ B)(A� B) ¼ 1 3

2 1


 �
3 �1

�4 5


 �
¼ �9 14

2 3


 �
:

A2 ¼ 2 1

�1 3


 �
2 1

�1 3


 �
¼ 3 5

�5 8


 �
, B2 ¼ �1 2

3 �2


 � �1 2

3 �2


 �
¼ 7 �6

�9 10


 �
:

Then A2 � B2 ¼ �4 11

4 �2


 �
.

Therefore, (Aþ B)(A� B)=A2 � B2. However, (Aþ B)(A� B) ¼ A2 � ABþ BA� B2.

8.28. Express in matrix notation the transformation equations for (a) a covariant vector, (b) a contravar-
iant tensor of rank two, assuming N ¼ 3.

Solution

(a) The transformation equations Ap ¼ @xq

@xp
Aq can be written

A1

A2

A3

2
64

3
75 ¼

@x1

@x1
@x2

@x1
@x3

@x1

@x1

@x2
@x2

@x2
@x3

@x2

@x1

@x3
@x2

@x3
@x3

@x3

2
6666664

3
7777775

A1

A2

A3

2
4

3
5

in terms of column vectors, or equivalently in terms of row vectors

A1 A2 A3

� 
 ¼ A1 A2 A3½ �

@x1

@x1
@x1

@x2
@x1

@x3

@x2

@x1
@x2

@x2
@x2

@x3

@x3

@x1
@x3

@x2
@x3

@x3

2
6666664

3
7777775

(b) The transformation equations A
pr ¼ @xp

@xq
@xr

@xs
Aqs can be written

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33

2
664

3
775 ¼

@x1

@x1
@x1

@x2
@x1

@x3

@x2

@x1
@x2

@x2
@x2

@x3

@x3

@x1
@x3

@x2
@x3

@x3

2
6666664

3
7777775

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
4

3
5

@x1

@x1
@x2

@x1
@x3

@x1

@x1

@x2
@x2

@x2
@x3

@x2

@x1

@x3
@x2

@x3
@x3

@x3

2
6666664

3
7777775

Extensions of these results can be made for N . 3. For higher rank tensors, however, the matrix notation

fails.
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The Line Element and Metric Tensor

8.29. Suppose ds2 ¼ gjk dx
j dxk is an invariant. Show that gjk is a symmetric covariant tensor of rank two.

Solution

By Problem 8.25,F ¼ ds2, Aj ¼ dxj and Ak ¼ dxk; it follows that gjk can be chosen symmetric. Also, since ds2

is an invariant,

gpq dx
pdxq ¼ gjk dx

jdxk ¼ gjk
@xj

@xp
dxp

@xk

@xq
dxq ¼ gjk

@xj

@xp
@xk

@xq
dxpdxq

Then gpq ¼ gjk
@xj

@xp
@xk

@xq
and gjk is a symmetric covariant tensor of rank two, called the metric tensor.

8.30. Determine the metric tensor in (a) cylindrical and (b) spherical coordinates.

Solution

(a) As in Problem 7.7, ds2 ¼ dr2 þ r2 df2 þ dz2.

If x1 ¼ r, x2 ¼ f, x3 ¼ z, then g11 ¼ 1, g22 ¼ r2, g33 ¼ 1, g12 ¼ g21 ¼ 0, g23 ¼ g32 ¼ 0, g31 ¼ g13 ¼ 0.

In matrix form, the metric tensor can be written

g11 g12 g13
g21 g22 g23
g31 g32 g33

2
4

3
5 ¼

1 0 0

0 r2 0

0 0 1

2
4

3
5

(b) As in Problem 7.8(a), ds2 ¼ dr2 þ r2 du2 þ r2 sin2 u df2.

If x1 ¼ r, x2 ¼ u, x3 ¼ f, the metric tensor can be written

1 0 0

0 r2 0

0 0 r2 sin2 u

2
4

3
5

In general, for orthogonal coordinates, gjk ¼ 0 for j=k.

8.31. (a) Express the determinant g ¼
g11 g12 g13
g21 g22 g23
g31 g32 g33

������
������ in terms of the elements in the second row and

their corresponding cofactors. (b) Show that gjkG( j, k) ¼ g where G( j, k) is the cofactor of gjk in
g and where summation is over k only.

Solution

(a) The cofactor of gjk is the determinant obtained from g by (1) deleting the row and column in which gjk
appears and (2) associating the sign (�1)jþk to this determinant. Thus,

Cofactor of g21 ¼ (�1)2þ1 g12 g13
g32 g33

����
����, Cofactor of g22 ¼ (�1)2þ2 g11 g13

g31 g33

����
����,

Cofactor of g23 ¼ (�1)2þ3 g11 g12
g31 g32

����
����

Denote these cofactors by G(2, 1), G(2, 2), and G(2, 3) respectively. Then, by an elementary principle of

determinants

g21G(2, 1)þ g22G(2, 2)þ g23G(2, 3) ¼ g

(b) By applying the result of (a) to any row or column, we have gjkG(j, k) ¼ g where the summation is over k

only. These results hold where g ¼ gjk
�� �� is an Nth order determinant.
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8.32. (a) Prove that g21G(3, 1)þ g22G(3, 2)þ g23G(3, 3) ¼ 0.

(b) Prove that gjkG(p, k) ¼ 0 if j=p.

Solution

(a) Consider the determinant

g11 g12 g13
g21 g22 g23
g21 g22 g23

������
������ which is zero since its last two rows are identical. Expanding

according to elements of the last row we have

g21G(3, 1)þ g22G(3, 2)þ g23G(3, 3) ¼ 0

(b) By setting the corresponding elements of any two rows (or columns) equal, we can show, as in part

(a), that gjkG(p, k) ¼ 0 if j = p. This result holds for Nth-order determinants as well.

8.33. Define gjk ¼ G(j, k)

g
where G( j, k) is the cofactor of gjk in the determinant g ¼ gjk

�� ��=0. Prove

that gjkg
pk ¼ dpj .

Solution

By Problem 8.31, gjk
G(j, k)

g
¼ 1 or gjkg

jk ¼ 1, where summation is over k only.

By Problem 8.32, gjk
G(p, k)

g
¼ 0 or gjkg

pk ¼ 0 if p = j.

Then gjkg
pk (¼ 1 if p ¼ j, and 0 if p= j) ¼ dpj .

We have used the notation gjk although we have not yet shown that the notation is warranted (i.e. that gjk is a

contravariant tensor of rank two). This is established in Problem 8.34. Note that the cofactor has been written

G( j, k) and not Gjk since we can show that it is not a tensor in the usual sense. However, it can be shown to be a

relative tensor of weight two which is contravariant and with this extension of the tensor concept the notation

Gjk can be justified (see Supplementary Problem 8.152).

8.34. Prove that gjk is a symmetric contravariant tensor of rank two.

Solution

Since gjk is symmetric, G( j, k) is symmetric and so gjk ¼ G(j, k)=g is symmetric.

If Bp is an arbitrary contravariant vector, Bq ¼ gpqB
p is an arbitrary covariant vector. Multiplying by gjq,

g jqBq ¼ g jqgpqB
p ¼ d j

pB
p ¼ Bj or g jqBq ¼ Bj

Since Bq is an arbitrary vector, g
jq is a contravariant tensor of rank two, by application of the quotient law. The

tensor gjk is called the conjugate metric tensor.

8.35. Determine the conjugate metric tensor in (a) cylindrical and (b) spherical coordinates.

Solution

(a) From Problem 8.30(a), g ¼
1 0 0

0 r2 0

0 0 1

������
������ ¼ r2

g11 ¼ cofactor of g11

g
¼ 1

r2
r2 0

0 1

�����
����� ¼ 1, g33 ¼ cofactor of g33

g
¼ 1

r2
1 0

0 r2

����
���� ¼ 1

g22 ¼ cofactor of g22

g
¼ 1

r2
1 0

0 1

����
���� ¼ 1

r2
, g12 ¼ cofactor of g12

g
¼ � 1

r2
0 0

0 1

����
���� ¼ 0
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Similarly, gjk ¼ 0 if j=k. In matrix form, the conjugate metric tensor can be represented by

1 0 0

0 1=r2 0

0 0 1

2
4

3
5

(b) From Problem 8.30(b), g ¼
1 0 0

0 r2 0

0 0 r2 sin2 u

������
������ ¼ r4 sin2 u

As in part (a), we find g11 ¼ 1, g22 ¼ 1

r2
, g33 ¼ 1

r2 sin2 u
and gjk ¼ 0 for j=k, and in matrix form this can

be written

1 0 0

0 1=r2 0

0 0 1=r2 sin2 u

2
4

3
5

8.36. Find (a) g and (b) gjk corresponding to ds2 ¼ 5(dx1)2 þ 3(dx2)2 þ 4(dx3)2 � 6 dx1dx2 þ 4 dx2dx3.

Solution

(a) g11 ¼ 5, g22 ¼ 3, g33 ¼ 4, g12 ¼ g21 ¼ �3, g23 ¼ g32 ¼ 2, g13 ¼ g31 ¼ 0.

Then g ¼
5 �3 0

�3 3 2

0 2 4

������
������ ¼ 4.

(b) The cofactors G( j, k) of gjk are

G(1, 1) ¼ 8, G(2, 2) ¼ 20, G(3, 3) ¼ 6, G(1, 2) ¼ G(2, 1) ¼ 12, G(2, 3) ¼ G(3, 2) ¼ �10,

G(1, 3) ¼ G(3, 1) ¼ �6

Then g11 ¼ 2, g22 ¼ 5, g33 ¼ 3=2, g12 ¼ g21 ¼ 3, g23 ¼ g32 ¼ �5=2, g13 ¼ g31 ¼ �3=2

Note that the product of the matrices (gjk) and (gjk) is the unit matrix I, that is

5 �3 0

�3 3 2

0 2 4

2
4

3
5 2 3 �3=2

3 5 �5=2
�3=2 �5=2 3=2

2
4

3
5 ¼

1 0 0

0 1 0

0 0 1

2
4

3
5

Associated Tensors

8.37. Let Aj ¼ gjkA
k. Show that Ak ¼ gjkAj.

Solution

Multiply Aj ¼ gjkA
k by gjq. Then gjqAj ¼ gjqgjkA

k ¼ dqkA
k ¼ Aq, that is Aq ¼ gjqAj or A

k ¼ gjkAj.

The tensors of rank one, Aj and Ak, are called associated. They represent the covariant and contravariant

components of a vector.

8.38. (a) Show that L2 ¼ gpqA
pAq is an invariant. (b) Show that L2 ¼ gpqApAq.

Solution

(a) Let Aj and Ak be the covariant and contravariant components of a vector. Then

Ap ¼ @xj

@xp
Aj, A

q ¼ @xq

@xk
Ak
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and

ApA
p ¼ @xj

@xp
@xp

@xk
AjA

k ¼ djkAjA
k ¼ AjA

j

so that AjA
j is an invariant which we call L2. Then we can write

L2 ¼ AjA
j ¼ g jkA

kAj ¼ gpqA
pAq

(b) From (a), L2 ¼ AjA
j ¼ Ajg

kjAk ¼ gjkAjAk ¼ gpqApAq.

The scalar or invariant quantity L ¼ ffiffiffiffiffiffiffiffiffiffi
ApAp

p
is called the magnitude or length of the vector with covari-

ant components Ap and contravariant components Ap.

8.39. (a) Suppose Ap and Bq are vectors. Show that gpqA
pBq is an invariant.

(b) Show that
gpqA

pBqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ApAp)(BqBq)

p is an invariant.

Solution

(a) By Problem 8.38, ApBp ¼ ApgpqB
q ¼ gpqA

pBq is an invariant.

(b) Since ApAp and B
qBq are invariants,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ApAp)(BqBq)

p
is an invariant and so

gpqA
pBqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(ApAp)(BqBq)
p is an invariant.

We define

cos u ¼ gpqA
pBqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(ApAp)(BqBq)
p

as the cosine of the angle between vectors Ap and Bq. If gpqA
pBq ¼ ApBp ¼ 0, the vectors are called

orthogonal.

8.40. Express the relationship between the associated tensors:

(a) Ajkl and Apqr, (b) A
�k
j�l and Aqkr, (c) A

p�rs�
�q��t and A���sl

jqk .

Solution

(a) Ajkl ¼ gjpgkqglrApqr or Apqr ¼ gjpgkqglrA
jkl

(b) A�k
j�l ¼ gjqglrA

qkr or Aqkr ¼ gjqglrA�k
j�l

(c) A
p�rs�
�q��t ¼ gpjgrkgtlA

���sl
jqk or A���sl

jqk ¼ gpjgrkg
tlA

p�rs�
�q��t

8.41. Prove that the angles u12,u23, and u31 between the coordinate curves in a three-dimensional coordi-
nate system are given by

cos u12 ¼ g12ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p , cos u23 ¼ g23ffiffiffiffiffiffiffiffiffiffiffiffi
g22g33

p , cos u31 ¼ g31ffiffiffiffiffiffiffiffiffiffiffiffi
g33g11

p

Solution

Along the x1 coordinate curve, x2 ¼ constant and x3 ¼ constant.

Then, from the metric form, ds2 ¼ g11(dx
1)2 or

dx1

ds
¼ 1ffiffiffiffiffiffiffi

g11
p .

Thus, a unit tangent vector along the x1 curve is Ar
1 ¼

1ffiffiffiffiffiffiffi
g11

p dr1. Similarly, unit tangent vectors along the x2 and

x3 coordinate curves are Ar
2 ¼

1ffiffiffiffiffiffiffi
g22

p dr2 and Ar
3 ¼

1ffiffiffiffiffiffiffi
g33

p dr3.
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The cosine of the angle u12 between Ar
1 and Ar

2 is given by

cos u12 ¼ gpqA
p
1A

q
2 ¼ gpq

1ffiffiffiffiffiffiffi
g11

p 1ffiffiffiffiffiffiffi
g22

p dp1d
q
2 ¼

g12ffiffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p :

Similarly, we obtain the other results.

8.42. Prove that for an orthogonal coordinate system, g12 ¼ g23 ¼ g31 ¼ 0.

Solution

This follows at once from Problem 8.41 by placing u12 ¼ u23 ¼ u31 ¼ 908. From the fact that gpq ¼ gqp, it also

follows that g21 ¼ g32 ¼ g13 ¼ 0.

8.43. Prove that for an orthogonal coordinate system, g11 ¼ 1

g11
, g22 ¼ 1

g22
, g33 ¼ 1

g33
.

Solution

From Problem 8.33, gprgrq ¼ dpq.

If p ¼ q ¼ 1, g1rgr1 ¼ 1 or g11g11 þ g12g21 þ g13g31 ¼ 1.

Then, using Problem 8.42, g11 ¼ 1

g11
.

Similarly, if p ¼ q ¼ 2, g22 ¼ 1

g22
; and if p ¼ q ¼ 3, g33 ¼ 1

g33
.

Christoffel’s Symbols

8.44. Prove (a) [pq, r] ¼ [qp, r], (b)
s

pq

� �
¼ s

qp

� �
, (c) [pq, r] ¼ grs

s

pq

� �
.

Solution

(a) [pq, r] ¼ 1

2

@gpr
@xq

þ @gqr
@xp

� @gpq
@xr

� �
¼ 1

2

@gqr
@xp

þ @gpr
@xq

� @gqp
@xr

� �
¼ [qp, r].

(b)
s

pq

� �
¼ gsr[pq, r] ¼ gsr[qp, r] ¼ s

qp

� �

(c) gks
s

pq

� �
¼ gksg

sr[pq, r] ¼ drk[pq, r] ¼ [pq, k]

or

[pq, k] ¼ gks
s

pq

� �
; that is, [pq, r] ¼ grs

s

pq

� �
.

Note that multiplying [pq, r] by gsr has the effect of replacing r by s, raising this index and replacing square

brackets by braces to yield
s

pq

� �
. Similarly, multiplying

s

pq

� �
by grs or gsr has the effect of replacing s by r,

lowering this index and replacing braces by square brackets to yield [pq, r].

8.45. Prove

(a)
@gpq
@xm

¼ [pm, q]þ [qm, p], (b)
@gpq

@xm
¼ �gpn

q

mn

� �
� gqn

p

mn

� �

(c)
p

pq

� �
¼ @

@xq
ln

ffiffiffi
g

p

Solution

(a) [pm, q]þ [qm, p] ¼ 1

2

@gpq
@xm

þ @gmq
@xp

� @gpm
@xq

� �
þ 1

2

@gqp
@xm

þ @gmp
@xq

� @gqm
@xp

� �
¼ @gpq

@xm
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(b)
@

@xm
gjkgij
� 	 ¼ @

@xm
(dki ) ¼ 0. Then

g jk @gij
@xm

þ @g jk

@xm
gij ¼ 0 or gij

@g jk

@xm
¼ �g jk @gij

@xm

Multiplying by gir,

girgij
@g jk

@xm
¼ �girg jk @gij

@xm

that is

drj
@g jk

@xm
¼ �girg jk([im, j]þ [jm, i])

or

@grk

@xm
¼ �gir

k

im

� �
� g jk r

jm

� �

and the result follows on replacing r, k, i, j by p, q, n, n, respectively.

(c) From Problem 8.31, g ¼ gjkG( j, k) (sum over k only).

Since G( j, k) does not contain gjk explicitly,
@g

@gjr
¼ G( j, r). Then, summing over j and r,

@g

@xm
¼ @g

@g jr

@g jr

@xm
¼ G( j, r)

@g jr

@xm

¼ gg jr @g jr

@xm
¼ gg jr([jm, r]þ [rm, j])

¼ g
j

jm

� �
þ r

rm

� �� �
¼ 2g

j

jm

� �

Thus

1

2g

@g

@xm
¼ j

jm

� �
or

j

jm

� �
¼ @

@xm
ln

ffiffiffi
g

p

The result follows on replacing j by p and m by q.

8.46. Derive transformation laws for the Christoffel symbols of (a) the first kind, (b) the second kind.

Solution

(a) Since gjk ¼
@xp

@x j

@xq

@xk
gpq,

@g jk

@xm
¼ @xp

@x j

@xq

@xk
@gpq
@xr

@xr

@xm
þ @xp

@x j

@2xq

@xm@xk
gpq þ @2xp

@xm@x j

@xq

@xk
gpq (1)

By cyclic permutation of indices j, k, m and p, q, r,

@gkm
@x j

¼ @xq

@xk
@xr

@xm
@gqr
@xp

@xp

@x j
þ @xq

@xk
@2xr

@x j@xm
gqr þ @2xq

@x j@xk
@xr

@xm
gqr (2)

@gmj

@xk
¼ @xr

@xm
@xp

@x j
@grp
@xq

@xq

@xk
þ @xr

@xm
@2xp

@xk@x j
grp þ @2xr

@xk@xm
@xp

@x j
grp (3)
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Subtracting (1) from the sum of (2) and (3) and multiplying by 1
2
, we obtain on using the definition of the

Christoffel symbols of the first kind,

[jk, m] ¼ @xp

@x j
@xq

@xk
@xr

@xm
[pq, r]þ @2xp

@x j@xk
@xq

@xm
gpq (4)

(b) Multiply (4) by gnm ¼ @xn

@xs
@xm

@xt
gst to obtain

gnm[jk, m] ¼ @xp

@x j

@xq

@xk
@xr

@xm
@xn

@xs
@xm

@xt
gst[pq, r]þ @2xp

@x j@xk
@xq

@xm
@xn

@xs
@xm

@xt
gstgpq

Then

n

jk

� �
¼ @xp

@x j

@xq

@xk
@xn

@xs
drt g

st[pq, r]þ @2xp

@x j@xk
@xn

@xs
dqt g

stgpq

¼ @xp

@x j

@xq

@xk
@xn

@xs
s

pq

� �
þ @2xp

@x j@xk
@xn

@xp

since drt g
st[pq, r] ¼ gsr[pq, r] ¼ s

pq

� �
and dqt g

stgpq ¼ gsqgpq ¼ dsp.

8.47. Prove
@2xm

@x j@xk
¼ n

jk

� �
@xm

@xn
� @xp

@x j

@xq

@xk
m

pq

� �
.

Solution

From Problem 8.46(b),
n

jk

� �
¼ @xp

@x j

@xq

@xk
@xn

@xs
s

pq

� �
þ @2xp

@x j@xk
@xn

@xp
.

Multiplying by
@xm

@xn
,

n

jk

� �
@xm

@xn
¼ @xp

@x j

@xq

@xk
dms

s

pq

� �
þ @2xp

@x j@xk
dmp

¼ @xp

@x j

@xq

@xk
m

pq

� �
þ @2xm

@x j@xk

Solving for
@2xm

@x j@xk
, the result follows.

8.48. Evaluate the Christoffel symbols of (a) the first kind, (b) the second kind, for spaces where gpq ¼ 0 if
p=q.

Solution

(a) If p ¼ q ¼ r, [pq, r] ¼ [pp, p] ¼ 1

2

@gpp
@xp

þ @gpp
@xp

� @gpp
@xp

� �
¼ 1

2

@gpp
@xp

:

If p ¼ q=r, [pq, r] ¼ [pp, r] ¼ 1

2

@gpr
@xp

þ @gpr
@xp

� @gpp
@xr

� �
¼ � 1

2

@gpp
@xr

:

If p ¼ r=q, [pq, r] ¼ [pq, p] ¼ 1

2

@gpp
@xq

þ @gqp
@xp

� @gpq
@xp

� �
¼ 1

2

@gpp
@xq

:

If p, q, r are distinct, [pq, r] ¼ 0.

We have not used the summation convention here.
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(b) By Problem 8.43, gjj ¼ 1

gjj
(not summed). Then

s

pq

� �
¼ gsr[pq, r] ¼ 0 if r= s, and ¼ gss[pq, s] ¼ [pq, s]

gss
(not summed) if r ¼ s:

By (a):

If p ¼ q ¼ s,
s

pq

� �
¼ p

pp

� �
¼ [pp, p]

gpp
¼ 1

2gpp
¼ @gpp

@xp
¼ 1

2

@

@xp
ln gpp:

If p ¼ q=s,
s

pq

� �
¼ s

pp

� �
¼ [pp, s]

gss
¼ � 1

2gss

@gpp
@xs

If p ¼ s=q,
s

pq

� �
¼ p

pq

� �
¼ [pq, p]

gpp
¼ 1

2gpp

@gpp
@xq

¼ 1

2

@

@xq
ln gpp:

If p, q, s are distinct,
s

pq

� �
¼ 0.

8.49. Determine the Christoffel symbols of the second kind in (a) rectangular, (b) cylindrical, and
(c) spherical coordinates.

Solution

We can use the results of Problem 8.48, since for orthogonal coordinates gpq ¼ 0 if p=q.

(a) In rectangular coordinates, gpp ¼ 1 so that
s

pq

� �
¼ 0.

(b) In cylindrical coordinates, x1 ¼ r, x2 ¼ f, x3 ¼ z, we have by Problem 8.30(a), g11 ¼ 1,

g22 ¼ r2, g33 ¼ 1. The only non-zero Christoffel symbols of the second kind can occur where p ¼ 2.

These are

1

22

� �
¼ � 1

2g11

@g22
@x1

¼ � 1

2

@

@r
(r2) ¼ �r ,

2

21

� �
¼ 2

12

� �
¼ 1

2g22

@g22
@x1

¼ 1

2r2
@

@r
(r2) ¼ 1

r

(c) In spherical coordinates, x1 ¼ r, x2 ¼ u, x3 ¼ f, we have by Problem 8.30(b), g11 ¼ 1, g22 ¼ r2,

g33 ¼ r2 sin2 u. The only non-zero Christoffel symbols of the second kind can occur where p ¼ 2 or 3.

These are

1

22

� �
¼ � 1

2g11

@g22
@x1

¼ � 1

2

@

@r
(r2) ¼ �r

2

21

� �
¼ 2

12

� �
¼ 1

2g22

@g22
@x1

¼ 1

2r2
@

@r
(r2) ¼ 1

r

1

33

� �
¼ � 1

2g11

@g33
@x1

¼ � 1

2

@

@r
(r2 sin2 u) ¼ �r sin2 u

2

33

� �
¼ � 1

2g22

@g33
@x2

¼ � 1

2r2
@

@u
(r2 sin2 u) ¼ �sin u cos u

3

31

� �
¼ 3

13

� �
¼ 1

2g33

@g33
@x1

¼ 1

2r2 sin2 u

@

@r
(r2 sin2 u) ¼ 1

r

3

32

� �
¼ 3

23

� �
¼ 1

2g33

@g33
@x2

¼ 1

2r2 sin2 u

@

@u
(r2 sin2 u) ¼ cot u
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Geodesics

8.50. Prove that a necessary condition that I ¼ Ð t2
t1
F(t, x, _x) dt be an extremum (maximum or minimum)

is that
@F

@x
� d

dt

@F

@_x

� �
¼ 0.

Solution

Let the curve which makes I an extremum be x ¼ X(t), t1 � t � t2. Then, x ¼ X(t)þ eh(t), where e is

independent of t, is a neighboring curve through t1 and t2 so that h(t1) ¼ h(t2) ¼ 0. The value of I for the neigh-

boring curve is

I(e) ¼
ðt2
t1

F(t, X þ eh, _X þ e _h) dt

This is an extremum for e ¼ 0. A necessary condition that this be so is that
dI

de

����
e¼0

¼ 0. But by differentiation

under the integral sign, assuming this valid,

dI

de

����
e¼0

¼
ðt2
t1

@F

@x
hþ @F

@_x
_h

� �
dt ¼ 0

which can be written as

ðt2
t1

@F

@x
h dt þ @F

@_x
h

����t2
t1

�
ðt2
t1

h
d

dt

@F

@_x

� �
dt ¼

ðt2
t1

h
@F

@x
� d

dt

@F

@_x

� �� �
dt ¼ 0

Since h is arbitrary, the integrand
@F

@x
� d

dt

@F

@_x

� �
¼ 0.

The result is easily extended to the integral
Ð t2
t1
F(t, x1, _x1, x2, _x2, . . . , xN , _xN ) dt and yields

@F

@xk
� d

dt

@F

@_xk

� �
¼ 0

called Euler’s or Lagrange’s equations (see also Problem 8.73).

8.51. Show that the geodesics in a Riemannian space are given by
d2xr

ds2
þ r

pq

� �
dxp

ds

dxq

ds
¼ 0.

Solution

We must determine the extremum of

ðt2
t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpq _x

p _xq
p

dt using Euler’s equations (Problem 8.50) with

F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpq _x

p _xq
p

. We have

@F

@xk
¼ 1

2
(gpq _x

p _xq)�1=2 @gpq
@xk

_xp _xq,
@F

@_xk
¼ 1

2
(gpq _x

p _xq)�1=22gpk _x
p

Using
ds

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpq _x

p _xq
p

, Euler’s equations can be written

d

dt

gpk _x
p

_s

� �
� 1

2_s

@gpq
@xk

_xp _xq ¼ 0

or

gpk €x
p þ @gpk

@xq
_xp _xq � 1

2

@gpq
@xk

_xp _xq ¼ gpk _x
p€s

_s
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Writing
@gpk
@xq

_xp _xq ¼ 1

2

@gpk
@xq

þ @gqk
@xp

� �
_xp _xq this equation becomes

gpk €x
p þ [pq, k]_xp _xq ¼ gpk _x

p€s

_s

If we use arc length as parameter, _s ¼ 1, €s ¼ 0 and the equation becomes

gpk
d2xp

ds2
þ [pq, k]

dxp

ds

dxq

ds
¼ 0

Multiplying by grk, we obtain

d2xr

ds2
þ r

pq

� �
dxp

ds

dxq

ds
¼ 0

The Covariant Derivative

8.52. Suppose Ap and Ap are tensors. Show that (a) Ap,q ;
@Ap

@xq
� s

pq

� �
As

and (b) Ap
,q ;

@Ap

@xq
þ p

qs

� �
As are tensors.

Solution

(a) Since Aj ¼ @xr

@x j
Ar ,

@Aj

@xk
¼ @xr

@x j
@Ar

@xt
@xt

@xk
þ @2xr

@x j@xk
Ar (1)

From Problem 8.47,

@2xr

@x j@xk
¼ n

jk

� �
@xr

@xn
� @xi

@x j
@xl

@xk
r

il

� �
Substituting in (1),

@Aj

@xk
¼ @xr

@x j
@xt

@xk
@Ar

@xt
þ n

jk

� �
@xr

@xn
Ar � @xi

@x j
@xl

@xk
r

il

� �
Ar

¼ @xp

@x j
@xq

@xk
@Ap

@xq
þ n

jk

� �
An � @xp

@x j

@xq

@xk
s

pq

� �
As

or

@Aj

@xk
� n

jk

� �
An ¼ @xp

@x j
@xq

@xk
@Ap

@xq
� s

pq

� �
As

� �

and
@Ap

@xq
� s

pq

� �
As is a covariant tensor of second rank, called the covariant derivative of Ap with respect

to xq and written Ap,q.

(b) Since A
j ¼ @x j

@xr
Ar,

@A
j

@xk
¼ @x j

@xr
@Ar

@xt
@xt

@xk
þ @2x j

@xr@xt
@xt

@xk
Ar (2)

From Problem 8.47, interchanging x and x coordinates,

@2x j

@xr@xt
¼ n

rt

� �
@x j

@xn
� @xi

@xr
@xl

@xt
i

il

� �

CHAPTER 8 Tensor Analysis 217



Substituting in (2),

@A
j

@xk
¼ @x j

@xr
@xt

@xk
@Ar

@xt
þ n

rt

� �
@x j

@xn
@xt

@xk
Ar � @xi

@xr
@xl

@xt
@xt

@xk
j

il

� �
Ar

¼ @x j

@xr
@xt

@xk
@Ar

@xt
þ n

rt

� �
@x j

@xn
@xt

@xk
Ar � @xi

@xr
dlk

j

il

� �
Ar

¼ @x j

@xp
@xq

@xk
@Ap

@xq
þ p

sq

� �
@x j

@xp
@xq

@xk
As � j

ik

� �
A
i

or

@A
j

@xk
þ j

ki

� �
A
i ¼ @x j

@xp
@xq

@xk
@Ap

@xq
þ p

qs

� �
As

� �

and
@Ap

@xq
þ p

qs

� �
As is a mixed tensor of second rank, called the covariant derivative of Ap with respect to

xq and written Ap
,q.

8.53. Write the covariant derivative with respect to xq of each of the following tensors:

(a) Ajk, (b) Ajk, (c) A
j
k, (d) A

j
kl, (e) Ajkl

mn.

Solution

(a) Ajk,q ¼ @Ajk

@xq
� s

jq

� �
Ask � s

kq

� �
Ajs (b) Ajk

,q ¼
@Ajk

@xq
þ j

qs

� �
Ask þ k

qs

� �
Ajs

(c) A
j
k,q ¼

@Aj
k

@xq
� s

kq

� �
Aj
s þ

j

qs

� �
As
k (d) A

j
kl,q ¼

@Aj
kl

@xq
� s

kq

� �
A
j
sl �

s

lq

� �
A
j
ks þ

j

qs

� �
As
kl

(e) Ajkl
mn,q ¼

@Ajkl
mn

@xq
� s

mq

� �
Ajkl
sn �

s

nq

� �
Ajkl
ms þ

j

qs

� �
Askl
mn þ

k

qs

� �
Ajsl
mn þ

l

qs

� �
Ajks
mn

8.54. Prove that the covariant derivatives of the following are zero: (a) gjk, (b) g
jk, (c) djk.

Solution

(a) gjk,q ¼ @gjk
@xq

� s

jq

� �
gsk �

s

kq

� �
gjs ¼ @gjk

@xq
� [jq, k]� [kq, j] ¼ 0 by Problem 8:45(a):

(b) gjk,q ¼
@gjk

@xq
þ j

qs

� �
gsk þ k

qs

� �
gjs ¼ 0 by Problem 8:45(b).

(c) djk,q ¼
@djk
@xq

� s

kq

� �
djs þ

j

qs

� �
dsk ¼ 0� j

kq

� �
þ j

qk

� �
¼ 0:

8.55. Find the covariant derivative of A
j
kB

lm
n with respect to xq.

Solution

A
j
kB

lm
n

� 	
,q
¼ @ A

j
kB

lm
n

� 	
@xq

� s

kq

� �
Aj
sB

lm
n � s

nq

� �
A
j
kB

lm
s þ j

qs

� �
As
kB

lm
n þ l

qs

� �
A
j
kB

sm
n þ m

qs

� �
A
j
kB

ls
n

¼ @Aj
k

@xq
� s

kq

� �
Aj
s þ

j

qs

� �
As
k

 !
Blm
n þ A

j
k

@Blm
n

@xq
� s

nq

� �
Blm
s þ l

qs

� �
Bsm
n þ m

qs

� �
Bls
n

� �

¼ A
j
k,qB

lm
n þ A

j
kB

lm
n,q
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This illustrates the fact that the covariant derivatives of a product of tensors obey rules like those of ordinary

derivatives of products in elementary calculus.

8.56. Prove gjkA
km
n

� 	
,q
¼ gjkA

km
n,q.

Solution

g jkA
km
n

� 	
,q
¼ g jk,qA

km
n þ g jkA

km
n,q ¼ g jkA

km
n,q

since gjk,q ¼ 0 by Problem 8.54(a). In covariant differentiation, gjk, g
jk, and d j

k can be treated as constants.

Gradient, Divergence and Curl in Tensor Form

8.57. Prove that divAp ¼ 1ffiffiffi
g

p @

@xk
(
ffiffiffi
g

p
Ak).

Solution

The divergence of Ap is the contraction of the covariant derivative of Ap, that is, the contraction of Ap
,q or A

p
,p.

Then, using Problem 8.45(c),

divAp ¼ Ap
,p ¼

@Ak

@xk
þ p

pk

� �
Ak

¼ @Ak

@xk
þ @

@xk
ln

ffiffiffi
g

p� �
Ak ¼ @Ak

@xk
þ 1ffiffiffi

g
p @

ffiffiffi
g

p
@xk

� �
Ak ¼ 1ffiffiffi

g
p @

@xk
ffiffiffi
g

p
Ak

� 	

8.58. Prove that rrrrr2F ¼ 1ffiffiffi
g

p @

@xk
ffiffiffi
g

p
gkr

@F

@xr

� �
.

Solution
The gradient ofF is gradF ¼ rrrrrF ¼ @F=@xr , a covariant tensor of rank one (see Problem 8.6(b)) defined as the

covariant derivative of F, written F,r. The contravariant tensor of rank one associated with F,r is

Ak ¼ gkr@F=@xr . Then, from Problem 8.57,

rrrrr2F ¼ div gkr
@F

@xr

� �
¼ 1ffiffiffi

g
p @

@xk
ffiffiffi
g

p
gkr

@F

@xr

� �

8.59. Prove that Ap,q � Aq,p ¼ @Ap

@xq
� @Aq

@xp
.

Solution

Ap,q � Aq,p ¼ @Ap

@xq
� s

pq

� �
As

� �
� @Aq

@xp
� s

qp

� �
As

� �
¼ @Ap

@xq
� @Aq

@xp

This tensor of rank two is defined to be the curl of Ap.

8.60. Express the divergence of a vector Ap in terms of its physical components for
(a) cylindrical coordinates, (b) spherical coordinates.

Solution

(a) For cylindrical coordinates x1 ¼ r, x2 ¼ f, x3 ¼ z,

g ¼
1 0 0

0 r2 0

0 0 1

������
������ ¼ r2 and

ffiffiffi
g

p ¼ r (see Problem 8:30(a))
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The physical components, denoted by Ar, Af, Az are given by

Ar ¼ ffiffiffiffiffiffiffi
g11

p
A1 ¼ A1, Af ¼ ffiffiffiffiffiffiffi

g22
p

A2 ¼ rA2, Az ¼ ffiffiffiffiffiffiffi
g33

p
A3 ¼ A3

Then

div Ap ¼ 1ffiffiffi
g

p @

@xk
ffiffiffi
g

p
Ak

� 	 ¼ 1

r

@

@r
(rAr)þ @

@f
(Af)þ @

@z
(rAz)


 �

(b) For spherical coordinates x1 ¼ r, x2 ¼ u, x3 ¼ f,

g ¼
1 0 0

0 r2 0

0 0 r2 sin2 u

������
������ ¼ r4 sin2 u and

ffiffiffi
g

p ¼ r2 sin u (see Problem 8:30(b))

The physical components, denoted by Ar, Au, Af are given by

Ar ¼ ffiffiffiffiffiffiffi
g11

p
A1 ¼ A1, Au ¼ ffiffiffiffiffiffiffi

g22
p

A2 ¼ rA2, Af ¼ ffiffiffiffiffiffiffi
g33

p
A3 ¼ r sin u A3

Then

div Ap ¼ 1ffiffiffi
g

p @

@xk
(
ffiffiffi
g

p
Ak)

¼ 1

r2 sin u

@

@r
(r2 sin uAr)þ @

@u
(r sin uAu)þ @

@f
(r Af)


 �

¼ 1

r2
@

@r
(r2Ar)þ 1

r sin u

@

@u
(sin u Au)þ 1

r sin u

@Af

@f

8.61. Express the Laplacian of F, rrrrr2F, in (a) cylindrical coordinates, (b) spherical coordinates.

Solution

(a) In cylindrical coordinates g11 ¼ 1, g22 ¼ 1=r2, g33 ¼ 1 (see Problem 8.35(a)). Then from Problem 8.58,

rrrrr2F ¼ 1ffiffiffi
g

p @

@xk
ffiffiffi
g

p
gkr

@F

@xr

� �

¼ 1

r

@

@r
r
@F

@r

� �
þ @

@f

1

r

@F

@f

� �
þ @

@z
r
@F

@z

� �
 �

¼ 1

r

@

@r
r
@F

@r

� �
þ 1

r2
@2F

@f2
þ @2F

@z2

(b) In spherical coordinates g11 ¼ 1, g22 ¼ 1=r2, g33 ¼ 1=r2 sin2 u (see Problem 8.35(b)). Then

rrrrr2F ¼ 1ffiffiffi
g

p @

@xk
ffiffiffi
g

p
gkr

@F

@xr

� �

¼ 1

r2 sin u

@

@r
r2 sin u

@F

@r

� �
þ @

@u
sin u

@F

@u

� �
þ @

@f

1

sin u

@F

@f

� �
 �

¼ 1

r2
@

@r
r2
@F

@r

� �
þ 1

r2 sin u

@

@u
sin u

@F

@u

� �
þ 1

r2 sin2 u

@2F

@f2
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Intrinsic Derivatives

8.62. Calculate the intrinsic derivatives of each of the following tensors, assumed to be differentiable
functions of t: (a) an invariant F, (b) Aj, (c) A

j
k, (d) A

jk
lmn.

Solution

(a)
dF

dt
¼ F,q

dxq

dt
¼ @F

@xq
dxq

dt
¼ dF

dt
, the ordinary derivative.

(b) dAj

dt
¼ Aj

,q

dxq

dt
¼ @Aj

@xq
þ j

qs

� �
As

� �
dxq

dt
¼ @Aj

@xq
dxq

dt
þ j

qs

� �
As dx

q

dt

¼ dAj

dt
þ j

qs

� �
As dx

q

dt

(c)
dAj

k

dt
¼ A

j
k,q

dxq

dt
¼ @Aj

k

@xq
� s

kq

� �
Aj
s þ

j

qs

� �
As
k

 !
dxq

dt

¼ dA
j
k

dt
� s

kq

� �
Aj
s

dxq

dt
þ j

qs

� �
As
k

dxq

dt

(d)
dAjk

lmn

dt
¼ A

jk
lmn,q

dxq

dt
¼ @Ajk

lmn

@xq
� s

lq

� �
Ajk
smn �

s

mq

� �
A

jk
lsn

 

� s

nq

� �
A

jk
lms þ

j

qs

� �
Ask
lmn þ

k

qs

� �
A

js
lmn

�
dxq

dt

¼ dA
jk
lmn

dt
� s

lq

� �
Ajk
smn

dxq

dt
� s

mq

� �
A

jk
lsn

dxq

dt
� s

nq

� �
A

jk
lms

dxq

dt

þ j

qs

� �
Ask
lmn

dxq

dt
þ k

qs

� �
A

js
lmn

dxq

dt

8.63. Prove the intrinsic derivatives of gjk, g
jk, and djk are zero.

Solution

dgjk
dt

¼ (gjk,q)
dxq

dt
¼ 0,

dg jk

dt
¼ g jk

,q

dxq

dt
¼ 0,

ddjk
dt

¼ djk,q
dxq

dt
¼ 0 by Problem 8:54:

Relative Tensors

8.64. Let Ap
q and B

rs
t be relative tensors of weights w1 and w2, respectively. Show that their inner and outer

products are relative tensors of weight w1 þ w2.

Solution

By hypothesis,

A
j

k ¼ Jw1
@x j

@xp
@xq

@xk
Ap
q, B

lm

n ¼ Jw2
@xl

@xr
@xm

@xs
@xt

@xn
Brs
t

The outer product is

A
j

kB
lm

n ¼ Jw1þw2
@x j

@xp
@xq

@xk
@xl

@xr
@xm

@xs
@xt

@xn
Ap
qB

rs
t

a relative tensor of weight w1 þ w2. Any inner product, which is a contraction of the outer product, is also a

relative tensor of weight w1 þ w2.

CHAPTER 8 Tensor Analysis 221



8.65. Prove that
ffiffiffi
g

p
is a relative tensor of weight one, i.e. a tensor density.

Solution

The elements of determinant g given by gpq transform according to gjk ¼
@xp

@x j

@xq

@xk
gpq.

Taking determinants of both sides, g ¼ @xp

@x j

����
���� @xq@xk

����
����g ¼ J2g or

ffiffiffi
g

p ¼ J
ffiffiffi
g

p
, which shows that

ffiffiffi
g

p
is a relative

tensor of weight one.

8.66. Prove that dV ¼ ffiffiffi
g

p
dx1dx2 � � � dxN is an invariant.

Solution

By Problem 8.65,

dV ¼
ffiffiffi
g

p
dx1dx2 � � � dxN ¼ ffiffiffi

g
p

J dx1dx2 � � � dxN

¼ ffiffiffi
g

p @x

@x

����
���� dx1dx2 � � � dxN ¼ ffiffiffi

g
p

dx1dx2 � � � dxN ¼ dV

From this it follows that if F is an invariant, thenð
� � �
ð

V

F dV ¼
ð
� � �
ð

V

F dV

for any coordinate systems where the integration is performed over a volume in N-dimensional space. A

similar statement can be made for surface integrals.

Miscellaneous Applications

8.67. Express in tensor form (a) the velocity and (b) the acceleration of a particle.

Solution

(a) If the particle moves along a curve xk ¼ xk(t) where t is the parameter time, then vk ¼ dxk

dt
is its velocity

and is a contravariant tensor of rank one (see Problem 8.9).

(b) The quantity
dvk

dt
¼ d2xk

dt2
is not in general a tensor and so cannot represent the physical quantity accelera-

tion in all coordinate systems. We define the acceleration ak as the intrinsic derivative of the velocity, that

is ak ¼ dvk

dt
which is a contravariant tensor of rank one.

8.68. Write Newton’s law in tensor form.

Solution

Assume the mass M of the particle to be an invariant independent of time t. Then, Mak ¼ Fk, a contravariant

tensor of rank one, is called the force on the particle. Thus Newton’s law can be written

Fk ¼ Mak ¼ M
dvk

dt

8.69. Prove that ak ¼ dvk

dt
¼ d2xk

dt2
þ k

pq

� �
dxp

dt

dxq

dt
.

Solution

Since vk is a contravariant tensor, we have by Problem 8.62(b)

dvk

dt
¼ dvk

dt
þ k

qs

� �
vs
dxq

dt
¼ d2xk

dt2
þ k

qp

� �
vp

dxq

dt
¼ d2xk

dt2
þ k

pq

� �
dxp

dt

dxq

dt
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8.70. Find the physical components of (a) the velocity and (b) the acceleration of a particle in cylindrical
coordinates.

Solution

(a) From Problem 8.67(a), the contravariant components of the velocity are

dx1

dt
¼ dr

dt
,

dx2

dt
¼ df

dt
and

dx3

dt
¼ dz

dt

Then the physical components of the velocity are

ffiffiffiffiffiffiffi
g11

p dx1

dt
¼ dr

dt
,

ffiffiffiffiffiffiffi
g22

p dx2

dt
¼ r

df

dt
and

ffiffiffiffiffiffiffi
g33

p dx3

dt
¼ dz

dt

using g11 ¼ 1, g22 ¼ r2, g33 ¼ 1.

(b) From Problems 8.69 and 8.49(b), the contravariant components of the acceleration are

a1 ¼ d2x1

dt2
þ 1

22

� �
dx2

dt

dx2

dt
¼ d2r

dt2
� r

df

dt

� �2

a2 ¼ d2x2

dt2
þ 2

12

� �
dx1

dt

dx2

dt
þ 2

21

� �
dx2

dt

dx1

dt
¼ d2f

dt2
þ 2

r

dr

dt

df

dt

and

a3 ¼ d2x3

dt2
¼ d2z

dt2

Then the physical components of the acceleration are

ffiffiffiffiffiffiffi
g11

p
a1 ¼ €r� r _f

2
,

ffiffiffiffiffiffiffi
g22

p
a2 ¼ r €fþ 2_r _f and

ffiffiffiffiffiffiffi
g33

p
a3 ¼ €z

where dots denote differentiations with respect to time.

8.71. Suppose the kinetic energy T of a particle of constant mass M moving with velocity having magni-

tude v is given by T ¼ 1
2
Mv2 ¼ 1

2
Mgpq _x

p _xq. Prove that

d

dt

@T

@_xk

� �
� @T

@xk
¼ Mak

where ak denotes the covariant components of the acceleration.

Solution

Since T ¼ 1
2
Mgpq _x

p _xq, we have

@T

@xk
¼ 1

2
M

@gpq
@xk

_xp _xq,
@T

@_xk
¼ Mgkq _x

q and
d

dt

@T

@_xk

� �
¼ M gkq €x

q þ @gkq
@xj

_x j _xq
� �

Then

d

dt

@T

@_xk

� �
� @T

@xk
¼ M gkq €x

q þ @gkq
@xj

_x j _xq � 1

2

@gpq
@xk

_xp _xq
� �

¼ M gkq €x
q þ 1

2

@gkq
@xp

þ @gkp
@xq

� @gpq
@xk

� �
_xp _xq

� �

¼ M(gkq €x
q þ [pq, k]_xp _xq)

¼ Mgkr €xr þ r

pq

� �
_xp _xq

� �
¼ Mgkra

r ¼ Mak

using Problem 8.69. The result can be used to express the acceleration in different coordinate systems.
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8.72. Use Problem 8.71 to find the physical components of the acceleration of a particle in cylindrical
coordinates.

Solution

Since ds2 ¼ dr2 þ r2 df2 þ dz2, v2 ¼ ds=dtð Þ2¼ _r2 þ r2 _f2 þ _z2 and T ¼ 1
2
Mv2 ¼ 1

2
M(_r2 þ r2 _f2 þ _z2).

From Problem 8.71 with x1 ¼ r, x2 ¼ f, x3 ¼ z, we find

a1 ¼ €r� r _f2, a2 ¼ d

dt
(r2 _f), a3 ¼ €z

Then the physical components are given by

a1ffiffiffiffiffiffiffi
g11

p ,
a2ffiffiffiffiffiffiffi
g22

p ,
a3ffiffiffiffiffiffiffi
g33

p or €r� r _f2,
1

r

d

dt
(r2 _f), €z

since g11 ¼ 1, g22 ¼ r2, g33 ¼ 1. Compare with Problem 8.70.

8.73. Suppose the covariant force acting on a particle is given by Fk ¼ � @V

@xk
where V(x1, . . . , xN) is the

potential energy. Show that
d

dt

@L

@_xk

� �
� @L

@xk
¼ 0 where L ¼ T � V .

Solution

From L ¼ T � V ,
@L

@_xk
¼ @T

@_xk
since V is independent of _xk. Then, from Problem 8.71,

d

dt

@T

@_xk

� �
� @T

@xk
¼ Mak ¼ Fk ¼ � @V

@xk
and

d

dt

@L

@_xk

� �
� @L

@xk
¼ 0

The function L is called the Lagrangean. The equations involving L, called the Lagrange equations, are

important in mechanics. By Problem 8.50, it follows that the results of this problem are equivalent to the state-

ment that a particle moves in such a way that
Ð t2
t1
L dt is an extremum. This is called Hamilton’s principle.

8.74. Express the divergence theorem in tensor form.

Solution

Let Ak define a tensor field of rank one and let vk denote the outward drawn unit normal to any point of a closed

surface S bounding a volume V. Then the divergence theorem states thatððð
V

Ak
,k dV ¼

ðð
S

Akvk dS

For N-dimensional space, the triple integral is replaced by an N tuple integral, and the double integral by an

N � 1 tuple integral. The invariant Ak
,k is the divergence of Ak (see Problem 8.57). The invariant Akvk is the

scalar product of Ak and vk, analogous to A � n in the vector notation of Chapter 2.

We have been able to express the theorem in tensor form; hence it is true for all coordinate systems since it

is true for rectangular systems (see Chapter 6). Also see Problem 8.66.

8.75. Express in tensor form Maxwell’s equations: (a) div B ¼ 0, (b) div D ¼ 4pr,

(c) rrrrr � E ¼ � 1

c

@B

@t
, (d) rrrrr �H ¼ 4p I

c

Solution

Define the tensors Bk, Dk, Ek, Hk, I
k and suppose that r and c are invariants. Then the equations can be written

(a) Bk
,k ¼ 0 and (b) Dk

,k ¼ 4pr

(c) � e jkqEk,q ¼ � 1

c

@Bj

@t
or e jkqEk,q ¼ 1

c

@Bj

@t
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(d) � e jkqHk,q ¼ 4pIj

c
or e jkqHk,q ¼ � 4pIj

c

These equations form the basis for electromagnetic theory.

8.76. (a) Prove that Ap,qr � Ap,rq ¼ Rn
pqrAn where Ap is an arbitrary covariant tensor of rank one.

(b) Prove that Rn
pqr is a tensor. (c) Prove that Rpqrs ¼ gnsR

n
pqr is a tensor.

Solution

(a) Ap,qr ¼ (Ap, q),r ¼
@Ap,q

@xr
� j

pr

� �
Aj, q �

j

qr

� �
Ap, j

¼ @

@xr
@Ap

@xq
� j

pq

� �
Aj

� �
� j

pr

� �
@Aj

@xq
� k

jq

� �
Ak

� �
� j

qr

� �
@Ap

@xj
� l

pj

� �
Al

� �

¼ @2Ap

@xr@xq
� @

@xr
j

pq

� �
Aj �

j

pq

� �
@Aj

@xr
� j

pr

� �
@Aj

@xq
þ j

pr

� �
k

jq

� �
Ak

� j

qr

� �
@Ap

@xj
þ j

qr

� �
l

pj

� �
Al

By interchanging q and r and subtracting, we find

Ap,qr � Ap,rq ¼
j

pr

� �
k

jq

� �
Ak � @

@xr
j

pq

� �
Aj �

j

pq

� �
k

jr

� �
Ak þ @

@xq
j

pr

� �
Aj

¼ k

pr

� �
j

kq

� �
Aj � @

@xr
j

pq

� �
Aj �

k

pq

� �
j

kr

� �
Aj þ @

@xq
j

pr

� �
Aj

¼ Rj
pqrAj

where

Rj
pqr ¼

k

pr

� �
j

kq

� �
� @

@xr
j

pq

� �
� k

pq

� �
j

kr

� �
þ @

@xq
j

pr

� �

Replace j by n and the result follows.

(b) Since Ap,qr � Ap,rq is a tensor, R
n
pqrAn is a tensor; and since An is an arbitrary tensor, R

n
pqr is a tensor by the

quotient law. This tensor is called the Riemann–Christoffel tensor, and is sometimes written Rn
:pqr, R

...n
pqr:,

or simply Rn
pqr.

(c) Rpqrs ¼ gnsR
n
pqr is an associated tensor of Rn

pqr and thus is a tensor. It is called the covariant curvature

tensor and is of fundamental importance in Einstein’s general theory of relativity.

SUPPLEMENTARY PROBLEMS

8.77. Write each of the following using the summation convention.

(a) a1x
1x3 þ a2x

2x3 þ � � � þ aNx
Nx3 (d) g21g11 þ g22g21 þ g23g31 þ g24g41

(b) A21B1 þ A22B2 þ A23B3 þ � � � þ A2NBN (e) B121
11 þ B122

12 þ B221
21 þ B222

22

(c) A
j
1B

1 þ A
j
2B

2 þ A
j
3B

3 þ � � � þ A
j
NB

N

8.78. Write the terms in each of the following indicated sums.

(a)
@

@xk
(
ffiffiffi
g

p
Ak), N ¼ 3 (b) AjkB

p
kCj, N ¼ 2 (c)

@x j

@xk
@xk

@xm

8.79. What locus is represented by akx
kxk ¼ 1 where xk, k ¼ 1, 2, . . . , N are rectangular coordinates, ak are positive

constants and N ¼ 2, 3, or 4?
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8.80. Let N ¼ 2. Write the system of equations represented by apqx
q ¼ bp.

8.81. Write the law of transformation for the tensors (a) A
ij
k , (b) Bijk

m , (c) Cmn, (d) Am.

8.82. Suppose the quantities B( j, k, m) and C( j, k, m, n) transform from a coordinate system xi to another xi accord-

ing to the rules

(a) B(p, q, r) ¼ @x j

@xp
@xk

@xq
@xr

@xm
B( j, k, m) (b) C(p, q, r, s) ¼ @xp

@xj
@xq

@xk
@xm

@xr
@xs

@xn
C( j, k, m, n). Determine whether

they are tensors. If so, write the tensors in suitable notation and give the rank and the covariant and contravar-

iant orders.

8.83. How many components does a tensor of rank 5 have in a space of 4 dimensions?

8.84. Prove that if the components of a tensor are zero in one coordinate system, they are zero in all coordinate systems.

8.85. Prove that if the components of two tensors are equal in one coordinate system, they are equal in all co-ordinate

systems.

8.86. Show that the velocity dxk=dt ¼ vk of a fluid is a tensor, but that dvk=dt is not a tensor.

8.87. Find the covariant and contravariant components of a tensor in (a) cylindrical coordinates r, f, z, (b) spherical

coordinates r, u, f if its covariant components in rectangular coordinates are 2x� z, x2y, yz.

8.88. The contravariant components of a tensor in rectangular coordinates are yz, 3, 2xþ y. Find its covariant com-

ponents in parabolic cylindrical coordinates.

8.89. Evaluate (a) dpqB
rs
p , (b) dpqd

r
sA

qs, (c) dpqd
q
rd

r
s, (d) dpqd

q
rd

r
sd

s
p.

8.90. Suppose Apq
r is a tensor. Show that Apr

r is a contravariant tensor of rank one.

8.91. Show that djk ¼ 1 j ¼ k

0 j=k

�
is not a covariant tensor as the notation might indicate.

8.92. Let Ap ¼ @xq

@xp
Aq. Prove that Aq ¼ @xp

@xq
Ap.

8.93. Let A
p

r ¼
@xp

@xq
@xs

@xr
Aq
s . Prove that A

q
s ¼

@xq

@xp
@xr

@xs
A
p

r .

8.94. Suppose F is an invariant. Determine whether @2F=@xp@xq is a tensor.

8.95. Let Ap
q and Br be tensors, prove that Ap

qB
r and Ap

qB
q are tensors and determine the rank of each.

8.96. Suppose Apq
rs is a tensor. Show that Apq

rs þ Aqp
sr is a symmetric tensor and Apq

rs � Aqp
sr is a skew-symmetric tensor.

8.97. Suppose Apq and Brs are skew-symmetric tensors. Show that Cpq
rs ¼ ApqBrs is symmetric.

8.98. Suppose a tensor is symmetric (skew-symmetric). Are repeated contractions of the tensor also

symmetric (skew-symmetric)?

8.99. Prove that Apqx
pxq ¼ 0 if Apq is a skew-symmetric tensor.

8.100. What is the largest number of different components that a symmetric contravariant tensor of rank two can have

when (a) N ¼ 4, (b) N ¼ 6? What is the number for any value of N?

8.101. How many distinct non-zero components, apart from a difference in sign, does a skew-symmetric covariant

tensor of the third rank have?

8.102. Suppose Apq
rs is a tensor. Prove that a double contraction yields an invariant.

8.103. Prove that a necessary and sufficient condition for a tensor of rank R to become an invariant by

repeated contraction is that R be even and that the number of covariant and contravariant indices be equal

to R/2.

8.104. Given Apq and Brs are tensors. Show that the outer product is a tensor of rank four and that two inner products

can be formed of rank two and zero, respectively.
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8.105. Let A(p, q)Bq ¼ Cp where Bq is an arbitrary covariant tensor of rank one and Cp is a contravariant tensor of

rank one. Show that A(p, q) must be a contravariant tensor of rank two.

8.106. Let Ap and Bq be arbitrary tensors. Show that if ApBqC(p, q) is an invariant, then C(p, q) is a tensor that can be

written Cq
p .

8.107. Find the sum S ¼ Aþ B, difference D ¼ A� B, and products P ¼ AB and Q ¼ BA, where A and B are the

matrices

(a) A ¼ 3 �1

2 4


 �
, B ¼ 4 3

�2 �1


 �
, (b) A ¼

2 0 1

�1 �2 2

�1 3 �1

2
4

3
5, B ¼

1 �1 2

3 2 �4

�1 �2 2

2
4

3
5

8.108. Find (3A� 2B)(2A� B), where A and B are the matrices in the preceding problem.

8.109. (a) Verify that det(AB) ¼ fdet Agfdet Bg for the matrices in Problem 8.107.

(b) Is det(AB) ¼ det(BA)?

8.110. Let A ¼ 3 �1 2

4 2 3


 �
, B ¼

�3 2 �1

1 3 �2

2 1 2

2
4

3
5.

Show that (a) AB is defined and find it, (b) BA and Aþ B are not defined.

8.111. Find x, y, and z such that

2 �1 3

1 2 �4

�1 3 �2

2
4

3
5 x

y

z

2
4

3
5 ¼

1

�3

6

2
4

3
5

8.112. The inverse of a square matrix A, written A�1 is defined by the equation AA�1 ¼ I, where I is the unit matrix

having ones down the main diagonal and zeros elsewhere.

Find A�1 if (a) A ¼ 3 �2

�5 4


 �
, (b) A ¼

1 �1 1

2 1 �1

1 �1 2

2
4

3
5. Is A�1A ¼ I in these cases?

8.113. Prove that A ¼
2 1 �2

1 �2 3

4 �3 4

2
4

3
5 has no inverse.

8.114. Prove that (AB)�1 ¼ B�1A�1, where A and B are non-singular square matrices.

8.115. Express in matrix notation the transformation equations for (a) a contravariant vector (b) a covariant tensor of

rank two (c) a mixed tensor of rank two.

8.116. Given A ¼ 2 �2

�3 1


 �
, determine the values of the constant l such that AX ¼ lX, for some nonzero matrix X

(depending on l). These values of l are called characteristic values or eigenvalues of the matrix A.

8.117. The equation F(l) ¼ 0 of the previous problem for determining the characteristic values of a matrix A is called

the characteristic equation for A. Show that F(A) ¼ O, where F(A) is the matrix obtained by replacing l by A

in the characteristic equation and where the constant term c is replaced by the matrix cl, and O is a matrix

whose elements are zero (called the null matrix). The result is a special case of the Hamilton–Cayley theorem,

which states that a matrix satisfies its own characteristic equation.

8.118. Prove that (AB)T ¼ BTAT .

8.119. Determine the metric tensor and conjugate metric tensor in (a) parabolic cylindrical and (b) elliptic cylindrical

coordinates.

8.120. Consider the affine transformation xr ¼ arpx
p þ br , where arp and br are constants such that apr a

r
q ¼ dpq. Prove

that there is no distinction between the covariant and contravariant components of a tensor. In the special

case where the transformations are from one rectangular coordinate system to another, the tensors are called

Cartesian tensors.

8.121. Find g and gjk corresponding to ds2 ¼ 3(dx1)2 þ 2(dx2)2 þ 4(dx3)2 � 6(dx1dx3).
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8.122. Let Ak ¼ gjkAj. Show that Aj ¼ gjkA
k and conversely.

8.123. Express the relationship between the associated tensors

(a) Apq and A
�q
j , (b) Ap�r

�q and A�
jql, (c) A��r

pq and A
jk
��l.

8.124. Show that (a) A�q
p B

p
�rs ¼ ApqBprs, (b) A

pq
��rB

�r
p ¼ A�q

p�rB
pr ¼ A�qr

p Bp
�r . Hence demonstrate the general result that a

dummy symbol in a term may be lowered from its upper position and raised from its lower position

without changing the value of the term.

8.125. Show that if Ap
�qr ¼ Bp

�qCr, then Apqr ¼ BpqCr and A�qr
p ¼ B�q

p C
r . Hence demonstrate the result that a free index

in a tensor equation may be raised or lowered without affecting the validity of the equation.

8.126. Show that the tensors gpq, g
pq and dpq are associated tensors.

8.127. Prove (a) gjk
@x j

@xp
¼ gpq

@xq

@xk
, (b) gjk

@xp

@x j
¼ gpq

@xk

@xq
.

8.128. Let Ap be a vector field. Find the corresponding unit vector.

8.129. Show that the cosines of the angles which the three-dimensional unit vectorUi make with the coordinate curves

are given by
U1ffiffiffiffiffiffiffi
g11

p ,
U2ffiffiffiffiffiffiffi
g22

p ,
U3ffiffiffiffiffiffiffi
g33

p .

8.130. Determine the Christoffel symbols of the first kind in (a) rectangular, (b) cylindrical, and (c) spherical

coordinates.

8.131. Determine the Christoffel symbols of the first and second kinds in (a) parabolic cylindrical,

(b) elliptic cylindrical coordinates.

8.132. Find differential equations for the geodesics in (a) cylindrical, (b) spherical coordinates.

8.133. Show that the geodesics on a plane are straight lines.

8.134. Show that the geodesics on a sphere are arcs of great circles.

8.135. Write the Christoffel symbols of the second kind for the metric

ds2 ¼ (dx1)2 þ (x2)2 � (x1)2
� 


(dx2)2

and the corresponding geodesic equations.

8.136. Write the covariant derivative with respect to xq of each of the following tensors:

(a) A
jk
l , (b) A

jk
lm, (c) A

j
klm, (d) Ajkl

m , (e) A
jk
lmn.

8.137. Find the covariant derivative of (a) gjkA
k, (b) AjBk, and (c) djkAj with respect to xq.

8.138. Use the relation Aj ¼ gjkAk to obtain the covariant derivative of Aj from the covariant derivative of Ak.

8.139. Suppose F is an invariant. Prove that F,pq ¼ F,qp; that is, the order of covariant differentiation of an invariant

is immaterial.

8.140. Show that epqr and e pqr are covariant and contravariant tensors, respectively.

8.141. Express the divergence of a vector Ap in terms of its physical components for (a) parabolic cylindrical,

(b) paraboloidal coordinates.

8.142. Find the physical components of grad F in (a) parabolic cylindrical, (b) elliptic cylindrical coordinates.

8.143. Find rrrrr2F in parabolic cylindrical coordinates.

8.144. Using the tensor notation, show that (a) div curl Ar ¼ 0, (b) curl grad F ¼ 0.
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8.145. Calculate the intrinsic derivatives of the following tensor fields, assumed to be differentiable functions of t:

(a) Ak, (b) Ajk, (c) AjB
k, (d) fAj

k where f is an invariant.

8.146. Find the intrinsic derivative of (a) gjkA
k, (b) djkAj, (c) gjkd

j
rA

r
p.

8.147. Prove
d

dt
(gpqApAq) ¼ 2gpqAp

dAq

dt
.

8.148. Show that if no external force acts, a moving particle of constant mass travels along a geodesic given by

d

ds

dxp

ds

� �
¼ 0:

8.149. Prove that the sum and difference of two relative tensors of the same weight and type is also a relative tensor of

the same weight and type.

8.150. Suppose Apq
r is a relative tensor of weight w. Prove that g�w=2Apq

r is an absolute tensor.

8.151. Let A(p, q)Bqs
r ¼ Cs

pr , where B
qs
r is an arbitrary relative tensor of weight w1 andC

s
pr is a known relative tensor of

weight w2. Prove that A(p, q) is a relative tensor of weight w2 � w1. This is an example of the quotient law for

relative tensors.

8.152. Show that the quantity G( j, k) of Solved Problem 8.31 is a relative tensor of weight two.

8.153. Find the physical components of (a) the velocity and (b) the acceleration of a particle in spherical coordinates.

8.154. Let Ar and Br be 2 vectors in 3-dimensional space. Show that if l and m are constants, then Cr ¼ lAr þ mBr is

a vector lying in the plane of Ar and Br. What is the interpretation in higher dimensional space?

8.155. Show that a vector normal to the surface f(x1, x2, x3) ¼ constant is given by Ap ¼ gpq
@f

@xq
. Find the corre-

sponding unit normal.

8.156. The equation of continuity is given by rrrrr � (sv)þ @s

@t
¼ 0 where s is the density and v is the velocity of a fluid.

Express the equation in tensor form.

8.157. Express the continuity equation in (a) cylindrical and (b) spherical coordinates.

8.158. Express Stokes’ theorem in tensor form.

8.159. Prove that the covariant curvature tensor Rpqrs is skew-symmetric in (a) p and q, (b) r and s, (c) q and s.

8.160. Prove Rpqrs ¼ Rrspq.

8.161. Prove (a) Rpqrs þ Rpsqr þ Rprsq ¼ 0, (b) Rpqrs þ Rrqps þ Rrspq þ Rpsrq ¼ 0.

8.162. Prove that covariant differentiation in a Euclidean space is commutative. Thus show that the Riemann–

Christoffel tensor and curvature tensor are zero in a Euclidean space.

8.163. Let Tp ¼ dxp

ds
be the tangent vector to curve C whose equation is xp ¼ xp(s) where s is the arc length. (a) Show

that gpqT
pTq ¼ 1. (b) Prove that gpqT

p dT
q

ds
¼ 0 and thus show that Nq ¼ 1

k

dTq

ds
is a unit normal to C for

suitable k. (c) Prove that
dNq

ds
is orthogonal to Nq.

8.164. With the notation of the previous problem, prove:

(a) gpqT
pNq ¼ 0, (b) gpqT

p dN
q

ds
¼ �k or gpqT

p dNq

ds
þ kTq

� �
¼ 0.

Hence show that Br ¼ 1

t

dNr

ds
þ kTr

� �
is a unit vector for suitable t orthogonal to both Tp and Nq.
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8.165. Prove the Frenet–Serret formulas

dTp

ds
¼ kNp,

dNp

ds
¼ tBp � kTp,

dBp

ds
¼ �tNp

where Tp, Np, and Bp are the unit tangent, unit normal, and unit binormal vectors to C, and k and t are the

curvature and torsion of C.

8.166. Show that ds2 ¼ c2(dx4)2 � dxkdxk (N ¼ 3) is invariant under the linear (affine) transformation

x1 ¼ g(x1 � vx4), x2 ¼ x2, x3 ¼ x3, x4 ¼ g x4 � b

c
x1

� �

where g, b, c, and v are constants, b ¼ v=c and g ¼ (1� b2)�1=2. This is the Lorentz transformation of special

relativity. Physically, an observer at the origin of the xi system sees an event occurring at position x1, x2, x3 at

time x4 while an observer at the origin of the xi system sees the same event occurring at position x1, x2, x3 at

time x4. It is assumed that (1) the two systems have the x1 and x1 axes coincident, (2) the positive x2 and x3 axes

are parallel respectively to the positive x2 and x3 axes, (3) the xi system moves with velocity v relative to the xi

system, and (4) the velocity of light c is a constant.

8.167. Show that to an observer fixed in the xi(xi) system, a rod fixed in the xi(xi) system lying parallel to the x1(x1)

axis and of length L in this system appears to have the reduced length L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
. This phenomena is called the

Lorentz–Fitzgerald contraction.

ANSWERS TO SUPPLEMENTARY PROBLEMS

8.77. (a) akx
kx3 (b) A2jBj (c) A

j
kB

k (d) g2qgq1, N ¼ 4 (e) Bp2r
pr , N ¼ 2

8.78. (a)
@

@x1
(
ffiffiffi
g

p
A1)þ @

@x2
(
ffiffiffi
g

p
A2)þ @

@x3
(
ffiffiffi
g

p
A3) (b) A11B

p
1C1 þ A21B

p
1C2 þ A12B

p
2C1 þ A22B

p
2C2

(c)
@x j

@x1
@x1

@xm
þ @x j

@x2
@x2

@xm
þ � � � þ @x j

@xN
@xN

@xm

8.79. Ellipse for N ¼ 2, ellipsoid for N ¼ 3, hyperellipsoid for N ¼ 4.

8.80.
a11x

1 þ a12x
2 ¼ b1

a21x
1 þ a22x

2 ¼ b2

(

8.81. (a) A
pq

r ¼ @xp

@xi
@xq

@xj
@xk

@xr
A
ij
k ðbÞ B

pqr

s ¼ @xp

@xi
@xq

@xj
@xr

@xk
@xm

@xs
Bijk
m ðcÞ Cpq ¼ @xm

@xp
@xn

@xq
Cmn (d) Ap ¼ @xm

@xp
Am

8.82. (a) B(j, k, m) is a tensor of rank three and is covariant of order two and contravariant of order one. If can be

written Bm
jk. (b) C(j, k, m, n) is not a tensor.

8.83. 45 ¼ 1024

8.87. (a) 2r cos2 f� z cosfþ r3 sin2 f cos2 f,�2r2 sinf cosfþ rz sinfþ r4 sinf cos3 f, rz sinf:

(b) 2r sin2 u cos2 f� r sin u cos u cosfþ r3 sin4 u sin2 f cos2 fþ r2 sin u cos2 u sinf,

2r2 sin u cos u cos2 f� r2 cos2 u cosfþ r4 sin3 u cos u sin2 f cos2 f� r3 sin2 u cos u sinf,

� 2r2 sin2 u sinf cosfþ r2 sin u cos u sinfþ r4 sin4 u sinf cos3 f

8.88. u2vzþ 3v, 3u� uv2z, u2 þ uv� v2

8.89. (a) Brs
q , (b) Apr , (c) dps , (d) N 8.98. Yes.

8.94. It is not a tensor. 8.100. (a) 10, (b) 21, (c) N(N þ 1)=2

8.95. Rank 3 and rank 1, respectively. 8.101. N(N � 1)(N � 2)=6
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8.107. (a) S ¼ 7 2

0 3


 �
, D ¼ �1 �4

4 5


 �
, P ¼ 14 10

0 2


 �
, Q ¼ 18 8

�8 �2


 �

(b) S ¼
3 �1 3

2 0 �2

�2 1 1

2
64

3
75, D ¼

1 1 �1

�4 �4 6

0 5 �3

2
64

3
75, P ¼

1 �4 6

�9 �7 10

9 9 �16

2
64

3
75,

Q ¼
1 8 �3

8 �16 11

�2 10 �7

2
64

3
75

8.108. (a)
�52 �86

104 76


 �
(b)

3 �16 20

9 163 �136

�61 �135 132

2
4

3
5 8.110.

�6 5 3

�4 17 �2


 �

8.111. x ¼ �1, y ¼ 3, z ¼ 2 8.112. (a)
2 1

5=2 3=2


 �
(b)

1=3 1=3 0

�5=3 1=3 1

�1 0 1

2
4

3
5. Yes

8.115. (a)
A
1

A
2

A
3

2
4

3
5 ¼

@x1

@x1
@x1

@x2
@x1

@x3

@x2

@x1
@x2

@x2
@x2

@x3

@x3

@x1
@x3

@x2
@x3

@x3

2
6666664

3
7777775

A1

A2

A3

2
4

3
5

(b)
A11 A12 A13

A21 A22 A23

A31 A32 A33

2
4

3
5 ¼

@x1

@x1
@x2

@x1
@x3

@x1

@x1

@x2
@x2

@x2
@x3

@x2

@x1

@x3
@x2

@x3
@x3

@x3

2
6666664

3
7777775

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
4

3
5

@x1

@x1
@x1

@x2
@x1

@x3

@x2

@x1
@x2

@x2
@x2

@x3

@x3

@x1
@x3

@x2
@x3

@x3

2
6666664

3
7777775

(c)

A
1

1 A
1

2 A
1

3

A
2

1 A
2

2 A
2

3

A
3

1 A
3

2 A
3

3

2
664

3
775 ¼

@x1

@x1
@x1

@x2
@x1

@x3

@x2

@x1
@x2

@x2
@x2

@x3

@x3

@x1
@x3

@x2
@x3

@x3

2
6666664

3
7777775

A1
1 A1

2 A1
3

A2
1 A2

2 A2
3

A3
1 A3

2 A3
3

2
4

3
5

@x1

@x1
@x1

@x2
@x1

@x3

@x2

@x1
@x2

@x2
@x2

@x3

@x3

@x1
@x3

@x2
@x3

@x3

2
6666664

3
7777775

8.116. l ¼ 4,�1

8.119. (a)
u2 þ v2 0 0

0 u2 þ v2 0

0 0 1

2
4

3
5,

1

u2 þ v2
0 0

0
1

u2 þ v2
0

0 0 1

2
6664

3
7775

(b)
a2(sinh2 uþ sin2 v) 0 0

0 a2(sinh2 uþ sin2 v) 0

0 0 1

2
4

3
5,

1

a2(sinh2 uþ sin2 v)
0 0

0
1

a2(sinh2 uþ sin2 v)
0

0 0 1

2
66664

3
77775

8.121. g ¼ 6, (gjk) ¼
4=3 0 1

0 1=2 0

1 0 1

2
4

3
5
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8.123. (a) Apq ¼ gpjA
�q
j , (b) Ap�r

�q ¼ gpjgrlAjql, (c) A��r
pq ¼ gpjgqkg

rlA
jk
��l 8.128.

Apffiffiffiffiffiffiffiffiffiffi
ApAp

p or
Apffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gpqApAq
p

8.130. (a) They are all zero. (b) [22, 1] ¼ �r, [12, 2] ¼ [21, 2] ¼ r. All others are zero.

(c) [22, 1] ¼ �r, [33, 1] ¼ �r sin2 u, [33, 2] ¼ �r2 sin u cos u

[21, 2] ¼ [12, 2] ¼ r, [31, 3] ¼ [13, 3] ¼ r sin2 u

[32, 3] ¼ [23, 3] ¼ r2 sin u cos u: All others are zero:

8.131. (a) [11, 1] ¼ u, [22, 2] ¼ v, [11, 2] ¼ �v, [22, 1] ¼ �u,

[12, 1] ¼ [21, 1] ¼ v, [21, 2] ¼ [12, 2] ¼ u:

1

11

� �
¼ u

u2 þ v2
,

2

22

� �
¼ v

u2 þ v2
,

1

22

� �
¼ �u

u2 þ v2
,

2

11

� �
¼ �v

u2 þ v2
,

1

21

� �
¼ 1

12

� �
¼ v

u2 þ v2
,

2

21

� �
¼ 2

12

� �
¼ u

u2 þ v2
: All others are zero:

(b) [11, 1] ¼ 2a2 sinh u cosh u, [22, 2] ¼ 2a2 sin v cos v, [11, 2] ¼ �2a2 sin v cos v

[22, 1] ¼ �2a2 sinh u cosh u, [12, 1] ¼ [21, 1] ¼ 2a2 sin v cos v, [21, 2] ¼ [12, 2] ¼ 2a2 sinh u cosh u

1

11

� �
¼ sinh u cosh u

sinh2 uþ sin2 v
,

2

22

� �
¼ sin v cos v

sinh2 uþ sin2 v
,

1

22

� �
¼ �sinh u cosh u

sinh2 uþ sin2 v
,

2

11

� �
¼ �sin v cos v

sinh2 uþ sin2 v
,

1

21

� �
¼ 1

12

� �
¼ sin v cos v

sinh2 uþ sin2 v
,

2

21

� �
¼ 2

12

� �
¼ sinh u cosh u

sinh2 uþ sin2 v
: All others are zero:

8.132. (a)
d2r

ds2
� r

df

ds

� �2

¼ 0,
d2f

ds2
þ 2

r

dr

ds

df

ds
¼ 0,

d2z

ds2
¼ 0

(b)
d2r

ds2
� r

du

ds

� �2

� r sin2 u
df

ds

� �2

¼ 0,
d2u

ds2
þ 2

r

dr

ds

du

ds
� sin u cos u

df

ds

� �2

¼ 0

d2f

ds2
þ 2

r

dr

ds

df

ds
þ 2 cot u

du

ds

df

ds
¼ 0

8.135.
1

22

� �
¼ x1,

2

12

� �
¼ 2

21

� �
¼ x1

(x1)2 � (x2)2
,

2

22

� �
¼ x2

(x2)2 � (x1)2
. All others are zero.

d2x1

ds2
þ x1

dx2

ds

� �2

¼ 0,
d2x2

ds2
þ 2x1

(x1)2 � (x2)2
dx1

ds

dx2

ds
þ x2

(x2)2 � (x1)2
dx2

ds

� �2

¼ 0

8.136. (a) A
jk
l,q ¼

@Ajk
l

@xq
� s

lq

� �
Ajk
s þ j

qs

� �
Ask
l þ k

qs

� �
A
js
l

(b) A
jk
lm,q ¼

@Ajk
lm

@xq
� s

lq

� �
Ajk
sm � s

mq

� �
A
jk
ls þ

j

qs

� �
Ask
lm þ k

qs

� �
A
js
lm

(c) A
j
klm,q ¼

@Aj
klm

@xq
� s

kq

� �
A
j
slm � s

lq

� �
A
j
ksm � s

mq

� �
A
j
kls þ

j

qs

� �
As
klm

(d) Ajkl
m,q ¼

@Ajkl
m

@xq
� s

mq

� �
Ajkl
s þ j

qs

� �
Askl
m þ k

qs

� �
Ajsl
m þ l

qs

� �
Ajks
m
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(e) A
jk
lmn,q ¼

@Ajk
lmn

@xq
� s

lq

� �
Ajk
smn �

s

mq

� �
A
jk
lsn �

s

nq

� �
A
jk
lms þ

j

qs

� �
Ask
lmn þ

k

qs

� �
A
js
lmn

8.137. (a) gjkA
k
, q, (b) Aj

, qBk þ AjBk, q, (c) djkAj, q

8.141. (a)
1

u2 þ v2
@

@u
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Au)þ @

@v
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Av)


 �
þ @Az

@z

(b)
1

uv(u2 þ v2)

@

@u
(uv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Au)þ @

@v
(uv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Av)


 �
þ 1

uv

@2Az

@z2

8.142. (a)
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p @F

@u
eu þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p @F

@v
ev þ @F

@z
ez

(b)
1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 uþ sin2 v

p @F

@u
eu þ @F

@v
ev

� �
þ @F

@z
ez

where eu, ev and ez are unit vectors in the directions of increasing u, v, and z, respectively.

8.143.
1

u2 þ v2
@2F

@u2
þ @2F

@v2
þ (u2 þ v2)F


 �

8.145. (a)
dAk

dt
¼ Ak, q

dxq

dt
¼ @Ak

@xq
� s

kq

� �
As

� �
dxq

dt
¼ dAk

dt
� s

kq

� �
As

dxq

dt

(b)
dAjk

dt
¼ dAjk

dt
þ j

qs

� �
Ask dx

q

dt
þ k

qs

� �
Ajs dx

q

dt

(c)
d

dt
(AjB

k) ¼ dAj

dt
Bk þ Aj

dBk

dt
¼ dAj

dt
� s

jq

� �
As

dxq

dt

� �
Bk þ Aj

dBk

dt
þ k

qs

� �
Bs dx

q

dt

� �

(d)
d

dt
(FA

j
k) ¼ F

dAj
k

dt
þ dF

dt
A
j
k ¼ F

dA
j
k

dt
þ j

qs

� �
As
k

dxq

dt
� s

kq

� �
Aj
s

dxq

dt

 !
þ dF

dt
A
j
k

8.146. (a) gjk
dAk

dt
¼ gjk

dAk

dt
þ k

qs

� �
As dx

q

dt

� �

(b) djk
dAj

dt
¼ djk

dAj

dt
� s

jq

� �
As

dxq

dt

� �
¼ dAk

dt
� s

kq

� �
As

dxq

dt

(c) gjkd
j
r

dAr
p

dt
¼ grk

dAr
p

dt
� s

pq

� �
Ar
s

dxq

dt
þ r

qs

� �
As
p

dxq

dt

� �

8.153. (a) _r, r _u, r sin u _f (b)€r � r _u2 � r sin2 u _f2,
1

r

d

dt
(r2 _u)� r sin u cos u _f2,

1

r sin u

d

dt
(r2 sin2 u _f)

8.156.
@(s vq)

@xq
þ s vq

2g

@g

@xq
þ @s

@t
¼ 0 where vq are the contravariant components of the velocity.

8.157. (a)
@

@r
(s v1)þ @

@f
(s v2)þ @

@z
(s v3)þ s v1

r
þ @s

@t
¼ 0

(b)
@

@r
(s v1)þ @

@u
(s v2)þ @

@f
(s v3)þ s

2v1

r
þ v2 cot u

� �
þ @s

@t
¼ 0 where v1, v2, and v3 are the contravariant

components of the velocity.

8.158.

ð
C

Ap

dxp

ds
ds ¼ �

ðð
S

e pqrAq, rvp dS where
dxp

ds
is the unit tangent vector to the closed curve C and vp is the positive

unit normal to the surface S, which has C as boundary.
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Index

absolute:
derivative, 197
tensor, 198

acceleration, 45
addition of vectors, 2
affine transformation, 73
algebra of vectors, 3
angle, 1, 77

between tensors, 195
angular:

momentum, 62
velocity, 33, 41

anti-derivative, 97
arbitrary constant vector, 97
areal velocity, 102
arc length, 159
associated tensors, 197
associative law, 3

base vectors, 9, 10
binormal vector B, 49, 56
bipolar coordinates, 163

calculus of variations, 196
cancellation law, 3
Cartesian tensors, 227
central force, 66, 102
centripetal acceleration, 54, 62, 68
charge density, 147
Christoffel symbol:

of the first kind, 195
of the second kind, 195

circular helix, 59
circulation, 98
circumcenter, 41
column matrix (vector), 192
commutative law, 3
components, 158

of a vector, 4, 10
conformable matrices, 193
conjugate tensor, 194
conservative vector field, 87, 99, 108, 199
continuity equation, 81, 147
continuous function, 46

contraction, 192
constant of integration, 97
contravariant:

components, 158
tensor of the first order (rank), 190, 199
vector, 180

coordinate:
surfaces, 72
transformation, 72, 189

Cortiolis acceleration, 68
cosine, law of, 26, 42
covariant:

components, 158
curvature tensor, 225
derivative, 196
tensor of the first order (rank), 190
vector, 182, 190

cross product, 22
cross-cut, 134
curl, 71, 81, 197
current density, 147
curvature, 49, 56
curve (space), 45
curvilinear coordinates, 57
cycloid, 154
cylindrical coordinates, 160

D, (del), 69
D2, (Laplacian), 72
definite integral, 97
del, 69, 128
dependence, linear 5, 14
derivative, 44

partial, 47
Descartes, folium of, 154
determinant, 193
dextral system, 4
difference of vectors, 2
diffential geometry, 48
differentiable function, 46, 47

of order n, 46
diffusivity, 148
direction cosines, 15, 25
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directional derivative, 62
distributive law, 3
divergence, 70

theorem, 126
dot product, 21
dummy index, 190
dyadic, 87
dynamics, 49

eigenvalue, 227
ellipsoidal coordinates, 163
elliptic cylindrical coordinates, 161
energy, 112
equal:

vectors, 1
matrices, 193

equilibriant, 8

field, (scalar, vector), 5
flux, 100
folium of Descartes, 154
four-leafed rose, 154
free index, 190
Frenet–Serret formulas, 49, 56
fundamental quadratic form, 171
fundamental tensor, 194

Gauss’ theorem, 145
geodesic, 196
gradient, 69, 159, 197
Green’s first identity (theorem), 127, 142
Green’s second identity, 127, 143
Green’s symmetrical theorem, 127, 143
Green’s theorem, 127, 130

in space, 127

Hamilton–Cayley theorem, 227
heat equation, 148
helix, circular, 59
hyperellipsoid, 230
hyperplane, 199
hypersphere, 199
hypersurface, 199
hypocycloid, 154

ijk coordinates, 3
indefinite integral, 97
independence, linear, 5
initial point, 1
inner multiplication, 192
integral, 97

intrinsic derivative, 197
invariant, 73, 90, 191
inverse matrix, 193
irrotational vector, 86, 108

Jacobian, 92

Kepler’s laws, 103, 122
kinematics, 49
kinetic energy, 112
Kronecker’s (delta) symbol,

91, 191, 201

Lagrange:
equation, 216
multiplier, 70

Laplace’s equation, 79, 156
Laplacian operator (D2), 72, 197
law of cosines, 26

for spherical triangles, 42
law of sines, 31

for spherical triangles, 37
leminscat, 154
length of a:

tensor, 195
vector, 22

linear combination, 5
linear dependence, 5, 14
linear independence, 5
line:

element, 194, 208
integral, 98, 104

Lorentz–Fitzgerald contraction, 230

magnitude of a vector, 22
main (principal) diagonal, 192
matrix, 88, 192, 206

column matrix, 192
nonsingular matrix, 193
null matrix, 192
row matrix, 192
singular matrix, 193
square matrix, 192
unit matrix, 192

matrix transpose, 193
Maxwell’s equations, 86, 94, 224
mechanics, 49
metric, 194

coefficient, 171
form, 171, 194
tensor, 194

mixed tensor, 190
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Moebias strip, 119
moment, 33
momentum, 49
moving trihedral, 49
multiply-connected region, 131

nabla, 69
N-dimensional Euclidean spaces, 194
negative, 3

of a vector, 1
Newton’s law, 49, 102, 222
non-orientable surface, 119
non-singular matrix, 193
normal:

plane, 49
vector N, 49

null matrix, 192

oblate spheroidal coordinates, 162
orientable surface, 119
origin, 1
orthocenter, 41
orthogonal, 157

curvilinear coordinate
systems, 157

transformation, 73
osculating plane, 49
outer multiplication, 192
outward drawn unit normal, 61, 99

parabolic cylindrical coordinates, 160
paraboloidal coordinates, 161
paralellogram law, 2, 7
partial derivative, 47
permutation symbols, 197
physical component tensor, 196
Poisson’s equation, 156
position vector, 4, 45
positive:

direction, 107, 127
unit normal, 99

potential energy, 112
principal (main) diagonal, 192
principal normal, 48, 56
product of matrices, 194
projection, 23
prolate spherical coordinates, 162
proper vector, 2
pure rotation, 73

quadratic forms, 171
quotient law, 192, 205

radius:
of curvature, 49, 56
of torsion, 49, 56
vector, 4

rank (of a tensor), 91
reciprocal sets (systems) of

vectors, 22
reciprocal tensor, 194
rectifying plane, 49
rectangular coordinates, 3
repulsive force, 100
resultant vector, 2
Riemann–Christoffel tensor, 225
Riemannian spaces, 194
right-handed coordinate system, 3, 4
rotation, 71, 73

pure, 73
rotation plus translation, 73
row matrix (vector), 192

scalar, 1, 6, 191
field, 5
function of position, 5
multiplication, 2, 6
potential, 87, 94, 99
product, 21

scale factors, 158
Schroedinger’s equation, 184
simple closed curve, 98
simply-connected region, 130
sines, law of, 31
singular:

matrix, 193
points, 164

sink, 17
sink field, 17
skew symmetry, 191
skew-symmetric tensor, 191
solenoidal vector, 82
solid angle, 146
source, 17, 142
source field, 17
space:

curve, 45
integral, 100

spherical:
coordinates, 160
triangles, 42

spheroidal coordinates, 160
square matrices, 192
stationary scalar field, 5
stationary vector field, 6
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steady state
scalar field, 5
vector field, 6

Stokes’ theorem, 126
sum:

of matrices, 193
of vectors, 2

summation convention, 190
superscripts, 189
surface:

curvilinear coordinates, 178
integral, 99, 113

symmetric tensor, 191
symmetry, 191

tangent vector T, 48
tensor:

addition, 192
analysis, 88, 182, 189
contraction, 192
density, 198
inner multiplication, 192
first rank, 190
outer multiplication, 192
quotient law, 192
rank zero, 191
subtraction, 192

terminal point, 1
three-dimensional Euclidean spaces, 194
toroidal coordinate system, 163
torsion, 49, 56
transformation of coordinates, 157, 189
translation, 73
triad, 49, 88
triadic, 88
triangle law, 7
trihedral, 49
triple product, 22
twisted cubic, 65

umbral index, 190
unitary base vectors, 158
unit:

dyads, 87
matrix, 192
multiplication, 3
vector, 3, 158

vector, 1, 6
area, 32
column, 192
difference, 2
elements, 159
end of, 1
field, 5
function of position, 5
initial point of, 1
null, 2
origin of, 1
potential, 94
proper, 2
resultant, 2
row, 192
space, 3, 6
sum, 2, 6
terminal point of, 1
terminus of, 1
unit, 3

velocity, 45
volume integral, 100
vortex field, 86

wave equation, 86
work, 27

zero:
matrix, 192
vector, 2
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