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Foreword

One of the great difficulties in teaching undergraduate mathematics at univer-

sities in the United States is the great gap between teaching students a set

of algorithms (which is very often the bulk of what is learned in calculus)

and convincing students of the power, beauty and fun of the basic concepts in

mathematics.

Martin Liebeck’s book, A Concise Introduction to Pure Mathematics, Fourth

Edition, is one of the best I have seen at filling this gap. In addition to prepar-

ing students to go on into mathematics, it is also a wonderful choice for a

student who will not necessarily go on in mathematics but wants a gentle but

fascinating introduction into the culture of mathematics. Liebeck starts with

the basics and introduces number systems. In particular he discusses the real

numbers and complex numbers. He shows how these concepts are natural and

important in solving natural problems. Various topics in analysis, geometry,

number theory and combinatorics are introduced and are shown to be fun and

beautiful. Starting from scratch, Liebeck develops interesting results which

hopefully will intrigue the student and give encouragement to continue to study

mathematics.

This book will give a student the understanding to go on to further courses in

abstract algebra and analysis. The notion of a proof will no longer be foreign,

but also mathematics will not be viewed as some abstract black box. At the

very least, the student will have an appreciation of mathematics.

As usual, Liebeck’s writing style is clear and easy to read. This is a book

that could be read by a student on his or her own. There is a wide selection of

problems ranging from routine to quite challenging.

While there is a difference in mathematical education between the U.K. and

the U.S., this book will serve both groups of students extremely well.

Professor Robert Guralnick

Chair of Mathematics Department

University of Southern California

Los Angeles, California
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Preface

I can well remember my first lecture as a mathematics undergraduate, back in

the olden days. In it, we were told about something called “Russell’s Paradox”

— does the set consisting of all sets which do not belong to themselves belong

to itself? — after which the lecturer gave us some rules called the “Axioms of

Set Theory.” I came out of the lecture somewhat baffled. The second lecture,

in which we were informed that “an tends to l if, for every ε > 0, there exists N

such that for all n ≥ N, |an − l|< ε ,” was also a touch bewildering. In fact, the

lecturers were pretty good, and bafflement and bewilderment eventually gave

way to understanding, but nevertheless it was a fairly fierce introduction to the

world of university pure mathematics.

Nowadays we university lecturers are less fierce, and mathematics courses

tend to start with a much gentler introduction to pure mathematics. I gave such

a course at Imperial College for several years to students in the first term of

the first year of their degree (generally in mathematics, or some joint degree

including mathematics). This book grew out of that course. As well as being

designed for use in a first university course, the book is also suitable for self-

study. It could, for example, be read by students between school and university,

or indeed by anybody with a reasonable background in school mathematics.

One of my aims is to provide a robust bridge between school and univer-

sity mathematics. For a number of the topics covered, students may well have

studied some of the basic material on this topic at school, but this book will

generally take the topic much further, in a way that is interesting and stimulat-

ing (at least to me). For example, many will have come across the method of

mathematical induction, and used it to solve some simple problems, like find-

ing a formula for the sum 1+ 2+ 3+ . . .+ n. But I doubt that many have seen

how induction can be used to study solid objects whose faces all have straight

edges, and to show that the only so-called regular solids are the famous five

“Platonic solids” (the cube, tetrahedron, octahedron, icosahedron and dodeca-

hedron), as is done in Chapter 9.

I generally enjoy things more if they come in bite-sized pieces, and accord-

ingly I have divided the book into 26 short chapters. Each chapter ends with

xi
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a selection of exercises, ranging from routine calculations to some quite chal-

lenging problems.

When starting to study pure mathematics at university, students often have

a refreshing sense of “beginning all over again.” Basic structures, like the real

numbers, the integers, the rational numbers and the complex numbers, must be

defined and studied from scratch, and even simple and obvious-looking state-

ments about them must be proved properly. For example, it probably seems

obvious that if n is an integer (i.e., one of the whole numbers 0,1,−1,2,−2,
3,−3 and so on), and n2 is odd, then n must also be odd. But how can we write

down a rigorous proof of this fact? Methods for writing down proofs of this

and many other simple facts form one of the themes of Chapter 1, along with

a basic introduction to the language of sets.

In Chapter 2, I define and begin to study three of the basic number systems

referred to in the previous paragraph: the real numbers (which we start off

by thinking of as points on an infinite straight line — the “real line”); the

integers; and the rational numbers (which are the fractions m
n

, where m and n

are integers). It takes some effort to prove that there is at least one real number

that is not rational — a so-called irrational number — but once this is done,

one can see quite easily that there are many irrational numbers. Indeed, by

Chapter 21 we shall understand the strange fact that, in a very precise sense,

there are “more” irrational numbers than rational numbers (even though there

are infinitely many of each).

In studying properties of the system of real numbers, it is sometimes helpful

to have ways of thinking of them that are different from just “points on the real

line.” In Chapter 3, I introduce the familiar decimal notation for real numbers,

which provides a visual way of writing them down and can be useful in their

general study. Chapters 4 and 5 carry on with our basic study of the real

numbers.

In Chapter 6, I bring our last important number system into the action —

the complex numbers. Students may well have met these before. We begin by

introducing a symbol i, and defining i2 =−1. A general complex number is a

symbol of the form a+ bi, where a and b are real numbers. We soon find that

using complex numbers we can write down solutions of all quadratic equa-

tions, and then proceed to study other equations like xn = 1. We also find some

beautiful links between complex numbers and geometry in the plane. Chapter 7

takes the theory of equations much further. Solving quadratics is probably very

familiar, but much less well known is the method for solving cubic equations

given in this chapter. We then look at general polynomial equations (i.e., equa-

tions of the form xn + an−1xn−1 + . . .+ a1x+ a0 = 0) and explore the amazing

fact that every such equation has solutions which are complex numbers (known

as the Fundamental Theorem of Algebra).

I have already mentioned the method of proof by mathematical induction,

which is introduced in Chapter 8. This is a technique for proving statements
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involving a general positive integer n, such as “the sum of the first n odd pos-

itive integers is equal to n2,” or “the number of regions formed by n straight

lines drawn in the plane, no two parallel and no three going through the same

point, is equal to 1
2
(n2 + n+ 2).” The method of induction is actually rather

more powerful than first meets the eye, and Chapter 9 is devoted to the proof by

induction of an elegant result, known as Euler’s formula, about the relationship

between the numbers of corners, edges and faces of a solid object, whose faces

all have straight edges. Euler’s formula has all sorts of uses. For example,

if you want to make a football by sewing together hexagonal and pentagonal

pieces of leather, in such a way that each corner lies on three edges, then the

formula implies that you will need exactly 12 pentagonal pieces, no more and

no less. I could not resist going further in this chapter and showing how to use

Euler’s formula to study the famous Platonic solids mentioned earlier.

Chapters 10 through 14 are all about possibly the most fascinating number

system of all: the integers. Students will know what a prime number is —

an integer greater than 1 that is only divisible by 1 and itself — and are quite

likely aware of the fact that every integer greater than 1 is equal to a product of

prime numbers, although this fact requires a careful proof. Much more subtle

is the fact that such a prime factorization is unique — in other words, given an

integer greater than 1, we can express it as a product of prime numbers in only

one way. “Big deal! So what?” I hear you say. Well, yes, it is a big deal (so big

that this result has acquired the grandiose title of “The Fundamental Theorem

of Arithmetic”), and after proving it I try to show its significance by using it in

the study of a number of problems; for instance, apart from 1 and 0, are there

any squares that differ from a cube by just 1?

Chapter 15 contains an amazing application of some of the theory of prime

numbers developed in the previous chapters. This application concerns some

very clever secret codes that are used every day for the secure electronic trans-

mission of sensitive information — one of today’s most spectacular “real-

world” applications of pure mathematics.

Chapter 16 is about methods of counting things. For example, suppose I

have given the same lecture course for the last 16 years, and tell 3 jokes each

year. I never tell the same set of 3 jokes twice. At least how many jokes do

I know? To solve this and other important counting problems, we introduce

binomial coefficients, which leads us into the binomial and multinomial theo-

rems.

After a little formal theory of sets and relations in Chapters 17 and 18, I

introduce functions in Chapter 19, and develop some of the delights of the the-

ory of an especially interesting and important class of functions called “per-

mutations” in Chapter 20. Then comes Chapter 21, in which I address some

fascinating questions about infinite sets. When can we say that two infinite

sets have the same “size”? Can we ever say that one infinite set has bigger

“size” than another? These questions are answered in a precise and rigorous
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way, and some of the answers may appear strange at first sight; for example,

the set of all integers and the set of all rational numbers have the same size, but

the set of all real numbers has greater size than these. Chapter 21 closes with a

beautifully subtle result that tells us that an infinite set always has smaller size

than the set of all its subsets. The proof of this is based on the argument of

Russell’s Paradox — which brings me back to where I started ....

The next three chapters have a somewhat different flavour to the rest of the

book. In them I introduce a topic known as mathematical analysis, which is

the study of the real numbers and functions defined on them. Of course I can’t

cover very much of the subject — that would require several more books —

but I do enough to prove several interesting results and to fill in one or two

gaps in the preceding chapters. The point is that with our somewhat naive

understanding of the real numbers up to here, it is difficult to see how to prove

even such basic properties as the fact that every positive real number has a

square root, a cube root and so on. The material in Chapters 22–24 is sufficient

at least to prove this fact, and also to do some other interesting things, such as

proving a special case of the famous Fundamental Theorem of Algebra.

In the final two chapters of the book I introduce another very different kind

of mathematics — the theory of groups, which is part of a huge area known as

abstract algebra. Groups are defined as sets of objects (they could be numbers,

or functions, or anything really), together with a rule for combining any two

objects to get another one, and this rule is subject to four clearly defined as-

sumptions, called the “axioms” of group theory. The game is to see what one

can deduce just using the axioms. Fortunately the subject is more than just a

game, and there are many beautiful examples and applications.

Let me now offer some comments on designing a course based on the book.

Crudely speaking, the book can be divided into six fairly independent sections,

with the following “core” chapters:

Introduction to number systems: Chapters 1, 2, 3, 4, 5, 6, 8

Theory of the integers: Chapters 10, 11, 13, 14

Introduction to discrete mathematics: Chapters 16, 17, 19, 20

Functions, relations and countability: Chapters 18, 19, 21

Introduction to analysis: Chapters 22, 23, 24

Introduction to abstract algebra: Chapters 25, 26

One could design a one- or two-semester course in a number of ways. For

example, if the emphasis is to be on discrete mathematics, the core chapters to

use from the first section would be 1, 2 and 8, and all the other sections except

the last two would be core; the last section on abstract algebra would also be a

natural addition to such a course. On the other hand, if the course is intended

to prepare students more for a future course in analysis, one should use all the
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chapters in the first, fourth and fifth sections. Overall, I would recommend

incorporating at least the first four sections into your course — it works well!

I would like to express my thanks to my late father, Dr. Hans Liebeck,

who read the entire manuscripts of the first two editions and suggested many

improvements, as well as saving me from a number of embarrassing errors.

Sadly, I can no longer claim that any errors that remain are his responsibility.

And, finally, I thank generations of students at Imperial who have sat through

my lectures and have helped me to hone the course into the sleek monster that

has grown into this book.

New Features of the Fourth Edition

This fourth edition contains several substantial additions to the third edition.

First, I have included two new chapters at the end to serve as an introduction to

the topic of abstract algebra. This is a big subject which is often introduced in

a course of its own at the undergraduate level, but I believe it fits quite well into

the framework of this book. For one thing, it is a topic that one can begin to

read about from scratch, without needing to know too much other stuff; on the

other hand, many of the examples and applications are closely connected with

other parts of the book, particularly the chapters on number systems, prime

numbers, congruence and permutations. It also gives an introduction to “ab-

stract” reasoning in mathematics, where one is allowed only to use a set of

axioms and nothing else, and often students find this a new and exciting chal-

lenge.

I have also added new material in a number of other chapters: on inequalities

in Chapters 5 and 8; on counting methods in Chapter 16; and on the Inclusion–

Exclusion Principle and Euler’s φ -function in Chapter 17. There are also lots

of new exercises, and, as in the previous edition, I have included solutions to

the odd-numbered ones.
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Chapter 1

Sets and Proofs

This chapter contains some introductory notions concerning the language of

sets, and methods for writing proofs of mathematical statements.

Sets

We shall think of a set as simply a collection of objects, which are called the

elements or members of the set. There are a number of ways of describing a

set. Sometimes the most convenient way is to make a list of all the objects in

the set and put curly brackets around the list. Thus, for example,

{1,3,5} is the set consisting of the objects 1, 3 and 5.

{Fred,dog,1.47} is the set consisting of the objects Fred, dog and 1.47.

{1,{2}} is the set consisting of two objects, one being the number 1 and

the other being the set {2}.

Often, however, this is not a convenient way to describe our set. For ex-

ample, the set consisting of all the people who live in Denmark is for most

purposes best described by precisely this phrase (i.e., “the set of all people

who live in Denmark”); it is unlikely to be useful to describe this set in list

form {Sven, Inge,Jesper,. . .}. As another example, the set of all real numbers

whose square is less than 2 is neatly described by the notation

{x |x a real number,x2 < 2}.

(This is to be read: “the set of all x such that x is a real number and x2 < 2.”

The symbol “|” is the “such that” part of the phrase.) Likewise,

{x |x a real number,x2 − 2x+ 1= 0}

1
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denotes the set consisting of all real numbers x such that x2 − 2x+ 1= 0.

As a convention, we define the empty set to be the set consisting of no objects

at all, and denote the empty set by the symbol /0.

If S is a set, and s is an element of S (i.e., an object that belongs to S), we

write

s ∈ S

and say s belongs to S. If some other object t does not belong to S, we write

t 6∈ S.

For example,

1 ∈ {1,3,5} but 2 6∈ {1,3,5},

if S = {x |x a real number,0 ≤ x ≤ 1}, then 1 ∈ S but Fred 6∈ S,

{2} ∈ {1,{2}} but 2 6∈ {1,{2}},

1 6∈ /0.

Two sets are defined to be equal when they consist of exactly the same ele-

ments; for example,

{1,3,5}= {3,5,1}= {1,5,1,3},

{x |x a real number,x2 − 2x+ 1= 0}= {1},

{x |x a real number, x2 + 1 = 0}= the set of female popes = /0.

We say a set T is a subset of a set S if every element of T also belongs to S

(i.e., T consists of some of the elements of S). We write T ⊆ S if T is a subset

of S, and T 6⊆ S if not. For example, if S = {1,{2},cat}, then

{cat} ⊆ S, {{2}} ⊆ S, {2} 6⊆ S.

As another example, the subsets of {1,2} are

{1,2}, {1}, {2}, /0.

(By convention, /0 is a subset of every set.)

This is all we shall need about sets for the time being. This topic will be

covered somewhat more formally in Chapter 17.
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Proofs

Consider the following mathematical statements:

(1) The square of an odd integer is odd. (By an integer we mean a whole

number, i.e., one of the numbers . . . ,−2,−1,0,1,2, . . ..)

(2) No real number has square equal to −1.

(3) Every positive integer is equal to the sum of two integer squares. (The

integer squares are 0,1,4,9,16,25, and so on.)

Each of these statements is either true or false. Probably you have quickly

formed an opinion on the truth or falsity of each, and regard this as “obvious”

in some sense. Nevertheless, to be totally convincing, you must provide clear,

logical proofs to justify your opinions.

To clarify what constitutes a proof, we need to introduce a little notation. If

P and Q are statements, we write

P ⇒ Q

to mean that statement P implies statement Q. For example,

x = 2 ⇒ x2 < 6,

it is raining ⇒ the sky is cloudy.

Other ways of saying P ⇒ Q are:

if P then Q (e.g., if x = 2 then x2 < 6);

Q if P (e.g., the sky is cloudy if it is raining);

P only if Q (e.g., x = 2 only if x2 < 6; it rains only if the sky is cloudy).

Notice that P ⇒ Q does not mean that also Q ⇒ P; for example,

x2 < 6 6⇒ x = 2 (where 6⇒ means “does not imply”). However, for some state-

ments P,Q, it is the case that both P ⇒ Q and Q ⇒ P; in such a case we write

P ⇔ Q, and say “P if and only if Q.” For example,

x = 2 ⇔ x3 = 8,

you are my wife if and only if I am your husband.

The negation of a statement P is the opposite statement, “not P,” written as

the symbol P̄. Notice that if P ⇒ Q then also Q̄ ⇒ P̄ (since if Q̄ is true then P

cannot be true, as P ⇒ Q).
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For example, if P is the statement x = 2 and Q the statement x2 < 6, then

P ⇒ Q says “x = 2 ⇒ x2 < 6,” while Q̄ ⇒ P̄ says “x2 ≥ 6 ⇒ x 6= 2.” Likewise,

for the other example above we have “the sky is not cloudy⇒ it is not raining.”

Perhaps labouring the obvious, let us now make a list of the deductions that

can be made from the implication “it is raining ⇒ the sky is cloudy,” given

various assumptions:

Assumption Deduction

it is raining sky is cloudy
it is not raining no deduction possible
sky is cloudy no deduction possible
sky is not cloudy it is not raining

Now let us put together some examples of proofs. In general, a proof will

consist of a series of implications, proceeding from given assumptions, until

the desired conclusion is reached. As we shall see, the logic behind a proof

can take several different forms.

Example 1.1
Suppose we are given the following three facts:
(a) I will be admitted to Greatmath University only if I am clever.
(b) If I am clever then I do not have to work hard.
(c) I have to work hard.

What can be deduced?

Answer Write G for the statement “I will be admitted to Greatmath Univer-

sity,” C for the statement “I am clever,” and W for the statement “I have to

work hard.” Then (a) says G ⇒C, and (b) says C ⇒ W̄ . Hence,

W ⇒ C̄ and C̄ ⇒ Ḡ.

Since W is true by (c), we deduce that Ḡ is true, i.e., I will not be admitted to

Greatmath University (thank goodness).

Example 1.2
In this example we prove statement (1) from the previous page: the
square of an odd integer is odd.

PROOF Let n be an odd integer. Then n is 1 more than an even
integer, so n = 1+ 2m for some integer m. Therefore, n2 = (1+ 2m)2 =
1+ 4m+ 4m2 = 1+ 4(m+m2). This is 1 more than 4(m+m2), an even

number, hence n2 is odd.
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Formally, we could have written this proof as the following series of impli-

cations:

n odd ⇒ n = 1+ 2m ⇒ n2 = 1+ 4(m+m2) ⇒ n2 odd.

However, this is evidently somewhat terse, and such an approach with more

complicated proofs quickly leads to unreadable mathematics; so, as in the

above proof, we insert words of English to make the proof readable, including

words like “hence,” “therefore,” “then” and so on, to take the place of implica-

tion symbols.

Note The above proof shows rather more than just the oddness of n2: it shows

that the square of an odd number is always 1 more than a multiple of 4, i.e., is

of the form 1+ 4k for some integer k.

The proofs given for Examples 1.1 and 1.2 could be described as direct

proofs in that they proceed from the given assumptions directly to the conclu-

sion via a series of implications. We now discuss two other types of proof,

both very commonly used.

The first is proof by contradiction. Suppose we wish to prove the truth of

a statement P. A proof by contradiction would proceed by first assuming that

P is false — in other words, assuming P̄. We would try to deduce from this

a statement Q that is palpably false (for example, Q could be the statement

“0 = 1” or “Liebeck is the pope”). Having done this, we have shown

P̄ ⇒ Q.

Hence also Q̄ ⇒ P. Since we know Q is false, Q̄ is true, and hence so is P, so

we have proved P, as desired.

The next three examples illustrate the method of proof by contradiction.

Example 1.3
Let n be an integer such that n2 is a multiple of 3. Then n is also a
multiple of 3.

PROOF Suppose n is not a multiple of 3. Then when we divide n

by 3, we get a remainder of either 1 or 2; in other words, n is either 1 or
2 more than a multiple of 3. If the remainder is 1, then n = 1+ 3k for
some integer k, so

n2 = (1+ 3k)2 = 1+ 6k+ 9k2 = 1+ 3
(
2k+ 3k2

)
.

But this means that n2 is 1 more than a multiple of 3, which is false, as
we are given that n2 is a multiple of 3. And if the remainder is 2, then
n = 2+ 3k for some integer k, so

n2 = (2+ 3k)2 = 4+ 12k+ 9k2 = 1+ 3
(
1+ 4k+ 3k2

)
,
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which is again false as n2 is a multiple of 3.
Thus we have shown that assuming n is not a multiple of 3 leads to a

false statement. Hence, as explained above, we have proved that n is a
multiple of 3.

Usually in a proof by contradiction, when we arrive at our false statement

Q, we simply write something like “this is a contradiction” and stop. We do

this in the next proof.

Example 1.4
No real number has square equal to −1.

PROOF Suppose the statement is false. This means that there is

a real number, say x, such that x2 = −1. However, it is a general fact
about real numbers that the square of any real number is greater than
or equal to 0 (see Chapter 5, Example 5.2). Hence x2 ≥ 0, which implies

that −1 ≥ 0. This is a contradiction.

Example 1.5
Prove that

√
2+

√
6 <

√
15.

PROOF Let me start by giving a non-proof:

√
2+

√
6 <

√
15 ⇒

(√
2+

√
6
)2

< 15

⇒ 8+ 2
√

12 < 15 ⇒ 2
√

12 < 7 ⇒ 48 < 49.

The last statement (48 < 49) is true, so why is this not a proof? Because
the implication is going the wrong way — we have shown that if P is
the statement we want to prove, and Q is the statement that 48 < 49,
then P ⇒ Q; but this tells us nothing about the truth or otherwise of P.
A cunning change to the above false proof gives a correct proof, by

contradiction. So assume the result is false; i.e., assume that
√

2+
√

6 ≥√
15. Then

√
2+

√
6 ≥

√
15 ⇒

(√
2+

√
6
)2

≥ 15

⇒ 8+ 2
√

12 ≥ 15 ⇒ 2
√

12 ≥ 7 ⇒ 48 ≥ 49,

which is a contradiction. Hence we have proved that
√

2+
√

6 <
√

15.
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The other method of proof we shall discuss is actually a way of proving

statements are false — in other words, disproving them. We call the method

disproof by counterexample. It is best explained by examples.

Example 1.6
Consider the following two statements:

(a) All men are Chinese.

(b) Every positive integer is equal to the sum of two integer squares.

As the reader will have cleverly spotted, both these statements are false.
To disprove (a), we need to prove the negation, which is “not all men
are Chinese,” or equivalently, “there exists a man who is not Chinese”;
this is readily done by simply displaying one man who is not Chinese —
this man will then be a counterexample to statement (a). The point is
that to disprove (a), we do not need to consider all men, we just need
to produce a single counterexample.
Likewise, to disprove (b) we just need to provide a single counter-

example — that is, a positive integer that is not equal to the sum of two
squares. The number 3 fits the bill nicely.

Quantifiers

I will conclude the chapter by slightly formalising some of the discussion

we have already had about proofs.

Consider the following statements:

(1) There is an integer n such that n3 =−27.

(2) For some integer x, x2 =−1.

(3) There exists a positive integer that is not equal to the sum of three integer

squares.

Each of these statements has the form: “there exists some integer with a cer-

tain property.” This type of statement is so common in mathematics that we

represent the phrase “there exists” by a special symbol, namely ∃. So, writing

Z for the set of all integers, the above statements can be rewritten as follows:

(1) ∃n ∈ Z such that n3 =−27.

(2) ∃x ∈ Z such that x2 =−1.
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(3) ∃x ∈ Z such that x is positive and is not equal to the sum of three integer

squares.

The symbol ∃ is called the existential quantifier. To prove that an existence

statement is true, it is enough to find just one object satisfying the required

property. So (1) is true, since n =−3 has the required property; and (3) is true

since x = 7 is not the sum of three squares (of course there are many other

values of x having this property, but only one value is required to demonstrate

the truth of (3)).

Now consider the following statements:

(4) For all integers n, n2 ≥ 0.

(5) The cube of any integer is positive.

(6) Every integer is equal to the difference of two positive integers.

All these statements are of the form: “for all integers, a certain property is

true.” Again, this type of statement is very common in mathematics, and we

represent the phrase “for all” by a special symbol, namely ∀. So the above

statements can be rewritten as follows:

(4) ∀n ∈ Z, n2 ≥ 0.

(5) ∀n ∈ Z, n3 > 0.

(6) ∀x ∈ Z, x is equal to the difference of two positive integers.

The symbol ∀ is called the universal quantifier. To show that a “for all” state-

ment is true, a general argument is required; to show it is false, a single coun-

terexample is all that is needed (this is just proof by counterexample, discussed

in the previous section). I will leave you to show that (4) and (6) are true, while

(5) is false.

Many mathematical statements involve more than one quantifier. For exam-

ple, statement (6) above can be rewritten as

(6) ∀x ∈ Z, ∃m,n ∈ Z such that m > 0,n > 0 and x = m− n.

Here’s another example: the statement “for any integer a, there is an integer b

such that a+ b = 0” can be rewritten as “∀a ∈ Z,∃b ∈ Z such that a+ b = 0.”

Notice that the order of quantifiers is important: the statement “∃b ∈ Z such

that ∀a ∈ Z, a+ b = 0” means something quite different.

Let’s finish by seeing how to find the negation of a statement involving quan-

tifiers. Consider statement (1) above: ∃n∈Z such that n3 =−27. The negation

of this is the statement “there does not exist an integer n such that n3 = −27”

— in other words, “every integer has cube not equal to −27,” or more suc-

cinctly, “∀n ∈ Z, n3 6=−27.” So to form the negation of the original statement,
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we have changed ∃ to ∀ and negated the conclusion (i.e., changed n3 =−27 to

n3 6=−27).

Now consider statement (5): ∀n ∈ Z, n3 > 0. The negation of this is “not all

integers have a positive cube” — in other words, “there is an integer having a

non-positive cube,” or more succinctly, “∃n ∈ Z such that n3 ≤ 0.” This time,

to form the negation we have replaced ∀ by ∃ and negated the conclusion.

To summarise: when forming the negation of a statement involving quanti-

fiers, we change ∃ to ∀, change ∀ to ∃ and negate the conclusion.

Let’s do another example, and negate the following statement:

(7) For any integers x and y, there is an integer z such that x2 + y2 = z2.

We can rewrite this as: ∀x ∈ Z,∀y ∈ Z, ∃z ∈ Z such that x2 + y2 = z2. Hence

the negation is

∃x ∈ Z,∃y ∈ Z, such that ∀z ∈ Z, x2 + y2 6= z2.

In other words: there exist integers x,y such that for all integers z, x2+y2 6= z2.

I’m sure you can pretty quickly decide whether (7) or its negation is true.

Finally, let me make an observation for you to be wary of or amused by (or

both). Here are a couple of strange statements involving the empty set:

(8) ∀a ∈ {x |x a real number, x2 + 1 = 0}, we have a17 − 72a12+ 39 = 0.

(9) ∃b ∈ {x |x a real number, x2 + 1 = 0} such that b2 ≥ 0.

You will have noticed that the set {x |x a real number, x2 + 1 = 0} is equal to

the empty set. Hence the statement in (8) says that all elements of the empty

set have a certain property; this is true, since there are no elements in the

empty set! Likewise, any similar “for all” statement involving the empty set

is true. On the other hand, the statement (9) says that there exists an element

of the empty set with a certain property; this must be false, since there are no

elements in the empty set.

Exercises for Chapter 1

1. Let A be the set {α,{1,α},{3},{{1,3}},3}. Which of the following

statements are true and which are false?

(a) α ∈ A. ( f ) {{1,3}}⊆ A.
(b) {α} 6∈ A. (g) {{1,α}} ⊆ A.
(c) {1,α} ⊆ A. (h) {1,α} 6∈ A.
(d) {3,{3}} ⊆ A. (i) /0 ⊆ A.
(e) {1,3} ∈ A.



10 A CONCISE INTRODUCTION TO PURE MATHEMATICS

2. Let B,C,D,E be the following sets:

B = {x |x a real number, x2 < 4},

C = {x |x a real number, 0 ≤ x < 2},
D = {x |x ∈ Z,x2 < 1},

E = {1}.

(a) Which pair of these sets has the property that neither is contained

in the other?

(b) You are given that X is one of the sets B,C,D,E , but you do not

know which one. You are also given that E ⊆ X and X ⊆ B. What

can you deduce about X?

3. Which of the following arguments are valid? For the valid ones, write

down the argument symbolically.

(a) I eat chocolate if I am depressed. I am not depressed. Therefore I

am not eating chocolate.

(b) I eat chocolate only if I am depressed. I am not depressed. There-

fore I am not eating chocolate.

(c) If a movie is not worth seeing, then it was not made in England. A

movie is worth seeing only if critic Ivor Smallbrain reviews it. The

movie Cat on a Hot Tin Proof was not reviewed by Ivor Smallbrain.

Therefore Cat on a Hot Tin Proof was not made in England.

4. A and B are two statements. Which of the following statements about A

and B implies one or more of the other statements?

(a) Either A is true or B is true.

(b) A ⇒ B.

(c) B ⇒ A.

(d) Ā ⇒ B.

(e) B̄ ⇒ A.

5. Which of the following statements are true, and which are false?

(a) n = 3 only if n2 − 2n− 3= 0.

(b) n2 − 2n− 3= 0 only if n = 3.

(c) If n2 − 2n− 3= 0 then n = 3.

(d) For integers a and b, ab is a square only if both a and b are squares.

(e) For integers a and b, ab is a square if both a and b are squares.
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6. Write down careful proofs of the following statements:

(a)
√

6−
√

2 > 1.

(b) If n is an integer such that n2 is even, then n is even.

(c) If n = m3 −m for some integer m, then n is a multiple of 6.

7. Disprove the following statements:

(a) If n and k are positive integers, then nk −n is always divisible by k.

(b) Every positive integer is the sum of three squares (the squares be-

ing 0, 1, 4, 9, 16, etc.).

8. Given that the number 8881 is not a prime number, prove that it has a

prime factor that is at most 89. (Hint: Don’t try to factorize 8881! Try

to be a bit more clever and prove it by contradiction.)

9. In this question I am assuming you know what a prime number is; if not,

take a look at the definition on page 69.

For each of the following statements, form its negation and either prove

that the statement is true or prove that its negation is true:

(a) ∀n ∈ Z such that n is a prime number, n is odd.

(b) ∀n ∈ Z, ∃a,b,c,d,e, f ,g,h ∈ Z such that

n = a3 + b3+ c3 + d3 + e3 + f 3 + g3 + h3.

(c) ∃x ∈ Z such that ∀n ∈ Z, x 6= n2 + 2.

(d) ∃x ∈ Z such that ∀n ∈ Z, x 6= n+ 2.

(e) ∀y ∈ {x |x ∈ Z, x ≥ 1}, 5y2 + 5y+ 1 is a prime number.

(f) ∀y ∈ {x |x ∈ Z, x2 < 0}, 5y2 + 5y+ 1 is a prime number.

10. Prove by contradiction that a real number that is less than every positive

real number cannot be positive.

11. Critic Ivor Smallbrain (see Exercise 3(c)) has been keeping a careful

account of the number of chocolate bars he has eaten during film screen-

ings over his career. For each positive integer n he denotes by an the

total number of bars he consumed during the first n films. One evening,

during a screening of the Christmas epic It’s a Wonderful Proof, he no-

tices that the sequence a1,a2,a3, . . . ,an, . . . obeys the following rules for

all n ≥ 1:

an+1 > an, and aan = 3n.

Also a1 > 0.
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(a) Find a1. (Hint: Let x = a1. Then what is ax?)

(b) Find a2,a3, . . . ,a9.

(c) Find a100.

(d) Investigate the sequence a1,a2, . . . ,an, . . . further.



Chapter 2

Number Systems

In this chapter we introduce three number systems: the real numbers, the inte-

gers and the rationals.

The Real Numbers

Here is an infinite straight line:

. . . . . .

Choose a point on this line and label it as 0. Also choose a unit of length,

and use it to mark off evenly spaced points on the line, labelled by the whole

numbers . . . ,−2,−1,0,1,2, . . . like this:

0 1 2 3-1-2-3
. . .. . .

We shall think of the real numbers as the points on this line. Viewed in this

way, the line is called the real line. Write R for the set of all real numbers.

The real numbers have a natural ordering, which we now describe. If x and

y are real numbers, we write x < y, or equivalently y > x, if x is to the left of

y on the real line; under these circumstances we say x is less than y, or y is

greater than x. Also, x ≤ y indicates that x is less than or equal to y. Thus, the

following statements are all true: 1 ≤ 1, 1 ≥ 1, 1 < 2, 2 ≥ 1. A real number x

is positive if x > 0 and is negative if x < 0.

The integers are the whole numbers, marked as above on the real line. We

write Z for the set of all integers and N for the set of all positive integers

{1,2,3, . . .}. Positive integers are sometimes called natural numbers.

13
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Fractions m
n

can also be marked on the real line. For example, 1
2

is placed

halfway between 0 and 1; in general, m
n

can be marked by dividing each of the

unit intervals into n equal sections and counting m of these sections away from

0. A real number of the form m
n

(where m,n are integers) is called a rational

number. We write Q for the set of all rational numbers.

There are of course many different fractions representing the same rational

number: for example, 8
12

= −6
−9

= 2
3
, and so on. We say the rational m

n
is in

lowest terms if no cancelling is possible — that is, if m and n have no common

factors (apart from 1 and −1).

Rationals can be added and multiplied according to the familiar rules:

m

n
+

p

q
=

mq+ np

nq
,

m

n
× p

q
=

mp

nq
.

Notice that the sum and product of two rationals is again rational.

In fact, addition and multiplication of arbitrary real numbers can be defined

in such a way as to obey the following rules:

RULES 2.1 For all a,b,c,∈R,
(1) a+ b = b+ a and ab = ba

(2) a+(b+ c) = (a+ b)+ c and a(bc) = (ab)c
(3) a(b+ c) = ab+ ac.

For example, (2) assures us that (2+5)+(−3) = 2+(5+(−3)) (i.e., 7−3 =
2+ 2), and (2× 5)× (−3) = 2× (5× (−3)) (i.e., 10× (−3) = 2× (−15)).

Before proceeding, let us pause briefly to reflect on these rules. They may

seem “obvious” in some sense, in that you have probably been assuming them

for years without thinking. But ponder the following equation, to be solved for

x:

x+ 3 = 5.

What are the steps we carry out when we solve this equation? Here they are:

Step 1. Add −3 to both sides: (x+ 3)+ (−3) = 5+(−3).
Step 2. Apply rule (2): x+(3+(−3)) = 5− 3.

Step 3. This gives x+ 0 = 5− 3, hence x = 2.

The point is that without rule (2) we would be stuck. (Indeed, there are strange

systems of objects with an addition for which one does not have rule (2), and

in such systems one cannot even solve simple equations like the one above.)

There are some further important rules obeyed by the real numbers, relat-

ing to the ordering described above. We postpone discussion of these until

Chapter 5.
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Rationals and Irrationals

We often call a rational number simply a rational. The next result shows that

the rationals are densely packed on the real line.

PROPOSITION 2.1
Between any two rationals there is another rational.

PROOF Let r and s be two different rationals. Say r is the larger, so
r > s. We claim that the real number 1

2
(r+s) is a rational lying between r

and s. To see this, observe that 1
2
r > 1

2
s⇒ 1

2
r+ 1

2
s> 1

2
s+ 1

2
s⇒ 1

2
(r+s)> s,

and likewise 1
2
r > 1

2
s ⇒ 1

2
r+ 1

2
r > 1

2
s+ 1

2
r ⇒ r > 1

2
(r+ s). Thus, 1

2
(r+ s)

lies between r and s. Finally, it is rational, since if r = m
n
,s = p

q
, then

1
2
(r+ s) = mq+np

2nq
.

Despite its innocent statement and quick proof, this is a rather significant

result. For example, it implies that in contrast to the integers, there is no small-

est positive rational, since for any positive rational x there is a smaller positive

rational (for example, 1
2
x); likewise, given any rational, there is no “next ra-

tional up.” The proposition also shows that the rationals cannot be represented

completely by “dots” on the real line, since between any two dots there would

have to be another dot.

The proposition also raises a profound question: OK, the rationals are dense

on the real line; but do they in fact fill out the whole line? In other words, is

every real number a rational?

The answer is no, as we shall now demonstrate. First we need the following

proposition, which is not quite as obvious as it looks.

PROPOSITION 2.2
There is a real number α such that α2 = 2.

PROOF Draw a square of side 1:

1

1α
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Let α be the length of a diagonal of the square. Then by Pythagoras,
α2 = 2.

For the real number α in Proposition 2.2, we adopt the usual notation α =√
2.

PROPOSITION 2.3√
2 is not rational.

PROOF This is a proof by contradiction. Suppose the statement
is false — that is, suppose

√
2 is rational. This means that there are

integers m,n such that √
2 =

m

n
.

Take m
n
to be in lowest terms (recall that this means that m,n have no

common factors greater than 1).

Squaring the above equation gives 2 = m2

n2 , hence

m2 = 2n2.

If m was odd, then m2 would be odd (by Example 1.2); but m2 = 2n2 is
clearly even, so this cannot be the case. Therefore, m is even. Hence,
we can write m = 2k, where k is an integer. Then

m2 = 4k2 = 2n2.

Consequently n2 = 2k2. So n2 is even and, again by Example 1.2, this
means n is also even.
We have now shown that both m and n are even. However, this means

that the fraction m
n
is not in lowest terms. This is a contradiction. There-

fore,
√

2 is not rational.

The following slightly more complicated geometrical argument than that

given in Proposition 2.2 shows the existence of the real number
√

n for any

positive integer n. As in the figure on the next page, draw a circle with diameter

AB, with a point D marked so that AD = n,DB = 1. We leave it to the reader to

use Pythagoras in the right-angled triangles ACD, BCD and ABC to show that

the length CD has square equal to n, and hence CD =
√

n.
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A B

C

D

n 1

A real number that is not a rational is called an irrational number (or just

an irrational). Thus
√

2 is an irrational, by Proposition 2.3. The next result

enables us to construct many more examples of irrationals.

PROPOSITION 2.4
Let a be a rational number, and b an irrational.
(i) Then a+ b is irrational.
(ii) If a 6= 0, then ab is also irrational.

PROOF (i) We prove this by contradiction. Suppose a+b is ratio-
nal, say a+ b = m

n
. Then writing the rational a as p

q
, we have

b =
m

n
− a =

m

n
− p

q
.

However, the right-hand side is rational, whereas b is given to be irra-
tional, so this is a contradiction. Hence, a+ b is irrational.
The proof of part (ii) is very similar to that of (i), and we leave it to

the reader.

Example 2.1
The proposition shows that, for example, 1+

√
2 and −5

√
2 are ir-

rational; indeed, r + s
√

2 is irrational for any rationals r,s with s 6= 0.
Note also that there exist many further irrationals, not of this form.
For instance,

√
3 is irrational, and there are no rationals r,s such that√

3 = r+ s
√

2 (see Exercise 1 on the next page).

Thus, there are “many” irrationals, in some sense. The next result shows

that, like the rationals, the irrationals are densely packed on the real line.

PROPOSITION 2.5
Between any two real numbers there is an irrational.
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PROOF Let a and b be two real numbers, and say a is the smaller,
so a < b. Choose a positive integer n that is larger than the real number√

2
b−a

. Then √
2

n
< b− a.

If a is rational, then by Proposition 2.4, a+
√

2
n

is irrational; it also lies

between a and b. And if a is irrational, then a+ 1
n
is irrational and lies

between a and b.

Exercises for Chapter 2

1. (a) Prove that
√

3 is irrational. (Hint: Example 1.3 should be useful.)

(b) Prove that there are no rationals r,s such that
√

3 = r+ s
√

2.

2. Which of the following numbers are rational and which are irrational ?

(a)
√

2+
√

3
2
.

(b) 1+
√

2+
√

3
2
.

(c) 2
√

18− 3
√

8+
√

4.

(d)
√

2+
√

3+
√

5 (Hint: For this part you can use the fact that if n

is a positive integer that is not a square, then
√

n is irrational — we

will prove this later, in Proposition 11.4.)

(e)
√

2+
√

3−
√

5+ 2
√

6.

3. For each of the following statements, either prove it is true or give a

counterexample to show it is false.

(a) The product of two rational numbers is always rational.

(b) The product of two irrational numbers is always irrational.

(c) The product of two irrational numbers is always rational.

(d) The product of a non-zero rational and an irrational is always irra-

tional.

4. (a) Let a,b be rationals and x irrational. Show that if x+a
x+b

is rational, then

a = b.

(b) Let x,y be rationals such that x2+x+
√

2

y2+y+
√

2
is also rational. Prove that

either x = y or x+ y =−1.
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5. Prove that if n is any positive integer, then
√

n+
√

2 is irrational.

6. Prove that between any two different real numbers there is a rational

number and an irrational number.

7. Find n, given that both n and
√

n− 2+
√

n+ 2 are positive integers.

(Hint: The gaps between squares n2, (n+ 1)2, . . . grow as n increases.)

8. Critic Ivor Smallbrain is watching the horror movie Salamanders on a

Desert Island. In the film, there are 30 salamanders living on a desert

island: 15 are red, 7 blue and 8 green. When two of a different colour

meet, horrifyingly they both change into the third colour. (For example,

if a red and a green meet, they both become blue.) When two of the same

colour meet, they change into both of the other colours. (For example, if

two reds meet, one becomes green and one becomes blue.) It is all quite

terrifying.

In between being horrified and terrified, Ivor idly wonders whether it

could ever happen that at some instant in the future, all of the salaman-

ders would be red. Can you help him ? (Hint: Consider the remainders

of the totals of each colour when you divide by 3.)



This page intentionally left blankThis page intentionally left blank



Chapter 3

Decimals

It is all very well to have the real number system as points on the real line, but

it is hard to prove any interesting facts about the reals without any convenient

notation for them. We now remedy this by introducing the decimal notation

for reals and demonstrating a few of its basic properties.

We are all familiar with the following decimal expressions:

1

2
= 0.50000 . . .

1

9
= 0.11111 . . .

1

7
= 0.142857142857 . . .

But what do we mean when we write, for example, 1
9
= 0.11111 . . .? We mean

that the “sum to infinity” of the series

0.1111 . . .= 0.1+ 0.01+ 0.001+ · · ·= 1

10
+

1

102
+

1

103
+ · · ·

is 1
9
; in other words, we can get as close as we like to 1

9
provided we sum

enough terms of the series. To make this absolutely precise would require us

to go into the concepts of limits and convergence, which we shall do much

later in Chapter 23. For now, I hope the meaning is reasonably clear.

The above fact about 1
9

is a special case of the following result on geometric

series, which is probably very familiar.

PROPOSITION 3.1
Let x be a real number.
(i) If x 6= 1, then x+ x2 + x3 + · · ·+ xn = x(1−xn)

1−x
.

(ii) If −1 < x < 1, then the sum to infinity

x+ x2 + x3 + · · ·= x

1− x
.

21
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PROOF (i) Let sn = x+ x2 + x3 + · · ·+ xn. Then xsn = x2 + x3 + · · ·+
xn + xn+1. Subtracting, we get (1− x)sn = x− xn+1, which gives (i).
(ii) Since −1 < x < 1, we can make xn as small as we like, provided we

take n large enough. So we can make the sum in (i) as close as we like to
x

1−x
provided we sum enough terms. That is to say, the sum to infinity

is x
1−x

.

Putting x = 1
10

in this proposition gives 1
10
+ 1

102 +
1

103 + · · ·= 1
9
, as claimed

above.

Likewise, in general, the decimal expression a0.a1a2a3 . . . where a0 is an

integer and a1,a2, . . . are integers between 0 and 9, means the real number that

is the sum to infinity of the series

a0 +
a1

10
+

a2

102
+

a3

103
+ · · ·

With this understanding, we obtain the next result, which gives us the conve-

nient decimal notation for all real numbers.

PROPOSITION 3.2
Every real number x has a decimal expression

x = a0.a1a2a3 . . . .

PROOF Picture x on the real line. Certainly x lies between two
consecutive integers; let a0 be the lower of these, so that

a0 ≤ x < a0 + 1.

Now divide the line between a0 and a0 + 1 into ten equal sections. Cer-
tainly x lies in one of these sections, so we can find a1 between 0 and 9
such that

a0 +
a1

10
≤ x < a0 +

a1 + 1

10
.

Similarly, we can find a2 such that

a0 +
a1

10
+

a2

102
≤ x < a0 +

a1

10
+

a2 + 1

102
,

and so on. If we do this enough times, the sum a0 +
a1
10

+ a2

102 + · · · gets
as close as we like to x. As explained above, this is what we mean by
saying that x = a0.a1a2a3 . . ..

Example 3.1
We use the method of the proof just given to find the first few digits
in the decimal expression for

√
2. Let

√
2 = a0.a1a2a3 . . .. First, observe
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that 12 = 1 and 22 = 4, so
√

2 lies between 1 and 2, and hence a0 = 1.
Next, (1.4)2 = 1.96, while (1.5)2 = 2.25, so a1 = 4. Likewise, (1.41)2 < 2

while (1.42)2 > 2, so a2 = 1. We can continue finding decimal digits in
this way until we get really fed up.

We now have a convenient notation for all real numbers: they all have deci-

mal expressions. Two basic questions about this notation arise immediately:

(1) Can the same real number have two different decimal expressions; and

if so, can we describe exactly when this happens?

(2) Which decimal expressions are rational and which are irrational?

We shall answer these questions in the next few results.

For (1), notice first that

0.9999 . . . =
9

10
+

9

102
+

9

103
+ · · ·

= 9

(
1

10
+

1

102
+

1

103
+ · · ·

)

= 9

(
1

9

)

= 1.

Thus, the real number 1 has two different decimal expressions:

1 = 1.0000 . . .= 0.9999 . . .

Similarly, for example,

0.2579999 . . .= 0.2580000 . . ., and 1299.9999 . . .= 1300.0000 . . .,

and so on. Is this the only way two different decimal expressions can be equal?

The answer is yes.

PROPOSITION 3.3
Suppose that a0.a1a2a3 . . . and b0.b1b2b3 . . . are two different decimal
expressions for the same real number. Then one of these expressions
ends in 9999 . . . and the other ends in 0000 . . ..

PROOF Suppose first that a0 = b0 = 0. Call the real number with
these two expressions x, so that

x = 0.a1a2a3 . . .= 0.b1b2b3 . . . (3.1)

Let the first place where the two expressions disagree be the kth place
(k could be 1 of course). Thus x = 0.a1 . . .ak−1ak . . . = 0.a1 . . .ak−1bk . . .,
where ak 6= bk. There is no harm in assuming ak > bk, hence ak ≥ bk +1.
Then

x ≥ 0.a1 . . .ak−1ak000 . . .
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and
x ≤ 0.a1 . . .ak−1bk999 . . .= 0.a1 . . .ak−1(bk + 1)000 . . . .

It follows that ak = bk +1 and that the two expressions for x in (3.1) are
0.a1 . . .ak000 . . . and 0.a1 . . .ak−1(ak − 1)999 . . ..
Finally, to handle the general case (where a0,b0 are not assumed to

be 0), we replace a0,b0 with their expressions as integers using decimal

digits and apply the above argument.

This provides us with a satisfactory answer to our question (1) above.

Now we address question (2): Which decimal expressions are rational, and

which are irrational? Choose a couple of rationals at random — say 8
7

and 13
22

— and work out their decimal expressions:

8

7
= 1.142857142857 . . .,

13

22
= 0.59090909 . . ..

We observe that they have a striking feature in common: there is a sequence

of digits that eventually repeats forever. We call such a decimal expression

periodic.

In general, a periodic decimal is one that takes the form

a0.a1 . . .ak b1 . . .bl b1 . . .bl b1 . . .bl . . . .

We abbreviate this expression by writing it as a0.a1 . . .akb1 . . .bl . The period

of such a decimal is the number of digits in a repeating sequence of smallest

length. For example, the decimal expression for 8
7

has period 6.

The next result should not come as a major surprise.

PROPOSITION 3.4
The decimal expression for any rational number is periodic.

PROOF Consider a rational m
n
(where m,n ∈ Z). To express this as

a decimal, we perform long division of n into m.0000 . . .. At each stage
of the long division, we get a remainder which is one of the n integers
between 0 and n−1. Therefore, eventually we must get a remainder that
occurred before. The digits between the occurrences of these remainders
will then repeat forever.

Proposition 3.4 tells us that

a0.a1a2a3 . . . rational ⇒ a0.a1a2a3 . . . periodic.

It would be very nice if the reverse implication were also true — that is, peri-

odic ⇒ rational. Let us first consider an example.
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Example 3.2
Let x = 0.314. Is x rational? Well,

x =
3

10
+

14

103
+

14

105
+

14

107
+ · · ·= 3

10
+

14

103

(

1+
1

102
+

1

104
+ · · ·

)

.

The series in the parentheses is a geometric series, which by Proposi-
tion 3.1 has sum to infinity 100

99
, so

x =
3

10
+

14

103
.
100

99
=

311

990
.

In particular, x is rational.

It is not at all hard to generalize this argument to show that the reverse im-

plication (periodic ⇒ rational) is indeed true:

PROPOSITION 3.5
Every periodic decimal is rational.

PROOF Let x = a0.a1 . . .akb1 . . .bl be a periodic decimal. Define

A = a0.a1 . . .ak, B = 0.b1 . . .bl.

Then A and B are both rationals, and

x = A+
B

10k

(

1+
1

10l
+

1

102l
+ · · ·

)

= A+
B

10k
.

10l

10l − 1
,

which is clearly also rational.

Exercises for Chapter 3

1. Express the decimal 1.813 as a fraction m
n

(where m and n are integers).

2. Show that the decimal expression for
√

2 is not periodic.

3. Which of the following numbers are rational, and which are irrational?

Express those which are rational in the form m
n

with m,n ∈ Z.

(a) 0.a1a2a3 . . ., where for n = 1,2,3, . . ., the value of an is the number

0,1,2,3 or 4 which is the remainder on dividing n by 5.
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(b) 0.101001000100001000001 . . .

(c) 1.b1b2b3 . . ., where bi = 1 if i is a square, and bi = 0 if i is not a

square.

4. Without using a calculator, find the cube root of 2, correct to 1 decimal

place.

5. The Fibonacci sequence starts with the terms 1,1 and then proceeds by

letting the next term be the sum of the previous two terms. So the se-

quence starts 1,1,2,3,5,8,13,21,34, . . .. With this in mind, consider the

decimal expansion of x = 100
9899

: it is 0.010102030508132134 . . .. Note

how the Fibonacci sequence lives inside this expansion. Can you explain

this? Do you think it continues forever?

(Hint: First show that 100+ x+ 100x= 10000x.)

6. Show that for an integer n ≥ 2, the period of the decimal expression for

the rational number 1
n

is at most n− 1.

Find the first few values of n for which the period of 1
n

is equal to n− 1.

Do you notice anything interesting about the values you’ve found?

7. Prove that a rational m
n

(in lowest terms) has a decimal expression ending

in repeating zeroes, if and only if the denominator n is of the form 2a5b,

where a,b ≥ 0 and a,b are integers.

8. Critic Ivor Smallbrain is watching the classic film 11.9̄ Angry Men. But

he is bored, and starts wondering idly exactly which rational numbers
1
n

have decimal expressions with period equal to 1. Having done the

previous question during the advertisments before the film, he notices

that the period is 1 if the denominator n is 2a5b. But he also notices

some other values of n for which the period is 1, such as n = 3.

Can you help Ivor and find all the values of n for which 1
n

has period 1?



Chapter 4

nth Roots and Rational Powers

In Chapter 2, just after proving Proposition 2.3, we gave a cunning geometrical

construction that demonstrated the existence of the real number
√

n for any

positive integer n. However, proving the existence of a cube root and, more

generally, an nth root of any positive real number x is much harder and requires

a deeper analysis of the reals than we have undertaken thus far. We shall carry

out such an analysis later, in Chapter 24. However, because we wish to include

nth roots in the discussion of complex numbers in the next chapter, we pick out

the main result from Chapter 24 on such matters, namely Proposition 24.2, and

state it here. (It is, of course, proved in Chapter 24.)

PROPOSITION 4.1
Let n be a positive integer. If x is a positive real number, then there is
exactly one positive real number y such that yn = x.

If x,y are as in the statement, we adopt the familiar notation

y = x
1
n .

Thus, for example, 5
1
2 is the positive square root of 5, and 5

1
7 is the unique

positive real number y such that y7 = 5.

We can extend this notation to define rational powers of positive reals as

follows. Let x > 0. Integer powers xm (m ∈ Z) are defined in the familiar way:

if m > 0 then xm = xx . . .x, the product of m copies of x, and x−m = 1
xm ; and for

m = 0 we define x0 = 1.

Now let m
n
∈Q (with m,n ∈ Z and n ≥ 1). Then we define

x
m
n =

(

x
1
n

)m

.

For example, 5−
4
7 is defined to be (5

1
7 )−4.

27
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The basic rules concerning products of these rational powers are given in

the next proposition. Although they probably seem rather familiar, they are

not totally obvious and require careful proof.

PROPOSITION 4.2
Let x,y be positive real numbers and p,q ∈Q. Then

(i) xpxq = xp+q

(ii) (xp)q = xpq

(iii) (xy)p = xpyp

PROOF (i) We first establish the result when p and q are both
integers. In this case, when p,q ≥ 0, we have xp = x . . .x (p factors),
xq = x . . .x (q factors), so

xpxq = (x . . . x).(x . . .x) = xp+q,

and when p ≥ 0,q < 0, xq = 1/x . . .x (−q factors), so

xpxq = (x . . .x)/(x . . .x) = xp−(−q) = xp+q.

Similar arguments cover the other possibilities p < 0,q ≥ 0 and p,q < 0.
Now let us consider the general case, where p,q are rationals. Write

p = m
n
,q = h

k
with m,n,h,k ∈ Z. Then

xpxq = x
m
n x

h
k = x

mk
nk x

hn
nk =

(

x
1
nk

)mk(

x
1
nk

)hn

.

By the integer case of part (i), established in the previous paragraph,
this is equal to

(

x
1
nk

)mk+hn

,

which, by our definition of rational powers, is equal to

x
mk+hn

nk = x
m
n +

h
k = xp+q.

(ii, iii) First, as in (i), we easily establish the results for p,q ∈ Z. Now
let p = m

n
,q = h

k
(with h,k,m,n ∈ Z). By Proposition 4.1, there is a real

number a such that x = ank. Then

(xp)q =

((

ank
)m

n

) h
k

=

((
((

ak
)n) 1

n

)m) h
k

=
((

ak
)m) h

k
=

((

(am)k
) 1

k

)h

= (am)h = amh =

((

x1/nk
)mh
)

= x
mh
nk = xpq
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and

xpyp =
(

x
1
n

)m(

y
1
n

)m

=
(

x
1
n y

1
n

)m

=

(
((

x
1
n y

1
n

)n)
1
n

)m

=
((

x
1
n

)n(

y
1
n

)n)m
n
= (xy)p.

Exercises for Chapter 4

1. Show that (50)3/4( 5√
2
)−1/2 = 10.

2. Simplify 21/251/24−1/4201/45−1/4
√

10.

3. What is the square root of 21234?

What is the real cube root of 3(3
333)?

4. Find an integer n and a rational t such that nt = 21/231/3.

5. Which is bigger: 10010000 or 10000100?

Which is bigger: the cube root of 3 or the square root of 2? (No calcula-

tors allowed!)

6. Find all real solutions x of the equation x1/2 − (2− 2x)1/2 = 1.

7. Prove that if x,y > 0 then 1
2
(x+ y) ≥√

xy. For which x,y does equality

hold?

8. When we want to add three numbers, say a+ b+ c, we don’t bother

inserting parentheses because (a+ b)+ c = a+(b+ c). But with pow-

ers, this is not true — (ab)c need not be equal to a(b
c) — so we must

be careful. Show that this really is a problem, by finding positive inte-

gers a,b,c such that (ab)c < a(b
c) and positive integers d,e, f such that

(de) f > d(e f ).

9. After a delicious meal at the well-known French restaurant La Racine et

Puissance Rationelle, critic Ivor Smallbrain notices that the bill comes

to x pounds, y pence, where x and y are the smallest integers greater than

1 that satisfy the equation y4/3 = x5/6.

How much is the bill?
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Chapter 5

Inequalities

An inequality is a statement about real numbers involving one of the symbols

“>,” “≥,” “<” or “≤”; for example, x > 2 or x2 − 4y ≤ 2x+ 2. In this chapter

we shall present some elementary notions concerning manipulation of inequal-

ities.

Recall from Chapter 2 the basic Rules 2.1 satisfied by addition and multipli-

cation of real numbers. As we mentioned there, there are various further rules

concerning the ordering of the real numbers. Here they are:

RULES 5.1
(1) If x ∈R, then either x > 0 or x < 0 or x = 0 (and just one of these

is true).

(2) If x > y then −x <−y.

(3) If x > y and c ∈ R, then x+ c > y+ c.

(4) If x > 0 and y > 0, then xy > 0.

(5) If x > y and y > z then x > z.

Notice that rule (3) implies rule (2), since if x > y then x + (−x − y) >
y + (−x− y) (taking c = −x− y in rule (3)), which implies that −y > −x.

However I have included rule (2) in the list above as it is useful to have it there

explicitly.

The rest of the chapter consists of several examples showing how to use

these rules to manipulate inequalities.

Example 5.1
If x < 0 then −x > 0.

PROOF Applying (2) with 0 instead of x, and x instead of y, we

see that x < 0 ⇒−x > 0.

31
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Example 5.2
If x 6= 0 then x2 > 0.

PROOF If x > 0 then by (4), x2 = xx > 0. If x < 0 then −x > 0 (by

Example 5.1), so (4) gives (−x)(−x)> 0; i.e., x2 > 0.

Example 5.3
If x > 0 and u > v then xu > xv.

PROOF We have

u > v ⇒ u− v > v− v = 0 (by (3) with c =−v)
⇒ x(u− v)> 0 (by (4))
⇒ xu− xv > 0

⇒ xu− xv+ xv> xv (by (3) with c = xv)

⇒ xu > xv.

Example 5.4
If u > v > 0 then u2 > v2.

PROOF Two applications of Example 5.3 give u > v ⇒ u2 > uv and
u > v ⇒ uv > v2. Hence u2 > v2 by (5).

Notice that reversing the roles of u and v, Example 5.4 also tells us that

u < v ⇒ u2 < v2 (for positive u,v). Hence for positive u,v,

u2 ≤ v2 ⇔ u ≤ v.

Example 5.5
If x > 0 then 1

x
> 0.

PROOF If 1
x
< 0 then −1

x
> 0 by Example 5.1, so by (4), x.−1

x
> 0

(i.e., −1> 0), a contradiction. Therefore 1
x
≥ 0. Since 1

x
6= 0, we conclude

by Rule 5.1(1) that 1
x
> 0.

Example 5.6
Let x1,x2, . . . ,xn ∈ R, and suppose that k of these numbers are negative
and the rest are positive. If k is even, then the product x1x2 . . .xn > 0.
And if k is odd, x1x2 . . .xn < 0.
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PROOF Since the order of the xis does not matter, we may as well
assume that x1, . . . ,xk are negative and xk+1, . . . ,xn are positive. Then
by Example 5.1, −x1, . . . ,−xk,xk+1, . . . ,xn are all positive. By (4), the
product of all of these is positive, so

(−1)kx1x2, . . . ,xn > 0.

If k is even this says that x1x2, . . . ,xn > 0. And if k is odd it says that
−x1x2, . . . ,xn > 0, hence x1x2, . . . ,xn < 0.

The next example is a typical elementary inequality to solve.

Example 5.7
For which values of x is x < 2

x+1
?

Answer First, a word of warning — we cannot multiply both sides by x+1, as

this may or may not be positive. So we proceed more cautiously. Subtracting
2

x+1
from both sides gives the inequality x− 2

x+1
< 0, which is the same as

x2+x−2
x+1

< 0; that is,

(x+ 2)(x− 1)

x+ 1
< 0.

By Example 5.6, this is true if and only if either one or three of the quantities

x+2, x−1, x+1 is negative. All three are negative when x <−2, and just one

is negative when −1 < x < 1.

Example 5.8
Show that x2 + x+ 1 > 0 for all x ∈ R.

Answer Note that x2 + x+ 1 = (x+ 1
2
)2 + 3

4
. Hence, using Example 5.2 and

Rule 5.1(3), we have x2 + x+ 1 ≥ 3
4

for all x.

For a real number x, we define the modulus of x, written |x|, by

|x|=
{

x, if x ≥ 0

−x, if x < 0

For example, |−5|= 5 and |7|= 7.

Example 5.9
|x|2 = x2 and |xy|= |x| |y| for all x,y ∈ R.

PROOF If x ≥ 0 then |x|= x and |x|2 = x2; and if x < 0 then |x|=−x

and |x|2 = (−x)2 = x2. The second part is Exercise 6 at the end of the

chapter.
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Notice that |x| just measures the distance from the point x on the real line

to the origin 0. Thus, for example, the set of values of x such that |x| ≤ 2

consists of all x between −2 and 2, which we summarize as −2 ≤ x ≤ 2. More

generally:

Example 5.10
Let a,b ∈R with b> 0. For which values of x is the inequality |x−a| ≤ b

satisfied?

Answer When x ≥ a, the inequality says x− a ≤ b; that is, x ≤ a+ b. And

when x < a, the inequality says a− x ≤ b; that is, x ≥ a− b. So the range of

values of x satisfying the inequality is a− b ≤ x ≤ a+ b.

Example 5.11
Find all values of x such that |x− 3|< 2|x+ 3|.

Answer We must be quite careful with this — the inequality varies according

to whether x <−3, −3 ≤ x < 3, or x ≥ 3.

When x < −3 the inequality says −(x− 3)< 2(−x− 3), which is the same

as x < −9. When −3 ≤ x < 3, the inequality says −(x− 3)< 2(x+ 3), which

means that 3x > −3, in other words x > −1. And when x > 3 the inequality

says x− 3 < 2(x+ 3), which means that x >−9. We deduce that the values of

x satisfying the inequality are

x <−9 and x >−1.

Example 5.12
The Triangle Inequality: |x+ y| ≤ |x|+ |y| for any x,y ∈R.

PROOF By Example 5.9, we have

|x+ y|2 = (x+ y)2

= x2 + 2xy+ y2

≤ |x|2 + 2|x| |y|+ |y|2
= (|x|+ |y|)2.

Hence |x+ y| ≤ |x|+ |y| by Example 5.4.

The following is an immediate consequence of the Triangle Inequality.

Example 5.13
|x− y| ≥ |x|− |y| for any x,y ∈ R.
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Example 5.14
If x,y ∈ R and x ≥ 0, y ≥ 0, then

√
xy ≤ 1

2
(x+ y).

PROOF Using Example 5.4, we see that

√
xy ≤ 1

2
(x+ y) ⇔ xy ≤ 1

4
(x+ y)2

⇔ 4xy ≤ x2 + 2xy+ y2

⇔ 0 ≤ x2 − 2xy+ y2

⇔ 0 ≤ (x− y)2,

which is true by Example 5.2.

Although easy to prove, the bound in Example 5.14 is not as innocent as it

looks. For example, it tells you that among all rectangles with a given area A,

the square of side
√

A has the smallest perimeter (see Exercise 8 at the end of

the chapter). It is also the case n = 2 of a famous and very important inequality

known as the “Arithmetic-Geometric Mean Inequality,” which states that if n

is a positive integer and a1, . . . ,an are positive real numbers, then

(a1a2 · · ·an)
1/n ≤ 1

n
(a1 + a2 + · · ·+ an). (5.1)

(The right hand side is the “arithmetic mean” of the numbers a1, . . . ,an, and

the left hand side is their “geometric mean.”) We won’t prove this inequality in

this book, but in Exercise 9 you are asked to deduce it for some further special

values of n.

Example 5.15

If a1,a2,b1,b2 are real numbers, then a1b1 + a2b2 ≤
√

a2
1 + a2

2

√

b2
1 + b2

2.

PROOF Observe that

a1b1 + a2b2 ≤
√

a2
1 + a2

2

√

b2
1 + b2

2

⇔ (a1b1 + a2b2)
2 ≤ (a2

1 + a2
2)(b

2
1 + b2

2)
⇔ a2

1b2
1 + 2a1b1a2b2 + a2

2b2
2 ≤ a2

1b2
1 + a2

1b2
2 + a2

2b2
1 + a2

2b2
2

⇔ 0 ≤ a2
1b2

2 − 2a1b1a2b2 + a2
2b2

1

⇔ 0 ≤ (a1b2 − a2b1)
2,

which is true by Example 5.2.

Example 5.15 is the case n = 2 of another famous inequality known as

Cauchy’s inequality; this one we will prove, in Chapter 8 (see Proposition 8.2).
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Exercises for Chapter 5

1. Using Rules 5.1, show that if x > 0 and y < 0 then xy < 0, and that if

a > b > 0 then 1
a
< 1

b
.

2. For which values of x is x2 + x+ 1 ≥ x−1
2x−1

?

3. For which values of x is −3x2 + 4x > 1?

4. (a) Find the set of real numbers x 6= 0 such that 2x+ 1
x
< 3.

(b) Find the set of real numbers t such that the equation x2 + tx+ 3 = 0

has two distinct real solutions.

5. Prove that if 0 < u < 1 and 0 < v < 1, then u+v
1+uv

< 1. For which other

values of u,v is this inequality true?

6. Prove that |xy|= |x| |y| for all real numbers x,y.

7. Find the range of values of x such that

(i) |x+ 5| ≥ 1.

(ii) |x+ 5|> |x− 2|.
(iii) |x+ 5|< |x2 + 2x+ 3|.

8. Prove the statement made after Example 5.14: among all rectangles with

a given area A, the square of side
√

A has the smallest perimeter.

9. By applying the inequality in Example 5.14 twice, prove that for any

positive real numbers a1,a2,a3,a4,

(a1a2a3a4)
1/4 ≤ 1

4
(a1 + a2 + a3 + a4).

This is the Arithmetic-Geometric Mean Inequality (5.1) stated after Ex-

ample 5.14, for the case n = 4. Try to deduce the case n = 8, and further

cases.

10. Prove the following inequaltities for any positive real numbers x,y:

(i) xy3 ≤ 1
4
x4 + 3

4
y4

(ii) xy3 + x3y ≤ x4 + y4.

11. Prove that if x,y,z are real numbers such that x+ y+ z = 0, then xy+
yz+ zx ≤ 0.
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12. Restless during a showing of the ten-hour epic First Among Inequalities,

critic Ivor Smallbrain thinks of a new type of number, which he modestly

decides to call “Smallbrain numbers.” He calls an n-digit positive integer

a Smallbrain number if it is equal to the sum of the nth powers of its

digits. So for example, 371 is a Smallbrain number, since 371 = 33 +
73 + 13.

Prove that there are no Smallbrain numbers with 1000 digits (i.e., there

is no 1000-digit number that is equal to the sum of the 1000th powers of

its digits).
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Chapter 6

Complex Numbers

We all know that there are simple quadratic equations, such as x2 +1 = 0, that

have no real solutions. In order to provide a notation with which to discuss

such equations, we introduce a symbol i, and define

i2 =−1.

A complex number is defined to be a symbol a+ bi, where a,b are real num-

bers. If z = a+ bi, we call a the real part of z and b the imaginary part, and

write

a = Re(z), b = Im(z).

We define addition and multiplication of complex numbers by the rules

addition: (a+ bi)+ (c+ di)= a+ c+(b+ d)i

multiplication: (a+ bi)(c+ di) = ac− bd+(ad+ bc)i.

Notice that in the multiplication rule, we multiply out the brackets in the usual

way, and replace the i2 by −1. For example, (1 + 2i)(3− i) = 5+ 5i and

(a+ bi)(a− bi) = a2 + b2.

It is also possible to subtract complex numbers:

(a+ bi)− (c+ di)= a− c+(b− d)i

and, less obviously, to divide them: provided c,d are not both 0,

a+ bi

c+ di
=

(a+ bi)(c− di)

(c+ di)(c− di)
=

ac+ bd

c2 + d2
+

(
bc− ad

c2 + d2

)

i.

For example, 1−i
1+i

= (1−i)(1−i)
(1+i)(1−i) =

−2i
2

=−i.

We write C for the set of all complex numbers. Notice that if a and b are

real numbers, then

(a+ 0i)+ (b+ 0i)= a+ b+ 0i, and

(a+ 0i)(b+ 0i) = ab+ 0i,

39
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so the complex numbers of the form a + 0i add and multiply together just

like the real numbers. If we identify the complex number a+ 0i with the real

number a, we see that R⊆ C.

Notice that every quadratic equation ax2+bx+c= 0 (where a,b,c ∈R) has

roots in C. For by the famous formula you will be familiar with, the roots are

1

2a

(

−b±
√

b2 − 4ac
)

.

If b2 ≥ 4ac these roots lie in R, while if b2 < 4ac they are the complex numbers

−b
2a

±
√

4ac−b2

2a
i.

It is straightforward to check from the definitions of addition and multipli-

cation that the complex numbers obey the rules (1), (2) and (3) of Rules 2.1.

The least obvious of these is the multiplcation rule in (2), that (uv)w = u(vw)
for all complex numbers u,v,w. Just to make sure you do this, I have set it as

Exercise 1 at the end of the chapter.

Geometrical Representation of Complex Numbers

It turns out to be a very fruitful idea to represent complex numbers by points

in the xy-plane. This is done in a natural way — the complex number a+ bi is

represented by the point in the plane with coordinates (a,b). For example, i is

represented by (0,1); 1− i by (1,−1); and so on:

q q

q

q

i
1+ i

1

1− i

If z = a+ bi, we define z̄ = a− bi and call this the complex conjugate of

z. Also, the modulus of z = a+ bi is the distance from the origin to the point

(a,b) representing z. It is written as |z|. Thus,

|z|=
√

a2 + b2.

Notice that

zz̄ = (a+ bi)(a− bi) = a2 + b2 = |z|2.
The argument of z is the angle θ between the x-axis and the line joining 0 to z,

measured in the counterclockwise direction:



COMPLEX NUMBERS 41

If z = a+ bi and |z|= r, then we see that a = r cosθ ,b = r sin θ , so

z = r(cosθ + isinθ ).

This is known as the polar form of the complex number z.

Example 6.1
The polar forms of i,−1,1+ i and 1− i are

i = 1
(
cos π

2
+ isin π

2

)
, −1 = 1(cosπ + isinπ),

1+ i =
√

2
(
cos π

4
+ isin π

4

)
, 1− i =

√
2
(
cos 7π

4
+ isin 7π

4

)
.

Let z = r(cosθ + isinθ ). Notice that

cosθ + isinθ = cos(θ + 2π)+ isin(θ + 2π)

= cos(θ + 4π)+ isin(θ + 4π) = . . . ,

so multiples of 2π can be added to θ (or subtracted from θ ) without changing

z. Thus, z has many different arguments. There is, however, a unique value

of the argument of z in the range −π < θ ≤ π , and this is called the principal

argument of z, written arg(z). For example, arg(1− i) =− π
4

.

De Moivre’s Theorem

The xy-plane, representing the set of complex numbers as just described, is

known as the Argand diagram; it is also sometimes called simply the complex

plane.

The significance of the geometrical representation of complex numbers be-

gins to become apparent in the next result, which shows that complex multi-

plication has a simple and natural geometric interpretation.

THEOREM 6.1 (De Moivre’s Theorem)
Let z1,z2 be complex numbers with polar forms

z1 = r1 (cosθ1 + isinθ1) , z2 = r2 (cosθ2 + isinθ2).
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Then the product

z1z2 = r1r2 (cos(θ1 +θ2)+ isin(θ1 +θ2)) .

In other words, z1z2 has modulus r1r2 and argument θ1 +θ2.

PROOF We have

z1z2 = r1r2 (cosθ1 + isinθ1) (cosθ2 + isinθ2)

= r1r2 (cosθ1 cosθ2 − sinθ1 sinθ2 + i(cosθ1 sinθ2 + sinθ1 cosθ2))

= r1r2 (cos(θ1 +θ2)+ isin(θ1 +θ2)) .

De Moivre’s Theorem says that multiplying a complex number z by cosθ +
isinθ rotates z counterclockwise through the angle θ ; for example, multipli-

cation by i rotates z through π
2

:

We now deduce a significant consequence of De Moivre’s Theorem.

PROPOSITION 6.1
Let z = r(cosθ + isinθ ), and let n be a positive integer. Then
(i) zn = rn(cosnθ + isinnθ ), and
(ii) z−n = r−n(cosnθ − isinnθ ).

PROOF (i) Applying Theorem 6.1 with z1 = z2 = z gives

z2 = zz = rr(cos(θ +θ )+ isin(θ +θ )) = r2(cos2θ + isin2θ ).

Repeating, we get

zn = r . . . r(cos(θ + · · ·+θ )+ isin(θ + · · ·+θ )) = rn(cosnθ + isinnθ ).

(ii) First observe that

z−1 =
1

z
=

1

r(cosθ + isinθ )
=

1

r

cosθ − isinθ

(cosθ + isinθ )(cosθ − isinθ )

=
1

r
(cosθ − isinθ ).
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Hence z−1 = r−1(cos(−θ )+ isin(−θ )), which proves the result for n = 1.
And, for general n, we simply note that z−n = (z−1)n, which by part
(i) is equal to (r−1)n(cos(−nθ )+ isin(−nθ )), hence to (r−n)(cos(nθ )−
isin(nθ )).

We now give a few examples illustrating the power of De Moivre’s Theorem.

Example 6.2
Calculate (−

√
3+ i)7.

Answer We first find the polar form of z =−
√

3+ i.

In the diagram, sinα = 1
2
, so α = π

6
. Hence arg(z) = 5π

6
. Also |z| = 2, so

the polar form of z is

z = 2

(

cos
5π

6
+ isin

5π

6

)

.

Hence, by Proposition 6.1,

(

−
√

3+ i

)7

= 27

(

cos
35π

6
+ isin

35π

6

)

= 27

(

cos
−π

6
+ isin

−π

6

)

(subtracting 6π from the argument 35π
6

). Since cos −π
6

=
√

3
2

and sin −π
6

=− 1
2
,

this gives
(

−
√

3+ i
)7

= 26
(√

3− i
)

.

Example 6.3
Find a complex number w such that w2 =−

√
3+ i (i.e., find a complex

square root of −
√

3+ i).

Answer From the previous solution, −
√

3+ i = 2(cos 5π
6
+ isin 5π

6
). So if we
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define

w =
√

2

(

cos
5π

12
+ isin

5π

12

)

,

then by Proposition 6.1, w2 =−
√

3+ i. Note that
√

2(cos( 5π
12

+π)+ isin( 5π
12

+
π)) works equally well; by Theorem 6.1 this is equal to w(cosπ + isinπ) =
−w.

Example 6.4
In this example we find a formula for cos3θ in terms of cosθ .
We begin with the equation

cos3θ + isin3θ = (cosθ + isinθ )3.

Writing c = cosθ ,s = sinθ , and expanding the cube, we get

cos3θ + isin3θ = c3 + 3c2si+ 3cs2i2 + s3i3 = c3 − 3cs2 + i
(
3c2s− s3

)
.

Equating real parts, we have cos3θ = c3 − 3cs2. Also c2 + s2 = cos2 θ +
sin2 θ = 1, so s2 = 1− c2, and therefore

cos3θ = c3 − 3c
(
1− c2

)
= 4c3 − 3c.

That is,
cos3θ = 4cos3 θ − 3cosθ .

Example 6.5
We now use the previous example to find a cubic equation having cos π

9

as a root.
Putting θ = π

9
and c = cos π

9
, Example 6.4 gives

cos3θ = 4c3 − 3c.

However, cos3θ = cos π
3
= 1

2
. Hence 1

2
= 4c3 − 3c. In other words, c =

cos π
9
is a root of the cubic equation

8x3 − 6x− 1= 0.

Note that if φ = π
9
+ 2π

3
or π

9
+ 4π

3
, then cos3φ = 1

2
, and hence the above

argument shows cosφ is also a root of this cubic equation. The roots of
8x3 − 6x− 1= 0 are therefore cos π

9
,cos 7π

9
and cos 13π

9
.
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The eiθ Notation

It is somewhat cumbersome to keep writing cosθ + isin θ in our notation

for complex numbers. We therefore introduce a rather more compact notation

by defining

eiθ = cosθ + isinθ

for any real number θ . (This equation turns out to be very significant when eiθ

is regarded as an exponential function, but for now it is simply the definition

of the symbol eiθ .)

For example,

e2π i = 1, eπ i =−1, e
π
2 i = i, e

π
4 i =

1√
2
(1+ i).

Also, for any integer k,

eiθ = ei(θ+2kπ).

Each of the complex numbers eiθ has modulus 1, and the set consisting of

all of them is the unit circle in the Argand diagram — that is, the circle of

radius 1 centered at the origin:

The polar form of a complex number z can now be written as

z = reiθ

where r = |z| and θ = arg(z). For example,

−
√

3+ i = 2e
5πi
6 .

De Moivre’s Theorem 6.1 implies that

eiθ eiφ = ei(θ+φ),

and Proposition 6.1 says that for any integer n,

(

eiθ
)n

= einθ .
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From these facts we begin to see some of the significance emerging behind the

definition of eiθ .

PROPOSITION 6.2
(i) If z = reiθ then z̄ = re−iθ .
(ii) Let z = reiθ ,w = seiφ in polar form. Then z = w if and only if both
r = s and θ −φ = 2kπ with k ∈ Z.

PROOF (i) We have z = r(cosθ + isinθ ), so z̄ = r(cosθ − isinθ ) =
r(cos(−θ )+ isin(−θ )) = re−iθ .
(ii) If r = s and θ −φ = 2kπ with k ∈ Z, then

z = reiθ = sei(φ+2kπ) = seiφ = w.

This does the “right to left” implication.
For the “left to right” implication, suppose z = w. Then |z| = |w|, so

r = s and also eiθ = eiφ . Now

eiθ = eiφ ⇒ eiθ e−iφ = eiφ e−iφ ⇒ ei(θ−φ) = 1

⇒ cos(θ −φ) = 1, sin(θ −φ) = 0 ⇒ θ −φ = 2kπ with k ∈ Z.

Roots of Unity

Consider the equation

z3 = 1.

This is easy enough to solve: rewriting it as z3 − 1 = 0, and factorizing this as

(z− 1)(z2 + z+ 1) = 0, we see that the roots are

1, −1

2
+

√
3

2
i, −1

2
−

√
3

2
i.

These complex numbers have polar forms

1, e
2πi
3 , e

4πi
3 .

In other words, they are evenly spaced on the unit circle like this:
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1

e2π i/3

e4π i/3

These three complex numbers are called the cube roots of unity.

More generally, if n is a positive integer, then the complex numbers that

satisfy the equation

zn = 1

are called the nth roots of unity.

PROPOSITION 6.3
Let n be a positive integer and define w = e

2πi
n . Then the nth roots of

unity are the n complex numbers

1,w,w2, . . . ,wn−1

(i.e., 1,e
2πi
n ,e

4πi
n , . . . ,e

2(n−1)πi
n ). They are evenly spaced around the unit

circle.

PROOF Let z = reiθ be an nth root of unity. Then

1 = zn = rneniθ .

From Proposition 6.2(ii) it follows that r = 1 and nθ = 2kπ with k ∈ Z.

Therefore, θ = 2kπ
n
, and so z = e

2kπi
n = wk.

Thus every nth root of unity is a power of w. On the other hand, any
power wk is an nth root of unity, since

(

wk
)n

= wnk =
(

e
2πi
n

)nk

=
(
e2π i
)k

= 1.

The complex numbers
1,w,w2, . . . ,wn−1

are all the distinct powers of w (since wn = 1,wn+1 = w, etc.). Hence,

these are the nth roots of unity.

Example 6.6

The fourth roots of unity are 1,e
iπ
2 ,eiπ ,e

3iπ
2 , which are just

1, i,−1,−i.
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The sixth roots of unity are 1,e
iπ
3 ,e

2iπ
3 ,−1,e

4iπ
3 and e

5iπ
3 ; these are the

corners of a regular hexagon drawn inside the unit circle.

We can use the nth roots of unity to find the nth roots of any complex number.

Here is an example.

Example 6.7
Find all solutions of the equation

z5 =−
√

3+ i.

(In other words, find all the fifth roots of −
√

3+ i.)

Answer Let p =−
√

3+ i. Recall that p = 2e
5πi
6 . One of the fifth roots of this

is clearly

α = 2
1
5 e

πi
6

(where of course 2
1
5 is the real fifth root of 2). If w is a fifth root of unity, then

(αw)5 = α5w5 = α5 = z, so αw is also a fifth root of p. Thus we have found

the following 5 fifth roots of −
√

3+ i:

α,αe
2πi
5 ,αe

4πi
5 ,αe

6πi
5 ,αe

8πi
5 .

These are in fact all the fifth roots of p: for if β is any fifth root of p, then

β 5 = α5 = p, so ( β
α )

5 = 1, which means that
β
α = w is a fifth root of unity, and

hence β = αw is in the above list.

We conclude that the fifth roots of −
√

3+ i are

2
1
5 e

πi
6 , 2

1
5 e

17πi
30 , 2

1
5 e

29πi
30 , 2

1
5 e

41πi
30 , 2

1
5 e

53πi
30 .

In general, the above method shows that if one of the nth roots of a complex

number is β , then the others are β w,β w2, . . . ,β wn−1 where w = e
2πi
n .

Exercises for Chapter 6

1. Prove the following facts about complex numbers:

(a) u+ v = v+ u for all u,v ∈ C.

(b) uv = vu for all u,v ∈ C.

(c) (u+ v)+w = (u+ v)+w for all u,v,w ∈ C.

(d) u(v+w) = uv+ uw for all u,v,w ∈C.

(e) u(vw) = (uv)w for all u,v,w ∈ C.
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2. Prove the following, for all u,v ∈ C:

(a) u+ v = ū+ v̄.

(b) uv = ūv̄.

(c) |u|2 = uū.

(d) |uv|= |u| |v|.

3. (a) Find the real and imaginary parts of (
√

3− i)10 and (
√

3− i)−7. For

which values of n is (
√

3− i)n real?

(b) What is
√

i ?

(c) Find all the tenth roots of i. Which one is nearest to i in the Argand

diagram?

(d) Find the seven roots of the equation z7 −
√

3+ i = 0. Which one of

these roots is closest to the imaginary axis?

4. Prove the “Triangle Inequality” for complex numbers: |u+ v| ≤ |u|+ |v|
for all u,v ∈ C.

5. Let z be a non-zero complex number. Prove that the three cube roots of

z are the corners of an equilateral triangle in the Argand diagram.

6. Express 1+i√
3+i

in the form x+ iy, where x,y ∈R. By writing each of 1+ i

and
√

3+ i in polar form, deduce that

cos
π

12
=

√
3+ 1

2
√

2
, sin

π

12
=

√
3− 1

2
√

2
.

7. (a) Show that x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1). Deduce that if

ω = e2π i/5 then ω4 +ω3 +ω2 +ω + 1 = 0.

(b) Let α = 2cos 2π
5

and β = 2cos 4π
5

. Show that α = ω +ω4 and

β = ω2 +ω3. Find a quadratic equation with roots α,β . Hence show

that

cos
2π

5
=

1

4

(√
5− 1

)

.

8. Find a formula for cos 4θ in terms of cos θ . Hence write down a quartic

equation (i.e., an equation of degree 4) that has cos π
12

as a root. What

are the other roots of your equation?

9. Find all complex numbers z such that |z|= |
√

2+ z|= 1. Prove that each

of these satisfies z8 = 1.

10. Prove that there is no complex number z such that |z|= |z+ i
√

5|= 1.
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11. Show that if w is an nth root of unity, then w̄ = 1
w

. Deduce that

(1−w)
n
= (w− 1)n.

Hence show that (1−w)2n is real.

12. Let n be a positive integer, and let z ∈ C satisfy the equation

(z− 1)n +(z+ 1)n = 0.

(a) Show that z = 1+w
1−w

for some w ∈ C such that wn =−1.

(b) Show that ww̄ = 1.

(c) Deduce that z lies on the imaginary axis.

13. Critic Ivor Smallbrain is discussing the film Sets, Lines and Videotape

with his two chief editors, Sir Giles Tantrum and Lord Overthetop. They

are sitting at a circular table of radius 1. Ivor is bored and notices in a

daydream that he can draw real and imaginary axes, with origin at the

center of the table, in such a way that Tantrum is represented by a certain

complex number z and Overthetop is represented by the complex number

z+ 1. Breaking out of his daydream, Ivor suddenly exclaims, “You are

both sixth roots of 1!”

Prove that Ivor is correct, despite the incredulous editorial glares.



Chapter 7

Polynomial Equations

Expressions like x2 − 3x or −7x102 +(3− i)x17− 7, or more generally,

p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0,

where the coefficients a0,a1, . . . ,an are complex numbers, are called polyno-

mials in x. A polynomial equation is an equation of the form

p(x) = 0

where p(x) is a polynomial. The degree of such an equation is the highest

power of x that appears with a non-zero coefficient.

For example, equations of degree 1 take the form ax+ b = 0 and are also

known as linear equations; degree 2 equations ax2 + bx+ c = 0 are quadratic

equations; degree 3 equations are cubic equations; degree 4 are quartic equa-

tions; degree 5 are quintic equations; and so on.

A complex number α is said to be a root of the polynomial equation p(x)= 0

if p(α) = 0: in other words, when α is substituted for x, p(x) becomes equal

to 0. For example, 1 is a root of the cubic equation x3 − 3x+ 2= 0.

The search for formulae for the roots of polynomial equations was one of the

driving forces in mathematics from the time of the Greeks until the nineteenth

century. Let us now taste a tiny flavour of this huge subject, in the hope that

appetites are whetted for more.

It is obvious that any linear equation ax+b= 0 has exactly one root, namely

− b
a
. We are also familiar with the fact that any quadratic equation ax2 + bx+

c = 0 has roots in C, given by the formula 1
2a
(−b±

√
b2 − 4ac).

Things are less clear for cubic equations. Indeed, while the formula for the

roots of a quadratic was known to the Greeks, it was not until the sixteenth

century that a method for finding the roots of a cubic was found by the Italian

mathematicians Scipio Ferreo, Tartaglia and Cardan. Here is their method.

51
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Solution of Cubic Equations

Consider the cubic equation

x3 + ax2 + bx+ c= 0. (7.1)

The first step is to get rid of the x2 term. This is easily done: put y= x+ a
3
. Then

y3 =(x+ a
3
)3 = x3+ax2+ a2

3
x+ a3

27
, so Equation (7.1) becomes y3+b′y+c′ = 0

for some b′,c′. Write this equation as

y3 + 3hy+ k = 0. (7.2)

(The coefficients 3h and k can easily be worked out, given a,b,c.)

Here comes the clever part. Write y = u+ v. Then

y3 = (u+ v)3 = u3 + v3 + 3u2v+ 3uv2 = u3 + v3 + 3uv(u+ v)

= u3 + v3 + 3uvy.

Hence, the cubic equation

y3 − 3uvy− (u3+ v3) = 0. (7.3)

has u+ v as a root.

Our aim now is to find u and v so that the coefficients in Equations (7.2) and

(7.3) are matched up. To match the coefficients, we require

h =−uv, k =−
(
u3 + v3

)
. (7.4)

From the first of these equations we have v3 = −h3

u3 , hence the second equation

gives u3 − h3

u3 =−k, so

u6 + ku3 − h3 = 0. (7.5)

This is just a quadratic equation for u3, and a solution is

u3 =
1

2

(

−k+
√

k2 + 4h3
)

.

Then from (7.4),

v3 =−k− u3 =
1

2

(

−k−
√

k2 + 4h3
)

.

As y = u + v, we have obtained the following formula for the roots of the

cubic (7.2):

3

√

1

2

(

−k+
√

k2 + 4h3
)

+
3

√

1

2

(

−k−
√

k2 + 4h3
)

.
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Since a complex number has three cube roots, and there are two cube roots

to be chosen, it seems that there are nine possible values for this formula.

However, the equation uv =−h implies that v = −h
u

, and hence there are only

three roots of (7.2), these being u− h
u

for each of the three choices for u.

Specifically, if u is one of the cube roots of 1
2
(−k+

√
k2 + 4h3), the other

cube roots are uω ,uω2 where ω = e
2πi
3 , and so the roots of the cubic equa-

tion (7.2) are

u− h

u
, uω − hω2

u
, uω2 − hω

u
.

Once we know the roots of (7.2), we can of course write down the roots of the

general cubic (7.1), since x = y− a
3
.

Let us illustrate this method with a couple of examples.

Example 7.1
(1) Consider the cubic equation x3 − 6x− 9 = 0. This is (7.2) with h =
−2,k =−9, so 1

2
(−k+

√
k2 + 4h3) = 1

2
(9+

√
49) = 8. Hence, taking u = 2,

we see that the roots are 3,2ω +ω2,2ω2 +ω . As ω = 1
2
(−1+ i

√
3) and

ω2 = 1
2
(−1− i

√
3), these roots are

3,
1

2

(

−3+ i
√

3
)

,
1

2

(

−3− i
√

3
)

.

(Of course these could easily have been worked out by cleverly spotting
that 3 is a root and factorizing the equation as (x−3)(x2 +3x+3) = 0.)

(2) Consider the equation x3 − 6x− 40 = 0. The above formula gives
roots of the form

3

√

20+ 14
√

2 +
3

√

20− 14
√

2.

However, we cleverly also spot that 4 is a root. What is going on?
In fact, nothing very mysterious is going on. The real cube root of

20± 14
√

2 is 2±
√

2, as can be seen by cubing the latter. Hence, the
roots of the cubic are

(

2+
√

2
)

+
(

2−
√

2
)

= 4,
(

2+
√

2
)

ω +
(

2−
√

2
)

ω2 =−2+ i
√

6,
(

2+
√

2
)

ω2 +
(

2−
√

2
)

ω =−2− i
√

6.
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Higher Degrees

Not long after the solution of the cubic, Ferrari, a pupil of Cardan, showed

how to obtain a formula for the roots of a general quartic (degree 4) equation.

The next step, naturally enough, was the quintic. However, several hundred

years passed without anyone finding a formula for the roots of a general quintic

equation.

There was a good reason for this. There is no such formula. Nor is there

a formula for equations of degree greater than 5. This amazing fact was first

established in the early 19th century by the Danish mathematician Abel (who

died at age 26), after which the Frenchman Galois (who died at age 21) built

an entirely new theory of equations, linking them to the then-recent subject

of group theory, which not only explained the non-existence of formulae, but

laid the foundations of a whole edifice of algebra and number theory known as

Galois theory, a major area of modern-day research. If you get a chance, take

a course in Galois theory during the rest of your studies in mathematics — you

won’t regret it!

The Fundamental Theorem of Algebra

So, there is no formula for the roots of a polynomial equation of degree 5 or

more. We are therefore led to the troubling question: can we be sure that such

an equation actually has a root in the complex numbers?

The answer to this is yes, we can be sure. This is a famous theorem of

another great mathematician — perhaps the greatest of all — Gauss:

THEOREM 7.1 Fundamental Theorem of Algebra
Every polynomial equation of degree at least 1 has a root in C.

This is really a rather amazing result. After all, we introduced complex

numbers just to be able to talk about roots of quadratics like x2+1= 0, and we

find ourselves with a system that contains roots of all polynomial equations.

There are many different proofs of the Fundamental Theorem of Algebra

available — Gauss himself found five during his lifetime. Probably the proofs

that are easiest to understand are those using various basic results in the sub-

ject of complex analysis, and most undergraduate courses on this topic would

include a proof of the Fundamental Theorem of Algebra. In Chapter 24 we

shall give a proof of the theorem for real polynomials of odd degree.



POLYNOMIAL EQUATIONS 55

The Fundamental Theorem of Algebra has many consequences. We shall

give just a couple here. Let p(x) be a polynomial of degree n. By the Fun-

damental Theorem 7.1, p(x) has a root in C, say α1. It is rather easy to see

from this (but we won’t prove it here) that there is another polynomial q(x), of

degree n− 1, such that

p(x) = (x−α1)q(x).

By Theorem 7.1, q(x) also has a root in C, say α2, so as above there is a

polynomial r(x) of degree n− 2 such that

p(x) = (x−α1)(x−α2) r(x).

Repeat this argument until we get down to a polynomial of degree 1. We thus

obtain a factorization

p(x) = a(x−α1)(x−α2) . . .(x−αn) ,

where a is the coefficient of xn, and α1, . . . ,αn are the roots of p(x). These

may of course not all be different, but there are precisely n of them if we count

repeats.

Summarizing:

THEOREM 7.2
Every polynomial of degree n factorizes as a product of linear polyno-
mials and has exactly n roots in C (counting repeats).

Next, we briefly consider real polynomial equations — that is, equations of

the form

p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 = 0,

where all the coefficients a0,a1, . . . ,an are real numbers.

Of course not all the roots of such an equation need be real (think of x2+1=
0). However, we can say something interesting about the roots.

Let α ∈ C be a root of the real polynomial equation p(x) = 0. Thus,

p(α) = anαn + an−1αn−1 + · · ·+ a1α + a0 = 0.

Consider the complex conjugate ᾱ . We shall show this is also a root. To see

this, observe first that α2 = ᾱ2 (just apply Exercise 1(b) of Chapter 6 with

u = v = α); likewise, α3 = ᾱ3, . . . ,αn = ᾱn. Also āi = ai for all i, since the ai

are all real. Consequently,

p(ᾱ) = anᾱn + an−1ᾱn−1 + · · ·+ a1ᾱ + a0

= anαn + an−1αn−1 + · · ·+ a1ᾱ + a0

= anαn + an−1αn−1 + · · ·+ a1α + a0

= p(α) = 0,
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showing that ᾱ is indeed a root.

Thus for a real polynomial equation p(x) = 0, the non-real roots appear in

complex conjugate pairs α, ᾱ . Say the real roots are β1, . . . ,βk and the non-real

roots are α1, ᾱ1, . . . ,αl , ᾱl (where k+ 2l = n). Then, as discussed above,

p(x) = (x−β1) . . . (x−βk) (x−α1)(x− ᾱ1) . . . (x−αl) (x− ᾱl) .

Notice that (x−αi)(x− ᾱi) = x2 − (αi+ ᾱi)x+αiᾱi, which is a quadratic with

real coefficients. Thus, p(x) factorizes as a product of real linear and real

quadratic polynomials.

Summarizing:

THEOREM 7.3
Every real polynomial factorizes as a product of real linear and real
quadratic polynomials and has its non-real roots appearing in complex
conjugate pairs.

Relationships between Roots

Despite the fact that there is no general formula for the roots of a polyno-

mial equation of degree 5 or more, there are still some interesting and useful

relationships between the roots and the coefficients.

First consider a quadratic equation x2 + ax+ b = 0. If α,β are the roots,

then x2 +ax+b = (x−α)(x−β ) = x2 − (α +β )x+αβ , and hence, equating

coefficients, we have

α +β =−a, αβ = b.

Likewise, for a cubic equation x3+ax2+bx+c= 0 with roots α,β ,γ , we have

x3 + ax2 + bx+ c= (x−α)(x−β )(x− γ), hence

α +β + γ =−a, αβ +αγ +β γ = b, αβ γ =−c.

Applying this argument to an equation of degree n, we have

PROPOSITION 7.1
Let the roots of the equation

xn + an−1xn−1 + · · ·+ a1x+ a0 = 0

be α1,α2, . . . ,αn. If s1 denotes the sum of the roots, s2 denotes the sum
of all products of pairs of roots, s3 denotes the sum of all products of
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triples of roots, and so on, then

s1 = α1 + · · ·+αn = −an−1,

s2 = an−2,

s3 = −an−3,

. . . . . .

sn = α1α2 . . .αn = (−1)na0.

PROOF We have

xn + an−1xn−1 + · · ·+ a1x+ a0 = (x−α1) (x−α2) . . . (x−αn) .

If we multiply out the right-hand side, the coefficient of xn−1 is −(α1 +
· · ·+αn) =−s1, the coefficient of xn−2 is s2, and so on. The result follows.

Here are some examples of what can be done with this result.

Example 7.2
(1) Write down a cubic equation with roots 1+ i,1− i,2.

Answer If we call these three roots α1, α2, α3, then s1 = α1+α2+α3 = 4,
s2 = α1α2 +α1α3 +α2α3 = (1+ i)(1− i)+ 2(1+ i)+ 2(1− i) = 6 and s3 =
α1α2α3 = 4. Hence, a cubic with these roots is

x3 − 4x2 + 6x− 4= 0.

(2) If α,β are the roots of the equation x2−5x+9= 0, find a quadratic
equation with roots α2,β 2.

Answer Of course this could be done by using the formula to write down
α and β , then squaring them, and so on; this would be rather tedious,
and a much more elegant solution is as follows. From the above, we have

α +β = 5, αβ = 9.

Therefore, α2 +β 2 = (α +β )2 − 2αβ = 52 − 18 = 7 and α2β 2 = 92 = 81.
We therefore know the sum and product of α2 and β 2, so a quadratic
having these as roots is x2 − 7x+ 81= 0.

(3) Find the value of k if the roots of the cubic equation x3 +x2 +2x+
k = 0 are in geometric progression.

Answer Saying that the roots are in geometric progression means that
they are of the form α,αr,αr2 for some r. We then have

α
(
1+ r+ r2

)
=−1, α2

(
r+ r2 + r3

)
= 2, α3r3 =−k.
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Dividing the first two of these gives αr = −2. Hence, the third gives
k = 8.

Exercises for Chapter 7

1. (a) Find the (complex) roots of the quadratic equation x2−5x+7− i= 0.

(b) Find the roots of the quartic equation x4 + x2 + 1 = 0.

(c) Find the roots of the equation 2x4−4x3+3x2+2x−2= 0, given that

one of them is 1+ i.

2. Use the method given in this chapter for solving cubics to find the roots

of the equation x3 − 6x2 + 13x− 12= 0.

Now notice that 3 is one of the roots. Reconcile this with the roots you

have found.

3. Solve x3 − 15x− 4= 0 using the method for solving cubics.

Now cleverly spot an integer root. Deduce that

cos

(
1

3
tan−1

(
11

2

))

=
2√
5
.

4. Factorize x5 + 1 as a product of real linear and quadratic polynomials.

5. Show that cos 2π
9

is a root of the cubic equation 8x3 − 6x+ 1= 0.

Find the other two roots and deduce that

cos
2π

9
+ cos

4π

9
+ cos

8π

9
= 0

and

cos
2π

9
· cos

4π

9
· cos

8π

9
=−1

8
.

6. (a) Factorize x2n+1 − 1 as a product of real linear and quadratic polyno-

mials.

(b) Write x2n + x2n−1 + · · ·+ x+1 as a product of real quadratic polyno-

mials.

(c) Let ω = e2π i/2n+1. Show that ∑ω i+ j = 0, where the sum is over all i

and j from 1 to 2n+ 1 such that i < j.
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7. (a) Find the value of k such that the roots of x3 + 6x2 + kx− 10 = 0 are

in arithmetical progression (i.e., are α,α +d,α +2d for some d). Solve

the equation for this value of k.

(b) If the roots of the equation x3 − x− 1 = 0 are α,β ,γ , find a cubic

equation having roots α2,β 2,γ2 and also a cubic equation having roots
1
α ,

1
β ,

1
γ .

(c) Given that the sum of two of the roots of the equation x3 + px2 +
p2x+ r = 0 is 1, prove that r = (p+ 1)(p2 + p+ 1).

(d) Solve the equation x4 − 3x3 − 5x2 + 17x− 6 = 0, given that the sum

of two of the roots is 5.

8. Critic Ivor Smallbrain and his friend Polly Gnomialle have entered a

competition to try to qualify to join the UK team for the annual Film

Critics Mathematical Olympiad. The qualification competition consists

of one question. Here it is:

Find all real or complex solutions of the simultaneous equations

x+ y+ z = 3

x2 + y2 + z2 = 3

x3 + y3 + z3 = 3.

The first pair to correctly answer the question gets into the team. Ivor

overhears his arch-rival Greta Picture, who has also entered the compe-

tition, whispering to her partner, “Let’s look for a cubic equation which

has roots x,y and z.”

Can you help Ivor and Polly win?
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Chapter 8

Induction

Consider the following three statements, each involving a general positive in-

teger n:

(1) The sum of the first n odd numbers is equal to n2.

(2) If p >−1 then (1+ p)n ≥ 1+ np.

(3) The sum of the internal angles in an n-sided polygon is (n− 2)π .

[A polygon is a closed figure with straight edges, such as a triangle (3 sides), a

quadrilateral (4 sides), a pentagon (5 sides), etc.]

We can check that these statements are true for various specific values of

n. For instance, (1) is true for n = 2 as 1 + 3 = 4 = 22, and for n = 3 as

1+ 3+ 5 = 9 = 32; statement (2) is true for n = 1 as 1+ p ≥ 1+ p, and for

n = 2 as (1+ p)2 = 1+ 2p+ p2 ≥ 1+ 2p; and (3) is true for n = 3 as the sum

of the angles in a triangle is π , and for n = 4 as the sum of the angles in a

quadrilateral is 2π .

But how do we go about trying to prove the truth of these statements for all

values of n?

The answer is that we use the following basic principle. In it we denote by

P(n) a statement involving a positive integer n; for example, P(n) could be any

of statements (1), (2) or (3) above.

Principle of Mathematical Induction
Suppose that for each positive integer n we have a statement P(n). If we prove

the following two things:

(a) P(1) is true;

(b) for all n, if P(n) is true then P(n+ 1) is also true;

then P(n) is true for all positive integers n.

The logic behind this principle is clear: by (a), the first statement P(1) is

true. By (b) with n = 1, we know that P(1)⇒ P(2), hence P(2) is true. By (b)

with n = 2, P(2)⇒ P(3), hence P(3) is true; and so on.

61
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The principle may look a little strange at first sight, but a few examples

should clarify matters.

Example 8.1
Let us try to prove statement (1) above using the Principle of Mathe-
matical Induction. Here P(n) is the statement that the sum of the first
n odd numbers is n2. In other words:

P(n) : 1+ 3+ 5+ · · ·+ 2n− 1= n2.

We need to carry out parts (a) and (b) of the principle.
(a) P(1) is true, since 1 = 12.
(b) Suppose P(n) is true. Then

1+ 3+ 5+ · · ·+ 2n− 1= n2.

Adding 2n+ 1 to both sides gives

1+ 3+ 5+ · · ·+ 2n− 1+ 2n+1= n2 + 2n+ 1= (n+ 1)2,

which is statement P(n+1). Thus, we have shown that P(n)⇒ P(n+1).
We have now established parts (a) and (b). Hence by the Principle of

Mathematical Induction, P(n) is true for all positive integers n.

The phrase “Principle of Mathematical Induction” is quite a mouthful, and

we usually use just the single word “induction” instead.

Example 8.2
Now let us prove statement (2) above by induction. Here, for n a
positive integer P(n) is the statement

P(n) : if p >−1 then (1+ p)n ≥ 1+ np.

For (a), observe P(1) is true, as 1+ p ≥ 1+ p.
For (b), suppose P(n) is true, so (1+ p)n ≥ 1+ np. Since p > −1, we

know that 1+ p > 0, so we can multiply both sides of the inequality by
1+ p (see Example 5.3) to obtain

(1+ p)n+1 ≥ (1+ np)(1+ p) = 1+(n+ 1)p+ np2.

Since np2 ≥ 0, this implies that (1+ p)n+1 ≥ 1+(n+1)p, which is state-
ment P(n+ 1). Thus we have shown P(n)⇒ P(n+ 1).
Therefore, by induction, P(n) is true for all positive integers n.

Next we attempt to prove the statement (3) concerning n-sided polygons.

There is a slight problem here. If we naturally enough let P(n) be statement (3),
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then P(n) makes sense only if n ≥ 3; P(1) and P(2) make no sense, as there is

no such thing as a 1-sided or 2-sided polygon. To take care of such a situation,

we need a slightly modified Principle of Mathematical Induction:

Principle of Mathematical Induction II
Let k be an integer. Suppose that for each integer n ≥ k we have a statement

P(n). If we prove the following two things:

(a) P(k) is true;

(b) for all n ≥ k, if P(n) is true then P(n+ 1) is also true;

then P(n) is true for all integers n ≥ k.

The logic behind this is the same as explained before.

Example 8.3
Now we prove statement (3). Here we have k = 3 in the above principle,
and for n ≥ 3, P(n) is the statement

P(n) : the sum of the internal angles in an n-sided polygon is (n−2)π .

For (a), observe that P(3) is true, since the sum of the angles in a triangle
is π = (3− 2)π .
Now for (b). Suppose P(n) is true. Consider an (n+1)-sided polygon

with corners A1,A2, . . . ,An+1:

Draw the line A1A3. Then A1A3A4 . . .An+1 is an n-sided polygon. Since
we are assuming P(n) is true, the internal angles in this n-sided polygon
add up to (n− 2)π . From the picture we see that the sum of the angles
in the (n+1)-sided polygon A1A2 . . .An+1 is equal to the sum of those in
A1A3A4 . . .An+1 plus the sum of those in the triangle A1A2A3, hence is

(n− 2)π +π = ((n+ 1)− 2)π .

We have now shown that P(n)⇒ P(n+ 1). Hence, by induction, P(n)
is true for all n ≥ 3.
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The next example also uses the slightly modified Principle of Mathematical

Induction II. In it, for a positive integer n we define

n! = n(n− 1)(n− 2) . . .3 ·2 ·1,

the product of all the integers between 1 and n. The symbol n! is usually

referred to as n factorial. By convention, we also define 0! = 1.

Example 8.4
For which positive integers n is 2n < n! ?

Answer Let P(n) be the statement that 2n < n!. Observe that

21 > 1!, 22 > 2!, 23 > 3!, 24 < 4!, 25 < 5!,

so P(1),P(2),P(3) are false, while P(4),P(5) are true. Therefore, it seems

sensible to try to prove P(n) is true for all n ≥ 4.

First, P(4) is true, as observed above.

Now suppose n is an integer with n ≥ 4, and P(n) is true. Thus

2n < n!

Multiplying both sides by 2, we get

2n+1 < 2(n!).

Since 2 < n + 1, we have 2(n!) < (n + 1)n! = (n + 1)! and hence 2n+1 <
(n+ 1)!. This shows that P(n) ⇒ P(n+ 1). Therefore, by induction, P(n)
is true for all n ≥ 4.

Guessing the Answer

Some problems cannot immediately be tackled using induction, but first re-

quire some intelligent guesswork. Here is an example.

Example 8.5
Find a formula for the sum

1

1 ·2 +
1

2 ·3 + · · ·+ 1

n(n+ 1)
.
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Answer Calculate this sum for the first few values of n:

n = 1 :
1

1 ·2 =
1

2
,

n = 2 :
1

1 ·2 +
1

2 ·3 =
1

2
+

1

6
=

2

3
,

n = 3 :
1

1 ·2 +
1

2 ·3 +
1

3 ·4 =
3

4
.

We intelligently spot a pattern in these answers and guess that the sum of n

terms is probably n
n+1

. Hence we let P(n) be the statement

P(n) :
1

1 ·2 +
1

2 ·3 + · · ·+ 1

n(n+ 1)
=

n

n+ 1

and attempt to prove P(n) true for all n ≥ 1 by induction.

First, P(1) is true, as noted above.

Now assume P(n) is true, so

1

1 ·2 +
1

2 ·3 + · · ·+ 1

n(n+ 1)
=

n

n+ 1
.

Adding 1
(n+1)(n+2) to both sides gives

1

1 ·2 + · · ·+ 1

n(n+ 1)
+

1

(n+ 1)(n+ 2)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)

=
n(n+ 2)+ 1

(n+ 1)(n+ 2)
=

n2 + 2n+ 1

(n+ 1)(n+ 2)
=

(n+ 1)2

(n+ 1)(n+ 2)
=

n+ 1

n+ 2
.

Hence P(n)⇒ P(n+ 1). So, by induction, P(n) is true for all n ≥ 1.

The Σ Notation

Before proceeding with the next example, we introduce an important nota-

tion for writing down sums of many terms. If f1, f2, . . . , fn are numbers, we

abbreviate the sum of all of them by

f1 + f2 + · · ·+ fn =
n

∑
r=1

fr.

(The symbol Σ is the Greek capital letter “sigma,” so this is often called the

“sigma notation.”) For example, setting fr =
1

r(r+1) , we have

1

1 ·2 +
1

2 ·3 + · · ·+ 1

n(n+ 1)
=

n

∑
r=1

1

r(r+ 1)
.
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Thus, Example 8.5 says that

n

∑
r=1

1

r(r+ 1)
=

n

n+ 1
,

and Example 8.1 says
n

∑
r=1

(2r− 1) = n2.

Notice that if a,b,c are constants, then

n

∑
r=1

(a fr + bgr + c) = a
n

∑
r=1

fr + b
n

∑
r=1

gr + cn, (8.1)

since the left-hand side is equal to

(a f1 + bg1+ c)+ · · ·+(a fn + bgn+ c)

= a( f1 + · · ·+ fn)+ b(g1 + · · ·+ gn)+ (c+ · · ·+ c) ,

which is the right-hand side.

The equation (8.1) is quite useful for manipulating sums. Here is an elemen-

tary example using it.

Example 8.6

Find a formula for
n

∑
r=1

r (= 1+ 2+ · · ·+ n).

Answer Write sn =
n

∑
r=1

r. By Example 8.1,
n

∑
r=1

(2r− 1) = n2, so using (8.1),

n2 =
n

∑
r=1

(2r− 1) = 2
n

∑
r=1

r − n = 2sn − n.

Hence, sn =
1
2
n(n+ 1).

So we know the sum of the first n positive integers. What about the sum of

the first n squares?

Example 8.7

Find a formula for
n

∑
r=1

r2 (= 12 + 22 + · · ·+ n2).

Answer We first try to guess the answer (intelligently). The first few values

n = 1,2,3,4 give sums 1,5,14,30. It is not easy to guess a formula from these
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values, so yet a smidgeon more intelligence is required. The sum we are trying

to find is the sum of n terms of a quadratic nature, so it seems reasonable to

look for a formula for the sum which is a cubic in n, say an3 + bn2 + cn+ d.

What should a,b,c,d be? Well, they have to fit in with the values of the sum

for n = 1,2,3,4 and hence must satisfy the following equations:

n = 1 : 1 = a+ b+ c+ d. (8.2)

n = 2 : 5 = 8a+ 4b+ 2c+d. (8.3)

n = 3 : 14 = 27a+ 9b+ 3c+d. (8.4)

n = 4 : 30 = 64a+ 16b+ 4c+d. (8.5)

Subtracting (8.2) from (8.3), (8.3) from (8.4), and (8.4) from (8.5), we then

obtain the equations 4 = 7a+ 3b+ c, 9 = 19a+ 5b+ c, 16 = 37a+ 7b+ c.

Subtraction of these gives 5 = 12a+ 2b, 7 = 18a+ 2b. Hence we get the

solution

a =
1

3
, b =

1

2
, c =

1

6
, d = 0.

Consequently, our (intelligent) guess is that

n

∑
r=1

r2 =
1

3
n3 +

1

2
n2 +

1

6
n =

1

6
n(n+ 1)(2n+ 1).

This turns out to be correct, and we leave it to the reader to prove it by induc-

tion. (It is set as Exercise 2 at the end of the chapter in case you forget.)

(Actually, there is a much better way of working out a formula for
n

∑
r=1

r2,

given in Exercise 4 at the end of the chapter.)

Geometric Examples

The next example is a nice geometric proof by induction.

Example 8.8
Lines in the plane. If we draw a straight line in the plane, it divides the
plane into two regions. If we draw another, not parallel to the first, the
two lines divide the plane into four regions. Likewise, three lines, not all
going through the same point, and no two of which are parallel, divide
the plane into seven regions:
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We can carry on drawing lines and counting the regions they form, which
leads us naturally to a general question:

If we draw n straight lines in the plane, no three going through the same

point, and no two parallel, how many regions do they divide the plane into?

The conditions about not going through the same point and not being
parallel may seem strange, but in fact they are very natural: if you draw
lines at random, it is very unlikely that two will be parallel or that three
will pass through the same point — so you could say the lines in the
question are “random” lines. Technically, they are said to be lines in

general position.
The answers to the question for n = 1,2,3,4 are 2,4,7,11. Even from

this flimsy evidence you have probably spotted a pattern — the differ-
ence between successive terms seems to be increasing by 1 each time.
Can we predict a formula from this pattern? Yes, of course we can: the
number of regions for one line is two, for two lines is 2+2, for three lines
is 2+ 2+ 3, for four lines is 2+ 2+ 3+ 4; so we predict that the number
of regions for n lines is

2+ 2+ 3+ 4+ · · ·+ n.

This is just 1+Σn
r=1r, which by Example 8.6 is equal to 1+ 1

2
n(n+ 1).

Let us therefore attempt to prove the following statement P(n) by
induction: the number of regions formed in the plane by n straight lines
in general position is 1

2
(n2 + n+ 2).

First, P(1) is true, as the number of regions for one line is 2, which is
equal to 1

2
(12 + 1+ 2).

Now suppose P(n) is true, so n lines in general position form 1
2
(n2 +

n+ 2) regions. Draw in an (n+ 1)th line. Since it is not parallel to any
of the others, this line meets each of the other n lines in a point, and
these n points of intersection divide the (n+ 1)th line into n+ 1 pieces.
Each of these pieces divides an old region into two new ones. Hence,
when the (n+ 1)th line is drawn, the number of regions increases by
n+ 1. (If this argument is not clear to you, try drawing a picture to
illustrate it when n = 3 or 4.) Consequently, the number of regions with
n+ 1 lines is equal to 1

2
(n2 + n+ 2) + n+ 1. Check that this is equal to

1
2
((n+ 1)2+(n+ 1)+ 2).
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We have now shown that P(n)⇒ P(n+ 1). Hence, by induction, P(n)
is true for all n ≥ 1.

Induction is a much more powerful method than you might think. It can

often be used to prove statements that do not actually explicitly mention an

integer n. In such instances, one must imaginatively design a suitable statement

P(n) to fit in with the problem and then try to prove P(n) by induction. In the

next two examples this is fairly easy to do. The next chapter, however, will be

devoted to an example of a proof by induction where the statement P(n) lies a

long way away from the initial problem.

Example 8.9
Some straight lines are drawn in the plane, forming regions as in the
previous example. Show that it is possible to colour each region either
red or blue in such a way that no two neighbouring regions have the
same colour.
For example, here is such a colouring when there are three lines:

R

B

R

R
B

R B

How do we design a suitable statement P(n) for this problem? This is
very simple: just take P(n) to be the statement that the regions formed
by n straight lines and the plane can be coloured in the required way.

Actually, the proof of P(n) by induction is so neat and elegant that I would

hate to deprive you of the pleasure of thinking about it, so I leave it to you. (It

is set as Exercise 14 at the end of the chapter in case you forget.)

Prime Factorization

In the next example, we prove a very important result about the integers.

First we need a definition:

DEFINITION A prime number is a positive integer p such that p≥ 2

and the only positive integers dividing p are 1 and p.
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You are probably familiar to some extent with prime numbers. The first few

are 2,3,5,7,11,13,17,19,23,29, . . ..
The important result we shall prove is the following:

PROPOSITION 8.1
Every positive integer greater than 1 is equal to a product of prime
numbers.

In the proposition, the number of primes in a product must be allowed to be

1, since a prime number itself is a product of one prime. If n is a positive inte-

ger, we call an expression n = p1 . . . pk, where p1, . . . , pk are prime numbers, a

prime factorization of n. Here are some examples of prime factorizations:

30 = 2 ·3 ·5, 12 = 2 ·2 ·3, 13 = 13.

A suitable statement to attempt to prove by induction is easy to design: for

n ≥ 2, let P(n) be the statement that n is equal to a product of prime numbers.

Clearly P(2) is true, as 2 = 2 is a prime factorization of 2. However, it is not

clear at all how to go about showing that P(n)⇒ P(n+ 1). In fact this cannot

be done, since the primes in the prime factorization of n do not occur in the

factorization of n+ 1.

However, all is not lost. We shall use the following, apparently stronger,

principle of induction.

Principle of Strong Mathematical Induction
Suppose that for each integer n ≥ k we have a statement P(n). If we prove the

following two things:

(a) P(k) is true;

(b) for all n, if P(k),P(k + 1), . . . ,P(n) are all true, then P(n+ 1) is also

true;

then P(n) is true for all n ≥ k.

The logic behind this principle is not really any different from that behind

the old principle: by (a), P(k) is true. By (b), P(k)⇒ P(k+1), hence P(k+1)
is true. By (b) again, P(k),P(k+1)⇒ P(k+2), hence P(k+2) is true, and so

on.

[In fact, the Principle of Strong Induction is actually implied by the old

principle. To see this, let Q(n) be the statement that all of P(k), . . . ,P(n) are

true. Suppose we have proved (a) and (b) of Strong Induction. Then by (a),

Q(k) is true, and by (b), Q(n)⇒ Q(n+ 1). Hence, by the old principle, Q(n)
is true for all n ≥ k, and therefore so is P(n).]

Let us now apply Strong Induction to prove Proposition 8.1.



INDUCTION 71

Proof of Proposition 8.1 For n ≥ 2, let P(n) be the statement that n is equal

to a product of prime numbers. As we have already remarked, P(2) is true.

Now for part (b) of Strong Induction. Suppose that P(2), . . . ,P(n) are all

true. This means that every integer between 2 and n has a prime factorization.

Now consider n+1. If n+1 is prime, then it certainly has a prime factorization

(as a product of 1 prime). If n+1 is not prime, then by the definition of a prime

number, there is an integer a dividing n+ 1 such that a 6= 1 or n+ 1. Writing

b = n+1
a

, we then have

n+ 1 = ab and a,b ∈ {2,3, . . . ,n}.

By assumption, P(a) and P(b) are both true, i.e., a and b have prime factoriza-

tions. Say

a = p1 . . . pk, b = q1 . . .ql ,

where all the pi and qi are prime numbers. Then

n+ 1 = ab = p1 . . . pkq1 . . .ql .

This is an expression for n+ 1 as a product of prime numbers.

We have now shown that P(2), . . . ,P(n)⇒ P(n+1). Therefore, P(n) is true

for all n ≥ 2, by Strong Induction.

Example 8.10
Suppose we are given a sequence of integers u0,u1,u2, . . . ,un, . . . such that

u0 = 2,u1 = 3 and
un+1 = 3un − 2un−1

for all n ≥ 1. (Such an equation is called a recurrence relation for the
sequence.) Can we find a formula for un?
Using the equation with n = 1, we get u2 = 3u1 −2u0 = 5; and likewise

u3 = 9,u4 = 17,u5 = 33,u6 = 65. Is there an obvious pattern? Yes, a
reasonable guess seems to be that un = 2n + 1.
So let us try to prove by Strong Induction that un = 2n + 1. If this

is the statement P(n), then P(0) is true, as u0 = 20 + 1 = 2. Suppose
P(0),P(1), . . . ,P(n) are all true. Then un = 2n + 1 and un−1 = 2n−1 + 1.
Hence from the recurrence relation,

un+1 = 3(2n + 1)− 2
(
2n−1 + 1

)
= 3 ·2n− 2n + 1 = 2n+1 + 1,

which shows P(n+ 1) is true. Therefore, un = 2n + 1 for all n, by Strong
Induction.
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Cauchy’s Inequality

This is a famous and important inequality concerning real numbers. Here it

is.

PROPOSITION 8.2
Let n be a positive integer. Then for any real numbers a1, . . . ,an and

b1, . . . ,bn,

a1b1 + · · ·+ anbn ≤
√

a2
1 + · · ·+ a2

n

√

b2
1 + · · ·+ b2

n.

PROOF Let P(n) be the statement of the proposition. Then P(1) is
obvious, and P(2) was proved in Example 5.15.
Assume P(n) is true. Let a1, . . . ,an+1 and b1, . . . ,bn+1 be real numbers.

By P(n),

a1b1 + · · ·+ anbn ≤
√

a2
1 + · · ·+ a2

n

√

b2
1 + · · ·+ b2

n = AB,

where A =
√

a2
1 + · · ·+ a2

n, B =
√

b2
1 + · · ·+ b2

n. Hence

a1b1 + · · ·+ an+1bn+1 ≤ AB+ an+1bn+1.

Applying P(2), we have AB + an+1bn+1 ≤
√

A2 + a2
n+1

√

B2 + b2
n+1, and

therefore

a1b1 + · · ·+ an+1bn+1 ≤
√

A2 + a2
n+1

√

B2 + b2
n+1

=
√

a2
1 + · · ·+ a2

n+1

√

b2
1 + · · ·+ b2

n+1.

This is the statement P(n + 1). Hence the proposition is proved by

induction.

Cauchy’s inequality is applied widely in mathematics. Here are a couple

of examples to show how it can be used. Other examples can be found in the

Exercises 15–17 at the end of the chapter.

Example 8.11

For any real numbers a1, . . . ,an, we have a1+ · · ·+an ≤
√

n

√

a2
1 + · · ·+ a2

n.

PROOF Just apply Proposition 8.2, taking b1 = b2 = · · · = bn = 1.



INDUCTION 73

Example 8.12
Suppose p1, . . . , pn and a1, . . . ,an are real numbers such that pi ≥ 0, ai ≥ 0

for all i, and p1 + · · ·+ pn = 1. Then

(p1a1 + · · ·+ pnan)

(
p1

a1

+ · · ·+ pn

an

)

≥ 1.

PROOF Apply Cauchy’s inequality to the sequences
√

p1a1, . . . ,
√

pnan

and
√

p1
a1
, . . . ,

√
pn

an
.

Exercises for Chapter 8

1. Prove by induction that it is possible to pay, without requiring change,

any whole number of roubles greater than 7 with banknotes of value

3 roubles and 5 roubles.

2. Prove by induction that Σn
r=1r2 = 1

6
n(n+ 1)(2n+ 1).

Deduce formulae for

1 ·1+2 ·3+3 ·5+4 ·7+ · · ·+n(2n−1) and 12+32+52+ · · ·(2n−1)2.

3. (a) Work out 1, 1+ 8, 1+ 8+ 27 and 1+ 8+ 27+ 64. Guess a formula

for Σn
r=1r3 and prove it.

(b) Check that 1 = 0+1, 2+3+4 = 1+8 and 5+6+ · · ·+9 = 8+27.

Find a general formula for which these are the first three cases. Prove

your formula is correct.

4. Here is another way to work out Σn
r=1r2. Observe that (r + 1)3 − r3 =

3r2 + 3r+ 1. Hence

n

∑
r=1

(r+ 1)3 − r3 = 3
n

∑
r=1

r2 + 3
n

∑
r=1

r+ n.

The left-hand side is equal to
(
23 − 13

)
+
(
33 − 23

)
+
(
43 − 33

)
+ · · ·

+
(
(n+ 1)3 − n3

)
= (n+ 1)3− 1.

Hence we can work out Σn
r=1r2.

Carry out this calculation, and check that your formula agrees with that

in Exercise 2.

Use the same method to work out formulae for Σn
r=1r3 and Σn

r=1r4.
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5. Prove the following statements by induction:

(a) For all integers n ≥ 0, the number 52n − 3n is a multiple of 11.

(b) For any integer n ≥ 1, the integer 24n−1 ends with an 8.

(c) The sum of the cubes of three consecutive positive integers is al-

ways a multiple of 9.

(d) If x ≥ 2 is a real number and n ≥ 1 is an integer, then xn ≥ nx.

(e) If n ≥ 3 is an integer, then 5n > 4n + 3n + 2n.

6. The Lucas sequence is a sequence of integers l1, l2, . . . , ln, . . ., such that

l1 = 1, l2 = 3 and

ln+1 = ln + ln−1

for all n ≥ 1. So the sequence starts 1,3,4,7,11,18, . . .

Find the pattern for the remainders when ln is divided by 3. (Hint: Con-

sider the first 8 remainders, then the next 8, and so on; formulate a con-

jecture for the pattern and prove it by induction.)

Is L2000 divisible by 3?

7. The Fibonacci sequence is a sequence of integers f1, f2, . . . , fn, . . ., such

that f1 = 1, f2 = 1 and

fn+1 = fn + fn−1

for all n ≥ 1. Prove by strong induction that for all n,

fn =
1√
5
(αn −β n) ,

where α = 1+
√

5
2

and β = 1−
√

5
2

.

8. I just worked out (2+
√

3)50 on my computer and got the answer

39571031999226139563162735373.99999999999999999999999999974728 . . .

Why is this so close to an integer?

(Hint: Try to use the idea of the previous question by constructing a

suitable sequence.)

9. Prove that if 0 < q < 1
2
, then for all n ≥ 1,

(1+ q)n ≤ 1+ 2nq.
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10. (a) Prove that for every integer n ≥ 2,

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
≥ 7

12
.

(b) Prove that for every integer n ≥ 1,

1+
1√
2
+

1√
3
+ · · ·+ 1√

n
≤ 2

√
n.

11. Just for this question, count 1 as a prime number. A well-known result in

number theory says that for every integer x ≥ 3, there is a prime number

p such that 1
2
x < p < x. Using this result and strong induction, prove

that every positive integer is equal to a sum of primes, all of which are

different.

12. Here is a “proof” by induction that any two positive integers are equal

(e.g., 5 = 10):

First, a definition: if a and b are positive integers, define max(a,b) to

be the larger of a and b if a 6= b, and to be a if a = b. [For instance,

max(3,5) = 5, max(3,3) = 3.] Let P(n) be the statement: “if a and b

are positive integers such that max(a,b) = n, then a= b.” We prove P(n)
true for all n ≥ 1 by induction. [As a consequence, if a,b are any two

positive integers, then a = b, since P(n) is true, where n = max(a,b).]

First, P(1) is true, since if max(a,b) = 1 then a and b must both be

equal to 1. Now assume P(n) is true. Let a,b be positive integers such

that max(a,b) = n+1. Then max(a−1,b−1)= n. As we are assuming

P(n), this implies that a− 1 = b− 1, hence a = b. Therefore, P(n+ 1)
is true. By induction, P(n) is true for all n.

There must be something wrong with this “proof.” Can you find the

error?

13. (a) Suppose we have n straight lines in a plane, and all the lines pass

through a single point. Into how many regions do the lines divide the

plane? Prove your answer.

(b) We know from Example 8.8 that n straight lines in general position

in a plane divide the plane into 1
2
(n2 + n+ 2) regions. How many of

these regions are infinite and how many are finite?

(In case of any confusion, a finite region is one that has finite area; an

infinite region is one that does not.)

14. (See Example 8.9.) Some straight lines are drawn in the plane, forming

regions. Show that it is possible to colour each region either red or blue

in such a way that no two neighbouring regions have the same colour.
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15. (a) Prove that a2 + b2 + c2 ≥ ab+ bc+ ca for all real numbers a,b,c.

(b) Suppose x,y,z are positive and x+ y+ z = 1. Prove that

(i ) x2 + y2 + z2 ≥ 1
3
, and

(ii) 1
x
+ 1

y
+ 1

z
≥ 9.

16. Let x,y,z be positive real numbers. Prove the following:

(i)
√

x+y
x+y+z

+
√

x+z
x+y+z

+
√

y+z
x+y+z

≤
√

6,

(ii) x2

y+z
+ y2

x+z
+ z2

x+y
≥ 1

2
(x+ y+ z).

In both parts, give examples to show that equality can hold.

17. Let p1, . . . , pn be positive real numbers such that p1 + · · ·+ pn = 1.

(a) Prove the following:

(i) ∑n
i=1 p2

i ≥ 1
n
.

(ii) ∑n
i=1

1
pi
≥ n2.

(iii) ∑n
i=1

1

p2
i

≥ n3.

(b) Deduce that
n

∑
i=1

(

pi +
1

pi

)2

≥ (n2 + 1)2

n
.

18. Critic Ivor Smallbrain is sitting through a showing of the new film Poly-

gon with the Wind. Ivor is not enjoying the film and begins to doodle on

a piece of paper, drawing circles in such a way that any two of the cir-

cles intersect, no two circles touch each other, and no three circles pass

through the same point. He notices that after drawing two circles he has

divided the plane into four regions, after three there are eight regions,

and he wonders to himself how many regions there will be after he has

drawn n circles. Can you help Ivor?



Chapter 9

Euler’s Formula and Platonic
Solids

This chapter contains a rather spectacular proof by induction. The result we

shall prove is a famous formula of Euler from the eighteenth century, con-

cerning the relationship between the numbers of corners, edges and faces of a

solid object. As an application of Euler’s formula we shall then study the five

Platonic solids — the cube, regular tetrahedron, octahedron, icosahedron and

dodecahedron.

We shall call our solid objects polyhedra. A polyhedron is a solid whose

surface consists of a number of faces, all of which are polygons, such that any

side of a face lies on exactly one other face. The corners of the faces are called

the vertices of the polyhedron, and their sides are the edges of the polyhedron.

Here are some everyday examples of polyhedra.

(1) Cube

This has 8 vertices, 12 edges and 6 faces.

(2) Tetrahedron

This has 4 vertices, 6 edges and 4 faces.

77
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(3) Triangular prism

This has 6 vertices, 9 edges and 5 faces.

(4) n-prism This is like the triangular prism, except that its top and bottom

faces are n-sided polygons rather than triangles. It has 2n vertices, 3n edges

and n+ 2 faces.

Let us collect the numbers of vertices, edges and faces for the above exam-

ples in a table. Denote these numbers by V , E and F , respectively.

V E F

(1) 8 12 6

(2) 4 6 4

(3) 6 9 5

(4) 2n 3n n+ 2

Can you see a relationship between these numbers that holds in every case?

You probably can — it is

V −E +F = 2.

This is Euler’s famous formula, and we shall show that it holds in general for all

convex polyhedra: a polyhedron is convex if, whenever we choose two points

on its surface, the straight line joining them lies entirely within the polyhedron.

All of the above examples are convex polyhedra. However, if we for exam-

ple take a cube and remove a smaller cube from its interior, we get a polyhe-

dron that is not convex; for this polyhedron, in fact, V = 16,E = 24,F = 12,

so V −E +F = 4 and the formula fails.

Here then is Euler’s formula.

THEOREM 9.1
For a convex polyhedron with V vertices, E edges and F faces, we have

V −E +F = 2.

As I said, we shall prove this result by induction. So somehow we have to

design a suitable statement P(n) to try to prove by induction. What on earth

should P(n) be?

Before going into this, let us first translate the problem from one about ob-

jects in 3-dimensional space to one about objects in the plane. Take a convex

polyhedron as in the theorem, and choose one face of it. Regard this face as a
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window, put your eye very close to the window, and draw on the window pane

the vertices and edges you can see through the window. The result is a figure

in the plane with straight edges, vertices and faces. For example, here is what

we would draw for the cube, the tetrahedron and the triangular prism:

(The outer edges enclose the window.)

The resulting figure in the plane has V vertices, E edges and F −1 faces (we

lose one face, since the window is no longer a face). It is a “connected plane

graph,” in the sense of the following definition.

DEFINITION A plane graph is a figure in the plane consisting of
a collection of points (vertices), and some edges joining various pairs of
these points, with no two edges crossing each other. A plane graph is
connected if we can get from any vertex of the graph to any other vertex
by going along a path of edges in the graph.

For example, here is a connected plane graph:

It has 7 vertices, 7 edges and 1 face.

THEOREM 9.2
If a connected plane graph has v vertices, e edges and f faces, then

v− e+ f = 1.

Theorem 9.2 easily implies Euler’s Theorem 9.1: for if we have a convex

polyhedron with V vertices, E edges and F faces, then as explained above we

get a connected plane graph with V vertices, E edges and F − 1 faces. If we

knew Theorem 9.2 was true, we could then deduce that V −E +(F − 1) = 1,

hence V −E +F = 2, as required for Euler’s theorem.

So we need to prove Theorem 9.2.
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Proof of Theorem 9.2 Here is the statement P(n) that we are going to try

to prove by induction:

P(n) : every connected plane graph with n edges satisfies the formula

v− n+ f = 1.

Notice that P(n) is a statement about lots of plane graphs. P(1) says that every

connected plane graph with 1 edge satisfies the formula; there is only one such

graph:

q q

This has 2 vertices, 1 edge and 0 faces, and since 2− 1+ 0= 1, it satisfies the

formula. Likewise, P(2) says that this graph

satisfies the formula, which it does, as v = 3,e = 2, f = 0. For P(3), there are

three different connected plane graphs with 3 edges:

Each satisfies the formula.

Let us prove P(n) by induction. First, P(1) is true, as observed in the previ-

ous paragraph.

Now assume P(n) is true — so every connected plane graph with n edges

satisfies the formula. We need to deduce P(n+ 1). So consider a connected

plane graph G with n+ 1 edges. Say G has v vertices and f faces. We want to

prove that G satisfies the formula v− (n+ 1)+ f = 1.

Our strategy will be to remove a carefully chosen edge from G, so as to leave

a connected plane graph with only n edges, and then use P(n).
If G has at least 1 face (i.e., f ≥ 1), we remove one edge of this face. The

remaining graph G′ is still connected and has n edges, v vertices and f − 1

faces. Since we are assuming P(n), we know that G′ satisfies the formula,

hence

v− n+( f − 1) = 1.

Therefore v− (n+ 1)+ f = 1, as required.

If G has no faces at all (i.e., f = 0), then it has at least one “end-vertex” —

that is, a vertex that is joined by an edge to only one other vertex (see Exercise

5 at the end of the chapter). Removing this end-vertex and its edge from G

leaves a connected plane graph G′′ with v−1 vertices, n edges and 0 faces. By

P(n), G′′ satisfies the formula, so

(v− 1)− n+ 0= 1.
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Hence v− (n+ 1)+ 0= 1, which is the formula for G.

We have established that P(n)⇒ P(n+1), so P(n) is true for all n by induc-

tion.

This completes the proof of Theorem 9.2, and hence of Euler’s Theorem 9.1.

Regular and Platonic Solids

A polygon is said to be regular if all its sides are of equal length and all its

internal angles are equal. We call a regular polygon with n sides a regular n-

gon. Some of these shapes are probably quite familiar; for example, a regular

n-gon with n = 3 is just an equilateral triangle, n = 4 is a square, n = 5 is a

regular pentagon, and so on:

A polyhedron is regular if its faces are regular polygons, all with the same

number of sides, and also each vertex belongs to the same number of edges.

Three examples of regular polyhedra come more or less readily to mind: the

cube, the tetrahedron and the octahedron. These are three of the famous five

Platonic solids; the other two are the less obvious icosahedron, which has 20

triangular faces, and dodecahedron, which has 12 pentagonal faces. Here are

pictures of the octahedron, icosahedron and dodecahedron:

Every regular polyhedron carries five associated numbers: three are V , E ,

F , and the other two are n, the number of sides on a face, and r, the number of
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edges each vertex belongs to. We record these numbers for the Platonic solids:

V E F n r

tetrahedron 4 6 4 3 3

cube 8 12 6 4 3

octahedron 6 12 8 3 4

icosahedron 12 30 20 3 5

dodecahedron 20 30 12 5 3

As you might have guessed from the name, the Platonic solids were known

to the Greeks. They are the most symmetrical, elegant and robust of solids, so

it is natural to look for more regular polyhedra. Remarkably, though perhaps

disappointingly, there are no others. This fact is another theorem of the great

Euler. The proof is a wonderful application of Euler’s formula 9.1. Here it is.

THEOREM 9.3
The only regular convex polyhedra are the five Platonic solids.

PROOF Suppose we have a regular polyhedron with parameters V ,
E, F, n and r as defined above.
First we need to show some relationships between these parameters.

We shall prove first that
2E = nF. (9.1)

To prove this, let us calculate the number of pairs

e, f

where e is an edge, f is a face and e lies on f . Well, there are E

possibilities for the edge e, and each lies in 2 faces f ; so the number of
such pairs e, f is equal to 2E. On the other hand, there are F possibilities
for the face f , and each has n edges e; so the number of such pairs e, f

is also equal to nF. Therefore, 2E = nF, proving (9.1).
Next we show that

2E = rV. (9.2)

The proof of this is quite similar: count the pairs

v,e

where v is a vertex, e an edge and v lies on e. There are E edges e, and
each has 2 vertices v, so the number of such pairs v,e is 2E; on the other
hand, there are V vertices v, and each lies on r edges, so the number of
such pairs is also rV . This proves (9.2).
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At this point we appeal to Euler’s formula 9.1:

V −E +F = 2.

Substituting V = 2E
r
,F = 2E

n
from (9.1) and (9.2), we obtain 2E

r
−E+ 2E

n
=

2; hence
1

r
+

1

n
=

1

2
+

1

E
. (9.3)

Now we know that n ≥ 3, as a polygon must have at least 3 sides;
likewise r ≥ 3, since it is geometrically clear that in a polyhedron a
vertex must belong to at least 3 edges. By (9.3), it certainly cannot be
the case that both n ≥ 4 and r ≥ 4, since this would make the left-hand
side of (9.3) at most 1

2
, whereas the right-hand side is more than 1

2
. It

follows that either n = 3 or r = 3.
If n = 3, then (9.3) becomes

1

r
=

1

6
+

1

E
.

The right-hand side is greater than 1
6
, and hence r < 6. Therefore, r = 3,

4 or 5 and E = 6, 12 or 30, respectively. The possible values of V , F are
given by (9.1) and (9.2).
Likewise, if r = 3, (9.3) becomes 1

n
= 1

6
+ 1

E
, and we argue similarly

that n = 3,4 or 5 and E = 6,12 or 30, respectively.
We have now shown that the numbers V,E,F,n,r for a regular poly-

hedron must be one of the possibilities in the following table:

V E F n r

4 6 4 3 3

8 12 6 4 3

6 12 8 3 4

12 30 20 3 5

20 30 12 5 3

These are the parameter sets of the tetrahedron, cube, octahedron, icosa-
hedron and dodecahedron, respectively. To complete the proof we now
only have to show that each Platonic solid is the only regular solid with
its particular parameter set. This is a simple geometric argument, and
we present it just for the last parameter set — the proofs for the other
sets are entirely similar.
So suppose we have a regular polyhedron with 20 pentagonal faces,

each vertex lying on 3 edges. Focus on a particular vertex. At this
vertex there is only one way of fitting three pentagonal faces together:
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At each of the other vertices of these three pentagons, there is likewise
only one way of fitting two further pentagons together. Carrying on this
argument with all new vertices, we see that there is at most one way to
make a regular solid with these parameters. Since the dodecahedron is
such a solid, it is the only one. This completes the proof.

Exercises for Chapter 9

1. Consider a convex polyhedron, all of whose faces are squares or regular

pentagons. Say there are m squares and n pentagons. Assume that each

vertex lies on exactly 3 edges.

(a) Show that for this polyhedron, the following equations hold:

3V = 2E, 4m+ 5n= 2E, m+ n = F.

(b) Using Euler’s formula, deduce that 2m+ n = 12.

(c) Find examples of such polyhedra for as many different values of m

as you can.

2. Prove that for a convex polyhedron with V vertices, E edges and F faces,

the following inequalities are true:

2E ≥ 3F and 2E ≥ 3V.

Deduce using Euler’s formula that

2V ≥ F + 4, 3V ≥ E + 6, 2F ≥V + 4 and 3F ≥ E + 6.

Give an example of a convex polyhedron for which all these inequalities

are equalities (i.e., 2V = F + 4, etc.).

3. Prove that if a connected plane graph has v vertices and e edges, and

v ≥ 3, then e ≤ 3v− 6.

4. Prove that it is impossible to make a football out of exactly 9 squares

and m octagons, where m ≥ 4. (In this context, a “football” is a convex

polyhedron in which at least 3 edges meet at each vertex.)

5. Prove that if a finite connected plane graph has no faces, then it has a

vertex that is joined to exactly one other vertex. (Hint: Assume for a

contradiction that every vertex is joined to at least two others. Try to use

this to show there must be a face.)



EULER’S FORMULA AND PLATONIC SOLIDS 85

6. Draw all the connected plane graphs with 4 edges, and all the connected

plane graphs with 4 vertices.

7. Let Kn denote the graph with n vertices in which any two vertices are

joined by an edge. So, for example, K2 consists of 2 vertices joined by

an edge and K3 is a triangle.

Prove that it is possible to draw K4 as a plane graph.

Prove that it is impossible to draw K5 as a plane graph. (Hint: Use the

inequality in Exercise 3 cleverly.)

8. Prove that every connected plane graph has a vertex that is joined to at

most five other vertices. (Hint: Assume every vertex is joined to at least

6 others, and try to use Exercise 3 to get a contradiction.)

9. Critic Ivor Smallbrain has been thrown into prison for libelling the great

film director Michael Loser. During one of his needlework classes in

prison, Ivor is given a pile of pieces of leather in the shapes of regular

pentagons and regular hexagons and is told to sew some of these together

into a convex polyhedron (which will then be used as a football). He

is told that each vertex must lie on exactly 3 edges. Ivor immediately

exclaims, “Then I need exactly 12 pentagonal pieces!”

Prove that Ivor is correct.
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Chapter 10

The Integers

In this chapter we begin to study the most basic, and also perhaps the most

fascinating, number system of all — the integers. Our first aim will be to

investigate factorization properties of integers. We know already that every in-

teger greater than 1 has a prime factorization (Proposition 8.1). This was quite

easy to prove using Strong Induction. A somewhat more delicate question

is whether the prime factorization of an integer is always unique — in other

words, whether, given an integer n, one can write it as a product of primes in

only one way. The answer is yes; and this is such an important result that it

has acquired the grandiose title of “The Fundamental Theorem of Arithmetic.”

We shall prove it in the next chapter and try there to show why it is such an

important result by giving some examples of its use. In this chapter we lay the

groundwork for this.

We begin with a familiar definition.

DEFINITION Let a,b ∈ Z. We say a divides b (or a is a factor of

b) if b = ac for some integer c. When a divides b, we write a|b.

Usually, of course, given two integers a,b at random, it is unlikely that a

will divide b. But we can “divide a into b” and get a quotient and a remainder:

PROPOSITION 10.1
Let a be a positive integer. Then for any b ∈ Z, there are integers q,r
such that

b = qa+ r and 0 ≤ r < a.

The integer q is called the quotient, and r is the remainder. For example, if

a = 17,b= 183 then the equation in Proposition 10.1 is 183= 10 ·17+13, the

quotient is 10 and the remainder 13.

PROOF Consider the rational number b
a
. There is an integer q such

87
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that

q ≤ b

a
< q+ 1

(this is just saying b
a
lies between two consecutive integers). Multiplying

through by the positive integer a, we obtain qa ≤ b < (q+ 1)a, hence
0 ≤ b− qa< a.

Now put r = b− qa. Then b = qa+ r and 0 ≤ r < a, as required.

PROPOSITION 10.2
Let a,b,d ∈ Z, and suppose that d|a and d|b. Then d|(ma+nb) for any

m,n ∈ Z.

PROOF Let a = c1d and b = c2d with c1,c2 ∈ Z. Then for m,n ∈ Z,

ma+ nb = mc1d + nc2d = (mc1 + nc2)d.

Hence d|(ma+ nb).

The Euclidean Algorithm

The Euclidean algorithm is a step-by-step method for calculating the com-

mon factors of two integers. First we need a definition.

DEFINITION Let a,b∈Z. A common factor of a and b is an integer
that divides both a and b. The highest common factor of a and b, written
hcf(a,b), is the largest positive integer that divides both a and b.

For example, hcf(2,3) = 1 and hcf(4,6) = 2. But how do we go about

finding the highest common factor of two large numbers, say 5817 and 1428?

This is what the Euclidean algorithm does for us — in a few simple, mindless

steps.

Before presenting the algorithm in all its full glory, let us do an example.

Example 10.1
Here we find hcf(5817,1428) in a few mindless steps, as advertised.
Write b = 5817,a = 1428, and let d = hcf(a,b).

Step 1 Divide a into b and get a quotient and remainder:

5817 = 4 ·1428+ 105.
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(Deduction: As d|a and d|b, d also divides a− 4b= 105.)

Step 2 Divide 105 into 1428:

1428 = 13 ·105+ 63.

(Deduction: As d|1428 and d|105, d also divides 63.)

Step 3 Divide 63 into 105:

105 = 1 ·63+ 42.

(Deduction: d|42.)

Step 4 Divide 42 into 63:

63 = 1 ·42+ 21.

(Deduction: d|21.)

Step 5 Divide 21 into 42:

42 = 2 ·21+ 0.

Step 6 STOP!

We claim that d = hcf(5817,1428) = 21, the last non-zero remainder
in the above steps. We have already observed that d|21. To prove our
claim, we work upwards from the last step to the first: namely, Step 5
shows that 21|42; hence Step 4 shows that 21|63; hence Step 3 shows that
21|105; hence Step 2 shows that 21|1428; hence Step 1 shows 21|5817.
Therefore, 21 divides both a and b, so d ≥ 21. As d|21, it follows that
d = 21, as claimed.

The general version of the Euclidean algorithm is really no more compli-

cated than this example. Here it is.

Let a,b be integers. To calculate hcf(a,b), we perform (mindless) steps as

in the example: first divide a into b, getting a quotient q1 and remainder r1;

then divide r1 into a, getting remainder r2 < r1; then divide r2 into r1, getting

remainder r3 < r2; and carry on like this until we eventually get a remainder 0

(which we must, as the ris are decreasing and are ≥ 0). Say the remainder 0
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occurs after n+ 1 steps. Then the equations representing the steps are:

(1) b = q1a+ r1 with 0 ≤ r1 < a

(2) a = q2r1 + r2 with 0 ≤ r2 < r1

(3) r1 = q3r2 + r3 with 0 ≤ r3 < r2

· · ·
· · ·
· · ·

(n− 1) rn−3 = qn−1rn−2 + rn−1 with 0 ≤ rn−1 < rn−2

(n) rn−2 = qnrn−1 + rn with 0 ≤ rn < rn−1

(n+ 1) rn−1 = qn+1rn + 0.

THEOREM 10.1
In the above, the highest common factor hcf(a,b) is equal to rn, the last
non-zero remainder.

PROOF Let d = hcf(a,b). We first show that d|rn by arguing from
equation (1) downwards. By Proposition 10.2, d divides b− q1a, and
hence by (1), d|r1. Then by (2), d|r2; by (3), d|r3; and so on, until by
(n), d|rn.
Now we show that d ≥ rn by working upwards from equation (n+ 1).

By (n+1), rn|rn−1; hence by (n), rn|rn−2; hence by (n−1), rn|rn−3; and so
on, until by (2), rn|a and then by (1), rn|b. Thus, rn is a common factor
of a and b, and so d ≥ rn.
We conclude that d = rn, and the proof is complete.

The next result is an important consequence of the Euclidean algorithm.

PROPOSITION 10.3
If a,b ∈ Z and d = hcf(a,b), then there are integers s and t such that

d = sa+ tb.

PROOF We use Equations (1),. . ., (n) above. By (n),

d = rn = rn−2 − qnrn−1.

Substituting for rn−1 using Equation (n− 1), we get

d = rn−2 − qn(rn−3 − qn−1rn−2) = xrn−2 + yrn−3

where x,y ∈ Z. Using Equation (n−2), we can substitute for rn−2 in this
(specifically, rn−2 = rn−4 − qn−2rn−3), to get

d = x′rn−3 + y′rn−4
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where x′,y′ ∈ Z. Carrying on like this, we eventually get d = sa+ tb with

s, t ∈ Z, as required.

Example 10.2
We know by Example 10.1 that hcf(5817,1428) = 21. So by Proposi-
tion 10.3 there are integers s, t such that

21 = 5817s+ 1428t.

Let us find such integers s, t.
To do this, we apply the method given in the proof of Proposition 10.3,

using the equations in Steps 1 through 4 of Example 10.1. By Step 4,

21 = 63− 42.

Hence by Step 3,

21 = 63− (105− 63)=−105+ 2 ·63.

Hence by Step 2,

21 =−105+ 2(1428−13 ·105)= 2 ·1428− 27 ·105.

Hence by Step 1,

21 = 2 ·1428− 27(5817−4 ·1428)=−27 ·5817+ 110 ·1428.

Thus we have found our integers s, t: s = −27, t = 110 will work. (But
note that there are many other values of s, t which also work; for example,
s =−27+ 1428, t = 110− 5817.)

Here is a consequence of Proposition 10.3.

PROPOSITION 10.4
If a,b ∈ Z, then any common factor of a and b also divides hcf(a,b).

PROOF Let d = hcf(a,b). By Proposition 10.3, there are integers
s, t such that d = sa+ tb. If m is a common factor of a and b, then m

divides sa+ tb by Proposition 10.2, and hence m divides d.

We are now in a position to prove a highly significant fact about prime num-

bers: namely, that if a prime number p divides a product ab of two integers,

then p divides one of the factors a and b.
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DEFINITION If a,b ∈ Z and hcf(a,b) = 1, we say that a and b are
coprime to each other.

For example, 17 and 1024 are coprime to each other. Note that by Proposi-

tion 10.3, if a,b are coprime to each other, then there are integers s, t such that

1 = sa+ tb.

PROPOSITION 10.5
Let a,b ∈ Z.

(a) Suppose c is an integer such that a,c are coprime to each other,
and c|ab. Then c|b.

(b) Suppose p is a prime number and p|ab. Then either p|a or p|b.

PROOF (a) By Proposition 10.3, there are integers s, t such that
1 = sa+ tc. Multiplying through by b gives

b = sab+ tcb.

Since c|ab and c|tcb, the right-hand side is divisible by c. Hence c|b.
(b) We show that if p does not divide a, then p|b. Suppose then that

p does not divide a. As the only positive integers dividing p are 1 and
p, hcf(a, p) must be 1 or p. It is not p as p does not divide a; hence
hcf(a, p) = 1. Thus a, p are coprime to each other and p|ab. It follows

by part (a) that p|b, as required.

Proposition 10.5(b) will be crucial in our proof of the uniqueness of prime

factorization in the next chapter. To apply it there, we need to generalize it

slightly to the case of a prime dividing a product of many factors, as follows.

PROPOSITION 10.6
Let a1,a2, . . . ,an ∈ Z, and let p be a prime number. If p|a1a2 . . .an, then

p|ai for some i.

PROOF We prove this by induction. Let P(n) be the statement of
the proposition.
First, P(1) says “if p|a1 then p|a1,” which is trivially true.
Now suppose P(n) is true. Let a1,a2, . . . ,an+1 ∈ Z, with p|a1a2 . . .an+1.

We need to show that p|ai for some i.
Regard a1a2 . . .an+1 as a product ab, where a= a1a2 . . .an and b= an+1.

Then p|ab, so by Proposition 10.5(b), either p|a or p|b. If p|a, that is to
say p|a1a2, . . . ,an, then by P(n) we have p|ai for some i; and if p|b then
p|an+1. Thus, in either case, p divides one of the factors a1,a2, . . . ,an+1.
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We have established that P(n)⇒ P(n+ 1). Hence, by induction, P(n)

is true for all n.

Exercises for Chapter 10

1. For each of the following pairs a,b of integers, find the highest common

factor d = hcf(a,b), and find integers s, t such that d = sa+ tb:

(i) a = 17, b = 29.

(ii) a = 552, b = 713.

(iii) a = 345, b = 299.

2. Show that if a,b are positive integers and d = hcf(a,b), then there are

positive integers s, t such that d = sa− tb.

Find such positive integers s, t in each of cases (i)–(iii) in Exercise 1.

3. A train leaves Moscow for St. Petersburg every 7 hours, on the hour.

Show that on some days it is possible to catch this train at 9 a.m.

Whenever there is a 9 a.m. train, Ivan takes it to visit his aunt Olga. How

often does Olga see her nephew?

Discuss the corresponding problem involving the train to Vladivostok,

which leaves Moscow every 14 hours.

4. (a) Show that for all positive integers n, hcf(6n+ 8, 4n+ 5) = 1.

(b) Suppose a,b are integers such that a|b and b|a. Prove that a =±b.

(c) Suppose s, t,a,b are integers such that sa+tb= 1. Show that hcf(a,b)=
1.

5. (a) Let m,n be coprime integers, and suppose a is an integer which is

divisible by both m and n. Prove that mn divides a.

(b) Show that the conclusion of part (a) is false if m and n are not coprime

(i.e., show that if m and n are not coprime, there exists an integer a such

that m|a and n|a, but mn does not divide a).

(c) Show that if hcf(x,m) = 1 and hcf(y,m) = 1, then hcf(xy,m) = 1.

6. Let a,b,c ∈ Z. Define the highest common factor hcf(a,b,c) to be the

largest positive integer that divides a,b and c. Prove that there are inte-

gers s, t,u such that

hcf(a,b,c) = sa+ tb+ uc.

Find such integers s, t,u when a = 91, b = 903, c = 1792.
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7. Jim plays chess every 3 days, and his friend Marmaduke eats spaghetti

every 4 days. One Sunday it happens that Jim plays chess and Mar-

maduke eats spaghetti. How long will it be before this again happens on

a Sunday?

8. Let n ≥ 2 be an integer. Prove that n is prime if and only if for every

integer a, either hcf(a,n) = 1 or n|a.

9. Let a,b be coprime positive integers. Prove that for any integer n there

exist integers s, t with s > 0 such that sa+ tb = n.

10. After a particularly exciting viewing of the new Danish thriller Den hele

tal, critic Ivor Smallbrain repairs for refreshment to the prison’s high-

security fast-food outlet O’Ducks. He decides that he’d like to eat some

delicious Chicken O’Nuggets. These are sold in packs of two sizes —

one containing 4 O’Nuggets, and the other containing 9 O’Nuggets.

Prove that for any integer n> 23, it is possible for Ivor to buy n O’Nuggets

(assuming he has enough money).

Perversely, however, Ivor decides that he must buy exactly 23 O’Nuggets,

no more and no less. Is he able to do this?

Generalize this question, replacing 4 and 9 by any pair a,b of coprime

positive integers: find an integer N (depending on a and b), such that

for any integer n > N it is possible to find integers s, t ≥ 0 satisfying

sa+ tb = n, but no such s, t exist satisfying sa+ tb = N.



Chapter 11

Prime Factorization

We have already seen in Chapter 8 (Proposition 8.1) that every integer greater

than 1 is equal to a product of prime numbers; that is, it has a prime factoriza-

tion. The main result of this chapter, the Fundamental Theorem of Arithmetic,

tells us that this prime factorization is unique — in other words, there is es-

sentially only one way of writing an integer as a product of primes. (In case

you think this is somehow obvious, have a look at Exercise 6 at the end of the

chapter to find an example of a number system where prime factorization is

not unique.)

The Fundamental Theorem of Arithmetic may not seem terribly thrilling to

you at first sight. However, it is in fact one of the most important properties of

the integers and has many consequences. I will endeavour to thrill you a little

by giving a few such consequences after we have proved the theorem.

The Fundamental Theorem of Arithmetic

Without further ado then, let us state and prove the theorem.

THEOREM 11.1 (Fundamental Theorem of Arithmetic)
Let n be an integer with n ≥ 2.

(I) Then n is equal to a product of prime numbers: we have

n = p1 . . . pk

where p1, . . . , pk are primes and p1 ≤ p2 ≤ . . .≤ pk.
(II) This prime factorization of n is unique: in other words, if

n = p1 . . . pk = q1 . . .ql

where the pis and qis are all prime, p1 ≤ p2 ≤ . . . ≤ pk and q1 ≤ q2 ≤
. . .≤ ql, then

k = l and pi = qi for all i = 1, . . . ,k.

95
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The point about specifying that p1 ≤ p2 ≤ . . . ≤ pk is that this condition

determines the order in which we write down the primes in the factorization

of n. For example, 28 can be written as a product of primes in several ways:

2×7×2, 7×2×2 and 2×2×7. But if we specify that the prime factors have

to increase or stay the same, then the only factorization is 28 = 2× 2× 7.

PROOF Part (I) is just Proposition 8.1.
Now for the uniqueness part (II). We prove this by contradiction. So

suppose there is some integer n which has two different prime factoriza-
tions, say

n = p1 . . . pk = q1 . . .ql

where p1 ≤ p2 ≤ . . . ≤ pk, q1 ≤ q2 ≤ . . . ≤ ql, and the list of primes
p1, . . . , pk is not the same list as q1, . . . ,ql .
Now in the equation p1 . . . pk = q1 . . .ql , cancel any primes that are

common to both sides. Since we are assuming the two factorizations are
different, not all the primes cancel, and we end up with an equation

r1 . . . ra = s1 . . .sb,

where each ri ∈ {p1, . . . , pk}, each si ∈ {q1, . . . ,ql}, and none of the ris is
equal to any of the sis (i.e., ri 6= s j for all i, j).
Now we obtain a contradiction. Certainly r1 divides r1 . . .ra, hence r1

divides s1 . . . sb. By Proposition 10.6, this implies that r1|s j for some j.
However, s j is prime, so its only divisors are 1 and s j, and hence r1 = s j.
But we know that none of the ris is equal to any of the sis, so this is a
contradiction. This completes the proof of (II).

Of course, in the prime factorization given in part (I) of Theorem 11.1, some

of the pis may be equal to each other. If we collect these up, we obtain a unique

prime factorization of the form

n = p
a1
1 p

a2
2 . . . pam

m ,

where p1 < p2 < .. . < pm and the ais are positive integers.

Some Consequences of the Fundamental Theorem

First, here is an application of the Fundamental Theorem of Arithmetic that

looks rather more obvious than it really is.
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PROPOSITION 11.1
Let n = p

a1
1 p

a2
2 . . . pam

m , where the pis are prime, p1 < p2 < .. . < pm and
the ais are positive integers. If m divides n, then

m = p
b1
1 p

b2
2 . . . pbm

m with 0 ≤ bi ≤ ai for all i.

For example, the only divisors of 210032 are the numbers 2a3b, where 0 ≤
a ≤ 100, 0 ≤ b ≤ 2.

PROOF If m|n, then n=mc for some integer c. Let m= q
c1
1 . . .q

ck

k , c=

r
d1
1 . . . r

dl

l be the prime factorizations of m,c. Then n = mc gives the
equation

p
a1
1 p

a2
2 . . . pam

m = q
c1
1 . . .q

ck

k r
d1
1 . . .r

dl

l .

By the Fundamental Theorem 11.1, the primes, and the powers to which
they occur, must be identical on both sides. Hence, each qi is equal to
some p j, and its power ci is at most a j. In other words, the conclusion

of the proposition holds.

We can use this to prove some further obvious-looking facts about integers.

Define the least common multiple of two positive integers a and b, denoted by

lcm(a,b), to be the smallest positive integer that is divisible by both a and b.

For example, lcm(15,21) = 105.

PROPOSITION 11.2
Let a,b ≥ 2 be integers with prime factorizations

a = p
r1
1 p

r2
2 . . . prm

m , b = p
s1
1 p

s2
2 . . . psm

m

where the pi are distinct primes and all ri,si ≥ 0 (we allow some of the
ri and si to be 0). Then

(i) hc f (a,b) = p
min(r1,s1)
1 . . . p

min(rm,sm)
m

(ii) lcm(a,b) = p
max(r1,s1)
1 . . . p

max(rm,sm)
m

(iii) lcm(a,b) = ab/hc f (a,b).

PROOF In part (i), the product on the right-hand side divides both
a and b and is the largest such integer, by Proposition 11.1. And in part
(ii), the product on the right-hand side is a multiple of both a and b and
is the smallest such positive integer, again by Proposition 11.1. Finally,
if we take the product of the right-hand sides in (i) and (ii), then we
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obtain
p

min(r1,s1)+max(r1,s1)
1 . . . p

min(rm,sm)+max(rm,sm)
m ,

which is equal to ab since min(ri,si)+max(ri,si) = ri + si.

Here is our next application of the Fundamental Theorem of Arithmetic.

PROPOSITION 11.3
Let n be a positive integer. Then

√
n is rational if and only if n is a

perfect square (i.e., n = m2 for some integer m).

PROOF The right-to-left implication is obvious: if n = m2 with
m ∈ Z, then

√
n = |m| ∈ Z is certainly rational.

The left-to-right implication is much less clear. Suppose
√

n is rational,
say √

n =
r

s

where r,s ∈ Z. Squaring, we get ns2 = r2. Now consider prime factoriza-
tions. Each prime in the factorization of r2 appears to an even power
(since if r = p

a1
1 . . . p

ak

k then r2 = p
2a1
1 . . . p

2ak

k ). The same holds for the
primes in the factorization of s2. Hence, by the Fundamental Theo-
rem, each prime factor of n must also occur to an even power — say

n = q
2b1
1 . . .q

2bl

l . Then n = m2, where m = q
b1
1 . . .q

bl

l ∈ Z.

A similar argument applies to the rationality of cube roots, and more gener-

ally, nth roots (see Exercise 5 at the end of the chapter).

Now for our final consequence of the Fundamental Theorem 11.1. Again

it looks rather innocent, but in the example following the proposition we shall

give a striking application of it.

In the statement, when we say a positive integer is a square (or an nth power),

we mean that it is the square of an integer (or the nth power of an integer).

PROPOSITION 11.4
Let a and b be positive integers that are coprime to each other.

(a) If ab is a square, then both a and b are also squares.
(b) More generally, if ab is an nth power (for some positive integer n),

then both a and b are also nth powers.

PROOF (a) Let the prime factorizations of a,b be

a = p
d1
1 . . . p

dk

k , b = q
e1
1 . . .q

el

l
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(where p1 < .. . < pk and q1 < .. . < ql). If ab is a square, then ab = c2 for

some integer c; let c have prime factorization c = r
f1
1 . . . r

fm
m . Then ab= c2

gives the equation

p
d1
1 . . . p

dk

k q
e1
1 . . .q

el

l = r
2 f1
1 . . . r2 fm

m .

Since a and b are coprime to each other, none of the pis are equal to any
of the qis. Hence, the Fundamental Theorem 11.1 implies that each pi

is equal to some r j, and the corresponding powers di and 2 f j are equal;
and likewise for the qis and their powers.
We conclude that all the powers di,ei are even numbers — say di =

2d′
i ,ei = 2e′i. This means that

a =
(

p
d′1
1 . . . p

d′k
k

)2

, b =
(

q
e′1
1 . . .q

e′l
l

)2

,

so a and b are squares.
(b) The argument for (b) is the same as for (a): an equation ab = cn

gives an equality

p
d1
1 . . . p

dk

k q
e1
1 . . .q

el

l = r
n f1
1 . . . rn fm

m .

The Fundamental Theorem implies that each power di,ei is a multiple
of n, and hence a,b are both nth powers.

Example 11.1
Here is an innocent little question about the integers:

Can a non-zero even square exceed a cube by 1?

(The non-zero even squares are of course the integers 4,16,64,100,144, . . .
and the cubes are . . . ,−8,−1,0,1,8,27, . . ..)
In other words, we are asking whether the equation

4x2 = y3 + 1 (11.1)

has any solutions with x,y both non-zero integers. This is an example of
a Diophantine equation. In general, a Diophantine equation is an equation
for which the solutions are required to be integers. Most Diophantine
equations are very hard, or impossible, to solve — for instance, even
the equation x2 = y3 + k has not been completely solved for all values of
k. However, I have chosen a nice example, in that Equation (11.1) can
be solved fairly easily (as you will see), but the solution is not totally
trivial and involves use of the consequence 11.4 of the Fundamental
Theorem 11.1.
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Let us then go about solving Equation (11.1) for x,y ∈ Z. First we
rewrite it as y3 = 4x2 − 1 and then cleverly factorize the right-hand side
to get

y3 = (2x+ 1)(2x− 1).

The factors 2x+1,2x−1 are both odd integers, and their highest common
factor divides their difference, which is 2. Hence

hcf(2x+ 1,2x− 1) = 1.

Thus, 2x + 1 and 2x − 1 are coprime to each other, and their prod-
uct is y3, a cube. By Proposition 11.4(b), it follows that 2x+ 1 and
2x − 1 are themselves both cubes. However, from the list of cubes
. . . ,−8,−1,0,1,8,27, . . . it is apparent that the only two cubes that dif-
fer by 2 are 1,−1. Therefore, x = 0 and we have shown that the only
even square that exceeds a cube by 1 is 0. In other words, there are no
non-zero such squares.

Exercises for Chapter 11

1. Find the prime factorization of 111111.

2. (a) Which positive integers have exactly three positive divisors?

(b) Which positive integers have exactly four positive divisors?

3. Suppose n ≥ 2 is an integer with the property that whenever a prime p

divides n, p2 also divides n (i.e., all primes in the prime factorization

of n appear at least to the power 2). Prove that n can be written as the

product of a square and a cube.

4. Prove that lcm(a,b)= ab/hc f (a,b) for any positive integers a,b without

using prime factorization.

5. (a) Prove that 2
1
3 and 3

1
3 are irrational.

(b) Let m and n be positive integers. Prove that m
1
n is rational if and only

if m is an nth power (i.e., m = cn for some integer c).

6. Let E be the set of all positive even integers. We call a number e in E

“prima” if e cannot be expressed as a product of two other members of

E .

(i) Show that 6 is prima but 4 is not.
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(ii) What is the general form of a prima in E?

(iii) Prove that every element of E is equal to a product of primas.

(iv) Give an example to show that E does not satisfy a “unique prima

factorization theorem” (i.e., find an element of E that has two dif-

ferent factorizations as a product of primas).

7. (a) Which pairs of positive integers m,n have hc f (m,n)= 50 and lcm(m,n)
= 1500?

(b) Show that if m,n are positive integers, then hc f (m,n) divides lcm(m,n).
When does hc f (m,n) = lcm(m,n)?

(c) Show that if m,n are positive integers, then there are coprime integers

x,y such that x divides m, y divides n, and xy = lcm(m,n).

8. Find all solutions x,y ∈ Z to the following Diophantine equations:

(a) x2 = y3.

(b) x2 − x = y3.

(c) x2 = y4 − 77.

(d) x3 = 4y2 + 4y− 3.

9. Languishing in his prison cell, critic Ivor Smallbrain is dreaming. In his

dream he is on the Pacific island of Nefertiti, eating coconuts on a beach

by a calm blue lagoon. Suddenly the king of Nefertiti approaches him,

saying, “Your head will be chopped off unless you answer this riddle: Is

it possible for the sixth power of an integer to exceed the fifth power of

another integer by 16?” Feverishly, Ivor writes some calculations in the

sand and eventually answers, “Oh, Great King, no it is not possible.” The

king rejoinders, “You are correct, but you will be beheaded anyway.”

The executioner’s axe is just coming down when Ivor wakes up. He

wonders whether his answer to the king was really correct.

Prove that Ivor was indeed correct.
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Chapter 12

More on Prime Numbers

As you are probably beginning to appreciate, the prime numbers are funda-

mental to our understanding of the integers. In this chapter we will discuss a

few basic results concerning the primes, and also hint at the vast array of ques-

tions, some solved, some unsolved, in current research into prime numbers.

The first few primes are

2,3,5,7,11,13,17,19,23,29,31,37,41,43, . . .

It is quite simple to carry on a long way with this list, particularly if you have a

computer at hand. How would you do this? The easiest way is probably to test

each successive integer n for primality, by checking, for each prime p ≤ √
n,

whether p divides n (such primes p will of course already be in your list). If

none of these primes p divides n, then n is prime — see Exercise 2 at the end

of the chapter. Some more sophisticated methods for primality testing will be

discussed at the end of Chapter 14.

Probably the first and most basic question to ask is: Does this list ever stop?

In other words, is there a largest prime number, or does the list of primes go on

forever? The answer is provided by the following famous theorem of Euclid

(300 BC).

THEOREM 12.1
There are infinitely many prime numbers.

PROOF This is one of the classic proofs by contradiction. Assume
the result is false — that is, there are only finitely many primes. This
means that we can make a finite list

p1, p2, p3, . . . , pn

of all the prime numbers. Now define a positive integer

N = p1 p2 p3 . . . pn + 1.

103
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By Proposition 8.1, N is equal to a product of primes, say N = q1 . . .qr

with all qi prime. As q1 is prime, it belongs to the above list of all
primes, so q1 = pi for some i.
Now q1 divides N, and hence pi divides N. Also pi divides p1 p2 . . . pn,

which is equal to N − 1. Thus, pi divides both N and N − 1. But this
implies that pi divides the difference between these numbers, namely 1.

This is a contradiction.

Theorem 12.1 is of course not the end of the story about the primes — it

is really the beginning. A natural question to ask that flows from the theorem

is: what proportion of all positive integers are prime? On the face of it this

question makes no sense, as the integers and the primes are both infinite sets.

But one can make a sensible question by asking

Given a positive integer n, how many of the numbers 1,2,3, . . . ,n are prime?

Is there any reason to expect to be able to answer this question? On the face

of it, no. If you stare at a long list of primes, you will see that the sequence

is very irregular, and it is very difficult to see any pattern at all in it. (See, for

example, Exercise 6 at the end of the chapter.) Why on earth should there then

be a nice formula for the number of primes up to n?

The amazing thing is that there is such a formula, albeit an “asymptotic”

one. (I will explain this word later.) The great Gauss, by calculating a lot

with lists of primes (and also by having a lot of brilliant thoughts), formed the

incredible conjecture (i.e., informed guess) that the number of primes up to n

should be pretty close to the formula

n

loge n
.

To understand this a little, compare the number of primes up to 106 (namely,

78498) with the value of 106

log106 (namely, 72382.4). The difference between

these two numbers, about 6000, appears to be quite large; but their ratio is

1.085, quite close to 1. It was on the ratio, rather than the difference, that

Gauss concentrated his mind: his conjecture was that the ratio of the number

of primes up to n and the expression n
loge n

should get closer and closer to 1 as

n gets larger and larger. (Formally, this ratio tends to 1 as n tends to infinity.)

Gauss did not actually manage to prove his conjecture. The world had to

wait until 1896, when a Frenchman, Hadamard, and a Belgian, de la Vallée-

Poussin, both produced proofs of what is now known as the Prime Number

Theorem:

THEOREM 12.2
For a positive integer n, let π(n) be the number of primes up to n. Then
the ratio of π(n) and n

loge n
tends to 1 as n tends to infinity (i.e., the ratio
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can be made as close as we like to 1 provided n is large enough).

The proof of this result uses some quite sophisticated tools of analysis. Nev-

ertheless, if you are lucky you might get the chance to see a proof in an under-

graduate course later in your studies — in other words, it is not that difficult!

You should not think that every question about the primes can be answered

(if not by you, then by some expert or other). On the contrary, many basic

questions about the primes are unsolved to this day, despite being studied for

many years. Let me finish this chapter by mentioning a couple of the most

famous such problems.

The Goldbach conjecture If you do some calculations, or program your com-

puter, you will find that any reasonably small even positive integer greater

than 2 can be expressed as a sum of two primes. For example,

10 = 7+ 3, 50 = 43+ 7, 100 = 97+ 3, 8000 = 3943+ 4057

and so on. Based on this evidence, it seems reasonable to conjecture that every

even positive integer is the sum of two primes. This is the Goldbach conjecture,

and it is unsolved to this day.

The twin prime conjecture If p and p+ 2 are both prime numbers, we call

them twin primes. For example, here are some twin primes:

3,5; 5,7; 11,13; 71,73; 1997,1999.

If you stare at a list of prime numbers, you will find many pairs of twin primes,

getting larger and larger. One feels that there should be infinitely many twin

primes, and indeed, that statement is known as the twin prime conjecture.

Can one prove the twin prime conjecture using a proof like Euclid’s in Theo-

rem 12.1? Unfortunately not — indeed, no one has come up with any sort of

proof, and the conjecture remains unsolved to this day.

Exercises for Chapter 12

1. Prove Liebeck’s triplet prime conjecture: the only triplet of primes of

the form p, p+ 2, p+ 4 is {3,5,7}.

2. Let n be an integer with n ≥ 2. Suppose that for every prime p ≤√
n, p

does not divide n. Prove that n is prime.

Is 221 prime? Is 223 prime?
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3. For a positive integer n, define φ(n) to be the number of positive integers

a < n such that hcf(a,n) = 1. (For example, φ(2) = 1, φ(3) = 2, φ(4) =
2.)

Work out φ(n) for n = 5,6, . . . ,10.

If p is a prime, show that φ(p) = p−1 and, more generally, that φ(pr) =
pr − pr−1.

4. Use the idea of the proof of Euclid’s Theorem 12.1 to prove that there

are infinitely many primes of the form 4k+ 3 (where k is an integer).

5. There has been quite a bit of work over the years on trying to find a nice

formula that takes many prime values. For example, x2 +x+41 is prime

for all integers x such that −40 ≤ x < 40. (You may like to check this!)

However:

Find an integer x coprime to 41 such that x2 + x+ 41 is not prime.

6. On his release from prison, critic Ivor Smallbrain rushes out to see the

latest film, Prime and Prejudice. During the film Ivor attempts to think

of ten consecutive positive integers, none of which is prime. He fails.

Help Ivor by showing that if N = 11! + 2, then none of the numbers

N,N + 1,N + 2, . . . ,N + 9 is prime.

More generally, show that for any n ∈ N there is a sequence of n con-

secutive positive integers, none of which is prime. (Hence, there are

arbitrarily large “gaps” in the sequence of primes.)



Chapter 13

Congruence of Integers

In this chapter we introduce another method for studying the integers, called

congruence. Let us go straight into the definition.

DEFINITION Let m be a positive integer. For a,b ∈ Z, if m divides
b− a we write a ≡ b mod m and say a is congruent to b modulo m.

For example,

5 ≡ 1 mod 2, 12 ≡ 17 mod 5, 91 ≡−17 mod 12, 531 6≡ 0 mod 4.

PROPOSITION 13.1
Every integer is congruent to exactly one of the numbers 0,1,2, . . . ,m−1

modulo m.

PROOF Let x ∈ Z. By Proposition 10.1, there are integers q,r such
that

x = qm+ r with 0 ≤ r < m.

Then x−r = qm, so m divides x−r, and hence by the above definition, x≡
r mod m. Since r is one of the numbers 0,1,2, . . . ,m−1, the proposition
follows.

Example 13.1
(1) Every integer is congruent to 0 or 1 modulo 2. Indeed, all even

integers are congruent to 0 modulo 2 and all odd integers to 1 modulo 2.
(2) Every integer is congruent to 0, 1, 2 or 3 modulo 4. More specifi-

cally, every even integer is congruent to 0 or 2 modulo 4 and every odd
integer to 1 or 3 modulo 4.
(3) My clock is now showing the time as 2:00 a.m. What time will it

be showing in 4803 hours? Since 4803 ≡ 3 mod 24, it will be showing a

107
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time 3 hours later than the current time, namely 5:00 a.m. (But I hope
I will not be awake to see it.)

The next result will be quite useful for our later work involving manipulation

of congruences.

PROPOSITION 13.2
Let m be a positive integer. The following are true, for all a,b,c ∈ Z:

(1) a ≡ a mod m,
(2) if a ≡ b mod m then b ≡ a mod m,
(3) if a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m.

PROOF (1) Since m|0 we have m|a− a, and hence a ≡ a mod m.
(2) If a ≡ b mod m then m|b− a, so m|a− b, and hence b ≡ a mod m.
(3) If a ≡ b mod m and b ≡ c mod m, then m|b− a and m|c− b; say

b− a = km, c− b = lm. Then c− a = (k + l)m, so m|c− a, and hence

a ≡ c mod m.

Arithmetic with Congruences

Congruence is a notation that conveniently records various divisibility prop-

erties of integers. This notation comes into its own when we do arithmetic with

congruences, as we show is possible in the next two results. The first shows

that congruences modulo m can be added and multiplied.

PROPOSITION 13.3
Suppose a ≡ b mod m and c ≡ d mod m. Then

a+ c ≡ b+ d mod m and ac ≡ bd mod m.

PROOF We are given that m|b−a and m|d−c. Say b−a = km and
d− c = lm, where k, l ∈ Z. Then

(b+ d)− (a+ c)= (k+ l)m

and hence a+ c ≡ b+ d mod m. And

bd− ac = (a+ km)(c+ lm)− ac= m(al+ ck+ klm),
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which implies that ac ≡ bd mod m.

PROPOSITION 13.4
If a ≡ b mod m, and n is a positive integer, then

an ≡ bn mod m.

PROOF We prove this by induction. Let P(n) be the statement of
the proposition. Then P(1) is obviously true.
Now suppose P(n) is true, so an ≡ bn mod m. As a ≡ b mod m, we

can use Proposition 13.3 to multiply these congruences and get an+1 ≡
bn+1 mod m, which is P(n+1). Hence, P(n) is true for all n by induction.

These results give us some powerful methods for using congruences, as we

shall now attempt to demonstrate with a few examples.

Example 13.2
Find the remainder r (between 0 and 6) that we get when we divide 682

by 7.

Answer We start with the congruence 6 ≡ −1 mod 7. By Proposition 13.4,

we can raise this to the power 82, to get 682 ≡ (−1)82 mod 7, hence 682 ≡
1 mod 7. This means that 7 divides 682 − 1; hence 682 = 7q+ 1 for some

q ∈ Z, and so the remainder is 1.

Example 13.3
Find the remainder r (between 0 and 12) that we get when we divide

682 by 13.

Answer This is not quite so easy as the previous example. We employ a

general method, which involves “successive squaring” of the congruence 6 ≡
6 mod 13. Squaring once, we get 62 ≡ 36 mod 13; since 36 ≡ −3 mod 13,

Proposition 13.2(3) gives 62 ≡−3 mod 13. Successive squaring like this yields:

62 ≡ −3 mod 13,

64 ≡ 9 mod 13,

68 ≡ 3 mod 13,

616 ≡ 9 mod 13,

632 ≡ 3 mod 13,
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664 ≡ 9 mod 13.

Now 682 = 66461662. Multiplying the above congruences for 664,616 and 62,

we get

682 ≡ 9 ·9 · (−3) mod 13.

Now 9 · (−3) = −27 ≡ −1 mod 13, so 682 ≡ −9 ≡ 4 mod 13. Hence, the

required remainder is 4.

The method given in this example is called the method of successive squares

and always works to yield the congruence of a large power, given some effort.

To work out the congruence modulo m of a power xk of some integer x, express

k as a sum of powers of 2 (you might have met this before as “writing k in base

2” or some such phrase) — say k = 2a1 + · · ·+2ar ; then successively square to

work out the congruences modulo m of the powers x2a1 , . . . ,x2ar
, and multiply

these together to obtain the answer.

Sometimes this effort can be reduced with some clever trickery, as in Exam-

ple 13.2.

Example 13.4
Show that no integer square is congruent to 2 modulo 3. (In other
words, the sequence 2,5,8,11,14,17, . . . contains no squares.)

Answer Consider an integer square n2 (where n ∈ Z). By Proposition 13.1, n

is congruent to 0, 1 or 2 modulo 3. If n ≡ 0 mod 3, then by Proposition 13.4,

n2 ≡ 0 mod 3; if n ≡ 1 mod 3, then n2 ≡ 1 mod 3; and if n ≡ 2 mod 3, then

n2 ≡ 4 mod 3, and hence [using 13.2(3)] n2 ≡ 1 mod 3. This shows that integer

squares are congruent to 0 or 1 modulo 3.

Example 13.5
Show that every odd integer square is congruent to 1 modulo 4.

Answer This is similar to the previous example. Let n be an odd integer. Then

n is congruent to 1 or 3 modulo 4, so n2 is congruent to 1 or 9 modulo 4, hence

to 1 modulo 4.

Example 13.6
The “rule of 3” You may have come across a simple rule for testing
whether an integer is divisible by 3: add up its digits, and if the sum is
divisible by 3 then the integer is divisible by 3. Here is a quick explana-
tion of why this rule works.
Let n be an integer, with digits arar−1 . . .a0, so

n = a0 + 10a1+ 102a2 + · · ·+ 10rar.
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Now 10 ≡ 1 mod 3; hence, by Proposition 13.4, 10k ≡ 1 mod 3 for any
positive integer k. Multiplying this by the congruence ak ≡ ak mod 3

gives 10kak ≡ ak mod 3. It follows that

n ≡ a0 + a1 + · · ·+ ar mod 3.

Hence, n ≡ 0 mod 3 if and only if the sum of its digits a0 + · · ·+ ar ≡
0 mod 3. This is the “rule of 3.”
The same method proves the “rule of 9”: an integer is divisible by 9

if and only if the sum of its digits is divisible by 9. There is also a “rule
of 11,” which is not quite so obvious: an integer n with digits ar . . .a1a0

is divisible by 11 if and only if the expression a0 −a1+a2 −·· ·+(−1)rar

is divisible by 11. Proving this is Exercise 4 at the end of the chapter.
You will also find other rules in Exercise 5.

Unlike adding and multiplying, we can’t always divide congruences modulo

m. For example, 10 ≡ 6 mod 4, but we can’t divide this by 2 to deduce that

5≡ 3 mod 4. However, the next result shows that there are some circumstances

in which we can divide congruences.

PROPOSITION 13.5
(1) Let a and m be coprime integers. If x,y ∈ Z are such that xa ≡

ya mod m, then x ≡ y mod m.
(2) Let p be a prime, and let a be an integer that is not divisible by p.

If x,y ∈ Z are such that xa ≡ ya mod p, then x ≡ y mod p.

PROOF (1) Assume that xa ≡ ya mod m. Then m divides xa− ya =
(x − y)a. Since a,m are coprime, Proposition 10.5(a) implies that m

divides x− y. In other words, x ≡ y mod m.
Part (2) is immediate from part (1), since if a is not divisible by a

prime p, then a and p are coprime.

Congruence Equations

Let m be a positive integer and let a,b ∈ Z. Consider the equation

ax ≡ b mod m

to be solved for x∈Z. Such an equation is called a linear congruence equation.

When does such an equation have a solution?



112 A CONCISE INTRODUCTION TO PURE MATHEMATICS

Example 13.7
(1) Consider the congruence equation

4x ≡ 2 mod 28.

If x ∈ Z is a solution to this, then 4x = 2+28n for some integer n, which
is impossible since the left-hand side is divisible by 4, whereas the right-
hand side is not. So this congruence equation has no solutions.
(2) Now consider the equation

13x ≡ 2 mod 31.

We shall show that this equation has a solution. Observe that hcf(13,31)=
1; hence, by Proposition 10.3, there are integers s, t such that

1 = 13s+ 31t.

Therefore, 13s = 1−31t, which means that 13s ≡ 1 mod 31. Multiplying
this congruence by 2, we get

13 · (2s)≡ 2 mod 31.

In other words, x = 2s is a solution to the original congruence equation.

Here is a general result telling us exactly when linear congruence equations

have solutions.

PROPOSITION 13.6
The congruence equation

ax ≡ b mod m

has a solution x ∈ Z if and only if hcf (a,m) divides b.

PROOF Write d = hcf(a,m). First let us prove the left-to-right
implication. So suppose the equation has a solution x ∈ Z. Then ax =
qm+ b for some integer q. Since d|a and d|m, it follows that d|b.
Now for the right-to-left implication. Suppose d|b, say b = kd. By

Proposition 10.3, there are integers s, t such that d = sa+tm. Multiplying
through by k gives b = kd = k(sa+ tm). Hence,

aks = b− ktm ≡ b mod m.

In other words, x = ks is a solution to the congruence equation.

We shall see some different types of congruence equations in the next chap-

ter.
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The System Zm

The properties of congruence modulo m can be encapsulated rather neatly by

defining a new system, denoted by Zm, which we can think of as “the integers

modulo m.” Before defining this in general, here is an example.

Example 13.8
Take m = 4. Let Z4 be the set consisting of the four symbols 0̄, 1̄, 2̄, 3̄,
and define addition and multiplication of any two symbols in Z4 to be
the same as adding or multiplying the two corresponding integers in Z,
except that we make sure the answer is again in Z4 by taking congruences
modulo 4. For example, to add 2̄ and 3̄ in Z4, we first note that the sum
of the correpsonding integers 2 and 3 in Z is 5; the number in Z4 that
is congruent to 5 modulo 4 is 1, so in Z4 we define the sum 2̄+ 3̄ to be
1̄. Here are some other examples of addition and multiplication in Z4:

1̄+ 2̄ = 3̄, 0̄+ 3̄ = 3̄, 2̄+ 2̄ = 0̄, 3̄+ 3̄ = 2̄,

and
0̄× 3̄ = 0̄, 2̄× 3̄ = 2̄, 3̄× 3̄ = 1̄.

The full addition and multiplication tables for Z4 are as follows:

+ 0̄ 1̄ 2̄ 3̄ × 0̄ 1̄ 2̄ 3̄

0̄ 0̄ 1̄ 2̄ 3̄ 0̄ 0̄ 0̄ 0̄ 0̄

1̄ 1̄ 2̄ 3̄ 0̄ 1̄ 0̄ 1̄ 2̄ 3̄

2̄ 2̄ 3̄ 0̄ 1̄ 2̄ 0̄ 2̄ 0̄ 2̄

3̄ 3̄ 0̄ 1̄ 2̄ 3̄ 0̄ 3̄ 2̄ 1̄

In general, for a fixed positive integer m, the system Zm is defined in an

entirely similar way. We take Zm to be the set consisting of the m symbols

0̄, 1̄, 2̄, . . . ,m− 1, and define addition and multiplication of any two symbols in

Zm to be the same as for the corresponding integers in Z, except that we make

sure the answer is again in Zm by taking congruences modulo m. More for-

mally, for x̄, ȳ ∈ Zm, the sum and product of x̄ and ȳ in Zm are defined to be the

symbols k̄, l̄ ∈ Zm such that x+ y ≡ k mod m and xy ≡ l mod m, respectively.

We’ll write x̄+ ȳ = k̄ and x̄ȳ = l̄ in Zm.

For example, in Z5 we have 4̄+ 4̄ = 3̄; in Z7 we have 5̄× 3̄ = 1̄; and in any

Zm, we have m− 1+m− 2 = m− 3 and m− 1 m− 2 = 2̄.

The system Zm is quite a useful one. We can do quite a bit of algebra in it,

such as taking powers and solving equations. Here are a few more examples.
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Example 13.9
(1) We can define powers of elements of Zm in a natural way: for x̄ ∈ Zm

and r ∈ N, the rth power of x̄ in Zm is defined to be the symbol k̄ ∈ Zm

such that xr ≡ k mod m. For example, in Z5, we have

2̄2 = 4̄, 2̄3 = 3̄, 2̄4 = 1̄.

Examples 13.2 and 13.3 show that in Z7, we have 6̄82 = 1̄, while in Z13,
6̄82 = 4̄.

(2) Proposition 13.6 tells us that for ā, b̄ ∈ Zm, the equation āx̄ = b̄ has
a solution for x̄ ∈ Zm if and only if hcf(a,m) divides b. So, for example,
the equation 2̄x̄ = 7̄ has a solution in Z9 (namely x̄ = 8̄), but not in Z10.

(3) Examples 13.4 and 13.5 show that the quadratic equation x̄2 = 2̄

has no solution in Z3, and x̄2 = 3̄ has no solution in Z4. In general, to
see whether an equation in a variable x̄ has a solution in Zm, unless we
can think of anything better we can always just try substituting each of
the m possible values for x̄ and seeing if they work. For example, does
the equation

x̄2 + 3̄x̄+ 4̄ = 0̄

have a solution in Z5? Well, if we substitute the five possible values for
x̄ into the expression x̄2 + 3̄x̄+ 4̄ and work out the answer in Z5, here is
what we get:

x̄ 0̄ 1̄ 2̄ 3̄ 4̄

x̄2 + 3̄x̄+ 4̄ 4̄ 3̄ 4̄ 2̄ 2̄

So the answer is no, there is no solution in Z5. However, this equation
does have solutions in Z11, for example — namely x̄ = 3̄ or 5̄.

Exercises for Chapter 13

1. (a) Find r with 0 ≤ r ≤ 10 such that 7137 ≡ r mod 11.

(b) Find r with 0 ≤ r < 645 such that 281 ≡ r mod 645.

(c) Find the last two digits of 3124 (when expressed in decimal notation).

(d) Show that there is a multiple of 21 which has 241 as its last three

digits.

2. Let p be a prime number and k a positive integer.

(a) Show that if x is an integer such that x2 ≡ x mod p, then x≡ 0 or 1 mod p.

(b) Show that if x is an integer such that x2 ≡ x mod pk, then x≡ 0 or 1 mod pk.
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3. For each of the following congruence equations, either find a solution

x ∈ Z or show that no solution exists:

(a) 99x ≡ 18 mod 30.

(b) 91x ≡ 84 mod 143.

(c) x2 ≡ 2 mod 5.

(d) x2 + x+ 1≡ 0 mod 5.

(e) x2 + x+ 1 ≡ 0 mod 7.

4. (a) Prove the “rule of 9”: an integer is divisible by 9 if and only if the

sum of its digits is divisible by 9.

(b) Prove the “rule of 11” stated in Example 13.6. Use this rule to decide

in your head whether the number 82918073579 is divisible by 11.

5. (a) Use the fact that 7 divides 1001 to find your own “rule of 7.” Use your

rule to work out the remainder when 6005004003002001 is divided by

7.

(b) 13 also divides 1001. Use this to get a rule of 13 and find the remain-

der when 6005004003002001 is divided by 13.

(c) Use the observation that 27× 37 = 999 to work out a rule of 37, and

find the remainder when 6005004003002001 is divided by 37.

6. Let p be a prime number, and let a be an integer that is not divisible

by p. Prove that the congruence equation ax ≡ 1 mod p has a solution

x ∈ Z.

7. Show that every square is congruent to 0, 1 or −1 modulo 5, and is

congruent to 0, 1 or 4 modulo 8.

Suppose n is a positive integer such that both 2n+ 1 and 3n+ 1 are

squares. Prove that n is divisible by 40.

Find a value of n such that 2n+ 1 and 3n+ 1 are squares. Can you find

another value? (Calculators allowed!)

8. Find x̄, ȳ ∈ Z15 such that x̄ȳ = 0̄ but x̄ 6= 0̄, ȳ 6= 0̄.

Find a condition on m such that the equality x̄ȳ = 0̄ in Zm implies that

either x̄ = 0̄ or ȳ = 0̄.

9. Let p be a prime and let ā, b̄ ∈ Zp, with ā 6= 0̄ and b̄ 6= 0̄. Prove that the

equation āx̄ = b̄ has a solution for x̄ ∈ Zp.

10. Construct the addition and multiplication tables for Z6. Find all solu-

tions in Z6 of the equation x̄2 + x̄ = 0.



116 A CONCISE INTRODUCTION TO PURE MATHEMATICS

11. It is Friday, May 6, 2005. Ivor Smallbrain is watching the famous movie

From Here to Infinity. He is bored, and idly wonders what day of the

week it will be on the same date in 1000 years’ time (i.e., on May 6,

3005). He decides it will again be a Friday.

Is Ivor right? And what has this question got to do with congruence?



Chapter 14

More on Congruence

In this chapter we are going to see some further results about congruence of

integers. Most of these are to do with working out the congruence of large

powers of an integer modulo some given integer m. I showed you some ways

of tackling this kind of question in the last chapter (see Examples 13.2 and

13.3). The first result of this chapter — Fermat’s Little Theorem — is a general

fact that makes powers rather easy to calculate when m is a prime number. The

rest of the chapter consists mainly of applications of this theorem to solving

some special types of congruence equations modulo a prime or a product of

two primes, and also to the problem of finding large prime numbers using a

computer. We’ll make heavy use of all this material in the next chapter on

secret codes.

Fermat’s Little Theorem

This very nifty result was first found by the French mathematician Fer-

mat around 1640. It is called Fermat’s Little Theorem to distinguish it from

the rather famous “Fermat’s Last Theorem,” which is somewhat harder to

prove (although why the adjective “little” was chosen, rather than “large” or

“medium-sized” or “nifty,” is not clear to me).

Anyway, here it is.

THEOREM 14.1 (Fermat’s Little Theorem)
Let p be a prime number, and let a be an integer that is not divisible by

p. Then
ap−1 ≡ 1 mod p.

For example, applying the theorem with p= 17 tells us that 216 ≡ 1 mod 17,

that 9316 ≡ 1 mod 17, and indeed that 7230789216 ≡ 1 mod 17. This makes

117
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congruences of powers modulo 17 fairly painless to calculate. For instance,

let’s work out 3972 modulo 17. Well, we know that 316 ≡ 1 mod 17. Dividing

16 into 972, we get 972 = 16 ·60+ 12, so

3972 = (316)60 ·312 ≡ (160) ·312 mod 17.

So we only need to work out 312 modulo 17. This is easily done using the

method of successive squares explained in Example 13.3: we get 32 ≡ 9 mod 17,

so 34 ≡ 92 ≡ 13 mod 17, so 38 ≡ 132 ≡ (−4)2 ≡ 16 mod 17. Hence

3972 ≡ 312 ≡ 34 ·38 ≡ 13 ·16 ≡ 4 mod 17.

PROOF Here’s a proof of Fermat’s Little Theorem. For an integer
x, we shall write x(mod p) to denote the integer k between 0 and p− 1

such that x ≡ k mod p. (So, for example, 17(mod 7) = 3.) Also, for inte-
gers x1, . . . ,xk, we write x1, . . . ,xk (mod p) as an abbreviation for the list
x1 (mod p), . . . ,xk (mod p). (So for example, the list 17,32,−1 (mod 7) is
3,4,6.)
Now let a, p be as in the theorem. Multiply each of the numbers

1,2,3, . . . , p− 1 by a and take congruences modulo p to get the list

a, 2a, 3a, . . . , (p− 1)a (mod p). (14.1)

(For example, if p = 7 and a = 3, this list is 3,6,2,5,1,4.)
We claim that the list (14.1) consists of the numbers 1,2,3, . . . , p−1 in

some order. To see this, note first that since p does not divide a, none of
the numbers in the list is 0. Next, suppose two of the numbers in the list
are equal, say xa(mod p) = ya(mod p) (where 1 ≤ x,y ≤ p− 1). Saying
that xa(mod p) = ya(mod p) is the same as saying that xa ≡ ya mod p.
By Proposition 13.5(2), this implies that x ≡ y mod p, and since x and
y are between 1 and p− 1, this means that x = y. This shows that the
numbers listed in (14.1) are all different. As there are p−1 of them, and
none of them is 0, they must be the numbers 1,2,3, . . . , p− 1 in some
order.
Now let’s multiply together all the numbers in the list (14.1). The

result is ap−1 · (p− 1)! (mod p). Since the numbers in the list are just
1,2,3, . . . p−1 in some order, this product is also equal to (p−1)! (mod p).
In other words, ap−1 · (p− 1)!(mod p) = (p− 1)!(mod p), which means
that

ap−1 · (p− 1)! ≡ (p− 1)! mod p.

Now p does not divide (p−1)! (since none of the factors p−1, p−2, . . .3,2
is divisible by p). Hence Proposition 13.5(2) allows us to cancel (p−1)!
in the above congruence equation to deduce that ap−1 ≡ 1 mod p. This

completes the proof.
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Notice that Fermat’s Little Theorem implies that if p is prime, then ap ≡
a mod p for all integers a, regardless of whether a is divisible by p (since if p

divides a then obviously ap ≡ a ≡ 0 mod p). For a different proof of Fermat’s

Little Theorem, see Exercise 9 at the end of Chapter 16.

It is possible to use Fermat’s Little Theorem to show that a number N is not

a prime without actually finding any factors of N. For example, suppose we

are trying to test whether the number 943 is prime. One test is to raise some

number, say 2, to the power 942 and see whether the answer is congruent to

1 modulo 943; if it’s not, then 943 is not a prime by Fermat’s Little Theorem.

In fact, using the method of successive squares (see Example 13.3) we can

calculate that

2942 ≡ 496 mod 943,

showing that indeed 943 is not a prime.

Of course, for such a small number as 943 it would be much quicker to test

it for primality by simply looking for prime factors less than
√

943. However,

for really large numbers the above test can be rather effective. Let’s call it the

Fermat test.

The Fermat test is by no means always successful in detecting the non-

primality of a number. For example, you will find that 2340 ≡ 1 mod 341,

which gives you no information about whether or not 341 is prime. (In fact,

it is not prime, since 341 = 11 · 31.) Indeed, there are some numbers N that

are not prime yet satisfy aN−1 ≡ 1 mod N for all integers a coprime to N, and

for these numbers the Fermat test will never detect their non-primality. The

smallest such number is 561 (see Exercise 3 at the end of the chapter).

We shall see in the next chapter that it is very important to be able to find

very large primes using computers, so finding good primality tests is vital.

There are some clever refinements of the Fermat test that work well in practice,

and I’ll discuss these later in this chapter.

Before moving on to the next section, we note the following result, which

is an easy consequence of Fermat’s Little Theorem. We’ll need this also in the

next chapter.

PROPOSITION 14.1
Let p and q be distinct prime numbers, and let a be an integer that is
not divisible by p or by q. Then

a(p−1)(q−1) ≡ 1 mod pq.

PROOF By Fermat’s Little Theorem we know that ap−1 ≡ 1 mod p.
Taking (q− 1)th powers of both sides (which we can do by Proposition
13.4), it follows that a(p−1)(q−1) ≡ 1 mod p. Similarly aq−1 ≡ 1 mod q,
and hence also a(q−1)(p−1) ≡ 1 mod q. Therefore, both p and q divide



120 A CONCISE INTRODUCTION TO PURE MATHEMATICS

a(p−1)(q−1)− 1, so pq divides this number (since p and q both appear
in its prime factorization). In other words, a(p−1)(q−1) ≡ 1 mod pq, as

required.

Finding kth Roots Modulo m

We now consider congruence equations of the form

xk ≡ b mod m,

where m,b and k are given integers and we want to solve for x(mod m). We

can regard any such solution x as a kth root of b modulo m, so solving this

equation is equivalent to finding kth roots modulo m.

In fact we now have enough theory in place to be able to do this under certain

assumptions when m is either a prime or a product of two primes. Let’s begin

with an example.

Example 14.1
Solve the equation x11 ≡ 5 mod 47.

Answer Let x be a solution, so

x11 ≡ 5 mod 47. (14.2)

We also know by Fermat’s Little Theorem that

x46 ≡ 1 mod 47. (14.3)

The idea is to combine (14.2) and (14.3) in a clever way to find x.

The key is to observe that 11 and 46 are coprime, and so, using Proposition

10.3 and Exercise 2 of Chapter 10, we can find positive integers s, t such that

11s− 46t = 1. So 11s = 1+ 46t and 11s ≡ 1 mod 46. Then

x · (x46)t = x1+46t = x11s = (x11)s,

and so by (14.2) and (14.3),

x ≡ 5s mod 47.

In fact, using the Euclidean algorithm we find that 1 = 21 · 11− 5 · 46, so we

take s = 21, t = 5. Using the method of successive squares (see Example 13.3),

we see that 521 ≡ 15 mod 47.
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This shows that x(mod 47) = 15 is the only possible solution. To check

that it really is a solution, work backwards in the above calculation: if x ≡
5s mod 47, then

x11 ≡ 511s ≡ 51+46t ≡ 5 · (546)t ≡ 5 mod 47,

so this is indeed a solution.

The general case is no harder than this example. Here it is.

PROPOSITION 14.2
Let p be a prime, and let k be a positive integer coprime to p−1. Then
(i) there is a positive integer s such that sk ≡ 1 mod (p− 1), and
(ii) for any b ∈ Z not divisible by p, the congruence equation

xk ≡ b mod p

has a unique solution for x modulo p. This solution is x ≡ bs mod p,
where s is as in (i).

PROOF (i) Since k and p− 1 are coprime, Proposition 10.3 implies
that there are integers s, t such that sk−t(p−1)= 1. We wish to take s to
be positive; we can do this by adding a multiple of p−1 to it, provided
we add the same multiple of k to t. (Here we are simply observing
that (s+ a(p− 1))k− (t + ak)(p− 1) = 1 for any a.) We now have sk =
1+ t(p− 1)≡ 1 mod (p− 1) with s positive, proving (i).

(ii) Suppose that x is a solution to xk ≡ b mod p. Since p does not
divide b, it does not divide x, so by Fermat’s Little Theorem we have
xp−1 ≡ 1 mod p. Hence

x ≡ x1+t(p−1) ≡ xsk ≡ (xk)s ≡ bs mod p.

Hence the only possible solution is x ≡ bs mod p, and this is indeed a
solution, since

(bs)k ≡ bsk ≡ b1+t(p−1) ≡ b · (bp−1)t ≡ b mod p.

A simple modification of the proof enables us to find kth roots modulo a

product of two primes. Here is the result, which will be crucial to our discus-

sion of secret codes in the next chapter.
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PROPOSITION 14.3
Let p,q be distinct primes, and let k be a positive integer coprime to
(p− 1)(q− 1). Then
(i) there is a positive integer s such that sk ≡ 1 mod (p−1)(q−1), and
(ii) for any b ∈ Z not divisible by p or by q, the congruence equation

xk ≡ b mod pq

has a unique solution for x modulo pq. This solution is x ≡ bs mod pq,
where s is as in (i).

PROOF The proof is just like that of the previous proposition,
except that at the beginning we find integers s, t such that

sk− t(p− 1)(q− 1)= 1,

and at the end we use Proposition 14.1 instead of Fermat’s Little The-
orem.

Finding Large Primes

In the next chapter I will introduce you to some very clever secret codes

that are used every day for the secure transmission of sensitive information.

These codes are based on some of the theory of prime numbers and congruence

that we have covered already. For practical use of the codes, one of the basic

requirements is the ability to find very large prime numbers using a computer

— prime numbers with more than 200 digits are required. So here is a brief

discussion of how this is done in practice.

The key is to have a good primality test; in other words, given a very large

number N on our computer, we want a method that the computer can quickly

apply to tell whether this number N is prime or not. We have already seen

earlier in this chapter one idea for such a method, based on the Fermat test:

using the method of successive squares, test whether aN−1 ≡ 1 mod N for a

reasonable number of values of a. If this is false for any of these values a,

then N is not prime by Fermat’s Little Theorem. However, if it is true for all

the tested values of a, then while it is rather likely that N is prime, it is not

definite — there are numbers N (such as 561) for which aN−1 ≡ 1 mod N for

all integers a coprime to N, yet N is not prime.

However, there is a neat variant of the Fermat test that does work in practice.

It is based on the following simple fact.
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PROPOSITION 14.4
Let p be a prime. If a is an integer such that a2 ≡ 1 mod p, then

a ≡±1 mod p.

PROOF Assume that a2 ≡ 1 mod p. Then p divides a2 −1, which is
equal to (a− 1)(a+ 1). Hence, by Proposition 10.5(b), p divides either

a−1 or a+1. In other words, either a≡ 1 mod p or a≡−1 mod p.

Here then is the variant of the Fermat test known as Miller’s test. Let N be

an odd positive integer to be tested for primality, and let b be a positive inte-

ger less than N (known as the base). First, test whether bN−1 ≡ 1 mod N. If

this is false we know that N is not prime, and stop; if it is true, we work out

b(N−1)/2 (mod N). If this is not ±1(mod N), then N is not prime by Proposi-

tion 14.4, and we say that N fails Miller’s test with the base b, and stop. If it

is −1(mod N), we say that N passes Miller’s test with the base b, and stop.

And if it is 1(mod N), then we repeat: work out b(N−1)/4 (mod N) (assuming

4 divides N − 1) — if this is not ±1(mod N), then N is not prime and fails

Miller’s test; if it is −1(mod N), N passes Miller’s test; and if it is 1(mod N),
we repeat, this time working out b(N−1)/8 (mod N) (assuming 8 divides N−1).

We carry on repeating this process. One of the following three things will

happen:

(1) at some point we get a value that is not ±1(mod N);

(2) at some point we get −1(mod N);

(3) we always get 1(mod N) until we run out of powers of 2 to divide N −1

by (in other words, we get b(N−1)/2i ≡ 1 mod N for i = 0, . . . s, where

N − 1 = 2s ·m with m odd).

If (1) happens, we say that N fails Miller’s test with the base b, and if (2) or (3)

happens, we say that N passes Miller’s test with the base b.

Example 14.2
We’ve seen (or at least I have told you!) that it is impossible to show
that 561 is not prime using the Fermat test (since a560 ≡ 1 mod 561 for
all a coprime to 561). But if you do Miller’s test with the base 5, you
will find at the first step that 5(561−1)/2 = 5280 ≡ 67 mod 561; hence, 561
fails Miller’s test and is not prime.

We know that if N fails Miller’s test then it is definitely not prime. But

what if N passes the test? Here’s the crux: a clever — but not too difficult
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— argument shows that if b is chosen at random and N is not prime, then the

chance that N passes Miller’s test with the base b is less than 1
4
. Hence if we

do the test with k different bases, the chance N will pass all k tests is less than

( 1
4
)k. Taking k = 100, say, this chance is ( 1

4
)100, which is about 10−60, and this

is less than the chance that your computer makes an error in its calculations

along the way.

To summarise, we now have a powerful, albeit “probabilistic” primality test

for a large integer N: pick at random 100 positive integers less than N, and do

Miller’s test on N with each of these as the base. If N fails any of the tests, it

is not prime; and if it passes all of them then N is almost certainly a prime, the

chance of getting the answer wrong being less than the chance of a computer

error.

For a discussion of this and more powerful tests, see the book by K.H. Rosen

listed in the Further Reading at the end of this book.

Exercises for Chapter 14

1. (a) Find 3301(mod 11), 5110(mod 13) and 71388(mod 127).

(b) Show that n7 − n is divisible by 42 for all positive integers n.

2. Let a,b be integers, and let p be a prime not dividing a. Show that the

solution of the congruence equation ax ≡ b mod p is x ≡ ap−2b mod p.

Use this observation to solve the congruence equation 4x ≡ 11 mod 19.

3. Let N = 561 = 3 ·11 ·17. Show that aN−1 ≡ 1 mod N for all integers a

coprime to N.

4. Let p be a prime number and k a positive integer.

(a) Show that if p is odd and x is an integer such that x2 ≡ 1 mod pk,

then x ≡±1 mod pk.

(b) Find the solutions of the congruence equation x2 ≡ 1 mod 2k. (Hint:

There are different numbers of solutions according to whether k = 1,

k = 2 or k > 2.)

5. Show that if p and q are distinct primes, then pq−1 + qp−1 ≡ 1 mod pq.

6. The number (p− 1)! (mod p) came up in our proof of Fermat’s Little

Theorem, although we didn’t need to find it. Calculate (p−1)! (mod p)
for some small prime numbers p. Find a pattern and make a conjecture.

Prove your conjecture! (Hint: You may find Exercise 6 of Chapter 13

useful.)
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7. (a) Solve the congruence equation x3 ≡ 2 mod 29.

(b) Find the 7th root of 12 modulo 143 (i.e., solve x7 ≡ 12 mod 143).

(c) Find the 11th root of 2 modulo 143.

8. Use Miller’s test with a few different bases to try to discover whether

2161 is a prime number. Make sure your answer has a chance of at least

98% of being correct.

9. In a late-night showing of the Spanish cult movie Teorema Poca de Fer-

mat, critic Ivor Smallbrain is dreaming that the answer to life, the uni-

verse and everything is 1387, provided this number is prime. He tries

Fermat’s test on 1387, then Miller’s test, both with the base 2.

What are the results of Ivor’s tests? Has he found the answer to life, the

universe and everything?
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Chapter 15

Secret Codes

Since time immemorial, people have found it necessary to send information

to others in a secure way, so that even if a message is intercepted by a third

party, it can be read only by the intended recipient. This is usually achieved by

converting the message into a string of numbers or letters according to some

rule that only the sender and recipient know. The process of converting the

message into such a string is called “encoding,” and the process by which the

recipient converts the received string back to the original message is called

“decoding.”

For example, one of the simplest imaginable encoding rules would be to

substitute 01 for an A, 02 for a B, 03 for a C, and so on until we get to 26 for a

Z. Then the message

SMALLBRAIN IS THE CULPRIT

gets encoded as the string of numbers

19130112120218010914091920080503211216180920. (15.1)

However, anyone with a modicum of intelligence would be able to break this

code in a matter of minutes. In view of the millions of Internet transactions,

sensitive business and government communications, and so on, that take place

every day, some rather more sophisticated ideas are required to ensure the se-

cure transfer of information in today’s world. The codes now in use for such

purposes — so-called RSA codes — are based on some of the theory of prime

numbers and congruence developed in the last few chapters. These codes can

be explained in just a few pages, which I shall now attempt to do.

Before going into the theory, let me explain the crucial fact that gives these

codes their security. Any form of security is based on things that “attackers”

are unable to do. In this case, information is being transmitted electronically

by computer, so security needs to be based on something that computers can’t

do quickly.

Let me now explain something that computers can’t do quickly. If you take

two reasonably large prime numbers, say 1301 and 2089, you can find their

127
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product (2717789) using a calculator, in a few seconds. However, if instead

you were given the number 2717789 and asked to find its prime factors, it

would take you and your calculator much longer. (If you doubt this, try us-

ing your calculator to find the prime factors of 127741.) The same kind of

observation applies if we bring very powerful computers into play: take two

very large primes p and q, say with about 200 digits each — I outlined to you

how such primes are found in the last section of Chapter 14 — and calculate

pq. Keep p and q secret, but tell the most powerful computer in the world the

value of pq. Then, however cleverly that computer is programmed (at least

with ideas available today), it will probably take at least several centuries for

it to find out what p and q are. In other words, computers find factorization of

large numbers “difficult.”

RSA Codes: Encoding

Here are the encoding and decoding processes for RSA codes. We choose

two large prime numbers p and q, and multiply them together to get N = pq.

We also find (p− 1)(q− 1) and choose a large number e which is coprime to

(p−1)(q−1). We then make public the numbers N and e, but keep the values

of p and q secret. We shall illustrate the discussion with the values

p = 37, q = 61, N = pq = 2257, (p− 1)(q− 1) = 2160, e = 11.

(In practice, to ensure the security of the code, one uses primes with around

200 digits, but these primes will serve for illustrative purposes.)

The pair (N,e) is called the public key of the code. Anyone who wants to

send us a message can use the numbers N and e in the following way. First,

they convert their message into a string of numbers by some process such as the

one given above (01 for A, etc.). They then break up this string into a sequence

of numbers with fewer digits than N. For example, with p,q as above, the

message (15.1) would be broken up as the sequence

191, 301, 121, 202, 180, 109, 140, 919, 200, 805, 032, 112, 161, 809, 20.

So the message now is a sequence of numbers; call it m1,m2, . . . ,mk. The

next step is to encode this message. To do this, the sender calculates, for 1 ≤
i ≤ k, the value of ni, where ni ≡ me

i mod N and 0 ≤ ni < N. This can be done

quickly on a computer using the method of successive squares described in

Example 14.3. The encoded message is the new list of numbers n1,n2, . . . ,nk,

and this is the message that is sent to us. In the example above, m1 = 191,

N = 2257 and e = 11, and using the method of successive squares, we have

1912 ≡ 369 mod 2257, 1914 ≡ 741 mod 2257, 1918 ≡ 630 mod 2257,
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and hence

19111 ≡ 1918+2+1 ≡ 630 ·369 ·191≡ 2066 mod 2257.

Hence n1 = 2066. Similarly, we find that n2 = 483, n3 = 914, n4 = 1808, and

so on. So the encoded message is

2066, 483, 914, 1808, . . .

Decoding

Once we have received the message, we have to decode it. In other words,

given the received list of numbers n1, . . . ,nk, we need to find the original num-

bers m1, . . . ,mk, where ni ≡ me
i mod N. But mi is just the solution of the con-

gruence equation xe ≡ ni mod N, and we have seen in Proposition 14.3 how

to solve such congruence equations: since e has been chosen to be coprime to

(p− 1)(q− 1), we can use the Euclidean algorithm to find a positive integer

d such that de ≡ 1 mod (p− 1)(q− 1). Then the solution to the congruence

equation xe ≡ ni mod N is x ≡ nd
i mod N. Of course this solution must be the

original number mi, and hence we recover the original message m1, . . . ,mk, as

desired.

In the above example, e = 11 and (p− 1)(q− 1) = 2160. Since n1 = 2066,

to recover the first number m1 of the original message we need to solve the

congruence equation x11 ≡ 2066 mod 2257. Use of the Euclidean algorithm

shows that 1 = 1571 · 11− 8 · 2160, so we take d = 1571. We then use suc-

cessive squares to calculate that 20661571 ≡ 191 mod 2257 and hence recover

the first number, m1 = 191, of the original message. Similarly, we recover

m2, . . . ,mk.

To summarise: to encode a message, we raise each of its listed numbers to

the power e (e for “encode”) and work out the answer module N; and to decode

a received message, we raise each of its listed numbers to the power d (d for

“decode”) and work this out modulo N.

Now let’s decode a new message (still keeping the above values of p, q and

e). You are relaxing on your hotel balcony in Monte Carlo, sipping a pina

colada, when your laptop beeps and the following strange message arrives:

763, 28, 1034, 559, 2067, 2028, 798.

At once you spring into action, getting your laptop to solve the congruence
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equations

x11 ≡ 763 mod 2257 → x ≡ 7631571 mod 2257 → x(mod 2257) = 251

x11 ≡ 28 mod 2257 → x ≡ 281571 mod 2257 → x(mod 2257) = 521

x11 ≡ 1034 mod 2257 → x ≡ 10341571 mod 2257 → x(mod 2257) = 180

x11 ≡ 559 mod 2257 → x ≡ 5591571 mod 2257 → x(mod 2257) = 506

x11 ≡ 2067 mod 2257 → x ≡ 20761571 mod 2257 → x(mod 2257) = 091

x11 ≡ 2028 mod 2257 → x ≡ 20281571 mod 2257 → x(mod 2257) = 805

x11 ≡ 798 mod 2257 → x ≡ 7981571 mod 2257 → x(mod 2257) = 04.

This gives the decoded message as the following string of numbers:

251, 521, 180, 506, 091, 805, 04.

Using the original substitutions, 01 for A, 02 for B, etc., you finally translate

this into the urgent message:

YOUREFIRED

Unruffled, you saunter back to your drink. You’d been planning to take up that

managing directorship offer anyway . . .

Security

How secure is the RSA code described above? In other words, if an encoded

message is intercepted by a third party (who knows the publicly available val-

ues of N and e), how easy is it for them to decode the message? Well, at

present, the only known way to decode is first to find the value of (p−1)(q−1)
and then to calculate d and use the decoding method above, working out dth

powers modulo N.

However, (p−1)(q−1) = pq− p−q+1= N − (p+q)+1, so if we know

N and can find (p− 1)(q− 1), then we can also find p+ q. But then we can

also find p and q, since they are the roots of the quadratic equation x2 − (p+
q)x+N = 0.

In other words, in order to be able to decode messages, a third party needs

to be able to find the prime factors p and q of N. But as I explained before

starting the description of RSA codes, if p and q are very large primes — both

with about 200 digits — then no computer on earth will be able to find p and

q, given only their product. In other words, the code is secure!

Even if increases in computer power enable us to factorize products of two

200-digit primes in the future, it will be a simple matter to retain security just

by increasing the number of digits in our primes p and q. What is not clear is

whether someone in the future will discover a clever new method of computer

factorization of large numbers that makes all these codes insecure.
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A Little History

The remarkable idea that it might be possible to design a code where knowl-

edge of the encoding process does not mean that one can decode messages

was proposed by Diffie and Hellman in 1976, and a year later Rivest, Shamir

and Adleman found such codes, namely the ones described above, which are

known as RSA codes in honour of their discoverers. A few years ago, however,

some new facts came to light from the Government Communications Head-

quarters (GCHQ) in Cheltenham in the UK, and it turned out that these codes

had been discovered there several years earlier by Ellis, Cocks and Williamson.

These discoveries could not be publicised at the time because of the classified

secret nature of work at GCHQ. For an interesting account of this and many

other aspects of secret codes through the ages, read the book by Simon Singh

listed in the Further Reading at the end of this book.

Exercises for Chapter 15

1. Find the primes p and q, given that pq = 18779 and (p− 1)(q− 1) =
18480.

2. (a) Encode the message WHERE ARE YOU using the public key (N,e)=
(143,11).

(b) You intercept the encoded answer. Here it is:

12, 59, 14, 114, 59, 14.

Brilliantly crack this code and decipher this message.

3. Critic Ivor Smallbrain has been given the honour of being given a chance

to nominate the best film of all time by the Oscar committee. He has

to send his nomination to them using the RSA code with public key

(N,e) = (1081,25). The nomination will only be accepted if it remains

secret until the ceremony.

Unfortunately, arch-rival Greta Picture intercepts Ivor’s message. Here

it is:

23, 930, 228, 632.

Greta offers a large sum to anyone who can crack the code and decipher

Ivor’s message.

Can you improve your bank balance and disappoint Ivor?
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Chapter 16

Counting and Choosing

Mathematics has many tools for counting. We shall give some simple methods

in this chapter. These lead us to binomial coefficients and then to the Binomial

Theorem and the Multinomial Theorem.

Let us begin with an example.

Example 16.1
A security system uses passwords consisting of two letters followed by
two digits. How many different passwords are possible?

Answer The number of choices for each letter is 26 and for each digit is 10.

We claim the answer is the product of these numbers, namely

26× 26× 10×10.

Here is the justification for this claim. Let N be the number of possible pass-

words, and let a typical password be αβ γδ , where α,β are letters and γ,δ are

digits. For each choice of αβ γ , there are 10 passwords αβ γδ (one for each of

the 10 possibilities for δ ). Thus,

N = 10× number of choices for αβ γ.

Likewise, for each choice of αβ , there are 10 possibilities for αβ γ , so

N = 10× (10× number of choices for αβ ).

For each choice of α there are 26 possibilities for αβ , so

N = 10× 10× (26× number of choices for α) = 10× 10× 26× 26.

The argument used in the above example shows the following.

133
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THEOREM 16.1 (Multiplication Principle)
Let P be a process which consists of n stages, and suppose that for each

r, the rth stage can be carried out in ar ways. Then P can be carried out
in a1a2 . . .an ways.

In the above example, there are four stages, with a1 = a2 = 26,a3 = a4 = 10.

Here is another example that is not quite so simple.

Example 16.2
Using the digits 1,2, . . . ,9, how many even two-digit numbers are there
with two different digits?

Answer Let us consider the following two-stage process to pick such an even

integer. The first stage is to choose the second digit (2, 4, 6 or 8); it can be

done in four ways. The second stage is to choose the first digit, which can be

done in eight ways. Hence, by the Multiplication Principle, the answer to the

question is 32.

Notice that we would have had trouble if we had carried out the process the

other way around and first chosen the first digit, because then the number of

ways of choosing the second digit would depend on whether the first digit was

even or odd.

Here is another application of the Multiplication Principle.

PROPOSITION 16.1
Let S be a set consisting of n elements. Then the number of different
arrangements of the elements of S in order is n!

(Recall that n! = n(n− 1)(n− 2) · · ·2 ·1.)

For example, if S = {a,b,c} then the different arrangements of the elements

in order are

abc, acb, bac, bca, cab, cba.

As predicted by the proposition, there are 6 = 3! of them.

PROOF Choosing an arrangement is an n-stage process. First
choose the first element (n possibilities); then choose the second element
— this can be any of the remaining n− 1 elements, so there are n−
1 possibilities; then the third, for which there are n− 2 possibilities;
and so on. Hence, by the Multiplication Principle, the total number of
arrangements is n(n− 1)(n− 2) . . .2 ·1 = n!.
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Binomial Coefficients

We now introduce some numbers that are especially useful in counting ar-

guments.

DEFINITION Let n be a positive integer and r an integer such that
0 ≤ r ≤ n. Define

(
n

r

)

(called “n choose r”) to be the number of r-element subsets of {1,2, . . . ,n}.

For example, the 2-element subsets of {1,2,3,4} are {1,2}, {1,3}, {1,4},

{2,3}, {2,4}, {3,4}, and so
(

4

2

)

= 6.

PROPOSITION 16.2
We have (

n

r

)

=
n!

r!(n− r)!
.

PROOF Let S = {1,2, . . . ,n} and count the arrangements of S in
order as follows:

Stage 1: Choose an r-element subset T of S: there are
(

n
r

)
choices.

Stage 2: Choose an arrangement of T : by Proposition 16.1 there are
r! choices.

Stage 3: Choose an arrangement of the remaining n− r elements of S:
there are (n− r)! choices.

By the Multiplication Principle, the total number of arrangements of S is
equal to the product of these three numbers. Hence, by Proposition 16.1,

n! =

(
n

r

)

× r!× (n− r)!

and the result follows from this.

Another way of expressing the conclusion of Proposition 16.2 is

(
n

r

)

=
n(n− 1) . . .(n− r+ 1)

r(r− 1) . . .2 ·1 .
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Some useful particular cases of this are:
(

n

0

)

=

(
n

n

)

= 1

(there is only one 0-element and one n-element subset of S!), and
(

n

1

)

= n,

(
n

2

)

=
n(n− 1)

2
,

(
n

3

)

=
n(n− 1)(n− 2)

6
.

Example 16.3
Liebeck has taught the same course for the last 16 years, and tells three
jokes each year. He never tells the same set of three jokes twice. At
least how many jokes does Liebeck know? When will he have to tell a
new one?

Answer Suppose Liebeck knows n jokes. Then
(

n
3

)
must be at least 16. Since

(
5
3

)
= 10 and

(
6
3

)
= 20, it follows that n ≥ 6. So Liebeck knows at least 6 jokes

and will have to tell a seventh in 5 years’ time (i.e., in the 21st year of giving

the course — assuming he has not dropped dead by then).

Example 16.4
How many solutions are there of the equation x+y+ z= 10, where x,y,z
are non-negative integers ?

Answer Here’s a clever way to approach this. Think of a solution to x+y+z=
10 (x,y,z non-negative integers) as a string of ten 1’s and two 0’s: start the

string with x 1’s, then a 0, then y 1’s, then a 0, then z 1’s. (For example,

the solution x = 4,y = 1,z = 5 is represented by the string 111101011111.) To

specify a solution, we write down the 12 symbols, and the only choice is where

we put the two 0’s. So the total number of solutions is
(

12
2

)
= 66.

The numbers
(

n
r

)
are known as binomial coefficients. This is because of the

following famous theorem.

THEOREM 16.2 Binomial Theorem
Let n be a positive integer, and let a,b be real numbers. Then

(a+ b)n =
n

∑
r=0

(
n

r

)

an−rbr

= an + nan−1b+

(
n

2

)

an−2b2 + · · ·

+

(
n

r

)

an−rbr + · · ·+
(

n

n− 1

)

abn−1 + bn.
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PROOF Consider

(a+ b)n = (a+ b)(a+ b) . . .(a+ b).

When we multiply this out to get a term an−rbr, we choose the b from r

of the brackets and the a from the other n− r brackets. So the number
of ways of getting an−rbr is the number of ways of choosing r brackets
from n, and hence is

(
n
r

)
. In other words, the coefficient of an−rbr is

(
n
r

)
.

The theorem follows.

In Exercise 9 at the end of the chapter, you are asked to provide an alternative

proof of the Binomial Thoerem by induction.

Here are the first few cases of the Binomial Theorem:

(a+ b)0 = 1

(a+ b)1 = a+ b

(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2+ b3

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3+ b4

(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4+ b5.

There are one or two patterns to observe about this. First, each expression is

symmetrical about the centre; this is due to the fact, obvious from Proposi-

tion 16.2, that (
n

r

)

=

(
n

n− r

)

(for example,
(

5
2

)
=
(

5
3

)
= 10). Rather less obvious is the fact that if we write

down the coefficients in the above expressions in the following array, known

as Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

then you can see that each entry is the sum of the one above it and the one to

the left of that. This is explained by the equality

(
n+ 1

r

)

=

(
n

r

)

+

(
n

r− 1

)

,

which you are asked to prove in Exercise 8 at the end of the chapter.
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Putting a = 1 and b = x in the Binomial Theorem, we obtain the following

consequence.

PROPOSITION 16.3
For any positive integer n,

(1+ x)n =
n

∑
r=0

(
n

r

)

xr.

Putting x =±1 in this, we get the interesting equalities

n

∑
r=0

(
n

r

)

= 2n,
n

∑
r=0

(−1)r

(
n

r

)

= 0.

The second of these equalities gives the following, which will be useful in the

next chapter:
n

∑
r=1

(−1)r−1

(
n

r

)

=

(
n

0

)

= 1. (16.1)

Ordered Selections

Suppose we have a set S of n elements. We know that the number of ways

of choosing a subset of S of size r is equal to
(

n
r

)
. But there might be different

ways we want to choose our elements — for example, we may care about the

order in which we select them, or we may want to allow repetitions in our

selection. Here’s an example to illustrate this.

Example 16.5
Let S = {a,b,c,d,e}. A “word” is an ordered selection of letters from S

— for example abc, cba or bbcbe.
(1) How many three-letter words are there?
(2) How many three-letter words are there with distinct letters?

Answer (1) There are 5 choices for the first letter, 5 for the second and 5 for

the third. So the total number of words is 53 = 125.

(2) As the letters are distinct there are 5 choices for the first letter, 4 for the

second and 3 for the third. So the total number of words with distinct letters is

5 ·4 ·3= 60.

PROPOSITION 16.4
Let S be a set of n elements.
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(1) The number of ordered selections of r elements of S, allowing rep-
etitions, is equal to nr.

(2) The number of ordered selections of r distinct elements of S is equal
to n(n− 1) · · ·(n− r+ 1).

PROOF (1) An ordered selection of r elements of S is a process of
r stages: Stage 1 is to choose the first element, Stage 2 the second, and
so on. There are n choices at each stage. Hence the total number of
selections is nr.
(2) Similarly, an ordered selection of r distinct elements of S is a

process of r stages in which there are n choices at the first stage, n− 1

at the second, and so on until the rth stage at which there are n− r+ 1

choices. Hence the total number of selections is n(n− 1) · · ·(n− r+ 1).

We will write P(n,r) for the number of ordered selections of r distinct ele-

ments from a set of size n, so that

P(n,r) = n(n− 1) · · ·(n− r+ 1).

Note that P(n,r) = n!
(n−r)!

= r!
(

n
r

)
.

Example 16.6
The Birthday Paradox Suppose there are r people in a room. Let’s work
out the chance that they all have birthdays on different dates. (For
simplicity we will assume that all years have 365 days and that each
date is equally likely as a birthday.) By Proposition 16.4, the number
of ordered selections of r different dates is equal to P(365,r), while the
total number of ordered selections of r dates is 365r. Hence the chance
that they all have different birthdays is

P(365,r)

365r
=

365 ·364 · · ·(365− r+ 1)

365 ·365 · · ·365
.

This ratio can be calculated for various values of r. For example, for
r = 23 it is about 0.493, and for r = 70 it is less than 0.001. This means
that in a room with 23 people, the chance that two of them have the
same birthday is more than 50%; and with 70 people, the chance that
two have the same birthday is more than 99.9%! These facts may be
surprising at first sight, and the one about the 23 people is called the
Birthday Paradox.
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Multinomial Coefficients

Suppose eight students (call them 1,2,3, . . . ,8) are to be assigned to three

projects (call them A, B, C); project A requires 4 students, project B requires 2,

and project C also requires 2. In how many ways can the students be assigned

to the projects?

To answer this, we could list all possible assignments like this:

A B C

1,2,3,4 5,6 7,8
1,2,3,4 7,8 5,6
1,2,3,4 5,7 6,8
1,2,3,4 6,8 5,7
1,2,3,5 4,6 7,8

. . .

. . .

However, the deadline for the projects will probably have passed by the time

we have finished writing down the complete list (in fact there are 420 possible

assignments). We need a nice way of counting such things.

Each assignment is what is called an ordered partition of the set {1,2, . . . ,8}
into subsets A,B,C of sizes 4, 2, 2. Here is the general definition of such a

thing.

DEFINITION Let n be a positive integer, and let S = {1,2, . . . ,n}.
A partition of S is a collection of subsets S1, . . . ,Sk such that each element
of S lies in exactly one of these subsets. The partition is ordered if we
take account of the order in which the subsets are written.

The point about the order is that, for instance in the above example, the

ordered partition

{1,2,3,4} {5,6} {7,8}
is different from the ordered partition

{1,2,3,4} {7,8} {5,6}

even though the subsets involved are the same in both cases.

If r1, . . . ,rk are non-negative integers such that n = r1 + · · ·+ rk, we denote

the total number of ordered partitions of S= {1,2, . . . ,n} into subsets S1, . . . ,Sk

of sizes r1, . . . ,rk by the symbol
(

n

r1, . . . ,rk

)

.
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Example 16.7
(1) The number of possible project assignments in the example above

is (
8

4,2,2

)

.

(2) If Alfred, Barney, Cedric and Dugald play bridge, the total number
of different possible hands that can be dealt is

(
52

13,13,13,13

)

.

(3) It is rather clear that

(
n

r,n− r

)

=

(
n

r

)

.

PROPOSITION 16.5
We have (

n

r1, . . . ,rk

)

=
n!

r1!r2! . . . rk!
.

PROOF We count the n! arrangements of S = {1,2, . . . ,n} in stages
as follows:

Stage 0: Choose an ordered partition of S into subsets S1, . . . ,Sk of sizes
r1, . . . ,rk; the number of ways of doing this is

(
n

r1, . . . ,rk

)

.

Stage 1: Choose an arrangement of S1: there are r1! choices.

Stage 2: Choose an arrangement of S2: there are r2! choices.

And so on, until

Stage k: Choose an arrangement of Sk: there are rk! choices.

By the Multiplication Principle, we conclude that

n! =

(
n

r1, . . . ,rk

)

r1! . . .rk!

The result follows.
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Example 16.8
(1) The number of project assignments in the first example is

(
8

4,2,2

)

=
8!

4!2!2!
= 420.

(2) The total number of bridge hands, namely

(
52

13,13,13,13

)

,

is approximately 5.365× 1028; quite a large number.

(3) What is the total number of ways of arranging the letters of the
word MISSISSIPPI? Well, each arrangement corresponds to an ordered
partition of the 11 positions for the letters, with subsets of sizes 4 (for
the I’s), 4 (for the S’s), 2 (for the P’s) and 1 (for the M). So the total
number of arrangements is

(
11

4,4,2,1

)

= 34650.

The numbers
(

n
r1,...,rk

)
are called multinomial coefficients, for the following

reason.

THEOREM 16.3 Multinomial Theorem
Let n be a positive integer, and let x1, . . . ,xk be real numbers. Then the
expansion of (x1 + · · ·+ xk)

n is the sum of all terms of the form

(
n

r1, . . . ,rk

)

x
r1
1 . . .x

rk

k

where r1, . . . ,rk are non-negative integers such that r1 + · · ·+ rk = n.

PROOF Consider

(x1 + · · ·+ xk)
n = (x1 + · · ·+ xk) (x1 + · · ·+ xk) . . . (x1 + · · ·+ xk) .

In expanding this, we get a term x
r1
1 . . .x

rk

k by choosing x1 from r1 of the
brackets, x2 from r2 brackets, and so on. The number of ways of doing
this is (

n

r1, . . . ,rk

)

,

so this is the coefficient of x
r1
1 . . .x

rk

k in the expansion.
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Example 16.9
(1) The expansion of (x+ y+ z)3 is

(x+ y+ z)3 = x3 + y3 + z3 + 3x2y+ 3xy2+ 3x2z+ 3xz2 + 3y2z+ 3yz2 + 6xyz.

(2) The coefficient of x2y3z2 in the expansion of (x+ y+ z)7 is
(

7

2,3,2

)

=
7!

2!3!2!
= 210.

(3) Find the coefficient of x3 in the expansion of (1− 1
x3 + 2x2)5.

Answer A typical term in this expansion is
(

5

a,b,c

)

·1a · (−1

x3
)b · (2x2)c

where a+b+ c = 5 (and a,b,c ≥ 0). To make this a term in x3, we need

−3b+ 2c= 3 and a+ b+ c= 5.

From the first equation, 3 divides c, so c = 0 or 3. If c = 0 then b =−1,
which is impossible. Hence c = 3, and it follows that a = 1,b = 1. Thus
there is just one term in x3, namely

(
5

1,1,3

)

(
−1

x3
)(2x2)3 =−160x3.

In other words, the coefficient is −160.

Exercises for Chapter 16

1. Evaluate the binomial coefficients
(

8
3

)
and

(
15
5

)
.

2. Liebeck, Einstein and Hawking pinch their jokes from a joke book which

contains 12 jokes. Each year Liebeck tells six jokes, Einstein tells four

and Hawking tells two (and everyone tells different jokes). For how

many years can they go on, never telling the same three sets of jokes?

3. (a) How many solutions are there of the equation x+ y + z + t = 14,

where x,y,z, t are non-negative integers? (Hint: see Example 16.4.)

(b) How many solutions are there of the equation x+ y + z + t = 14,

where x,y,z, t are positive integers and t ≤ 8 ?

(c) Let c1, . . . ,cr be integers, and let N be an integer such that N ≥ ∑r
1 ci.

Find, in terms of N,r and c1, . . . ,cr, a formula for the number of so-

lutions of the equation x1 + · · ·+ xr = N, where the xi are integers and

xi ≥ ci for all i.
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4. Josephine lives in the lovely city of Blockville. Every day Josephine

walks from her home to Blockville High School, which is located 10

blocks east and 14 blocks north from home. She always takes a shortest

walk of 24 blocks.

(a) How many different walks are possible?

(b) 4 blocks east and 5 blocks north of Josephine’s home lives Jemima,

her best friend. How many different walks to school are possible for

Josephine if she meets Jemima at Jemima’s home on the way?

(c) There is a park 3 blocks east and 6 blocks north of Jemima’s home.

How many walks to school are possible for Josephine if she meets Jemima

at Jemima’s home and they then stop in the park on the way?

5. (a) How many words of ten or fewer letters can be formed using the

alphabet {a,b}?

(b) Using the alphabet {a,b,c,d,e, f}, how many six letter words are

there that use all six letters, in which no two of the letters a,b,c occur

consecutively?

6. (a) Find the number of arrangements of the set {1,2, . . . ,n} in which the

numbers 1,2 appear as neighbours.

(b) Let n ≥ 5. Find the number of arrangements of the set {1,2, . . . ,n}
in which the numbers 1,2,3 appear as neighbours in order, and so do the

numbers 4,5.

7. Liebeck has n steaks and is surrounded by n hungry wolves. He throws

each of the steaks to a random wolf. What is the chance that

(i) every wolf gets a steak?

(ii) exactly one wolf does not get a steak?

(iii) Liebeck gets eaten, in the case where n = 7?

8. (a) Prove that (
n+ 1

r

)

=

(
n

r

)

+

(
n

r− 1

)

.

(b) Prove that for any positive integer n,

3n =
n

∑
k=0

(
n

k

)

2k.

9. Give a proof of the Binomial Theorem 16.2 by induction on n.
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10. n points are placed on a circle, and each pair of points is joined by a

straight line. The points are chosen so that no three of these lines pass

through the same point. Let rn be the number of regions into which the

interior of the circle is divided.

Draw pictures to calculate rn for some small values of n.

Conjecture a formula for rn in terms of n.

11. Three tickets are chosen from a set of 100 tickets numbered 1,2,3, . . . ,
100. Find the number of choices such that the numbers on the three

tickets are

(a) in arithmetic progression (i.e., a,a+ d,a+ 2d for some a,d)

(b) in geometric progression (i.e., a,ar,ar2 for some a,r).

12. The digits 1,2,3,4,5,6 are written down in some order to form a six-

digit number.

(a) How many such six-digit numbers are there altogether?

(b) How many such numbers are even?

(c) How many are divisible by 4?

(d) How many are divisible by 8? (Hint: First show that the remainder

on dividing a six-digit number abcde f by 8 is 4d+ 2e+ f .)

13. (a) Find the coefficient of x15 in (1+ x)18.

(b) Find the coefficient of x4 in (2x3 − 1
x2 )

8.

(c) Find the constant term in the expansion of (y+ x2 − 1
xy
)10.

14. The rules of a lottery are as follows: You select 10 numbers between

1 and 50. On lottery night, celebrity mathematician Richard Thomas

chooses at random 6 “correct” numbers. If your 10 numbers include all

6 correct ones, you win.

Work out your chance of winning the lottery.

15. Here’s another way to prove Fermat’s Little Theorem. Let p be a prime

number.

(a) Show that if r,s are positive integers such that s divides r, p divides r

and p does not divide s, then p divides r
s
.

(b) Deduce that p divides the binomial coefficient
(

p
k

)
for any k such that

1 ≤ k ≤ p− 1.

(c) Now use the Binomial Theorem to prove by induction on n that p

divides np − n for all positive integers n. Hence, deduce Fermat’s Little

Theorem.
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16. At a party with six rather decisive people, any two people either like

each other or dislike each other. Prove that at this party, either

(i) there are three people all of whom like each other, or

(ii) there are three people, all of whom dislike each other.

Show that it is possible to have a party with five (decisive) people where

neither (i) nor (ii) holds.

17. Prove that if rn is as in Question 10, then for any n,

rn = 1+

(
n

2

)

+

(
n

4

)

.

Was your conjecture in Question 10 correct?

18. The other day, critic Ivor Smallbrain gave a lecture to an audience con-

sisting of five mathematicians. Each mathematician fell asleep exactly

twice during the lecture. For each pair of mathematicians, there was a

moment during the lecture when they were both asleep. Prove that there

was a moment when three of the mathematicians were simultaneously

asleep.



Chapter 17

More on Sets

In this chapter we develop a little of the theory of sets. After some notation

and a few elementary results, we present the “Inclusion–Exclusion Principle,”

which is another useful counting method to add to those of the previous chap-

ter.

Unions and Intersections

We begin with a couple of definitions.

DEFINITION Let A and B be sets. The union of A and B, written
A∪B, is the set consisting of all elements that lie in either A or B (or
both). Symbolically,

A∪B = {x |x ∈ A or x ∈ B}.

The intersection of A and B, written A∩B, is the set consisting of all
elements that lie in both A and B; thus

A∩B = {x |x ∈ A and x ∈ B}.

Example 17.1
(1) If A = {1,2,3} and B = {2,4}, then A∪B = {1,2,3,4} and A∩B =

{2}.
(2) Let A = {n |n ∈ Z,n ≥ 0} and B = {n |n ∈ Z,n ≤ 0}. Then A∪B = Z

and A∩B = {0}.

We say that A and B are disjoint sets if they have no elements in common —

that is, if A∩B = /0, the empty set.

147
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Recall from Chapter 1 that the notation A ⊆ B means that A is a subset of

B, i.e., every element of A lies in B, which is to say x ∈ A ⇒ x ∈ B. Also, we

define A = B to mean that A and B have exactly the same elements. Other ways

of expressing A = B are: both A ⊆ B and B ⊆ A; or x ∈ A ⇔ x ∈ B. As a further

piece of notation, we write A ⊂ B to mean that A is a subset of B and A 6= B;

when A ⊂ B we say A is a proper subset of B.

The “algebra of sets” consists of general results involving sets, unions and

intersections. Such results are usually pretty uninteresting. Here is one.

PROPOSITION 17.1
Let A,B,C be sets. Then

A∩ (B∪C) = (A∩B)∪ (A∩C).

PROOF This just involves keeping careful track of the definitions:

x ∈ A∩ (B∪C) ⇔ x ∈ A and x ∈ (B or C)

⇔ (x ∈ A and x ∈ B) or (x ∈ A and x ∈C)

⇔ x ∈ (A∩B)∪ (A∩C).

Hence, A∩ (B∪C) = (A∩B)∪ (A∩C).

More examples of results in the algebra of sets can be found in the exercises

at the end of the chapter.

We can extend the definitions of union and intersection to many sets: if

A1,A2, . . . ,An are sets, their union and intersection are defined as

A1 ∪A2 ∪ . . .∪An = {x |x ∈ Ai for some i},
A1 ∩A2 ∩ . . .∩An = {x |x ∈ Ai for all i}.

We sometimes use the more concise notation

A1 ∪ . . .∪An =
n⋃

i=1

Ai, A1 ∩ . . .∩An =
n⋂

i=1

Ai.

Likewise, if we have an infinite collection of sets A1,A2,A3, . . ., their union and

intersection are defined as
∞⋃

i=1

Ai = {x |x ∈ Ai for some i},
∞⋂

i=1

Ai = {x |x ∈ Ai for all i}.

Example 17.2
For i ≥ 1 let Ai = {x |x ∈ Z,x ≥ i}. Then

∞⋃

i=1

Ai = N,
∞⋂

i=1

Ai = /0.
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If A,B are sets, their difference is defined to be the set

A−B = {x |x ∈ A and x 6∈ B}.

For example, if A = {x |x ∈ R,0 ≤ x ≤ 1} and B = Q, then A−B is the set of

irrationals between 0 and 1.

Cartesian Products

Cartesian products give a way of constructing new sets from old.

DEFINITION Let A,B be sets. The Cartesian product of A and B,
written A×B, is the set consisting of all symbols of the form (a,b) with
a ∈ A,b ∈ B. Such a symbol (a,b) is called an ordered pair of elements of
A and B. Two ordered pairs (a,b),(a′,b′) are deemed to be equal if and
only if both a = a′ and b = b′.

For example, if A = {1,2} and B = {1,4,5}, then A×B consists of the six

ordered pairs

(1,1),(1,4),(1,5),(2,1),(2,4),(2,5).

As another example, when A = B = R, the Cartesian product is R×R, which

consists of all ordered pairs (x,y) (x,y ∈ R), commonly known as coordinate

pairs of points in the plane.

We can also form the Cartesian product of more than two sets in a similar

way: if A1,A2, . . . ,An are sets, their Cartesian product is defined to be the set

A1 ×A2 × . . .×An consisting of all symbols of the form (a1,a2, . . . ,an), where

ai ∈ Ai for all i. Such symbols are called n-tuples of elements of A1, . . . ,An.

The Inclusion–Exclusion Principle

Logically enough, we call a set S a finite set if it has only a finite number of

elements. If S has n elements, we write |S|= n. If a set is not finite, it is said

to be an infinite set.

For example, if S = {1,−3,
√

2}, then S is finite and |S| = 3. And Z is an

infinite set.

Here is a useful result about finite sets.



150 A CONCISE INTRODUCTION TO PURE MATHEMATICS

PROPOSITION 17.2
If A and B are finite sets, then

|A∪B|= |A|+ |B|− |A∩B|.

PROOF Let |A∩B| = k, say A∩B = {x1, . . . ,xk}. These elements,
and no others, belong to both A and B, so we can write

A = {x1, . . . ,xk,a1, . . . ,al} , B = {x1, . . . ,xk,b1, . . . ,bm} ,

where |A|= k+ l, |B|= k+m. Then

A∪B = {x1, . . . ,xk,a1, . . . ,al ,b1, . . . ,bm} ,

and all these elements are different, so

|A∪B|= k+ l+m = (k+ l)+ (k+m)− k

= |A|+ |B|− |A∩B|.

Example 17.3
Out of a total of 30 students, 19 are doing mathematics, 17 are doing
music and 10 are doing both. How many are doing neither?

Answer Let A be the set doing mathematics and B the set doing music. Then

|A|= 19, |B|= 17, |A∩B|= 10.

Hence, Proposition 17.2 gives |A∪B|= 19+17−10= 26. Since there are 30

students in all, there are therefore 4 doing neither mathematics nor music.

Proposition 17.2 can be generalized to give a formula for the size of the

union of any number of finite sets. First let’s consider the case of three sets

A,B,C. Here the formula is

|A∪B∪C|= |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|. (17.1)

This can be proved in similar fashion to Proposition 17.2, but let me present

a slightly more concise argument. Consider an element x of A∪B∪C. I will

argue that x contributes precisely 1 to the right-hand side of the equation (17.1).

If x belongs to exactly one of the sets A,B,C, say to A, then it contributes only

to the term |A| in (17.1). If x lies in two of the sets, say in A and B, then

it contributes 1 to |A|, 1 to |B| and −1 to −|A∩B|, hence a total of 1. And

if x lies in all three sets, it contributes 1 to |A|, |B| and |C|; −1 to −|A∩B|,
−|A∩C| and −|B∩C|; and 1 to |A∩B∩C|, making a total of 1 overall. Hence
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as claimed, each element x ∈ A∪B∪C contributes precisely 1 to the right-hand

side of the equation (17.1), so (17.1) is proved.

Here is the generalization to an arbitrary number of sets.

THEOREM 17.1 Inclusion–Exclusion Principle
Let n be a positive integer, and let A1, . . . ,An be finite sets. Then

|A1 ∪·· ·∪An|= c1 − c2 + c3 −·· ·+(−1)ncn, (17.2)

where for 1 ≤ i ≤ n, the number ci is the sum of the sizes of the intersec-
tions of the sets taken i at a time.

In case any clarification is needed, for n = 3 we have

c1 = |A1|+ |A2|+ |A3|,
c2 = |A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|,
c3 = |A1 ∩A2 ∩A3|,

so the theorem agrees with the equation (17.1).

PROOF The argument is similar to the one I gave for the case n = 3

before stating the theorem. Let x be a member of the union A1∪·· ·∪An.
We will show that x contributes exactly 1 to the right-hand side of the
equation (17.2).
Suppose x belongs to precisely k of the sets A1, . . . ,An. Then x con-

tributes k to the sum c1 = |A1|+ · · ·+ |An|. In the sum c2 = ∑i< j |Ai ∩A j|,
x contributes 1 to all terms |Ai ∩A j| for which Ai and A j are among the

k sets containing x; there are
(

k
2

)
such terms, so this is the contribution

of x to the sum c2. Similarly, x contributes
(

k
3

)
to the sum c3, and in

general contributes
(

k
i

)
to the sum ci. Therefore the total contribution

of x to the right-hand side of (17.2) is

k−
(

k

2

)

+

(
k

3

)

−·· ·+(−1)k−1

(
k

k

)

.

By the equality (16.1) in the previous chapter, this is equal to 1. Hence
each element x ∈ A1∪·· ·∪An contributes exactly 1 to the right-hand side
of (17.2), and the proof is complete.

Example 17.4
How many integers between 1 and 420 are divisible by 2, 3, 5 or 7?

Answer Notice that 420 = 22 · 3 · 5 · 7. Let A2 be the set of integers between

1 and 420 that are divisible by 2, and define A3,A5,A7 similarly. The question
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is asking for the size of the union A2 ∪A3 ∪A5 ∪A7. To apply the Inclusion–

Exclusion Principle, we need to work out the sizes of the sets Ai, Ai ∩ A j,

Ai ∩A j ∩ Ak and Ai ∩ A j ∩ Ak ∩Al for distinct i, j,k, l ∈ {2,3,5,7}. This is

straightforward: for example, |A2| is the number of multiplies of 2 that are

between 1 and 420, which is 420/2 = 210; and |A2 ∩A3| is the number of

multiples of 2×3, which is 420/6= 70; and so on. Hence using the Inclusion–

Exclusion Principle, we see that |A2 ∪A3 ∪A5 ∪A7|= c1 − c2 + c3 − c4 where

c1 = |A2|+ · · ·+ |A7|= 210+ 140+ 84+60,
c2 = |A2 ∩A3|+ · · ·+ |A5 ∩A7|= 70+ 42+ 30+ 28+20+12,
c3 = |A2 ∩A3 ∩A5|+ · · ·+ |A3 ∩A5 ∩A7|= 14+ 10+ 6+4,
c4 = |A2 ∩A3 ∩A5 ∩A7|= 2.

Therefore |A2 ∪A3 ∪A5 ∪A7|= 324.

The Inclusion–Exclusion Principle has many applications. Next we will give

a nice one to the theory of numbers.

DEFINITION For a positive integer n, define φ(n) to be the number
of integers x such that 1 ≤ x ≤ n and hcf(x,n) = 1. The function φ is
known as the Euler φ-function.

For example, the set of integers between 1 and 10 that are coprime to 10

is {1,3,7,9}, so φ(10) = 4. Also Example 17.4 shows that φ(420) = 420−
324 = 96.

The next result gives a famous explicit formula for the Euler φ -function.

PROPOSITION 17.3
Let n ≥ 2 be an integer with prime factorization n = p

a1
1 p

a2
2 · · · p

ak

k (where
the primes pi are distinct and all ai ≥ 1). Then

φ(n) = n

(

1− 1

p1

)(

1− 1

p2

)

· · ·
(

1− 1

pk

)

.

For example, φ(420) = 420 · (1− 1
2
)(1− 1

3
)(1− 1

5
)(1− 1

7
) = 96, agreeing

with Example 17.4.

PROOF Let In = {1, . . . ,n}. For each i ∈ {1, . . . ,k} define Ai to be the
set of integers in In that are divisible by the prime pi. Then

φ(n) = n−|A1∪·· ·∪Ak|. (17.3)
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We work out the size of A1 ∪·· ·∪Ak in similar fashion to Example 17.4.
By the Inclusion–Exclusion Principle,

|A1 ∪·· ·∪Ak|= c1 − c2 + · · ·+(−1)k−1ck, (17.4)

where ci is the sum of the intersections of the sets taken i at a time.
Consider an intersection A j1 ∩·· ·∩A ji . This consists of the multiples of
p j1 · · · p ji in In, of which there are n/p j1 · · · p ji . Consequently

c1 = n

(
1

p1

+
1

p2

+ · · ·+ 1

pk

)

,

c2 = n

(
1

p1 p2

+
1

p1 p3

+ · · ·+ 1

pk−1 pk

)

,

and so on. Hence by (17.3) and (17.4), φ(n) is equal to

n

(

1−
(

1

p1

+ · · ·+ 1

pk

)

+

(
1

p1 p2

+ · · ·+ 1

pk−1 pk

)

−·· ·+(−1)k 1

p1 · · · pk

)

.

This is equal to

n

(

1− 1

p1

)(

1− 1

p2

)

· · ·
(

1− 1

pk

)

,

which gives the result.

To conclude the chapter, here is a neat and useful result about the number of

subsets of a finite set.

PROPOSITION 17.4
Let S be a finite set consisting of n elements. Then the total number of
subsets of S is equal to 2n.

PROOF Let S = {1,2, . . . ,n}. A subset {i1, . . . , ik} of S corresponds to
a string consisting of n 0’s and 1’s, where we put 1’s in positions i1, . . . , ik
and 0’s elsewhere; and every such string corresponds to a subset. (For
example, if n = 6, the subset {2,3,5} corresponds to the string 011010,
and the string 100101 corresponds to the subset {1,4,6}.) Hence the
number of subsets of S is equal to the number of strings consisting of n

0’s and 1’s. Since we have 2 choices (0 or 1) for each of the n entries of

such a string, the number of strings is equal to 2n.

You are asked to provide two alternative proofs of this result in Exercise 9.
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Exercises for Chapter 17

1. (a) Let A,B be sets. Prove that A∪B = A if and only if B ⊆ A.

(b) Prove that (A−C)∩ (B−C) = (A∩B)−C for all sets A,B,C.

2. Which of the following statements are true and which are false? Give

proofs or counterexamples.

(a) For any sets A,B,C, we have

A∪ (B∩C) = (A∪B)∩ (A∪C).

(b) For any sets A,B,C, we have

(A−B)−C = A− (B−C).

(c) For any sets A,B,C, we have

(A−B)∪ (B−C)∪ (C−A) = A∪B∪C.

3. Work out
⋃∞

n=1 An and
⋂∞

n=1 An, where An is defined as follows for n∈N:

(a) An = {x ∈R |x > n}.

(b) An = {x ∈ R | 1
n
< x <

√
2+ 1

n
}.

(c) An = {x ∈R | − n < x < 1
n
}.

(d) An = {x ∈Q |
√

2− 1
n
≤ x ≤

√
2+ 1

n
}.

4. (a) 73% of British people like cheese, 76% like apples and 10% like

neither. What percentage like both cheese and apples?

(b) In a class of 30 children, everyone supports at least one of three

teams: 16 support Manchester United, 17 support Stoke City and 14

support Doncaster Rovers; also 8 support both United and City, 7 both

United and Rovers, and 9 both City and Rovers. How many support all

three teams?

5. How many integers are there between 1000 and 9999 that contain the

digits 0, 8 and 9 at least once each? (For example, 8950 and 8089 are

such integers.)

6. How many integers between 1 and 10000 are neither squares nor cubes?

7. How many integers between 2 and 10000 are rth powers for some r ∈
{2,3,4,5}?
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8. (a) Find the number of integers between 1 and 5000 that are divisible by

neither 3 nor 4.

(b) Find the number of integers between 1 and 5000 that are divisible by

none of the numbers 3, 4 and 5.

(c) Find the number of integers between 1 and 5000 that are divisible by

one or more of the numbers 4, 5 and 6.

9. (a) The equality
n

∑
r=0

(
n

r

)

= 2n

is given just after Proposition 16.3. Use this to give an alternative proof

of Proposition 17.4.

(b) Give yet another proof of Proposition 17.4 by induction on n.

10. (a) Calculate φ(1000) and φ(999), where φ is Euler’s φ -function.

(b) Find the minimum and maximum values of φ(n) for 20 ≤ n ≤ 30.

(c) Show that if n ≥ 3 then φ(n) is even.

(d) Find all positive integers n such that φ(n) is not divisible by 4.

11. Prove that if m and n are coprime positive integers, then φ(mn)= φ(m)φ(n).

12. For a positive integer n, define

F(n) = ∑
d|n

φ(d),

where the sum is over the positive divisors d of n, including both 1 and

n. (For example, the positive divisors of 15 are 1, 3, 5 and 15.)

(a) Calculate F(15) and F(100).

(b) Calculate F(pr), where p is prime.

(c) Calculate F(pq), where p,q are distinct primes.

(d) Formulate a conjecture about F(n) for an arbitrary positive integer n.

Try to prove your conjecture.

13. Let n be a positive integer, and let D(n) be the set of arrangements of

{1, . . . ,n} for which no number is in its corresponding position. (For

example, if n = 4 then the arrangement 4,2,3,1 is not in D(4) as the

number 2 is in position 2; but the arrangement 4,3,2,1 is in D(4).) Use

the Inclusion–Exclusion Principle to prove that

|D(n)|= n!

(

1− 1

1!
+

1

2!
− 1

3!
+ · · ·+(−1)n 1

n!

)

.
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14. Some time ago, critic Ivor Smallbrain threw a lavish party for 5 of

his best friends, including a private showing of the fabulous new Ally

Wooden film Everything You Wanted to Know About Sets But Were Afraid

to Ask. It was a rainy day, and each guest brought their own umbrella.

At the end of the party, somewhat the worse for wear, Ivor handed each

friend a random umbrella, and off they went into the night.

Work out the chance that nobody got their own umbrella.

Do the same calculation for the three subsequent parties thrown by Ivor,

to which he invited 6, 7 and 8 guests, respectively. Do you notice any-

thing interesting?



Chapter 18

Equivalence Relations

Let S be a set. A relation on S is defined as follows. We choose a subset R of

the Cartesian product S× S; in other words, R consists of some of the ordered

pairs (s, t) with s, t ∈ S. For those ordered pairs (s, t) ∈ R, we write s ∼ t and

say s is related to t. And for (s, t) 6∈ R, we write s 6∼ t. Thus, the symbol ∼
relates various pairs of elements of S. It is called a relation on S.

This definition probably seems a bit strange at first sight. A few examples

should serve to clarify matters.

Example 18.1
Here are eight examples of relations on various sets S.

(1) Let S=R, and define a∼ b⇔ a< b. Here R= {(s, t)∈R×R | s< t}.
(2) Let S = Z and let m be a positive integer. Define a ∼ b ⇔ a ≡

b mod m.

(3) S = C, and a ∼ b ⇔ |a− b|< 1.

(4) S = R, and a ∼ b ⇔ a+ b ∈ Z.

(5) S = {1,2}, and ∼ defined by 1 ∼ 1, 1 ∼ 2, 2 6∼ 1, 2 ∼ 2.

(6) S = {1,2}, and ∼ defined by 1 ∼ 1, 1 6∼ 2, 2 6∼ 1, 2 ∼ 2.

(7) S = all people in Britain, and a ∼ b if and only if a and b have the
same father.

(8) S any set, and a ∼ b ⇔ a = b.

The relations on a set S correspond to the subsets of S × S, and there is

nothing much more to say about them in general. However, there are certain

types of relations that are worthy of study, as they crop up frequently. These

are called equivalence relations. Here is the definition.

DEFINITION Let S be a set, and let ∼ be a relation on S. Then
∼ is an equivalence relation if the following three properties hold for all
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a,b,c ∈ S:

(i) a ∼ a (this says ∼ is reflexive)
(ii) if a ∼ b then b ∼ a (this says ∼ is symmetric)
(iii) if a ∼ b and b ∼ c then a ∼ c (this says ∼ is transitive)

Let us examine each of the Examples 18.1 for these properties.

In Example 18.1(1), S = R and a ∼ b ⇔ a < b. This is not reflexive or

symmetric, but it is transitive as (a < b and b < c) ⇒ a < c.

Example 18.1(2) is an equivalence relation by Proposition 13.2.

Now consider Example 18.1(3), where S =C and a ∼ b ⇔ |a−b|< 1. This

is reflexive and symmetric. But it is not transitive; to see this, take a = 3
4
,b =

0,c =− 3
4
: then |a− b|< 1, |b− c|< 1 but |a− c|> 1.

The relation in Example 18.1(4) is symmetric but not reflexive or transitive;

the relation in Example 18.1(5) is reflexive and transitive, but not symmetric;

and the relation in Example 18.1(6) is an equivalence relation.

I leave it to you to show that the relations in Examples 18.1(7) and (8) are

both equivalence relations.

Equivalence Classes

Let S be a set and ∼ an equivalence relation on S. For a ∈ S, define

cl(a) = {s |s ∈ S, s ∼ a}.

Thus, cl(a) is the set of things that are related to a. The subset cl(a) is called

an equivalence class of ∼. The equivalence classes of ∼ are the subsets cl(a)
as a ranges over the elements of S.

Example 18.2
Let m be a positive integer, and let ∼ be the equivalence relation on Z

defined as in Example 18.1(2) — that is,

a ∼ b ⇔ a ≡ b mod m.

What are the equivalence classes of this relation?

To answer this, let us write down various equivalence classes:

cl(0) = {s ∈ Z |s ≡ 0 mod m},
cl(1) = {s ∈ Z |s ≡ 1 mod m}, . . .

cl(m− 1) = {s ∈ Z |s ≡ m− 1 mod m}.
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We claim that these are all the equivalence classes. For if n is any integer, then

by Proposition 10.1 there are integers q,r such that n = qm+ r with 0 ≤ r < m.

Then n ≡ r mod m, so n ∈ cl(r), which is one of the classes listed above, and

moreover,

cl(n) = {s ∈ Z |s ≡ n mod m}= {s ∈ Z |s ≡ r mod m}= cl(r).

Hence, any equivalence class cl(n) is equal to one of those listed above.

We conclude that in this example, there are exactly m different equivalence

classes, cl(0),cl(1), . . . ,cl(m− 1). Note also that every integer lies in exactly

one of these classes.

Example 18.3
Consider now the equivalence relation defined in Example 18.1(7): S =
all people in Britain, and a ∼ b if and only if a and b have the same
father. What are the equivalence classes?
If a∈ S, then cl(a) is the set of all people with the same father as a. In

other words, if f is the father of a, then cl(a) consists of all the children
of f . So one way of listing all the equivalence classes is as follows: let
f1, . . . , fn be a list of all fathers of people in Britain; if Ci is the set of
children of fi living in Britain, then the equivalence classes are C1, . . . ,Cn.

We now prove a general property of equivalence classes. Recall from Chap-

ter 16 that a partition of a set S is a collection of subsets S1, . . . ,Sk such that

each element of S lies in exactly one of these subsets. Another way of putting

this is that the subsets S1, . . . ,Sk have the properties that their union is S and

any two of them are disjoint (i.e., Si ∩S j = /0 for any i 6= j).

For example, if S = {1,2,3,4,5}, then the subsets {1},{2,4},{3,5} form a

partition of S, whereas the subsets {1},{2,4},{3},{4,5} do not.

PROPOSITION 18.1
Let S be a set and let ∼ be an equivalence relation on S. Then the
equivalence classes of ∼ form a partition of S.

PROOF If a ∈ S, then since a ∼ a, a lies in the equivalence class
cl(a).
We need to show that a lies in only one equivalence class. So suppose

that a lies in cl(s) and cl(t); in other words, a ∼ s and a ∼ t. We show
that this implies that cl(s) = cl(t).
Let x ∈ cl(s). Then x ∼ s. Also s ∼ a and a ∼ t, so by transitivity, x ∼ t.

Hence
x ∈ cl(s)⇒ x ∈ cl(t).
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Similarly, if x∈ cl(t) then x∼ t, and also t ∼ a and a∼ s, so x∼ s, showing

x ∈ cl(t)⇒ x ∈ cl(s).

We conclude that cl(s) = cl(t), as required. Thus, any element a of S lies

in exactly one equivalence class.

To conclude, observe that Proposition 18.1 is true the other way round: if

S is a set and S1, . . . ,Sk is a partition of S, then there is a unique equivalence

relation ∼ on S which has the Si as its equivalence classes — namely, the

equivalence relation defined as follows: for x,y ∈ S,

x ∼ y ⇔ there exists i such that x,y both lie in Si.

You are asked to justify this statement in Exercise 4 at the end of the chapter.

In case it does not strike you as being completely obvious, here’s an example:

if S = {1,2,3,4}, then the equivalence relation corresponding to the partition

{1,3}, {2}, {4} is ∼, where

1 ∼ 1, 1 ∼ 3, 3 ∼ 1, 3 ∼ 3, 2 ∼ 2, 4 ∼ 4,

and no other pairs are related.

The upshot of all this is that there is a very tight correspondence between

the equivalence relations on a set S and the partitions of S: every equivalence

relation gives a unique partition of S (namely, the collection of equivalence

classes); and every partition gives a unique equivalence relation (namely, the

relation defined above). This makes classifying equivalence relations pretty

easy — for example, the number of equivalence relations on S is equal to the

number of partitions of S.

Exercises for Chapter 18

1. Which of the following relations are equivalence relations on the given

set S?

(i) S = R, and a ∼ b ⇔ a = b or −b.

(ii) S = Z, and a ∼ b ⇔ ab = 0.

(iii) S = R, and a ∼ b ⇔ a2 + a = b2 + b.

(iv) S is the set of all people in the world, and a ∼ b means a lives within

100 miles of b.
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(v) S is the set of all points in the plane, and a ∼ b means a and b are the

same distance from the origin.

(vi) S = N, and a ∼ b ⇔ ab is a square.

(vii) S = {1,2,3}, and a ∼ b ⇔ a = 1 or b = 1.

(viii) S = R×R, and (x,y)∼ (a,b)⇔ x2 + y2 = a2 + b2.

2. For those relations in Exercise 1 that are equivalence relations, describe

the equivalence classes.

3. By producing suitable examples of relations, show that it is not possible

to deduce any one of the properties of being reflexive, symmetric or

transitive from the other two.

4. Prove that if S is a set and S1, . . . ,Sk is a partition of S, then there is

a unique equivalence relation ∼ on S that has the Si as its equivalence

classes.

5. (a) How many relations are there on the set {1,2}?

(b) How many relations are there on the set {1,2,3} that are both reflex-

ive and symmetric?

(c) How many relations are there on the set {1,2, . . . ,n}?

6. Let S = {1,2,3,4}, and suppose that ∼ is an equivalence relation on S.

You are given the information that 1 ∼ 2 and 2 ∼ 3.

Show that there are exactly two possibilities for the relation ∼, and de-

scribe both (i.e., for all a,b ∈ S, say whether or not a ∼ b).

7. Let ∼ be an equivalence relation onZ with the property that for all m∈Z

we have m∼m+5 and also m∼m+8. Prove that m∼ n for all m,n∈Z.

8. Critic Ivor Smallbrain has made his peace with rival Greta Picture, and

they are now friends. Possibly their friendship will develop into some-

thing even more beautiful, who knows. Ivor and Greta are sitting through

a showing of the latest Disney film, 101 Equivalence Relations. They are

fed up and start to discuss how many different equivalence relations they

can find on the set {1,2}. They find just two. Then on the set {1,2,3}
they find just five different equivalence relations.

Have they found all the equivalence relations on these sets? How many

should they find on {1,2,3,4} and on {1,2,3,4,5}? Investigate further

if you feel like it!
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Chapter 19

Functions

Much of mathematics and its applications is concerned with the study of func-

tions of various kinds. In this chapter we give the definition and some elemen-

tary examples, and introduce certain important general types of functions.

DEFINITION Let S and T be sets. A function from S to T is a rule
that assigns to each s ∈ S a single element of T , denoted by f (s). We
write

f : S → T

to mean that f is a function from S to T . If f (s) = t, we often say f

sends s → t.
If f : S → T is a function, the image of f is the set of all elements of

T that are equal to f (s) for some s ∈ S. We write f (S) for the image of
f . Thus

f (S) = { f (s) |s ∈ S}.

Example 19.1
(1) Define f : {1,2,3}→ Z by f (x) = x2 − 4 for x ∈ {1,2,3}. The image
of f is {−3,0,5}.
(2) Define f : R → R by f (x) = x2 for all x ∈ R. The image of f is

f (R) = {y |y ∈R,y ≥ 0}.
(3) A body is dropped and falls under gravity for 1 second. The dis-

tance travelled at time t is 1
2
gt2. If we call this distance s(t) and write I =

{t ∈R |0 ≤ t ≤ 1}, then s is a function from I to R defined by s(t) = 1
2
gt2.

The image of s is the set of reals between 0 and g
2
.

(4) Define f : N×N→ Z by f (m,n) = m−n for all m,n ∈N. The image
of f is Z.

(5) Let S = {a,b,c} and define functions f : S → S and g : S → S as
follows:

f sends a → b, b → c, c → a, g sends a → b, b → c, c → b.
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Then f (S) = S, while g(S) = {b,c}.
(6) Let S be any set, and define a function ιS : S → S by

ιS(s) = s for all s ∈ S.

This function ιS is called the identity function of S.

We now define certain important types of functions.

DEFINITION Let f : S → T be a function.

(I) We say f is onto if the image f (S) = T ; i.e., if for every t ∈ T there
exists s ∈ S such that f (s) = t.

(II) We say f is one-to-one (usually written simply as 1-1) if whenever
s1,s2 ∈ S with s1 6= s2, then f (s1) 6= f (s2); in other words, f is 1-1 if f

sends different elements of S to different elements of T . Another way of
putting this is to say that for all s1,s2 ∈ S,

f (s1) = f (s2)⇒ s1 = s2.

This is usually the most useful definition to use when testing whether
functions are 1-1.

(III) We say f is a bijection if f is both onto and 1-1.

Functions that are onto are often called surjective functions, or surjections;

and functions that are 1-1 are often called injective functions, or injections.

You will find these terms in many books, but I prefer to stick to the slightly

more descriptive terms “onto” and “1-1.”

Let us briefly discuss which of these properties the functions in Exam-

ple 19.1 possess.

The function in Example 19.1(1) sends 1 →−3, 2 → 0, 3 → 5, so it is 1-1.

It is clearly not onto.

The function in Example 19.1(2) is not onto and is not 1-1 either, since it

sends 1 and −1 to the same thing.

On the other hand, the function s : I → R in Example 19.1(3) is 1-1, since,

for t1, t2 ∈ I,

s(t1) = s(t2)⇒
1

2
gt2

1 =
1

2
gt2

2 ⇒ t1 = t2.

Also, s is not onto.

The function in Example 19.1(4) is onto but is not 1-1 since, for example, it

sends both (1,1) and (2,2) to 0.

In Example 19.1(5), the function f is a bijection, while g is neither 1-1 nor

onto. Finally, the identity function in Example 19.1(6) is a bijection.
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Here is a quite useful result relating 1-1 and onto functions to the sizes of

sets.

PROPOSITION 19.1
Let f : S → T be a function, where S and T are finite sets.

(i) If f is onto, then |S| ≥ |T |.
(ii) If f is 1-1, then |S| ≤ |T |.
(iii) If f is a bijection, then |S|= |T |.

PROOF (i) Let |S| = n and write S = {s1, . . . ,sn}. As f is onto, we
have

T = f (S) = { f (s1) , . . . , f (sn)} .
Hence |T | ≤ n. (Of course |T | could be less than n, as some of the f (si)’s
could be equal.)
(ii) Again let |S| = n and S = {s1, . . . ,sn}. As f is 1-1, the elements

f (s1), . . . , f (sn) are all different and lie in T . Therefore |T | ≥ n.
(iii) If f is a bijection, then |S| ≥ |T | by (i) and |S| ≤ |T | by (ii), so

|S|= |T |.

The Pigeonhole Principle

Part (ii) of Proposition 19.1 implies that if |S| > |T |, then there is no 1-1

function from S to T . This can be phrased somewhat more strikingly in the

following way:

If we put n+ 1 or more pigeons into n pigeonholes, then there must be a

pigeonhole containing more than one pigeon.

(For if no pigeonhole contained more than one pigeon, the function sending

pigeons to their pigeonholes would be 1-1.)

The above statement is known as the Pigeonhole Principle, and it is surpris-

ingly useful. As a very simple example, in any group of 13 or more people, at

least two must have their birthday in the same month (here the people are the

“pigeons” and the 12 months are the “pigeonholes”). As another example, in

any set of 6 integers, there must be two whose difference is divisible by 5: to

see this, regard the 6 integers as the pigeons, and their remainders on division

by 5 as the pigeonholes.

Here’s a slightly more subtle example.
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Example 19.2
Prove that if n+ 1 numbers are chosen from the set {1,2, . . . ,2n}, there
will always be two of the chosen numbers that differ by 1. (This is not
necessarily true if we choose only n numbers — for example, we could
choose the n numbers 1,3,5, . . . ,2n− 1.)

Answer This becomes easy when we make the following cunning choice of

what the pigeonholes are. Define the pigeonholes to be the n sets

{1,2}, {3,4}, . . . ,{2n− 1,2n}.

Since we are choosing n+ 1 numbers, each of which belongs to one of these

pigeonholes, the Pigeonhole Principle tells us that two of them must lie in the

same pigeonhole. These two will then differ by 1. Pretty neat, eh?

More examples of the use of the Pigeonhole Principle can be found in Exer-

cise 5 at the end of the chapter.

Inverse Functions

Given a function f : S → T , under what circumstances can we define an “in-

verse function” from T to S, sending everything back to where it came from?

(In other words, if f sends s → t, the “inverse” function should send t → s.) To

define such a function from T to S, we need:

(a) f to be onto (otherwise some elements of T will not be sent anywhere

by the inverse function), and

(b) f to be 1-1 (otherwise some element of T will be sent back to more than

one element of S).

In other words, to be able to define such an inverse function from T to S, we

need f to be a bijection. Here is the formal definition.

DEFINITION Let f : S → T be a bijection. The inverse function of
f is the function from T → S that sends each t ∈ T to the unique s ∈ S

such that f (s) = t. We denote the inverse function by f−1 : T → S. Thus,
for s ∈ S, t ∈ T ,

f−1(t) = s ⇔ f (s) = t.

As a consequence we have

f−1( f (s)) = s and f ( f−1(t)) = t

for all s ∈ S, t ∈ T .
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Example 19.3
(1) Let S = {a,b,c} and let f : S → S be the function that sends a →

b, b→ c, c → a. Then f is a bijection and the inverse function f−1 : S→ S

sends everything back to where it came from; namely, a→ c, b→ a, c→ b.

(2) Define f :R→R by f (x) = 8−2x for all x∈R. Then f is a bijection
and f−1(t) = 1

2
(8− t) for all t ∈ R.

Composition of Functions

Composition gives us a useful way of combining two functions to form an-

other one. Here is the definition.

DEFINITION Let S,T,U be sets, and let f : S → T and g : T → U

be functions. The composition of f and g is the function g ◦ f : S → U ,
which is defined by the rule

(g ◦ f )(s) = g( f (s)) for all s ∈ S.

Thus g ◦ f is just a “function of a function,” which is a phrase you may have

seen before.

Example 19.4
(1) Let f : R→ R, g : R→R be defined by

f (x) = sinx, g(x) = x2 + 1

for all x ∈ R. Then both compositions g ◦ f and f ◦ g are functions from
R→ R, and

(g ◦ f )(x) = g( f (x)) = sin2 x+ 1, f ◦ g(x) = sin
(
x2 + 1

)

for all x ∈ R.

(2) Let f : {1,2,3}→ Z and g : Z→ N be defined by

f sends 1 → 0, 2 →−5, 3 → 7 and

g(x) = |x| for all x ∈ Z.

Then g ◦ f : {1,2,3} → N sends 1 → 0, 2 → 5, 3 → 7 and f ◦ g does not
exist.



168 A CONCISE INTRODUCTION TO PURE MATHEMATICS

Notice that if f : S → T is a bijection, then by definition of the inverse func-

tion f−1 : T → S, we have

(
f−1 ◦ f

)
(s) = s,

(
f ◦ f−1

)
(t) = t

for all s ∈ S, t ∈ T . Another way of putting this is to say that

f−1 ◦ f = ιS, f ◦ f−1 = ιT ,

where ιS, ιT are the identity functions of S and T , as defined in Example 19.1(6).

Here is a neat result linking composition with the properties of being 1-1 or

onto.

PROPOSITION 19.2
Let S,T,U be sets, and let f : S → T and g : T →U be functions. Then

(i) if f and g are both 1-1, so is g ◦ f ,
(ii) if f and g are both onto, so is g ◦ f ,
(iii) if f and g are both bijections, so is g ◦ f .

PROOF (i) If f ,g are both 1-1, then for s1,s2 ∈ S,

(g ◦ f )(s1) = (g ◦ f )(s2) ⇒ g( f (s1)) = g( f (s2))

⇒ f (s1) = f (s2) as g is 1-1

⇒ s1 = s2 as f is 1-1

and hence g ◦ f is 1-1.
(ii) Suppose f ,g are both onto. For any u ∈U , there exists t ∈ T such

that g(t) = u (as g is onto), and there exists s ∈ S such that f (s) = t (as f

is onto). Hence (g◦ f )(s) = g( f (s)) = g(t) = u, showing that g◦ f is onto.

(iii) This follows immediately from parts (i) and (ii).

Counting Functions

How many functions are there from one finite set to another? This question

is quite easily answered using some of our counting methods from Chapter 16.

PROPOSITION 19.3
Let S,T be finite sets, with |S|=m, |T |= n. Then the number of functions
from S to T is equal to nm.
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PROOF Let S = {s1,s2, . . . ,sm}. Defining a function f : S → T is an
m-stage process:

Stage 1: Choose f (s1); this can be any of the n members of T , so the
number of choices is n.

Stage 2: Choose f (s2); again, the number of choices is n.

And so on, up to

Stage m: Choose f (sm); again, the number of choices is n.

Thus, by the Multiplication Principle 16.1, the total number of func-
tions is n.n. . . .n = nm.

One can also obtain a formula for the number of 1-1 functions from S to T

(see Exercise 7 at the end of this chapter). Counting onto functions is some-

what harder, and will have to wait until Exercise 7 at the end of the next chapter.

Exercises for Chapter 19

1. For each of the following functions f , say whether f is 1-1 and whether

f is onto:

(i) f : R→R defined by f (x) = x2 + 2x for all x ∈ R.

(ii) f : R→R defined by

f (x) =







x− 2, if x > 1

−x, if − 1 ≤ x ≤ 1

x+ 2, if x <−1.

(iii) f : Q→R defined by f (x) = (x+
√

2)2.

(iv) f : N×N×N→N defined by f (m,n,r) = 2m3n5r for all m,n,r ∈N.

(v) f : N×N×N→N defined by f (m,n,r) = 2m3n6r for all m,n,r ∈N.

(vi) Let ∼ be the equivalence relation on Z defined by a ∼ b ⇔
a ≡ b mod 7, and let S be the set of equivalence classes of ∼. Define

f : S → S by f (cl(s)) = cl(s+ 1) for all s ∈ Z.

2. The functions f ,g : R→ R are defined as follows:

f (x) = 2x if 0 ≤ x ≤ 1, and f (x) = 1 otherwise;

g(x) = x2 if 0 ≤ x ≤ 1, and g(x) = 0 otherwise.
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Give formulae describing the functions g ◦ f and f ◦ g. Draw the graphs

of these functions.

3. Two functions f ,g : R→R are such that for all x ∈ R,

g(x) = x2 + x+ 3, and (g ◦ f )(x) = x2 − 3x+ 5.

Find the possibilities for f .

4. Let X ,Y,Z be sets, and let f : X → Y and g : Y → Z be functions.

(a) Given that g ◦ f is onto, can you deduce that f is onto? Give a proof

or a counterexample.

(b) Given that g ◦ f is onto, can you deduce that g is onto?

(c) Given that g ◦ f is 1-1, can you deduce that f is 1-1?

(d) Given that g ◦ f is 1-1, can you deduce that g is 1-1?

5. Use the Pigeonhole Principle to prove the following statements involv-

ing a positive integer n:

(a) In any set of 6 integers, there must be two whose difference is divis-

ible by 5.

(b) In any set of n+ 1 integers, there must be two whose difference is

divisible by n.

(c) Given any n integers a1,a2, . . . ,an, there is a non-empty subset of

these whose sum is divisible by n. (Hint: Consider the integers 0,a1,

a1 + a2,. . ., a1 + · · ·+ an and use (b).)

(d) Given any set S consisting of ten distinct integers between 1 and 50,

there are two different 5-element subsets of S with the same sum.

(e) Given any set T consisting of nine distinct integers between 1 and

50, there are two disjoint subsets of T with the same sum.

(f) In any set of 101 integers chosen from the set {1,2, . . . ,200}, there

must be two integers such that one divides the other.

6. (a) Find an onto function from N to Z.

(b) Find a 1-1 function from Z to N.

7. (a) Let S = {1,2,3} and T = {1,2,3,4,5}. How many functions are

there from S to T ? How many of these are 1-1?

(b) Let |S|= m, |T |= n with m ≤ n. Show that the number of 1-1 func-

tions from S to T is equal to n(n− 1)(n− 2) · · ·(n−m+ 1).
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8. The manufacturers of the high-fibre cereal “Improve Your Functions”

are offering a prize of £1000 to anyone who can find three different

integers a,b,c and a polynomial P(x) with integer coefficients, such that

P(a) = b, P(b) = c and P(c) = a.

Critics Ivor Smallbrain and Greta Picture spend several long evenings

trying to solve this, without success.

Prove that nobody will win the prize.

(Hint: Observe that P(x)− P(y) = (x − y)Q(x,y), where Q(x,y) is a

polynomial in x,y with integer coefficients. Substitute x = a,y = b, etc.,

into this equation and see what happens.)
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Chapter 20

Permutations

Let S be a set. By a permutation of S, we mean a bijection from S to S — that

is, a function from S to S that is both onto and 1-1. Permutations form a rather

pleasant and useful class of functions, and we shall study various aspects of

them in this chapter.

Example 20.1
(1) Let S = {1,2,3,4,5} and let f ,g : S → S be defined as follows:

f : 1 → 2,2 → 4,3 → 3,4 → 5,5 → 1,

g : 1 → 3,2 → 4,3 → 1,4 → 2,5 → 4.

Then f is a permutation of S, but g is not.

(2) The function f : R→R, defined by f (x) = 8−2x for all x ∈R, is a
permutation of R [see Example 19.3(2)].

Frequently, we consider permutations of the set {1,2, . . . ,n}. Denote by Sn

the set of all permutations of {1,2, . . . ,n}. For a permutation f ∈ Sn, we use

the notation (
1 2 · · · n

f (1) f (2) · · · f (n)

)

to describe f . This notation completely specifies what f is, since it gives the

value of f (i) for every i ∈ {1, . . . ,n}. For example, the permutation f of Ex-

ample 20.1(1) is
(

1 2 3 4 5

2 4 3 5 1

)

.

PROPOSITION 20.1
The number of permutations in Sn is n!

173
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PROOF If f ∈ Sn, then the sequence f (1), . . . , f (n) is just an ar-
rangement of the numbers 1, . . . ,n in some order. Hence the number of
permutations in Sn is equal to the number of such arrangements, which
is n!, by Proposition 16.1.

Example 20.2
There are 3! = 6 permutations in S3. Here they are:

ι =

(
1 2 3

1 2 3

)

, f2 =

(
1 2 3

1 3 2

)

, f3 =

(
1 2 3

3 2 1

)

,

f4 =

(
1 2 3

2 1 3

)

, f5 =

(
1 2 3

2 3 1

)

, f6 =

(
1 2 3

3 1 2

)

.

Notice that ι is the function that sends everything to itself. We called
this the identity function in Example 19.1(6).

For any set S, the identity function ιS is a permutation of S, which we call

the identity permutation. We shall usually just write it as ι .

Composition of Permutations

If f and g are permutations of a set S, the composition f ◦g is defined, as in

the previous chapter, by

f ◦ g(s) = f (g(s)) for all s ∈ S,

and by Proposition 19.2(iii), f ◦ g is also a permutation of S. In dealing with

permutations we usually drop the “◦” symbol and write just f g, instead of f ◦g.

Example 20.3

(1) If f2, f3 are the permutations in S3 given in Example 20.2, then
f2 f3 sends 1 → 2,2 → 3,3 → 1 (remember f2 f3 means “first do f3, then
do f2”), and so

f2 f3 =

(
1 2 3

2 3 1

)

= f5.

Similarly, f3 f2 sends 1 → 3,2 → 1,3 → 2, so f3 f2 = f6. Notice that f2 f3 6=
f3 f2. So the order in which we form the composition of two permutations
is very important.
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(2) If we felt like it, we could form the composition of any two of
the permutations in S3 and put the answers in a kind of “multiplication
table” for S3. Here is the top left-hand corner of the table. You are
asked to fill in the rest in Exercise 1 at the end of the chapter.

ι f2 f3 · · ·
ι ι f2 f3 · · ·
f2 f2 ι f5 · · ·
f3 f3 f6 ι · · ·
· · ·

We often refer to the composition f g of two permutations as the product of

f and g; likewise, we speak of multiplying f and g to form their product.

Composition also allows us to define powers of permutations in a natural

way. If f is a permutation of a set S, define f 2 to be the permutation f f = f ◦ f

(i.e., the permutation obtained by “doing f twice”). Then define f 3 to be f 2 f ,

then f 4 = f 3 f , and so on. For example, if

f =

(
1 2 3 4 5

2 4 3 5 1

)

,

then

f 2 =

(
1 2 3 4 5

4 5 3 1 2

)

, f 3 =

(
1 2 3 4 5

5 1 3 2 4

)

.

The inverse of a permutation f of a set S was defined in the previous chapter

as the function f−1 sending everything back to where it came from. So f−1 is

also a permutation and

f f−1 = f−1 f = ι,

where ι is the identity permutation of S. For example, if f ∈ S5 is as above,

then

f−1 =

(
1 2 3 4 5

5 1 3 2 4

)

.

Four Fundamental Features

There are four properties of composition of permutations that are of basic

importance, and we list them in the next result. Actually we have already seen

some of these properties, but they are worth highlighting anyway.
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PROPOSITION 20.2
The following properties are true for the set Sn of all permutations of
{1,2, . . . ,n}.
(i) If f and g are in Sn, so is f g.
(ii) For any f ,g,h ∈ Sn,

f (gh) = ( f g)h.

(iii) The identity permutation ι ∈ Sn satisfies

f ι = ι f = f

for any f ∈ Sn.
(iv) Every permutation f ∈ Sn has an inverse f−1 ∈ Sn such that

f f−1 = f−1 f = ι.

PROOF We have already seen properties (i) and (iv), and (iii) is
easy, since f ι(s) = f (ι(s)) = f (s) for all s ∈ S, hence f ι = f and similarly
ι f = f .
Property (ii) is a little more subtle (but only a little): for s ∈ S,

( f (gh))(s) = f ((gh)(s)) = f (g(h(s))),

while
(( f g)h)(s) = ( f g)(h(s)) = f (g(h(s))).

In other words, both f (gh) and ( f g)h are the function “first do h, then

do g, then do f .” Hence f (gh) = ( f g)h.

Property (ii) is known as “associativity” and means that we can multiply

several permutations without worrying about how we bracket them. I gave you

a glimpse of how crucial associativity can be in Chapter 2 (see Rules 2.1 and

the discussion afterwards).

The four properties in Proposition 20.2 are the four axioms of what is known

as “group theory” and tell us that Sn, together with the rule of composition, is

a “group” (it is known as the symmetric group of degree n). I shall introduce

you formally to group theory in Chapters 25 and 26.

The Cycle Notation

The notation (
1 2 · · · n

f (1) f (2) · · · f (n)

)
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for permutations is rather cumbersome and is not particularly convenient for

performing calculations. There is a much more compact and useful notation

— the cycle notation for permutations — which I will now describe.

Consider the following permutation in S8:

f =

(
1 2 3 4 5 6 7 8

4 5 6 3 2 7 1 8

)

.

This sends 1 to 4, 4 to 3, 3 to 6, 6 to 7, and 7 back to 1; we say that the symbols

1,4,3,6,7 form a cycle of f (of length 5). Similarly, 2 and 5 form a cycle of

length 2, and 8 forms a cycle of length 1. We write

f = (14367)(25)(8).

This notation indicates that each number 1,4,3,6,7 in the first cycle goes to the

next one, except for the last, which goes back to the first; and likewise for the

second and third cycles. This is the cycle notation for f . Notice that the cycles

have no symbols in common; they are called disjoint cycles.

It is easy to move back from the cycle notation to the original notation, if

desired. For example, if g = (1372)(46)(5) ∈ S7, then the original notation

for g is

g =

(
1 2 3 4 5 6 7

3 1 7 6 5 4 2

)

.

It is not too hard to generalize this idea to arbitrary permutations.

DEFINITION For a set S = {a1, . . . ,ar}, the cycle (a1 a2 . . .ar) is the
permutation of S that sends a1 → a2, a2 → a3, . . .ar−1 → ar and ar → a1.
The length of the cycle is r, and we also call it an r-cycle.
A collection of cycles is disjoint if no two of the cycles have a symbol

in common.

PROPOSITION 20.3
Every permutation in Sn can be expressed as a product of disjoint cycles.

PROOF Let f ∈ Sn. Begin with 1, and write down the sequence
1, f (1), f 2(1), f 3(1), . . .. These elements all lie in the finite set {1, . . . ,n},
so they can’t all be distinct; let f r(1) be the first element in the sequence
that has appeared previously. Then f r(1) = 1: because if not, f r(1) =
f s(1) with 0 < s < r, and then f−s f r(1) = f−s f s(1), so f r−s(1) = 1 with
r− s < r, contradicting our choice of r. Now the cycle

c1 = (1 f (1) f 2(1) . . . f r−1(1))
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has the same effect as f on all the symbols in the cycle; this is the first
cycle of f . To get the second cycle, choose (if possible) a symbol not
appearing in c1 — call it i. Then repeat the above process: write down
the sequence i, f (i), f 2(i), . . . until we reach i again. Say f s(i) = i; then
c2 = (i f (i) . . . f s−1(i)) is the second cycle of f . Note that c2 and c1 have
no symbols in common, for if they had a symbol j in common, they
would be identical, since each cycle could be constructed by repeatedly
applying the permutation f starting at j.
Carrying on, we choose (if possible) a symbol not appearing in c1

or c2, and construct a cycle c3, and so on. Since {1, . . . ,n} is a finite
set, this process must terminate with some cycle cm. Then the cycles
c1, . . . ,cm have no symbols in common — they are disjoint cycles; and the
product c1c2 · · ·cm has the same effect as f on every element of {1, . . . ,n},
so f = c1c2 · · ·cm.

The expression for a permutation f as a product of disjoint cycles is called

the cycle notation for f . This expression is not quite unique. First, each cycle

can begin with any one of its symbols — for example, the cycle (13275) has

exactly the same effect on each of its symbols as the cycle (32751) or the

cycle (75132). Second, the order in which we write the disjoint cycles does

not matter — for example, (124)(35) is the same permutation as (35)(124).
[But beware: it is only for disjoint cycles that the order does not matter; if you

write down two non-disjoint cycles, their product one way round will be differ-

ent from their product the other way round — e.g., (123)(24) 6= (24)(123).]
Apart from these two ways of changing the cycles, the cycle notation for

a permutation is unique. So, for example, the only ways of expressing the

permutation (124)(35) ∈ S5 as a product of disjoint cycles are

(124)(35) = (241)(35) = (412)(35) = (124)(53) =
(241)(53) = (412)(53) = (35)(124) = (35)(241) =
(35)(412) = (53)(124) = (53)(241) = (53)(412).

Multiplication of permutations is quite easy to do in your head, using the

cycle notation. Here is an example.

Example 20.4
Let f = (1325)(46) ∈ S6 and g = (24)(163)(5) ∈ S6. Then

f g = (145)(26)(3).

I did this in my little head — honest! Here’s what I said to myself:
“Well, start with 1; g sends 1 to 6 and f sends 6 to 4, so f g sends 1 to
4; then it sends 4 to 5; then 5 to 1. So the first cycle of f g is (145).
Now look at 2, which is not in this cycle: f g sends 2 to 6, then 6 to 2; so
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(26) is the next cycle. Finally, f g sends 3 to 3, so (3) is the last cycle.”
(Better stop talking to myself; people are looking at me strangely.)

If g ∈ Sn is a permutation given in cycle notation, the cycle-shape of g is the

sequence of numbers we get by writing down the lengths of the disjoint cycles

of g in decreasing order. For example, the cycle-shape of the permutation

(163)(24)(58)(7)(9) in S9 is (3,2,2,1,1); normally we collect the repeated

numbers and write this more succinctly as (3,22,12).

Example 20.5
(1) How many permutations of cycle-shape (2,1n−2) are there in Sn?

Answer This is easy: it is just the number of choices of a pair {i, j} to
make a 2-cycle (i j), which is

(
n
2

)
.

(2) How many permutations of cycle-shape (3,22,1) are there in S8?

Answer This is slightly more tricky. First we have to choose three
symbols i, j,k to put in a 3-cycle; and given i, j,k we can make two
distinct 3-cycles — (i j k) and (ik j). So there are

(
8
3

)
× 2 choices for the

3-cycle. Next, we choose two symbols l,m from the remaining five to put
in the first 2-cycle, then two more, n,o to put in the second. This gives
(

5
2

)
×
(

3
2

)
choices, but we must divide this number by 2 since (l m)(no) is

the same as (no)(l m). Hence the number of permutations of cycle-shape
(3,22,1) is

(
8

3

)

× 2×
(

5

2

)

×
(

3

2

)

× 1

2
= 1680.

Repeating a Permutation

Suppose f is the cycle (12345)∈ S5. If we do f five times, we send 1 all the

way round and back to 1, similarly 2 to 2, and so on. So f 5 sends 1→ 1,2→ 2,

. . . ,5 → 5; in other words, f 5 = ι , the identity permutation.

In general, we define the order of a permutation g ∈ Sn to be the smallest

positive integer r such that gr = ι . In other words, the order of g is the smallest

number of times we have to do g to send everything back to where it came

from.

Orders of permutations are easy to work out using the cycle notation. We see

from a few lines above that the order of a 5-cycle is equal to 5, and similarly

that for any positive integer r, the order of an r-cycle is r (where an r-cycle just

means a cycle of length r). Now consider a permutation with more than one
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cycle in its cycle notation, for example,

g = (243)(1658)(7) ∈ S8.

To raise g to a power r and get gr = ι , we have to make r a multiple of 3 [to

“kill off” the 3-cycle (243)] and also a multiple of 4 [to “kill off” the 4-cycle

(1658)]. So r must be at least 12. Since it doesn’t matter in which order we

write the disjoint cycles of g, we see that

g12 = (243)(1658)(7) · (243)(1658)(7) · (243)(1658)(7) · · ·· · ·

= (243)12 (1658)12 (7)12 = ι.

It follows that the order of g is equal to 12. In general, this reasoning shows

the following.

PROPOSITION 20.4
The order of a permutation in cycle notation is equal to the least com-
mon multiple of the lengths of the cycles.

Example 20.6
How many permutations of order 2 are there in S5?

Answer By Proposition 20.4, the permutations of order 2 in S5 are those
of cycle-shape (2,13) or (22,1). Arguing as in Example 20.5, we see that
the number of permutations of cycle-shape (2,13) is

(
5
2

)
= 10, while the

number of cycle-shape (22,1) is
(

5
2

)
×
(

3
2

)
× 1

2
= 15. So the total number

of permutations of order 2 in S5 is 25.

There are many situations in which it is useful to be able to work out the

order of a permutation. Here is one example.

Example 20.7
A pack of eight cards is shuffled in the following way: the pack is divided
into two equal parts and then “interlaced,” so that if the original order
was 1,2,3,4, . . ., the new order is 1,5,2,6, . . .. How many times must this
shuffle be repeated before the cards are again in the original order?

Answer The shuffle gives the following permutation of the eight card posi-

tions:

f =

(
1 2 3 4 5 6 7 8

1 5 2 6 3 7 4 8

)

.
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In cycle notation, f = (1)(253)(467)(8). This permutation has order 3, so

the cards return to their original order after 3 shuffles.

Things get quite interesting if we consider the same problem for different

numbers of cards — see Exercise 4 at the end of the chapter.

Even and Odd Permutations

We conclude this chapter by introducing an aspect of permutations that is a

little more subtle than what we have seen so far.

Example 20.8
Let me begin with an example. Take n = 3 and let x1,x2,x3 be three

variables. We’ll let the permutations in S3 move around these variables
just as they move around the numbers 1,2,3. So, for instance, the
permutation (132) sends x1 → x3, x2 → x1, x3 → x2. Now define the
expression

∆ = (x1 − x2)(x1 − x3)(x2 − x3).

We can apply permutations in S3 to ∆ in an obvious way: for example,
(123) sends ∆ to (x2 − x3)(x2 − x1)(x3 − x1). Notice that this is just the
expression for ∆ with two of the brackets, (x1−x2) and (x1−x3), reversed.
So (123) sends ∆ → ∆. However, if we apply (12)(3) to ∆, we end up
with (x2 − x1)(x2 − x3)(x1 − x3) =−∆.
You can see that each permutation in S3 sends ∆ to either +∆ or −∆.

Here’s a table recording which signs occur:

g g(∆)
ι +∆

(12)(3) −∆
(13)(2) −∆
(23)(1) −∆
(123) +∆
(132) +∆

We shall call those permutations that send ∆ to +∆ even permutations

and those that send ∆ to −∆ odd permutations. So ι,(123) and (132) are
even, while (12)(3),(13)(2),(23)(1) are odd.

The definition of even and odd permutations for general n is very similar

to the n = 3 example. Let x1, . . . ,xn be variables, and take permutations in Sn
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to move these variables in just the same way they move the symbols 1, . . . ,n
around. Define ∆ to be the product of all xi − x j for i < j. The notation for this

is

∆ = ∏
1≤i< j≤n

(xi − x j).

[The symbol ∏ means the product of all the terms (xi − x j).] Just as in the

example, we can apply any permutation g∈ Sn to ∆ and the result will be either

+∆ or −∆. Define the signature of g to be the number sgn(g)∈ {+1,−1} such

that

g(∆) = sgn(g)∆.

This defines the signature function sgn : Sn →{+1,−1}.

DEFINITION A permutation g ∈ Sn is an even permutation if sgn(g) =
+1, and is an odd permutation if sgn(g) =−1.

It is not immediately obvious how to quickly calculate the signature of an

arbitrary permutation. Certainly it would be a bit of a pain if we had to work

out what g(∆) was every time we wanted to know sgn(g). Fortunately there is

a somewhat more clever method available. It is based on the following result.

In the statement of part (ii), a 2-cycle (ab) just means the permutation in Sn

that swaps a and b and sends everything else to itself.

PROPOSITION 20.5
(i)The signature of the identity permutation, sgn(ι) = +1.
(ii) For any g,h ∈ Sn, we have sgn(gh) = sgn(g)sgn(h).
(iii) For any g ∈ Sn, we have sgn(g−1) = sgn(g).
(iv) The signature of any 2-cycle (ab) is −1.

PROOF (i) Clearly ι(∆) = ∆, so sgn(ι) = +1.

(ii) By definition of the signature function, we know that gh(∆) =
sgn(gh)∆. But we also know that

gh(∆) = g(h(∆)) = g(sgn(h)∆) = sgn(g)sgn(h)∆.

So sgn(gh) = sgn(g)sgn(h).

(iii) Using (i) and (ii) we see that 1= sgn(ι)= sgn(gg−1)= sgn(g)sgn(g−1).
Hence sgn(g−1) = sgn(g).

(iv) Let t = (ab). We may as well assume that a < b. Then the
brackets (xi − x j) in ∆ that appear reversed in t(∆) (i.e., when xa and xb

are swapped) are

(xa − xa+1),(xa − xa+2), . . . ,(xa − xb),



PERMUTATIONS 183

(xa+1 − xb),(xa+2 − xb), . . . ,(xb−1 − xb).

There are b− a brackets in the first row and b− a− 1 in the second,
making a total of 2b− 2a− 1 reversed brackets. Since this is an odd
number, t(∆) must be −∆, so sgn(t) =−1.

We can use this result to work out the signature of any cycle.

PROPOSITION 20.6
The signature of any r-cycle in Sn is equal to (−1)r−1.

PROOF Observe that a typical r-cycle (a1 a2 . . . ar) can be written
as a product of 2-cycles in the following way:

(a1 a2 . . . ar) = (a1 ar)(a1 ar−1) · · · (a1 a2).

To see this, just note that the product on the right-hand side sends
a1 → a2, a2 → a3, . . .ar → a1 and fixes everything else, which is exactly
what the r-cycle (a1 a2 . . . ar) on the left-hand side does. So the two sides
are equal.
Now use Proposition 20.5: by part (ii), the signature of the r-cycle

(a1 a2 . . . ar) is equal to the product of the signatures of the 2-cycles on
the right-hand side of the above equation, of which there are r− 1. By
part (iv) of the proposition, each of these has signature −1. Hence the

r-cycle has signature (−1)r−1.

Using Proposition 20.6, it is easy to find the signature of any permutation

g ∈ Sn. Let the cycle-shape of g be (r1,r2, . . . ,rk), so g is a product of disjoint

cycles of lengths r1, . . . ,rk. Then by Proposition 20.5(ii), sgn(g) is the product

of the signatures of these cycles, so by Proposition 20.6, we have the following.

PROPOSITION 20.7
If g ∈ Sn has cycle-shape (r1,r2, . . . ,rk), then

sgn(g) = (−1)r1−1(−1)r2−1 · · · (−1)rk−1.

So g is an even permutation if and only if the number of ri that are even
is an even number.

Example 20.9
(1) The permutation (1234)(567)(89)(1011)∈ S11 is odd.



184 A CONCISE INTRODUCTION TO PURE MATHEMATICS

(2) The permutations in S5 that are even are precisely those that have
cycle-shape (15), (22,1), (3,12) or (5). Using the counting methods illus-
trated in Example 20.5, we see that the total number of permutations
in S5 of each of these cycle-shapes is

cycle-shape number

(15) 1

(22,1) 15

(3,12) 20

(5) 24

total 60

Notice that the total number of even permutations is 60, which is equal
to 1

2
(5!) = 1

2
|S5|. In Exercise 5 at the end of the chapter you are asked

to prove that this is a general phenomenon — for any n, exactly half of
the n! permutations in Sn are odd and half are even.

You might ask what the point of this complicated definition of even and odd

permutations is. For the most part, the answer is that you will see these crop-

ping up in several more advanced topics in algebra later in your studies. For

example, in group theory, the 1
2
(n!) even permutations form a very important

“subgroup” of Sn known as the alternating group (see Chapter 26). Another

topic in which even and odd permutations play a key role is the theory of de-

terminants of n× n matrices.

For now, let me merely offer the following amusing example to show a use

for even and odd permutations.

Example 20.10
The “Fifteen Puzzle”

This puzzle consists of 15 square blocks labelled 1,2, . . . ,15 arranged
in a 4× 4 frame, with one space, like this:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

To make a move you slide one block into the space, thereby creating a
new space.
The problem is this: can you make a sequence of moves to change the
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above configuration to this one:

15 14 13 12

11 10 9 8

7 6 5 4

3 2 1

Answer The answer is no, you can’t. Here’s how to prove this. Denote the

space by ✷ so that the initial arrangement is

123456789101112131415✷.

Moving a number x into the space corresponds to doing the 2-cycle (x✷). If we

do a sequence of moves and end up with an arrangement with ✷ in its original

place, then ✷ must have been moved upwards the same number of times as

downwards, and leftwards the same number of times as rightwards. So the

total number of moves must be even. Since each move is a 2-cycle, this means

that the effect of the sequence of moves is a permutation that is a product of an

even number of 2-cycles. By Proposition 20.5, this must therefore be an even

permutation. However, we are looking for a sequence of moves that effects the

permutation
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

)

.

In cycle notation this is (115)(214)(313)(412)(511)(610)(79)(8). But this

is a product of seven 2-cycles, and hence is an odd permutation. Therefore,

there is no sequence of moves that can effect this permutation.

The argument above showed that if a permutation of the blocks 1,2, . . . ,15

can be achieved by a sequence of moves, then it must be an even permutation.

The question of whether every even permutation can be achieved is much more

subtle. If you are interested in reading further about this, have a look at the

article by A. Archer, A modern treatment of the 15 puzzle, American Math.

Monthly, Vol.106 (1999), pp.793–799.

Exercises for Chapter 20

1. Complete the multiplication table for S3 started in Example 20.3.

2. Let f and g be the following permutations in S7:

f =

(
1 2 3 4 5 6 7

3 1 5 7 2 6 4

)

, g =

(
1 2 3 4 5 6 7

3 1 7 6 4 5 2

)

.
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Write down in cycle notation the permutations f , g, g2, g3, f ◦ g, ( f ◦
g)−1 and g−1 ◦ f−1.

What is the order of f ? What is the order of f ◦ g?

3. (a) List the numbers that occur as the orders of elements of S4, and cal-

culate how many elements there are in S4 of each of these orders.

(b) List all the possible cycle-shapes of even permutations in S6.

(c) Calculate the largest possible order of any permutation in S10.

(d) Calculate the largest possible order of any even permutation in S10.

(e) Find a value of n such that Sn has an element of order greater than

n2.

4. A pack of 2n cards is shuffled by the “interlacing” method described in

Example 20.7 — in other words, if the original order is 1,2,3, . . . ,2n,

the new order after the shuffle is 1,n+ 1,2,n+ 2, . . . ,n,2n. Work out

how many times this shuffle must be repeated before the cards are again

in the original order in the following cases:

(a) n = 10

(b) n = 12

(c) n = 14

(d) n = 16

(e) n = 24

(f) n = 26 (i.e., a real pack of cards).

Investigate this question as far as you can for general n — it is quite

fascinating!

5. Prove that exactly half of the n! permutations in Sn are even.

(Hint: Show that if g is an even permutation, then g(12) is odd. Try to

use this to define a bijection from the set of odd permutations to the set

of even permutations.)

6. This question is about the 3× 3 version of the Fifteen Puzzle of Exam-

ple 20.10. Starting with the configuration

1 2 3

4 5 6

7 8 ✷

which of the following configurations can be reached by a sequence of

moves?
3 2 1 1 ✷ 2 1 7 2

4 5 6 , 3 4 5 , 6 4 5

7 8 ✷ 6 7 8 3 8 ✷
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7. Let S be a set of size m and T a set of size n. Assume that m ≥ n.

This question is about the number of onto functions from S to T , which

is much more complicated than the corresponding question about 1-1

functions (see Exercise 7 of Chapter 19).

(a) What is the number of onto functions from S to T if m = n?

(b) Show that if m = n+ 1, the number of onto functions from S to T is

(
n+ 1

2

)

·n!

(c) Show that if m = n+ 2, the number of onto functions from S to T is

(
n+ 2

3

)

·n! +

(
n+ 2

n− 2,2,2

)

·n!

(Hint: An onto function S → T will either send some set of 3 elements

of S to the same element of T , or send two pairs of elements of S to two

elements of T . Count the numbers of such functions separately in these

two cases.)

8. Critic Ivor Smallbrain has been engaged for the prestigious role of dress-

ing up as Father Christmas at Harrods this year. There, he will have to

distribute n+ 3 toys to n children. He must make sure that every child

gets at least one toy, but he can give the extra three toys to any of the

children.

How many ways are there in which Ivor can distribute the toys?

(Note: This is just the number of onto functions from a set of size n+ 3

to a set of size n, if that’s any help.)
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Chapter 21

Infinity

Given two finite sets, it is simple to compare their sizes. For example, we

would say that the set of corners of a pentagon is larger than the set of players

in a string quartet, simply because the first set has five elements, while the

second has only four.

But can we compare the sizes of infinite sets in any meaningful way? We

have encountered many different infinite sets at various points in this book,

such as N, Z,Q, R, C, N×N,Q×R×C, and so on. How can we compare

these with each other?

There is a way to do this using functions. To set this up, let us begin with

an elementary observation about finite sets. If S is a set of size n, say S =
{s1,s2, . . . ,sn}, then the function f : S →{1,2, . . . ,n} defined by

f (s1) = 1, f (s2) = 2, . . . , f (sn) = n.

is a bijection. Thus we can say

S has size n ⇔ there is a bijection from S to {1,2, . . . ,n}.

We now extend this notion to arbitrary sets.

DEFINITION Two sets A and B are said to be equivalent to each
other if there is a bijection from A to B. We write A ∼ B if A and B are
equivalent to each other.

In accordance with the preamble to the definition, we can informally think

of two sets that are equivalent to each other as “having the same size.”

Before doing anything else, let us establish that the relation ∼ is an equiva-

lence relation on sets.

PROPOSITION 21.1
The relation ∼ defined above is an equivalence relation.

189



190 A CONCISE INTRODUCTION TO PURE MATHEMATICS

PROOF First we show ∼ is reflexive; that is, A ∼ A for any set A.
This is true since the identity function, ιA : A → A defined by iA(a) = a

for all a ∈ A, is a bijection.
Next we show ∼ is symmetric. Suppose A ∼ B, so there is a bijection

f : A → B. Then the inverse function f−1 : B → A is a bijection, so B ∼ A.
Finally, we show∼ is transitive. Suppose A∼B and B∼C, so there are

bijections f : A→B and g : B→C. Then, by Proposition 19.2, g◦ f : A→C

is a bijection, so A ∼C. Hence ∼ is transitive.

Example 21.1
(1) Let A = N and let B = {2n |n ∈ N}, the set of all positive even

numbers. Then the function f : A → B defined by

f (n) = 2n for all n ∈N

is a bijection. Thus A ∼ B; i.e., N∼ even numbers in N.
This example shows that N can be equivalent to a subset of itself.

(Informally, N “has the same size” as a subset of itself.) It is of course
not possible for any finite set to have this property.

(2) Suppose A is a set that is equivalent to N. This means there is
a bijection f : N→ A. For n ∈ N, let f (n) = an ∈ A. Since f is onto, we
then have

A = {a1,a2,a3, . . . ,an, . . .}.
In other words, we can list all the elements of A as a1,a2,a3, . . ..

Countable Sets

The listing property of the last example is so fundamental that we give it a

special definition.

DEFINITION A set A is said to be countable if A is equivalent to
N. In other words, A is countable if it is an infinite set, all of whose
elements can be listed as A = {a1,a2,a3, . . . ,an, . . .}.

Example 21.2
(1) N is obviously itself countable: its elements can be listed as

1,2,3, . . ..
(2) The set B = {2n |n∈N} of positive even numbers is countable: the

elements of B can be listed a 2,4,6,8, . . ..
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(3) What about Z — is it countable? This is not quite so obvi-
ous, but the answer is yes because we can list all the elements of Z

as 0,1,−1,2,−2,3,−3, . . .. Correspondingly, we could define a bijection
f : N→ Z by

f (2n) = n and f (2n− 1) =−(n− 1)

for all n ≥ 1.

The same idea shows that the union of any two countable sets is countable

(just list the elements alternately, omitting any repetitions).

The next proposition provides us with many more examples of countable

sets.

PROPOSITION 21.2
Every infinite subset of N is countable.

PROOF Let S be an infinite subset of N. Take s1 to be the smallest
integer in S; then take s2 to be the smallest integer in S−{s1}, take
s3 to be the smallest in S−{s1,s2}, and so on. In this way, we list all
the elements of S in ascending order as S = {s1,s2,s3, . . .}. Therefore, S

is countable. (A bijection f : N → S would simply be f (1) = s1, f (2) =

s2, f (3) = s3, and so on.)

Let us now consider the question of whether Q, the set of rationals, is count-

able. This is much more subtle than any of the previous examples. For a start,

we certainly cannot list the positive rationals in ascending order, since, no mat-

ter what rational x we started the list with, there would be a smaller one (e.g.,
1
2
x) that would then not appear on the list. However, could it be possible to

devise a devilishly clever alternative way to list the rationals?

Somewhat amazingly, the answer is yes.

PROPOSITION 21.3
The set of rationals Q is countable.

PROOF First consider Q+, the set of positive rationals. We show
how to list the elements of Q+. The key is first to write the positive
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rationals in an array as follows:

1
1

2
1

3
1

4
1

5
1

. . .

1
2

2
2

3
2

4
2

5
2

. . .

1
3

2
3

3
3

4
3

5
3

. . .

1
4

2
4

3
4

4
4

5
4

. . .

1
5

2
5

3
5

4
5

5
5

. . .
. . . . . . . .
. . . . . . . .

Draw a zig-zag line through this array as follows:

1
1
→ 2

1
3
1
→ 4

1
5
1
. . .

ւ ր ւ ր
1
2

2
2

3
2

4
2

5
2
. . .

↓ ր ւ ր
1
3

2
3

3
3

4
3

5
3
. . .

ւ ր
1
4

2
4

3
4

4
4

5
4
. . .

↓ ր
1
5

2
5

3
5

4
5

5
5
. . .

. . . . . . . .

. . . . . . . .

We can now list the positive rationals by simply moving along the zig-
zag line in the direction of the arrows, writing down each number as we
reach it (and omitting numbers we have already written down, such as
2
2
, 3

3
, 4

2
and so on). The list starts like this:

1, 2,
1

2
,

1

3
, 3, 4,

3

2
,

2

3
,

1

4
,

1

5
, 5, . . . .

Thus we obtain a complete list of all the positive rationals, showing that
Q+ is countable.
Finally, we need to deduce that Q is countable. Let the above list

of the elements of Q+ be Q+ = {q1,q2,q3, . . .}. Then we can list the
elements of Q as

Q= {0,q1,−q1,q2,−q2,q3,−q3, . . .},

which shows that Q is countable.
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The next proposition provides a quite useful method for showing that sets

are countable.

PROPOSITION 21.4
Let S be an infinite set. If there is a 1-1 function f : S → N, then S is
countable.

PROOF Recall that the image of f is the set

f (S) = { f (s) |s ∈ S} ⊆ N.

Since f is 1-1, f (S) is an infinite set. Therefore, by Proposition 21.2,
f (S) is countable. Consequently, there is a bijection g : N→ f (S).
Now we can regard f as a function from S to f (S). As such, f is onto;

hence, as f is also 1-1, f is a bijection from S to f (S). There is therefore
an inverse function f−1 : f (S)→ S.
Finally, consider the composition f−1◦g : N→ S. By Proposition 19.2(c),

this is a bijection. This means that S is countable.

This proposition can be used in many further examples:

Example 21.3
(1) Here is another proof that Q+ is countable. Define f : Q+ →N by

f (
m

n
) = 2m3n

where m,n ∈ N and m
n
is in lowest terms. Then f is 1-1, since

f (
m

n
) = f (

p

q
) ⇒ 2m3n = 2p3q ⇒ m = p,n = q

using the Fundamental Theorem of Arithmetic 11.1. Hence Q+ is count-
able by Proposition 21.4.
(2) A very similar proof shows that the Cartesian product N×N is

countable: just define f : N×N → N by f (m,n) = 2m3n and observe
again that f is 1-1. Likewise, N×N×N is countable, since the function
g(m,n, l) = 2m3n5l from N×N×N→N is 1-1; and so on — the Cartesian
product of any finite number of copies of N is countable.
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An Uncountable Set

We have shown that many sets are countable. Are there in fact any infinite

sets that are not countable? The answer is yes. Here is the most famous ex-

ample of an uncountable set — where, not surprisingly, an uncountable set is

defined to be an infinite set that is not countable.

THEOREM 21.1
The set R of all real numbers is uncountable.

PROOF We prove the theorem by contradiction. So suppose that
R is countable. This means that we can list all the elements of R as

R= {r1,r2,r3, . . .} .

Express each of the ris in the list as a decimal:

r1 = m1.a11a12a13 . . .
r2 = m2.a21a22a23 . . .
r3 = m3.a31a32a33 . . .
. .
. .

rn = mn.an1an2an3 . . .
. .
. .

(where each mi ∈ Z and each ai j ∈ {0,1,2, . . . ,9}).
Now define a real number r = 0.b1b2b3 . . . as follows.
To choose the first decimal digit b1: if a11 6= 1, let b1 = 1; and if a11 = 1,

let b1 = 2. (Hence b1 6= a11.)
To choose the second decimal digit b2: if a22 6= 1, let b2 = 1; and if

a22 = 1, let b2 = 2. (Hence b2 6= a22.)
And so on: in general, to choose the nth decimal digit bn: if ann 6= 1,

let bn = 1; and if ann = 1, let bn = 2. (Hence bn 6= ann.)
In this way we define a real number r = 0.b1b2b3 . . .. Since r1,r2,r3, . . .

is a list of all real numbers, r must belong to this list, so r = rn for some
n. But bn 6= ann, so r and rn differ in their nth decimal digit. Note also
that r does not end in recurring 9s or 0s (all the bis are 1 or 2). Hence
r 6= rn, which is a contradiction.
Therefore, there is no bijection from N to R, which is to say that R is

uncountable.
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This famous theorem is due to Georg Cantor (1874), the founder of modern

set theory. The wonderfully clever idea of the proof — defining the decimal

r = 0.b1b2b3 . . . by adjusting the “diagonally placed” decimal digits ann in the

array of ris — is called Cantor’s “diagonal argument” and can be used to prove

that all sorts of other sets are uncountable. (See Exercises 4 and 5 at the end of

the chapter.)

A consequence of Theorem 21.1 is that the set of irrationals R−Q is un-

countable — for if it were countable, then R would be the union of two count-

able sets and hence would be countable. Thus, there are in some sense “more”

irrational numbers than there are rationals.

A Hierarchy of Infinities

DEFINITION Let A and B be sets. If A and B are equivalent to
each other (i.e., there is a bijection from A to B), we say that A and B

have the same cardinality, and write |A|= |B|.
If there is a 1-1 function from A to B, we write |A| ≤ |B|.
And if there is a 1-1 function from A to B, but no bijection from A

to B, we write |A|< |B|, and say that A has smaller cardinality than B.
(Thus, |A|< |B| is the same as saying that |A| ≤ |B| and |A| 6= |B|.)

According to this definition, we have

|N|= |Q|= |N×N|

and

|N|< |R|.
Thus there are at least two different types of “infinity,” namely |N| and |R|.

Are there more types of infinity? For example, is there a set of greater

cardinality than R?

The answer is yes, and again this is due to Cantor. To understand this, we

first need a definition.

DEFINITION If S is a set, let P(S) be the set consisting of all the
subsets of S.

For example, if S = {1,2} then P(S) = {{1,2}, {1}, {2}, /0}. In general, if

S is a finite set of size n, then |P(S)|= 2n by Proposition 17.4.
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Cantor’s theory is based on the following result.

PROPOSITION 21.5
Let S be a set. Then there is no bijection from S to P(S). Consequently,
|S|< |P(S)|.

Using the proposition, we obtain a hierarchy of infinities, starting at |N|:

|N|< |P(N)|< |P(P(N))|< |P(P(P(N)))|< .. . .

Thus there are indeed many types of “infinity.”

PROOF Here is a proof of Proposition 21.5. It is a very subtle proof
by contradiction. You may well have to go through it a few times before
really understanding it.
Suppose there is a bijection f : S → P(S). Then every subset of S is

equal to f (s) for some s ∈ S.
For any s ∈ S, f (s) is a subset of S, and it is certainly the case that

either s ∈ f (s) or s 6∈ f (s). [For example, there exists s1 such that f (s1) =
S, and then s1 ∈ f (s1); likewise, there exists s2 such that f (s2) = /0, and
then s2 6∈ f (s2).] Define A to be the set of all elements s of S such that
s 6∈ f (s); symbolically,

A = {s ∈ S |s 6∈ f (s)}.

(In the above notation, s1 6∈ A but s2 ∈ A.)
Certainly A is a subset of S; that is, A ∈ P(S). Therefore, as f is a

bijection, A = f (a) for some a ∈ S.
We now ask the question: does a belong to A?
If a 6∈ A, then a 6∈ f (a), so by definition of A, we have a ∈ A. This is a

contradiction. And if a ∈ A then a ∈ f (a), so by definition of A we have
a 6∈ A, again a contradiction.
Thus we have reached a contradiction in any case. So we conclude

that there cannot be a bijection from S to P(S).
Since there is certainly a 1-1 function f : S → P(S), namely f (s) = {s}

for all s ∈ S, it follows that |S|< |P(S)|, and the proof is complete.

Exercises for Chapter 21

1. (a) Show that if A is a countable set and B is a finite set, then A∪B is

countable.
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(b) Show that if A and B are both countable sets, then A∪B is countable.

2. (a) Show that if each of the sets Sn (n = 1,2,3, . . .) is countable, then the

union S =
⋃∞

n=1 Sn is also countable.

(b) Show that if S and T are countable sets, then the Cartesian product

S× T is also countable. Hence show that
⋃∞

n=1 Sn is countable, where

Sn = S× S×·· ·× S (n times).

3. Write down a sequence z1,z2,z3, . . . of complex numbers with the fol-

lowing property: for any complex number w and any positive real num-

ber ε , there exists N such that |w− zN |< ε .

(Hint: Try to use the fact that Q is countable.)

4. Let S be the set consisting of all infinite sequences of 0s and 1s (so a

typical member of S is 010011011100110 . . ., going on forever). Use

Cantor’s diagonal argument to prove that S is uncountable.

5. (a) Let S be the set consisting of all the finite subsets of N. Prove that S

is countable.

(b) Let T be the set consisting of all the infinite subsets of N. Prove that

T is uncountable.

(c) Prove that the set of all functions f : N→N is uncountable.

6. Every Tuesday, critic Ivor Smallbrain drinks a little too much, staggers

out of the pub, and performs a kind of random walk towards his home.

At each step of this walk, he stumbles either forwards or backwards, and

the walk ends either when he collapses in a heap or when he reaches

his front door (one of these always happens after a finite [possibly very

large] number of steps). Ivor’s Irish friend Gerry O’Laughing always

accompanies him and records each random walk as a sequence of 0s

and 1s: at each step he writes a 1 if the step is forwards and a 0 if it is

backwards.

Prove that the set of all possible random walks is countable.
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Chapter 22

Introduction to Analysis: Bounds

In the next three chapters of the book — this one and the next two — I want to

introduce you to a topic with a different flavour from the rest of the book. This

is a topic called mathematical analysis, or just analysis for short. This is a huge

area, which at an undergraduate level starts off with the study of the real and

complex numbers, and functions defined on them. Of course we can’t cover

very much of the subject — that would require several more books — but we

will do enough to prove several interesting results, such as putting the existence

of decimal expressions for real numbers on a rigorous footing, and proving the

existence of nth roots of positive real numbers (stated in Proposition 4.1).

Before we can start studying functions of the real numbers, we need to go

more deeply into some basic properties of the real numbers themselves, and

that’s what we’ll do in this chapter.

Upper and Lower Bounds

Our study will be based on the theory of bounds for sets of real numbers.

Here is the definition.

DEFINITION Let S be a non-empty subset of R. (So S is a set
consisting of some real numbers, and S 6= /0). We say that a real number
u is an upper bound for S if

s ≤ u for all s ∈ S.

Likewise, l is a lower bound for S if

s ≥ l for all s ∈ S.

199



200 A CONCISE INTRODUCTION TO PURE MATHEMATICS

Example 22.1
(1) Let

S =

{
1

n

∣
∣
∣n ∈N

}

=

{

1,
1

2
,

1

3
,

1

4
, . . .

}

.

Then 1 is an upper bound for S; so are 2, 17 and indeed any number
that is at least 1. Also 0 is a lower bound for S, and so is any number
less than or equal to 0.

(2) If S = Z, then S has no upper or lower bound.

(3) If
S =

{
x |x ∈Q, x2 < 2

}

(i.e., the set of rationals with square less than 2), then
√

2 is an upper
bound for S and −

√
2 is a lower bound.

As we see from these examples, a set can have many upper bounds. It turns

out to be a fundamental question to ask whether, among all the upper bounds,

there is always a least one. Let us first formally define such a thing.

DEFINITION Let S be a non-empty subset of R, and suppose S

has an upper bound. We say that a real number c is a least upper bound

for S (abbreviated LUB), if the following two conditions hold:

(i) c is an upper bound for S, and
(ii) if u is any other upper bound for S, then u ≥ c.

Similarly, d is a greatest lower bound (GLB) for S if

(a) d is a lower bound for S, and
(b) if l is any other lower bound for S, then l ≤ d.

Example 22.2
Let S = { 1

n
|n ∈ N} as in Example 22.1(1).

We claim that 1 is a LUB for S. To see this, observe that 1 is an upper
bound; and any other upper bound is at least 1, since 1 ∈ S.
We also claim that 0 is a GLB for S. This is not quite so obvious.

First, 0 is a lower bound. Let l be another lower bound for S. If l > 0,
then we can find n ∈N such that 1

n
< l; but 1

n
∈ S, so this is not possible

as l is a lower bound for S. Hence l ≤ 0, which proves that 0 is a GLB
for S.

It is an absolutely fundamental property of the real numbers that every set

which has an upper bound also has a least upper bound. We won’t prove this
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here, as it relies on a rigorous construction of the real numbers, which we have

not done. It is known as the Completeness Axiom for R:

COMPLETENESS AXIOM Let S be a non-empty subset of R.

(I) If S has a lower bound, then it has a greatest lower bound.

(II) If S has an upper bound, then it has a least upper bound.

For interested readers, I have included Exercise 8 at the end of the chapter,

which leads you through the rigorous construction of the real numbers from

the rationals and proves the Completeness Axiom.

If a set S has a LUB, it is easy to see that it has only one LUB. We leave

this to the reader (Exercise 3 at the end of the chapter). So it makes sense to

talk about the least upper bound of S. We sometimes denote this by LUB(S).

Likewise, a set S with a lower bound has only one GLB, denoted by GLB(S).

As we have said, the Completeness Axiom underlies the whole of the theory

of the real numbers, and you will see it used many times in your future study

of mathematics. In the next two chapters we’ll apply it in the study of limits

and functions and use it to justify the existence of decimal expressions and nth

roots. For now, here is a little example to give you the flavour of how the axiom

can be used.

Example 22.3
We saw in Chapter 2 how to prove the existence of the real number√
2, and more generally of

√
n for any positive integer n, by means of a

clever geometrical construction. However, proving the existence of the
real cube root of 2 is not so easy. In this example I’ll show you how to
use the Completeness Axiom to prove the existence of 21/3.
The key idea is to define the following set of real numbers:

S =
{

x |x ∈ R, x3 < 2
}
.

Thus, S is the set of all real numbers whose cube is less than 2.
First note that S has an upper bound; for example, 2 is an upper

bound, since if x3 < 2 then x< 2. Therefore, by the Completeness Axiom,
S has a least upper bound. Say

c = LUB(S).

We shall show that c3 = 2. We do this by contradiction.
Assume then that c3 6= 2. Then either c3 < 2 or c3 > 2. We consider

these two possibilities separately, in each case obtaining a contradiction.
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Case 1 Assume that c3 < 2. Our strategy in this case is to find a small
number α > 0 such that (c+α)3 < 2 still; this will mean that c+α ∈ S,
whereas c is an upper bound for S, a contradiction.
To find α, we argue as follows. (I have chosen to present the steps

“in reverse” in order to make it clear how the argument was found.) We
have

(c+α)3 < 2 ⇐ c3 + 3c2α + 3cα2 +α3 < 2

⇐ 2− c3 > 3c2α + 3cα2 +α3

⇐ 2− c3 > α
(
3c2 + 3c+ 1

)
and 0 < α < 1.

(The last inequality follows, since when 0 < α < 1, we have α2 < α and
α3 < α.) Since 2− c3 > 0, we can choose α such that

0 < α < 1 and α <
2− c3

3c2 + 3c+ 1
.

Then, by the above implications it follows that (c+α)3 < 2. This leads
to a contradiction, as explained before.

Case 2 Now assume that c3 > 2. In this case our strategy is to find a
small number β > 0 such that (c−β )3 > 2 still. If we do this, then for
x ∈ S we have x3 < 2 < (c−β )3, hence x < c−β , and so c−β is an upper
bound for S. However, c is the LUB of S, so this is a contradiction.
To find β , note that

(c−β )3 > 2 ⇐ c3 − 2 > 3c2β − 3cβ 2 +β 3

⇐ c3 − 2 > β (3c2 + 3c+ 1) and 0 < β < 1.

Since c3 − 2 > 0 we can choose β such that

0 < β < 1 and β <
c3 − 2

3c2 + 3c+ 1
.

Then, by the above implications, it follows that (c−β )3 > 2. This leads
to a contradiction, as explained before.
Thus we have reached a contradiction in both Cases 1 and 2, from

which we conclude that c3 = 2. In other words, c is the real cube root
of 2.

You can see that the calculations in this example are both tricky and tedious.

In Chapter 24 we shall prove a general result (the Intermediate Value Theorem)

that makes this kind of argument easy, smooth and free of tricky or tedious

calculations.
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Exercises for Chapter 22

1. Which of the following sets S have an upper bound and which have a

lower bound? In the cases where these exist, state what the least upper

bounds and greatest lower bounds are.

(i) S = {−1,3,7,−2}.

(ii) S = {x | x ∈ R and |x− 3|< |x+ 7|}.

(iii) S = {x | x ∈ R and x3 − 3x < 0}.

(iv) S = {x | x ∈ N and x2 = a2 + b2 for some a,b ∈N}.

2. Write down proofs of the following statements about sets A and B of real

numbers:

(a) If x is an upper bound for A, and x ∈ A, then x is a least upper bound

for A.

(b) If A ⊆ B, then a lower bound for B is also a lower bound for A.

(c) If A ⊆ B and a greatest lower bound of A is x, and a greatest lower

bound of B is y, then y ≤ x.

3. Prove that if S is a set of real numbers, then S cannot have two different

least upper bounds or greatest lower bounds.

4. Find the LUB and GLB of the following sets:

(i) {x | x = 2−p + 3−q for some p,q ∈ N}
(ii) {x ∈ R | 3x2 − 4x < 1}

(iii) the set of all real numbers between 0 and 1 whose decimal expres-

sion contains no nines

5. (a) Find a set of rationals having rational LUB.

(b) Find a set of rationals having irrational LUB.

(c) Find a set of irrationals having rational LUB.

6. Which of the following statements are true and which are false?

(a) Every set of real numbers has a GLB.

(b) For any real number r, there is a set of rationals having GLB equal

to r.

(c) Let S ⊆R,T ⊆ R, and define ST = {st | s ∈ S, t ∈ T}, the set of all

products of elements of S with elements of T . If c is the GLB of S,

and d is the GLB of T , then cd is the GLB of ST .
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(d) If S is a set of real numbers such that GLB(S) 6∈ S, then S must be

an infinite set.

7. Prove that the cubic equation x3 − x− 1 = 0 has a real root (i.e., prove

that there exists a real number c such that c3 − c− 1 = 0). (Hint: Try to

find c as the LUB of a suitable set.)

8. Here is an exercise, not for the faint-hearted, leading you through the rig-

orous construction of the real numbers from the rationals Q and proving

the Completeness Axiom.

Call a subset S of Q a Dedekind cut if S 6= /0,Q and S satisfies the fol-

lowing two conditions:

(i) for any s ∈ S, S contains all the rationals less than s

(ii) S has no maximum (i.e., there is no element of S which is greater

than all other members of S).

(For example, S = {x∈Q : x < 1
2
} is a Dedekind cut, but {x ∈Q : x ≤ 1

2
}

is not.)

Define R to be the set of all Dedekind cuts. We need to define addi-

tion, multiplication and ordering on R and show that it has all the basic

properties such as Rules 2.1 and the Completeness Axiom.

Strangely, perhaps, it’s easier to get the Completeness Axiom than the

other things, so let’s do this first. Define an ordering on R by simply

saying that if S,T are Dedekind cuts, then S < T if and only if S ⊂ T .

Naturally we say that S≤ T if either S= T or S< T . With this definition,

prove that the Completeness Axiom for R holds, as follows: let A be a

subset of R with an upper bound U (so S ≤ U for all S ∈ A). Define

L =
⋃

S∈A S. Prove that L ∈ R (i.e., L is a Dedekind cut) and L is a least

upper bound for A.

Now for addition, multiplication and so on. First identifyQ with a subset

of R by taking q ∈Q to the Dedekind cut Sq = {x ∈Q : x < q}.

For two Dedekind cuts S,T , define their sum to be S + T = {s + t :

s ∈ S, t ∈ T}. Show that this addition agrees with the usual addition on

Q⊂ R.

Similarly define multiplication on R and division on R−{0} and show

that they agree with their usual definitions on Q ⊂ R. [This needs to be

done rather carefully — for example, the obvious definition of multipli-

cation ST = {st : s ∈ S, t ∈ T} does not work at all. Here’s a hint to get

you started: for S,T > 0 (where 0 is identified with S0 as above), define

ST =Q≤0 ∪{st : s ∈ S, t ∈ T with s > 0, t > 0}.]
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Show finally that these definitions of +,× satisfy the Rules 2.1.

(Hint: You might find it helpful to note that if we already knew what

the real numbers were, then the Dedekind cuts would just be Sr = {x ∈
Q : x < r} for r ∈ R.)

9. Let x1,x2,x3, . . . be a sequence of real numbers (going on forever). For

any integer n≥ 1, define Tn to be the set {xn,xn+1, . . .}. (So, for example,

T1 = {x1,x2,x3, . . .} and T2 = {x2,x3,x4, . . .}.)

Assume that T1 has a lower bound. Deduce that for any n, the set Tn has

a GLB, and call it bn. Prove that b1 ≤ b2 ≤ b3 ≤ ·· ·.
For the following sequences x1,x2, . . ., work out bn, and also work out

the LUB of the set {b1,b2, . . .} when it exists:

(a) x1 = 1,x2 = 2,x3 = 3, and in general xn = n,

(b) x1 = 1,x2 =
1
2
,x3 =

1
3
, and in general xn =

1
n
,

(c) x1 = 1,x2 = 2,x3 = 1,x4 = 2,x5 = 1, and so on, alternating between

1 and 2.

10. Critic Ivor Smallbrain reckons he has managed to prove that if n is any

integer with n≥ 3, then there do not exist any positive integers a,b,c sat-

isfying the equation an + bn = cn. He modestly calls this result “Small-

brain’s first theorem” and attempts to write down a proof in the margin of

his theatre programme during a particularly tedious performance of the

Hungarian classic Bevezetés — hoz analı́zis. He fails to do so because

the margin is too small.

Now let us define a sequence x1,x2,x3, . . . by letting xn = 1 if there

exist positive integers a,b,c satisfying the equation an + bn = cn, and

letting xn = 2 otherwise. Assuming that Smallbrain’s first theorem is

true, find the numbers bn defined in Exercise 9, and the LUB of the set

{b1,b2, . . .}.
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Chapter 23

More Analysis: Limits

Remember our discussion in Chapter 3 of how every real number has a deci-

mal expression? We said that the expression b0.b1b2b3 . . . represents the real

number that is the “sum to infinity” of the series

b0 +
b1

10
+

b2

102
+

b3

103
+ · · ·

In this chapter we aim to make this statement precise. To do so, we need to

introduce one of the most fundamental concepts in mathematics — that of the

limit of a sequence of real numbers.

First we need to say exactly what we mean by a sequence. That’s easy

enough: a sequence is just an infinite list a1,a2,a3, . . . ,an, . . . of real numbers

in a definite order. The number an is called the nth term of the sequence. We

usually denote such a sequence just by the symbol (an).

Example 23.1
1. 1,1,1, . . . is the sequence (an) where an = 1 for all n.

2. 1, 1
2
, 1

3
, 1

4
, . . . is the sequence (an) with an =

1
n
.

3. If an = (−1)n, the sequence (an) is −1,1,−1,1, . . .

4. Define an to be 10−6 if n is prime, and 1
n
if n is not prime. Then the

sequence (an) is

1,10−6,10−6,
1

4
,10−6,

1

6
,10−6,

1

8
,

1

9
,

1

10
,10−6, . . .

We now want to define the limit of a sequence (an). Intuitively, as discussed

in Chapter 3, this should be a real number a such that we can make all the an’s

as close as we like to a provided we go far enough along the sequence.

How do we make this mathematically precise? To say that we can make the

an’s “as close as we like” to a means the following: if we pick any positive real

207
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number ε , however small, all the an’s beyond a certain point lie between a− ε
and a+ ε . So here now is the formal definition.

DEFINITION We say that a sequence (an) has a limit a if the
following is true. Given any real number ε > 0, there is an integer N

(which depends on ε) such that all the terms an for n ≥ N lie between
a− ε and a+ ε.

The definition is often written a little more succinctly, as follows: for any

ε > 0, there exists N such that |an − a|< ε for all n ≥ N.

If the sequence (an) has the limit a, we write a = liman or an → a, and say

that an tends to the limit a.

One might ask whether a sequence can have more than one limit. The an-

swer is no: the limit of a sequence is unique (see Exercise 2 at the end of the

chapter).

Example 23.2
Let’s examine the first two sequences in Example 23.1. The first se-
quence is 1,1,1, . . . and it is hard to imagine the limit of this sequence
being anything but 1. Indeed it is 1. To see this we apply the definition.
Let ε > 0 be any positive real number. Then, taking N = 1, we have
|an − 1|= 0 < ε for all n ≥ N. So, according to the definition, liman = 1

as expected.
Now consider the second sequence, (an) with an =

1
n
. We show that

the limit of this sequence is 0. Let ε > 0. Choose an integer N > 1
ε .

Then, for n ≥ N,

|an − 0|= 1

n
≤ 1

N
< ε.

Hence an → 0.

The order of events in the definition of a limit is very important. First we

are given an arbitrary real number ε > 0; then we find an N that works, and, as

in the second example above, N usually depends on ε . (Reversing the order of

events and writing that there exists N such that for any ε > 0, |an − a|< ε for

all n ≥ N, has quite a different meaning — see Exercise 5.)

Example 23.3
Now let’s examine the third and fourth sequences in Example 23.1. The
third sequence, (an) with an = (−1)n, does not have a limit. Here is a
proof of this by contradiction. Suppose (an) does have a limit. Call it
a. To obtain a contradiction we need to find a specific value of ε > 0

for which there is no N such that |an − a|< ε for all n ≥ N. Let ε = 1
4
.
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Then whatever a is, either 1 does not lie between a− ε and a+ ε, or −1

does not. So whatever N we try, there will be a value of n ≥ N such that
|an −a|> ε. Hence there is no N which works in the definition of a limit
for ε = 1

4
. This contradiction shows that (an) does not have a limit.

The fourth sequence in Example 23.1 also does not have a limit. We
prove this in a similar way. Suppose that an → a. If a 6= 10−6, let
ε = |10−6 − a| > 0. As an → a, there exists N such that |an − a| < ε
for all n ≥ N. However, there is a prime p > N by Euclid’s Theorem
12.1, and ap = 10−6. Then |ap −a|= |10−6 −a| is not less than ε, which

is a contradiction. Hence a must be 10−6. Now take ε = 10−6

2
. As

an → a = 10−6, there exists N such that |an−10−6|< ε for all n ≥ N. But

for any non-prime value of n greater than 2×106 we have an =
1
n
< 10−6

2
,

hence |an − 10−6| > 10−6

2
= ε. This is a contradiction. Hence (an) does

not have a limit.

The above examples show that some sequences have a limit and others don’t.

We call a sequence that has a limit a convergent sequence. In Example 23.1,

the first two sequences are convergent and the third and fourth are not.

Here is another example which is a little trickier than the previous ones.

Example 23.4

Let (an) be the sequence with an =
3n2+2n+1
n2−n−3

. Is (an) convergent, and if
so, what is its limit?
Answer If we write an as 3+ 5n+10

n2−n−3
, it seems plausible that (an) should

be convergent and have the limit 3. Let’s try to prove this.
Let ε > 0. We want to choose N such that for n ≥ N,

|an − 3|= | 5n+ 10

n2 − n− 3
|< ε.

It looks awkward to calculate what N should be. But we can simplify
things by observing that provided n > 10,

| 5n+ 10

n2 − n− 3
|< 6n

1
2
n2

=
12

n
.

Hence if we choose N to be greater than both 10 and 12
ε , then for any

n ≥ N,

|an − 3|= | 5n+ 10

n2 − n− 3
|< 12

n
< ε.

This proves that the limit of the sequence (an) is 3.
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Bounded Sequences

We say that a sequence (an) is bounded if it has both an upper and a lower

bound — in other words, if there are real numbers L and U such that

L ≤ an ≤U for all n.

Notice that if we take K = max{|L|, |U |}, we also have |an| ≤ K for all n.

For example, if an = (−1)n sinn, then the sequence (an) is bounded (since

|an| ≤ 1 for all n). On the other hand, the sequence (bn) with bn = (−1)n
√

n is

not bounded.

PROPOSITION 23.1
Every convergent sequence is bounded.

PROOF Let (an) be a convergent sequence, and let a= liman. Then,
letting ε = 1, there exists N such that |an −a|< 1 for all n ≥ N; in other
words,

a− 1 < an < a+ 1 for all n ≥ N.

Now put U equal to the maximum of the N + 1 numbers a1, . . . ,aN and
a+ 1. Then an ≤ U for all n. Similarly, an ≥ L for all n, where L is the
minimum of the numbers a1, . . . ,aN and a− 1.

For example, the sequence (bn) with bn = (−1)n
√

n is not bounded, and

hence is not convergent by Proposition 23.1.

Calculating Limits

Calculating limits from first principles just using the definition can be very

awkward if the expression for an is not particularly simple. Fortunately, there

are some basic aids to such calculations, provided by the following proposition.

PROPOSITION 23.2
Let (an) and (bn) be convergent sequences, and suppose an → a and

bn → b. Then the following hold.

(1) an + bn → a+ b (sum rule)
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(2) anbn → ab (product rule)

(3) If bn 6= 0 for all n, and b 6= 0, then an
bn

→ a
b

(quotient rule).

PROOF (1) Let ε > 0. Then also ε
2
> 0, so there exist integers N

and M such that
|an − a|< ε

2
for n ≥ N,

|bn − b|< ε
2

for n ≥ M.

Let R =max(N,M). Then, for n ≥ R,

|(an + bn)− (a+ b)| = |(an − a)+ (bn− b)|
≤ |an − a|+ |bn− b| (by the Triangle Inequality 4.12)
< ε

2
+ ε

2
= ε.

Hence an + bn → a+ b.

(2) To show that anbn → ab, we will need to study the differences
anbn − ab, which we can cunningly rewrite as

anbn − ab = (an − a)bn+ a(bn − b).

By the Triangle Inequality 4.12,

|anbn − ab| ≤ |an − a| |bn|+ |a| |bn− b|. (23.1)

Now let ε > 0. We want to make the left-hand side of (23.1) less than ε,
so we try to make each term on the right-hand side less than ε

2
. Here’s

how.
Since (bn) is convergent, it is bounded by Proposition 23.1, so there

is a positive real number K such that |bn| ≤ K for all n. Now ε
2K

> 0, so
there exists N such that

|an − a|< ε

2K
for all n ≥ N.

Also ε
2(|a|+1) > 0, so there exists M such that

|bn − b|< ε

2(|a|+ 1)
for all n ≥ M.

Let R =max(N,M). Then, for n ≥ R, we see from (23.1) that

|anbn − ab|< ε

2K
.K + |a|. ε

2(|a|+ 1)
≤ ε.

It follows that anbn → ab.
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(3) It is enough to show that 1
bn

→ 1
b
, since it will follow from this that

an
bn

→ a
b
by applying part (2) to the two sequences (an) and ( 1

bn
).

To show that 1
bn

→ 1
b
, we will need to study

| 1

bn

− 1

b
|= |bn − b|

|bn| |b|
. (23.2)

To make the right-hand side of (23.2) small, we first need to get a lower
bound for |bn|. Now 1

2
|b|> 0, so there exists N such that

|bn − b|< 1

2
|b| for all n ≥ N.

Since |bn−b| ≥ |b|−|bn| by Example 4.13, it follows that |b|−|bn|< 1
2
|b|,

and hence |bn|> 1
2
|b| for all n ≥ N. Therefore, we now have the following

upper bound for the right-hand side of (23.2):

|bn − b|
|bn| |b|

<
|bn − b|

1
2
|b|2

for all n ≥ N. (23.3)

Now let ε > 0. We want to make the right-hand side of (23.3) less
than ε. Well, 1

2
ε|b|2 > 0, so there exists M such that |bn −b|< 1

2
ε|b|2 for

all n ≥ M. Let R =max(N,M). Then for n ≥ R, by (23.3),

|bn − b|
|bn| |b|

<
1
2
ε|b|2

1
2
|b|2

= ε,

and hence by (23.2), | 1
bn
− 1

b
| < ε. It follows that 1

bn
→ 1

b
, as required.

Example 23.5

Find liman, where an =
3n4−17n2+12
2n4+5n3−5

.

Answer We would like to apply the quotient rule in Proposition 23.2(3),
but we can’t do this directly as neither the numerator nor the denomi-
nator in the expression for an is convergent. However, if we divide top
and bottom by n4, we can cleverly rewrite an as

an =
3− 17

n2 +
12
n4

2+ 5
n
− 5

n4

.

We know that 1
n
→ 0 by Example 23.2. So, by the product rule, 1

n2 → 0,
1
n3 → 0 and so on, and so using the sum rule we have

3− 17

n2
+

12

n4
→ 3, and 2+

5

n
− 5

n4
→ 2.

Hence, by the quotient rule, an → 3
2
.
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Increasing and Decreasing Sequences

DEFINITION A sequence (an) is increasing if an+1 ≥ an for all n.
Similarly, (an) is decreasing if an+1 ≤ an for all n.

For example, the sequences (an), (bn) with an = n, bn = 1− 1
n

are both in-

creasing; the sequence (cn) with cn = 1 for all n is both increasing and decreas-

ing; and the sequence (dn) with dn =
(−1)n

n
is neither increasing nor decreasing.

Here is a striking result on increasing sequences.

PROPOSITION 23.3
Let (an) be an increasing sequence which is bounded. Then (an) is

convergent.

PROOF Since (an) is bounded, the set S = {an : n∈N} has an upper
bound. Hence, by the Completeness Axiom for R (see Chapter 22), S

has a least upper bound — call it l. We shall prove that l is the limit of
the sequence (an).
Let ε > 0. Then l − ε is not an upper bound for the set S, so there

exists N such that aN > l − ε. As (an) is increasing, this implies that
an ≥ aN > l − ε for all n ≥ N. Also l is an upper bound for S, so an ≤ l

for all n. We conclude that l−ε < an ≤ l for all n ≥ N, which means that
|an − l|< ε for all n ≥ N. This shows that an → l.

Similarly, any decreasing sequence (bn) that is bounded must have a limit

(see Exercise 6).

Proposition 23.3 has great significance for us. It means that we can finally

put our theory of decimal expressions for real numbers on a rigorous footing.

Let b0.b1b2b3 . . . be a decimal expression with b0 ≥ 0. Define a sequence (an)
as follows:

a1 = b0, a2 = b0 +
b1

10
, a3 = b0 +

b1

10
+

b2

102
,

and in general

an = b0 +
b1

10
+ · · ·+ bn−1

10n−1
.

Then the sequence (an) is increasing, since an+1 − an = bn
10n ≥ 0. It is also

bounded, since an ≥ b0 and also

an = b0 +
b1

10
+ · · ·+ bn−1

10n−1
≤ b0 +

9

10
+ · · ·+ 9

10n−1
< b0 + 1.
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Hence, by Proposition 23.3, the sequence (an) has a limit l. So when we write

l = b0.b1b2b3 . . . ,

we mean precisely that l is the real number that is the limit of the above se-

quence (an).

Example 23.6
Define a sequence (en) as follows:

en = 1+
1

1!
+

1

2!
+ · · ·+ 1

n!
.

So e1 = 2, e2 =
5
2
, e3 =

8
3
and so on. We saw in Example 8.4 that 2n < n!

for all n ≥ 4, and it follows easily from this that 2n−1 ≤ n! for all n ≥ 1.
Hence

en ≤ 1+ 1+
1

2
+

1

22
+ · · ·+ 1

2n−1
= 1+

1− ( 1
2
)n

1− 1
2

= 1+ 2

(

1− 1

2n

)

< 3.

Thus (en) is an increasing sequence which is bounded, so by Proposition
23.3 it is convergent. We denote the limit of this sequence by the symbol
e. This is a very famous real number, often called the “base of natural
logarithms.” You have probably come across it already in your studies.
As a decimal, e = 2.71828 . . .. A natural question arises: is e a rational

number? The answer is to be found in Exercise 8 below.

Exercises for Chapter 23

1. Which of the following sequences (an) are convergent and which are

not? For the convergent sequences, find the limit.

(i) an =
n

n+5
.

(ii) an =
1√
n+5

.

(iii) an =
n
√

n

n+5
.

(iv) an =
(−1)n sinn√

n
.

(v) an =
n3−2

√
n+7

2−n2−5n3 .

(vi) an =
1−(−1)nn

n
.

(vii) an =
√

n+ 1−√
n.
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2. Prove that the limit of a sequence, if it exists, is unique: in other words,

if (an) is a sequence such that an → a and an → b, then a = b.

3. Let S be a non-empty set of real numbers, and suppose S has least upper

bound c. Prove that there exists a sequence (sn) such that sn ∈ S for all

n and sn → c.

4. For each of the following sequences (an), decide whether it is (a) bounded,

(b) increasing, (c) decreasing, (d) convergent:

(i) an =
n3

n3−1
.

(ii) an = 21/n.

(iii) an = 1− (−1)n

n
.

(iv) an = |5n− n2|.

5. If we reverse the order of events in the definition of the limit of a se-

quence (an), we get

∃N such that ∀ε > 0∀n ≥ N, |an − a|< ε.

What does this mean?

6. Show that a bounded decreasing sequence is convergent.

7. A sequence (an) is defined by

a1 = 1 and an+1 =
a2

n + 2

2an

∀n ≥ 1.

(i) Prove that (an) is a bounded sequence, and decreases for n ≥ 2.

(ii) Show that the limit of (an) is
√

2.

8. This exercise contains a proof that the number e, defined in Example

23.6 as the limit of the sequence (en), is irrational.

(a) Show that en =
pn

n!
, where pn is an integer.

(b) Show that e− en = 1
n!
( 1

n+1
+ 1

(n+1)(n+2) + · · ·). By comparing the

term in brackets with a suitable geometric series, deduce that for all n,

0 < e− en <
1

n ·n!
.

(c) Deduce that 0 < n!e− pn <
1
n

for all n.

(d) Now assume that e is rational. Show that n!e ∈ Z for some n. Hence

obtain a contradiction.
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9. Critic Ivor Smallbrain is sitting by the fire in his favourite pub, The

Fox and Bounds. Also there are his friends Polly Gnomialle, Greta Pic-

ture, Gerry O’Laughing, Einstein, Hawking and celebrity mathematician

Richard Thomas. Also joining them are great film directors Michael

Loser and Ally Wooden.

All nine of them think that infinity is cool, and having seen the definition

of what it means for a sequence (an) to have a limit a, they are trying

to define what it should mean to say that liman = ∞. They decide that

informally this should mean that you can make all the an’s as large as

you like, provided you go far enough along the sequence. They then

take it in turns to try to write down a proper rigorous definition. Here

are their attempts:

Michael Loser writes: ∀a ∈ R, an 6→ a.

Polly writes: ∀ε > 0 ∃N ∈ N such that n ≥ N ⇒ |an −∞|< ε .

Greta writes: ∀R > 0 ∃N ∈ N such that n ≥ N ⇒ an > R.

Ally Wooden writes: ∀l ∈R ∀ε ∈R ∃N ∈N such that n≥N ⇒|an− l|>
ε .

Gerry writes: ∀a ∈ R ∃ε > 0 such that ∀N ∈ N ∃n ≥ N such that |an −
a|< ε .

Einstein writes: ∀ε > 0 ∃N ∈ N such that ∀n ≥ N, an >
1
ε .

Hawking writes: ∀n ∈ N, an+1 > an.

Richard Thomas writes: ∃N ∈ N such that ∀R > 0,∀n ≥ N, an > R

Ivor writes: ∀R ∈ R ∃n ∈ N such that an > R.

Who do you think is right and who do you think is wrong? (There may

be more than one who is right!) For the wrong ones, illustrate why you

think they are wrong with an example.



Chapter 24

Yet More Analysis: Continuity

In this chapter I am going to introduce you to the notion of a continuous func-

tion of the real numbers. This is a topic that deserves a whole book to itself,

but I am giving you this little taster here for several reasons. First, this notion

is the right setting in which to prove the existence of nth roots of positive real

numbers, which I promised to do way back in Chapter 5. Second, one can quite

quickly develop enough theory to prove a famous result called the Intermediate

Value Theorem, which sheds quite a bit of light on the great Fundamental The-

orem of Algebra, stated in Chapter 7. And last, the idea of a continuous func-

tion provides yet another example of something natural and obvious-sounding

being turned into rigorous mathematics, with fruitful results.

The material in this chapter is perhaps at a higher level than most of the rest

of the book, but it will repay study and hopefully serve as a useful introduction

to your next course in analysis.

Continuous Functions

Let f be a function from R to R, and let c be a real number. We say that

f is continuous at c if we can make f (x) as close as we like to f (c), provided

we confine x to being in a sufficiently small neighbourhood of c. We shall

make the phrases “as close as we like” and “sufficiently small neighbourhood”

precise in a rather similar fashion to the definition of a limit in the previous

chapter. Here is the formal definition.

DEFINITION A function f : R→ R is continuous at a point c ∈ R

if the following holds. For any ε > 0, there exists δ > 0 (depending on
ε) such that

|x− c|< δ ⇒ | f (x)− f (c)| < ε.

217
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In other words, f (x) can be confined between f (c)−ε and f (c)+ε provided

x is confined between c− δ and c+ δ .

Some examples may serve to make the definition clearer.

Example 24.1
1. The function f (x) = x is continuous at every point c ∈R. To see this,
let ε > 0. Take δ = ε. Then

|x− c|< δ ⇒ | f (x)− f (c)|= |x− c|< δ = ε.

2. Any constant function f (x) = k for all x ∈ R is continuous at every
point in R (Exercise 1 at the end of the chapter).

3. Define f : R→R by

f (x) =

{
1, if x ∈Q

0, if x 6∈Q.

We claim that f is not continuous at any point c ∈ R. To prove this,
we must produce a value of ε > 0 such that there is no δ satisfying the
definition.
First let c ∈ Q, so f (c) = 1. Take ε = 1

2
. For any δ > 0, we know by

Proposition 2.5 that there is an irrational number r between c− δ and
c+δ . Then |r− c|< δ , but | f (r)− f (c)| = |0−1|= 1 > ε. So there is no
value of δ which works for ε = 1

2
, showing that f is not continuous at c.

Now let c 6∈ Q, so f (c) = 0. Again take ε = 1
2
. This time we observe

that for any δ > 0, there is a rational number s between c−δ and c+δ .
Then |s−c|< δ but | f (s)− f (c)|= 1> ε, showing that f is not continuous
at c.

We say that a function f : R→ R is continuous on R if it is continuous at

every point c ∈R. Naively, this says that the graph of y = f (x) is a continuous

line which can be drawn without taking your pen off the paper (but this is a

bit misleading, as there are continuous functions whose graphs cannot even be

drawn).

From Example 24.1 we see that constant functions are continuous on R, and

also the function f (x) = x is continuous on R. Having obtained these simple

examples, we can build up many more using the following sum, product and

quotient rules.

PROPOSITION 24.1
Let f and g be functions from R to R.

(1) (Sum rule): If f and g are continuous at a point c, then the sum
f + g is continuous at c.
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(2) (Product rule): If f and g are continuous at c, then the product
function f .g (defined by ( f .g)(x) = f (x)g(x)) is continuous at c.

(3) (Quotient rule): If f and g are continuous at c, and g(x) 6= 0 for all

x, then the quotient f
g
is continuous at c.

PROOF This is quite similar to the proof of the sum, product and
quotient rules for limits in Proposition 23.2. We’ll just prove the product
rule (2) and leave the other parts to Exercise 2.
For convenience, write

A = f (c), B = g(c).

We need to study the difference f (x)g(x)−AB, which we rewrite as

f (x)g(x)−AB = ( f (x)−A)g(x)+ (g(x)−B)A.

From the Triangle Inequality 5.12, this implies

| f (x)g(x)−AB| ≤ | f (x)−A| |g(x)|+ |g(x)−B| |A|. (24.1)

To make the right-hand side small, we first need to bound |g(x)|. Now g

is continuous at c, so (taking ε = 1 in the definition) there exists δ0 > 0

such that
|x− c|< δ0 ⇒ |g(x)−B|< 1

⇒ |g(x)|< 1+ |B|.
Now let ε > 0. Define

ε1 =
ε

2(1+ |B|) , ε2 =
ε

2(1+ |A|) .

Then ε1,ε2 > 0, so there exist δ1,δ2 > 0 such that

|x− c|< δ1 ⇒ | f (x)−A|< ε1 and |x− c|< δ2 ⇒ |g(x)−B|< ε2.

Let δ = min(δ0,δ1,δ2). Then, by (24.1),

|x− c|< δ ⇒ | f (x)g(x)−AB| ≤ | f (x)−A| |g(x)|+ |g(x)−B| |A|
< ε1(1+ |B|)+ ε2|A|
= ε

2(1+|B|)(1+ |B|)+ ε
2(1+|A|) |A|

< ε.

Hence f .g is continuous at c.

Example 24.2
1. We know that the function f (x) = x is continuous on R. By the
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product rule in Proposition 24.1(2), the function x → x2 is also continu-
ous, as is x → x3, and in general x → xn for any positive integer n. Also
constant functions are continuous, so the product rule also shows that
for any real number c the function x → cxn is continuous. Hence, using
the sum rule, we see that any polynomial function

x → anxn + an−1xn−1 + · · ·+ a1x+ a0 (ai ∈ R)

is continuous on R.

2. Consider the function

g(x) =
x3 − 5x2 + 2

x2 + 2x+ 2
.

The denominator x2+2x+2= (x+1)2+1 > 0 for all x, so g is continuous
on R by the quotient rule.

3. Now consider the function

h(x) =

{
1
x
, if x 6= 0

0, if x = 0.

A slight generalisation of the quotient rule shows that h is continuous
at any point c 6= 0. But is h continuous at 0? The answer is no. To see
this, let ε = 1

2
, say. Whatever δ > 0 we choose, there exists a value of x

with |x− 0|< δ such that |h(x)− h(0)|> ε (any x with |x| < 2 will do).
Hence h is not continuous at 0.

The Intermediate Value Theorem

This famous theorem says that if f is a continuous function and a,b are real

numbers such that f (a) 6= f (b), then f takes on all values between f (a) and

f (b). If we think of a continuous function as one whose graph is a continuous

line, this seems obvious, as a continuous line from (a, f (a)) to (b, f (b)) will

surely pass through points with all possible y-values between f (a) and f (b).
However, finding a rigorous proof is not at all obvious, and the following proof

is one of the trickiest in the book.

THEOREM 24.1 Intermediate Value Theorem
Let f : R→R be a continuous function on R, and let a,b ∈R with a < b

and f (a) 6= f (b). Then, for any real number γ between f (a) and f (b),
there exists a real number c between a and b such that f (c) = γ.
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PROOF Let’s assume that f (a)< f (b). (The case where f (a)> f (b)
will follow by a simple trick which we give at the end of the proof.) So
we have

f (a)< γ < f (b).

Define a set S of real numbers as follows:

S = {x ∈ R : x ≤ b and f (x) < γ}.
Then S is non-empty as a∈ S, and S has b as an upper bound. Therefore,
by the Completeness Axiom (see Chapter 22), S has a least upper bound:
let

c = LUB(S).

We shall prove that f (c) = γ, which will prove the theorem.
Suppose first that f (c) < γ. Let ε = γ − f (c) > 0. As f is continuous

at c, there exists δ > 0 such that

|x− c|< δ ⇒ | f (x)− f (c)|< ε = γ − f (c).

Hence there is a value x = c+ δ
2
, for instance, such that f (c+ δ

2
) lies

between f (c)− ε and f (c)+ ε, so that

f (c+
δ

2
)< f (c)+ ε = γ.

But this means that c+ δ
2
∈ S. This is a contradiction, since c is an

upper bound for S.
Now suppose that f (c)> γ and let ε = f (c)−γ > 0. As f is continuous

at c, there exists δ > 0 such that |x− c| < δ ⇒ | f (x)− f (c)| < ε. So
whenever c− δ < x ≤ c, we have f (x) > f (c)− ε = γ. This means that
none of the real numbers between c− δ and c lie in S, which is to say
that c− δ is an upper bound for S. This is a contradiction, as c is the
least upper bound of S.
We have shown that both of the assumptions f (c) < γ and f (c) > γ

lead to contradictions, so we conclude that f (c) = γ, as required.
The case where f (a)> f (b) can be deduced by considering the function

g(x) = − f (x): we have g(a)< −γ < g(b), so from what we have already
proved, there exists c between a and b such that g(c) =−γ, which means

that f (c) = γ.

Existence of nth Roots

Our first application of the Intermediate Value Theorem is to prove the exis-

tence of nth roots of positive real numbers, stated long ago as Proposition 5.1.
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PROPOSITION 24.2
Let n be a positive integer. If d is a positive real number, then there is
exactly one positive real number c such that cn = d.

PROOF Define f : R→R to be the function

f (x) = xn − d.

Then f is a polynomial function, and hence is continuous on R by Ex-
ample 24.2.
Now f (0) = −d < 0. Also, if we choose b to be a real number such

that b > max(1,d), then f (b) = bn − d > 0. Hence

f (0)< 0 < f (b).

By the Intermediate Value Theorem, there is a real number c between
0 and b such that f (c) = 0, which is to say that cn − d = 0, so cn = d.
This proves the existence of c. The uniqueness is easy: suppose cn =

cn
1 = d with c1 > 0. If c1 > c then cn

1 > cn, and if c1 < c then cn
1 < cn.

Neither of these is possible, so c1 = c, proving the uniqueness of c.

A Special Case of the Fundamental Theorem of
Algebra

Remember the Fundamental Theorem of Algebra, stated as Theorem 7.1:

every polynomial equation of degree at least 1 has a root in C. This is quite

a sophisticated result, whose proof you will probably have to wait to see until

you take a course on complex analysis. However, there is a really neat proof

that works for real polynomials of odd degree and uses just the Intermediate

Value Theorem. Here it is.

PROPOSITION 24.3
Let p(x) be a polynomial in x of odd degree with real coefficients. Then
the equation p(x) = 0 has a real root.

PROOF Let p(x) = anxn + · · ·+ a1x+ a0 with an 6= 0 and n odd. We
may as well assume that an > 0 (otherwise replace p(x) by −p(x), which
has the same roots).
Now for large positive x, the value of p(x) is dominated by the leading

term anxn, so there is a positive real number b such that p(b)> 0. (This
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is a bit hand-wavy, but the details are easily filled in. I leave this to you
in Exercise 3.) Similarly, for large negative x the dominant term is also
anxn, which is now negative because n is odd, so there is a negative real
number a such that p(a)< 0. Thus

p(a)< 0 < p(b).

Now p(x) is a continuous function, so by the Intermediate Value Theorem
there is a real number c between a and b such that p(c) = 0. Then c is

a root of p(x), as required.

Exercises for Chapter 24

1. Prove that any constant function is continuous on R.

2. Prove the sum and quotient rules in Proposition 24.1.

3. Let p(x) = anxn+ · · ·+a1x+a0 with all ai ∈R, an 6= 0 and n odd. Prove

that there exist real numbers a,b such that p(a)< 0 and p(b)> 0.

4. Show that each of the following functions is continuous at 0:

(i) x → xsinx.

(ii) x → |x|.

(iii) x →
{

x, if x ∈Q

−x, if x 6∈Q.

5. Prove that if f : R → R is continuous at a, then so is the function x →
| f (x)|.

6. Let f : R→R be continuous on R. Suppose that f (x) = 0 for all x ∈Q.

Prove that f (x) = 0 for all x ∈R.

7. Prove that if f is continuous on R and f (0) = f (1), then there exists c

such that 1
2
≤ c ≤ 1 and f (c) = f (c− 1

2
).

8. Let f :R→R be a function that is continuous on R and satisfies | f (x)| ≤
1 for all x ∈R.

(i) Prove that if P(x) is any polynomial of odd degree with real coeffi-

cients, then the equation P(x) = f (x) has at least one real solution for

x.

(ii) Find a polynomial P(x) of even degree at least 2, such that the equa-

tion P(x) = f (x) has no real solutions.
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9. Let g : R→R be a function such that

g(x+ y) = g(x)g(y) for all x,y ∈R.

(i) Show that g(0) is equal to 0 or 1.

(ii) Show that if g is continuous at 0, then g is continuous on R.

(iii) Suppose g(a) = 0 for some a ∈R. Prove that g(x) = 0 for all x ∈R.

10. Critic Ivor Smallbrain is in search of a wife. He is torn between Polly

Gnomialle and Greta Picture, so he decides to set a challenge. He asks

Polly to define a function f : R→R that is continuous at every irrational

number and is discontinuous at every rational number. (Discontinuous

just means not continuous.) If Polly gets it right he will choose her; if

not, he will choose Greta.

Here is the function Polly comes up with:

P(x) =







1, if x = 0
1
n
, if x = m

n
is a rational in lowest terms, with n > 0

0, if x is irrational.

Assuming that Ivor is so irresistible that neither will turn him down,

predict who will become Mrs. Smallbrain.



Chapter 25

Introduction to Abstract Algebra:
Groups

In the final two chapters of the book — this one and the next — I am going

to introduce you to the theory of groups. This theory forms part of a vast area

known as “abstract algebra”. In abstract algebra we study certain basic systems

in which we have a set, together with rules for combining any two elements

of the set to get another element of the set; these rules are subject to various

clearly defined assumptions, called “axioms.” In group theory, as we shall see,

there is just one rule for combining elements, and there are four axioms. You

should not think that these axioms were thought up by some clever person who

one sunny day sat down and wrote them down. Rather, they emerged over a

long period — many different cases of what have come to be known as groups

were studied in the eighteenth and nineteenth centuries, but it was not until late

in the nineteenth century that the notion of an abstract group was introduced.

Group theory is a huge subject, and actually has many applications in other

parts of mathematics, and also in other sciences. Once again I am giving you

a taster to let you have the flavour of a different kind of topic to the rest of the

book. We shall also see quite a few links with material in previous chapters.

Definition and Examples of Groups

Let S be a set. A binary operation ∗ on S is a rule which assigns to any

ordered pair (a,b) (a,b∈ S) an element a∗b∈ S. In other words, it is a function

from S× S to S.

Example 25.1
Here are a few examples of binary operations.

(1) S = Z, a ∗ b = a+ b for all a,b ∈ S.

225
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(2) S = C, a ∗ b = ab for all a,b ∈ S.

(3) S = R, a ∗ b = a− b for all a,b ∈ S.

(4) S = R, a ∗ b = ab+ a+ b for all a,b ∈ S.

(5) Let S = Sn (the set of all permutations of {1, . . . ,n}), and for f ,g ∈ S

define f ∗ g = f ◦ g, the composition of the permutations f and g.

(6) Let S = {1,2,3}, and define ∗ as follows:

1 ∗ 1 = 3, 1 ∗ 2 = 1, 1 ∗ 3 = 2,
2 ∗ 1 = 1, 2 ∗ 2 = 2, 2 ∗ 3 = 3,
3 ∗ 1 = 2, 3 ∗ 2 = 3, 3 ∗ 3 = 1.

Given a binary operation ∗ on a set S and a,b,c ∈ S, we can form “a ∗ b ∗ c”

in two ways, namely (a ∗ b)∗ c or a ∗ (b ∗ c). These may or may not be equal.

For instance, in Example 25.1 (1), (a∗b)∗ c = a∗ (b∗ c) for all a,b,c ∈ S (see

Rules 2.1(2)). However in (3) this is not the case, since for example

(3 ∗ 5)∗ 4= (3− 5)− 4=−6,
3 ∗ (5 ∗ 4) = 3− (5− 4)= 2.

DEFINITION A binary operation ∗ on a set S is associative if
(a ∗ b)∗ c= a ∗ (b ∗ c) for all a,b,c ∈ S.

The binary operation in Example 25.1(1) is associative, and so is the one

in (2) (see Exercise 1(e) of Chapter 6); so is the one in (5), as was shown

in Proposition 20.2, but the operation in (3) is not. The associativity or non-

associativity of the binary operations in Example 25.1(4) and (6) is not quite

so obvious, and I leave you to ponder these as part of Exercises 1 and 2 at the

end of the chapter.

We are now ready to define a group.

DEFINITION A group (G,∗) is a set G with a binary operation ∗
satisfying the following axioms:

(1) a ∗ b ∈ G for all a,b,∈ G (closure axiom);

(2) (a ∗ b)∗ c= a ∗ (b ∗ c) for all a,b,c ∈ G (associativity axiom);

(3) there exists an element e ∈ G such that a∗e= e∗a= a for all a ∈ G

(identity axiom);

(4) for any a ∈ G there exists an element a′ ∈ G such that a ∗ a′ =
a′ ∗ a = e (inverse axiom).
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The element e in axiom (3) is called an identity element of G, and the ele-

ment a′ in (4) is an inverse of a.

Strictly speaking, the closure axiom (1) is not needed, as it is part of the

definition of a binary operation; but it is usually included as an axiom to remind

us that we need to check it.

Example 25.2
(1) (Z,+) is a group: closure is clear, associativity has already been
remarked on, an identity element is the integer 0 (since a+0 = 0+a = a

for all a ∈ Z), and for a ∈ Z, an inverse is −a. Similarly (Q,+), (R,+)
and (C,+) are also groups.

(2) (Z,×) is not a group: it satisfies the first three axioms, but not
the inverse axiom. A little argument is needed to see this. The only
integer e satisfying a×e = e×a = a for all a ∈ Z is e = 1, so 1 is the only
identity element. But then the integer 2, for example, has no inverse as
there is no integer x such that 2× x = 1.

(3) What about (Q,×)? Again the first three axioms hold (with iden-
tity element 1), and it seems that there is no longer any problem with
the inverse axiom, since the inverse of the rational m

n
is n

m
. However, this

is not quite right: the rational number 0 has no inverse, so this is not a
group.

(4) In the light of the previous example, define Q∗ =Q−{0}, the set of
nonzero rationals. Then (Q∗,×) is a group. So are (R∗,×) and (C∗,×).

(5) Let G be the set of complex numbers {1,−1, i,−i}. Let’s show that
(G,×) is a group, where × is just complex multiplication. First we need
to check the closure axiom. A good way to do this is to write down the
multiplication table of G:

1 −1 i −i

1 1 −1 i −i

−1 −1 1 −i i

i i −i −1 1

−i −i i 1 −1

Associativity for (G,×) follows from the associativity of multiplication
of complex numbers. An identity element in G is 1, and the existence of
inverses for each element can be seen from the table. Hence (G,×) is a
group.

(6) In the same way (much more easily) we can see that ({1,−1},×)
is a group.
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(7) Let n be a positive integer, and as in Chapter 20 let Sn be the set
of all permutations of {1, . . . ,n}. Proposition 20.2 shows that (Sn,◦) is a
group, where ◦ is the binary operation of composition of functions. This
group is known as the symmetric group of degree n.

We say that a group (G,∗) is finite if |G| (the number of elements in the set

G) is finite; we call |G| the size of G. And we say (G,∗) is an infinite group

if G is an infinite set. The groups in Example 25.2(1) and (4) are infinite; the

groups in (5) and (6) are finite, of sizes 4 and 2; and the symmetric group Sn is

finite and has size n! (see Proposition 20.1).

In the examples (1), (4), (5) and (6) above we have a ∗ b = b ∗ a for all

elements a,b in the group. But this is not the case for the symmetric group Sn

in example (7) when n ≥ 3; to see this, let a = (123) and b = (12) (here I am

not writing down the 1-cycles in a and b), and observe that

a ◦ b = (13), b ◦ a = (23).

This is such an important distiction between groups that we give it a special

name:

DEFINITION A group (G,∗) is abelian if a∗b= b∗a for all a,b∈G.

Thus the groups (Z,+), (Q∗,×) and so on are abelian, whereas (Sn,◦) is

non-abelian for n ≥ 3.

First Results

It’s time to begin seeing what can be deduced from the axioms of group

theory. On the face of it, there is nothing in the axioms to say that a group

can’t have several different identity elements, or that an element can’t have

several different inverses. Our first result addresses these questions.

PROPOSITION 25.1
Let (G,∗) be a group. Then

(i) G has exactly one identity element;
(ii) each element of G has exactly one inverse.

PROOF (i) Suppose e and f are identity elements of G. Then for
all x ∈ G,

x∗ e = e∗ x = x and x∗ f = f ∗ x = x.
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Taking x = f in the left-hand equations gives e∗ f = f ; and taking x = e

in the right-hand equations gives e∗ f = e. Hence e = f . This shows that
there is only one identity element in G.

(ii) Let a ∈ G, and suppose that a′ and a′′ are both inverses of a. Then

a ∗ a′ = a′ ∗ a = e and a ∗ a′′ = a′′ ∗ a = e.

We now cleverly use associativity to show that a′ = a′′:

a′ = a′ ∗ e

= a′ ∗ (a ∗ a′′)
= (a′ ∗ a)∗ a′′

= e∗ a′′

= a′′.

Thus a′ = a′′, which proves (ii).

Notation Usually we write e for the identity element of a group (G,∗), and

a−1 for the inverse of an element a. So in the group (Q∗,×), the inverse x−1 is

the rational 1
x
, while in (Z,+) the inverse x−1 is −x. In the latter example the

equation x−1 =−x may seem a bit strange at first sight, but one soon gets used

to such things.

Also, instead of the phrase “(G,∗) is a group” we often say “G is a group

under ∗.” For example, to say that (Z,+) is a group is the same as saying

that Z is a group under addition; likewise, Sn is a group under composition of

functions.

Here is one more simple general property of groups.

PROPOSITION 25.2
In any group (G,∗), the following “cancellation laws” hold for all a,x,y∈

G:
(i) a ∗ x = a ∗ y ⇒ x = y

(ii) x∗ a = y∗ a ⇒ x = y.

PROOF For (i), observe that

a ∗ x = a ∗ y ⇒ a−1 ∗ (a ∗ x) = a−1 ∗ (a ∗ y)
⇒ (a−1 ∗ a)∗ x = (a−1 ∗ a)∗ y

⇒ e∗ x = e∗ y

⇒ x = y.

Part (ii) is similar.
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Multiplicative Notation for Groups

From now on, if (G,∗) is a group we shall usually write just ab instead of

a ∗ b. In view of the associativity axiom, (ab)c = a(bc), and we just write abc

for this element. We define powers of an element a ∈ G as follows;

a0 = e,
a1 = a,
a2 = a ∗ a,
a3 = a ∗ a ∗ a= a2 ∗ a,
an = an−1 ∗ a

for n > 0, and

a−n = a−1 ∗ · · · ∗ a−1 = (a−1)n.

For example, in the group (R∗,×), for a ∈R∗ the power an is just the usual nth

power of the real number a; whereas in the group (Z,+), an is the integer na.

The next result looks obvious, but does need to be proved.

PROPOSITION 25.3
For any a ∈ G and any m,n ∈ Z,

aman = am+n.

PROOF For m,n > 0 this is indeed obvious, since

aman = a · · ·a
︸ ︷︷ ︸

m

a · · ·a
︸ ︷︷ ︸

n

= am+n.

For m ≥ 0,n < 0,

aman = a · · ·a
︸ ︷︷ ︸

m

a−1 · · ·a−1

︸ ︷︷ ︸

−n

= am−(−n) = am+n,

and similarly for m < 0,n ≥ 0. Finally, when m,n < 0,

aman = a−1 · · ·a−1

︸ ︷︷ ︸

−m

a−1 · · ·a−1

︸ ︷︷ ︸

−n

= a−(−m−n) = am+n.

In future, when we write “let G be a group,” we mean that the binary oper-

ation ∗ for G is understood, and we are writing ab instead of a ∗ b. With this
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understanding, for a finite group G = {a,b,c, . . .} we define the group table of

G to be the “multiplication table”:

a b c · · ·
a a2 ab ac · · ·
b ba b2 bc · · ·
...

...

The group table of ({1,−1, i,−i},×) is given in Example 25.2(5).

Example 25.3
In this example we calculate the group table of the symmetric group

S3. We could of course list the 6 elements of this group as in Example
20.2, and work out their products (as was started in Example 20.3), but
it is more instructive to use some more concise notation. Define

a = (123), b = (12) ∈ S3.

Check that a2 = (132), ab = (13) and a2b = (23). Thus the 6 elements
of S3 are

e,a,a2,b,ab,a2b. (25.1)

By the closure axiom, the product ba is an element of S3 and so is equal
to one of the elements in the above list. Which one? Well, ba = (23), so
it is a2b. Thus we have the following equations:

a3 = e, b2 = e, ba = a2b.

Using these equations, we can easily work out all products among the
elements in the list (25.1). For example, here are the steps to calculate
the product of b and a2b:

ba2b = baab = a2bab = a2a2bb = a4b2 = aa3b2 = aee = a.

Here is the group table.

e a a2 b ab a2b

e e a a2 b ab a2b

a a a2 e ab a2b b

a2 a2 e a a2b b ab

b b a2b ab e a2 a

ab ab b a2b a e a2

a2b a2b ab b a2 a e

A slightly more complicated example along these lines can be found in Ex-

ercise 7 at the end of the chapter.



232 A CONCISE INTRODUCTION TO PURE MATHEMATICS

Exercises for Chapter 25

1. Which of the following sets S are groups, under the stated binary opera-

tions?

(i) S = {z ∈C : |z|= 1} under the usual complex multiplication.

(ii) S = R−{−1} under the binary operation a ∗ b = ab+ a+ b for all

a,b,∈ S.

(iii) Let S be the set of all 97 mathematicians in the Maths department at

Imperial College, with binary operation

a ∗ b = the better mathematician out of a and b.

(You can assume that Liebeck∗ x = x for all x ∈ S.)

(iv) S = {x ∈ R : x ≥ 0} with binary operation a ∗ b = max(a,b) (the

maximum of a and b) for all a,b ∈ S.

(v) S = {z ∈ C : z3 − z2 + z− 1 = 0} under the usual complex multipli-

cation.

(vi) S = C−{0}, with binary operation a ∗ b = |a|b for all a,b,∈ S.

(vii) S = the set of all rational numbers with odd denominators, under

the usual addition of rationals.

(viii) S = {a,b}, with the binary operation ∗ defined by

a ∗ a = a, b ∗ b = b, a ∗ b = b, b ∗ a = b.

(ix) S = {a,b}, with the binary operation ∗ defined by

a ∗ a = a, b ∗ b = a, a ∗ b = b, b ∗ a = b.

2. (a) Let G = {z ∈ C : z3 = 1}. Show that G is a group under the usual

complex multiplication, and write down the group table of G.

(b) Let S = {1,2,3}, with binary operation ∗ defined as in Example

25.1(6). Is (S,∗) a group?

3. Let G be a group, and let a,b ∈ G. Prove that

(i) (a−1)−1 = a, and

(ii) (ab)−1 = b−1a−1.
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4. (a) Show that if G is an abelian group and n is an integer, then (ab)n =
anbn for all a,b,∈ G.

(b) Give an example of a group G, an integer n, and elements a,b ∈ G

such that (ab)n 6= anbn.

5. (a) Let G be a group with the property that (ab)2 = a2b2 for all a,b ∈ G.

Prove that G is abelian.

(b) Let G be a group with the property that (ab)i = aibi ∀a,b ∈ G for

three consecutive values of i. Prove that G is abelian.

(c) Show that the conclusion of part (b) does not follow if we only as-

sume that (ab)i = aibi for two consecutive values of i.

6. Let G be a finite group with an even number of elements. Prove that

there is an element x ∈ G with the property that x 6= e and x2 = e.

7. Let D = {(x,ε) : x ∈ {1,−1, i,−i}, ε ∈ {1,−1}}, and define a binary

operation ∗ on D by

(x,ε)∗ (y,δ ) = (xyε ,εδ )

for all x,y ∈ {1,−1, i,−i} and ε,δ ∈ {1,−1}. So for example

(−i,−1)∗ (i,1) = (−i · i−1,−1 ·1) = (−1,−1).

(i) Prove that (D,∗) is a group of size 8, with identity element e = (1,1).

(ii) Let a = (i,1) and b = (1,−1). Show that a4 = b2 = e, and that

D = {e,a,a2,a3,b,ab,a2b,a3b}.

(iii) Which element in the list in (ii) is equal to ba? Is (D,∗) abelian?

(iv) Work out the group table of (D,∗).
(v) For each of the integers n = 0,1,2,3,4, calculate the number of ele-

ments x ∈ D such that xn = e.

8. Still a film critic by night, Ivor Smallbrain has taken up a day job as Head

of Binary Operations for the huge poetry production company Identity

in Verse. At the end of one sunny Tuesday, he notices that the number

of aspiring poets who have been in his office is equal to the number of

different binary operations on the set S = {a,b}, while the number who

were actually hired is equal to the number of these binary operations that

make S into a group.

How many aspiring poets were there on that sunny Tuesday, and how

many were hired?

Calculate these numbers for the following wet Friday, when Ivor found

them to be defined in the same way, but replacing S by the set T =
{x,y,z}.
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Chapter 26

Introduction to Abstract Algebra:
More on Groups

So, with some sadness, we have arrived at the final chapter. Fear not, it is also

one of the most exciting. In it, you will begin to see just how far one can get

using just the four group axioms. For example, we’ll prove that if you have a

finite group G, and you take any of its elements and raise it to the |G|th power,

you always get the identity. We shall also see how groups can be applied in

number theory — in particular, to help in finding the largest prime numbers

known to mankind.

Subgroups

One of the keys to studying groups is to investigate their “subgroups”:

DEFINITION Let (G,∗) be a group and let H be a subset of G. We
say that H is a subgroup of (G,∗) if H is itself a group under ∗.

Example 26.1
1. (Z,+) is a subgroup of (R,+).

2. (Q∗,×) is not a subgroup of (R,+), since according to the definition,
the binary operation must be the same for the subgroup as for the group
in which it lies.

3. ({1,−1},×) is a subgroup of ({1,−1, i,−i},×).

4. ({1, i},×) is not a subgroup of ({1,−1, i,−i},×), since the closure
axiom fails (i× i =−1. which is not in the subset).

235
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Here is a useful criterion for deciding whether a given subset of a group is

a subgroup. We adopt the multiplicative notation introduced at the end of the

previous chapter.

PROPOSITION 26.1
Let G be a group, and let H be a subset of G. The H is a subgroup of G

if the following three conditions hold:

(1) e ∈ H (where e is the identity element of G),
(2) x,y ∈ H ⇒ xy ∈ H,
(3) x ∈ H ⇒ x−1 ∈ H.

PROOF Assume that (1)-(3) hold. We check the group axioms for
H. The closure axiom holds by (2). The associativity axiom holds for
H, since it holds for G. The element e is in H by (1), and is an identity

element for H. Finally, the inverse axiom holds for H by (3).

Example 26.2
(1) Any group G is a subgroup of itself. So is the subset {e} consisting
of just the identity element.

(2) Let G be the group (C∗,×) of nonzero complex numbers under mul-
tiplication, and let n be a positive integer. Define

Cn = {z ∈ C : zn = 1},

the set of nth roots of 1 in C. Certainly Cn is a subset of G. Let’s check
conditions (1)-(3) of the proposition. Certainly 1 ∈ Cn so (1) holds. If
y,z ∈ Cn then (yz)n = ynzn = 1, so yz ∈ Cn; and if z ∈ Cn then (z−1)n =
( 1

z
)n = 1

zn = 1, so z−1 ∈ Cn. Thus (2) and (3) hold also, and so Cn is a

subgroup of G. Note that by Proposition 6.3, if ω = e2π i/n then

Cn = {1,ω ,ω2, . . . ,ωn−1}

so Cn has size n.
Notice that C2 is the subgroup {1,−1}, and C4 = {1,−1, i,−i}, as in

Examples 25.2(5,6).

(3) Let n be a positive integer. Recall from Chapter 20 the definition of
an even permutation in the symmetric group Sn, and define

An = {g ∈ Sn : g even}= {g ∈ Sn : sgn(g) = 1}.

We use Proposition 20.5 to check the subgroup conditions for An. The
identity element e is even, by Proposition 20.5(i); if g,h ∈ An then by
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Proposition 20.5(ii), sgn(gh) = sgn(g)sgn(h) = 1, so gh∈ An; and if g ∈ An

then by Proposition 20.5(iii), sgn(g−1) = sgn(g) = 1, so g−1 ∈ An. Hence
An is a subgroup of Sn.

We call the subgroup An in Example 26.2(3) the alternating group of degree

n. By Exercise 5 in Chapter 20, exactly half the permutations in Sn are even,

and hence

|An|=
1

2
n!.

For example |A3|= 3, and A3 consists of the permutations e, (123) and (132).
More interesting is the group A4: it has size 12, and consists of all the permu-

tations in S4 of cycle-shapes (3,1) and (22) together with the identity.

The next result provides a large supply of subgroups of any group.

PROPOSITION 26.2
Let G be a group, and let a ∈ G. Define

A = {an |n ∈ Z}= {. . . ,a−2,a−1,a0,a,a2, . . .}.

Then A is a subgroup of G.

PROOF We check the conditions (1)-(3) in Proposition 26.1. For
(1), note that e = a0 ∈ A. For (2), let am,an ∈ A; then by Proposition
25.3, aman = am+n ∈ A. Finally, if an ∈ A then (an)−1 = a−n ∈ A, proving

(3).

DEFINITION In the notation of the previous proposition, we write
A = 〈a〉, and call it the cyclic subgroup of G generated by a. So for each
element a ∈ G there is a cyclic subgroup 〈a〉 of G.

Example 26.3
(1) In the group (Z,+), what is the cyclic subgroup 〈3〉? Well, in this
group under the multiplicative notation we have 31 = 3, 32 = 3+ 3 = 6,
and 3n = 3+ · · ·+ 3 = 3n for n > 0. Similarly 3−n =−3n. Hence

〈3〉= {3n : n ∈ Z},

the set of multiples of 3. There is nothing special about the number 3 in
this example: for any integer a, the cyclic subgroup 〈a〉 = {an : n ∈ Z}.
In particular, 〈1〉= Z.

(2) Let G = (C∗,×) and let ω = e2π i/n, where n is a positive integer.
The cyclic subgroup of G generated by ω consists of all the powers ωk
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(k ∈ Z). Each of these is an nth root of 1, so is equal to one of the powers
1,ω , . . . ,ωn−1 by Proposition 6.3. Hence

〈ω〉= {1,ω , . . . ,ωn−1}.

This is the group Cn of Example 26.2(2).

(3) Let G = S3, the symmetric group of degree 3, and let a = (123) ∈ G.
What is 〈a〉? Well, it contains a0 = e, a1 = a and a2 = (132). We know
that a3 = e, so a4 = a,a5 = a2, etc. and we don’t get any further elements
by taking positive powers of a. Also a−1 = a3a−1 = a2, so a−2 = a, a−3 = e

and so on. We conclude that

〈a〉= {e,a,a2}.

Now consider the cyclic subgroup 〈b〉, where b = (12). Here b0 = e,
b1 = b−1 = b, b2 = b−2 = e and so on, so

〈b〉= {e,b}.

(4) Recall from Example 25.3 that S3 = {e,a,a2,b,ab,a2b}. Here is a list
of all the cyclic subgroups of S3:

〈e〉 = {e}
〈a〉 = {e,a,a2}
〈a2〉 = {e,a,a2}
〈b〉 = {e,b}
〈ab〉 = {e,ab}
〈a2b〉 = {e,a2b}.

(5) Let G = S4, and let V be the following subset of G:

V = {e, (12)(34), (13)(24), (14)(23)}.

You are asked to show that V is a subgroup of G in Exercise 2 at the end
of the chapter. It is not a cyclic subgroup, since as in Example (3) above
we can see that the cyclic subgroup generated by each of its non-identity
elements has size 2, whereas |V |= 4.

DEFINITION We say that a group G is a cyclic group if there
exists an element a ∈ G such that G = 〈a〉. If this is the case we call a

a generator for G.

For example, if G = (Z,+) then from Example 26.3(1) we have G = 〈1〉; so

(Z,+) is cyclic with generator 1. The group Cn of nth roots of 1 in C∗ is cyclic

with generator ω = e2π i/n (see Example 26.3(2)). On the other hand, S3 is not

cyclic, as it is not equal to any of its cyclic subgroups (see Example 26.3(4)).
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Order of an Element

DEFINITION Let G be a group, and let a ∈ G. The order of a,
written o(a), is the smallest positive integer k such that ak = e. If no
such k exists, we say that a has infinite order and write o(a) = ∞.

Thus saying that o(a) = k with k finite means that ak = e and ai 6= e for

1 ≤ i ≤ k− 1. On the other hand, saying that o(a) = ∞ means that ai 6= e for

all i > 0.

Example 26.4
(1) The identity element e has order 1, and is the only such element.

(2) We already introduced the order of a permutation g ∈ Sn in Chapter
20, and showed in Proposition 20.4 that when g is expressed as a product
of disjoint cycles, o(g) is equal to the least common multiple of the
lengths of the cycles. For example for a,b ∈ S3 as in Example 26.3(3)
above, we have

o(a) = o(a2) = 3, o(b) = o(ab) = o(a2b) = 2.

(3) For G = (Z,+) what is o(3), the order of the element 3 ∈ G? Well, in
G the identity element is 0, and 3n is equal to the integer 3n. So 3n 6= e

for any positive integer n, and hence o(3) = ∞.

PROPOSITION 26.3
Let G be a group and let a ∈ G. The number of elements in the cyclic
subgroup 〈a〉 is equal to o(a).

PROOF (A) First assume that o(a) = k is finite. So ak = e but ai 6= e

for 1 ≤ i ≤ k− 1. Let A = 〈a〉 = {an : n ∈ Z}. Certainly A contains the
elements

e,a,a2, . . . ,ak−1. (26.1)

We claim that these elements are all different. To see this, suppose it is
false, so there exist i, j with 1 ≤ i < j ≤ k−1 such that ai = a j. But then

ai = a j ⇒ a−iai = a−ia j ⇒ e = a j−i,

and this is a contradiction since 1 ≤ j− i ≤ k−1. Therefore, as claimed,
the list in (26.1) consists of k different elements in A. So |A| ≥ k.
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We now show that every element of A is in the list (26.1). Let an ∈ A

with n∈Z. By Proposition 10.1 there are integers q,r such that n= qk+r

and 0 ≤ r < k. Then
an = aqk+r

= aqkar

= (ak)qar

= eqar

= ar.

Hence an is in the list (26.1). We conclude that A= 〈a〉= {e,a,a2, . . . ,ak−1}
and |A|= k= o(a), proving the proposition in the case where o(a) is finite.

(B) Now assume that o(a) = ∞. This means that ai 6= e for all i > 0.
If ai = a j with i < j, then as above we see that e = a j−i, which is a
contradiction. Hence A = 〈a〉 = {. . . ,a−2,a−1,e,a,a2, . . .} and all these
elements are distinct. It follows that |A| = ∞ = o(a), completing the

proof.

Example 26.5
(1) Let G = S3 and a = (123), ,b = (12) ∈ G as in Example 26.3(3).
Then o(a) = 3, 〈a〉= {e,a,a2} and o(b) = 2, 〈b〉= {e,b}.
(2) In (Z,+) we observed that o(3) = ∞ and 〈3〉= {3n : n∈Z}, an infinite
group.

(3) For ω = e2π i/n ∈C∗, the cyclic group Cn = 〈ω〉= {1,ω , . . . ,ωn−1} has
size n, and o(ω) = n.

PROPOSITION 26.4
Let G be a group and let a ∈ G. Suppose an = e, where n is a positive
integer. Then o(a) divides n.

PROOF Let k = o(a). There are integers q,r such that n = qk+ r

and 0 ≤ r < k. Now

e = an = aqk+r = (ak)qar = eqar = ar.

So ar = e. Since k is the smallest positive integer such that ak = e, and
r < k, it follows that r = 0. Therefore n = qk, showing that k divides n.
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Lagrange’s Theorem

This is a famous result which relates the number of elements in a subgroup

of a finite group G to the number of elements in G. Recall that |G| denotes the

size of G — that is, the number of elements in G.

THEOREM 26.1 (Lagrange’s Theorem)
Let G be a finite group, and let H be a subgroup of G. Then |H| divides
|G|.

For example, the theorem tells us that any subgroup of S3 must have size

1,2,3 or 6, and any subgroup of C5 has size 1 or 5.

Note that Lagrange’s theorem is a one-way implication:

H a subgroup of G ⇒ |H| divides |G|.

It does not hold the other way round, since there exists a group G and a posi-

tive integer r dividing G such that G has no subgroup of size r. The smallest

instance of this is for the alternating group A4; this has size 12, but it can

be proved that it has no subgroup of size 6 (see Exercise 8 at the end of the

chapter).

It may not be immediately apparent, but Lagrange’s theorem has some strong

consequences, both in group theory and some of its applications. I will post-

pone proving the theorem and first show you some of these consequences.

Consequences of Lagrange’s Theorem

Here are three group-theoretic consequences.

COROLLARY 26.1
Let G be a finite group and let a ∈ G. Then o(a) is finite and divides
|G|.

PROOF Let A = 〈a〉, the cyclic subgroup of G generated by a. By
Proposition 26.3, |A| = o(a). Hence o(a) is finite, and it divides |G| by
Lagrange’s Theorem.
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COROLLARY 26.2
Let G be a finite group and let N = |G|. Then aN = e for all a ∈ G.

PROOF Let k = o(a). By Corollary 26.1, k is finite and divides N.
So N = kr for some integer r. Then

aN = akr = (ak)r = er = e.

I find this result really quite remarkable — if you have a finite group G, and

you take any of its elements and combine it with itself |G| times, you always

get the identity. Think about it — would you have guessed such a thing to be

true, just looking at the group axioms?

COROLLARY 26.3
Let G be a group, and suppose that |G| is a prime number. Then G is
a cyclic group.

PROOF Let |G| = p, a prime. Since p ≥ 2, there exists a ∈ G such
that a 6= e. By Lagrange’s Theorem, the cyclic subgroup A = 〈a〉 has size
dividing p. Since A contains e and a we have |A| ≥ 2, and hence |A|= p

as p is prime. As |A| = |G| it follows that G = A = 〈a〉, so G is cyclic.

Example 26.6
By Lagrange’s Theorem any subgroup of S3 must have size 1,2,3 or 6.
There are unique subgroups of sizes 1 and 6, namely {e} and S3 itself.
Any other subgroup has size 2 or 3. Since 2 and 3 are primes, such
subgroups are cyclic, by Corollary 26.3. Hence they are all in the list in
Example 26.3(4). So we know all the subgroups of S3.

Applications to Number Theory

In this section I will show you some applications of group theory to number

theory (i.e., the theory of the integers, primes, etc.). The key to this is the

system Zm defined at the end of Chapter 13. Assume that m ≥ 2. Recall that

Zm = {0̄, 1̄, 2̄, . . . ,m− 1}, and we defined addition and multiplication on Zm as

follows: for x̄, ȳ ∈ Zm, the sum x̄+ ȳ and product x̄ȳ are the elements k̄, l̄ of Zm
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such that k, l are congruent to the integers x+y and xy modulo m, respectively.

So we have two natural binary operations + and × defined on Zm. Can we get

groups out of these?

It is rather easy to see that (Zm,+) is a group. The closure axiom holds,

the identity is 0̄, the inverse of x̄ is m− x. Finally, (x̄ + ȳ) + z̄ = r̄, where

(x+ y)+ z ≡ r mod m; since (x+ y)+ z = x+(y+ z) (these are just integers),

x̄+(ȳ+ z̄) = r̄ as well, and so the associativity axiom holds.

In fact (Zm,+) is not a particularly thrilling group. It is cyclic, with genera-

tor 1̄. Much more interesting is (Zm,×). This satisfies closure, we can show it

is associative just as we did for (Zm,+), and it has identity element 1̄. But the

inverse axiom fails, since 0̄ has no inverse (as 0̄× x̄ = 0̄ for all x̄ ∈ Zm). Let’s

try to remedy this by excluding 0̄ and defining

Z∗
m = Zm −{0̄}.

Is this now a group? Well no, certainly not for all values of m — for example in

Z4 we have 2̄× 2̄ = 0̄ which is not in Z∗
4, so Z∗

4 is not even closed under multi-

plication. In fact, if m is not prime, then m = ab for some a,b∈ {1, . . . ,m−1},

and so ā× b̄ = 0̄, showing that Z∗
m is not closed.

So we are left to consider Z∗
p, where p is prime. Here at last there is some-

thing positive to say:

PROPOSITION 26.5
Let p be a prime. Then (Z∗

p,×) is a group. It is abelian, and has size
p− 1.

PROOF First we need to check closure. Let x̄, ȳ ∈ Z∗
p. Then x,y ∈

{1, . . . , p− 1}, so both are coprime to p. Hence xy is also coprime to p

by Proposition 10.5(b), which implies that x̄ȳ 6= 0̄. So x̄ȳ ∈ Z∗
p, proving

closure.
We have already observed that (Z∗

p,×) is associative and has identity

element 1̄. So it remains to check the inverse axiom. Let x̄ ∈ Z∗
p. Then

hcf(x, p) = 1, so by Proposition 13.6, there is an integer y such that
xy ≡ 1 mod p. Certainly y 6≡ 0 mod p, and replacing y by its remainder
on division by p, we can take it that y ∈ {1, . . . , p−1}. Then ȳ ∈ Z∗

p and

x̄ȳ = ȳx̄ = 1̄. Thus ȳ is the inverse of x̄, proving the inverse axiom.
Thus (Z∗

p,×) is a group. From the definition of multiplication, x̄ȳ= ȳx̄,

so this group is abelian, and it has p− 1 elements.

Example 26.7
(1) Is Z∗

5 = {1̄, 2̄, 3̄, 4̄} a cyclic group? The answer is yes: since 2̄2 = 4̄,
2̄3 = 3̄ and 2̄4 = 1̄, we have Z∗

5 = 〈2̄〉.
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The group Z∗
7 is also cyclic: this time 2̄ is not a generator (since 2̄3 = 1̄,

so the element 2̄ has order 3), but you can check that 3̄ is a generator.
In fact Z∗

p is always cyclic — I won’t prove this elegant and important
fact, but refer you to the book by I.N. Herstein listed in the Further
Reading at the end of this book.

(2) In the group Z∗
31, what is 11

−1
? To answer this we need to find an in-

teger y such that 11y≡ 1 mod 31. Now hcf(11,31)= 1, so by Proposition
10.3 there are integers s, t such that 11s+ 31t = 1. Using the Euclidean
algorithm as in Example 10.2, we find that 11 · (−14)+31 ·5= 1. Hence

11 · (−14)≡ 1 mod 31, and so also 11 ·17 ≡ 1 mod 31. So 11
−1

= 17.

Our first application of group theory is another proof of Fermat’s Little The-

orem (the third one in this little book!).

THEOREM 26.2
Let p be a prime and let a be an integer that is not divisible by p. Then

ap−1 ≡ 1 mod p.

PROOF We shall work in the group (Z∗
p,×). Let r ∈ {1, . . . p− 1}

be such that a ≡ r mod p. Then r̄ ∈ Z∗
p. Now Z∗

p has size p− 1, so by

Corollary 26.2, r̄p−1 = 1̄. This means that rp−1 ≡ 1 mod p, and hence

(by Proposition 13.4) that ap−1 ≡ 1 mod p.

It is possible to generalize the construction of Z∗
p, as follows. Let m be an

arbitrary positive integer greater than 1, and for each x such that 1 ≤ x ≤ m−1

and hcf(x,m) = 1, define a symbol x̄. Let

U(Zm) = {x̄ : 1 ≤ x ≤ m− 1 and hcf(x,m) = 1}.
Define multiplication on U(Zm) by x̄ȳ = k̄, where xy ≡ k mod m and 1 ≤ k ≤
m− 1.

PROPOSITION 26.6
(U(Zm),×) is a group. It is abelian, and has size φ(m), where φ is
Euler’s φ-function.

PROOF The proof that U(Zm) is a group is almost exactly the same
as that of Proposition 26.5; I have set it as Exercise 9 at the end of the
chapter to make sure you fill in the details. It is clearly abelian, and
has size φ(m) by the definition of the Euler φ -function (see Chapter 17).
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You may find the notation U(Zm) a bit strange — what is the letter U doing

there? In fact it is quite a natural notation, as this is the group of “units” in Zm

(where a unit is defined to be an element that has an inverse).

Example 26.8
(1) For p prime, U(Zp) is just the group Z∗

p.

(2) U(Z4) = {1̄, 3̄}, U(Z6) = {1̄, 5̄} and U(Z8) = {1̄, 3̄, 5̄, 7̄}. Notice that
U(Z8) is not cyclic, as all its non-identity element have order 2.

Copying the proof of Theorem 26.2, replacing the groupZ∗
p by U(Zm), gives

the following result.

PROPOSITION 26.7
Let m be a positive integer, and let a be an integer which is coprime to

m. Then
aφ(m) ≡ 1 mod m.

For example this shows that a4 ≡ 1 mod 8 for all odd integers a, and so on.

Notice also that Proposition 14.1 is a special case of the above result, since

φ(pq) = (p− 1)(q− 1) when p,q are distinct primes.

Before moving on, let me point out another pleasing application of the group

Z∗
p. Recall from Proposition 3.4 that the decimal expansion of any rational

number 1
n

is periodic. Can we say anything about the relationship between the

period and the number n? For example, here are the periods of the decimal

expansions of the rationals 1
p

for the first few primes p:

p 2 3 5 7 11 13 17

period of 1
p

1 1 1 6 2 6 16
.

What is going on? Fermat himself considered this question, and came up with

the following result.

PROPOSITION 26.8
If p is prime, then the period of the decimal expansion of the rational

1
p
divides p− 1.

PROOF This is true for p = 2 or 5, so assume p 6∈ {2,5}. Then p

is coprime to 10. To express 1
p
as a decimal we perform long division

of p into 1.000 . . .. At each stage of the division we get a remainder x,
which we regard as the element x̄ of the group Z∗

p. So the first remainder

is 1̄ ∈ Z∗
p, the next is 10, the next is 10

2
, and so on. The sequence of
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decimal digits will start repeating the first time this sequence of group

elements 1̄,10,10
2
, . . . arrives back at 1̄. So the period is equal to the

smallest postive integer k such that 10
k
= 1̄ in the group Z∗

p. In other

words, it is the order of the element 10 in Z∗
p. By Corollary 26.1, this

order divides p− 1.

Naturally, Fermat’s proof was somewhat different to this one, as group the-

ory was not around in his time.

A very similar proof shows that for any positive integer n that is coprime to

10, the period of 1
n

divides φ(n) (Exercise 14 at the end of the chapter).

Our next application of group theory concerns some special kinds of prime

numbers.

DEFINITION A prime number p is called a Mersenne prime if
p = 2n − 1 for some positive integer n.

The first few Mersenne primes are

22 − 2 = 3,
23 − 1 = 7,
25 − 1 = 31,
27 − 1 = 127.

Notice that 24 − 1 and 26 − 1 are not prime. This is readily explained by the

next result.

PROPOSITION 26.9
Suppose 2n − 1 is prime. Then n is prime.

PROOF Suppose n is not prime. Then n = ab for some integers
a,b > 1. Hence 2n−1= 2ab−1 has a factor 2a−1 (just take x = 2a in the
equation xb −1 = (x−1)(xb−1 +xb−2 + · · ·+1)). Since 1 < 2a −1 < 2n −1,
this means that 2n −1 is not prime, which is a contradiction. Therefore
n is prime.

Thus Mersenne primes are necessarily of the form 2p − 1, where p is itself

prime. Interest in Mersenne primes stems from the fact that there are much

more powerful methods for testing whether a number of the form 2p − 1 is

prime than just the general primality testing methods discussed at the end of

Chapter 14. Indeed, at the time I am writing this (April 2015), the largest

explicitly known prime is 257,885,161 − 1, a number with 17,425,170 digits.
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Possibly at the time you are reading this a larger prime will have been found,

but it is almost certain to be a Mersenne prime.

I will show you one of the methods for testing whether 2p − 1 is prime that

comes from group theory. Before doing that, let me point out a connection

with another type of number.

DEFINITION A positive integer N is perfect if N is equal to the
sum of its positive divisors (including 1 but not N).

The smallest two perfect numbers are

6 = 1+ 2+ 3,
28 = 1+ 2+ 4+ 7+14.

A very neat fact, going back to the ancient Greeks, is that if 2p − 1 is prime

then the number 2p−1(2p − 1) is perfect. I have set this as Exercise 12 at the

end of the chapter. For example, 6 = 2(22 −1) and 28 = 22(23 −1) are of this

form; the next is 24(25 − 1) = 496. Far less obvious is the following partial

converse, proved by Euler in 1849: every even perfect number is of the form

2p−1(2p − 1), where 2p − 1 is prime (for a proof of this, see the book by K.H.

Rosen listed in the Further Reading at the end of this book). It is unknown to

this day whether there exist any odd perfect numbers.

Our group-theoretic method for testing for Mersenne primes is based on the

next result.

PROPOSITION 26.10
Let p be a prime, and let N = 2p − 1. Suppose q is a prime divisor of

N. Then q ≡ 1 mod p.

PROOF We shall work in the group (Z∗
q,×). Since q divides 2p − 1

we know that 2p ≡ 1 mod q. This means that in Z∗
q we have 2̄p = 1̄.

Hence by Proposition 26.4, the order o(2̄) of the element 2̄ divides p.
As p is prime, o(2̄) is therefore either 1 or p. If it is 1, then 2̄ = 1̄ in
Z∗

q, which is a contradiction. Hence o(2̄) = p. By Corollary 26.1, this
implies that p divides the size of the group Z∗

q, which is equal to q− 1.

In other words, q ≡ 1 mod p.

Example 26.9
(1) Is 211 −1 prime? To answer this, let N = 211 −1 = 2047. If N is not
prime, then it is divisible by a prime q ≤

√
N (see Exercise 2 of Chapter

12), and q ≡ 1 mod 11 by Proposition 26.10. The numbers less than
√

N
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that are congruent to 1 modulo 11 are

12, 23, 34, 45

and of these, only 23 is prime. So the only possibility for q is 23. It
remains to check whether or not 211 ≡ 1 mod 23. In fact this is true!
(Check this using the method of Example 13.3.) Hence 23 divides N and
so N is not prime.

(2) The next two possibilities are 213−1 and 217−1. Both are prime —
I have set this in Exercise 12 at the end of the chapter.

Based on the evidence so far, one might think that Mersenne primes are

quite common. But that appears not to be the case — for example, of the 168

primes p less than 1000, the number 2p − 1 is prime for only 14 of them. It is

another unsolved problem in prime number theory (to go with those described

at the end of Chapter 12) whether or not there are infinitely many Mersenne

primes.

Proof of Lagrange’s Theorem

We’ve deduced all sorts of things using Lagrange’s Theorem. I will conclude

the chapter by proving it.

Let G be a finite group, and let H be a subgroup of G. Let m = |H| and

H = {h1, . . . ,hm}.

First let me give you the idea behind the proof. Write down the m elements

of H in a column. Now choose an element x ∈ G−H, and write down the

elements h1x,h2x, . . .hmx in another column. Next choose an element y not

listed so far (if one exists), and write down the elements h1y,h2y, . . .hmy in a

third column. Carry on doing this until we run out of elements of G (which

will happen, as G is finite). This process lists the elements of G in an array as

follows:
H Hx Hy · · ·
h1 h1x h1y · · ·
h2 h2x h2y · · ·
...

...
...

hm hmx hmy · · ·
The aim is to show that the columns of this array have the following properties:

(A) each column has m distinct elements
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(B) the columns form a partition of G — that is, every element of G belongs

to exactly one columnn.

Given (A) and (B), it follows that the total number of elements of G is equal

to rm, where r is the number of columns. Hence m divides |G|, which is the

conclusion of Lagrange’s Theorem.

So that’s the idea. Let’s now carry it out. The columns in the above array

are very important subsets of G, and we give them a special name:

DEFINITION For x ∈ G, define

Hx = {hx : h ∈ G}= {h1x, . . . ,hmx}.

This is a subset of G, called a right coset of H in G.

Example 26.10
(1) Since He = H, the subgroup H itself is a right coset.

(2) Let G = S3, and let a = (123), b = (12). Define H to be the subgroup
〈a〉 = {e,a,a2} of G. Let’s write down all the right cosets of H in G.
Recall that G = {e,a,a2,b,ab,a2b}. Check that

He = Ha = Ha2 = {e,a,a2},
Hb = Hab = Ha2b = {b,ab,a2b}.

So there are just 2 different right cosets. Both have size 3, and they
form a partition of G.

(3) Now let K be the subgroup 〈b〉= {e,b} of G = S3. The right cosets
of K in G are

Ke = Kb = {e,b},
Ka = Ka2b = {a,a2b},
Ka2 = Kab = {a2,ab}.

There are 3 different right cosets, all of size 2, and they also form a
partition of G.

Now let’s start the proof proper of Lagrange’s Theorem. As above, let G

be a finite group and let H = {h1, . . . ,hm} be a subgroup of size m. The next

three results are aimed at proving properties (A) and (B) described above for

the collection of right cosets of H in G.

PROPOSITION 26.11
For any x ∈ G we have |Hx| = m; that is, the right coset Hx has m

elements.
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PROOF By definition, Hx = {h1x, . . . ,hmx}. If hix = h jx, then hi = h j

by Proposition 25.2. Hence the elements h1x, . . . ,hmx are all distinct, and
so |Hx|= m.

PROPOSITION 26.12
Let x,y ∈ G. Then either Hx = Hy or Hx∩Hy = /0.

PROOF Assume that Hx∩Hy 6= /0. We show that this implies that
Hx = Hy, which will prove the proposition.
By the assumption there is an element a ∈ Hx∩Hy. So there exist

hi,h j ∈ H such that a = hix = h jy. Then

hix = h jy ⇒ h−1
i hix = h−1

i h jy ⇒ x = h−1
i h jy.

Hence for any h ∈ H we have hx = hh−1
i h jy. As H is a subgroup, closure

in H shows that hh−1
i h j ∈H, so it follows that hx∈ Hy. So we have shown

that Hx ⊆ Hy.
Similarly, y = h−1

j hix, so for h ∈ H we have hy = hh−1
j hix ∈ Hx. This

shows that Hy ⊆ Hx. We now have Hx ⊆ Hy and Hy ⊆ Hx. Hence

Hx = Hy, proving the result.

PROPOSITION 26.13
Let x ∈ G. Then x lies in the right coset Hx.

PROOF As H is a subgroup, e ∈ H. So x = ex ∈ Hx.

Completion of the proof

We are now ready to complete the proof of Lagrange’s Theorem. By Propo-

sition 26.13, G is equal to the union of all the right cosets of H — that is,

G =
⋃

x∈G

Hx.

Some of these right cosets will be equal (e.g., in Example 26.10(2) above,

He = Ha = Ha2). Let the list of different right cosets be Hx1, . . . ,Hxr. Then

G = Hx1 ∪Hx2 ∪·· ·∪Hxr,

and Hxi 6= Hx j if i 6= j. By Proposition 26.12, Hxi ∩Hx j = /0 if i 6= j. So the

right cosets Hx1, . . . ,Hxr form a partition of G. Hence

|G|= |Hx1|+ · · ·+ |Hxr|.
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Also |Hxi|= m for all i, by Proposition 26.11. It follows that |G|= rm = r|H|.
Therefore |H| divides |G|, completing the proof of Lagrange’s Theorem.

Remark The above proof can be recast in terms of a neat equivalence relation

∼ on G, defined as follows: for x,y ∈ G define x ∼ y if and only if xy−1 ∈
H. Showing that ∼ is an equivalence relation is Exercise 14(a) at the end of

the chapter. The equivalence class of an element x ∈ G is the right coset Hx

(Exercise 14(b)). Hence by Proposition 18.1, the distinct right cosets form a

partition of G. Now we can complete the proof using Proposition 26.11 as

above.

I hope you enjoyed this little foray into the world of abstract algebra. If it

has caught your fancy, have a look at the book by I.N. Herstein listed in the

Further Reading at the end of this book.

It is hard to think of a better place to stop, so I will stop.

Exercises for Chapter 26

1. Which of the following subsets H are subgroups of the given group G?

(i) G = (Z,+), H = {n ∈ Z : n ≡ 0 mod 37}.

(ii) G = S4, H = {x ∈ G : x2 = e}.

(iii) G = (C,+), H = {ri : r ∈ R}.

(iv) G = (R∗,×), H = {πn : n ∈ Z}.

(v) G = Sn, H = {g∈ G : g(1) = 1} (the set of all permutations that send

1 → 1).

(vi) G = Sn, H = {g ∈ G : g(1) = 2}.

(vii) G = Sn, H = {g ∈ G : g(i)− g( j)≡ i− j mod n, ∀i, j}.

2. Let V , W and X be the following subsets of S4:

V = {e, (12)(34), (13)(24), (14)(23)}
W = {e, (12), (34), (12)(34)}
X = {e, (1234), (1432), (13)(24)}.

Prove that V,W and X are all subgroups of S4 and decide which of them

are cyclic.

3. Prove that every cyclic group is abelian.

Show that the converse is false by giving an example of an abelian group

that is not cyclic.
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4. Let G be a finite group, and r a positive integer coprime to |G|. Prove

that if x ∈ G satisfies xr = e, then x = e.

5. Let G be a group with subgroups H and K.

(a) Prove that H ∩K is a subgroup of G.

(b) Show that H ∪K is not a subgroup unless either H ⊆ K or K ⊆ H.

(c) Find an example of a group G with three subgroups H,K,L, none of

them equal to G, such that G = H ∪K ∪L.

6. Which of the following groups are cyclic?

(i) (Q,+).

(ii) (Q∗,×).

(iii) the subgroup 〈4〉∩ 〈6〉 of (Z,+).

(iv) the symmetric group S4.

(v) the alternating group A3.

(vi) ({ 1
2n : n ∈ Z},×).

7. (a) Write down all the generators of the following cyclic groups:

(Z,+), C4,C5,C6.

(b) Prove that the total number of generators of the cyclic group Cn is

equal to φ(n) (where φ is the Euler φ -function).

8. Let G = A4, the alternating group of degree 4.

(a) Write down all the elements of order 2 in G.

(b) Find subgroups of G of sizes 1, 2, 3, 4 and 12.

(c) Now suppose H is a subgroup of G and |H|= 6.

(i) Show that H has an element x of order 2.

(ii) Show that H also has an element y of order 3.

(iii) By considering products involving x and y, obtain a contradiction.

(Hence A4 has no subgroup of size 6, showing that the converse of La-

grange’s theorem is not true in general.)

9. Let m be a positive integer, and define U(Zm) as in the text before Propo-

sition 26.6.

(a) Prove that U(Zm) is a group under multipliciation.

(b) Which of the groups U(Z9), U(Z10), U(Z12) are cyclic?

(c) Prove by induction that U(Z2r) is not cyclic for r ≥ 3.
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10. (a) Use Proposition 26.7 to find the remainder when 3798 is divided by

24.

(b) True or false: if a,n are coprime positive integers and a2 ≡ 1 mod n,

then a ≡±1 mod n.

(c) True or false: if a,m,n are positive integers such that hcf(a,n) =
hcf(m,φ(n)) = 1, then

am ≡ 1 mod n ⇒ a ≡ 1 mod n.

11. Find the smallest possible size of a group that contains elements of each

of the orders 1,2,3, . . . ,10, and give an example of such a group.

12. (a) Prove that if 2p − 1 is prime, then 2p−1(2p − 1) is a perfect number.

(b) Show that 213 − 1 and 217 − 1 are both prime.

(c) Write down the first six even perfect numbers.

13. Find all prime factors less than 100 of the numbers 223 − 1, 313 − 1 and

7911 − 1.

14. Let n be a positive integer that is coprime to 10. Prove that the period of

the decimal expansion of 1
n

divides φ(n).

15. Can you find a non-prime value of n for which the period of 1
n

is equal

to φ(n)?

16. Let G be a group and let H be a subgroup of G.

(a) Prove that the relation ∼ on G defined by

x ∼ y ⇔ xy−1 ∈ H (x,y ∈ G)

is an equivalence relation.

(b) Show that the equivalence class of ∼ containing the element x is

equal to the right coset Hx.

(c) Deduce that for x,y ∈ G,

Hx = Hy ⇔ xy−1 ∈ H.

(d) Now let G = S4 and let H be the cyclic subgroup 〈(1234)〉 of G.

Write down all the distinct right cosets of H in G.

17. Let G be a finite group with a subgroup H, and let r = |G|/|H|. Prove

that for any x ∈ G there is an integer k ∈ {1, . . . ,r} such that xr ∈ H.
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18. Critic Ivor Smallbrain, along with great film directors Michael Loser,

Ally Wooden and several others, has been invited to be on the judging

panel at an all-night viewing of the films which are candidates for the

fabulous award known in the profession as the OSCAG (the Order of the

Symmetric, Cyclic and Alternating Groupies). There is not enough time

for the whole panel to see all the films, so to make things fair they agree

to operate according to the following strict rules:

(1) each film is watched by exactly three panel members;

(2) for any two members of the panel, there is exactly one film that

they both watch;

(3) for any two films, there is exactly one panel member who watches

both of them.

How many panel members are there? What is the number of candidate

films? And how many of them does Ivor get to watch?



Solutions to Odd-Numbered
Exercises

Chapter 1

1. TTFTFFTFT

3. (a) Not valid.

(b) Valid. Let C be the statement “I eat chocolate” and D the statement “I

am depressed.” We are given C ⇒ D. Therefore D̄ ⇒ C̄. We are told that D̄ is

true, so I am not eating chocolate. (Actually I am; it’s delicious.)

(c) Valid. Let E be the statement “movie was made in England,” W be

“movie is worth seeing,” I be “movie reviewed by Ivor.” Then we are given

W̄ ⇒ Ē and W ⇒ I. Hence Ī ⇒ W̄ ⇒ Ē. Therefore, the movie was not made

in England.

5. (a) True

(b) False

(c) False

(d) False: for example, if a = b = 2 then ab is a square but a,b are not.

(e) True: if a,b are squares then a = m2,b = n2 with m,n integers, so ab =
m2n2 = (mn)2, a square.

7. We produce counterexamples to each of these statements:

(a) 24 − 2 = 14 is not divisible by 4. Hence the statement is false when

n = 2,k = 4.

(b) 7 is not the sum of three squares.

9. (a) Negation: ∃n ∈ Z such that n is a prime number and n is even. This

negation is true, as n = 2 is an even prime.

255
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(b) Negation: ∃n ∈ Z such that ∀a,b,c,d,e, f ,g,h,∈ Z,

n 6= a3 + b3 + c3 + d3 + e3 + f 3 + g3 + h3.

The original statement is true — i.e., every integer is the sum of 8 cubes. This

is tricky to prove. Here is a proof.

Let n be any integer. By Q6(c), n3 − n is a multiple of 6. Write n3 − n = 6x

with x ∈ Z. Observe that (x+ 1)3 +(x− 1)3 = 2x3 + 6x, and hence

n = n3 − 6x = n3 − (x+ 1)3− (x− 1)3+ 2x3.

Thus n is in fact the sum of 5 cubes.

(Notice that it is crucial in this proof to allow negative cubes. If we insist on

all of the cubes a3, . . . ,h3 being non-negative (i.e., a ≥ 0, . . . ,h ≥ 0), then the

negation is true — for example, 23 is not the sum of 8 non-negative cubes.)

(c) Negation: ∀x ∈ Z, ∃n ∈ Z such that x = n2 + 2. This negation is false;

for example, x = 4 is not of the form n2 + 2. So the original statement is true.

(d) Negation: ∀x ∈ Z, ∃n ∈ Z such that x = n+2. This negation is true: take

n = x− 2.

(e) Negation: ∃y ∈ {x |x ∈Z,x ≥ 1} such that 5y2+5y+1 is not prime. This

negation is true: e.g., if y = 12 then 5y2 + 5y+ 1 = 781, which is not prime as

it is a multiple of 11.

(f) Negation: ∃y ∈ {x |x ∈ Z,x2 < 0} such that 5y2 + 5y+ 1 is not prime.

This negation is false, as the set in question is the empty set. So the original

statement is true.

11. (a) Let x = a1. Then ax = 3. Since ax > ax−1 > ... > a1 ≥ 1, it follows that

x ≤ 3. Easily see that only x = 2 is possible. Thus a1 = 2.

(b) Since a1 = 2, have a2 = aa1
= 3, and then a3 = aa2

= 6. Therefore,

a6 = aa3
= 9. As a3 < a4 < a5 < a6, it follows that a4 = 7,a5 = 8. Then

a7 = aa4
= 12, a8 = 15, a9 = 18.

(c) Work as in (b) to see that a10,a11, .... is

19,20,21,22,23,24,25,26,27,
30,33,36,39,42,45,48,51,54,
55,56, ......,81,
84,87, ....,162,
163,164, ....,243,
246,249, .....

and so on. In particular, a100 = 181.
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Chapter 2

1. (a) By contradiction. Suppose
√

3 is rational, so
√

3 = m
n

where m,n are

integers and m
n

is in lowest terms. Squaring, we get m2 = 3n2. Thus m2 is

a multiple of 3, and so by Example 1.3, m is a multiple of 3. This means

m = 3k for some integer k. Then 3n2 = m2 = 9k2, so n2 = 3k2. Therefore n2

is a multiple of 3, hence so is n. We have now shown that both m and n are

multiples of 3. But m
n

is in lowest terms, so this is a contradiction. Therefore√
3 is irrational.

(b) By contradiction again. Suppose
√

3 = r+ s
√

2 with r,s rational. Squar-

ing, we get 3 = r2 +2s2+2rs
√

2. If rs 6= 0 this gives
√

2 = 3−r2−2s2

2rs
. Since r,s

are rational, this implies that
√

2 is rational, which is a contradiction. Hence

rs = 0. If s = 0 then r2 = 3, so r =
√

3, contradicting the fact that
√

3 is irra-

tional by (a). Therefore, r = 0 and 3 = 2s2. Writing s = m
n

in lowest terms, we

have 3n2 = 2m2. Now the proof of Proposition 2.3 shows that m and n must

both be even, which is a contradiction.

3. (a) True: if x = m/n and y = p/q are rational, so is xy = mp/nq.

(b) False: for a counterexample take the irrationals
√

2 and −
√

2. Their

product is −2, which is rational.

(c) False: the product of the two irrationals
√

2 and 1+
√

2 is
√

2+2, which

is irrational.

(d) True: we prove it by contradiction. Suppose there is a rational a 6= 0 and

an irrational b such that c = ab is rational. Then b = c
a
, and since a and c are

rational, this implies that b is rational, a contradiction.

5. By contradiction. Let α =
√

2+
√

n, and suppose α is rational. Then α −√
2 =

√
n. Squaring both sides, α2 + 2− 2α

√
2 = n, so 2α

√
2 = α2 + 2− n.

Since clearly α 6= 0, we can divide through by 2α to get
√

2= (α2+2−n)/2α .

As α is rational, this implies that
√

2 is rational, which is a contradiction.

Hence α is irrational.

7. Let an =
√

n− 2+
√

n+ 2. Then a2
n = (n−2)+(n+2)+2

√

(n− 2)(n+ 2)=

2n+ 2
√

n2 − 4. We are given that an is an integer. This implies
√

n2 − 4 is ra-

tional. By the hint given, this means that n2 − 4 must be a perfect square; i.e.,

n2−4=m2 for some integer m. Then n2−m2 = 4. Staring at the list of squares

0,1,4,9,16, . . ., we see that the only way the two squares n2,m2 can differ by

4 is to have n2 = 4,m2 = 0. Hence n = 2, so an = 2.



258 A CONCISE INTRODUCTION TO PURE MATHEMATICS

Chapter 3

1. 1812
999

3. (a) This number is 0.12340123401234....which is periodic, hence rational.

(b) Suppose the given number is rational. Then the decimal must be pe-

riodic, so for some n there is a sequence a1a2...an of n digits which repeats

itself. But if we go far enough along the decimal, there will be a sequence of

at least 2n consecutive zeroes. The sequence a1a2...an must appear within this

sequence of zeroes, hence must be just 000...0. This means the decimal ends

0000.... (going on forever), which is plainly false. Hence (by contradiction),

the number is irrational.

(c) This is 1.1001000010000001..... There are ever-increasing sequences of

zeroes, so the argument for (b) shows that this number is irrational.

5. Let x = 100
9899

. It’s easy to check that 100+ x+ 100x= 10000x. Writing this

equation out in full, using the fact that x = 0.010102 . . ., and spacing it out a

bit to make the point, we get

100

+ 0 . 01 01 02 03 05 ...
+ 1 . 01 02 03 05 08 ...
=

101 . 02 03 05 08 13 ...

You can see that, at least near the beginning of the decimal expansion of x,

the numbers formed by looking at successive pairs of digits are being forced

to obey the rule defining the Fibonacci sequence. Eventually one has to start

carrying digits and the whole thing goes wrong, but it does work for a while

(in fact up to the term 55 in the Fibonacci sequence).

If you try, for example, x = 1000/998999, then it works for even longer.

7. Suppose x = m
n

is a rational which has decimal expression ending in repeat-

ing zeroes. Say x = a0.a1a2 . . .ak000 . . .. Then x = A

10k , where A is an integer

(in fact A = ak + 10ak−1 + . . .+ 10ka0). So x = A

2k5k . Cancelling out common

factors of A and 2k5k, we see that the denominator n is of the form 2a5b.

Conversely, if n = 2a5b, then m
n

is equal to
p

10k for some integers p,k, so

the decimal expression for m
n

has repeating zeroes from the k+ 1th position at

least.
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Chapter 4

1. (50)3/4( 5√
2
)−1/2 = (2.52)3/4(5.2−1/2)−1/2 = 23/453/25−1/221/4 = 2151 =

10

3. 2617; 3(3
332)

5. Note that 10000100 = (1002)100 = 100200. So 10010000 is bigger.

Suppose 21/2 ≥ 31/3. Taking sixth powers, this implies 23 ≥ 32, which is

false. Hence 21/2 < 31/3.

7. x+y≥ 2
√

xy ⇔ (x+y)2 ≥ 4xy⇔ x2+y2+2xy≥ 4xy⇔ (x−y)2 ≥ 0, which

is true. Equality holds when x = y.

9. Taking sixth powers of both sides of the equation y4/3 = x5/6 gives y8 = x5.

Hence y= 25,x = 28 is a solution. It is the smallest solution, since if 1< y< 25

and y is an integer, then x = y8/5 is not an integer.

So the bill was £512.32. Pretty expensive meal.

Chapter 5

1. If y < 0 then −y > 0, so x.(−y) > 0, hence −xy > 0, hence xy < 0. If

a > b > 0 then a− b > 0, 1
a
> 0 and 1

b
> 0 (using Example 4.4). Hence the

product (a− b). 1
a
. 1

b
> 0. This means a−b

ab
> 0, so 1

b
− 1

a
> 0, so 1

b
> 1

a
.

3. This translates to 3x2 − 4x+ 1 < 0, which is (3x− 1)(x− 1)< 0, which is

true provided 1
3
< x < 1.

5. Inequality translates to
(u−1)(v−1)

1+uv
> 0, which is true if 0 < u,v < 1. The

other ranges for which it is true are: u,v > 1; or u,v < 1 and uv > −1; or

u < 1,v > 1 and uv <−1; or u > 1,v < 1 and uv <−1.

7. (i) The inequality says either x+ 5 ≥ 1 or x+ 5 ≤−1; i.e., either x ≥−4 or

x ≤−6.

(ii) The inequality is true if and only if (x+ 5)2 > (x− 2)2, i.e. x2 + 10x+
25 > x2 − 4x+ 4, i.e. x >− 3

2
.

(iii) Note that x2 + 2x+ 3 = (x+ 1)2 + 2, which is always positive, so the

right-hand side of the inequality is always x2 + 2x+ 3. When x ≥ −5, the
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inequality is x2 +2x+3> x+5, i.e. (x+2)(x−1)> 0, which is true provided

x > 1 or x <−2. And when x <−5 the inequality is x2 +2x+3 >−x−5, i.e.,

x2+3x+8> 0, which is always true. Hence the range for which the inequality

holds is x > 1 or x <−2.

9. First apply Example 5.14 taking x = (a1a2)
1/2, y = (a3a4)

1/2, to get

(a1a2a3a4)
1/4 ≤ 1

2
((a1a2)

1/2 +(a3a4)
1/2).

By Example 5.14, (a1a2)
1/2 ≤ 1

2
(a1 +a2) and (a3a4)

1/2 ≤ 1
2
(a3 +a4). Apply-

ing these to the above inequality gives the result.

To prove the Arithmetic-Geometric Mean Inequality for n = 8, just repeat

the above argument:

(a1a2 . . .a8)
1/8 ≤ 1

2
((a1 . . .a4)

1/4 +(a5 . . .a8)
1/4) by Example 5.14

≤ 1
2
( 1

4
(a1 + · · ·+ a4)+

1
4
(a5 + · · ·+ a8))

= 1
8
(a1 + · · ·+ a8).

Repeating this argument we can prove the Arithmetic-Geometric Mean In-

equality for any case where n is a power of 2.

11. Squaring both sides of x+y+z= 0, we get x2+y2+z2+2(xy+yz+xz) =
0. Hence xy+ yz+ xz =− 1

2
(x2 + y2 + z2)≤ 0.

Chapter 6

1. (a) Let u = x+ iy,v = p+ iq. Then u+ v = x+ p+ i(y+ q) = p+ x+ i(q+
y) = v+ u.

(b) With u,v as in (a), uv = xp− yq+ i(xq+ yp)= vu.

(c,d) Routine, I won’t bore you with any more details.

(e) This can be checked directly from the definition of complex multiplica-

tion, but here’s a more subtle argument which shows “why” it’s true. Write

u = reiα , v = seiβ , w = teiγ . Then

u(vw) = reiα(seiβ .teiγ) = reiα(stei(β+γ)) = r(st)ei(α+(β+γ)).

Similarly, we see that (uv)w = (rs)tei((α+β )+γ). Since r,s, t,α,β ,γ are all real,

r(st) = (rs)t and α +(β + γ) = (α +β )+ γ , so the expressions for u(vw) and

(uv)w are equal.

3. (a) In polar form,
√

3− i = 2e−iπ/6. Hence (
√

3− i)10 = 210e−10iπ/6 =
210eiπ/3 = 210(cos π/3+ isin π/3) = 29(1+ i

√
3). Similarly, (

√
3− i)−7 =
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2−7e7iπ/6 = 2−8(−
√

3− i). Finally, (
√

3− i)n = 2ne−inπ/6, which is real if and

only if n is a multiple of 6.

(b) Since i = eiπ/2, the square roots of i are eiπ/4 and e5iπ/4; these are equal

to ± 1√
2
(1+ i).

(c) The 10th roots of i are ei(π/20+2kπ/10) for 0 ≤ k < 10. The one nearest to

i is the one with argument closest to π/2, which corresponds to k = 2.

(d) The equation is z7 =
√

3− i = 2e−iπ/6. If we write α = 21/7e−iπ/42 and

ω = e2iπ/7, then the seven roots are α,αω ,αω2,αω3,αω4,αω5,αω6. These

are

21/7e−iπ/42, 21/7e11iπ/42, 21/7e23iπ/42, 21/7e35iπ/42,

21/7e47iπ/42, 21/7e59iπ/42, 21/7e71iπ/42.

The closest to the imaginary axis is 21/7e23iπ/42.

5. The three cube roots of unity 1,ω and ω2 are the corners of an equilateral

triangle (since you can easily check that the distance between any two of these

is
√

3). For a general complex number z 6= 0, if α is one cube root of z, then

the other two are αω and αω2; hence the sides of the triangle they form all

have length
√

3|α|, and so the triangle is again equilateral.

7. (a) If x = 1 the equation is true (both sides are 0); and if x 6= 1 then 1+

x+ x2 + x3 + x4 is a geometric series with sum x5−1
x−1

, from which the equation

follows.

Since ω5 = 1, we have 0 = ω5 −1 = (ω −1)(ω4+ω3 +ω2+ω +1); since

ω − 1 6= 0, the second factor must be 0.

(b) Notice that ω4 = e8π i/5 = e−2π i/5 = ω̄. Hence ω + ω4 = ω + ω̄ =
2cos 2π

5
. Similarly ω2 +ω3 = 2cos 4π

5
.

Observe that α + β = ω +ω2 +ω3 +ω4 = −1 and check that αβ = −1

also. Therefore α,β are the roots of the quadratic (x−α)(x−β ) = x2 − (α +
β )x+αβ = x2+x−1= 0. The roots of this are 1

2
(−1±

√
5). As α is positive,

we deduce α = 1
2
(−1+

√
5), giving the answer.

9. The fact that |z| = 1 implies that z = cosθ + isinθ for some θ . As |
√

2+
z| = 1, this gives (cosθ +

√
2)2 + sin2 θ = 1, hence 2

√
2cosθ + 2 = 0, hence

cosθ =− 1√
2
. Therefore, θ = 3π/4 or 5π/4 and the solutions are z= e3iπ/4,e5iπ/4.

For both of these we have z8 = 1.

11. As w is a root of unity, it has modulus 1; hence ww̄ = |w|2 = 1, and so

w̄ = 1
w

. It follows that

(1−ω)
n
= (1− ω̄)n = (1− 1

ω
)n =

1

ωn
(ω − 1)n = (ω − 1)n.



262 A CONCISE INTRODUCTION TO PURE MATHEMATICS

Finally, (1−ω)
2n

= ((1−ω)
n
)2 = ((ω − 1)n)2 = (ω − 1)2n = (1−ω)2n, and

hence (1−ω)2n is real.

13. Observe that |z|= |z+ 1|= 1. As |z| = 1, we know that z = cosθ + isinθ
for some θ . Since |z+ 1| = 1, it follows that (1+ cosθ )2 + sin2 θ = 1. This

gives 1 = 2+2cosθ , so cosθ =−1/2. Hence θ = 2π/3 or 4π/3. So Tantrum

is e2iπ/3 or e4iπ/3 and Overthetop is correspondingly 1+ e2iπ/3 = eiπ/3 or 1+
e4iπ/3 = e−iπ/3. All of these are sixth roots of 1.

Chapter 7

1. (a) Roots are 3+ i, 2− i.

(b) Since x4 +x2+1 = (x6 −1)/(x2−1), the roots of x4 +x2 +1= 0 are the

sixth roots of unity, excluding ±1. These are e±iπ/3, e±2iπ/3.

(c) Since 1+ i is a root, and the given quartic equation has real coefficients,

the conjugate 1− i must also be a root. So (x−(1+ i))(x−(1− i))= x2−2x+2

is a factor of the quartic; indeed the equation is (x2 −2x+2)(2x2 −1) = 0. So

the other roots are ±1/
√

2.

3. The formula gives roots

x = 3
√

2+ 11i+ 3
√

2− 11i.

Since a cube root of 2± 11i is 2± i, the roots are

(2+ i)+ (2− i)= 4,

(2+ i)ω +(2− i)ω2 =−2+
√

3,

(2+ i)ω2 +(2− i)ω =−2−
√

3.

If we write 2+ 11i = reiθ , then θ = tan−1(11/2), and the cube root 2+ i =
r1/3eiθ/3, so cos(θ/3) = 2/

√
5.

5. By Example 6.4 we have cos3θ = 4cos3 θ − 3cosθ . Putting θ = 2π/9,

c = cosθ , we get − 1
2
= 4c3 −3c, hence c is a root of the cubic equation 8x3 −

6x+1= 0. The other roots are cos4π/9 and cos8π/9. By Proposition 7.1, the

sum of these three roots is −1/8 times the coefficient of x2, which is 0; and the

product of the roots is −1/8 times the constant term, which is −1/8.

7. (a) Let the roots be α,α + d,α + 2d. Then

3α + 3d =−6,
α(α + d)+α(α + 2d)+ (α + d)(α + 2d) = k,
α(α + d)(α + 2d) = 10.
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The first equation gives α+d =−2, whence the last gives (−2−d)(−2)(−2+
d) = 10. Hence d2 = 9, so either d = 3,α = −5 or d = −3,α = 1. Both

possibilities give roots 1,−2,−5 and k = 3.

(b) We have α +β + γ = 0, αβ +αγ +β γ =−1, αβ γ =−1. Hence

α2 +β 2 + γ2 = (α +β + γ)2 − 2(αβ +αγ +β γ) = 0− (−2) = 2,
α2β 2 +α2γ2 +β 2γ2 = (αβ +αγ +β γ)2 − 2(α2β γ +αβ 2γ +αβ γ2)
= 1− 2αβ γ(α +β + γ) = 1,
α2β 2γ2 = 1.

Hence the cubic with roots α2,β 2,γ2 is x3 − 2x2 + x− 1 = 0. Similarly,

1
α + 1

β + 1
γ = αβ+αγ+β γ

αβ γ = 1,
1

αβ + 1
αγ +

1
β γ = α+β+γ

αβ γ = 0,
1

αβ γ =−1,

so cubic with roots 1
α ,

1
β ,

1
γ is x3 − x2 + 1 = 0.

(c) Let the roots be α,β ,γ , where α + β = 1. We have α + β + γ = −p,

whence γ = −p− 1. Next, p2 = αβ +αγ + β γ = γ(α + β )+αβ , whence

αβ = p2−γ(α +β ) = p2+ p+1. Finally, αβ γ =−r gives (p2+ p+1)(−p−
1) =−r.

(d) Let the roots be α,β ,γ,δ , where α + β = 5. We have α + β + γ +
δ = 3, so γ + δ = −2. Next, the sum of products of pairs of roots is −5,

so (α + β )(γ + δ ) +αβ + γδ = −5, whence αβ + γδ = 5. Also, αβ γδ =
−6. Thus αβ ,γδ are the roots of the quadratic x2 − 5x− 6 = 0, which are

6,−1. If αβ = −1,γδ = 6, then α,β are the roots of x2 − 5x− 1 = 0 and

γ,δ are the roots of x2 + 2x + 6 = 0, so the original quartic must factorise

as (x2 − 5x− 1)(x2 + 2x+ 6); but the x coefficient of this product is not 17,

so this is not the case. Hence αβ = 6,γδ = −1, and α,β are the roots of

x2 − 5x+ 6 = 0 and γ,δ are the roots of x2 + 2x− 1 = 0. Thus the roots of the

quartic are 3,2,−1+
√

2 and −1−
√

2.

Chapter 8

1. For n ≥ 8 let P(n) be the statement that it is possible to pay n roubles

using only 3 and 5 rouble notes. Then P(8) is true. Assume P(n) true. Then

n = 3a+ 5b, where a is the number of 3 rouble notes and b the number of 5

rouble notes. Since n ≥ 8, either b ≥ 1 or a ≥ 3 (or both). If b ≥ 1, to pay n+1

roubles, use a+ 2 3’s and b− 1 5’s; and if a ≥ 3 use a− 3 3’s and b+ 2 5’s.

Hence P(n)⇒ P(n+ 1).



264 A CONCISE INTRODUCTION TO PURE MATHEMATICS

3. (a) The formula is ∑n
r=1 r3 = ( 1

2
n(n+ 1))2. The induction proof is the usual

kind of thing.

(b) General formula is ∑
(n+1)2

r=n2+1
r = n3 +(n+ 1)3. To prove it, observe that

the left-hand side is ∑
(n+1)2

r=1 r−∑n2

r=1 r = 1
2
(n+1)2((n+1)2+1)− 1

2
n2(n2+1).

This works out to be n3 +(n+ 1)3.

5. (a) Let P(n) be the statement that 52n − 3n is divisible by 11. Then P(0) is

true. Suppose P(n) is true, so 52n − 3n = 11k for some integer k. Now

52(n+1)− 3n+1 = 25 ·52n− 3 ·3n = 22 ·52n+ 3(52n− 3n) = 22 ·52n+ 33k,

which is divisible by 11. Hence P(n)⇒ P(n+ 1). Therefore P(n) is true for

all n ≥ 0 by induction.

(b) Let P(n) be the statement that 24n−1 ends with an 8; i.e., 24n−1 = 10k+8

for some integer k. Clearly P(1) is true, as 24−1 = 8. Assume P(n) is true,

say 24n−1 = 10k+8. Then 24(n+1)−1 = 24 ·24n−1 = 16(10k+8)= 160k+128,

which ends with an 8. Hence P(n)⇒ P(n+ 1). Therefore P(n) is true for all

n ≥ 1 by induction.

(c) Let P(n) be the statement that n3 + (n+ 1)3 + (n+ 2)3 is divisible by

9. Then P(1) is true as 13 + 23 + 33 = 36. Assume P(n) is true, so n3 +(n+
1)3 +(n+ 2)3 = 9k for some integer k. Now (n+ 1)3 +(n+ 2)3 +(n+ 3)3 =
(n3 +(n+1)3 +(n+2)3)+((n+3)3 −n3) = 9k+(9n2 +27n+27), which is

clearly divisible by 9. Hence P(n)⇒ P(n+ 1).
(d) Let x ≥ 2. Let P(n) be the statement that xn ≥ nx. Then P(1) says that

x ≥ x, which is true. Assume P(n). Multiplying both sides by x (as we may do,

since x is positive), we have xn+1 ≥ nx2. Observe that nx2 ≥ (n+1)x since this

is equivalent to x ≥ n+1
n

, which is true as x ≥ 2. Hence xn+1 ≥ nx2 ≥ (n+1)x,

and so we have shown that P(n)⇒ P(n+ 1).
(e) Let P(n) be the statement 5n > 4n + 3n + 2n. Check that P(3) is true.

Assume P(n) and multiply both sides by 5. This gives

5n+1 > 5(4n + 3n + 2n) = 5 ·4n+ 5 ·3n+ 5 ·2n

> 4 ·4n+ 3 ·3n+ 2 ·2n = 4n+1 + 3n+1+ 2n+1.

Hence P(n)⇒ P(n+ 1).

7. Let P(n) be the statement that fn =
1√
5
(αn−β n). Since 1√

5
(α−β )= 1= f1,

P(1) is true. Now assume P(1), . . . ,P(n) are all true. Then

fn+1 = fn + fn−1 = 1√
5
(αn −β n)+ 1√

5
(αn−1 −β n−1)

= 1√
5
(αn−1(α + 1)−β n−1(β + 1)).

Now α+β = 1 and αβ =−1, so α,β are the roots of the quadratic x2−x−1=
0, and so α2 = α + 1,β 2 = β + 1. It follows that fn+1 = 1√

5
(αn+1 − β n+1),

which is P(n+ 1). Hence the result by strong induction.
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9. Let P(n) be the statement (1+ q)n ≤ 1+ 2nq. Clearly P(1) is true. Assume

P(n) true and multiply both sides by the positive number 1+ q. Then

(1+ q)n+1 ≤ (1+ 2nq)(1+ q) = 1+ 2nq+ q+ 2nq2

≤ 1+ 2nq+ q+ 2n−1q (as q ≤ 1
2
)

= 1+ q(2n+ 1+ 2n−1)≤ 1+ q(2n+ 2n) = 1+ 2n+1q.

Hence P(n+ 1) is true. Thus P(n) ⇒ P(n+ 1), so P(n) is true for all n by

induction.

11. For n a positive integer, let P(n) be the statement that n is a sum of dif-

ferent primes. Certainly P(1) is true (as we are regarding 1 as a prime in this

question). Assume P(1),P(2), . . . ,P(n) are all true. By the result stated in the

question, there is a prime p such that n+1
2

< p < n+1. Let x = n+1− p. Then

n+ 1 = p+ x, where x < p. By assumption, P(x) is true, so x = p1 + . . .+ pk,

a sum of different primes pi. Since x < p, each pi is also different from p.

Hence n+1 = p+ p1 + . . .+ pk is a sum of different primes. Thus P(n+1) is

true. Hence P(n) is true for all n by strong induction.

13. (a) The answer is 2n regions. Let P(n) be the statement that n lines through

a single point divide the plane into 2n regions. Clearly P(1) is true. Assume

P(n) true and consider n+ 1 lines, all through a single point. If we remove 1

of these lines we have n lines; by assumption these divide the plane into 2n

regions. The extra line goes through two of these regions, dividing each into

two; so the n+ 1 lines give 2 more regions than the n lines, hence give 2n+ 2

regions. Hence P(n)⇒ P(n+ 1). So P(n) is true for all n by induction.

(b) There are 2n infinite regions and the rest are finite. Briefly: in proving

P(n)⇒ P(n+1), note that the n+1th line creates just two new infinite regions.

So if there are 2n infinite regions with n lines then there are 2n+ 2 with n+ 1

lines.

15. (a) Apply the Cauchy inequality, taking a1,a2,a3 = a,b,c and b1,b2,b3 =
b,c,a.

(b) (i) Example 8.11 shows that 1 = x+ y+ z ≤
√

3
√

x2 + y2 + z2, hence

x2 + y2 + z2 ≥ 1
3
.

(ii) Apply Example 8.12, taking n = 3 and p1 = p2 = p3 =
1
3
.

17. (i) By Example 8.11, ∑n
1 p2

i ≥ 1
n
.

(ii) Applying Cauchy’s Inequality to the sequences
√

p1, . . . ,
√

pn and 1√
p1
, . . . , 1√

pn
,

we get ∑n
1

1
pi
≥ n2.

(iii) Applying Example 8.11 to the sequence 1
p1
, . . . , 1

pn
gives

(
n

∑
1

1

pi

)2 ≤ n
n

∑
1

1

p2
i

,
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and so ∑n
1

1

p2
i

≥ n3.

(iv) First expand the sum:

n

∑
1

(

pi +
1

pi

)2

= 2n+
n

∑
1

p2
i +

n

∑
1

1

p2
i

.

Hence by the previous parts,

n

∑
1

(

pi +
1

pi

)2

≥ 2n+
1

n
+ n3 =

1

n
(n2 + 1)2.

Chapter 9

1. (a) The proof of (9.2) in the text shows that 3V = 2E . Obviously m+n= F .

Now count the pairs e, f , where e is an edge, f is a face and e lies on f . As

in the proof of (9.1) in the text, the number of such pairs is 2E . When f is

a square there are 4 possibilities for e, and when f is a pentagon there are 5;

hence the total number of pairs is also 4m+ 5n, and so 2E = 4m+ 5n.

(b) Using the first part, Euler’s formula V −E +F = 2 gives

4m+ 5n

3
− 4m+ 5n

2
+m+ n = 2,

which works out as 2m+ n = 12.

(c) I can think only of a cube (m = 6,n = 0), a dodecahedron (m = 0,n =
12) and a 5-sided prism with squares as sides and pentagonal top and bottom

(m = 5,n = 2).

3. This question is quite tricky. For the proof, we will count the “outside”

of the graph as a further face (called the “infinite” face). Counting this, the

number of faces is increased by 1, and Theorem 9.2 becomes v− e+ f = 2.

As in the solution to the previous question, counting edge–face pairs gives

2e ≥ 3 f . Substituting f = 2− v+ e, we get 2e ≥ 3(2− v+ e), which leads to

e ≤ 3v− 6.

5. As in the hint, suppose every vertex is joined to at least 2 others. This says

v(x) ≥ 2 for all vertices x, where v(x) is the number of vertices joined to x.

We’ll show there must be at least one face. Pick any vertex x0 and define a

path of edges as follows. Let x1 be one of the vertices joined to x0. Since

v(x1)≥ 2, there is another vertex x2 joined to x1 with x2 6= x0. Similarly, since

v(x2) ≥ 2, there is another vertex x3 joined to x2 with x3 6= x1 (but x3 could

equal x0). Carry on like this: we get a path x0,x1,x2, . . ., each vertex joined
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to the previous one and the next one. As the graph has only a finite number

of vertices, eventually one of the xi must equal a previous x j. By the way

we have chosen the x’s, j is not i − 2. So part of the path is the sequence

x j,x j+1, . . . ,xi−1,x j, which has at least three edges. This is what we call a

circuit in the graph, and clearly it encloses a face. Hence there is at least one

face.

7. It’s easy to draw K4 as a plane graph — just put three vertices at the corners

of a triangle and the fourth in the middle of the triangle.

Observe that K5 has v = 5 vertices and e = 10 edges. Hence it does not

satisfy the inequality e ≤ 3v− 6, so it cannot be plane by Exercise 3.

9. Let a be the number of pentagons and b the number of hexagons. As in

Exercise 1(a), we get

3V = 2E, 5a+ 6b= 2E, a+ b = F.

Now consider Euler’s formula: V −E +F = 2. Multiply through by 6 to get

6V − 6E + 6F = 12. By the above we know

6E = 15a+ 18b, 6V = 4E = 10a+ 12b, 6F = 6(a+ b).

Substituting in the equation 6V − 6E+ 6F = 12 gives

(10a+ 12b)− (15a+18b)+6(a+b)= 12.

Amazingly, this works out as a = 12.

Chapter 10

1. (i) Here d = hcf(a,b) = 1, and 1 = 12a− 7b.

(ii) Here d = 23 =−9a+ 7b.

(iii) d = 23 =−6a+ 7b.

3. Observe that hcf(7,24) = 1. Therefore, there are integers s, t such that

1= 24s+7t. Then 7t = 1−24s, so if the train leaves at k o’clock on a particular

day, then t trains later the departure time is k+1 o’clock. Hence on some day,

the departure time will be 9 o’clock.

Olga sees Ivan every n days, where n is the least positive integer such that

24n is a mutiple of 7. Clearly n = 7; so she sees him once a week.

If some Vladivostock train leaves at 12 noon then at any even hour there is

a train some day (as hcf(24,14) = 2), and once a week the train leaves at 12
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noon. Similarly, if some train leaves at 11 a.m. then at any odd hour there is a

train some day.

5. (a) Write a= cm with c an integer. Since m,n are coprime, there are integers

r,s such that rm+sn = 1. Multiplying through by c gives rmc+snc = c, hence

ra+snc= c. Since n divides a, it follows from this equation that n also divides

c. Writing c = en we then have a = emn. Thus mn divides a.

(b) Suppose hcf(m,n) = d > 1. Write m = xd,n = yd where x,y are integers.

Then xyd is divisible by m and n, but not by mn.

(c) Since hcf(x,m) = 1 and hcf(y,m) = 1, there are integers s, t,u,v such

that sx+ tm = 1, uy+ vm = 1. Then (sx+ tm)(uy+ vm) = 1, so suxy+(sxv+
tuy+ tvm)m = 1. Therefore any common factor of xy and m also divides 1, so

hcf(xy,m) = 1.

7. Easy: after n days, where n is the lcm of 3, 4 and 7 — i.e., in 12 weeks.

9. By Proposition 10.3 there are integers x,y such that 1= xa+yb. Multiplying

through by n, we have n = nxa+ nyb. So take s = nx, t = ny.

Chapter 11

1. 3 ·7 ·11 ·13 ·37

3. We are given that the prime factorization of n is n = p
a1
1 · · · p

ak

k with all

ai ≥ 2. We can write each ai = 2bi + 3ci for some positive integers bi,ci (for

example, if ai is even take ci = 0, bi = ai/2 and if ai is odd take ci = 1, bi =
1
2
(ai − 3)). Then n = x2y3 where x = p

b1
1 · · · p

bk

k and y = p
c1
1 · · · p

ck

k .

5. (a) By contradiction. Suppose 21/3 is rational; so 21/3 = x
y

in lowest terms,

where x,y are integers. Cubing gives x3 = 2y3. Let the prime factorizations of

x,y be x = 2a p
a1
1 . . . and y = 2bq

b1
1 . . .. Then the equation x3 = 2y3 gives

23a p
3a1
1 . . .= 21+3bq

3b1
1 . . .

By the Fundamental Theorem 11.1, this implies that 3a = 1+ 3b, which is

impossible since a,b are integers. Hence 21/3 is irrational.

The same argument shows that 31/3 is irrational.

(b) The right-to-left implication is easy: if m is an nth power, then clearly

m1/n is rational.

Now for the left-to-right implication. Suppose m1/n is rational; so m1/n = x
y
,

where x,y are integers. Then xn = myn. Let p be a prime, and let pa, pb, pc



SOLUTIONS 269

be the largest powers of p which divide x,y,m, respectively. Then the power

of p dividing xn is pan, while the power of p dividing myn is pc+bn. By the

Fundamental Theorem 11.1, we must have an= c+bn, and hence c= n(a−b)
is divisible by n.

We have shown that the power to which each prime divides m is a multiple

of n; in other words, the prime factorization of m is

m = p
na1
1 . . . p

nak

k

for some integers ai. Hence m = (p
a1
1 . . . p

ak

k )n, and so m is an nth power, as

required.

7. (a) The hcf is 2 ·52 and the lcm is 22 ·3 ·53. So the pairs (m,n) are (2 ·52,22 ·
3 ·53), (2 ·3 ·52,22 ·53), (2 ·53,22 ·3 ·52), (2 ·3 ·53,22 ·52).

(b) hc f (m,n) divides m, which divides lcm(m,n); hence hc f (m,n) divides

lcm(m,n). They are equal when both equal m, and similarly both equal n, i.e.,

when m = n.

(c) As in Proposition 11.2, let m = p
r1
1 · · · p

rk

k , n = p
s1
1 · · · p

sk

k . Define x to be

the product of all the p
ri
i for which ri ≥ si, and y to be the product of all the p

s j

j

for which r j < s j.

9. We must show the equation x6 − y5 = 16 has no solutions x,y ∈ Z.

Suppose x,y ∈Z are solutions. First suppose x is even. Then y must be even.

Hence the LHS of the equation is divisible by 25, so it cannot equal 16.

So x must be odd. The equation is y5 = x6 − 16 = (x3 − 4)(x3 + 4). The

hcf of the two factors x3 − 4 and x3 + 4 divides their difference, 8. As both

are odd numbers (since x is odd), we deduce that hcf(x3 − 4,x3 + 4) = 1.

So x3 − 4,x3 + 4 are coprime numbers with product equal to the fifth power

y5. By Proposition 11.4(b), this implies that both x3 − 4 and x3 + 4 are fifth

powers. But two fifth powers clearly cannot differ by 8 (the fifth powers are

....,−32,−1,0,1,32, ....). Hence there are no solutions.

Chapter 12

1. One of the three numbers p, p+ 2, p+ 4 must be divisible by 3. Since they

are all supposed to be prime, one of them must therefore be equal to 3, so the

only possibility is p = 3.

3. For n = 5,6,7,8,9,10 we have φ(n) = 4,2,6,4,6,4, respectively.

If p is prime then all the numbers 1,2, . . . , p−1 are coprime to p, and hence

φ(p) = p− 1.
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For r ≥ 1, the numbers between 1 and pr which are not coprime to pr are

those which are divisible by p, namely, the numbers kp with 1 ≤ k ≤ pr−1.

There are pr−1 such numbers, and hence φ(pr) = pr − pr−1.

5. x = 40 will do nicely.

Chapter 13

1. (a) 72 ≡ 5 mod 11, so 74 ≡ 52 ≡ 3 mod 11 and so 75 ≡ 3.7 ≡ −1 mod 11.

Therefore 7135 ≡ (−1)27 ≡−1 mod 11, so 7137 ≡−72 ≡ 6 mod 11. So r = 6.

(b) Use the method of successive squares from Example 13.3. Calculate

that 216 ≡ 391 mod 645 and 264 ≡ 256 mod 645. Hence 281 = 21+16+64 ≡
2 ·391 ·256≡ 242 mod 645.

(c) We need to consider 3124 modulo 100. Observe 35 ≡ 43 mod 100, so

310 ≡ 49 mod 100 and then 320 ≡ 1 mod 100. Hence 3120 ≡ 1 mod 100, and

so 3124 ≡ 34 ≡ 81 mod 100. Therefore the last two digits of 3124 are 81.

(d) The multiple 21n will have the last 3 digits 241 if 21n ≡ 241 mod 1000.

Since hcf(21,1000) = 1, such an n exists, by Proposition 13.6.

3. (a) There is a solution by Proposition 13.6, as hcf(99,30) = 3 divides 18.

To find a solution, observe first that 3 = 10 · 30− 3 · 99. Multiplying through

by 6, we get 18 = 60 ·30− 18 ·99, hence −18 ·99 ≡ 18 mod 30. So x = −18

is a solution.

(b) There is no solution by Proposition 13.6, as hcf(91,143) = 13 does not

divide 84.

(c) The squares 02,12,22,32,42 are congruent to 0,1,4,4,1 modulo 5, re-

spectively. Since any integer x is congruent to one of 0,1,2,3,4 modulo 5, it

follows that x2 is congruent to 0,1 or 4. Hence the equation x2 ≡ 2 mod 5 has

no solution.

(d) Putting x = 0,1,2,3,4 gives x2 + x+ 1 congruent to 1,3,2,3,1 modulo

5, respectively. Hence the the equation x2 + x+ 1 ≡ 0 mod 5 has no solution.

(e) x = 2 is a solution.

5. (a) Since 7|1001, we have 1000≡−1 mod 7, so 10002 ≡ 1 mod 7, 10003 ≡
−1 mod 7, etc. So the rule is to split the digits of a number n into chunks of

size 3 and then alternately add and subtract — then the answer is divisible by

7 if and only if n is. The number 6005004003002001 is congruent modulo 7

to 1− 2+ 3− 4+5−6=−3, so the remainder is 4.

(b) Same rule as for 7. The number is again congruent to −3 modulo 13, so

the remainder is 10.
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(c) Since 1000 ≡ 1 mod 37, 10002 ≡ 1 mod 37, etc., the rule is to split the

digits of a number n into chunks of size 3 and then add — the answer is di-

visible by 37 if and only if n is. The given number is congruent modulo 37 to

1+ 2+ 3+ 4+5+6= 21.

7. Consider a square n2. As in Exercise 2(c), n2 ≡ 0,1 or 4 mod 5. Similarly,

we see that n2 ≡ 0,1 or 4 mod 8.

We first show n is divisible by 5. We know that the squares 2n+1 and 3n+1

are congruent to 0,1 or −1 modulo 5. Say 2n+1≡ a mod 5,3n+1≡ b mod 5,

with a,b∈ {0,1,−1}. If a 6= b, then adding gives 5n+2≡ 2≡ a+b mod 5; but

this cannot hold when a 6= b and a,b ∈ {0,1,−1}. So a = b; then subtracting

gives n ≡ b− a mod 5; hence as a = b, we get n ≡ 0 mod 5, i.e., n is divisible

by 5.

Now we show n is divisible by 8 in exactly the same way. Hence n is divisi-

ble by 40.

The first value of n that works is 40, since then 2n+1= 81 and 3n+1= 121

are squares.

Another value of n that works is 3960, since then 2n+ 1 = 7921 = 892 and

3n+ 1 = 11881 = 1092.

9. The equation ax = b has a solution for x ∈ Zp if and only if the congruence

equation ax ≡ b mod p has a solution. Since a 6= 0 in Zp, a and p are coprime,

so there is a solution by Proposition 13.6.

11. The number of days in 1000 years is 1000× 365+ 250 (the 250 for the

leap years). Since 365 ≡ 1 mod 7, this is congruent to 1250 modulo 7, which

is congruent to 4 modulo 7. Hence May 6, 3005 will in fact be a Tuesday.

PS: I have learnt recently that this is wrong, since “century” years (those

ending 00) are deemed to be leap years only when divisible by 400. So only

the century years 2400 and 2800 are leap years and so the number of leap years

in the period is 242 rather than 250. This makes May 6, 3005 a Monday.

Chapter 14

1. (a) By Fermat’s Little Theorem, 310 ≡ 1 mod 11, so 3301 = 3300 · 3 ≡
3 mod 11. In other words, 3301 (mod 11)= 3. Likewise, we have 5110 (mod 13)=
12 and 71388 (mod 127) = 49.

(b) By Fermat’s Little Theorem, n7 ≡ n mod 7. Also n3 ≡ n mod 3, and

hence n7 = n3 ·n3 ·n ≡ n3 ≡ n mod 3. Clearly also n7 ≡ n mod 2. Hence n7−n

is divisible by 2, 3 and 7, hence by 42, i.e., n7 ≡ n mod 42.
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3. Let a be coprime to 561. Then by Fermat, a16 ≡ 1 mod 17, a10 ≡ 1 mod 11

and a2 ≡ 1 mod 3. So

a560 ≡ (a16)35 ≡ 1 mod 17,
a560 ≡ (a10)56 ≡ 1 mod 11,
a560 ≡ (a2)280 ≡ 1 mod 3,

and hence a560 − 1 is divisible by 3,11 and 17, hence by 3 ·11 ·17 = 561. So

a560 ≡ 1 mod 561.

5. By Fermat, pq−1 ≡ 1 mod q. Since qp−1 ≡ 0 mod q, this implies that pq−1+
qp−1 ≡ 1 mod q. Similarly, pq−1 +qp−1 ≡ 1 mod p. Hence pq−1 +qp−1−1 is

divisible by both p and q, hence by pq, and so pq−1 + qp−1 ≡ 1 mod pq.

7. (a) Use the recipe provided by Proposition 14.2. Since 3 ·19≡ 1 mod 28, the

solution is x ≡ 219 mod 29. Using successive squares, this is x ≡ 26 mod 29.

(b) Notice cleverly that 143 = 11 · 13, so we use the recipe of Proposition

14.3. Here (p− 1)(q− 1) = 120, and 7 ·103 ≡ 1 mod 120. So the solution is

x ≡ 12103 mod 143. Since 122 ≡ 1 mod 143, the solution is x ≡ 12 mod 143.

(c) Again use 14.3. Since 11 ·11≡ 1 mod 120, the solution is 211(mod 143),
which is 46(mod 143).

9. Use successive squares to calculate that 21386 ≡ 1 mod 1387, but 2693 ≡
512 mod 1387. So Miller’s test shows that 1387 is not prime.

Chapter 15

1. We have p+q= pq−(p−1)(q−1)+1= 18779−18480+1= 300. Hence

p,q are the roots of x2 − 300x+ 18779= 0. Using the formula for the roots of

a quadratic, these are 1
2
(300±

√
3002 − 4 ·18779), i.e., 211 and 89.

3. To crack this code, observe that 1081 = 23 ·47. Taking p = 23,q = 47, we

have (p− 1)(q− 1) = 1012. Since e = 25 and 25 · 81 ≡ 1 mod 1012, the de-

coding power d = 81. So the decoded message starts with 2381 (mod 1081) =
161, then 93081 (mod 1081) = 925, then 22881 (mod 1081) = 30, and finally

63281 (mod 1081) = 815. So the decoded message is 161925030815, which

with the usual letter substitutions (A for 01, etc.), is PSYCHO. Good choice,

Ivor!
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Chapter 16

1.
(

8
3

)
= 8·7·6

3·2·1 = 56 and
(

15
5

)
= 3003

3. (a) The argument of Example 16.4 shows that the number of solutions to

x + y + z+ t = 14 (x,y,z, t non-negative integers) is equal to the number of

choices for the positions of three 0’s among 17 symbols, so is equal to
(

17
3

)
.

(b) Now let’s count the number of solutions with t ≥ 9. Substituting u =
t−9, we see that this is the same as the number of solutions to x+y+z+u= 5

(x,y,z,u non-negative integers), which is
(

8
3

)
. Hence the number of solutions

to x+y+ z+ t = 14 in non-negative integers with t ≤ 8 is equal to
(

17
3

)
−
(

8
3

)
=

624.

(c) Write yi = x−ci for 1 ≤ i ≤ r. Then the number of solutions to the given

equation is equal to the number of solutions to y1 + · · ·+ yr = N −∑ci, where

yi are integers and yi ≥ 0 for all i. Each solution can be represented as a string

of y1 1’s, then a 0, then y2 1’s, then a 0, and so on; this is a string consisting of

r−1 0’s and N−∑ci 1’s. So the number of solutions is equal to the number of

choices for the positions of r−1 0’s among N −∑ci+ r−1 symbols, which is
(

N −∑ci + r− 1

r− 1

)

.

5. (a) The number of words with k letters is 2k. So the total number with ten

or fewer letters is 2+22+ · · ·+210 = 2(1+2+ · · ·+29) = 2(210−1) = 2046.

(b) There are 3! ways of ordering the letters d,e, f . For a given ordering,

there are four spaces before, between and after the letters d,e, f , and a,b,c
must be put in different spaces: there are four choices for where to put a, three

for b and two for c. So the total number of words is 3!× 4× 3× 2= 144.

7. (i) Let the wolves be w1, . . . ,wn. Suppose Liebeck throws the first steak

to wolf wi1 , the second to wolf wi2 , and so on. So each possible assignment

of steaks corresponds to a sequence wi1 . . .win . The total number of possible

sequences is nn, and the number of sequences for which every wolf gets a steak

is the number of arrangements of w1, . . . ,wn, which is n!. Hence the chance

that every wolf gets a steak is n!
nn .

(ii) If exactly one wolf does not appear in the sequence wi1 . . .win , then

there are two positions having the same wolf. These positions can be chosen

in
(

n
2

)
ways, and the repeated wolf in n ways. The remaining n− 2 positions

must be filled by n− 2 of the remaining n− 1 wolves, which can be done in

P(n− 1,n− 2)= (n− 1)! ways. So the number of sequences in which exactly

one wolf is steak-free is equal to
(

n
2

)
(n− 1)!, and the chance of this event is

(
n
2

)
(n− 1)!/nn.
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(iii) Presumably Liebeck will be eaten if not all of the wolves get a steak.

By (i) the chance of this is 1− 7!
77 . This works out as roughly 0.994, or a 99.4%

chance of being eaten. Goodbye, Liebeck!

9. Let P(n) be the statement of the Binomial Theorem 16.2. Then P(1) is

trivially true as it just says (a+b)1 = a+b. Assume P(n) is true. Multiplying

both sides by a+ b, we get

(a+ b)n+1 =
n

∑
r=0

(
n

r

)

an−rbr(a+ b) =
n

∑
r=0

(
n

r

)

(an−r+1br + an−rbr+1).

For 0 ≤ s ≤ n+ 1, the coefficient of an−sbs in this expression is
(

n
s−1

)
+
(

n
s

)
,

which by Question 8 is equal to
(

n+1
s

)
. Hence

(a+ b)n+1 =
n+1

∑
s=0

(
n+ 1

s

)

an−sbs,

which is P(n+ 1). This completes the proof by induction.

11. (a) There is an arithmetic progression a,∗,b if and only if b− a is even

(in which case the triple is a, a+b
2
,b), i.e., if and only if either a,b are both odd

or a,b are both even. The number of pairs a,b with a < b and a,b both even

is 50.49/2; and the number of pairs with a < b and a,b both odd is the same.

Hence the total number of triples in arithmetic progression is 50.49 = 2450.

(b) First count the number of GP’s whose common ratio is an integer — that

is, GP’s k,kn,kn2 with k,n positive integers such that n ≥ 2 and kn2 ≤ 100.

Given n, the number of possibilities for k is [ 100
n2 ] (where [x] denotes the largest

integer less than or equal to x). Hence the total number of GP’s k,kn,kn2 is

10

∑
n=2

[
100

n2
] = 25+ 11+ 6+ 4+2+2+1+1+1= 53.

Now count the number of GP’s k,km/n,km2/n2, where the common ratio is

m/n in lowest terms, with n > 1. Here n2|k, m > n and km2 ≤ 100n2. Given n,

the number of such GP’s is

f (n) = ∑
m>n,(m,n)=1

[
100

m2
],

and so the total number of GP’s with non-integer common ratio is f (2)+ . . .+
f (9). Calculate that

f (2) = ∑
m>2,m odd

[
100

m2
] = 11+ 4+ 2+ 1= 18,
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and likewise, f (3)= 14, f (4)= 7, f (5)= 6, f (6)= 2, f (7)= 3, f (8)= 1, f (9)=
1.

Hence the total number of GP’s in the question is

53+ f (2)+ . . .+ f (9) = 105.

13. (a) The coefficient is
(

18
15

)
= 18.17.16

3.2.1 = 816.

(b) A typical term in the expansion is
(

8
a

)
(2x3)a(−1

x2 )
8−a. To make this a

term in x4 we need 3a− 2(8− a)= 4, hence a = 4. So the coefficient of x4 is

(
8

4

)

.24.(−1)4 = 1120.

(c) A typical term is

(
10

a,b,c

)

ya(x2b)(
−1

xy
)c

where a+b+c= 10. For this to be a constant term, we need a= c = 2b, hence

b = 2,a = c = 4. So the constant term is
(

10
4,2,4

)
= 3150.

15. (a) Since p appears in the prime factorization of r, but not of s, it appears

in the prime factorization of r
s
.

(b) For 1 ≤ k ≤ p− 1,
(

p
k

)
=

p(p−1)···(p−k+1)
k(k−1)···1 has p dividing the numerator

but not the denominator, hence is divisible by p, by part (i).

(c) Let P(n) be the statement that np − n is divisible by p. Obviously P(1)
is true.

Assume P(n) is true. Then np ≡ n mod p. By the Binomial Theorem,

(n+ 1)p = np +

(
p

1

)

np−1 +

(
p

2

)

np−2 + · · ·+
(

p

p− 1

)

n+ 1.

By (b), all the binomial coefficients
(

p
1

)
,
(

p
2

)
, . . .
(

p
p−1

)
are divisible by p, so it

follows that (n+ 1)p ≡ np + 1 mod p. Since np ≡ n mod p, we therefore have

(n+ 1)p ≡ n+ 1 mod p, which is P(n+ 1). Hence P(n)⇒ P(n+ 1), and the

result is proved by induction.

17. As you can see from the formula in the question, the 2n−1 conjecture is in

fact false. (You would have seen this if you had calculated the next value r6,

which is 31, rather than 32.)

The proof of the formula for rn is a beautiful application of Euler’s theorem

9.2 for connected plane graphs. The graph in question is that having vertices

consisting of the n points on the circle, together with the points inside the circle



276 A CONCISE INTRODUCTION TO PURE MATHEMATICS

where the lines intersect; two vertices are joined by an edge in the graph if they

lie on one of the straight lines joining two of the n points on the circle.

The number of regions rn is equal to the number f of faces of this plane

graph plus n (the latter being the n outer faces bounded by an arc of the circle).

To calculate f we work out v and e, the numbers of vertices and edges of the

graph.

First, for each set of 4 of the n points, the lines joining all pairs of these 4

points intersect in a single point inside the circle, and all vertices of the graph

inside the circle arise in this way. Hence v = n+
(

n
4

)
.

To calculate e, we count all pairs (x,y), where x is a vertex and y is an edge

containing x. If x is one of the
(

n
4

)
interior vertices, then x lies on 4 edges; and

if x is one of the n vertices on the circle, then x lies on n− 1 edges. Hence the

total number of such pairs (x,y) is equal to

4

(
n

4

)

+ n(n− 1).

On the other hand, each edge y contains 2 vertices, so the number of pairs is

also equal to 2e. Thus

e = 2

(
n

4

)

+
n(n− 1)

2
.

Hence, by Theorem 9.2, the number f of faces is

f = e− v+ 1= 2

(
n

4

)

+
n(n− 1)

2
− n−

(
n

4

)

+ 1.

Hence

rn = f + n =

(
n

4

)

+
n(n− 1)

2
+ 1 =

(
n

4

)

+

(
n

2

)

+ 1.

Chapter 17

1. (a) Suppose A∪B = A. Then x ∈ B ⇒ x ∈ A, hence B ⊆ A. Conversely,

suppose B ⊆ A. Then x ∈ A∪B ⇔ x ∈ A, hence A∪B = A.

(b) x∈ (A−C)∩(B−C)⇔ x∈A not C and x∈B not C ⇔ x∈A and B not C

⇔ x ∈ (A∩B)−C.

3. Write U =
⋃∞

n=1 An, I =
⋂∞

n=1 An.

(a) Here U = {x ∈ R|x > 1}, I = /0.

(b) U = {x ∈ R|0 < x <
√

2+ 1}, I = {x ∈ R|1 < x <
√

2}.

(c) U = {x ∈ R|x < 1}, I = {x ∈ R|−1 < x < 0}.

(d) U = {x ∈Q|
√

2− 1 ≤ x ≤
√

2+ 1}, I = /0.
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5. Let S= {1000,1001, . . .,9999}. For k= 0,8 or 9, let Ak be the set of integers

in S that have no digit equal to k. Then A0 ∪A8 ∪A9 is the set of integers in

S that are missing either 0, 8 or 9, and so the number we are asked for in the

question is

|S|− |A0∪A8 ∪A9|= 9000−|A0∪A8 ∪A9|.
We therefore need to calculate |A0 ∪ A8 ∪ A9|, which we shall do using the

above equality for |A∪B∪C|. By the Multiplication Principle 16.1, we have

|A9|= 8× 9× 9× 9, since there are 8 choices for the first digit (it cannot be 0

or 9) and 9 for each of the others. Similarly,

|A8|= 8× 9× 9× 9= 5832, |A0|= 9× 9× 9× 9= 6561,
|A0 ∩A8|= |A0 ∩A9|= 8× 8× 8× 8= 4096,
|A8 ∩A9|= 7× 8× 8× 8= 3584,
|A0 ∩A8 ∩A9|= 7× 7× 7× 7= 2401.

Therefore, by (17.1),

|A0 ∪A8 ∪A9|= 5832+ 5832+ 6561−4096−4096−3584+2401= 8850.

Hence, the number of integers in S that have at least one of each of the digits

0, 8 and 9 is equal to 9000− 8850= 150.

7. For r ≥ 2 let Ar be the set of rth powers kr such that 2 ≤ kr ≤ 10000. The

question asks us to calculate |A2 ∪A3 ∪A4 ∪A5|. Use the Inclusion–Exclusion

Principle. First, A2 consists of the squares 22, . . .1002, so |A2|= 99; similarly

|A3|= 20, |A4|= 9, |A5|= 5. Since Ar ∩As = Ad where d = lcm(r,s), we can

easily work out the sizes of the intersections, and they are:

|A2 ∩A3|= |A6|= 3, |A2 ∩A4|= |A4|= 9,
|A2 ∩A5|= |A10|= 1, |A3 ∩A4|= |A12|= 1,
|A3 ∩A5|= |A15|= 0, |A4 ∩A5|= |A20|= 0,
|A2 ∩A3 ∩A4|= |A12|= 1, |A2 ∩A3 ∩A5|= |A30|= 0,
|A2 ∩A4 ∩A5|= |A20|= 0, |A3 ∩A4 ∩A5|= |A60|= 0,
|A2 ∩A3 ∩A4 ∩A5|= |A60|= 0.

Hence Inclusion–Exclusion gives |A2 ∪A3 ∪A4 ∪A5|= 120.

9. (a) The number of subsets of {1,2, . . . ,n} of size r is equal to
(

n
r

)
. Hence

the total number of subsets of {1,2, . . . ,n} is ∑n
r=0

(
n
r

)
, which by the equality

given in the question, is equal to 2n.

(b) Here is a proof of Proposition 17.3 by induction. Let P(n) be the state-

ment that {1, . . . ,n} has 2n subsets. The set {1} has 2 subsets /0 and {1}, so

P(1) is true.

Now suppose P(n) is true, and let S = {1,2, . . . ,n+1} and T = {1,2, . . . ,n}.

By assumption, T has precisely 2n subsets. For each subset U of T we get 2
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subsets of S, namely U and U ∪ {n+ 1}; and this gives all the subsets of S.

Hence S has twice as many subsets as T , so it has precisely 2n+1 subsets. This

proves that P(n)⇒ P(n+ 1), and hence proves the result by induction.

11. This is easy, provided we use Proposition 17.3. Let m,n ≥ 2 be coprime

positive integers, with prime factorizations m = ∏k
1 p

ai
i , n = ∏l

1 q
b j

j . Since m,n
are coprime, all the primes pi,q j are distinct and the prime factorization of mn

is mn = ∏i, j p
ai
i q

b j

j . Hence Proposition 17.3 gives

φ(mn) = mn∏i, j

(

1− 1
pi

)(

1− 1
q j

)

= m∏i

(

1− 1
pi

)

·n∏ j

(

1− 1
q j

)

= φ(m)φ(n).

13. This is a famous application of Inclusion–Exclusion. Let Ai be the set

of arrangements of 1, . . . ,n in which the number i is in position i. Then D(n)
consists of the arrangements that are not in any of the sets Ai for i = 1, . . . ,n,

so

|D(n)|= n!−|A1∪·· ·∪An|.
We use Inclusion–Exclusion to work out |A1∪·· ·∪An|. The arrangements in Ai

have i in position i and the other n−1 numbers in any order, so |Ai|= (n−1)!.
For i 6= j, the arrangements in Ai ∩A j have i, j in positions i, j and the other

n− 2 numbers in any order, so |Ai ∩A j| = (n− 2)!. Similarly, the size of any

intersection of r sets |Ai1 ∩·· ·∩Air |= (n−r)!. Hence by Inclusion–Exclusion,

|A1∪·· ·∪An|= n ·(n−1)!−
(

n

2

)

(n−2)!+

(
n

3

)

(n−3)!−·· ·+(−1)n−1

(
n

n

)

.

Using the fact that
(

n
r

)
= n!/r!(n− r)!, the right-hand side of this equation

works out as

n!

(

1− 1

2!
+

1

3!
−·· ·+(−1)n−1 1

n!

)

.

The conclusion follows from this.

Chapter 18

1. It is easy to see that (i), (iii), (v) and (viii) are equivalence relations.

Less obvious is that (vi) is an equivalence relation. Clearly a ∼ a and a ∼
b ⇒ b ∼ a; only transitivity is unclear. So suppose a ∼ b and b ∼ c. Then ab =
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m2,bc = n2 where m,n are integers. So ab2c = m2n2, whence ac = m2n2/b2.

It follows that all primes in the factorization of ac appear to an even power;

hence ac is a square and a ∼ c, proving transitivity.

The relation in (ii) is not an equivalence relation, as it is not transitive: for

example, if a = 1,b = 0,c = 1, then a ∼ b and b ∼ c, but a 6∼ c.

The relation (iv) is also not transitive.

Finally, (vii) is not symmetric, as, for example, 2 6∼ 2.

3. The relation in Example 18.1(3) is reflexive and symmetric, but not tran-

sitive. The relation a ∼ b ⇔ a ≤ b on R is reflexive and transitive, but not

symmetric. And if we define a relation ∼ on the set {1} by 1 6∼ 1, this is

symmetric and transitive, but not reflexive.

5. (a) Let S = {1,2}. To specify a relation ∼ on S, for each ordered pair

(a,b) ∈ S× S, we have 2 choices: either a ∼ b or a 6∼ b. So the number of

different relations is equal to 2|S×S| = 24 = 16.

(b) Let S = {1,2,3}. To specify a reflexive, symmetric relation ∼ on S, we

must define a∼ a for all a∈ S, and a∼ b⇔ b∼ a. So we have 2 choices (a∼ b

or a 6∼ b) for each (a,b) with a < b, and once we have made these choices, the

relation ∼ is specified. The number of (a,b) ∈ S× S with a < b is 3. Hence

the number of relations is 23 = 8.

(c) Let S = {1,2, . . . ,n}. By the argument for (a), the number of relations

on S is equal to 2|S×S| = 2n2
.

7. Since m ∼ m+ 5 and m+ 5 ∼ m+ 10, transitivity implies that m ∼ m+ 10,

and hence we see that m ∼ m+ 5t for any t ∈ Z. Similarly m ∼ m+ 8s, and

hence m ∼ m+ 8s+ 5t for any m,s, t ∈ Z. As 5 and 8 are coprime, there exist

integers s, t such that 8s+ 5t = 1, and hence m ∼ m+ 1 for any m ∈ Z. It

follows that m ∼ n for any m,n ∈ Z.

The partitions of {1,2,3} are: {1,2,3}; {1},{2,3}; {2},{1,3}; {3},{1,2};

{1},{2},{3}. So there are exactly 5 equivalence relations on the set {1,2,3}.

Similarly, there are 15 equivalence relations on {1,2,3,4} and there are 52 on

{1,2,3,4,5}.

Chapter 19

1. (i) This is not onto, as f (x) = (x+ 1)2 − 1 ≥−1 for all x ∈ R. It is also not

1-1, as, for example, f (0) = f (−2) = 0.

(ii) This is onto, but not 1-1 (as, for example, f (0) = f (2) = 0).

(iii) This is not onto. But it is 1-1, since if (x+
√

2)2 = (y+
√

2)2 with
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x,y ∈Q, then it is not possible that x+
√

2 = −(y+
√

2) (as this would imply

that x+ y =−2
√

2, which is irrational), so x+
√

2 = y+
√

2, hence x = y.

(iv) This is not onto (for example, 7 is not in the image of f ); but it is 1-1

since by the Fundamental Theorem of Arithmetic 11.1,

f (m,n,r) = f (a,b,c)⇒ 2m3n5r = 2a3b5c ⇒ m = a,n = b,r = c.

(v) This is not onto; neither is it 1-1, as f (2,2,1) = f (1,1,2) = 216.

(vi) There are just 7 equivalence classes, cl(0),cl(1), . . . ,cl(6), and f sends

cl(0)→ cl(1)→ cl(2)→ cl(3)→ cl(4)→ cl(5)→ cl(6)→ cl(0).

Hence f is both onto and 1-1.

3. If y = f (x), then y2 + y+ 3 = x2 − 3x+ 5, so y2 + y− (x2 − 3x+ 2) = 0.

Solving this as a quadratic in y gives y = x−2 or 1−x. So any function f such

that f (x) ∈ {x− 2, 1− x} for all x will do.

5. (a) Every integer is congruent to 0,1,2,3 or 4 modulo 5. Take the “pigeons”

to be the 6 integers, and the “pigeonholes” to be the numbers 0,1,2,3,4. A

pigeon goes into the pigeonhole it is congruent to modulo 5. Since there are 6

pigeons and 5 pigeonholes, two of the pigeons must go to the same hole; so two

of our six integers must be congruent modulo 5, which means their difference

is divisible by 5.

(b) This is just the same argument as for (a). Every integer is congruent to

one of the n numbers 0,1,2, . . . ,n− 1 modulo n. Hence, given n+ 1 integers,

the Pigeonhole Principle shows that two of them must be congruent to the same

number modulo n. Their difference is then divisible by n.

(c) Since 0,a1,a1 + a2, . . . ,a1 + . . .+ an are n+ 1 integers, by part (b) there

must be two of them whose difference is divisible by n. This difference is the

sum of a subset of {a1, . . . ,an}.

(d) The number of 5-element subsets of S is
(

10
5

)
= 252. The sum of 5

numbers in S is at most 50+ 49+ 48+ 47+ 46= 240. Hence the Pigeonhole

Principle shows that two of the 5-element subsets must have the same sum.

(e) The number of subsets of T is 29 = 512, by Proposition 18.3. The sum

of the elements of T is at most 50+49+ . . .+42= 414. Hence the Pigeonhole

Principle shows that there are two subsets of T having the same sum; let two

such subsets be A,B. Then A− (A∩B) and B− (A∩B) are two disjoint subsets

of T having the same sum.

(f) Every integer is of the form 2ax for some non-negative integer a and odd

integer x. For integers in {1, . . . ,200}, the possibilities for the odd integer x are

1,3,5, . . . ,199, so there are just 100 possibilities. Hence, by the Pigeonhole

Principle, if we choose 101 integers between 1 and 200, there will be two of

them having the same value of x. These two must be of the form 2ax and 2bx.

If a > b, then 2bx divides 2ax (and vice versa). This completes the proof.
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7. (a) There are 53 functions from S to T , by Proposition 19.3. To count the

number of 1-1 functions f , there are 5 choices for f (1), then 4 choices for f (2)
and 3 choices for f (3). So the number of 1-1 functions is 5.4.3 = 60.

(b) This is easy by the argument in (a): for a 1-1 function f , the number of

choices for f (1) is n, the number for f (2) is n−1, and so on, up to the number

of choices for f (m) being n−m+ 1. So the total number of 1-1 functions is

n(n− 1)(n− 2) . . .(n−m+ 1).

Chapter 20

1. I will leave you to complete this table.

3. (a) The possible orders of elements of S4 are 1 (identity element), 2 (cycle-

shapes (2,12),(22)), 3 (cycle-shape (3,1)) and 4 (cycle-shape (4)). The num-

bers of elements of these orders are, respectively, 1, 9, 8 and 6.

(b) (16),(22,12),(32),(3,13),(4,2),(5,1).
(c) The largest order is 30, the order of an element of cycle-shape (2,3,5).
(d) The element of order 30 in the previous part is an odd permutation. The

largest order on an even permutation in S10 is 21, for the cycle-shape (7,3).
(e) n = 28 works: S28 has an element of cycle-shape (2,3,5,7,11), of order

2 ·3 ·5 ·7 ·11 which is greater than 282.

5. If g ∈ Sn is an even permutation, then sgn(g(12)) = sgn(g)sgn(12) = −1

by Proposition 20.5, so g(12) is an odd permutation. So if E and O denote the

sets of even and odd permutations in Sn, respectively, we can define a function

φ : E → O by φ(g) = g(12) for g ∈ E .

We claim that φ is a bijection. It is 1-1, since

φ(g) = φ(h)⇒ g(12) = h(12)⇒ g(12)(12)−1 = h(12)(12)−1 ⇒ g = h.

To see that φ is onto, let x∈O. Then x(12) is even and φ(x(12)) = x(12)(12)=
x. Hence φ is a bijection. By Proposition 20.1, this implies that |E| = |O|.
Since |E|+ |O|= |Sn|= n!, it follows that |E|= |O|= 1

2
n!.

7. (a) If |S|= |T | (i.e., m = n), then an onto function from S to T is automati-

cally a bijection. Write S = {s1, . . . ,sn}. To specify a bijection f : S → T , there

are n choices for f (s1), then n− 1 choices for f (s2), and so on, up to 1 choice

for f (sn). Hence the total number of bijections from S to T is n!.

(b) Write S = {s1, . . . ,sn+1}. If f : S → T is onto, then there is a unique pair

si,s j of elements of S such that f (si) = f (s j). This pair can be chosen in
(

n+1
2

)

ways. Once the pair is chosen, there are n choices for f (si) = f (s j), then n−1
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choices for the next f (sk), and so on. So the total number of onto functions is
(

n+1
2

)
n!.

(c) Write S = {s1, . . . ,sn+2} and let f : S → T be onto. Either there is a

unique triple si,s j ,sk of elements of S such that f (si) = f (s j) = f (sk), or there

are two disjoint pairs si,s j and sk,sl such that f (si) = f (s j), f (sk) = f (sl)

and f (si) 6= f (sk). The number of choices of triples is
(

n+2
3

)
, and the number

of choices of two pairs is
(

n+2
n−2,2,2

)
. Hence, counting the numbers of choices

in the usual way, we see that the total number of onto functions is
(

n+2
3

)
n!+

(
n+2

n−2,2,2

)
n!.

Chapter 21

1. (a) Let B−A = {b1, . . . ,bk} and note that A∪B = A∪ (B−A). As A is

countable, we can list its elements as a1,a2,a3, . . .. Now list the elements of

A∪B as b1, . . . ,bk,a1,a2, . . .. Hence A∪B is countable.

(b) Let C = B − A (so again A ∪ B = A ∪C). If C is finite then the re-

sult follows from (a). So assume C is infinite. We can list the elements

of C as c1,c2,c3, . . . and those of A as a1,a2,a3, . . .. Hence list A ∪C as

a1,c1,a2,c2,a3,c3, . . .. So A∪C = A∪B is countable.

3. We know Q is countable by Proposition 21.3. We can use the trick in Exam-

ple 21.3(2) to deduce that Q×Q is also countable: writing Q = {q1,q2, . . .},

the function f : Q×Q→ N defined by f (qi,q j) = 2i3 j is 1-1; now use 21.4.

So we can list the elements of Q×Q as

Q×Q= {(r1,r
′
1),(r2,r

′
2), . . . ,(rn,r

′
n), . . .}.

Define complex numbers z1 = r1 + ir′1, z2 = r2 + ir′2, . . . ,zn = rn + ir′n, . . ..
These are all the complex numbers having rational real and imaginary parts.

Given any real number ε > 0 and any complex number w = a+ ib, there

are rational numbers r,s as close as we like to a,b — in particular, such that

|a− r|< 1
2
ε and |b− s|< 1

2
ε . Then

|w− (r+ is)|2 = (a− r)2 +(b− s)2 <
1

4
ε2 +

1

4
ε2 =

1

2
ε2.

Since r,s are rational, r+ is = zN for some N, and |w− zN |< ε .

5. (a) Let p1, p2, p3, . . . be the prime numbers, in ascending order (so p1 =
2, p2 = 3, p3 = 5, etc.). We define a function f : S →N as follows. For a finite

subset A = {a1,a2, . . . ,ar} of N with a1 < a2 < .. . < ar, define

f (A) = p
a1
1 p

a2
2 . . . par

r .
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We show that f is 1-1. Let B be a finite subset of N, say B = {b1, . . .bs} with

b1 < b2 < .. . < bs, and suppose that f (A) = f (B). Then

f (A) = f (B)⇒ p
a1
1 p

a2
2 . . . par

r = p
b1
1 p

b2
2 . . . pbs

s .

By the Fundamental Theorem of Arithmetic 11.1, this implies that r = s and

ai = bi for all i, so that A = B. Hence f is 1-1. It follows from Proposition 21.4

that S is countable.

(b) First we show that the set of all subsets (finite or infinite) of N is un-

countable. Each subset S corresponds to an infinite sequence of 0’s and 1’s,

where we put a 1 in position i if i ∈ S, and a 0 if i 6∈ S. This gives a bijection

between the set of all subsets of N and the set of all infinite sequences of 0’s

and 1’s. You showed (yes, I know you did!) the latter set to be uncountable in

Exercise 4.

Hence the set of all subsets of N is uncountable. This is the union of the set

of all finite subsets of N and the set of all infinite subsets of N. The former set

is countable by part (a). If the latter were also countable, then the union would

be countable by Exercise 1, which is not the case. Hence the set of all infinite

subsets of N is uncountable.

(c) Let F be the set of all functions from N to N. Suppose F is countable,

say F = { f1, f2, f3, . . .}. Define a function f : N → N as follows: f (1) = 1

if f1(1) 6= 1, and f (1) = 0 if f1(1) = 1; f (2) = 1 if f2(2) 6= 1, and f (2) = 0

if f2(2) = 1; and so on — in general, f (n) = 1 if fn(n) 6= 1, and f (n) = 0 if

fn(n) = 1. Then f ∈ F , but f 6= fn for all n, since f (n) 6= fn(n). This is a

contradiction. Hence F is uncountable.

Chapter 22

1. (i) LUB = 7,GLB =−2.

(ii) The given inequality is equivalent to (x− 3)2 < (x+ 7)2, which works

out as 20x >−40. Hence the GLB is −2 and there is no upper bound.

(iii) The inequality is x(x2 −3)< 0, hence either x < 0,x2 > 3 or x > 0,x2 <
3. So the LUB is

√
3 and there is no lower bound.

(iv) The smallest solution of x2 = a2 + b2 with x,a,b positive integers is

x = 5,a = 3,b = 4. So the GLB of the set is 5. There is no upper bound, since

we can multiply the equation 52 = 32+42 through by any square to get another

solution, so the solutions can get as large as we like.

3. We prove this by contradiction. Suppose that S has two different LUBs, say

a and b. So a 6= b. Since b is an upper bound and a is a LUB, we know that

b ≥ a (from the definition of LUB). And since a is an upper bound and b is a



284 A CONCISE INTRODUCTION TO PURE MATHEMATICS

LUB, we likewise know that a ≥ b. But b ≥ a and a ≥ b together imply that

a = b, a contradiction. Hence S cannot have two different LUBs.

The same argument works for GLBs.

5. (a) The set {1} has LUB = 1.

(b) The set S = {x : x ∈Q and x2 < 2} has LUB =
√

2. To see this, observe

first that
√

2 is certainly an upper bound. If there is a smaller upper bound, say

u, then by Exercise 6 of Chapter 2, there is a rational r such that u < r <
√

2.

Then r2 < 2, so r ∈ S and r > u, contradicting the fact that u is an upper bound

for S. Hence
√

2 is the LUB.

(c) The set {−
√

2
n

: n ∈ N} consists of irrationals and has LUB = 0.

7. Let S = {x : x3 − x− 1 ≤ 0}. This set has an upper bound (2, for instance),

hence it has a LUB. Let c be this LUB. Observe that c > 0 as 0 ∈ S and 0 is not

an upper bound for S.

We show that c3 − c− 1 = 0, so that c is a root of the cubic equation of

the question. We do this by contradiction. Suppose it is false, so either (1)

c3 − c− 1 > 0 or (2) c3 − c− 1< 0.

Case (1): We find a small positive number α such that (c−α)3 − (c−α)−
1 > 0. If we can do this, it will follow that c−α is an upper bound for S,

contradicting the fact that c is the least upper bound. To find α , note that

(c−α)3 − (c−α)−1 = c3 − c−1−3c2α +3cα2 −α3 +α , which is at least

c3 − c− 1− 3c2α provided α > α3 > 0, i.e., provided 0 < α < 1. So if we

choose α > 0 such that α < c3−c−1
3c2 and α < 1, then (c−α)3−(c−α)−1> 0,

giving a contradiction as explained above.

Case (2): We find a small positive number β such that (c+β )3 − (c+β )−
1 < 0. If we can do this, it will follow that c+β ∈ S, contradicting the fact that

c is an upper bound for S. To find β , observe that (c+β )3−(c+β )−1= c3−
c−1+3c2β +3cβ 2+β 3 −β and this is less than c3 − c−1+6c2β , provided

0 < β < 1 and β < c. So if we choose β > 0 such that β < −(c3−c−1)
6c2 and also

β < 1 and β < c, then (c+ β )3 − (c+ β )− 1 < 0, giving a contradiction as

explained.

We have shown that cases (1) and (2) both give contradictions. Therefore,

c3 − c− 1 = 0.

9. Observe that T1 ⊇ T2 ⊇ T3 ⊇ . . .. Assume T1 has a lower bound, say l. Then

by Exercise 2(b), l is a lower bound for all the sets Tn. Hence the Completeness

Axiom implies that every Tn has a GLB. Say bn = GLB(Tn). Then b1 ≤ b2 ≤
b3 ≤ ·· · by Exercise 2(c).

(a) For this example bn = GLB(Tn) = n, and {b1,b2, . . .} has no LUB.

(b) Here bn = GLB(Tn) = 0 for all n. The LUB is 0.

(c) Here bn = 1 for all n. The LUB is 1.
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Chapter 23

1. (i) an =
1

1+(5/n) so by quotient rule, liman = 1.

(ii) Limit is 0: let ε > 0 and choose N so that 1√
N+5

< ε , i.e., N > 1
ε2 − 5.

Then n ≥ N ⇒ |an|< ε .

(iii) Not convergent: an =
√

n

1+5/n
, which is greater than 1

2

√
n for n > 5, so

whatever a and ε > 0 we choose, there does not exist N such that |an − a|< ε
for n ≥ N.

(iv) Limit is 0: note that |an| ≤ 1√
n
; so for any ε > 0 we choose N > 1

ε2 so

that |an|< ε for n ≥ N.

(v) Limit is − 1
5
: usual argument using quotient rule.

(vi) an = (−1)n+1 + 1
n
, not convergent.

(vii) Cunningly observe that an(
√

n+ 1+
√

n) = 1, so an =
1√

n+1+
√

n
, which

has limit 0 by the usual kind of argument.

3. As c = LUB(S), for any n ∈ N ∃sn ∈ S such that c− 1
n
< sn ≤ c. We show

that the sequence (sn) has limit c. Let ε > 0 and choose N > 1
ε . Then for n≥ N

we have |sn − c|< 1
n
≤ 1

N
< ε . Hence limsn = c.

5. This just means an = a for all n ≥ N.

7. (i) We first show that an ≥
√

2 for all n≥ 2, by induction. It is true for n = 2,

since a2 = 3
2
>

√
2. For the induction step, assume an ≥

√
2. Then by the

inequality x2 + y2 ≥ 2xy (which holds since it is equivalent to x2 + y2 − 2xy =
(x− y)2 ≥ 0), we have a2

n + 2 ≥ 2
√

2an. Hence

an+1 =
a2

n + 2

2an

≥ 2
√

2an

an

=
√

2.

This establishes that an ≥
√

2 for all n ≥ 2.

Now an −an+1 = an − a2
n+2

2an
=

a2
n−2

2an
. Since a2

n ≥ 2 for n ≥ 2, this shows that

an ≥ an+1 for n ≥ 2.

(ii) By Question 6, (an) is convergent. Let l be the limit. The sequence

(an+1) = ( a2
n+2

2an
) must also converge to l, and by Proposition 23.2, the limit of

this sequence is l2+2
2l

. Therefore l = l2+2
2l

, hence l = ±
√

2. As an is positive

for all n, the limit cannot be negative, so l =
√

2.

9. Loser: wrong, e.g., (−1)n. What a loser.

Polly: wrong (meaningless, and frankly silly, to write |an −∞|).
Greta: right! Nice one, Greta!
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Ally Wooden: wrong, e.g., the sequence 1,−2,3,−4,5,−6, . . .. Decent ef-

fort Ally, if a little wooden.

Gerry: wrong — there is no sequence at all satisfying Gerry’s conditions.

Einstein: right! Nice one, Einstein!

Hawking: wrong, e.g., an =− 1
n
.

Richard Thomas: wrong — there is no such sequence. Poor effort, Thomas.

Ivor: wrong, e.g., the sequence 0,1,0,2,0,3, . . .. Awful, Ivor, but frankly

not a surprise.

Chapter 24

1. Let f be the constant function f (x) = a ∀x ∈ R. Let c ∈ R and let ε > 0.

Define δ = ε . Then

|x− c|< δ ⇒ | f (x)− f (c)|= |a− a|= 0 < ε.

So f is continuous at c for all c ∈ R.

3. This is sort of obvious, but unpleasant. It doesn’t change the question if we

divide p(x) by an, so we can assume that an = 1, so p(x) = xn + an−1xn−1 +
· · ·+ a0. For x 6= 0 define

q(x) =
p(x)

xn
− 1.

Then |q(x)|= | an−1

x
+

an−2

x2 + · · ·+ a0
xn |, and so, by the Triangle Inequality 4.12,

|q(x)| ≤ |an−1

x
|+ |an−2

x2
|+ · · ·+ |a0

xn
|.

Let K = max(|an−1|, |an−2|, . . . , |a0|). Then

|q(x)| ≤ K(
1

|x| +
1

|x|2 + · · ·+ 1

|x|n ).

The term in brackets on the RHS is just a geometric series, and for |x|> 1 you

can easily see that it is less than 1
|x|−1

. Hence

|q(x)|< K

|x|−1
for |x|> 1.

Therefore, if we take |x| > K + 1, then |q(x)| < 1, which means that p(x) =
xn(q(x)+1) has the same sign as xn. As n is odd, we can choose a value x = a

to make this sign negative, and a value x = b to make it positive.
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Told you it was unpleasant.

5. First consider the case where f (a) 6= 0. As 1
2
| f (a)|> 0 and f is continuous

at a, ∃δ1 > 0 such that |x−a|< δ1 ⇒ | f (x)− f (a)|< 1
2
| f (a)|; this implies that

f (x) and f (a) have the same sign, hence that | f (x)− f (a)|= | | f (x)|− | f (a)| |.
Now let ε > 0 and choose δ2 > 0 such that |x−a|< δ2 ⇒ | f (x)− f (a)|< ε .

Let δ = min(δ1,δ2). Then |x−a|< δ ⇒ || f (x)|−| f (a)| |= | f (x)− f (a)|< ε .

This shows that | f (x)| is continuous at a provided f (a) 6= 0. The case where

f (a) = 0 is much easier and you should have no trouble with it.

7. The key is to define a fiendishly cunning function and apply the Intermediate

Value Theorem to it. Here’s the fiendish function: let g(x) = f (x)− f (x− 1
2
).

Observe that g( 1
2
) = f ( 1

2
)− f (0) and g(1) = f (1)− f ( 1

2
). So as f (0) = f (1),

we have g( 1
2
) = −g(1). As f is continuous on R, so is the function x →

f (x− 1
2
), and hence so is g (by the sum rule). So as g( 1

2
) and g(1) have opposite

signs (or are both 0), the Intermediate Value Theorem tells us that there exists

c between 1
2

and 1 such that g(c) = 0. This implies that f (c) = f (c− 1
2
). Pretty

fiendish!

9. (i) Putting x = y = 0 we get g(0) = g(0)g(0), which implies that g(0) = 0

or 1.

(ii) If g(0) = 0 then g(x+ 0) = g(x)g(0) = 0 for all x and there is nothing

to prove. So assume g(0) = 1. Assume g is continuous at 0. Let a ∈ R. We’ll

show g is continuous at a. For any h ∈ R,

g(a+ h)− g(a)= g(a)g(h)− g(a) = g(a)(g(h)− g(0)).

Let ε > 0. As g is continuos at 0, ∃δ > 0 such that |h| < δ ⇒ |g(a)| |g(h)−
g(0)|< ε . Hence g is continuous at a.

(iii) If g(a) = 0, the above equation shows that g(a+ h) = 0 for all h ∈ R.

Hence g is constant, and so g(x) = 0 for all x.

Chapter 25

1. (i) Yes, this is a group: closure holds, as |z1| = |z2| = 1 ⇒ |z1z2| = 1;

associativity holds as complex multiplication is associative; identity is 1; and

inverse axiom holds as |z|= 1 ⇒ |z−1|= 1.

(ii) Yes, this is a group: closure holds since ab+ a+ b = −1 implies a or

b is −1; check (a ∗ b) ∗ c = a ∗ (b ∗ c) = abc+ ab+ ac+ bc+ a+ b+ c, so ∗
is associative; identity is 0; and inverse of a ∈ S is −a/(a+ 1) — this exists,

since a 6=−1, and is in S since it is not −1.
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(iii) Not a group — it is closed, associative, identity is Liebeck, but inverse

axiom fails.

(iv) Not a group — similar to (iii).

(v) Not a group — equation is (z− 1)(z2 + 1) = 0, so set is {1, i,−i} which

is not closed since i.i =−1.

(vi) Not a group — no identity.

(vii) Yes, this is a group: closure holds as a
b
+ c

d
= ad+bc

bd
, and if b,d are odd,

so is bd; associativity holds; identity is 0; inverse of a
b

is − a
b
.

(viii) Not a group: identity must be a, but then b has no inverse.

(ix) Yes, this is a group: easiest proof is to check that the multiplication table

is the same as that of the group {1,−1} under multiplication, with a instead of

1 and b instead of −1.

3. (i) Since aa−1 = a−1a = e, the inverse of a−1 is a.

(ii) Observe that (ab)(b−1a−1) = a(bb−1)a−1 = aea−1 = e, and similarly

(b−1a−1)(ab) = e. Hence the inverse of ab is (b−1a−1).

5. (a) Note that (ab)2 = a2b2 ⇒ abab= aabb⇒ ba = ab (since we can cancel

a on the left and b on the right). Hence G is abelian.

(b) This is tricky. We are given that for some integer i,

(ab)i = aibi, (ab)i+1 = ai+1bi+1, (ab)i+2 = ai+2bi+2, ∀a,b ∈ G.

Using the first two equations, we get

ai+1bi+1 = (ab)i+1 = (ab)iab = aibiab,

and cancelling ai on the left and b on the right gives (1) abi = bia. Similarly,

the second two equations give (2) abi+1 = bi+1a. Taking inverses in (1) using

Q3(ii), we have b−ia−1 = a−1b−i. Multipliying (2) by these inverses, we get

b−ia−1abi+1 = a−1b−ibi+1a.

This works out as b = a−1ba, so finally ab = ba. Hence G is abelian.

(c) You may be annoyed with me for this one: if you are only given this for

i = 0 and 1, the equations are (ab)0 = a0b0 and (ab)1 = a1b1 which tell you

absolutely nothing.

7. (i) To show that D is a group: closure is clear; for associativity check that

((x,ε)∗ (y,δ ))∗ (z,γ) = (x,ε)∗ ((y,δ )∗ (z,γ)) = (xyε zεδ ,εδγ);

the identity is (1,1); and the inverse of (x,ε) is (x−ε ,ε). Clearly |D|= 8.

(ii) Note a2 = (i,1)∗ (i,1) = (−1,1), so a4 = (−1,1)∗ (−1,1) = (1,1) = e.

And b2 = (1,−1)∗(1,−1)= e. Also a3 =(−i,1). Consider the list of elements

e,a,a2,a3,b,ab,a2b,a3b.
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If two of these are equal, then cancelling gives ar = bs for some r ∈ {0,1,2,3},

s ∈ {0,1}. But this is not the case. So the 8 listed elements are distinct, so D

consists of precisely these 8 elements.

(iii) Check ba = (1,−1)∗ (i,1) = (−i,−1) = a3b. So ba 6= ab and D is not

abelian.

(iv) As in Example 25.3, one can easily work out all products of elements

in the above list using the equations a4 = b2 = e, ba = a3b. Here is the group

table:
e a a2 a3 b ab a2b a3b

e e a a2 a3 b ab a2b a3b

a a a2 a3 e ab a2b a3b b

a2 a2 a3 e a a2b a3b b ab

a3 a3 e a a2 a3b b ab a2b

b b a3b a2b ab e a3 a2 a

ab ab b a3b a2b a e a3 a2

a2b a2b ab b a3b a2 a e a3

a3b a3b a2b ab b a3 a2 a e

(v) For n = 0,1,2,3,4, the number of x ∈ D such that xn = e is 8,1,6,1,8
respectively.

Chapter 26

1. (i) Yes, H is the cyclic subgroup 〈37〉.
(ii) Not a subgroup: closure fails — for example, (12), (23) ∈ H but the

product (12)(23) = (123) 6∈ H.

(iii, iv, v, vii) These are all subgroups — just use Proposition 26.1.

(vi) Not a subgroup, since e 6∈ H.

3. (a) Let G be cyclic, say G = 〈a〉. For any am,an ∈ G, we have aman =
am+n = anam. Hence G is abelian.

(b) The groups V and W in Q2 are both abelian. Neither is cyclic, as all the

non-identity elements have order 2, hence they generate cyclic subgroups of

size 2.

5. (a) Use Proposition 26.1:

(1) e ∈ H and e ∈ K (as they are subgroups), hence e ∈ H ∩K.

(2) x,y ∈ H ∩K implies xy ∈ H and xy ∈ K (as they are subgroups), hence

xy ∈ H ∩K.

(3) x ∈ H ∩K implies x−1 ∈ H and x−1 ∈ K (as they are subgroups....yawn),

hence x−1 ∈ H ∩K.
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Hence H ∩K is a subgroup by Proposition 26.1.

(b) Suppose neither H ⊆ K nor K ⊆ H. Then we can pick x ∈ H −K and

y ∈ K −H. So x,y ∈ H ∪K. But I claim that xy 6∈ H ∪K: for if xy = h ∈
H, then y = x−1h ∈ H, contradiction; and if xy = k ∈ K, then x = ky−1 ∈ K,

contradiction. Hence xy 6∈ H∪K, so H∪K is not closed, hence not a subgroup.

(c) Consider the group W in Q2. If we write a = (12), b = (34) then W =
{e,a,b,ab}, and all three non-identity elements a,b,ab have order 2. Let H =
〈a〉, K = 〈b〉, L = 〈ab〉. Then H,K and L all have size 2, and W = H ∪K ∪L.

7. (a) The generators of (Z,+) are 1 and −1.

The generators of C4 are i and −i.

The generators of C5 = 〈ω〉 (where ω = e2π i/5) are ω ,ω2, ω3, ω4, since each

of these has order 5.

The generators of C6 = 〈ν〉 (where ν = e2π i/6) are ν and ν5, since all the other

powers of ν have order 1, 2 or 3.

(b) Let Cn = 〈ω〉= {1,ω ,ω2, . . . ,ωn−1}, where ω = e2π i/n. I claim that the

generators of Cn are precisely the elements ωr, where 1 ≤ r ≤ n and hcf(r,n) =
1. If we prove this claim, it follows that the number of generators is φ(n), as

required.

Consider ωr, where 1 ≤ r ≤ n. Let d = hcf(r,n). If d > 1 then (ωr)n/d =
(ωn)r/d = 1, so the order of ωr is less than n, and hence ωr is not a generator of

Cn (by Proposition 26.3). On the other hand, if d = 1 then by Proposition 10.3,

there are integers s, t such that sr+ tn = 1; then ω = ωsr+tn = (ωr)s ∈ 〈ωr〉,
so all powers of ω lie in 〈ωr〉 and so ωr is a generator of Cn. This proves the

claim in the previous paragraph.

9. (a) Closure: let x̄, ȳ ∈U(Zm). Then x and y are coprime to m, so by Exercise

5(c) of Chapter 10, xy is also coprime to m. So x̄ȳ ∈U(Zm).
Associativity: this holds, since (x̄ȳ)z̄ and x̄(ȳz̄) are both equal to r̄, where

xyz ≡ r mod m.

Identity: this is 1̄.

Inverses: let x̄ ∈U(Zm). By Proposition 13.6 there is an integer y such that

xy ≡ 1 mod m. Replacing y by its remainder on division by m, we have x̄ȳ = 1̄,

so ȳ is the inverse of x̄.

(b) U(Z9) has size φ(9) = 6, and is cyclic with generator 2̄. U(Z10) has size

4 and is cyclic with generator 3̄. U(Z12) = {1̄, 5̄, 7̄, 1̄1} and is not cyclic as all

its elements square to the identity.

(c) The statement is true for r = 3, since U(Z8) is non-cyclic, as observed

in Example 26.8.

Now assume it is true for r, so U = U(Z2r) is non-cyclic. Now |U | =
φ(2r) = 2r−1, so every element of U has order dividing 2r−1 by Corollary

26.1. As U is non-cyclic it has no element of order 2r−1 by Proposition 26.3,

so it follows that all elements have order dividing 2r−2, so that x̄2r−2
= 1̄ for all
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x̄ ∈U =U(Z2r). This means that 2r divides x2r−2 − 1 for all odd integers x. It

follows that 2r+1 divides x2r−1 − 1 = (x2r−2 − 1)(x2r−2
+ 1) for all odd integers

x. This implies that in the group U(Z2r+1) we have x̄2r−1
= 1̄ for all elements

x̄. So U(Z2r+1) has size φ(2r+1) = 2r, but has no element of order 2r. Hence it

is not cyclic. This completes the proof by induction.

11. Let G be a group containing elements of orders 1,2,3, . . . ,10. By Corol-

lary 26.1, |G| must be divisible by each of the numbers 1,2,...,10. The lcm of

these numbers is 2520, so this divides |G|. On the other hand the cyclic group

C2520 has elements of each of the required orders (since if ω is a generator and

m|2520 then ω2520/m has order m). So the smallest value of |G| is 2520, and

C2520 is such a group..

13. For 223 − 1, Proposition 26.10 shows that the possible prime divisors are

≡ 1 mod 23. The only such prime less than 100 is 47. Check that 47 does in

fact divide 223 − 1.

Let q be a prime divisor of 313 − 1. The proof of Proposition 26.10 shows

that in the group Z∗
q, the element 3̄ has order either 1 or 13. In the first case 3̄ =

1̄, which implies that q = 2. In the second case 13 divides q− 1 by Corollary

26.1; the only such primes q < 100 are 53 and 79. Check that neither of these

divides 313 − 1. Hence 2 is the only prime divisor less than 100 of 313 − 1.

Now let q be a prime divisor of 7911 − 1. The argument of the previous

paragraph shows that either 79 = 1̄ in Z∗
q, or 11 divides q− 1. In the first case

q divides 78, so q = 2,3 or 13. In the second case the possible primes q < 100

are 23,67 and 89. Check that none of these divides 7911 − 1.

15. The anwer is yes: for example, the period of 1
49

is equal to φ(49) = 42.

To see this you just need to check that the smallest positive integer k such that

10k ≡ 1 mod 49 is k = 42.

17. Since |G|/|H| = r, the proof of Lagrange’s theorem shows that there are

exactly r different right cosets of H in G. Let x ∈ G, and consider the r + 1

right cosets H,Hx,Hx2, . . .Hxr. Two of these must be the same right coset,

say Hxi = Hx j with 0 ≤ i < j ≤ r. Then x jx−i = x j−i ∈ H, which gives the

required conclusion.
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/0 empty set, 2
∈ belongs to, 2
6∈ does not belong to, 2
⊆ contained in, 2
⇒ implies, 3
⇔ if and only if, 3
∃ there exists, 7
∀ for all, 8
R the set of real numbers, 13
Z the set of integers, 13
N the set of natural numbers, 13
Q the set of rational numbers, 14

xm/n rational power, 27
i square root of −1, 39
Re(z) real part of z, 39
Im(z) imaginary part of z, 39
C the set of complex numbers, 39
|z| modulus of z, 40
arg(z) argument of z, 41

reiθ polar form, 45
n! n factorial, 64
Σ sum (sigma) notation, 65
a|b a divides b, 87
hcf(a,b) highest common factor, 88
a ≡ b mod m a congruent to b modulo m, 107
Zm the integers modulo m, 113
x(mod n) x modulo n, 118
(

n
r

)
binomial coefficient, 135

P(n,r) number of ordered selections of r from n, 139
(

n
r1,...,rk

)
multinomial coefficient, 140

A∪B union of sets A and B, 147
A∩B intersection of A and B, 147
⊂ properly contained in, 148
A−B difference of sets A and B, 149
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A×B Cartesian product of A and B, 149
φ(n) Euler φ -function, 152
f : S → T function from S to T , 163
f (S) image of function f , 163
ιS identity function on S, 164

f−1 inverse function, 166
g ◦ f composition of functions, 167
Sn set of all permutations of {1, . . . ,n}, 173
ι identity permutation, 174
Π product notation, 182
sgn(g) signature of permutation g, 182
P(S) set of all subsets of S, 195
LUB least upper bound, 200
GLB greatest lower bound, 200
liman limit of sequence (an), 208
an → a sequence (an) has limit a, 208
Sn symmetric group of degree n, 228
e identity element of a group, 229

x−1 inverse of element x in a group, 229
Cn cyclic group of size n, 236
An alternating group of degree n, 237
o(a) order of element a in a group, 239

Z∗
p group Zp −{0̄}, 243

U(Zm) group contained in Zm, 244
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