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Preface

As an undergraduate, one of my most memorable and thrilling moments occurred
when I first discovered how to prove an assigned theorem in one of my upper level
mathematics courses. I also noticed that a few of my fellow students were having
trouble proving this theorem. Even today, after being successful in calculus, many
students have difficulty with proofs in their upper-division mathematics courses. To
be successful in these more advanced courses, students must possess three essential
skills: the ability to read, to understand, and to communicate in the language of
mathematics. I wrote this book specifically to help students acquire these important
skills and to enhance their ability to formulate and construct mathematical proofs.

When I was in college, what was it that helped me to discover and write math-
ematical proofs? Before enrolling in my first upper division mathematics course,
I completed a beginning course in logic offered by the philosophy department. This
course introduced me to formal proofs in a natural deduction system. During my
first upper division mathematics course, I soon realized that I could apply the ideas
that I learned in the logic course to help me write and find mathematical proofs. This
book is intended to show students how basic logical principles can also help them
to discover and compose mathematical proofs.

The core topics covered in the text are logic, sets, relations, functions and
induction. Logic is covered, not as an end in itself, but as an instrument for analyzing
the logical structure of mathematical assertions and as a tool for constructing valid
mathematical proofs. I do not presume that the reader has an intuitive understanding
of the principles of reasoning that many mathematicians take for granted.

Every theorem in mathematics must have a proof from a set of stated assump-
tions. The proof demonstrates that the conclusion of the theorem follows from the
assumptions by the laws of logic alone. Can the notions of “laws of logic” and
“proof” be made precise? This text is devoted to establishing a positive answer to
this question. Students are given a plan of attack for finding and composing a correct
proof of a given mathematical theorem. This is done by developing a method for
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vi Preface

generating “proof diagrams.”1 For example, a proof of the statement (∀n ≥ 1)P(n)
by induction, uses the logical structure illustrated in the proof diagram

Prove P(1).

Let n≥ 1 be an integer.
Assume P(n).

Prove P(n + 1).

where indentation is used to display a proof’s logical dependencies.
Diagramming a proof is a way of presenting the relationships between the various

parts of a proof. The resulting proof diagram clearly demonstrates the structure
of the proof and provides a tool for showing students how to write a correct
mathematical proof. Analyzing a proof and portraying its logical structure with a
consistent visual scheme can be helpful – both for proof beginners and for those
trying to make sense of a proof at any level. Many students feel more confident
using this well-structured approach for finding and writing proofs.

Each student of mathematics needs to learn how to find and write mathematical
proofs. These are probably two of the most difficult skills that a mathematics major
has to develop. Students often fail to construct a proof of a mathematical statement
because they lack confidence or just do not know how to get started. This text is
designed to increase students confidence by showing them how to first break up
the statement into its logical parts and then use these parts as a guide for finding
and writing a proof. Even with a guide, the work required to find a proof can be
quite challenging. Professional mathematicians also have difficulty finding proofs;
however, mathematicians know that persistence often pays off and thus, they do
easily not give up.

Patience and perseverance have a magical effect before which difficulties disappear and
obstacles vanish. – John Quincy Adams

Keep on going, and the chances are that you will stumble on something, perhaps when you
are least expecting it. – Charles Kettering

What Is Covered?

The book is intended for students who want to learn how to prove theorems and be
better prepared for the rigors required in their future mathematics courses. The first
two chapters introduce students to logical connectives, truth tables, inference rules,
deductions, quantifiers, variables, and truth sets. Chapter 1 focuses on propositional
logic and Chapter 2 presents the logic of quantifiers. This initial emphasis on logic

1School children were once taught to diagram an English sentence as a means to analyze its
grammatical structure.
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is motivated only by the desire to show the reader how to discover, develop, and
compose logically correct proofs.

Chapter 3 methodically presents the key strategies that are used in mathematical
proofs. Each strategy is presented as a proof diagram and specifically responds to the
logical form that a given mathematical statement may have. Furthermore, each proof
strategy is carefully illustrated by a variety of mathematical theorems concerning the
natural, rational and real numbers. The remaining chapters of the book presume the
material presented in Chapter 3.

The attention in Chapter 4 is on proof by mathematical induction and concludes
with a proof of the fundamental theorem of arithmetic.

Chapters 5–7 will introduce students to the essential concepts that appear in all
branches of mathematics. Chapter 5 covers set theory and proofs about sets. In par-
ticular, I present the proof strategies that are used to prove set equality and to prove
the subset relation. Functions are the main topic in Chapter 6, with a concentration
on strategies for proving when functions are well-defined, one-to-one, and onto.
With this foundation, Chapter 6 ends on the topic of countable and uncountable
sets. Many of our proofs, on countability, presume the fundamental theorem of
arithmetic. Chapter 7 presents equivalence relations, partitions, congruence modulo
m relations, modular arithmetic, and partially ordered sets.

In the final two chapters, the objective is to better prepare students for abstract
algebra and real analysis. Students will be introduced to some of the key topics that
will be covered in their real analysis and abstract algebra courses; moreover, I do
not just offer a preview of the basic concepts that will be addressed in these courses.
The main goal is to give students some fundamental tools that will increase their
likelihood of success.

A student’s first course with a heavy emphasizes on proof is usually abstract
algebra. The main aim of Chapter 8 is to prepare students for some of the important
topics that will be covered in such a course. I first discuss algebraic structures and
then move on to groups, subgroups, and normal subgroups. I provide proof strategies
for dealing with these latter two concepts, as well. Using the results of Chapter 6
on one-to-one and onto functions, I also investigate permutation groups and the
symmetric group. Chapter 8 also introduces rings and then ends on the topics of
quotient algebras, quotient groups, and quotient rings. These final topics presume
the material on equivalence relations and partitions covered in Chapter 7.

In real analysis, a facility for working with the supremum of a bounded set, the
limit of a sequence, and the ε-δ definitions of continuity is essential for a student
to be successful. Many students stumble when first asked to compose proofs using
these core definitions. Chapter 9 is designed to better prepare students and allow
them to overcome these initial hurdles. I present proof strategies that explicitly show
students how to deal with the fundamental definitions that they will encounter in real
analysis; followed by numerous examples of proofs that use these strategies.

Exercises are given at the end of each section in a chapter. Suggestions are also
provided for those exercises that a newcomer to mathematical proof may find more
challenging. The symbol � marks the end of a solution, the symbol A© indicates the
end of a proof analysis, and the symbol �� is used to identify the end of a proof.



viii Preface

Using This Text in a Transition Course

A standard transition course is designed to better prepare students for real analysis
and abstract algebra. Such a course should cover Chapters 1–7. The basics of logic
and proof are covered in Chapters 1–3. These first three chapters offer a basis for
all of the material covered in the text. My experience has been that students easily
grasp the topics covered in Chapters 1 and 2. Consequently, these first two chapters
can usually be covered at a quick pace.

In Chapter 4 one could cover Sections 4.1–4.6 and then simply state the
fundamental theorem of arithmetic, which is proven in Section 4.7. Furthermore,
if students are already well versed in summation and factorial notation, Section 4.3
may be skipped. The topics covered in Chapters 5–6 are essential for any student of
mathematics; however, Sections 5.4 (the axioms of set theory) and 6.5 (countable
and uncountable sets) can be omitted as they are not used anywhere else in the book.
Chapter 7 introduces equivalence relations, partitions, and congruence relations on
the integers. Since the material in this chapter may be new to many students, these
important topics should not be overlooked.

Chapters 8 and 9 are independent of each other. In Chapter 8, if time is
limited, one could first introduce students to the notion of an algebraic structure
and then focus their attention on groups by covering only Section 8.3, where
proof strategies are presented that deal with subgroups and normal subgroups.
Alternatively, after discussing algebraic structures, one could just introduce the ring
concept by covering Section 8.5, as this section does not presume the group concept.
Chapter 9 presents: (1) the supremum and infimum of a bounded set of real numbers,
(2) the limit of a sequence, and (3) continuity of a function. Since these three topics
are developed independently, one could discuss any combination of these concepts.
In any case, it is hoped that students will view these final two chapters, and the entire
book, as a useful resource in their future courses.
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The Greek Alphabet

A α alpha
B β beta
Γ γ gamma
Δ δ delta
E ε ε epsilon
Z ζ zeta (“zay tuh”)1

H η eta (“ay tuh”)
Θ θ ϑ theta (“thay tuh”)2

I ι iota
K κ kappa
Λ λ lambda
M μ mu
N ν nu
O o omicron
Ξ ξ xi (“ zı̄ ”)3

Π π pi
P ρ rho (“row”)
Σ σ sigma
T τ tau
ϒ υ upsilon
Φ φ ϕ phi (“ fı̄ ”)4

X χ chi (“ kı̄ ”)
Ψ ψ psi (“ sı̄ ”)
Ω ω omega

1“ay” is pronounced as in “say”.
2“th” is pronounced as in “thing”.
3 ı̄ is pronounced as i in hi.
4 many people say “fee”.

xv





CHAPTER 1
Propositional Logic

A mathematician establishes the truth of a mathematical statement by providing a
proof. Such a proof often uses principles of reasoning that are best described within
propositional logic. In this chapter we examine the basic tools in propositional logic
that mathematicians use to demonstrate that their conclusions are valid. What is a
proposition? A proposition is a declarative sentence or assertion that is either true
or false. Here are two such propositions:

(1) Global warming is a serious problem.
(2) Paris is in France.

Propositional logic studies the results of combining propositions to form more
complex statements. In particular, the following three sentences each contain the
above two propositions (1) and (2) as components.

Global warming is a serious problem and Paris is in France.
Global warming is a serious problem or Paris is in France.
If Paris is in France, then global warming is not a serious problem.

We will pursue the meaning of assertions that are obtained by connecting statements
using “and,” “or,” “not,” “if–then,” and “if and only if.” These five expressions
are frequently used in mathematics. For example, consider the following three
mathematical statements:

x≥ 2 or x≤ 2,
if x≥ 3, then x > 1,
x≥ 2 if and only if x + 5≥ 7,

where x is a real number. Are these three statements true for all real numbers x? If
so, then they must be true for x = 3, x = 2, and for x = 1. We will address such issues
here in this chapter.

1.1 Logical Form and Logical Equivalence

Symbols play a critical role in mathematics and science. When discussing the logic
of propositional statements, we shall use symbols to represent these statements.
Capital letters, for instance P, Q, R, will stand for propositional statements, or
propositional components. As an example, we could use the letter G to represent
the component “Global warming is a serious problem” and use the letter P to denote
the component “Paris is in France.”

D.W. Cunningham, A Logical Introduction to Proof, DOI 10.1007/978-1-4614-3631-7 1,
© Springer Science+Business Media New York 2012
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We shall identify symbols for each of the English connectors “and,” “or,” “not.”
We will use the symbol ∧ to represent “and,” the symbol ∨ to represent “or,” and
use the symbol ¬ to represent “not.” In addition, the symbol → denotes the word
“implies” and the symbol↔ represents the phrase “if and only if.” The five symbols
∧, ∨, ¬,→,↔ are called logical connectives. Using these logical connectives, we
will be able to analyze the logical structure of an English sentence. For instance, the
logical form of the sentence “Global warming is a serious problem and Paris is in
France” can now be expressed by G∧P.

In this section we shall focus on the logical meaning of ∧,∨,¬. We will then
explore the connectives→ and↔ in Section 1.2. We shall refer to the three logical
connectives ∧,∨,¬ as conjunction, disjunction, and negation, respectively. Given a
list of propositional components A,B,C, . . . , and the logical connectives ∧,∨,¬, we
can form propositional sentences. For example,

1. P∧Q (means “P and Q”).
2. P∨Q (means “P or Q”).
3. ¬P (means “not P” or “it is not the case that P”).

Using propositional components as building blocks and the connectives as
mortar, one can construct more complicated propositional sentences, for example,

(P∧¬Q)∨ (¬S∧R).

It is important to use parentheses so that our propositional sentences are clear and
readable; however, we shall use the two conventions:

1. The outermost parentheses need not be explicitly written. Thus, we can write
A∧B to denote (A∧B).

2. The negation symbol shall apply to as little as possible. We can therefore write
¬A∧B to denote (¬A)∧B.

1.1.1 Analyzing the Logical Form of English Statements

Virtually every English statement can be expressed as a propositional sentence. All
one has to do is first identify the propositional components that appear in the English
sentence and then identify the logical connectives that also appear in the sentence.
There are times when these logical connectives are not explicitly stated and may
be somewhat hidden by the words used in the sentence. We will see sentences that
contain “hidden connectives” in our next example.

Example 1. Analyze the logical form of the following seven English statements.
In other words write each statement symbolically and thereby reveal any hidden
logical connectives.
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1. Emily writes poetry and James doesn’t write poetry.
2. Either Emily writes poetry and James doesn’t, or James writes poetry and Emily

doesn’t.
3. Dan and Mary are both correct.
4. Dan and Mary are both not correct.
5. Dan and Mary are not both correct.
6. Neither Dan is correct nor Mary is correct.
7. Either Dan and Mary are both correct or neither of them is correct.

Solution. First we identify and symbolize the propositional components occurring
in each English statement. Then we will express the English statement in logical
form.

1. Emily writes poetry and James doesn’t write poetry.

Let E represent “Emily writes poetry.” The statement “James doesn’t write
poetry” is a short form for the sentence “James does not write poetry.” Let
J represent “James does write poetry.” Then the logical form of the English
statement is E ∧¬J.

2. Either Emily writes poetry and James doesn’t, or James writes poetry and Emily
doesn’t.

The word ‘either’ can be thought of as a warning that an ‘or’ is coming. The
expression ‘either X or Y ’ means that X is true or Y is true. So, the given English
sentence can be expressed as

(Emily writes poetry and James doesn’t) or
(James writes poetry and Emily doesn’t).

Using the propositions E and J given in our solution to item 1, the logical form
of the English sentence can be expressed as (E ∧¬J)∨ (J∧¬E).

3. Dan and Mary are both correct.

Let D represent “Dan is correct” and let M represent “Mary is correct.” Thus, the
logical form of the given statement is D∧M.

4. Dan and Mary are both not correct.

In this sentence, the expression “both not” means that Dan is not correct and
Mary is not correct. Let D and M be the propositions used in our solution to
item 3. We conclude that the logical form of the sentence is ¬D∧¬M.

5. Dan and Mary are not both correct.

The expression “not both,” in the above sentence, means that it is not the case
that Dan and Mary are both correct. Let D and M be the propositions used in our
solution to item 3. Consequently, the logical form of the sentence is ¬(D∧M).

6. Neither Dan is correct nor Mary is correct.

The word ‘neither’ can be thought of as a warning that a ‘nor’ is coming. The
expression ‘neither X nor Y ’ means that X is false and Y is also false. Let D and
M be the propositions used in our solution to item 3. Then the logical form of the
English sentence in item 6 is ¬D∧¬M.
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7. Either Dan and Mary are both correct or neither of them is correct.

Since this English sentence begins with an ‘either’, it can be expressed as

(Dan and Mary are both correct) or (neither of them is correct).

Let D and M be as in our solution to item 3. The logical form of the English
sentence in item 7 is given by (D∧M)∨ (¬D∧¬M).

This completes our solution. ��
As stated in the preface, we use the symbol � to mark the end of a solution.

Example 2. Analyze the logical forms of the following mathematical statements
using only the mathematical relations “<” and “=” (look out for any possible hidden
logical connectives).

1. x≤ 4.
2.
√

3 	< 4.
3. 1≤ x≤ 4.

Solution.

1. The statement x≤ 4 means that x is less than or equal to 4. So there is a hidden
‘or’ in this statement. The logical form of x≤ 4 can be expressed by x< 4∨x = 4.

2. The statement
√

3 	< 4 means that
√

3 is not less than 4. Therefore, the logical
form of

√
3 	< 4 is ¬(√3 < 4).

3. Finally, the statement 1 ≤ x ≤ 4 means that 1 ≤ x and x ≤ 4. So this statement
contains the hidden connective ‘and.’ The assertion 1 ≤ x ≤ 4 has the logical
form (1 < x∨1 = x)∧ (x < 4∨ x = 4). ��

1.1.2 Truth Tables

Given a collection of propositional components, say P, Q, and R, we can assign
truth values to these components. For example, we can assign the truth values of
P, Q, R to be T , F , T respectively, where T means “true” while F means “false.”
The truth value of a sentence in propositional logic can be evaluated from the truth
values assigned to its components. We shall explain what this “means” by using
truth tables. The logical connectives ∧, ∨, ¬ yield the natural truth values given by
the following three truth tables, respectively, in Table 1.1.

Truth table (1) has four rows (not including the header). The columns beneath P
and Q list all the possible pairs of truth values that can be assigned to the components
P and Q. For each such pair, the corresponding truth value for P∧Q appears to the
right. For example, consider the second pair of truth values in this table, T F . Thus,
when the propositional components P and Q are assigned the respective truth values
T and F , we see that the truth value of P∧Q is F .

Truth table (2) asserts that when P and Q are assigned the respective truth values
F and T , then the truth value of P∨Q is T . Furthermore, when P and Q are assigned
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Table 1.1 Basic truth tables

P Q P∧Q

T T T
T F F
F T F
F F F

(1) Conjunction

P Q P∨Q

T T T
T F T
F T T
F F F

(2) Disjunction

P ¬P

T F
F T

(3) Negation

the truth values T and T , then the truth value of P∨Q is also T . In mathematics, the
connective “or” has the same meaning as “and/or,” that is, P∨Q is true if either P
is true or Q is true, or both P and Q are true. Thus, the assertion “x≥ 2 or x≤ 2” is
true when x = 1, x = 2, or when x = 3. Our truth table for P∨Q reflects the fact that
we are working in mathematics. (The word “or” in every day English sometimes
excludes the possibility that P and Q could both be true.) Finally, the truth table (3)
shows that the negation of a statement reverses the truth value of the statement.

Now that we know how to build truth tables for the sentences P∧Q, P∨Q, and
¬P, we will discuss how to build truth tables for more complicated propositional
sentences such as (P∨R)∧ (¬Q∧S).

Constructing Truth Tables for More Complicated Sentences

In Table 1.1, truth table (2) allows us to determine the truth value of P∨Q whenever
we know the truth value of P and Q. In other words, the truth value of P∨Q is
presented as a function of the truth values assigned to the components P and Q. In
this section, we illustrate a method that will allow us to construct a truth table for
any propositional sentence.

Given a propositional sentence one can identify the “outside” connective, that
is, the “last connective one needs to evaluate.” When the outside connective in a
propositional sentence has been identified, one can then break up the sentence into
its “parts.” For example, in the propositional sentence ¬P ∨ (Q∧ P) the logical
connective ∨ is the outside connective with parts ¬P and Q ∧ P. For another
example, consider the propositional sentence ¬(P∨ (Q∧P)). We see that ¬ is the
outside connective with corresponding part P∨ (Q∧P).

Example 3. Construct a truth table that can be used to evaluate the truth value of the
sentence ¬P∨ (Q∧P) as a function of the truth values assigned to its components
P and Q.

Solution. Of course, the components P and Q will each need a column in our truth
table. Since there are two components, there will be four possible combinations of
truth values for P and Q. We will enter these combinations in the two left-most
columns in the same order as that in Table 1.1(1). The outside connective of the
propositional sentence ¬P∨ (Q∧P) is ∨. We can break this sentence into two parts
¬P and Q∧P. So these parts will also need a column in our truth table. Since we
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can only break the sentences ¬P and Q∧P into components (namely, P and Q), we
obtain the following truth table:

P Q ¬P Q∧P ¬P∨ (Q∧P)

T T F T T

T F F F F

F T T F T

F F T F T

STEP # 1 1 2 3 4

We now describe in steps how we obtained the truth values in the above table.
STEP 1: Specify all of the possible truth values that can be assigned to the
components (resulting in four rows of truth values). STEP 2: In each row, use the
truth value assigned to the component P to obtain the corresponding truth value for
¬P by applying Table 1.1(3). STEP 3: In each row, use the truth values assigned to Q
and P, to determine the corresponding truth value in the column under Q∧P, using
Table 1.1(1). STEP 4: In each row, use the truth values in the columns under ¬P
and Q∧P to obtain the matching truth value for the final column under the sentence
¬P∨ (Q∧P) by employing Table 1.1(2). ��

In the construction of the above truth table, observe that whenever we broke up
a sentence into parts, the columns for the parts appear to the left of the column for
the sentence. We will do this again in our next example.

Example 4. Construct a truth table that can be used to evaluate the truth value of
the sentence P∧ (Q∨¬R) as function of the truth values of the components P, Q, R.

Solution. We know that the components P, Q and R will each need a column in our
truth table. Since there are three components, there will be eight possible truth value
combinations for P, Q and R. The outside connective of the propositional sentence
P∧ (Q∨¬R) is ∧. We can break this sentence into two parts P and Q∨¬R. Since
Q∨¬R is not a component, it will need a column in our truth table. We now break
up Q∨¬R into the parts Q and ¬R. Because ¬R is not a component, it will also
require a column in our truth table. Thus, our desired truth table for P∧ (Q∨¬R) is

P Q R ¬R Q∨¬R P∧ (Q∨¬R)

T T T F T T

T T F T T T

T F T F F F

T F F T T T

F T T F T F

F T F T T F

F F T F F F

F F F T T F

STEP # 1 1 1 2 3 4
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We will now identify the steps that we used to obtain the truth values in the above
table. STEP 1: Specify all of the possible truth values that can be assigned to the
components (resulting in eight rows of truth values). STEP 2: In each row, use the
truth value assigned to the component R to obtain the corresponding truth value for
¬R by applying Table 1.1(3). STEP 3: In each row, use the truth values assigned to
Q and ¬R, to determine the corresponding truth value in the column under Q∨¬R,
using Table 1.1(2). STEP 4: In each row, use the truth values in the columns under
P and Q∨¬R to obtain the matching truth value for the final column under the
sentence P∧ (Q∨¬R). ��

1.1.3 Tautologies and Contradictions

Suppose, after constructing a truth table for a propositional sentence, you see that
each entry in the final column is true. This indicates a situation where the sentence
is true no matter what truth values are assigned to its components. When this occurs,
the sentence is called a tautology.

Definition 1.1.1. We shall say that a propositional sentence is a tautology when its
truth value is true regardless of the truth values of its components.

Thus, a propositional sentence is a tautology if it is always true. For example,
one can see from the following truth table that the sentence P∨¬P is a tautology.

P ¬P P∨¬P

T F T

F T T

Definition 1.1.2. We shall say that a propositional sentence is a contradiction
when its truth value is false regardless of the truth values of its components.

In other words, a propositional sentence is a contradiction if it is always false.
One can easily show that the sentence P∧¬P is a contradiction.

1.1.4 Logical Equivalence

The following definition describes when two propositional sentences are logically
equivalent, that is, when they mean the same thing. Mathematicians frequently take
advantage of logical equivalence to simplify their proofs and we shall do the same in
this book. We will use Greek letters (e.g., α , β , ϕ and ψ – see page xv) to represent
propositional sentences.

Definition 1.1.3. Let ψ and ϕ be two sentences of propositional logic. We say that
ψ and ϕ are logically equivalent, denoted by ψ ⇔ ϕ , when the following holds:
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For every truth assignment applied to the components of ψ and ϕ , the resulting truth
values of ψ and ϕ are identical.

Let ϕ and ψ be propositional sentences with the same components. Construct
truth tables for ϕ and ψ so that each component has the same column in both tables.
Suppose that these two truth tables also have the same final column. We can then
conclude that ϕ and ψ are logically equivalent. Thus, ϕ and ψ are “both true at the
same time and both false at the same time.”

Example 5. Let ψ be the sentence ¬(P∨Q) and let ϕ be the sentence ¬P∧¬Q.
Show that ψ and ϕ are logically equivalent, that is, show ¬(P∨Q)⇔¬P∧¬Q.

Solution. After constructing individual truth tables for the statements ¬(P∨Q) and
¬P∧¬Q, we obtain

P Q P∨Q ¬(P∨Q)

T T T F
T F T F
F T T F
F F F T

P Q ¬P ¬Q ¬P∧¬Q

T T F F F
T F F T F
F T T F F
F F T T T

So each truth assignment applied to the components P and Q yields the same truth
value for ¬(P∨Q) and ¬P∧¬Q. Therefore, we have that ¬(P∨Q)⇔¬P∧¬Q. In
other words, since the final columns of the truth tables for ¬(P∨Q) and ¬P∧¬Q
are the identical, we can conclude that they are logically equivalent. ��

When ϕ and ψ are logically equivalent, we will say that ψ ⇔ ϕ is a logic law.
We now present two important logic laws that are often used in mathematical proofs.
These laws were first identified by Augustus De Morgan (see Example 5).

De Morgan’s Laws (DML)

1. ¬(P∨Q)⇔¬P∧¬Q.
2. ¬(P∧Q)⇔¬P∨¬Q.

Let ψ and ϕ be two sentences of propositional logic. If one can apply a truth
assignment to the components of ψ and ϕ so that the resulting truth values of ψ
and ϕ disagree, then ψ and ϕ are not logically equivalent. We will use this fact in
our next example which shows that the placement of parentheses in a propositional
sentence is very important. A regrouping can change the meaning of the sentence.

Example 6. Show that P∧ (Q∨R) and (P∧Q)∨R are not logically equivalent.

Solution. We shall use the truth table
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P Q R P∧ (Q∨R) (P∧Q)∨R

T T T T T

T T F T T

T F T T T

T F F F F

F T T F T

F T F F F

F F T F T

F F F F F

Since their final columns are not the identical, we see that P∧(Q∨R) and (P∧Q)∨R
are not equivalent. In particular, the truth assignment to the components in row 5
yields different truth values for P∧ (Q∨R) and (P∧Q)∨R. ��

1.1.5 Propositional Logic Laws

Propositional logic will be used as a tool to help us develop both the structure and
the presentation of mathematical proofs. Listed below are the important laws of
logic that will allow us to simplify more complicated propositional sentences and to
streamline the presentation of some mathematical proofs. In Section 1.1.6, we will
also use these logic laws to derive new logic laws without the use of truth tables.

De Morgan’s Laws (DML)

1. ¬(P∨Q)⇔¬P∧¬Q.
2. ¬(P∧Q)⇔¬P∨¬Q.

Commutative Laws

1. P∧Q⇔ Q∧P.
2. P∨Q⇔ Q∨P.

Associative Laws

1. P∨ (Q∨R)⇔ (P∨Q)∨R.
2. P∧ (Q∧R)⇔ (P∧Q)∧R.

Idempotent Laws

1. P∧P⇔ P.
2. P∨P⇔ P.

Distributive Laws

1. P∧ (Q∨R)⇔ (P∧Q)∨ (P∧R).
2. P∨ (Q∧R)⇔ (P∨Q)∧ (P∨R).
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3. (Q∨R)∧P⇔ (Q∧P)∨ (R∧P).
4. (Q∧R)∨P⇔ (Q∨P)∧ (R∨P).

Double Negation Law (DNL)

1. ¬¬P⇔ P.

Tautology Law

1. P∧ (a tautology)⇔ P.

Contradiction Law

1. P∨ (a contradiction)⇔ P.

We now give examples of the above Tautology Law and Contradiction Law. First
recall that Q∨¬Q is a tautology. From the Tautology Law we obtain the following
logical equivalence

P∧ (Q∨¬Q)⇔ P.

On the other hand, because Q∧¬Q is a contradiction, we conclude that

P∨ (Q∧¬Q)⇔ P

by the Contradiction Law.

1.1.6 Logic Laws and Substitution

Consider the algebraic identity (x−y)(x+y) = x2−y2. If we replace x with ab, then
we obtain another algebraic identity (ab− y)(ab + y) = (ab)2− y2. Similarly, if a
propositional component appears in a logic law and we replace all occurrences of
this component with a propositional sentence, then we will obtain another logic law.
For example, consider the distributive law

P∨ (Q∧R)⇔ (P∨Q)∧ (P∨R).

Let us replace P with ¬A and replace Q with a propositional sentence ψ . We then
obtain the following logical equivalence, which is an application of the Distributive
Law:

¬A∨ (ψ ∧R)⇔ (¬A∨ψ)∧ (¬A∨R).

In addition, let α and β be propositional sentences that are logically equivalent,
that is, α ⇔ β . If α appears in a given propositional sentence Θ and we replace
occurrences of α in Θ with β , then the resulting new sentence will be logically
equivalent to Θ . For example, consider the sentence Θ given by¬Q∨α and suppose
that α⇔ β . Upon replacing α with β , we obtain the new sentence ¬Q∨β . We can
conclude that (¬Q∨α)⇔ (¬Q∨β ), because α⇔ β .
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Example 7. Using logic laws, find a simpler sentence equivalent to the formula
¬Q∨¬(¬P∨¬Q).

Solution. We start with ¬Q∨¬(¬P∨¬Q) and apply logic laws as follows:

¬Q∨¬(¬P∨¬Q)⇔¬Q∨ (¬¬P∧¬¬Q) by De Morgan’s Law

⇔¬Q∨ (P∧Q) by Double Negation Law

⇔ (¬Q∨P)∧ (¬Q∨Q) by Distributive Law

⇔ (¬Q∨P) by Tautology Law.

Therefore, ¬Q∨¬(¬P∨¬Q)⇔ ¬Q∨P. Thus, ¬Q∨P is a simplified version of
¬Q∨¬(¬P∨¬Q). ��
Example 8. Using propositional logic laws, show that ¬(P∧¬Q)⇔ (¬P∨Q).

Solution. We start with the more complicated side¬(P∧¬Q) and derive the simpler
side as follows:

¬(P∧¬Q)⇔ (¬P∨¬¬Q) by De Morgan’s Law

⇔ (¬P∨Q) by Double Negation Law.

Therefore, ¬(P∧¬Q)⇔ (¬P∨Q). ��

Exercises 1.1

1. Only one of the following is a tautology. Which one is it?

(a) (P∨¬P)∧Q.
(b) (P∨¬P)∨Q.

2. Using one of De Morgan’s Laws, write a negation of the statement: Ron runs on
Thursdays and Pete plays poker on Saturdays. Express you answer in English.

3. Use one of De Morgan’s Laws to write a negation, in English, of the statement:
My computer program has an error or the wrong value is assigned to a constant.

4. Using propositional logic laws (see Section 1.1.5), supply a law justifying each
step:

(P∨¬Q)∧ (¬P∨¬Q)⇔ (¬Q∨P)∧ (¬Q∨¬P) by

⇔¬Q∨ (¬P∧P) by

⇔¬Q by
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5. Using the propositional logic laws in Section 1.1.5, find simpler sentences (see
Example 7) that are equivalent to the following:

(a) ¬(¬P∧¬Q).
(b) ¬Q∧¬(¬P∧¬Q).
(c) ¬(¬P∨Q)∨ (P∧¬R).

6. Which of the following statements are true and which are false?

(a) (π2 > 9)∧ (π > 3).
(b) (π2 > 9)∨ (π > 3).
(c) (sin(2π) > 9)∨ (sin(2π) < 0).
(d) (sin(π) > 9)∨¬(sin(π)≤ 0).

7. Using truth tables, show that (¬P∨Q)∨ (P∧¬Q) is a tautology. What can you
conclude about the sentence ¬((¬P∨Q)∨ (P∧¬Q))?

8. Using propositional logic laws, show that P∨ (Q∧¬P)⇔ P∨Q.
9. Using logic laws, show that ¬(P∨¬Q)∨ (¬P∧¬Q)⇔¬P.

1.2 The Conditional and Biconditional Connectives

1.2.1 Conditional Statements

Many mathematical theorems have the form “if P, then Q” or, equivalently, “P
implies Q.” Here is one important example that you may have seen in your calculus
course:

Theorem. If f is differentiable at the point a, then f is continuous at a.

Let D be the proposition “ f is differentiable at the point a” and let C be the
proposition “ f is continuous at a.” The theorem can now be expressed as

Theorem. If D, then C.

A conditional statement has the form “if P, then Q.” The statement P is
called the hypothesis and the statement Q is called the conclusion. Thus, a
conditional statement asserts that the truth of the hypothesis “implies” the truth of
the conclusion. This is such an important idea in mathematics that we will now
introduce a logical connective which will capture the mathematical notion that the
hypothesis implies the conclusion.

The Conditional Connective. Given propositions P and Q, the conditional con-
nective → means “implies” and can be used to form the sentence P → Q. The
sentence P→ Q can be read as “P implies Q” or “if P, then Q.”



1.2 The Conditional and Biconditional Connectives 13

Question. At the beginning of a semester course, your teacher tells you:

“If you do your homework, then you will pass.”

Your teacher, however, did not say anything about what would happen if you did not
do your homework. After the final exam, you obtain your course grade. You may
have done very well, or not so well, on the final exam. Under what conditions can
you call your teacher a liar? A liar is one who clearly and knowingly tells a lie, that
is, a falsehood. You can declare your teacher as being guilty of a lie only when there
is clear evidence of such guilt. Without such evidence, we must presume that your
teacher told the truth.

Let us define some propositional symbols that concisely express the teacher’s
statement. Let H stand for the assertion “you do your homework” and let P represent
the statement “you will pass.” Thus, H→P represents your teacher’s statement, that
is, “If you do your homework, then you will pass.” Consider the truth table

H P H→ P

T T T

T F F

F T T

F F T

We will now give an explanation for the values in the final column of this truth
table by starting with the first pair of truth values for H and P, and then continuing
down until we reach the last such pair. For the first pair of truth values T and T ,
we see that if you did your homework and you passed the course, then your teacher
told the truth (T ). On the other hand, for the second pair of truth values T and F ,
we see that if you did your homework and you failed the course, then your teacher
is a liar (F). Now, suppose that you did not do your homework, as in the third and
fourth pair of truth values. Remember that your teacher did not tell you what would
happen in this case. Consequently, you cannot call her a liar. So, if you did not do
your homework, the conditional statement H→ P must be viewed as being true (T ),
whether you passed or did not pass the course.1 This is how conditional statements
are viewed in mathematics and in courtrooms.

Conditional Truth Table. Given propositions P and Q, the sentence P→ Q has
the truth table

P Q P→ Q

T T T

T F F

F T T

F F T

1If you did very well on the final exam, then that would explain why you passed the class. If you
failed the final exam, then that could account for failing the course.
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The conditional P→ Q can be read in several ways:

1. “If P, then Q.”
2. “P implies Q.”
3. “Q, if P.”
4. “P only if Q.”
5. “P is a sufficient condition for Q.”
6. “Q is a necessary condition for P.”

Beginners to logic and mathematics often have trouble with item 4. To avoid this
trouble, one should interpret the expression “only if” as the arrow →. Item 5 can
be interpreted as stating “the truth of P is sufficient to guarantee the truth of Q.”
Item 6 can be interpreted as stating “the truth of Q is guaranteed, given that P is
true.” The words sufficient and necessary can also be confusing. One way to avoid
this confusion is to think of the word “sufficient” as the arrow →, and to think of
the word “necessary” as the backward arrow←.

Our next three logic laws involve conditional statements. The first law states that
a conditional statement is equivalent to one that contains the connectives ¬ and ∨.

Conditional Laws

1. (P→ Q)⇔ (¬P∨Q).
2. (P→ Q)⇔¬(P∧¬Q).
3. ¬(P→ Q)⇔ (P∧¬Q).

Proof of Conditional Laws. We show that items 1 and 2 hold, by comparing the
following truth tables

P Q P→ Q

T T T

T F F

F T T

F F T

P Q ¬P∨Q

T T T

T F F

F T T

F F T

P Q ¬(P∧¬Q)

T T T

T F F

F T T

F F T

Since all of the final columns agree, we see that (P→Q), (¬P∨Q), and ¬(P∧¬Q)
are logically equivalent. By constructing truth tables for ¬(P→ Q) and (P∧¬Q),
one can also show that ¬(P→ Q)⇔ (P∧¬Q) (see Exercise 1). �
Definition 1.2.1. The contrapositive of a conditional statement P → Q is the
conditional ¬Q→¬P.

The contrapositive of a conditional is obtained by first interchanging the hy-
pothesis and conclusion of the original conditional, and then adding negations.
A conditional statement and its contrapositive are logically equivalent.

Contrapositive Law

1. (P→ Q)⇔ (¬Q→¬P).
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Proof of Contrapositive Law. We compare the truth tables of P→Q and ¬Q→¬P,

P Q P→ Q

T T T

T F F

F T T

F F T

P Q ¬Q ¬P ¬Q→¬P

T T F F T

T F T F F

F T F T T

F F T T T

Since the final columns are the same, we conclude that an implication is logically
equivalent to its contrapositive. �

We shall now introduce the converse of a conditional statement, which is formed
by just interchanging the hypothesis and conclusion of the original implication.

Definition 1.2.2. The converse of a conditional P→Q is the conditional statement
Q→ P.

Important Note: The two statements P→ Q and Q→ P do not mean the same
thing; that is, a conditional and its converse are not logically equivalent. This can
be shown by comparing the final columns of their truth tables:

P Q P→ Q

T T T

T F F

F T T

F F T

P Q Q→ P

T T T

T F T

F T F

F F T

In a proof one must never confuse a conditional with its converse, because they have
different meanings. On the other hand, a conditional P→ Q is logically equivalent
to its contrapositive ¬Q→¬P. Thus, a conditional and its contrapositive do mean
the same thing.

1.2.2 Biconditional Statements

In mathematics, it is highly valued when one can prove that a certain concept, say
A, is equivalent to a seemingly different concept B. The resulting theorem will have
the form:

Theorem. A if and only if B.

One uses the phrase “if and only if” to assert that two concepts are equivalent, that
is, alternative ways of saying the same thing. We introduce a new logical connective
that will convey the mathematical meaning of this phrase.



16 1 Propositional Logic

The Biconditional Connective. Given two propositions P and Q, the biconditional
connective↔ means “if and only if” and can be used to form the sentence P↔ Q.

Biconditional Truth Table. Given two propositions P and Q, the sentence P↔ Q
has the truth table

P Q P↔ Q

T T T

T F F

F T F

F F T

You can check that P↔Q is equivalent to (P→Q)∧(Q→ P), by constructing a
truth table. Thus, we have the following important logic law that is applied in many
mathematical proofs (see Section 3.7).

Biconditional Law

1. (P↔ Q)⇔ (P→ Q)∧ (Q→ P).

Remark. The expression “if and only if” is often abbreviated as iff.

Example 1. Analyze the logical forms of the following statements.

1. The picnic will be canceled if and only if it is either windy or raining.
2. If the picnic is canceled, then John will watch a movie, and if the picnic is not

canceled, then John will not watch a movie.

Solution. For sentence 1, let C, W and R represent the propositions:

C : “The picnic will be canceled.”
W : “It is windy.”
R : “It is raining.”

Thus, the logical form of sentence 1 is C↔ (W ∨R). For sentence 2, let C and J
denote the propositions:

C : “The picnic is canceled.”
J : “John will watch a movie.”

Then the logical form of sentence 2 is (C→ J)∧ (¬C→¬J). ��
We now restate the laws of logic, presented earlier, that involve the conditional

or biconditional. These laws are very useful and, as a result, they are implicitly used
in many mathematical proofs.

Conditional Laws (CL)

1. (P→ Q)⇔ (¬P∨Q).
2. (P→ Q)⇔¬(P∧¬Q).
3. ¬(P→ Q)⇔ (P∧¬Q).
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Contrapositive Law

1. (P→ Q)⇔ (¬Q→¬P).

Biconditional Law

1. (P↔ Q)⇔ (P→ Q)∧ (Q→ P).

We can now use the above propositional logic laws, together with those listed in
Section 1.1.5, to derive new logic laws.

Example 2. Show that (P→ R)∧ (Q→ R)⇔ (P∨Q)→ R, by using propositional
logic laws.

Solution. We first start with the more complicated side (P→ R)∧ (Q→ R) and
derive the simpler side as follows:

(P→ R)∧ (Q→ R)⇔ (¬P∨R)∧ (¬Q∨R) by Conditional Law(1)

⇔ (¬P∧¬Q)∨R by Distributive Law(4)

⇔¬(P∨Q)∨R by De Morgan’s Law(1)

⇔ (P∨Q)→ R by Conditional Law(1).

Therefore, (P→ R)∧ (Q→ R)⇔ (P∨Q)→ R. ��
Using a list of propositional components A,B,C, . . . and the logical connectives

∧,∨,¬,→,↔, we can form a variety of propositional sentences. For example,

(P→ R)∧¬(Q↔ (S∨T )).

These connectives are also used to tie together a variety of mathematical statements.
A good understanding of these logical connectives will allow us to more easily
understand and construct mathematical proofs.

Exercises 1.2

1. Using truth tables, show that ¬(P→ Q)⇔ (P∧¬Q).
2. Construct truth tables to show that (P↔ Q)⇔ (P→ Q)∧ (Q→ P).
3. Using truth tables, show that P⇔ (¬P→ (Q∧¬Q)).
4. Which of the following statements are true and which are false?

(a) (π2 > 9)→ (π > 3).
(b) If 3≥ 2, then 3≥ 1.
(c) If 3≥ 2, then 3≤ 1.
(d) If 1≥ 2, then 1≥ 1.
(e) (1 + 5 = 2)→ (the author is a genius).
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(f) (1 + 5 = 2)→ (the author is an idiot).
(g) (sin(2π) > 9)→ (sin(2π)< 0).
(h) 3≥ 2 if and only if 3 + 5≥ 7.
(i) 1≥ 2 if and only if 1 + 5≥ 7.

5. Let C, W and R represent the propositions:

C : “The picnic has been canceled.”
W : “It is windy.”
R : “It is raining.”

Using the propositions C, W , R analyze the logical forms of the following three
statements, that is, write each statement symbolically. Then determine which of
the statements are logically equivalent (justify your answers).

(a) If it is either windy or raining, then the picnic has been canceled.
(b) If the picnic has not been canceled, then it’s not windy and it’s not raining.
(c) The picnic has been canceled only if it’s either windy or raining.

Now form the converse of each of the logical forms you obtained and then
express each result in English.

6. Consider the propositions:

P : “Pigs fly.”
S : “The sky is polluted with pies.”
M : “Math is a favorite subject.”
F : “Food is in short supply.”

Translate each of the following propositional sentences into English sentences:

(a) ¬P→ (S∨F)

(b) M∨ (S∧¬F)

(c) P→ (M→ S)

(d) (P→M)→ S
(e) (F ∧S)↔ P
(f) (F ∧¬S)→ (¬P∨M)

(g) ¬F → (¬M↔ (P∨S)).

7. Using truth tables, show that (P∨Q) and (¬Q→ P) are logically equivalent.
8. Using propositional logic laws, show that (P→ R)∧ (Q→ R)⇔ (P∨Q)→ R.
9. Using propositional logic laws, show that (P→ R)∨ (Q→ R)⇔ (P∧Q)→ R.

10. Using propositional logic laws, show that P→ (Q→ R)⇔ (P∧Q)→ R.
11. Show that (P→ Q)→ R and P→ (Q→ R) are not logically equivalent.
12. True or False: The negation of the statement “If Sue is Pina’s daughter, then

Diane is Sue’s cousin” is logically equivalent to the assertion “If Sue is Pina’s
daughter, then Diane is not Sue’s cousin.”

13. Write a negation, in English, of the statement: If n is an even number, then n is
not odd.
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14. Write an English negation of the statement: If n is prime, then n is odd or n is 2.
15. Write the converse, in English, of the statement: If Sam is a fast talker, then Sam

will be invited to Sheila’s party.
16. Use the contrapositive to rewrite, in English, (and not change its meaning) the

statement: If Sam is a fast talker, then Sam will be invited to Sheila’s party.
17. Suppose you are going on a hike and you come to a point where the path

branches to your left and also branches to your right. Only one of these branches
will take you back to the campground and you do not know which branch
to take. By chance, there is a camp ranger standing at this branching point.
Unfortunately, he could be the notorious imposter who always lies to campers.
On the other hand, we all know that a true ranger always tells the truth, that is, he
never lies to campers. Suppose that you tell this possible ranger the following:

“You are a true ranger if and only if the branch to my right returns to camp.”

The purported ranger will respond with either ‘true’ or ‘false.’ Explain why if
you receive the response ‘true’ then you know that the right branch returns to
camp, and if you receive the response ‘false’ then you know that the left branch
returns to camp.2

1.3 Valid and Invalid Arguments

To be a successful student of mathematics, it is very important to be able to think
critically and be able to identify, construct and evaluate arguments. In mathematics,
the word “argument” means something quite different from its meaning in ordinary
English, where the word usually refers to a noisy or angry dispute between two
parties. An argument in mathematics and logic is just a listing of statements, one
of which is the conclusion and the others are the premises, or assumptions, of the
argument.

Definition 1.3.1. An argument consists of a list of premises ψ1, . . . ,ψn followed
by a conclusion ϕ . We can write this argument in the form:

ψ1
...

ψn

∴ ϕ (The symbol ∴ means therefore)

2The imposter knows that he is not a true ranger.
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Arguments are either valid or invalid. An argument is said to be valid if the
conclusion follows from the premises. The concept of “follows from the premises”
seems vague; however, there is a precise definition describing exactly what it means
for a conclusion to follow from the premises.

Definition 1.3.2. An argument is valid if whenever the premises are true, then the
conclusion is also true.

If an argument is valid and all of its premises are true, then we can be assured that
the conclusion is also true. In other words, an argument is valid if it is impossible
for the premises to be true and the conclusion to be false at the same time.

In our next example, we present an inference rule that allows you to conclude
that Q is true if you know that P and P→ Q are true.

Example 1. Show that the following argument is valid.

P→ Q
P
∴ Q

Solution. The following truth table shows that the argument is valid

Premise 1 Premise 2 Conclusion

P Q (P→ Q) P Q

T T T T T

T F F T F

F T T F T

F F T F F

because whenever the premises are all true, the conclusion is also true. ��
The valid argument presented in Example 1 is called modus ponens and this

argument is frequently applied in mathematical proofs. We now identify another
argument, called modus tollens, which also regularly appears in proofs.

Example 2. Show that the following argument is valid.

P→ Q
¬Q
∴ ¬P

Solution. In the following truth table we see that whenever all of the premises are
true, then the conclusion is also true.
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Premise 1 Premise 2 Conclusion

P Q (P→ Q) ¬Q ¬P

T T T F F

T F F T F

F T T F T

F F T T T

Thus, the argument is valid. ��
An argument is invalid if there is a truth assignment that makes all of the

premises true while making the conclusion false. So, to show that an argument
is invalid we must find an assignment of truth values, to all the propositional
components in the argument, that satisfies all of the premises and does not satisfy
the conclusion.

Example 3. Is the argument
P∨Q
Q
∴ P

a valid argument?

Solution. Consider the following truth table. Is it the case that whenever all of the
premises are true, then the conclusion is true? No!

Premise 1 Premise 2 Conclusion

P Q (P∨Q) Q P

T T T T T

T F T F T

F T T T F

F F F F F

Observe that when P is false and Q is true, then all of the premises are true and yet,
the conclusion is false. Thus, the argument is invalid. ��
Example 4. Analyze the logical form of the argument below. Identify the premises
and the conclusion. Show that the argument is invalid.

Paula and Ernest will not both win the award for best poetry.
Ernest will win either the award for best fiction or for best nonfiction.
Paula will not win the award for best poetry.
Therefore, Ernest will win the award for best fiction.

Solution. First we shall symbolize the given argument. Let P represent the statement
“Paula will win the award for best poetry” and let E represent “Ernest will win the
award for best fiction.” Finally, let N represent “Ernest will win the award for best
nonfiction.” We can now symbolize the argument and obtain
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(a)
(b)
(c)

¬(P∧E)

E ∨N
¬P
∴ E

We will show that this argument is invalid. One could construct a truth table and
then identify a truth assignment that makes all of the premises true and also makes
the conclusion false; however, we shall take a slightly different approach which will
save us some work. We will assign a truth value that makes the conclusion false and
then try to continue in such a way as to make all the premises true.

So, we first assign the truth value F to the conclusion E . To make (c) true, we
must assign the truth value F to the component P. To make (b) true, we must give
N the truth value T . Since E has truth value F , we see that (a) is true. Thus, if we
assign the truth values of E , P, N to be F , F , T (respectively), then the premises are
true and the conclusion is false. Hence, the argument is not valid. ��

1.3.1 Two Notorious Fallacies

In everyday English the term “fallacy” is used to describe a false or mistaken belief.
In logic the word “fallacy” refers to an invalid argument. There are two infamous
fallacies that one must avoid in mathematics, the converse error and the inverse
error, which have the form:

P→ Q
Q
∴ P

(Converse Error) P→ Q
¬P
∴ ¬Q

(Inverse Error)

Example 5 (Converse Error). Show that the following argument is invalid:

(a) If x≥ 2, then x≥ 0.
(b) x≥ 0.
Therefore, x≥ 2.

Solution. Assertion (a) is a true statement. Let x = 1. Thus (b) is also true, while the
conclusion is false. So the argument is invalid. ��
Example 6 (Converse Error). Show that the argument

P→ Q
Q
∴ P

is invalid.
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Solution. Assign the truth values of P, Q to be F , T respectively. With this truth
assignment we see that the conclusion is false while all of the premises are true.
Hence, the argument is invalid. ��
Example 7 (Inverse Error). Verify that the following argument is invalid:

(a) If x≥ 2, then x≥ 0.
(b) x 	≥ 2.
Therefore, x 	≥ 0.

Solution. Assertion (a) is a true statement. Let x = 1. So, (b) is true while the
conclusion is false. We conclude that the argument is invalid. ��
Example 8 (Inverse Error). Show that the following argument is invalid.

P→ Q
¬P
∴ ¬Q

Solution. Assign the truth values of P, Q to be F , T respectively. With this truth
assignment we see that the conclusion is false while all of the premises are true.
Therefore, the argument is invalid. ��

1.3.2 Valid Arguments and Substitution

Suppose that a propositional component appears in a valid argument and we replace
all occurrences of this component with a propositional sentence. Then we will obtain
another valid argument. For example, consider the valid argument modus ponens
(see Example 1):

P→ Q
P
∴ Q

(1.1)

Let us replace P and Q in (1.1) with any propositional sentences, say ϕ and ψ ,
respectively. We then obtain the following valid argument, which we also call modus
ponens:

ϕ → ψ
ϕ
∴ ψ

Similarly, let us replace P and Q in (1.1) with the propositional sentences ¬(P∨Q)
and R, respectively. Thus, we have another application of modus ponens:

¬(P∨Q)→ R
¬(P∨Q)

∴ R
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Table 1.2 Important inference rules

P→ Q
P
∴ Q

(Modus Ponens) P→ Q
¬Q
∴ ¬P

(Modus Tollens)

P
∴ P∨Q

(Disjunctive Addition) P∧Q
∴ P

(Conjunctive Simplification)

P∨Q
¬P
∴ Q

(Disjunctive Syllogism) P
Q
∴ P∧Q

(Conjunctive Addition)

There is another kind of substitution that preserves valid arguments. Let α and β
be logically equivalent. If α appears in a valid argument and we replace occurrences
of α with β in this argument, then we obtain another valid argument. For example,
suppose that the following argument is valid,

θ → α
γ ∧ τ
∴ α

and that α⇔ β . Upon replacing α with β , we obtain the new valid argument

θ → β
γ ∧ τ
∴ β

We will be using the ideas in our next section where we discuss inference rules.

1.3.3 Inference Rules

An inference rule is a valid argument that allows one to correctly derive a conclusion
based solely on what one already knows. In Table 1.2 we identify some of the
inference rules that are regularly employed in mathematical proofs. For example,
if you are given P→ Q as an assumption and you know that P holds, then modus
ponens can be used to conclude that Q must be true. If you are given P∨Q as an
assumption and you know that ¬P holds, disjunctive syllogism can then be used to
deduce that Q must be true.

The next two inference rules are alternative versions of Disjunctive Addition and
Conjunctive Simplification.
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Q
∴ P∨Q

(Disjunctive Addition) P∧Q
∴ Q

(Conjunctive Simplification)

In Example 1 on page 20 we showed, using a truth table, that modus ponens is a
valid argument. The argument in Table 1.2 identified as modus tollens was shown to
be valid in Example 2. In a similar manner, one can show that all of the arguments
presented in Table 1.2 are valid arguments.

1.3.4 Inference Rules and Substitution

In Section 1.3.2, we saw that certain substitutions preserve valid arguments and so,
we can also apply these substitutions to inference rules. Thus, given an inference
rule, we can form generalizations of this inference rule. For example, consider the
two versions of disjunctive syllogism:

(1) P∨Q
¬P
∴ Q

(Disjunctive Syllogism) (2) P∨Q
¬Q
∴ P

(Disjunctive Syllogism)

In (1) and (2) let us replace P and Q with any propositional sentences ϕ and ¬ψ ,
respectively. The result is two new applications of disjunctive syllogism

(3) ϕ ∨¬ψ
¬ϕ
∴ ¬ψ

(Disjunctive Syllogism) (4) ϕ ∨¬ψ
ψ
∴ ϕ

(Disjunctive Syllogism)

where in (4) we apply the double negation logic law ¬¬ψ ⇔ ψ .
For another example, consider the inference rules modus ponens and modus

tollens in Table 1.2. In these valid arguments, let us replace P and Q with ¬ϕ and
¬ψ , respectively. We obtain another instance of modus ponens and modus tollens:

(5) ¬ϕ →¬ψ
¬ϕ
∴ ¬ψ

(Modus Ponens) (6) ¬ϕ →¬ψ
ψ
∴ ϕ

(Modus Tollens)

where in (6) we are using the logical equivalences ¬¬ψ ⇔ ψ and ¬¬ϕ ⇔ ϕ .

1.3.5 Deductions

Besides using truth tables, there is another way of showing that an argument is valid.
An argument is valid if one can deduce the conclusion from the premises using a
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collection of inference rules. A formal deduction includes a record of the inference
rules that were used to derive the conclusion. We present a formal deduction in each
of our next two examples.

Example 9. Using the inference rules in Table 1.2, formally deduce the conclusion
from the premises in the argument:

(a)
(b)
(c)
(d)
(e)

(¬P∨Q)→ R
S∨¬Q
¬T
P→ T
(¬P∧R)→¬S

∴ ¬Q

Solution. We start making deductions from the premises (a)–(e). These deductions
will allow us to make more deductions and, eventually, we will deduce the required
¬Q. Our formal deduction identifies, in the right hand column, the rules of inference
that were used to draw a specific conclusion at each step:

(1)
(2)
(3)
(4)
(5)
(6)

¬P by premises (c), (d) and modus tollens
¬P∨Q by (1) and disjunctive addition
R by (2), premise (a) and modus ponens
¬P∧R by (1), (3) and conjunctive addition
¬S by (4), premise (e) and modus ponens
¬Q by (5), premise (b) and disjunctive syllogism.

Thus, from the premises (a)–(e) we have deduced ¬Q. ��
Example 10. Using the inference rules in Table 1.2, formally deduce the conclu-
sion from the premises in the argument:

(a)
(b)
(c)

¬S→ D
¬S∨ (¬D→ K)

¬D

∴ K

Solution. As in our solution to Example 9, we start making deductions from the
premises (a)–(c) and deduce K as follows:

(1)
(2)
(3)

S by premises (a), (c) and modus tollens
¬D→ K by (1), premise (b) and disjunctive syllogism
K by (2), premise (c) and modus ponens.

Thus, we have deduced K from premises (a)–(c). ��
A mathematical proof is also a deductive argument and mathematicians implic-

itly use the inference rules listed in Table 1.2 in their proofs.
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Exercises 1.3

1. Using truth tables, show that all of the arguments in Table 1.2 are valid.
2. Using modus ponens or modus tollens, fill in the blanks so as to produce a valid

argument.

(a) If π is rational, then π = a/b for some integers a and b.
It is not true that π = a/b for some integers a and b.
∴

(b) If logic is easy, then I am a monkey’s uncle.
I am not a monkey’s uncle.
∴

(c) If they were unsure of the address, then they would have telephoned.

∴ They were sure of the address.

3. Let M, P and J represent the propositions:

M : “Mary does her homework.”
P : “Peter does his homework.”
J : “Jim does his homework.”

Using the propositions M, P and J, analyze the logical form of the following
argument. Identify the premises and the conclusion. Is the argument valid?

If Mary does her homework, then Peter will do his homework.
If Peter does his homework, then Jim will do his homework.
Mary does not do her homework.
Therefore, Jim does not do his homework.

4. Using the inference rules in Table 1.2, formally deduce the conclusion from the
premises.

(a)
(b)

A→ (B∨C)

A∧¬B

∴C

5. Using the inference rules in Table 1.2, formally deduce the conclusion from the
premises.

(a)
(b)
(c)
(d)

(P∧Q)→ R
¬(P∧Q)→ (¬P∨¬Q)

R→ S
Q∧¬S

∴ ¬P
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6. Using the inference rules in Table 1.2, formally deduce the conclusion from the
premises.

(a)
(b)
(c)
(d)
(e)

P∨Q
Q→ R
(P∧S)→ T
¬R
¬Q→ (U ∧S)

∴ T

7. Using the inference rules in Table 1.2, formally deduce the conclusion from the
premises.

(a)
(b)
(c)
(d)
(e)
(f)
(g)

P→ Q
R∨S
¬S→¬T
¬Q∨S
¬S
(¬P∧R)→U
W ∨T
∴U ∧W



CHAPTER 2
Predicate Logic

Mathematicians frequently use the expressions: for all and there exists. These two
expressions are called quantifiers and are represented, respectively, by the symbols ∀
and ∃. The universal quantifier ∀ is applied when one wants to assert that everything
satisfies a given property. The existential quantifier ∃ is employed when one wants to
state that something satisfies a particular property. Many statements in mathematics
involve quantifiers and to prove such statements, one needs to clearly understand the
meaning of quantifiers. Before we go any further with our discussion of quantifiers,
we must first investigate properties and predicates.

2.1 Variables, Predicates, and Truth Sets

Variables, for instance x,y and z, are used extensively in mathematics. They are used
when we are interested in “properties” that may be true or false, depending on the
values represented by the variables. A predicate is just a statement proclaiming that
certain variables satisfy a property. For example, “x is tall” is a predicate and we can
symbolize this predicate by T (x). Of course, the truth or falsity of the expression
T (x) can be determined only when a value for x is given. Suppose Peter is 7 ft tall.
Then the expression T (Peter), which means “Peter is tall,” would be true.

Another predicate is “x evenly divides y” and we could symbolize this predicate
by D(x,y). Thus, the statement D(9,27) is true and D(9,5) is false. The domain of a
predicate is just the collection of allowed values for the variable(s) in the predicate.
So, the domain of the predicate T (x) is the collection of all people. The domain of
the predicate D(x,y) is the collection of all integers (see Section 2.1.3).

Example 1. Consider the three predicates P(x), E(x), and D(x,y) given by

• P(x) symbolizes the statement “x is a prime number”
• E(x) symbolizes the statement “x is even”
• D(x,y) symbolizes the statement “x evenly divides y”

where x and y represent integers. Find some values for the variables that make the
following logical formulas true, and others making them false.

1. P(x)∧E(x).
2. E(x)∨D(x,y).
3. ¬P(x)∧D(x,y).
4. D(x,y)→¬P(x).

D.W. Cunningham, A Logical Introduction to Proof, DOI 10.1007/978-1-4614-3631-7 2,
© Springer Science+Business Media New York 2012
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Solution. We identify such values as follows:

1. P(x)∧E(x). For x = 2, this statement is true. On the other hand, if we let x = 3,
then the statement is false.

2. E(x)∨D(x,y). When x = 2 and y is any integer, then the statement is true. If we
let x = 3 and y = 4, then the statement is false.

3. ¬P(x)∧D(x,y). If x = 4 and y = 8, then the statement is true. When x = 3 and y
is any integer, the statement is false.

4. D(x,y)→ ¬P(x). When x = 5 and y = 10, the statement is true. If x = 1 and
y = 3, then the statement is false. ��

Example 2. Analyze the logical forms of the following statements, that is, write
each statement symbolically, using the predicates P,E,D defined in Example 1.

1. x is a prime number, and either y is even or z is divisible by x.
2. Exactly one of x and y is even.

Solution. The logical form of statement 1 is P(x)∧ (E(y)∨D(x,z)). In statement 2,
the expression “Exactly one” means “one or the other, and not both.” In other words
statement 2 means that “x is even or y is even, and not both.” We get E(x)∨E(y) for
the “one or the other” part, and for the “not both” part we get ¬(E(x)∧E(y)). Thus,
the logical form of the given statement is (E(x)∨E(y))∧¬(E(x)∧E(y)). ��

2.1.1 Universe of Discourse

We say that A is a set when A is a collection of objects. The objects that belong to
a set A are called the elements of A. We write a ∈ A to mean that a is an element,
or a member, of the set A. We write a /∈ A when a is not an element of the set A.
A set is merely the result of collecting together objects of interest, and is usually
identified by enclosing its elements with curly brackets. For example, the collection
A = {3,7,86,11,99} is a set where we see that 7 ∈ A and 8 /∈ A. In Section 5.1 we
will cover the basics of set theory in greater depth (see pages 143–148).

When our attention is to be focused on just the elements in a particular set A,
then we will say that A is our universe of discourse. In other words, a universe
of discourse is just the set of all things we are considering during our discussion
or study. For example, if we were just talking about students, then our universe of
discourse would be the set of all students. In logic and in mathematics, the universe
of discourse is a familiar concept.

2.1.2 Sets Defined by a Predicate

Given a property we will often form the collection of just those elements in a set
that satisfy the property. For an example, let A = {0,1,2,3, . . .} and suppose we
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want to collect just those elements in A that are odd. We can easily describe this
set by {n ∈ A : n is odd}, that is,“the set of all n ∈ A such that n is odd.” Thus,
{n ∈ A : n is odd}= {1,3,5,7, . . .}.
Definition 2.1.1. Given a universe of discourse (that is, a set of objects) U and a
predicate P(x) we can form the truth set {x ∈U : P(x) is true} = {x ∈U : P(x)}.
When the universe U is understood, we sometimes write the truth set as {x : P(x)}.

When constructing the set {x ∈U : P(x)}, mathematicians will say “the set of all
x ∈U such that P(x).” Some mathematicians write truth sets as {x ∈U |P(x)} using
the vertical bar | rather than the colon. The colon : and the bar | can be thought of as
an abbreviation for the expression “such that.”

Example 3. Let U = {−20,−19, . . .,19,20}. Then

1. {z ∈U : z2 = 9}= {−3,3}.
2. {z ∈U : z2 ≤ 16}= {−3,−4,0,−1,−2,1,2,4,3}.
3. {x ∈U : x2 > 225}= {16,−16,−20,−19,−18,−17,19,20,18,17}.

2.1.3 Important Sets in Mathematics

The reader should be familiar with the natural numbers, the integers, and the real
numbers. In elementary algebra, we learned many properties about the real numbers,
including the commutative and associative laws for multiplication and addition. You
may have also learned that when a real number can be expressed as the ratio of two
integers, then it is called a rational number. Are there real numbers that are not
rational? The answer is yes and we will verify this in Chapter 3.

Definition 2.1.2. A real number x is rational if and only if x = a
b for some integers

a,b where b 	= 0. If a real number is not rational, then it is called irrational.

Certain sets appear frequently in mathematics; namely, the sets of natural
numbers, integers, rational and real numbers. These sets are usually denoted by:

1. N = {1,2,3, . . .} is the set of natural numbers.
2. Z = {. . . ,−3,−2,−1,0,1,2,3, . . .} is the set of integers.
3. Q is the set of rational numbers. Thus, 3

2 ∈Q.
4. R is the set of real numbers and so, π ∈ R.

The set N is closed under the operations of addition and multiplication, that is,
the sum and product of two natural numbers is a natural number. Moreover, the sets
Z, Q, and R are closed under addition, multiplication, and subtraction. For example,
if we add, multiply, or subtract any two rational numbers the result is again a rational
number. Finally, recall that each nonzero element in Q, and R, has a multiplicative
inverse. For example, if x ∈ Q and x 	= 0, then there is a y ∈ Q such that x · y = 1.
This element y is usually denoted by 1

x .
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For each of the sets Z, Q and R, we may add ‘+’ or ‘−’ as a superscript. The
superscript + indicates that only the positive numbers will be allowed. Similarly, the
superscript− means that only the negative numbers are permitted. For example,

1. Q
+ = {x ∈Q : x > 0}.

2. Z
− = {x ∈ Z : x < 0}.

3. R
+ = {x ∈ R : x > 0}.

For sets A and B we write A ⊆ B to mean that the set A is a subset of the set B,
that is, every element of A is also an element of B. Thus, N⊆ Z.

Example 4. Consider the following three subsets of Z:

1. {x ∈ Z : x is a prime number}= {2,3,5,7,11, . . .}.
2. {x ∈ Z : x is divisible by 3}= {. . . ,−12,−9,−6,−3,0,3,6,9,12, . . .}.
3. {z ∈ Z : z2 ≤ 1}= {−1,0,1}.

Another set that appears in mathematics is the empty set ∅, a set that has no
elements. Since ∅ has no elements, we see that ∅ = { }. When first introduced to
the empty set ∅, students sometimes have difficulty thinking of ∅ as a set. One can
think of ∅ as a house in which nobody lives.

Equality of Rational Numbers

For integers m and n if m = n, then we know that m and n must be exactly the same
number, in fact, they must look exactly the same. For instance, we know that 2 = 2
and 5 = 5; and we know that 2 	= 5.

A rational number is a number that can be written as a ratio p
q where p and q

are integers and q 	= 0. What does it mean to say two rational numbers p
q and a

b are

equal when they may not look the same? For example, 1
2 and 4

8 are equal but they
look different. Our next definition will answer this question.

Definition 2.1.3. Whenever p
q and a

b are rational numbers, we have that p
q = a

b if
and only if pb = qa as integers.

Thus, we know that 1
2 and 4

8 are equal because 1 ·8 = 2 ·4.

Example 5. Let p
q , r

s , a
b , c

d be rational numbers. Suppose p
q = a

b and r
s = c

d . Show
that pr

qs = ac
bd .

Solution. Since p
q = a

b and r
s = c

d , we have that (1) pb = qa and (2) rd = sc, by
Definition 2.1.3. To show that pr

qs = ac
bd , we must verify that (pr)(bd) = (qs)(ac).

We do this as follows:
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(pr)(bd) = (pb)(rd) by algebra

= (qa)(sc) by (1) and (2)

= (qs)(ac) by algebra.

Thus, (pr)(bd) = (qs)(ac). Therefore, pr
qs = ac

bd by Definition 2.1.3. ��

Interval Notation

In mathematics, an interval is a set consisting of all the real numbers that lie between
two given real numbers a and b, where a < b. The numbers a and b are referred to
as the endpoints of the interval. Furthermore, an interval may or may not include its
endpoints.

1. The open interval (a,b) is defined to be (a,b) = {x ∈ R : a < x < b}.
2. The closed interval [a,b] is defined to be [a,b] = {x ∈ R : a≤ x≤ b}.
3. The left-closed interval [a,b) is defined to be [a,b) = {x ∈R : a≤ x < b}.
4. The right-closed interval (a,b] is defined to be (a,b] = {x ∈ R : a < x≤ b}.
For each real number a we can also define intervals called rays or half-lines.

1. The interval (a,∞) is defined to be (a,∞) = {x ∈ R : a < x}.
2. The interval [a,∞) is defined to be [a,∞) = {x ∈ R : a≤ x}.
3. The interval (−∞,a) is defined to be (−∞,a) = {x ∈ R : x < a}.
4. The interval (−∞,a] is defined to be (−∞,a] = {x ∈ R : x≤ a}.
The symbol ∞ denotes ‘infinity’ and it does not represent a number. The notation ∞
is a useful symbol that allows us to represent an interval ‘without a right endpoint.’
Similarly, the notation −∞ is used to denote an interval ‘having no left endpoint.’

Example 6. Using interval notation, evaluate the truth sets:

(1) {x ∈ R : x2−1 < 3}.
(2) {x ∈ R

+ : (x− 1)2 > 1}.
(3) {x ∈ R

− : x > 1
x}.

Solution. We will be using the standard properties of inequality that are typically
reviewed in a calculus book (see 3.1.5 on page 64 of this book).

(1) We first solve the inequality x2− 1 < 3 for x2 obtaining x2 < 4. The solution to
this latter inequality is −2 < x < 2. Thus, {x ∈R : x2−1 < 3}= (−2,2).

(2) We are looking for all the positive real numbers x that satisfy (x− 1)2 > 1.
Since (x−1)2 = x2−2x+1, we shall solve the inequality x2−2x+1> 1. After
subtracting 1 from both sides and factoring, we obtain x(x−2)> 0. Since x> 0,
we conclude that x > 2. Therefore, {x ∈R

+ : (x−1)2 > 1}= (2,∞).
(3) We need to find the negative real numbers x that satisfy x > 1

x . From x > 1
x , we

conclude that x2 < 1 because x < 0. So we have−1 < x < 0 and, as a result, we
obtain {x ∈ R

− : x > 1
x}= (−1,0). ��
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Exercises 2.1

1. Let p
q and r

s be rational numbers where p,q,r,s are integers and q,s are nonzero.
Suppose p

q = r
s and p 	= 0. Using Definition 2.1.3, show that ps

qs = pr
ps .

2. Let R(x) be the predicate x > 1
x . Indicate whether the statements R(2), R(−2),

R( 1
2), R(− 1

2) are true or false. Now evaluate the following truth sets:

(a) {x ∈ R
+ : x > 1

x}.
(b) {x ∈ R

− : x2 > 1
x}.

(c) {x ∈ Z : x > 1
x and x > 2}.

(d) {x ∈ Z : x > 1
x and x 	> 2)}.

3. Let L(x,y) be the predicate “x < y.” Determine if the following statements are
true or false:

(a) L(2,3)→ L(4,9).
(b) L(−3,−2)→ L(9,4).
(c) L(−2,−3)→ L(9,4).

4. Evaluate the truth sets:

(a) {x ∈ R : x2 < 9}.
(b) {x ∈ Z : x2 < 9}.
(c) {x ∈ R : 2x + 9≤ 5}.
(d) {x ∈ R : x > 0 and x3 < 16

x }.
5. Let p

q and r
s be rational numbers where p,q,r,s are integers and q,s are nonzero.

Suppose p
q = r

s . Using Definition 2.1.3, show that 2p+q
2q = 2r+s

2s .

2.2 Quantifiers

Given a statement P(x), which says something about the variable x, we want to
express the fact that every element x in the universe makes P(x) true. In addition,
we may want to express the fact that at least one element x in the universe makes
P(x) true. To do this, we will form sentences using the quantifiers ∀ and ∃. The
quantifier ∀ means “for all” and is called the universal quantifier. The quantifier ∃
means “there exists” and is called the existential quantifier. For example, we can
form the sentences

1. ∀xP(x) [means “for all x, P(x)”].
2. ∃xP(x) [means “there exists an x such that P(x)”].
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A statement of the form ∀xP(x) is referred to as a universal statement. A statement
having the form ∃xP(x) is called an existential statement. Quantifiers offer us a
valuable tool for clear thinking in mathematics, where many concepts begin with
the expression “for every,” or “there exists.”

Example 1. What do the following formulas mean? Are they true or false?

1. ∀x(x2 ≥ 0), where the universe of discourse is R, the set of all real numbers.
2. ∀x(x2 > 0), where the universe is R.
3. ∃x(x2 + x−2 = 0), where the universe is R.
4. ∃x(x2 + 1 = 0), where the universe is R.
5. ∃x(M(x)∧¬B(x)), where the universe is the set of all people, M(x) means “x is

a man,” and B(x) means “x has black hair.”
6. ∀x(M(x)→ B(x)), where the universe is the set of all people, M(x) means “x is a

man,” and B(x) means “x has black hair.”

Solution.

1. The formula ∀x(x2 ≥ 0) means that for every real number x we have x2 ≥ 0, and
this is true.

2. The formula ∀x(x2 > 0) means that for every real number x we have x2 > 0. This
not true for all real numbers, because 02 	> 0. So, the formula ∀x(x2 > 0) is false
in the universe R.

3. Is there is a real number x that satisfies the equation x2 + x− 2 = 0? Since the
number 1 satisfies the equation, we conclude that the formula ∃x(x2 + x−2 = 0)
is true in the universe R.

4. Is there is a real number x that satisfies the equation x2 + 1 = 0? Since no real
number satisfies this equation, we see that the formula ∃x(x2 + 1 = 0) is false in
the universe R.

5. The formula ∃x(M(x)∧¬B(x)) states that there is a person x such that x is a man
and x does not have black hair. This is clearly true in the universe of all people.

6. The formula ∀x(M(x)→ B(x)) asserts that for every person x, if x is a man then
x has black hair. This is clearly false in the universe of all people; because there
are men who do not have black hair. ��

Remark 2.2.1. To show that a universal statement ∀xP(x) is true in a particular
universe U , one must show that P(x) is true for every x ∈U . On the other hand, to
show that the statement ∀xP(x) is false in a universe U , one must find at least one
x ∈U for which P(x) is false. A value x ∈U that verifies P(x) is false is called a
counterexample to the universal statement ∀xP(x).

Example 2. Let the universe U be the set {−1,0,1, . . . ,100}. Determine the truth
value in the universe U of the following sentences:

1. ∃y(y2 = 9).
2. ∃z(z2 	= 9).
3. ∀x(x < 5→ x2 < 25).
4. ∃x(x + x = x).
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Solution. We shall translate each symbolic sentence into English. We will then
determine whether, or not, the translation is true in the universe U .

1. The sentence ∃y(y2 = 9) means that “there is a y ∈U that satisfies y2 = 9.” This
is true for y = 3 ∈U . So, the sentence ∃y(y2 = 9) is true in the universe U .

2. Translating the sentence ∃z(z2 	= 9) into English, we obtain “there is a z ∈U that
satisfies z2 	= 9.” This is true for z = 0 ∈U . Hence, ∃z(z2 	= 9) is true is U .

3. This sentence ∀x(x < 5→ x2 < 25) states “for every x∈U , if x < 5 then x2 < 25.”
All of the elements in U that are less than 5 are−1,0,1,2,3,4. The square of each
of these is less than 25. Thus, the sentence is true in U .

4. The sentence ∃x(x + x = x) means that “there is an x ∈U satisfying x + x = x.”
This is true for x = 0 ∈U .

Therefore, all of the logical sentences are true in the universe U . ��
Example 3. Find a new universe A, similar to the one in Example 2, in which the
third sentence ∀x(x < 5→ x2 < 25) is false.

Solution. By the result of Example 2, we have that the formula ∀x(x< 5→ x2 < 25)
is true in the universe U = {−1,0,1, . . . ,100}. So, we shall try to add a new element
to U that will make this formula false. Note that the conditional (−5< 5→ 52 < 25)
is false, as the hypothesis is true and the conclusion is false. By adding−5 to the set
U , we get the set A = {−5,−1,0,1, . . . ,100} and conclude that ∀x(x< 5→ x2 < 25)
is false in the universe A. ��

Suppose that a variable x appears in a logical formula P(x). In the statements
∀xP(x) and ∃xP(x), we will say that x is a bound variable and that x is bound by a
quantifier. In other words, if a variable in a logical formula is immediately used by
a quantifier, then that variable is referred to as a bound variable. If a variable in a
statement is not bound by a quantifier then we shall say that the variable is a free
variable. If a variable is free, then substitution may take place. In a given universe,
when all of the free variables in a statement are replaced with values, then one can
then determine the truth or falsity of the resulting statement.

2.2.1 Analyzing the Logical Form of Statements

Example 4. Analyze the logical forms of the following six sentences. In other
words, identify the relevant predicates and then write each statement symbolically,
revealing any possible hidden quantifiers or hidden logical connectives.

1. Every cat is an animal.
2. Some cat is an animal.
3. No cat is an animal.
4. Someone in this class does not do their homework.
5. Everyone in this class does their homework.
6. Nobody in this class does their homework.
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Solution. We will express the given six sentences into logical form. We first identify
the two predicates that appear in sentences 1–3. Let C(x): “x is a cat” and A(x):
“x is an animal.”

1. Sentence 1 means that “for all x, if x is a cat then x is an animal.” In logical form,
we have ∀x(C(x)→ A(x)).

2. Rephrasing sentence 2, we obtain “for some x, x is a cat and x is an animal.”
In logical form, we have ∃x(C(x)∧A(x)).

3. There are two equivalent ways to restate sentence 3. First, this sentence means
that “it is false that some cat is an animal,” that is, ¬(some cat is an animal).
In logical form, we obtain ¬∃x(C(x)∧A(x)). Secondly, the sentence also means
that “every cat fails to be an animal;” that is, ∀x(C(x)→¬A(x)).

We now symbolize the predicates that appear in sentences 4–6. Let C(x) represent
the predicate “x is in this class” and let H(x) identify the property “x does his/her
homework.”

4. Sentence 4 means that “there is a person x in this class and this person x does not
do his homework,” that is, ∃x(C(x)∧¬H(x)).

5. In other words, sentence 5 states “for all x, if x is in this class then x does his
homework.” In logical form, we have ∀x(C(x)→ H(x)).

6. First, sentence 6 means that “it is not the case that there is a person in this class
who does his homework,” that is,

¬(there is a person in this class who does his homework).

In logical form, we obtain ¬∃x(C(x)∧H(x)). Alternatively, the sentence also
means that “every person in this class fails to do his homework” and we get
∀x(C(x)→¬H(x)). ��
Our solutions in Example 4 demonstrate a theme concerning the quantifiers ∀

and ∃. Our solutions to items 1 and 5 indicate that the quantifier ∀ is frequently
(but not always) followed by a statement that uses the conditional connective→. In
addition, our solutions to items 2 and 4 illustrate that the quantifier ∃ is frequently
(but not always) followed by a statement that uses the conjunctive connective ∧.

Quantifiers in a Tarskian World

The understanding of predicate logic is (one can argue) a requisite tool for the study
of mathematics. To help students learn the language of predicate logic, Jon Barwise
and John Etchemendy [1] created an innovative software program and book called
Tarski’s World. The program presents a visual display of geometric shapes sitting
on a grid, referred to as a world (or universe). The shapes have a variety of colors
and positions on the grid. The user can create logic formulas and then determine
whether or not these formulas are true or false in the world. Tarski’s World is named
after Alfred Tarski, one of the early pioneers in mathematical logic.
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Fig. 2.1 A Tarskian World

In our next example we are given a Tarskian World and some English statements
that are either true or false in this given world. We will be asked to translate these
statements into logical form.

Example 5. The Tarskian World presented in Fig. 2.1 has a few individuals who
are labeled with a name and some who are without a name. The universe consists of
all the objects in this Tarskian world. Define the Tarskian predicates:

• T (x) means “x is a triangle.” C(x) means “x is a circle.” S(x) means “x is a
square.”

• I(x) means “x is white.” G(x) means “x is gray.” B(x) means “x is black.”
• N(x,y) means “x is on the northern side of y.”
• W (x,y) means “x is on the western side of y.”
• K(x,y) means “x has the same color as y.”

Using these predicates, analyze the logical form of each of the following English
statements; that is, write each statement symbolically, looking for possible hidden
quantifiers and logical connectives.

1. There is a black square.
2. Every circle is white.
3. There are no black circles.
4. a is north of e.
5. a is not north of j.
6. Every circle is north of d.
7. There is a circle that has the same color as d.
8. d is west of every circle.

Solution. We first note that statements 2 and 7 are the only ones that are false in
the Tarskian world depicted in Fig. 2.1. We shall now express, in order, each of the
eight sentences in logical form.

1. The sentence means that “for some x, x is black and x is a square.” Thus, the
logical form of the sentence is ∃x(B(x)∧S(x)).
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2. In other words, “for all x, if x is a circle then x is white.” We thus obtain the
logical form ∀x(C(x)→ I(x)).

3. The sentence can be stated in two equivalent ways. First, the sentence means that
“it is false that some circle is black,” that is, ¬(some circle is black). In logical
form, we obtain ¬∃x(C(x)∧B(x)). Secondly, the sentence also means that “every
circle is not black” and we get ∀x(C(x)→¬B(x)).

4. In logical form, the sentence becomes N(a,e).
5. The logical form of this sentence is ¬N(a, j).
6. Rephrasing, we obtain “for all x, if x is a circle then x is north of d.” In logical

form, we have ∀x(C(x)→ N(x,d)).
7. The sentence asserts that “for some x, x is a circle and x has the same color as d.”

In logical form, we get ∃x(C(x)∧K(x,d)).
8. Stated more precisely, we obtain “for all x, if x is a circle then d is west of x.”

In logical form, we have ∀x(C(x)→W (d,x)). ��
Remark 2.2.2. Two individuals that lie in the same column of a Tarskian world are
not west of one another. Consequently, in Fig. 2.1 the assertions W (i,g) and W (g, i)
are both false. Similarly, any two individuals who lie in the same row are not north
of one another.

2.2.2 Bounded Quantifiers

Bounded quantifiers place bounds on the values that are to be considered. Bounded
set quantifiers are often used in mathematics when one wants to put a restriction on
the values under a quantifier. For example, to state that every real number x satisfies
P(x), we will write (∀x ∈R)P(x). Similarly, to say that some real number x satisfies
P(x) we can write (∃x ∈R)P(x).

Definition 2.2.3 (Bounded Set Quantifiers). For a set A, we write (∀x ∈ A)P(x)
to mean that for every x in A, P(x) is true. Similarly, we write (∃x ∈ A)P(x) to
signify that for some x in A, P(x) is true.

The assertion (∀x ∈ A)P(x) means that for every x, if x ∈ A then P(x) is true.
Similarly, the statement (∃x ∈ A)P(x) means that there is an x such that x ∈ A and
P(x) is true. Thus, we have the logical equivalences:

1. (∀x ∈ A)P(x)⇔∀x(x ∈ A→ P(x)).
2. (∃x ∈ A)P(x)⇔∃x(x ∈ A∧P(x)).

Bounded number quantifiers are also very useful when one wants to put some
restriction on the numbers being quantified. To say that all numbers x > 1 satisfy
P(x), we shall write (∀x > 1)P(x). Similarly, to say that some number x < 4 satisfies
P(x) we can write (∃x < 4)P(x).
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Definition 2.2.4 (Bounded Number Quantifiers). When our universe is a set of
numbers and a is a specific number, we write (∀x < a)P(x) to mean that for every
number x < a, P(x) is true. Similarly, we write (∃x < a)P(x) to assert that for some
number x < a, P(x) is true.

Let a be a number. The assertion (∀x < a)P(x) means that for every number x, if
x < a then P(x) is true. Similarly, the statement (∃x < a)P(x) means that there is a
number x such that x< a and P(x) is true. Thus, we have the logical equivalences:

1. (∀x < a)P(x)⇔∀x(x < a→ P(x)).
2. (∃x < a)P(x)⇔∃x(x < a∧P(x)).

There are similar bounded number quantifiers for the inequalities ≤, >, ≥ as well;
for example, the quantifiers in (∀x≤ a)P(x) and (∃x > a)P(x) are also referred to as
bounded number quantifiers. The statement (∀x ≤ a)P(x) means for every number
x ≤ a, the statement P(x) is true. Similarly, the assertion (∃x > a)P(x) means that
for some number x > a the assertion P(x) is true.

Exercises 2.2

1. Write the statements in logical form, using an appropriate bounded quantifier.

(a) For every real number x, if x > 1 then x > 1
x .

(b) There exists a rational number y such that y < 2 and y2 > 4.

2. Determine whether the statements are true or false in the universe R.

(a) ∀x(x2 + 1 > 0).
(b) ∀x(x2 + x≥ 0).
(c) ∀x(x > 1

2 → 1
x < 3).

(d) ∃x( 1
x−1 = 3).

(e) ∃x( 1
x−1 = 0).

3. Consider the predicates:

C(x) : “x is in the class.”
M(x) : “x is a mathematics major.”

Using these predicates, analyze the logical form of each of the sentences where
the universe is the set of all college students.

(a) Everyone in the class is a mathematics major.
(b) Someone in the class is a mathematics major.
(c) No one in the class is a mathematics major.
(d) There a mathematics major who is not in the class.
(e) Every mathematics major is in the class.
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4. Let D = {−48,−14,−8,−2,0,1,3,7,10,12}. Determine which of the following
statements are true. If a statement is false, then explain why.

(a) (∀x ∈ D)(if x is odd, then x > 0).
(b) (∀x ∈ D)(if x > 12, then x < 0).
(c) (∃x ∈ D)(x is a perfect cube). (An integer i is a perfect cube if i = n3 for

some integer n.)

5. Using the Tarskian predicates in Example 5 on page 38, translate the following
English sentences into logical sentences.

(a) Something is white.
(b) Some circle is white.
(c) All squares are black.
(d) No squares are black.
(e) All triangles are west of d.
(f) A triangle is west of d.
(g) There is a triangle that is north of d but not west of a.
(h) Some triangle is not gray.
(i) Every triangle is either west of a or north of b.
(j) No square has the same color as b.

6. Using the Tarskian predicates in Example 5, translate the following five logical
sentences into English sentences. Then determine the truth or falsity of each of
these statements in the Tarskian world of Fig. 2.1.

(a) ∀x(I(x)→ (T (x)∨S(x))).
(b) ∀x(B(x)→ (T (x)∨S(x))).
(c) ∃y(C(y)∧¬N(y,d)).
(d) ∃y(C(y)∧N(y,d)).
(e) ∃y(C(y)∧¬W (y,g)).

7. Determine whether the sentences are true or false in the universe R.

(a) (∀x > 2)(x < 4→ x2 < 16).
(b) (∀x < 2)(x < 4→ x2 < 16).
(c) (∃x < 2)(x < 4∧ x2 < 4).
(d) (∃x > 2)(x < 4∧ x2 < 4).

8. Determine whether the sentences are true or false.

(a) (∀x ∈ N)(x > 2→ 3x < 2x).
(b) (∀x ∈ N)(x > 4→ 3x < 2x).
(c) (∃x ∈ Z)( 1

5+x ∈N).

(d) (∃x ∈ N)( 1
5+x ∈ Z).
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9. Evaluate the truth sets:

(a) {x ∈ R : (∃y ∈ R)(x = y2)}.
(b) {x ∈ R : (∀y ∈ R)(x < y2)}.
(c) {x ∈ R : (∀y > 2)(x < y2 + 1)}.
(d) {x ∈ R : (∃y > 2)(x < y2 + 1)}.
(e) {x ∈ Z : (∃y ∈ Z)(x = y2)}.
(f) {w ∈ Z : (∃x ∈ Z)(w = 3x)}.
(g) {q ∈Q : (∃x ∈Q

+)(qx = 1)}.
(h) {q ∈Q : (∀x ∈Q)(qx = x)}.

2.3 Quantifiers and Negation

In this section we introduce laws that involve the negation of a quantified assertion.
These laws are very useful when dealing with the denial of a complicated mathe-
matical statement. For example, in advanced mathematics (e.g., real analysis) one
may be given a mathematical statement, say ψ , and then be asked to work with its
negation ¬ψ . Of course, ¬ψ means “it not the case that ψ holds,” but it may not be
clear as to what such a negative statement really means. “Positive” assertions are just
easier to understand. In this section we will show how one can rephrase a negative
statement into an equivalent, positive statement that is more understandable. Having
such a skill is very important when developing mathematical proofs.

Consider the sentence “Not everyone is rich,” that is, “It is not the case that
everyone is rich.” We know that this sentence is true. Why is it true? Because there
are some people who are not rich. Let us express the sentence symbolically. Let R(x)
be the predicate “x is rich.” So, the sentence “Not everyone is rich” can be expressed
as ¬∀xR(x). Since ¬∀xR(x) also means that “some people are not rich,” we see that
¬∀xR(x)⇔∃x¬R(x). In other words, ¬∀xR(x) and ∃x¬R(x) are equivalent ways of
saying the same thing.

Suppose now that a financial crisis has struck the world and, as a result, there
are no longer any rich people; that is, it is not the case that there is a person who is
rich. Thus, ¬∃xR(x). Note that ¬∃xR(x) also means that everyone fails to be rich,
that is, ∀x¬R(x). Consequently, ¬∃xR(x)⇔∀x¬R(x) and, as a result, ¬∃xR(x) and
∀x¬R(x) mean the same thing.

We will now more formally state what was observed in the previous two
paragraphs. Let P(x) be any predicate. The assertion ∀xP(x) means that “for every x,
the statement P(x) is true.” So, the assertion ¬∀xP(x) means that “it is not the case
that every x makes P(x) true.” Thus, there must be an x that does not make P(x)
true, which can be expressed as ∃x¬P(x). This reasoning is reversible as we will
now show. The assertion ∃x¬P(x) means that “there is an x that makes P(x) false.”
Hence, P(x) is not true for all x, that is, ¬∀xP(x). Therefore, ¬∀xP(x) and ∃x¬P(x)
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are logically equivalent. Similar reasoning will show that ¬∃xP(x) and ∀x¬P(x)
are equivalent. We now formally state these important new logic laws that connect
quantifiers with negation.

Quantifier Negation Laws (QNL)

1. ¬∀xP(x)⇔∃x¬P(x).
2. ¬∃xP(x)⇔∀x¬P(x).

Remark 2.3.1. The quantifier negation law 1 states that the expression “not for all”
is equivalent to the phrase “some are not.” Similarly, law 2 asserts that the expression
“not for some” is equivalent to “all are not.”

Using quantifier negation laws, together with propositional logic laws, a negative
statement can be translated into an equivalent positive statement. Roughly speaking,
a positive statement is one that does not contain the negation symbol, or one that has
the negation symbol appearing as far inside the statement as is possible.

Example 1. Using quantifier negation laws and propositional logic laws, express
the negations of the following statements as positive statements.

1. Every cat is an animal. [Let C(x): “x is a cat” and A(x): “x is an animal.”]
2. No cat is an animal.
3. Someone in this class does not do their homework. [Let C(x): “x is in this class”

and H(x): “x does his/her homework.”]

Solution. Using our solutions in Example 4 on page 36, we shall first translate each
of the English statements into logical form. We will take negations of these logical
forms and “push through” the negation symbol using quantifier negation laws and
propositional logic laws. The result will then be expressed in English.

1. ENGLISH: “Every cat is an animal.”

LOGICAL FORM: ∀x(C(x)→ A(x)).

ENGLISH NEGATION: “It is not the case that every cat is an animal.”

LOGICAL NEGATION: ¬∀x(C(x)→ A(x)).

¬∀x(C(x)→ A(x))⇔∃x¬(C(x)→ A(x)) by Quantifier Negation Law

⇔∃x(C(x)∧¬A(x)) by Conditional Law.

POSITIVE ENGLISH FORM: “There is a cat that is not an animal.”

2. ENGLISH: “No cat is an animal.”

LOGICAL FORM: ¬∃x(C(x)∧A(x)).

ENGLISH NEGATION: “It is not the case that no cat is an animal.”

LOGICAL NEGATION: ¬¬∃x(C(x)∧A(x)).

¬¬∃x(C(x)∧A(x))⇔∃x(C(x)∧A(x)) by Double Negation Law.

POSITIVE ENGLISH FORM: “Some cat is an animal.”
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3. ENGLISH: “Someone in this class does not do their homework.”

LOGICAL FORM: ∃x(C(x)∧¬H(x)).

ENGLISH NEGATION: “It is not the case that someone in this class does not do
their homework.”

LOGICAL NEGATION: ¬∃x(C(x)∧¬H(x)).

¬∃x(C(x)∧¬H(x))⇔∀x¬(C(x)∧¬H(x)) by Quantifier Negation Law

⇔∀x(C(x)→¬¬H(x)) by Conditional Law

⇔∀x(C(x)→ H(x)) by Double Negation Law.

POSITIVE ENGLISH FORM: “Everyone in this class does their homework.” ��
The reasoning used to justify the quantifier negation laws can also be used to

verify negation laws for bounded quantifiers. For example, let T (x) represent the
predicate “x2 > 0.” The statement ¬(∀x ∈R)T (x) asserts that (∀x ∈R)T (x) is false.
Is it false? Yes, because there is an x ∈ R (namely x = 0) that satisfies ¬T (x) and
so, we have that (∃x ∈ R)¬T (x) holds. Thus, the statement ¬(∀x ∈ R)T (x) implies
(∃x ∈R)¬T (x). Since this argument is reversible, we can conclude that

¬(∀x ∈ R)T (x)⇔ (∃x ∈ R)¬T (x).

More generally, given any set A and predicate P(x), the following logic laws connect
bounded set quantifiers with negation.

Negation Laws for Bounded Set Quantifiers

1. ¬(∀x ∈ A)P(x)⇔ (∃x ∈ A)¬P(x).
2. ¬(∃x ∈ A)P(x)⇔ (∀x ∈ A)¬P(x).

In the negation laws for bounded set quantifiers, notice that when you push the
negation symbol through a bounded set quantifier, the quantifier changes and the
negation symbol passes over ‘x ∈ A’.

Example 2. We can express ¬(∀x ∈ A)(R(x) → ¬S(x)) into a positive form,
as follows:

¬(∀x ∈ A)(R(x)→¬S(x))⇔ (∃x ∈ A)¬(R(x)→¬S(x)) by QNL

⇔ (∃x ∈ A)(R(x)∧¬¬S(x)) by CL(3)

⇔ (∃x ∈ A)(R(x)∧S(x)) by DNL.

Negation laws, similar to those for bounded set quantifiers, also apply to the
bounded number quantifiers. For example, let R be our universe and let P(x) be a
predicate. Note that the statement ¬(∀x > a)P(x) asserts that not every real number
x > a satisfies P(x). This just means (∃x > a)¬P(x); that is, there is a real number
x > a that fails to satisfy P(x). Therefore, ¬(∀x > a)P(x)⇔ (∃x > a)¬P(x).
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Negation Laws for Bounded Number Quantifiers

1. ¬(∀x > a)P(x)⇔ (∃x > a)¬P(x).
2. ¬(∃x > a)P(x)⇔ (∀x > a)¬P(x).
3. ¬(∀x < a)P(x)⇔ (∃x < a)¬P(x).
4. ¬(∃x < a)P(x)⇔ (∀x < a)¬P(x).

Similar negation laws apply when the bounded number quantifiers involve the
relations ≤ and ≥. In the above laws, if you move the negation symbol through
a bounded number quantifier, then the quantifier changes and the negation symbol
completely passes over the relations x > a and x < a. For example, we can express
¬(∀x > 0)(x2 > 1→ x < 4) as a positive statement as follows:

¬(∀x > 0)(x2 > 1→ x < 4)⇔ (∃x > 0)¬(x2 > 1→ x < 4) by QNL

⇔ (∃x > 0)(x2 > 1∧ x 	< 4) by CL

⇔ (∃x > 0)(x2 > 1∧ x≥ 4) by laws of inequality.

Exercises 2.3

1. Using quantifier negation laws and propositional logic laws, translate each of the
following assertions into positive statements. (The universe is R.)

(a) ¬(∀x > 2)(x < 4→ x2 < 16).
(b) ¬(∀x < 2)(x < 4→ x2 < 16).
(c) ¬(∃x < 2)(x < 4∧ x2 < 4).
(d) ¬(∃x > 2)(x < 4∧ x2 < 4).
(e) ¬(∀x ∈ N)(x > 2→ 3x < 2x).
(f) ¬(∀x ∈ N)(x > 4→ 3x < 2x).

2. Express the negation of the following statement as a positive statement: For all
real numbers x, if x is rational and positive, then

√
x is irrational. State your

result in English. [The square root operation
√

x is defined on page 95.]

3. Consider the following statement and proposed negation of this statement.
Statement: Every prime number is odd.
Proposed Negation: Every prime number is even.
Determine whether the proposed negation is correct. If it is not correct, then
write a correct negation.

4. Using quantifier negation laws and propositional logic laws, express each
statement in as a positive statement. (The universe is the set of real numbers.)

(a) ¬(∀x > 3)(|x− 10|< 1
2 →

∣
∣x2− 100

∣
∣< 1

3 ).

(b) ¬(∃x <−4)(|x + 6|< 1
100 ∧|sin(x)− 100| ≥ 1

30 ).
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5. Consider the Tarskian predicates in Example 5 on page 38. Using quantifier
negation laws and propositional logic laws, express the negation of each of the
following assertions as a positive statement. Then write your result in idiomatic
English.

(a) ∀x(I(x)→ (T (x)∨S(x))).
(b) ∀x(B(x)→ (T (x)∨S(x))).
(c) ∃y(C(y)∧¬N(y,d)).
(d) ∃y(C(y)∧N(y,d)).
(e) ∃y(C(y)∧¬W (y,g)).

6. Consider the predicates:

C(x) : “x is in the class.”
M(x) : “x is a mathematics major.”

Using these predicates, translate the following English sentences into logical
sentences. Then express the result as an equivalent positive logical statement.
Write your final result as an English sentence.

(a) It is not the case that everyone in the class is a mathematics major.
(b) It is not the case that someone in the class is a mathematics major.
(c) It is not the case that no one in the class is a mathematics major.

2.4 Statements Containing Multiple Quantifiers

In the previous section we considered sentences that contain a single quantifier.
Using both of the quantifiers ∀ and ∃, one can construct more intricate sentences.
For example, ∀x∃yL(x,y) where L(x,y) is a statement with free variables x and y.
In this section we discuss how to determine the truth or falsity of a logical statement
with multiple quantifiers. We do this by first translating the logical sentence into
English. Such translations can be challenging. In any case, it is best to translate the
quantifiers from “left to right” just as we read a sentence in English.

2.4.1 Interpreting Adjacent Quantifiers

Adjacent quantifiers have the form ∃x∃y, ∀x∀y, ∀x∃y and ∃x∀y. In the next few
examples, we will see how to interpret and understand statements with adjacent
quantifiers. When a statement contains adjacent quantifiers, one should address the
quantifiers, one at a time, in the order in which they are presented.
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Example 1. Let the universe be a group of people and let L(x,y) mean “x likes y.”
What do the formulas mean?

1. ∃x∃yL(x,y)
2. ∃y∃xL(x,y).

Solution. Before we begin, we note that “x likes y” also means that “y is liked by x.”
We will translate these formulas from “left to right” as follows:

1. ∃x∃yL(x,y) means “there is a person x such that ∃yL(x,y),” that is, “there is a
person x who likes some person y.” Thus, ∃x∃yL(x,y) means that “someone likes
someone.”

2. ∃y∃xL(x,y) states that “there is a person y such that ∃xL(x,y),” that is, “there is
a person y who is liked by some person x.” So, ∃y∃xL(x,y) means that “someone
is liked by someone.”

We conclude that ∃x∃yL(x,y) and ∃y∃xL(x,y) both mean the same thing. ��
Example 2. Let the universe be a group of people and let L(x,y) mean “x likes y.”
What do the formulas mean in English?

1. ∀x∀yL(x,y)
2. ∀y∀xL(x,y).

Solution. We will work again from “left to right” as follows:

1. ∀x∀yL(x,y) means “for every person x, we have ∀yL(x,y),” that is, “for every
person x, we have that x likes every person y.” Hence, ∀x∀yL(x,y) means that
“everyone likes everyone.”

2. ∀y∀xL(x,y) states “for each person y, we have ∀xL(x,y),” that is, “for each
person y, we have that y is liked by every person x.” So, ∀y∀xL(x,y) means
“everyone is liked by everyone.”

We conclude that ∀x∀yL(x,y) and ∀y∀xL(x,y) both mean the same thing. ��
Example 3. Let the universe be a group of people and let L(x,y) mean “x likes y.”
What do the formulas mean in English?

1. ∀x∃yL(x,y)
2. ∃y∀xL(x,y).

Solution. We will translate the formulas as follows:

1. ∀x∃yL(x,y) means “for every person x we have ∃yL(x,y),” that is, “for every
person x there is a person y that x likes.” Thus, ∀x∃yL(x,y) means that “everyone
likes someone.”

2. ∃y∀xL(x,y) states that “there is a person y such that ∀xL(x,y),” that is, “there is
a person y who is liked by every person x.” In other words, ∃y∀xL(x,y) means
“someone is liked by everyone.”

We conclude that ∀x∃yL(x,y) and ∃y∀xL(x,y) do not mean the same thing. ��
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Fig. 2.2 A World where ∀x∃yL(x,y) is true, because everyone likes someone
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Fig. 2.3 A World where ∃y∀xL(x,y) is true, since someone is liked by everyone

To clarify the conclusion obtained in our solution of Example 3, consider the
universe U = {a,b,c,d} consisting of just four individuals with names as given. For
this universe, Fig. 2.2 presents a world where ∀x∃yL(x,y) is true, where we portray

the property L(x,y) using the “arrow notation” x
likes−−−→ y. Figure 2.2 thus illustrates

a world where “everyone likes someone.”
On the other hand, the statement ∃y∀xL(x,y) says that there is an individual who

is extremely popular because everyone likes this person. Figure 2.3 gives a world
where ∃y∀xL(x,y) is true. In this particular world, “someone is liked by everyone.”

Let us focus our attention on Fig. 2.2. We observed that ∀x∃yL(x,y) is true in the
world depicted in this figure. Furthermore, notice that ∃y∀xL(x,y) is actually false in
this world. Thus, ∀x∃yL(x,y) is true and ∃y∀xL(x,y) is false in the world presented
in Fig. 2.2. We can now conclude that ∀x∃yL(x,y) and ∃y∀xL(x,y) do not mean the
same thing.

Our solution in Example 1 shows that ∃x∃yL(x,y) and ∃y∃xL(x,y) both mean
“someone likes someone.” This supports the true logical equivalence:

∃x∃yL(x,y)⇔∃y∃xL(x,y).

Similarly, Example 2 confirms the true logical equivalence:

∀x∀yL(x,y)⇔∀y∀xL(x,y).

Consequently, interchanging adjacent quantifiers of the same kind does not change
the meaning. On other hand, Example 3 shows that ∀y∃xL(x,y) and ∃x∀yL(x,y) are
not logically equivalent and thus, do not mean the same thing. Hence, interchanging
unlike adjacent quantifiers can change the meaning.
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Adjacent quantifiers of a different type are referred to as mixed quantifiers.
We end this discussion with some good news and some bad news.

• Good News: Adjacent quantifiers of the same type can be interchanged.
• Bad News: Adjacent quantifiers of a different type may not be interchanged.

Example 4. Let the universe be R, the set of real numbers. Determine the truth
value of the following sentences:

1. ∃y∀x(x + y = x).
2. ∀x∃y(x + y = 0).
3. ∃y∀x(x + y = 0).
4. ∃x∃y(x + y = 0).
5. ∀x∀y(x + y = 0).

Solution.

1. ∃y∀x(x+y = x) states that there is a real number y such that ∀x(x+y = x) is true.
Since the real number y = 0 satisfies the formula ∀x(x + y = x), we see that the
statement ∃y∀x(x + y = x) is true.

2. ∀x∃y(x + y = 0) means that for every real number x the statement ∃y(x + y = 0)
is true. Since for every real number x the real number y =−x makes the equation
x + y = 0 true, we see that the sentence ∀x∃y(x + y = 0) is true.

3. ∃y∀x(x+y = 0) asserts that there is a real number y such that ∀x(x+y = 0) is true.
So, y is the additive inverse of every real number x. This is false; for example,
when x = (1− y) we see that x + y 	= 0. Thus, the statement ∃y∀x(x + y = 0) is
false.

4. ∃x∃y(x + y = 0) means that there is some real number x such that ∃y(x + y = 0)
is true. Since for x = 3 and y = −3, we have that the equation x + y = 0 is true.
We conclude that the assertion ∃x∃y(x + y = 0) is true.

5. ∀x∀y(x+y = 0) declares that for every real number x the statement ∀y(x+y = 0)
is true. So, ∀x∀y(x + y = 0) means the equation x + y = 0 is true for all real
numbers x and y. This is false, since 2 + 3	= 0. ��

2.4.2 Interpreting Non-adjacent Quantifiers

When a logical statement contains multiple quantifiers, one should address all of the
quantifiers one at a time, in the order presented. In our next example we are given
a Tarskian World and some logical formulas with multiple quantifiers. We will be
asked to determine if the formulas are true or false in this given world.

Example 5. Consider the Tarskian World in Fig. 2.4 where each individual is
labeled with a name and recall the Tarskian predicates:

• T (x) means “x is a triangle.” C(x) means “x is a circle.” S(x) means “x is a
square.”

• I(x) means “x is white.” G(x) means “x is gray.” B(x) means “x is black.”
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Fig. 2.4 A Tarskian World

• N(x,y) means “x is on the northern side of y.”
• W (x,y) means “x is on the western side of y.”
• K(x,y) means “x has the same color as y.”

Determine the truth or falsity of each of the following statements. The universe
consists of all the objects in the world given in Fig. 2.4.

1. ∀x(T (x)→∃y(S(y)∧K(x,y))).
2. ∃x(S(x)∧∀y(C(y)→W (x,y))).
3. ∃x(S(x)∧∀y(C(y)→W (y,x))).
4. ∀y(T (y)→∃xN(x,y)).
5. ∀y(C(y)→∃xN(x,y)).
6. ∀y(C(y)→∃xN(y,x)).
7. ∀x(S(x)→∃y(C(y)∧K(x,y))).
8. ∃y(T (y)∧∀x(C(x)→¬K(x,y))).

Before we evaluate the truth value of these eight statements, we observe in our
next remark that the concepts of north and west can be used, respectively, to also
describe the notions of south and east. This will make it easier to translate some of
the above logical sentences into English.

Remark 2.4.1. The predicate N(x,y) means that “x is north of y.” Thus, we can
interpret ∃xN(x,y) as “some one is north of y.” Furthermore, the statement N(x,y)
also means that “y is south of x.” So, we can interpret ∃yN(x,y) as “some one is
south of x.” In addition, W (x,y) means that “x is west of y,” which also means that
“y is east of x.” Hence, we can translate ∀xW (x,y) as “every one is west of y” and
translate ∀yW (x,y) as “every one is east of x.”

Solution [for Example 5]. It turns out that statements given in 1, 3, 4 and 6 are
the only ones that are true in Fig. 2.4. To verify this, we translate each logical
formula into an English statement. Upon reading the English statement, we shall
then determine if the original logical formula is true or false in the Tarskian world.
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1. For every triangle x there is a square of the same color as x. TRUE.
2. There is a square x who is west of all the circles. FALSE.
3. There is a square x who is east of all the circles. TRUE.
4. For every triangle y there is an individual who is north of y. TRUE.
5. For every circle y there is an individual who is north of y. FALSE.
6. For every circle y there is an individual who is south of y. TRUE.
7. For every square x there is a circle having the same color as x. FALSE.
8. There is a triangle y whose color is different than that of every circle. TRUE. ��

2.4.3 Translating English Statements with Multiple Quantifiers

Many statements in English contain more than one quantifier, as do many mathe-
matical statements. For example:

1. Some student in the algebra class is smarter than all of the students in the calculus
class.

2. For every real number x there is a real number y such that x + y = 0.

In the next two examples we will translate English sentences containing more
than one quantifier into logical form. Translating such sentences can become quite
perplexing unless we approach this task in a very systematic way. We shall be
using a step-by-step method that can be summarized as follows: Start with the outer
structure of the English sentence and then move inward. The intermediate steps will
contain a mix of both English and logical notation. We illustrate this method in our
solutions of the next two examples.

Example 6 Analyze the logical forms of the following statements, that is, identify
the relevant predicates and write each statement symbolically, looking for possible
hidden quantifiers and hidden logical connectives. The universe here is the set of all
people.

1. Everybody in the office has a co-worker he does not like.
2. There is a voter who likes all of the candidates.

Solution We are working in the universe of all people. Once we introduce a variable
that is to be associated with a quantifier, then for any new quantifier we must choose
a new variable. We now translate, in order, the given sentences 1 and 2.

1. We first identify the predicates used in this sentence. Let O(x): “x is in the office,”
C(x,y): “x and y are co-workers,” and L(x,y): “x likes y.” We shall translate this
sentence in steps. ‘Everybody’ means ‘for all x.’ So, we can rewrite the sentence
as: “For all x, if x is in the office, then there is a co-worker that x does not like.”
Therefore, we get

∀x(O(x)→ there is a co-worker that x does not like). (2.1)



52 2 Predicate Logic

Now we translate “there is a co-worker that x does not like,” which can be
rephrased as “there is some person y where x and y are co-workers and x does
not like y.” This latter expression can be symbolized as ∃y(C(x,y)∧¬L(x,y))
which will be substituted into (2.1). Thus, the logical form of the given sentence
is ∀x(O(x)→∃y(C(x,y)∧¬L(x,y))).

2. The predicates in the sentence are V (x): “x is a voter,” C(x): “x is a candidate,”
and L(x,y): “x likes y.” We can restate the sentence as: “There is an x such that
x is a voter and x likes all of the candidates.” So, the first step of our translation
gives

∃x(V (x)∧ x likes all of the candidates). (2.2)

Next, we translate the inside expression “x likes all of the candidates.” This
expression means that “for all y, if y is a candidate then x likes y.” This latter
assertion translates to be

∀y(C(y)→ L(x,y)).

So, (2.2) becomes ∃x(V (x)∧∀y(C(y)→ L(x,y))). ��
Example 7 Analyze the logical forms of the following mathematical statements
about the universe R of real numbers:

(a) There is a positive number that is an identity element for multiplication.
(b) Every number, except 0, has a multiplicative inverse.
(c) Every positive number has a square root.

Solution We will be working in the universe R, the set of real numbers.

(a) We translate the sentence in steps. The first step produces

∃x(x > 0∧ x an identity element for multiplication). (2.3)

The phrase “x is an identity element for multiplication” means that ∀y(x ·y = y).
From (2.3), we obtain the translation ∃x(x > 0∧∀y(x · y = y)).

(b) For our first step we obtain

∀x(if x 	= 0, then x has a multiplicative inverse). (2.4)

This expression “x has a multiplicative inverse” in (2.4) means “there is a y such
that x · y = 1.” Thus, upon putting this expression into logical form, we obtain
∃y(x · y = 1). Hence, our final translation is ∀x(x 	= 0→∃y(x · y = 1)).

(c) We shall translate this sentence in steps. We first get

∀x(if x > 0, then x has a square root). (2.5)

The expression “x has a square root” means that “x = y2 for some y.” Therefore,
(2.5) yields the translation ∀x(x > 0→∃y(x = y2)). ��
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2.4.4 Negating Statements with More than One Quantifier

The rules for the negation of multiple quantifiers follow by repeating the rules for
negating a single quantifier.

Example 8 Using the quantifier negation laws establish the following:

1. ¬∃x∀yR(x,y)⇔∀x∃y¬R(x,y).
2. ¬∀x∃yR(x,y)⇔∃x∀y¬R(x,y).

Solution We derive item 1 as follows:

¬∃x∀yR(x,y)⇔∀x¬∀yR(x,y) by QNL

⇔∀x∃y¬R(x,y) by QNL.

In a similar manner, one can derive item 2. ��
Example 9 Using the Tarskian predicates that were defined in Example 5 on
page 49, translate each of the following statements into a logical formula. Then,
using quantifier negation laws and propositional logic laws, express the negation of
each formula as a positive statement. Finally, write your result in idiomatic English.

(1) For every circle there is a square of the same color.
(2) There is a square that is west of all the triangles.

Solution We shall first translate each English statement into logical form. We will
take the negation of this logical form and then “push it through” using quantifier
negation laws and propositional logic laws. The end result will then be written in
English.

(1) ENGLISH: “For every circle there is a square of the same color.”

LOGICAL FORM: ∀x(C(x)→∃y(S(y)∧K(x,y))).

NEGATION: ¬∀x(C(x)→∃y(S(y)∧K(x,y))).

¬∀x(C(x)→∃y(S(y)∧K(x,y)))⇔∃x¬(C(x)→∃y(S(y)∧K(x,y))) QNL

⇔∃x(C(x)∧¬∃y(S(y)∧K(x,y))) CL

⇔∃x(C(x)∧∀y¬(S(y)∧K(x,y))) QNL

⇔∃x(C(x)∧∀y(¬S(y)∨¬K(x,y))) DML

⇔∃x(C(x)∧∀y(S(y)→¬K(x,y))) CL.

ENGLISH: “There is a circle of a different color than the color of every square.”
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(2) ENGLISH: “There is a square that is west of all the triangles.”

LOGICAL FORM: ∃x(S(x)∧∀y(T (y)→W (x,y))).

NEGATION: ¬∃x(S(x)∧∀y(T (y)→W (x,y))).

¬∃x(S(x)∧∀y(T (y)→W (x,y)))⇔∀x¬(S(x)∧∀y(T (y)→W (x,y))) QNL

⇔∀x(¬S(x)∨¬∀y(T (y)→W (x,y))) DML

⇔∀x(S(x)→¬∀y(T (y)→W (x,y))) CL

⇔∀x(S(x)→∃y¬(T (y)→W (x,y))) QNL

⇔∀x(S(x)→∃y(T (y)∧¬W (x,y))) CL.

ENGLISH: “For each square there’s a triangle that is not east of the square.” ��

2.4.5 The Uniqueness Quantifier

We have introduced the existential quantifier ∃. For example, the expression ∃xP(x)
asserts that there is at least one value x that makes P(x) true, but there could be more.
Many times in mathematics, one needs to show that there is exactly one value that
makes a property true. There is a third quantifier that is sometimes used, though not
very often. It’s called the uniqueness quantifier. This quantifier is written as ∃!xP(x)
and means that “there exists a unique x satisfying P(x).” This is in contrast with
∃xP(x), which simply means that “at least one x satisfies P(x).”

As already noted, the quantifier ∃! is rarely used. One reason for this is that the
assertion ∃!xP(x) can be expressed in terms of the other quantifiers ∃ and ∀. In fact,
there are at least two ways of doing this. The two statements below, are equivalent
to ∃!xP(x):

∃xP(x)∧∀x∀y([P(x)∧P(y)]→ x = y) (2.6)

∃x[P(x)∧∀y(P(y)→ x = y)]. (2.7)

The statement ∃xP(x)∧∀x∀y([P(x)∧P(y)]→ x = y) in (2.6) is equivalent to ∃!xP(x)
because it means that

“there is an x such that P(x) holds, and any individuals x and y that satisfy
P(x) and P(y) must be the same individual”

which is just another way of saying “there is exactly one value x that satisfies P(x).”
Similarly, (2.7) is equivalent to ∃!xP(x) as the assertion ∃x[P(x)∧∀y(P(y)→ x = y)]
means that

“there is an x such that P(x) holds and any individual y that also satisfies P(y)
must be the same individual as x.”
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Example 10 Using the Tarskian predicates (as defined in Example 5 on page 49),
determine the truth value of the following logical sentences in the Tarskian world in
Fig. 2.5, below.

1. ∃!xT (x).
2. ∃!xC(x).
3. ∃!x(G(x)∧C(x)).
4. ∀x∃!yN(y,x).
5. ∃!x∀y(x 	= y→W (y,x)).
6. ∃!x∀y(x 	= y→W (x,y)).

Solution We first express each of the logical statements into English and then we
will determine its truth value in the Tarskian world of Fig. 2.5.

1. ∃!xT (x) means that “there is exactly one triangle.” This is true!
2. ∃!xC(x) states that “there is exactly one circle.” This is false!
3. ∃!x(G(x)∧C(x)) declares that “there is exactly one grey circle,” and this is true.
4. ∀x∃!yN(y,x) asserts that “for every individual x there is exactly one individual

who is north of x.” This is false in the given Tarskian world.
5. ∃!x∀y(x 	= y→W (y,x)) is translated to mean “there is exactly one individual x

such that all the individuals who are different than x, are west of x.” The grey
square is this unique individual. So the statement is true.

6. ∃!x∀y(x 	= y→W (x,y)) is translated to mean “there is exactly one individual x
such that all the individuals who are different than x, are east of x.” The statement
is false. ��

Exercises 2.4

1. Let the universe be a group of people and let L(x,y) mean “x likes y.” What do
the following formulas mean in English?
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(a) ∀y∃xL(x,y)
(b) ∃x∀yL(x,y).

Show that these two statements are not logically equivalent by constructing a
world, as in Example 3, where one statement is true while the other is false.

2. Write the following statement in logical form and then write a negation of this
statement in English: All even integers are twice some integer. [Use the predicate
E(x) for “x is even,” and let the universe be the set of integers.]

3. Determine whether the statements are true or false in the universe R.

(a) ∀a∃x(x2 = a).
(b) ∀x∃a(a + x = 0).
(c) ∃a∀x(a + x = 0).
(d) ∀x∃a(ax = 0).
(e) ∀x∃y(x < y).
(f) ∃y∀x(x < y).
(g) ∀x∀y(x = y→ x2 = y2).
(h) ∀x∀y(x2 = y2→ x = y).

4. Using the given predicates, analyze the logical form of the following sentences.

(a) No one likes everyone. (Universe is a group of people.) [Let L(x,y) mean
“x likes y.”]

(b) Someone likes no one. (Universe is a group of people.) [Let L(x,y) mean “x
likes y.”]

(c) Every number is the cube of some number. (Universe is R.)
(d) Someone in high school is smarter than everyone in college. (Universe is

the set of all students.) [Let H(x) mean “x is in high school,” C(x) mean
“x is in college,” and S(x,y) mean “x is smarter than y.”]

5. Using the Tarskian predicates given in Example 5, translate the following six
English sentences into logical sentences.

(a) Every gray square is north of some triangle.
(b) Some circle is west of every square.
(c) Some circle is north of a white triangle.
(d) All squares are the same color as some triangle.
(e) All black squares are west of all gray circles.
(f) No square has the same color as any circle.

6. Using quantifier negation laws and propositional logic laws, express each of the
following statements as a positive one. The universe is the set of real numbers.

(a) ¬(∀x > 2)(∃y < 2)(x < 4→ xy < 16).
(b) ¬(∃x > 2)(∀y < 2)(x < 4→ xy < 16).
(c) ¬(∀x ∈ N)(∃y ∈ Z)(x > 2→ x < y).
(d) ¬(∃x ∈ N)(∀y ∈ N)(x < y).
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Fig. 2.6a Tarskian World for Exercise 8 Fig. 2.6b Tarskian World for Exercise 10

7. Using quantifier negation laws and propositional logic laws, express each of the
assertions as a positive statement. The universe is the set of real numbers where
a and b are constant real numbers.

(a) ¬(∀ε > 0)(∃δ > 0)∀x(|x− a|< δ → ∣
∣x2−b

∣
∣< ε).

(b) ¬(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N→ ∣
∣ 1

n −a
∣
∣< ε).

8. Consider the Tarskian World in Fig. 2.6a. Determine if the following seven
formulas are true or false in this Tarskian world. The Tarskian predicates are
defined in Example 5.

(a) ∀x(C(x)→ (G(x)∨ I(x))).
(b) ∀y(T (y)→ N(y, j)).
(c) ∀y(S(y)→∃xN(y,x)).
(d) ∀y(S(y)→∃xN(x,y)).
(e) ∀x(S(x)→∃y(C(y)∧K(x,y))).
(f) ∃y(T (y)∧∀x(C(x)→¬K(x,y))).
(g) ∃y∀x(C(x)→W (y,x)).

9. Take the negation of the logical forms (a)–(e) in Exercise 8 and “push through”
the negation using quantifier negation laws and propositional logic laws. Then
write this final form of the negation in English.

10. Consider the Tarskian World in Fig. 2.6b. Determine the truth or falsity of each
of the following statements in this world.

(a) ∃!xS(x).
(b) ∃!x(S(x)∧B(x)).
(c) ∃!x(C(x)∧∀y(T (y)→ N(x,y))).
(d) ∃!x(C(x)∧∀y(S(y)→ N(x,y))).
(e) ∀y∃!x(x 	= y∧K(x,y)).
(f) ∃y∃!x(x 	= y∧K(x,y)).
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2.5 Valid and Invalid Arguments

An argument in predicate logic is said to be valid if whenever all of the premises are
true, then the conclusion is also true. In Table 2.1 we identify four valid arguments
that are regularly used in mathematical proofs.

We now present an argument that illustrates the use of universal modus ponens
and then an argument that applies universal modus tollens.

Example 1 Consider the classic argument, due to Aristotle:

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

We will show that this argument is valid by universal modus ponens. First we shall
symbolize this argument. Let M(x) represent the predicate “x is a man” and let O(x)
represent “x is mortal.” Now let s be a short name for Socrates. Our symbolization
of the argument becomes

∀x(M(x)→ O(x))
M(s)

∴ O(s)

We see that Aristotle’s argument has the form of universal modus ponens and is
therefore valid.

Example 2 We show that the argument below is valid by universal modus tollens.

All natural numbers are integers.
π is not an integer.
Therefore, π is not a natural number.

First we symbolize the argument. Let N(x) represent the predicate “x is a natural
number” and let I(x) represent “x is an integer.” Thus, we obtain

∀x(N(x)→ I(x))
¬I(π)

∴ ¬N(π)

Since the argument has the form of universal modus tollens, it is valid.

Table 2.1 Important valid arguments

∀x(P(x)→ Q(x)
P(a)

∴ Q(a)

(Universal Modus Ponens) ∀x(P(x)→ Q(x)
¬Q(a)

∴ ¬P(a)

(Universal Modus Tollens)

∀xP(x)
∴ P(a)

(Universal Instantiation) ∃xP(x)
∴ P(c)

(Existential Instantiation)
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We now identify two errors in reasoning. These invalid arguments are referred
to as universal converse error and universal inverse error. In mathematical proofs,
one must never use these fallacies.

∀x(P(x)→ Q(x)
Q(a)

∴ P(a)

(Converse Error) ∀x(P(x)→ Q(x)
¬P(a)

∴ ¬Q(a)

(Inverse Error)

We shall present examples of the above invalid arguments. The first of which
illustrates a universal converse error and the second invalid argument demonstrates
a universal inverse error.

Example 3 Verify that the following argument is invalid.

All men are mortal.
Spot is mortal.
Therefore, Spot is a man.

Solution The argument implements a universal converse error. To verify this, let
M(x) represent the predicate “x is a man” and let O(x) represent “x is mortal.” Let s
be a short name for my dog Spot. Our symbolization of the argument is

∀x(M(x)→ O(x))
O(s)

∴ M(s)

The premises are true while the conclusion is false. So the argument is invalid. ��
Example 4 Show that the following argument is not valid.

All natural numbers are integers.
−1 is not a natural number.
Therefore,−1 is not an integer.

Solution The argument employs a universal inverse error. Let N(x) represent the
predicate “x is a natural number” and let I(x) represent “x is an integer.” Thus, we
can symbolize the argument as follows:

∀x(N(x)→ I(x))
¬N(−1)

∴ ¬I(−1)

Since the premises are true and the conclusion is false, the argument is invalid. ��
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Exercises 2.5

Some of the arguments in Exercises 1–5 are valid by universal modus ponens or
modus tollens; others are invalid. State which are valid and which are invalid.

1. All healthy people eat an apple a day.
Johnny is not a healthy person.
∴ Johnny does not eat an apple a day.

2. All healthy people eat an apple a day.
Johnny eats an apple a day.
∴ Johnny is a healthy person.

3. All freshmen must take writing.
Dan is a freshman.
∴ Dan must take writing.

4. All natural numbers are integers.
π is not an integer.
∴ π is not a natural number.

5. All integers are natural numbers.
−5 is an integer.
∴ −5 is a natural number.

6. How is it possible for a valid argument to have a false conclusion?



CHAPTER 3
Proof Strategies and Diagrams

The main purpose of this book is to help you develop your mathematical reasoning
ability and to help you learn how to use the language and notation of mathematics.
In this chapter we will present a variety of proof and assumption strategies. Each
proof strategy is motivated by the logical structure of the statement to be proven.
A proof strategy will typically be followed by a corresponding assumption strategy.
An assumption is an assertion that can be taken to be true.

3.1 Conjecture and Proof in Mathematics

A conjecture is a statement for which there is some evidence supporting the belief
that the statement is true. We will now illustrate this idea. Consider the values of the
elements in the sequence

1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7, . . . , 1 + 3 + 5 + · · ·+(2n−1), . . .

where the first entry is 1, the second entry is 1 + 3, the third entry is 1 + 3 + 5, and
the n-th entry is 1+3+5+ · · ·+(2n−1) (the sum of the first n odd numbers). The
table of values below is obtained by evaluating the sums of the first six entries of the
sequence.

n 1+3+5+ · · ·+(2n−1) value

1 1 1
2 1+3 4
3 1+3+5 9
4 1+3+5+7 16
5 1+3+5+7+9 25
6 1+3+5+7+9+11 36

Is there a pattern? Is there a general rule? It appears that the sum of the first n odd
numbers is equal to n2.

Conjecture 1. Let n be a natural number. Then 1 + 3 + 5 + · · ·+(2n−1) = n2.

For another example, let us investigate the values of the elements in the sequence

12 + 1 + 41, 22 + 2 + 41, 32 + 3 + 41, 42 + 4 + 41, 52 + 5 + 41, . . . , n2 + n + 41, . . .

D.W. Cunningham, A Logical Introduction to Proof, DOI 10.1007/978-1-4614-3631-7 3,
© Springer Science+Business Media New York 2012

61



62 3 Proof Strategies and Diagrams

What could possibly be interesting about these numbers? Let us begin by evaluating
a sample of the natural numbers that have the form n2 + n + 41. By computing the
first six values of this sequence, we obtain the table

n n2 +n+41 value

1 12 +1+41 43
2 22 +2+41 47
3 32 +3+41 53
4 42 +4+41 61
5 52 +5+41 71
6 62 +6+41 83

What property do these values have? They cannot be factored! One observes that
the formula n2 + n + 41 seems to produce a prime number (see Definition 4.1.3).

Conjecture 2. Let n be a natural number. Then n2 + n + 41 is a prime.

Conjecture + Proof = Theorem

Mathematicians state their results in a form called a theorem which is a mathemat-
ical statement that has been proven to be true. A conjecture is a statement that
one thinks is plausible but whose truth has not been established. In mathematics
one never accepts a conjecture as being true until a proof of the conjecture has been
given. A proof is a logical argument that establishes the truth of the conjecture. Once
a mathematical proof of the conjecture is produced, then the conjecture becomes a
theorem. For example, one can give a proof of Conjecture 1 (see Exercise 1 on
page 122) and thus, this conjecture will become a theorem.

On the other hand, to show that a conjecture is false one must find an assignment
of values (an example) which makes all of the assumptions of the conjecture true
while making the conclusion false. Such an assignment is called a counterexample
to the conjecture. Consequently, a counterexample shows that the assumptions of
the conjecture do not imply its conclusion. Actually, Conjecture 2 is false and to
show this we will give a counterexample. Let n = 41. So, n≥ 1 and

n2 + n + 41 = (41)2 + 41 + 41 = 41(41 + 1 + 1)= 41 ·43,

which is not a prime. Hence, Conjecture 2 is false.

Example 1. Find a counterexample showing that the following conjecture is false:

Conjecture. Suppose x and y are real numbers satisfying x > 2 and y < 3. Then
x(1− y)> 2− x.
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Solution. We must find a counterexample that refutes the conjecture. Let x = 3 and
y = 2. Since x > 2 and y < 3, the assumptions of the conjecture hold. Furthermore,
x(1− y) = −3, 2− x = −1 and −3 �> −1. Thus, the conclusion x(1− y) > 2− x is
false. Therefore, the conjecture is false. ��

3.1.1 How to Prove an Algebraic Equation

Equations play a critical role in modern mathematics. In this text we will establish
many theorems that will require us to correctly prove an equation. Because this
knowledge is so important and fundamental, our first proof strategy presents two
correct methods for proving an equation.

Proof Strategy 3.1.1. To prove an algebraic equation, there are two approaches:

(a) Transform one side of the equation into the other side of the equation.
(b) Derive the equation from any previously given, or assumed, equations.

We shall apply Strategy 3.1.1(a) to prove a well known algebraic identity.

Theorem 3.1.2. Let a and b be real numbers. Then (a + b)(a−b) = a2−b2.

Proof. We1 shall start with the left hand side (a+b)(a−b) and transform it into the
right hand side as follows:

(a + b)(a− b) = a(a− b)+ b(a−b) by the distributive property

= a2− ab + ba− b2 by the distributive property

= a2− ab + ab− b2 by commutativity

= a2− b2 because −ab+ab = 0.

Thus, we have that (a + b)(a− b)= a2− b2. ��
In the proof of our next theorem, we apply Strategy 3.1.1(b) to prove a new

equation from some given equations.

Theorem 3.1.3. Suppose m,n, i, j are integers satisfying m = 2i + 5 and n = 3 j.
Then mn = 6i j + 15 j.

Proof. We are given that m = 2i+5 and n = 2 j. By multiplying corresponding sides
of these two equations, we obtain mn = (2i+ 5)(3 j). Thus, mn = 6i j + 15 j. ��

We now establish that 1 = 0.999 · · · , where the 9’s repeat forever.

1Most mathematicians use the term “we” in their proofs. This is considered polite and is intended
to include the reader in the discussion.
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Example 2. Show that 1 = 0.999 · · · .
Solution. Let (�) x = .999 · · · . We conclude that

10x = 10× .999 · · · multiplying both sides of (�) by 10

= 9.999 · · · by arithmetic

= 9 + .999 · · · by arithmetic

= 9 + x by (�).

Hence, 10x = 9+x. Solving for x, we obtain x = 1. Therefore, from (�) we conclude
that 1 = .999 · · · . ��
Remark 3.1.4. To prove that an equation ϕ = ψ is true, it is not a correct method
of proof to assume the equation ϕ = ψ and then work on both sides of this equation
to obtain an identity.

The method described in Remark 3.1.4 is a fallacious one and if applied, can
produce false equations. For example, this fallacious method can be used to derive
the equation −1 = 1. To illustrate this, let us assume the equation −1 = 1. Now
square both sides, obtaining (−1)2 = 12, which results in the true equation 1 = 1.
The method cited in Remark 3.1.4 would allow us to conclude that −1 = 1 is a true
equation. This is complete nonsense. We never want to apply a method that can
produce false equations!

The Proof Is Complete

It is convenient to have a mark that signals the end of a proof. Mathematicians in the
past, would end a proof with letters Q.E.D., an abbreviation for the Latin expression
“quod erat demonstrandum,” which means “that which was to be proved.” In current
times, mathematicians typically use the symbol �� to let the reader know that the
proof has been completed. In this book we shall do the same.

3.1.2 How to Prove an Inequality

To prove a new inequality from some given inequalities is a little more difficult than
proving an equation. The key difference is that you have to correctly use the laws of
inequality.

Laws of Inequality 3.1.5. For all a,b,c,d ∈ R the following hold:

1. Exactly one of the following holds: a < b, a = b or a > b. (Trichotomy Law)
2. If a < b and b < c, then a < c. (Transitivity Law)
3. If a < b, then a + c < b + c.
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4. If a < b and c > 0, then ac < bc.
5. If a < b and c < 0, then ac > bc.

We write a > b when b < a, and the inequality a ≤ b means that a < b or a = b.
Similarly, a≥ b means that a > b or a = b. The Trichotomy Law allows us to assert
that if a �< b, then a ≥ b. It should be noted that one can actually prove law 5 from
laws 1–4. Furthermore, using the above laws of inequality, one can prove that 0 < 1
and −1 < 0 (see Proposition 9.1.5 on page 296).

Theorem 3.1.6. Let a,b,c be real numbers where a < b. Then a− c < b− c.

Proof. Let a,b,c be real numbers where a < b. From law 3 of 3.1.5, we obtain the
inequality a +(−c)< b +(−c). Thus, we infer that a− c < b− c. ��
Theorem 3.1.7. Let x be a real number such that x > 2. Then x2 > x + 1.

Proof. Let x be a real number satisfying (�) x > 2. We shall prove that x2 > x + 1.
Since x> 2, we see that x> 0. From (�) and law 4 of 3.1.5, we conclude that xx> 2x.
Hence x2 > 2x and so, x2 > x+x. Because x> 1, we obtain x+x > x+1 using law 3
of 3.1.5. Therefore, x2 > x + 1. ��
Theorem 3.1.8. Let a,b,c,d be real numbers and suppose that a < b and c < d.
Then a + c < b + d.

Proof. Let a,b,c,d be real numbers satisfying (1) a < b and (2) c < d. We shall
prove that a + c < b + d. From (1) and law 3 of 3.1.5, we see that a + c < b + c.
From (2) and law 3 again, we have that b + c < b + d. So, a + c < b + c < b + d.
Therefore, a + c < b + d. ��
Theorem 3.1.9. Let a,b,c,d be positive real numbers satisfying a < b and c < d.
Then ac < bd.

Proof. Let a,b,c,d be positive real numbers satisfying (1) a < b and (2) c < d.
We shall prove that ac < bd. From (1) and law 4 of the laws of inequality 3.1.5,
we conclude that ac < bc because c > 0. From (2) and law 4 again, we derive the
inequality bc < bd because b > 0. So, ac < bc < bd. Therefore, ac < bd. ��

Exercises 3.1

1. Let x and y be real numbers. Prove that (x− y)(x2 + xy + y2) = x3− y3.
2. Let x and y be real numbers. Prove that (x + y)(x2− xy + y2) = x3 + y3.
3. Let x and y be real numbers. Prove that (x + y)2 = x2 + 2xy + y2.
4. Let x and y be real numbers. Prove that (x + y)3 = x3 + 3x2y + 3xy2 + y3, using

Exercise 3.
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5. Let ϕ > 0 be a real number satisfying ϕ2−ϕ−1 = 0. Prove that ϕ = 1
ϕ−1 .2

6. Let x be a real number such that x > 1. Prove that x2 > x.
7. Let x be a real number where x < 0. Prove that x2 > 0.
8. Let x be a real number where x > 0. Prove that x2 > 0.
9. Let x be a real number where x�= 0. Using Exercises 7 and 8, prove that x2 > 0.

10. Let a and b be distinct real numbers. Using Exercise 9 prove that a2 +b2 > 2ab.
11. Let x and y be positive real numbers such that x �= y. Using Exercise 10 prove

that x
y + y

x > 2.

12. Let x be a real number such that x2 > x. Must we conclude that x > 1?
13. Let x be a real number satisfying 0 < x < 1. Prove that x2 < x.
14. Let x be a real number where x2 < x. Must we infer that 0 < x < 1?
15. Let a and b are real numbers where a < b. Prove that −a >−b.
16. Let a,b be positive real numbers and let c,d be negative real numbers. Suppose

a < b and c < d. Prove that ad > bc.
17. Find a counterexample showing that the following conjecture is false: Let

a,b,c,d be natural numbers satisfying a
b ≤ c

d . Then a≤ c and b≤ d.
18. Find a counterexample showing that the following conjecture is false: Let m≥ 0

and n≥ 0 be integers. Then m+ n≤ m ·n.
19. Find a counterexample showing that the following conjecture is false: Let x≥ 0

and y≥ 0 be real numbers. Then
√

x + y =
√

x +
√

y.
20. Let a,b,c,d be real numbers. Suppose a+b = c+d and a≤ c. Prove that d ≤ b.
21. Show that .045000 · · ·= .044999 · · · , where the 0’s and the 9’s repeat forever.
22. Let a,b,c be real numbers. Prove that a2 + b2 + c2 ≥ ab + bc + ac.

Exercise Notes: For Exercise 10, if a�= b then a− b�= 0. For Exercise 20, note that
x≤ y if and only if x− y≤ 0, for real numbers x and y.

3.2 Using Proof Diagrams as Guides for Proving Theorems

In the previous section we developed techniques for proving theorems about
equations and inequalities. For example, in the proof of Theorem 3.1.3 we assumed
that m = 2i+5 and n = 3 j, and then deduced the equation mn = 6i j+15 j. Similarly,
in our proof of Theorem 3.1.8 we assumed that a< b and c < d, and then proved the
inequality a+c < b+d. These two theorems illustrate the fact that a mathematical
proof is a logical argument that demonstrates, under certain assumptions, that a

2The number ϕ is called the golden ratio. Many artists and architects use the golden ratio ϕ in
their work. When a rectangle of length b and width a satisfies b

a = ϕ , it is considered to be more
aesthetically pleasing.
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particular conclusion must hold. The remainder of this chapter is devoted to showing
you how to prove a rich variety of mathematical statements, many of which are
more complicated than those we have previously studied. The key reason that we
introduced logic in the first two chapters was to prepare you for the task of proving
more challenging theorems.

It turns out that all mathematical proofs can be analyzed in terms of the correct
use of the logical symbols ∧, ∨, ¬,→,↔, ∀, and ∃. In this chapter, we will present
proof strategies that take advantage of these logical symbols. We will also show
you how to “diagram” a mathematical proof. The construction of such a diagram is
based upon a logical analysis of the statement to be proven. A generic example of a
“general theorem” and a “general program” for proving this theorem follows.

General Theorem. Suppose G1, G2, . . . , Gn. Then ϕ .

The “formal” proof of the theorem will have the form:

Proof. Assume G1, G2, . . . , Gn. [The proof of ϕ goes here.] Therefore, ϕ . ��
How will we find the proof of ϕ? We first identify the assumptions and conclusion,
and then put these statements in the diagram

Assume G1
...

Assume Gn

Prove ϕ .

Indentation is used to indicate that the proof of the statement ϕ depends on the
assumptions G1,G2, . . . ,Gn. Using the logical structure of the statement ϕ , we will
be able to break down the proof into simpler parts. We shall then clarify these parts
and discover how these parts can be used to form a logically correct proof. The proof
will then just assemble these parts to form a coherent argument. In other words, the
parts can be thought of as pieces of a jigsaw puzzle and the proof shows how these
pieces fit together to form a clear and complete picture.

In this chapter we shall present the key strategies that are used in mathematical
proofs. These strategies depend on the logical form of the statement that is to be
proven. We will begin by presenting a strategy for proving mathematical statements
that have the logical form “If —, then —.”

3.3 Statements of the Form P→ Q

Consider the conditional statement “If P, then Q.” Suppose we want to show that
this conditional is true. We know that the conditional is true whenever P is false (see
the conditional truth table on page 13). So we only need to show that when P is true,
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then Q is also true. Thus, under the assumption that P is true we must verify that Q
is also true. We can now introduce a proof strategy for conditional statements.

Proof Strategy 3.3.1. Given a diagram containing the form

Prove P→ Q

replace this form with

Assume P
Prove Q.

Proof strategy 3.3.1 is called a direct proof. To assume P means to take P as
given. So, when we apply the conditional strategy, we get an additional assumption
to use in our proof.

Theorem 3.3.2. Suppose a and b are positive real numbers. If a < b, then a2 < b2.

Proof Analysis. The assumption is “a and b are positive real numbers.” The
conclusion of the theorem is “If a < b, then a2 < b2.” We shall construct proof
diagrams, using the Conditional Proof Strategy 3.3.1 to get the second diagram:

Assume a and b are positive real numbers.
Prove a < b→ a2 < b2.

Assume a and b are positive real numbers.
Assume a < b.

Prove a2 < b2.

From the assumptions we have that a and b are positive and that a < b. We have
to derive the inequality a2 < b2. To do this, we shall use the given inequality a < b
and introduce a2 and b2. We first multiply both sides of a < b by the positive real
number a, and then multiply both sides of a < b by the positive b. The desired
inequality a2 < b2 will follow. The final diagram will guide our composition of a
well-structured proof of the theorem. A©A©
Proof. Suppose a and b are positive real numbers. Assume a < b. We must prove
that a2 < b2. Multiplying both sides of the inequality a < b by the positive a gives
the inequality (i) a2 < ab, and multiplying both sides of the inequality a < b by
the positive b yields the inequality (ii) ab < b2. From (i) and (ii) we conclude that
a2 < ab < b2. Therefore, a2 < b2. ��

As stated in the preface, we shall use the symbol A© to mark the end of a proof
analysis and we use the symbol �� to identify the end of a proof. The proof analysis
is not part of the proof and is presented only to help the reader understand how we
arrived at the proof.

Let a, p,x,y be real numbers. Suppose that you have the expression a + x and
you know that x = y. Then, by substitution, you can conclude that a + x = a + y.
Similarly, if you have the expression px and you know that x = y, then you can
conclude that px = py, again by substitution. These two substitution properties of
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equality are frequently used to derive equations. Can these substitution properties
be extended to the inequality relation? That is, suppose that you working with the
expressions a + x and px and you know that x < y. Then, by substitution, can you
conclude that a + x < a + y and px < py?

We now identify four substitution properties of inequality that we will use to
derive inequalities. These substitution properties offer a slightly different way of
viewing the laws of inequality given in 3.1.5. Note that a summand is a value that is
to be added; for example, in 1 + 2 the summands are 1 and 2.

Substitution Properties of Inequality 3.3.3. Let a, p,x,y real numbers with p> 0.
Then the following hold:

(1) Given the sum a + x, if x < y, then you can conclude that a + x < a + y.
(Replacing a summand with a larger value yields a larger sum.)

(2) Given the sum a + x, if x > y, then you can conclude that a + x > a + y.
(Replacing a summand with a smaller value yields a smaller sum.)

(3) Given the product px, if x < y, then you can conclude that px < py.
(Replacing a factor with a larger value yields a larger product.)

(4) Given the product px, if x > y, then you can conclude that px > py.
(Replacing a factor with a smaller value yields a smaller product.)

Before applying (3) or (4) in the above substitution properties of inequality, one
must ensure that p > 0. Similar properties hold if we replace each occurrence of <
with ≤ in (1) and (3), and replace each occurrence of > in (2) and (4) with ≥. For
example, given the sum a + x, if x ≤ y, then you can conclude that a + x ≤ a + y.
Similarly, given the product px, if x ≥ y, then you can conclude that px≥ py when
p > 0. In our next example, we apply properties (2) and (4) of 3.3.3 to derive an
inequality.

Example 1. Prove that if 4n > 4n + 1, then 4n+1 > 4(n + 1)+ 1, when n ≥ 2 is a
natural number.

Solution. Let n ≥ 2 be a natural number and assume 4n > 4n + 1. We prove that
4n+1 > 4(n + 1)+ 1 as follows:

4n+1 = 4 ·4n by property of exponents

> 4(4n + 1) by (4) of 3.3.3 because 4n > 4n+1

= 16n + 4 by distributivity

= 4n + 4 + 12n because 16n = 4n+12n

= 4(n + 1)+ 12n by distributivity

> 4(n + 1)+ 1 by (2) of 3.3.3 because 12n≥ 12 ·2 > 1.

Therefore, 4n+1 > 4(n + 1)+ 1 and this completes the proof. ��
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Suppose that a statement of the form P → Q is an assumption and not the
conclusion you are trying to prove. How can you use this assumption in your
proof? Recall the inference rules modus ponens and modus tollens discussed in
Section 1.3.3.

Assumption Strategy 3.3.4. Given a diagram containing the form

Assume P→ Q

there are two approaches:

(a) If you are assuming or can prove P, then you can conclude Q by modus ponens.
(b) If you are assuming or can prove¬Q, then you can deduce¬P by modus tollens.

Exercises 3.3

1. Find a counterexample showing that the following conjecture is false: Let a and
b are real numbers. If a < b, then a2 < b2.

2. Let x and y be real numbers satisfying 4x + 5y≥ 6. Prove if x < 4, then y >−2.
3. Suppose a and b are negative real numbers. Prove that if a < b, then a2 > b2.
4. Let a be a real number. Prove that if a > 0, then (a + 4)2 > a2 + 16.
5. Let x be a real number. Prove that if x≥ 4, then x2 > 2x + 1.
6. Let n be an integer. Prove that if n > 3, then 2n−1 + 2n−2 + 2n−3 ≤ 2n.
7. Prove that if (1+ x)n ≥ 1+nx, then (1+ x)n+1 ≥ 1+(n+1)x, when x >−1 is a

real number and n is a natural number.
8. Let n≥ 2 be an integer. Prove that if 2n > n, then 2n+1 > n + 1.
9. Show that Theorem 3.1.9 implies Theorem 3.3.2.

Exercise Notes: For Exercises 4–8, one should review the Substitution Properties of
Inequality 3.3.3 and Example 1.

3.4 Statements of the Form ∀xP(x) and ∃xP(x)

To prove that a statement is true for all x, we must prove that the statement is true
for every element x in our universe. On the other hand, to prove that a statement is
true for some x, we may have to first find such an individual and then prove that this
individual satisfies the statement.
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3.4.1 Working with Universal Statements

Consider the universal statement ∀xP(x). To show that this statement is true, we can
let x be completely arbitrary and then show that the statement P(x) is true. This idea
inspires our next proof strategy that incorporates a strategy for the ‘for all’ quantifier
and the ‘bounded for all’ quantifier, in parallel.

Proof Strategy 3.4.1. Given a diagram containing one of the forms

Prove ∀xP(x) Prove (∀x ∈ A)P(x)

replace the form with the corresponding lower diagram, as follows:

Let x be arbitrary.
Prove P(x)

Let x ∈ A be arbitrary.
Prove P(x)

If the letter x is already being used in the proof, then use another letter, say y, in the
lower diagram.

Theorem 3.4.2. For all x ∈ R, if x > 3, then x2 + 5x + 2> 25.

Proof Analysis. Observe that the statement of the theorem has the logical form

(∀x ∈ R)(x > 3→ x2 + 5x + 2> 25).

We can now construct the following proof diagrams:

Prove (∀x ∈ R)(x > 3→ x2 + 5x + 2> 25).

Let x ∈ R be arbitrary.
Prove (x > 3→ x2 + 5x + 2 > 25).

Let x ∈ R be arbitrary.
Assume x > 3.

Prove x2 + 5x + 2> 25.

We applied the ∀-Proof Strategy 3.4.1 to get the second diagram. The last diagram
was obtained by applying the Conditional Proof Strategy 3.3.1.

From the assumption x > 3 we must prove the inequality x2 + 5x + 2 > 25. So,
starting with x > 3 we need to derive some information about x2 and 5x. Since
x > 3, we can deduce that (1) x2 > 32 by Theorem 3.3.2. Because x > 3, we can
also conclude that (2) 5x > 5 ·3. By adding the correspond sides of (1) and (2), the
desired inequality x2 + 5x + 2 > 25 will follow. The above final proof diagram will
guide our composition of a well-structured proof of the theorem. A©A©
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Proof. Let x be an arbitrary real number. Assume x> 3. We prove that the inequality
x2 + 5x + 2 > 25 holds. Since x > 3, we have that x > 0 and thus, (1) x2 > 9 by
Theorem 3.3.2. Because x > 3, we also have that (2) 5x > 15. From (1) and (2)
we obtain x2 + 5x > 24 and hence, x2 + 5x + 2 > 26. Since 26 > 25, we see that
x2 + 5x + 2 > 25. This completes the proof. ��
Remark 3.4.3. Theorem 3.4.2 has the logical form (∀x ∈ R)P(x) and we started
the proof of this theorem with the expression “let x be an arbitrary real number.”
On the other hand, many mathematicians would begin this proof with just the
expression “let x be a real number.” Such a proof is then completed under the
implicit understanding that x is to be considered as an arbitrary real number. In
this book, we will also prove statements of the form (∀x ∈ A)P(x) by starting the
proof with the expression “let x ∈ A.” The reader should then consider x to be taken
as completely arbitrary.

Suppose a statement of the form ∀xP(x) is an assumption. How can you use
this assumption in your proof? You may plug in any useful value for x, say a, and
then use P(a) in your proof. The expression ‘useful value’ is ambiguous; however,
a useful value is usually one that appears in your proof (see Exercise 16).

Assumption Strategy 3.4.4. Given a diagram containing one of the forms

Assume ∀xP(x) Assume (∀x ∈ A)P(x)

replace the form with the corresponding lower diagram

Let a = (a useful value)
Assume P(a)

Let a = (a useful value in A)
Assume P(a)

3.4.2 Working with Existential Statements

Consider the mathematical statement:

There is a natural number n such that 2n2− 5n + 2 is a prime number.

This statement can be stated symbolically as

(∃n ∈ N)(2n2− 5n + 2 is a prime number).

How would you prove this statement? One could begin by trying to find such an n.
After looking at n = 0,1,2,3, you would discover that when n = 3, the number
2n2−5n + 2 = 5 is a prime. So the statement is true.

In mathematics one is often required to prove an existential statement having the
form ∃xP(x). Our next proof strategy presents two methods for proving the existence
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of a mathematical object c satisfying P(c). The first method, Proof Strategy 3.4.5(a),
requires one to specifically find such an object and then prove that it satisfies the
desired property. The second method (b) is more indirect and presumes that this
desired object will be discovered during the proof.

Proof Strategy 3.4.5. Given a diagram containing one of the forms

Prove ∃xP(x) Prove (∃x ∈ A)P(x)

there are two methods, (a) and (b):

(a) First find a value x, or respectively x ∈ A, such that P(x) is true. Then replace
the form with the corresponding next diagram, as follows:

Let x = (the value you found)
Prove P(x)

Let x = (the value in A you found)
Prove P(x)

(b) Replace the form with the corresponding next diagram, as follows:

Prove P(x) for some x Prove P(x) for some x ∈ A

When using Proof Strategy 3.4.5(a) you must first identify the value for x that
will satisfy P(x) and, in your resulting proof, you must prove that your value for x
satisfies P(x). Furthermore, in the proof you do not have to explain how this value
was obtained. On the other hand, when applying method (b), you should expect the
correct value for x to “fall out of your proof” (see Remark 3.4.12).

Both of the approaches (a) and (b) in 3.4.5 are referred to as a constructive
proof strategy because they demonstrate the existence of a certain mathematical
object by first identifying or constructing such an object. This is in contrast to a
nonconstructive proof which shows that a particular mathematical object must exist,
but does not provide a specific example or a means for producing the object.

Theorem 3.4.6. Let n be an integer. Then there is an x ∈Q satisfying (n+ 1
2)x = 1.

Proof Analysis. First we construct the following proof diagrams (we apply the
bounded ∃-Proof Strategy 3.4.5(a) to get the second diagram):

Let n be an integer.
Prove (∃x ∈Q)[(n + 1

2 )x = 1].

Let n be an integer.
Let x = (the value in Q you found).

Prove (n + 1
2)x = 1.

Let n be an integer.
Let x = 2

2n+1 .
Prove (n + 1

2)x = 1.
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In the last diagram we just identify the value for x in Q that we found by solving the
equation (n + 1

2)x = 1 for x as follows

x =
1

n +
1
2

=
1

2n + 1
2

=
2

2n + 1
.

Observe that n + 1
2 �= 0 because n is an integer and thus 2n + 1�= 0. Since x = 2

2n+1
is a ratio of two integers, we see that x is rational. In our proof we must show that
this value for x actually satisfies the equation. The last proof diagram will guide our
composition of a well-structured proof. We will not mention, in our proof, how we
found our value for x. In our proof we will just state “Let x = 2

2n+1 ,” and then prove
that this value for x satisfies the equation (n + 1

2)x = 1. A©A©
Proof. Let n be an integer. Let x = 2

2n+1 where 2n + 1�= 0 because n is an integer.

Clearly, x ∈Q. We now show that (n + 1
2 )x = 1 as follows:

(

n +
1
2

)

x =

(

n +
1
2

)(
2

2n + 1

)

=

(
2n + 1

2

)(
2

2n + 1

)

= 1.

Therefore, (n + 1
2 )x = 1. ��

Now, suppose that a statement of the form ∃xP(x) is an assumption. To use this
assumption in your proof, you just assign a name, say x0, to represent an element
satisfying P(x0).

Assumption Strategy 3.4.7. If a diagram contains one of the forms

Assume ∃xP(x) Assume (∃x ∈ A)P(x)

introduce a new variable, say x0, representing an object that makes P(x0) true and
replace the form with the corresponding lower diagram

Assume P(x0) for some x0 Assume P(x0) for some x0 ∈ A

Assumption Strategy 3.4.7 is used when one wants to “clarify” the assumption
∃xP(x). Suppose in a proof you are assuming that ∃xP(x) and you want to use this
assumption in your proof. To do this, you just assign a variable x0 that represents a
value satisfying P(x0). A word of warning should be noted here. When you continue
with your proof, you must not assign this same variable x0 again. In other words,
you must use a different variable to clarify another assumption in your proof (see
Remark 3.4.9).

We shall apply both Proof Strategy 3.4.5(b) and Assumption Strategy 3.4.7 in the
proof of our next theorem. Before doing this, we define what it means for an integer
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to be even and what it means for an integer to be odd. These fundamental concepts
can be described in terms of some very simple equations.

Definition 3.4.8. An integer n is even if and only if n = 2i for some i ∈ Z. An
integer n is odd if and only if n = 2k + 1 for some k ∈ Z.

One can prove that every integer is either even or odd (see Exercise 3 on
page 106) and in this chapter we will implicitly use this fact (see the proofs of
Theorems 3.6.2 and 3.8.2).

Remark 3.4.9. One must use different letters to express different things! Suppose,
for example, that we have that m and n are both even integers. If we write m = 2i
and n = 2i, then we must have that m = n and one could then conclude that any
two even numbers are equal! Of course, this is not the case. For another example,
suppose that we have that m is even and n is odd. If we write m = 2i and n = 2i+1,
then we must deduce that n = m+1. Using this, one could then say that when m = 6
and n = 11, it follows that 11 = 6 + 1. To avoid such absurdities, one must never
use the same letter to clarify two different assertions.

Theorem 3.4.10. Suppose n is an integer. If n is even, then n2 + 1 is odd.

Proof Analysis. First we present the proof diagrams, where the second diagram is
the result of applying the Conditional Proof Strategy 3.3.1. By clarifying what it
means to be even and what it means to be odd, we obtain the third diagram. Notice
that the last line of the final diagram utilizes Proof Strategy 3.4.5(b) because we
expect the value for j will be made clear as a result of our proof.

Assume n is an integer.
Prove (n is even)→ (n2 + 1 is odd).

Assume n is an integer.
Assume n is even.

Prove n2 + 1 is odd.

Assume n is an integer.
Assume n = 2i for some i ∈ Z.

Prove n2 + 1 = 2 j + 1 for some j ∈ Z.

Using the equation n = 2i, we need to prove the equation (�) n2 + 1 = 2 j + 1 and
find the value for j. To prove equation (�), we start with the right hand side n2 + 1
and derive the left hand side of this equation (see 3.1.1(a)). We will use our proof
diagrams as a guide in our composition of the following proof. A©A©
Proof. Let n be an integer. Assume n is even, that is, (a) n = 2i for some i ∈ Z. We
shall prove that n2 + 1 is odd. From (a) we obtain n2 + 1 = (2i)2 + 1 = 2(2i2)+ 1.
Hence, n2 + 1 = 2 j + 1 where j = 2i2 is an integer. Therefore, n2 + 1 is odd. ��
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Recall that a real number x is rational if and only if r = a
b for integers a,b where

b�= 0. In our proof of the next theorem, we will use Assumption Strategy 3.4.7 when
we clarify the assumption that “x is rational.”

Theorem 3.4.11. For every real number x, if x is rational then x2 is also rational.

Proof Analysis. First we construct the proof diagrams. The ∀-Proof Strategy 3.4.1
is used to obtain our second diagram and the final line of the last diagram applies
the ∃-Proof Strategy 3.4.5(b).

Prove (∀x ∈R)[(x is rational)→ (x2 is rational)].

Let x be a real number.
Prove (x is rational)→ (x2 is rational).

Let x be a real number.
Assume x is rational.

Prove x2 is rational.

Let x be a real number.
Assume x = p

q for some p,q ∈ Z where q�= 0.

Prove x2 = a
b for some a,b ∈ Z where b�= 0.

The last diagram was obtained by writing out what it means for x and x2 to be
rational (see Remark 3.4.9). In the end, we must prove that x2 = a

b for some a,b∈ Z
where b �= 0. Observe that we are applying Proof Strategy 3.4.5(b), as we expect
that the correct values for a and b will “fall out of our proof.” We are assuming
the equation (i) x = p

q where we consider p and q to be known. We must derive

an equation of the form (ii) x2 = a
b where a and b are not known. Starting with

x2 and performing a substitution using (i), we can easily derive the right hand side
of (ii) and find the unknowns a and b. The above proof diagrams will guide the
composition of the following proof. A©A©
Proof. Let x be a real number. Assume that x is rational, that is, x = p

q for some

p,q ∈ Z where q �= 0. We will prove that x2 is rational. Since x = p
q , using a little

algebra, we get x2 = ( p
q )2 = p2

q2 where q2 �= 0 because q �= 0. Thus, x2 = a
b where

a = p2, b = q2 are integers and b�= 0. Therefore, x2 is rational. ��
Remark 3.4.12. How does one know when to apply option (a) or (b) of the ∃-Proof
Strategy 3.4.5? In general, if the assumptions can be expressed as equations and the
conclusion can also be expressed as a similar equation, then option (b) is the one to
choose first.
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3.4.3 Working with Mixed Quantifier Statements

To prove a statement with mixed quantifiers, one must combine Proof Strate-
gies 3.4.1 and 3.4.5. Since the method of proof depends on the order in which the
quantifiers are presented, we have the following two different proof strategies:

Proof Strategy 3.4.13. Given a diagram of the form

Prove ∀x∃yP(x,y)

use the diagram
Let x be arbitrary.

Let y = (the value you found).
Prove P(x,y).

Proof Strategy 3.4.14. Given a diagram of the form

Prove ∃y∀xP(x,y)

use the diagram
Let y = (the value you found).

Let x be arbitrary.
Prove P(x,y).

When using Proof Strategy 3.4.13, the value y (that you must find) typically
involves x. On the other hand, when using Proof Strategy 3.4.14, the value y will not
involve x. We will apply these strategies, respectively, in our proofs of the next two
theorems.

Theorem 3.4.15. For every real number x> 0 there exists a real number y< 0 such
that yx2 + 2x = x.

Proof Analysis. Using Proof Strategy 3.4.13, we first construct the following proof
diagrams:

Let x > 0 be a real number.
Let y = (the negative real number you found).

Prove yx2 + 2x = x.

Let x > 0 be a real number.
Let y =− 1

x .

Prove yx2 + 2x = x.

In the last diagram we identified the value for y =− 1
x that we found by solving the

equation yx2 +2x = x for y. Since x > 0, it follows that y < 0. We will use this latter
diagram as a guide for our proof. A©A©
Proof. Let x > 0 be a real number. Let y = − 1

x and observe that y < 0. We show
that yx2 + 2x = x as follows: yx2 + 2x =

(− 1
x

)

x2 + 2x = −x + 2x = x. Therefore,
yx2 + 2x = x. ��
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Theorem 3.4.16. There exists a real number y > 0 such that for every real number
x we have y2x2 + y2− 5yx2− 5y = 0.

Proof Analysis. Using proof strategy 3.4.14, we first construct the following proof
diagram:

Let y = (the positive real number you found).
Let x be a real number.

Prove y2x2 + y2− 5yx2−5y = 0.

Let y = 5.
Let x be a real number.

Prove y2x2 + y2− 5yx2−5y = 0.

In the last diagram we identified the value for y = 5 that we found by solving the
equation y2x2 + y2− 5yx2− 5y = 0 for y. We will use this latter diagram as a guide
for our proof. A©A©
Proof. Let y = 5 > 0 and let x be any real number. We shall establish the equation
y2x2 + y2−5yx2−5y = 0 as follows:

y2x2 + y2−5yx2− 5y = 52x2 + 52− 5 ·5x2− 5 ·5 = 25x2 + 25−25x2−25 = 0.

Therefore, y2x2 + y2− 5yx2− 5y = 0. ��

3.4.4 Uniqueness Proofs

Theorems asserting that there is a “unique” element that satisfies a particular
property are known as uniqueness theorems. Such theorems pervade mathematics.
For example, in linear algebra there are theorems concerning the uniqueness of
solutions to certain linear systems of equations. Typically the proof of a uniqueness
theorem applies the strategy below.

Proof Strategy 3.4.17. Given a diagram containing the form

Prove ∃!xP(x)

replace this form with the diagram

Prove ∃xP(x)
Prove ∀x∀y[(P(x)∧P(y))→ x = y].

In other words, one can use the abbreviated diagram

Existence:
Uniqueness:

Prove ∃xP(x)
Assume P(x)∧P(y)

Prove x = y.
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Theorem 3.4.18. Let a,b be real numbers where a �= 0. Then there exists a unique
real number x satisfying ax+ b = 0.

Proof Analysis. We are given real numbers a and b with a �= 0. First we need to
prove that there exists a real number x that satisfies the equation ax + b = 0; that is,
we need to prove that (∃x ∈R)(ax+b = 0). Afterwards, we must prove that there is
only one such solution. We use the uniqueness–Proof Strategy 3.4.17 to obtain the
following proof diagram where P(x) is the assertion that ax + b = 0:

Existence:
Uniqueness:

Assume a,b ∈ R where a�= 0.
Prove (∃x ∈R)(ax + b = 0).

Assume (ax + b = 0)∧ (ay + b = 0).

Prove x = y.

We apply the ∃-Proof Strategy 3.4.5(b) to obtain the diagram

Existence:

Uniqueness:

Assume a,b ∈ R where a�= 0.
Let x = (the value in R you found).

Prove ax + b = 0.
Assume (ax + b = 0)∧ (ay + b = 0).

Prove x = y.

To find this x, we simply solve the equation ax+b = 0 for x and obtain x =− b
a . We

have our final proof diagram

Existence:

Uniqueness:

Assume a,b ∈ R where a�= 0.
Let x =− b

a .

Prove ax + b = 0.
Assume (ax + b = 0)∧ (ay + b = 0).

Prove x = y.

This final diagram will guide our composition of the following proof. A©A©
Proof. Let a,b be real numbers where a �= 0. First we prove that there exists a real
number x satisfying ax + b = 0. Then we will prove that such an x is unique.

Existence: Let x = − b
a . Since a �= 0, we see that x is a real number. Now, since

x =− b
a , using a little algebra we get ax+b = a(− b

a)+b = 0. Therefore, there is an
x satisfying ax + b = 0.

Uniqueness: Suppose (1) ax + b = 0 and (2) ay + b = 0. We prove that x = y. From
(1) and (2) we see that ax + b = ay + b. Using algebra, we conclude that x = y. ��

Exercises 3.4

Prove the following theorems:

1. Theorem. Let c �= 1 be a real number. There exists a unique real number x
satisfying x+1

x−2 = c.
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2. Theorem. Let m be an integer. If m is odd, then m2 is odd.
3. Theorem. Let m be an integer. If m is even, then m+ 5 is odd.
4. Theorem. Let m and n be integers. If n is even, then mn is even.
5. Theorem. For all integers m and n, if m− n is even, then m2−n2 is even.
6. Theorem. There exists a real number x such that |3x−2|=−7x.
7. Theorem. For every real number a > 3, there is a real number x < 0 such that
|3x−2|=−ax.

8. Theorem. For every real number y > 0, there is a real number x < 0 such that
y2 + 2xy =−x2.

9. Theorem. For each real number x, there is a real number y that satisfies the
equation y2−2xy = 2.

10. Theorem. There is a real number d > 0 such that for all real numbers x, if
|x−1|< d, then |3x− 3|< 1

2 .

11. Theorem. For every integer n, if n is odd, then n−1
2 is an integer.

12. Theorem. Let a,b be integers where a �= 0 or b �= 0. There is an integer n ≥ 1
of the form n = sa + tb for some integers s, t.

13. Theorem. For every integer i there is a unique integer j such that 3 j + 9i = 6.
14. Theorem. For every real number x there is a unique real number y such that

yx2−3x =−2y.
15. Theorem. There is a unique real number y such that yx +6 = 2x +3y for every

real number x.
16. Theorem. Let c≤ 2 be a real number. Suppose x + y≤ xy for all real numbers

x and y satisfying x≥ c and y≥ c. Then c = 2.

Exercise Notes: For Exercises 6 and 7, recall that |y| = ±y (see Definition 3.6.6).
For Exercise 15, to prove uniqueness, note that if the equation yx+6 = 2x+3y holds
for every real number x, then the equation holds for x = 1. For Exercise 16, note that
2≥ c and c≥ c.

3.5 Statements of the Form P∧Q

Consider the statement “P and Q.” To show that this statement is true, we must show
that P is true and show that Q is also true. We can now introduce a proof strategy
for such “and” statements.

Proof Strategy 3.5.1. Given a diagram containing the form

Prove P∧Q
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replace this form with

Prove P
Prove Q.

The following divisibility concept is thoroughly explored in number theory.3

Definition 3.5.2. Let m and n be integers. We write m |n if and only if n = mk for
some k ∈ Z.

When m |n we may say the “m divides n” or “m evenly divides n.” To assert that
m does not evenly divide n, we write m � n.

Theorem 3.5.3. For all integers n, if 12 |n then 3 |n and 4 |n.

Proof Analysis. First we construct the proof diagrams (the second diagram is the
result of applying the ∧-Proof Strategy 3.5.1):

Let n be an integer.
Assume 12 |n.

Prove 3 |n and 4 |n.
Let n be an integer.

Assume 12 |n.
Prove 3 |n.
Prove 4 |n.

Let n be an integer.
Assume n = 12k for some k ∈ Z.

Prove n = 3i for some i ∈ Z.

Prove n = 4 j for some j ∈ Z.

The last diagram was obtained by writing out what it means to be divisible by 12, 3,
and 4 (respectively). These diagrams guide the following proof. A©A©
Proof. Let n be an integer. Assume 12 |n, that is, assume (1) n = 12k for some k∈Z.
We prove that 3 |n and 4 |n. We shall first prove that 3 |n. Using some algebra on (1),
we deduce that n = 12k = 3(4k). Thus, n = 3i for some i∈ Z, namely i = 4k. Hence,
3 |n. We now prove that 4 |n. Again, by applying algebra on (1), we conclude that
n = 12k = 4(3k). So, n = 4 j where j = 3k is an integer. Therefore, 4 |n. ��

Suppose that a statement of the form P ∧ Q is an assumption and not the
conclusion you are trying to prove. In this case you can assume that P is true and
assume that Q is also true.

3Number theory is the branch of mathematics that is principally concerned with the integers and
their properties.
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Assumption Strategy 3.5.4. Given a diagram containing the form

Assume P∧Q

replace this form with the diagram

Assume P
Assume Q.

Theorem 3.5.5. The product of two odd integers is odd.

Proof Analysis. First we construct three proof diagrams (Assumption Strategy 3.5.4
yields the second diagram):

Let m and n be integers.
Assume m and n are odd.

Prove mn is odd.

Let m and n be integers.
Assume m is odd.
Assume n is odd.

Prove mn is odd.

Let m and n be integers.
Assume m = 2i+ 1 for some i ∈ Z.

Assume n = 2 j + 1 for some j ∈ Z.

Prove mn = 2k + 1 for some k ∈ Z.

We will use the above diagrams to direct our proof. A©A©
Proof. Let m and n be integers. Assume m and n are odd, that is, m = 2i + 1 and
n = 2 j + 1 for some i, j ∈ Z. We will prove that mn is odd. To do this, note that
mn = (2i+ 1)(2 j + 1) by the assumptions. Using some algebra, we deduce that

mn = (2i+ 1)(2 j + 1) = 4i j + 2(i+ j)+ 1 = 2(2i j + i+ j)+ 1.

Thus, mn = 2k + 1 where k = (2i j + i+ j) is in Z. Therefore, mn is odd. ��
We will now show that divisibility is transitive, that is, for all integers a, b, and c,

if a divides b and b divides c, then a divides c.

Theorem 3.5.6 (Transitivity of Divisibility). For all integers a, b and c, if a |b and
b |c, then a |c.
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Proof Analysis. We build the proof diagrams:

Let a, b, and c be integers.
Assume a |b and b |c.

Prove a |c.
Let a, b and c be integers.

Assume a |b.
Assume b |c.

Prove a |c.
Let a, b and c be integers.

Assume b = ak for some k ∈ Z.

Assume c = bi for some i ∈ Z.

Prove c = a j for some j ∈ Z.

In our proof we shall assume (1) b = ak and (2) c = bi where we consider k, i to
be known integers. We have to derive an equation of the form (3) c = a j where the
integer j is not known. Substituting the value for b given by (1) into (2), we will
derive equation (3) and find the unknown j. A©A©
Proof. Let a, b, and c be integers. Assume a |b and b |c, that is, b = ak for some
k ∈ Z and c = bi for some i ∈ Z. We prove that a |c. Since b = ak and c = bi, we
deduce that c = bi = (ak)i = a(ki). Thus, c = a j for some j ∈ Z, namely j = ki.
Therefore, a |c. ��

Our next theorem shows that if m |a and m |b, then m evenly divides any “linear
combination” of a and b, that is, m |(sa + tb) for all s, t ∈ Z.

Theorem 3.5.7. Let m, a, and b be integers. If m |a and m |b, then m |(sa + tb) for
all integers s and t.

Proof. Let m, a, and b be integers. Assume m |a and m |b, that is, assume that

a = mi (3.1)

b = m j (3.2)

for some i, j ∈ Z. Let s, t ∈ Z. We shall prove that m |(sa+ tb). From (3.1) and (3.2)
we obtain

sa + tb = s(mi)+ t(m j) = m(si+ t j).

Thus, sa + tb = mk where k = si+ t j is an integer. Therefore, m |(sa + tb). ��
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Exercises 3.5

Prove the following theorems:

1. Theorem. Let a,b be real numbers. If a > 0 and b > 0, then (a+b)2 > a2 +b2.
2. Theorem. Let a,b be real numbers. If a < 0 and b < 0, then (a+b)2 > a2 +b2.
3. Theorem. For all x ∈ R and y ∈ R, if x and y are rational, then x + y is rational.
4. Theorem. For all integers a, b, and c, if c |a and c |b, then c |(a+b), c |(a−b),

and c |(ai) for any integer i.
5. Theorem. Let n be an integer. If 21 |n, then 3 |n and 7 |n.
6. Theorem. Suppose n is an integer. If 3 |n and 7 |n, then 21 |n.
7. Theorem. For every integer n, if n is odd, then 4 |(n2−1).
8. Theorem. Suppose m,n are positive integers. If m |n, then m≤ n.
9. Theorem. For all positive integers a and b, if a |b and b |a, then a = b.

10. Theorem. Let a,b,x,y be negative integers. If a < b and x < y, then ax > by.
11. Theorem. Let a > 0 and b <−4 be real numbers. Then ab + b <−4(a + 1).
12. Theorem. For all integers a and b, if a |b, then a2 |b2.
13. Theorem. Suppose m, a, b, c, d are integers. If m |(a−b) and m |(c−d), then

m |((a + c)− (b + d)).
14. Theorem. Let m, a, b, c, d be integers. If m |(a− b) and m |(c− d), then

m |(ac−bd).
15. Theorem. Let a,b,d be real numbers. If 0≤ a< d and 0≤ b< d, then a−b< d

and b−a < d.
16. Theorem. If 0≤ a < d and 0≤ b < d, then −d < a−b < d where a,b,d ∈R.
17. Theorem. For all integers a, b, c, d, if a �= c and ad �= bc, then there exists a

unique rational number x such that ax+b
cx+d = 1.

Exercise Notes: For Exercises 1 and 2, one should review the substitution properties
of inequality 3.3.3. For Exercise 6, use the identity n = 7n− 6n. For Exercise 17,
after you identify x in your proof, you must prove that cx + d �= 0.

3.6 Statements of the Form P∨Q

Consider the statement “P or Q.” To show that this statement is true, we must verify
that either P is true or that Q is true. So we can try to prove P or try to prove Q. This
direct approach can sometimes be difficult, as we may then have to work with an
inadequate set of assumptions. Fortunately, logic offers us an easier approach. We
know that (P∨Q), (¬P→ Q), and (¬Q→ P) are all logically equivalent. Thus, to
prove (P∨Q), we can either prove (¬P→ Q) or prove (¬Q→ P). In either case,
we obtain a new assumption that we can use in our proof. We can now introduce a
proof strategy for such “or” statements.
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Proof Strategy 3.6.1. Given a diagram containing the form

Prove P∨Q

there are three approaches:

(a) Replace the form with the diagram

Assume ¬P
Prove Q.

(b) Replace the form with the diagram

Assume ¬Q
Prove P.

(c) When using a division by cases,4 in each case, prove P or prove Q.

Theorem 3.6.2. Let m and n be integers. If mn is even, then m is even or n is even.

Proof Analysis. We first construct the proof diagrams. The second diagram is
obtained by applying Strategy 3.6.1(a).

Assume m and n are integers.
Assume mn is even.

Prove m is even or n is even.

Assume m and n are integers.
Assume mn is even.

Assume m is not even.
Prove n is even.

Assume m and n are integers.
Assume mn = 2i for some i ∈ Z.

Assume m = 2 j + 1 for some j ∈ Z.
Prove n = 2k for some k ∈ Z.

To say that m is not even means that m is odd. The last diagram was obtained by
writing out what it means for mn and n to be even, and what it means for m to be odd.
We will be assuming the equations (1) mn = 2i and (2) m = 2 j+1. Upon substituting
the value for m given by (2) into (1), we will obtain an ‘isolated’ occurrence of n for
which we can solve. These diagrams will guide our proof. A©A©
Proof. Let m and n be integers. Suppose that mn is even and so, (1) mn = 2i for
some i ∈ Z. We shall prove that either m is even or n is even. Assume that m is not
even. Then m = 2 j + 1 for some j ∈ Z. Substituting m = 2 j + 1 into equation (1),
we obtain the equation (2 j+1)n = 2i. After some algebra, we see that n = 2i−2 jn.
Hence, n = 2k where k = i− jn is an integer. Therefore, n is even. ��

4See the proof of Theorem 3.6.5.
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It will often happen that you want to prove that some property R holds when you
know that one thing or another is true, say P or Q, but you do not know which one
is true. Our next assumption strategy will addresses this situation.

Assumption Strategy 3.6.3. Given a diagram containing the form

Assume P∨Q
Prove R

there are three approaches:

(a) Use a proof by cases; that is, replace the form with

Case 1: Assume P
Prove R

Case 2: Assume Q
Prove R.

(b) If you are assuming or can prove ¬P, then you can deduce Q. Now prove R.
(c) If you are assuming or can prove ¬Q, then you can infer P. Now prove R.

Item (b), in Assumption Strategy 3.6.3, is an application of disjunctive syllogism.
In other words, if you are given P∨Q as an assumption and you know that ¬P holds,
then you can conclude that Q must be true. Now, using Q, try to prove R. Similarly,
for item (c) of 3.6.3.

Theorem 3.6.4. If one of two integers is even, then their product is even.

Proof Analysis. We construct the following proof diagrams (the third diagram is
obtained by applying the division into cases Strategy 3.6.3(a)):

Assume n and m are integers.
Prove (m is even or n is even)→ (mn is even).

Assume n and m are integers.
Assume m is even or n is even.

Prove mn is even.

Assume n and m are integers.
Case 1: Assume m is even.

Prove mn is even.
Case 2: Assume n is even.

Prove mn is even.

Assume n and m are integers.
Case 1: Assume m = 2i for some i ∈ Z.

Prove mn = 2k for some k ∈ Z.
Case 2: Assume n = 2i for some i ∈ Z.

Prove mn = 2k for some k ∈ Z.
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The diagrams will guide our proof of the theorem. Because the proof under Case 2 is
essentially identical to that of Case 1, we will just consider Case 1 in our proof. The
expression “without loss of generality,” or W.L.O.G., is a common way of signaling
to the reader that the proof will be treating just one of the cases as the argument for
the other case (or cases) is very similar. A©A©
Proof. Suppose m and n are integers. Assume that either m is even or n is even.
Without loss of generality, we shall only consider the case that m is even and then
prove that mn is even. So, suppose that m is even, that is, (1) m = 2i for some i ∈ Z.
By multiplying both sides of (1) by n, we get mn = (2i)n. Hence, mn = (2i)n = 2(in)
and mn = 2k for some k ∈ Z, namely k = in. Thus, mn is even. ��

Assumption Strategy 3.6.3(a) asserts that when you assume a statement of the
form P∨Q and you need to prove a statement R, then you should break up the proof
into two cases. Suppose you are assuming a statement of the form P1∨P2∨·· ·∨Pn

and you need to prove R. Then you could use a division of cases and break up your
proof into n many cases. In the first case you assume P1 and prove R. In the second
case, you assume P2 and prove R. You must then continue to do this for all of the
remaining statements P3, . . . ,Pn, as well. We will demonstrate this idea in the proof
of our next theorem, where we break up the proof into three cases.

Theorem 3.6.5. Let x and q be integers such that x = 3q + i where i is either 0, 1,
or 2. Then x2 has the form 3k or 3k + 1 for some integer k.

Proof Analysis. We construct a division by cases diagram:

Let x and q be integers.
Case 1: Assume x = 3q.

Prove x2 = 3k or x2 = 3k + 1 for some k ∈ Z.
Case 2: Assume x = 3q + 1.

Prove x2 = 3k or x2 = 3k + 1 for some k ∈ Z.
Case 3: Assume x = 3q + 2.

Prove x2 = 3k or x2 = 3k + 1 for some k ∈ Z.

In each of the three cases, we need to prove an “or” statement and thus, our proof
will illustrate an application of Proof Strategy 3.6.1(c). Our diagram guides the
following well-structured composition of the proof. A©A©
Proof. Let x and q be integers satisfying x = 3q + i where i is 0, 1, or 2. We prove
that x2 has the form 3k or 3k+1 for some integer k. We shall use a division by cases.

CASE 1: Assume x = 3q. Then x2 = (3q)2 = 3(3q2). Therefore, x2 = 3k where
k = 3q2 is an integer.

CASE 2: Assume x = 3q+1. Then x2 = (3q+1)2 = 9q2 +6q+1 = 3(3q2 +2q)+1.
Therefore, x2 = 3k + 1 where k = 3q2 + 2q is an integer.
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CASE 3: Assume x = 3q + 2. Then

x2 = (3q + 2)2 = 9q2 + 12q + 4 = 9q2 + 12q + 3 + 1 = 3
(

3q2 + 4q + 1
)

+ 1.

Therefore, x2 = 3k + 1 where k = 3q2 + 4q + 1 is an integer. ��
To use a division by cases, in a proof, you must first identify all the possibilities,

that is, all the cases. Then you must prove the conclusion under each case. The
definition of absolute value, below, is one that is given in most calculus books.
Observe that the definition of |x| is based on two cases; namely, x ≥ 0 and x < 0.
Consequently, proofs about the absolute value function often use a division by these
two cases.

Definition 3.6.6. Given a real number x, the absolute value of x, denoted by |x|, is
defined by

|x|=
{

x, if x≥ 0;

−x, if x < 0.

One of the most commonly used functions in mathematics is the absolute value
function. The absolute value |x| is simply the distance from x to the origin. In more
advanced mathematics, especially in real analysis, the absolute value function is
used extensively (see Chapter 9 and Theorems 9.2.3–9.2.4).

Exercises 3.6

Prove the following theorems:

1. Theorem. If x is an integer, then x2 has the form 4k or 4k + 1 for an integer k.
2. Theorem. Let n and m be integers. If mn is even, then m is even or n is even.
3. Theorem. Let n and m be integers. If m+ n is odd, then m is odd or n is odd.
4. Theorem. If a > 0 is a real number, then 1 < a + 1

a .

5. Theorem. Let a and b be real numbers. If 0≤ a≤ b, then a2 ≤ b2.
6. Theorem. Let a,b,x,y be non-negative real numbers. If a ≤ b and x ≤ y, then

ax≤ by.
7. Theorem. Let n and d be integers where d ≥ 1. There exists an integer k such

that n−dk≥ 0.
8. Theorem. For all real numbers x we have that x2 ≥ 0.
9. Theorem. For all real numbers x and y, if x≥ 2 and y≥ 2, then xy≥ x + y

10. Theorem. Let x be a real number. Then |x| ≥ 0.
11. Theorem. Let x be a real number. Then x≤ |x|.
12. Theorem. Let x,y be real numbers. Then |xy|= |x| |y|.
13. Theorem. Let x be a real number. Then x2 = |x|2.
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Exercise Notes: For Exercise 1, use the fact that x is either even or odd. For
Exercises 2 and 3, recall that every integer is either even or odd. For Exercise 4,
since either a < 1 or a = 1 or 1 < a, use a division by cases. More specifically, use
the proof diagram

Assume a > 0 is a real number.
Case 1: Assume a < 1.

Prove 1 < a + 1
a .

Case 2: Assume a = 1.
Prove 1 < a + 1

a .
Case 3: Assume 1 < a.

Prove 1 < a + 1
a .

Note: 0 < 1
a . For Exercise 5, there are four cases to consider: (1) 0 = a < b; (2)

0 = a = b; (3) 0 < a = b; (4) 0 < a < b. Recall Theorem 3.3.2. For Exercise 6, use
a division by cases and Exercise 10 on page 84. For Exercise 7, there are two cases
to consider: n ≤ 0 and n > 0. For Exercise 9, consider the cases x ≤ y and y ≤ x.
Note that when y≥ 2 and x > 0, one can conclude that xy≥ 2x = x + x (review the
Laws of Inequality 3.1.5). For Exercises 10 and 11, there are two cases (1) x ≥ 0;
(2) x < 0. Also, note that if x < 0 then |x|=−x by Definition 3.6.6. For Exercise 12,
there are four cases (1) x,y≥ 0; (2) x < 0 and y≥ 0; (3) x≥ 0 and y < 0; (4) x,y < 0.

3.7 Statements of the Form P↔ Q

Consider the biconditional statement “P if and only if Q.” Suppose we want to
show that such a statement is true. Recall that this biconditional is equivalent to
the conjunction of the two conditional statements “if P then Q” and “if Q then P”
(see the biconditional law on page 17). We arrive at the following proof strategy.

Proof Strategy 3.7.1. Given a diagram containing the form

Prove P↔ Q

replace this form with
Prove P→ Q
Prove Q→ P.

In other words one has to prove P→ Q and prove Q→ P, separately.

Theorem 3.7.2. Let n be an integer. Then 6 |n if and only if 2 |n and 3 |n.

Proof. Let n be an integer. We will prove that 6 |n if and only if 2 |n and 3 |n.

(⇒). First we prove that if 6 |n, then 2 |n and 3 |n. Assume 6 |n. Thus, n = 6i for
some i ∈ Z. So, n = 6i = 2(3i) = 3(2i) and hence, 2 |n and 3 |n.
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(⇐). Now we prove that if 2 |n and 3 |n, then 6 |n. Assume 2 |n and 3 |n. Thus
there are integers i and j such that n = 2i and n = 3 j. Therefore,

n = 3n− 2n = 3(2i)− 2(3 j) = 6i−6 j = 6(i− j).

Hence, n = 6k where k = i− j is an integer. Therefore, 6 |n. ��
In the above proof of Theorem 3.7.2, the annotations (⇒) and (⇐) are added as a

courtesy to the reader. The arrow⇒ is used to abbreviate “implies.” In other words,
(⇒) and (⇐) are added to make it clear where each conditional is being established
in the proof.

Remark 3.7.3. Another way to prove some statements of the form P↔ Q is to
write a string of equivalences starting with P and ending with Q.

If more than two statements P1,P2, . . . ,Pn are all equivalent, then the statements
are either all false at the same time, or are all true at the same time. Furthermore, to
prove that statements P1,P2, . . . ,Pn are all equivalent, we can prove

P1→ P2→ ··· → Pn→ P1.

That is, first we prove P1 → P2, then we prove P2 → P3 and we continue in this
manner until we prove Pn−1→ Pn. For the final step, we must “complete the circle”
by proving Pn→ P1. This proof technique is sometimes called a round-robin proof.

Suppose that you know that a certain biconditional statement holds and you
want to use it in a proof. Since the biconditional statement “P if and only if Q”
is equivalent to the assertion that “if P then Q” and “if Q then P” both hold, the
following assumption strategy can be used.

Assumption Strategy 3.7.4. Given a diagram containing the form

Assume P↔ Q

replace this form with

Assume P→ Q
Assume Q→ P.

Remark 3.7.5. When assuming P↔ Q, if you know that P holds, then you can
conclude Q. Also, if you know that Q is true, then you can conclude P. On the other
hand, if you know that ¬P holds, then you can deduce ¬Q. Similarly, if you have
that ¬Q is true, then you can deduce ¬P.

Exercises 3.7

Prove the following theorems:

1. Theorem. Let n be an integer. Then n is even if and only if n + 1 is odd.
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2. Theorem. Let n and k be integers where k is odd. Then n is odd if and only if
n = 2i+ k for some integer i.

3. Theorem. Let n be an integer. Then 3 |n if and only if 3 |(5n + 6).
4. Theorem. Let n be an integer. Then 15 |n if and only if 3 |n and 5 |n.
5. Theorem. Let x be a real number. Then |x|= 0 if and only if x = 0.
6. Theorem. Let c > 0. For x ∈ R, |x|= c if and only if x =−c or x = c.
7. Theorem. Let c > 0. For all real numbers x, |x|< c if and only if −c < x < c.

Exercise Notes: For Exercise 2, in your proof of the direction (⇒) use the algebraic
identity n = n− k + k. For Exercise 3, in your proof of the direction (⇐) use the
algebraic identity n = 6n−5n. For Exercise 4, the proof is very similar to the proof
of Theorem 3.7.2. Note that n = 6n− 5n. For Exercises 6 and 7, in your proof of
both directions (⇐) and (⇒) there are two cases: (1) x≥ 0 and (2) x < 0.

3.8 Indirect Proof

We are now familiar with “direct proofs” of mathematical statements. A direct proof
establishes that a statement is true by using the definitions and previous results to
logically derive the statement. An indirect proof of a statement can take two different
forms: proof by contraposition and proof by contradiction. Proof by contraposition
establishes the truth of an alternative statement whose truth implies the truth of the
original statement. Proof by contradiction argues that the original statement cannot
possibly be false and therefore, it must be true. In mathematics, indirect proofs are
very common. The first indirect proof that we investigate is proof by contraposition,
and then we shall pursue proof by contradiction.

3.8.1 Proof by Contraposition

There may be times when it is not easy to prove a conditional statement, say ψ→ ϕ ;
that is, using the assumption ψ it may be difficult to prove ϕ . In this case, logic can
come to the rescue. Since ψ → ϕ and its contrapositive ¬ϕ → ¬ψ are logically
equivalent, we can prove the contrapositive instead. Consequently, we can assume
¬ϕ and try to prove¬ψ . This alternative approach is called proof by contraposition.

Proof Strategy 3.8.1. Given a diagram containing the form

Prove P→ Q

to apply proof by contraposition, replace this form with

Assume ¬Q
Prove ¬P.
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Let n be an integer. Our next theorem will show that if n2 is even, then n is
even. The proof of this theorem uses proof by contraposition. Why not apply the
conditional strategy? Such a direct proof leads to some difficulties as we will now
show. Assuming n2 is even, let us try to prove that n is even. Since n2 is even, we
can write n2 = 2i for some integer i. To prove that n is even, we must derive an
equation of the form n = 2 j where j must be an integer. Let us try to do this! From
the equation n2 = 2i, we divide both sides by n and obtain n = 2( i

n ). There are two
difficulties with this equation. First n must be different from 0. The second difficulty
is more serious. Clearly i

n is a rational number; but how do we know that i
n is an

integer? To avoid these problems, we use proof by contraposition.

Theorem 3.8.2. Let n be an integer. If n2 is even, then n is even.

Proof Analysis. First we construct the following proof diagrams where the second
diagram results by applying the proof by contraposition Strategy 3.8.1:

Assume n is an integer.
Prove (n2 is even)→ (n is even).

Assume n is an integer.
Assume n is not even.

Prove n2 is not even.

Assume n is an integer.
Assume n = 2k + 1 for some k ∈ Z.

Prove n2 = 2 j + 1 for some j ∈ Z.

If an integer is not even, then it must be odd. We applied this fact5 to obtain our last
diagram. These diagrams will guide our proof of the theorem. A©A©
Proof. Let n be an integer. We will prove that if n2 is even, then n is even. We shall
use proof by contraposition. Assume n is not even, that is, n is odd. Let k ∈ Z be so
that n = 2k +1. We prove that n2 is not even. Since n = 2k +1, using some algebra,
we see that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k)+ 1. Hence, n2 = 2 j + 1
where j = 2k2 + 2k is an integer. Therefore, n2 is not even. ��
Theorem 3.8.3. Suppose a, b, c are real numbers with a> b. If ac≤ bc, then c≤ 0.

Proof Analysis. The assumptions are “a, b, c are real numbers” and “a > b.” We
have to prove the statement “If ac ≤ bc, then c ≤ 0.” Now we construct the proof
diagrams using the contraposition Strategy 3.8.1 to obtain the second diagram:

5See Exercise 3 on page 106.
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Assume a, b, c are real numbers.
Assume a > b.

Prove ac≤ bc→ c≤ 0.

Assume a and b are real numbers.
Assume a > b.

Assume ¬(c≤ 0).

Prove ¬(ac≤ bc).

Assume a and b are real numbers.
Assume a > b.

Assume c > 0.
Prove ac > bc.

Since ¬(c ≤ 0) means that c > 0 and ¬(ac ≤ bc) means ac > bc, our last diagram
follows from the trichotomy law of inequality. These diagrams will now guide our
composition of the following proof. A©A©
Proof. Suppose a, b, c are real numbers and a > b. Assume c > 0. We must prove
that ac > bc. Since a > b and c is a positive number, we can multiply both sides
of the inequality a > b by the positive c and conclude that ac > bc. Therefore, if
ac≤ bc, then c≤ 0. ��

3.8.2 Proof by Contradiction

There are times when is not easy to see how to prove a mathematical statement,
say ψ . When this happens one should try the strategy called proof by contradiction.
This strategy is perhaps the strangest method of proof. Here is how it works:
To prove that ψ is true, we first assume that ¬ψ is true. Then working with ¬ψ , we
derive something that is false (for example, 0 = 1 or ϕ ∧¬ϕ). Since the assumption
¬ψ has led us to a fallacy, we must conclude that ψ is true. Another way to justify
proof by contradiction is to observe that ψ and (¬ψ → (ϕ ∧¬ϕ)) are logically
equivalent (see Exercise 3 on page 17). Thus, if one proves ¬ψ → (ϕ ∧¬ϕ), then
ψ is true.

Proof Strategy 3.8.4. Given a diagram containing the form

Prove P

to apply proof by contradiction, use the form

To prove P:
Assume ¬P

Derive “a contradiction.”

That is, to prove P, assume ¬P and derive a contradiction.
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Proof by contradiction is typically used when a direct proof is difficult to find or
just “does not seem to work.” Moreover, it is often not clear what the contradiction
will be until you “get there.”

In the proof analysis of our next theorem, we will first be working with the proof
diagram

Assume m and n are integers.
Assume mn is odd.

Prove n is odd.

In other words, we have integers m and n where (1) mn = 2i+1 for an i ∈ Z and we
want to prove that (2) n = 2 j + 1 for some j ∈ Z. So, using equation (1) we must
derive equation (2). We can solve equation (1) for n and obtain n = 2( i

m)+ 1
m ; but

this would require i
m to be an integer and 1

m = 1. Clearly, when m > 1, we see that
1
m �= 1. How can we get around these serious difficulties? Proof by contradiction!

Theorem 3.8.5. Let m and n be integers. If mn is odd, then n is odd.

Proof Analysis. We construct the following proof diagrams (Proof Strategy 3.8.4
gives us the second diagram):

Let m and n be integers.
Assume mn is odd.

Prove n is odd.

Let m and n be integers.
Assume mn is odd.

To prove n is odd:
Assume n is even.

Derive “a contradiction.”

Let m and n be integers.
Assume mn is odd.

To prove n is odd:
Assume n = 2k for some k ∈ N.

Derive “a contradiction.”

To say that n is not odd means that n even. In our proof by contradiction, we will be
working with the assumptions (1) mn is odd, and (2) n = 2k for some k ∈ Z. From
these two assumptions, we must derive a contradiction, that is, we must derive some
nonsense! These diagrams will guide our composition of a well-structured proof of
the theorem. A©A©
Proof. Let m and n be integers. Assume mn is odd. We must prove that n is odd.
Suppose, for a contradiction, that n is even, that is, n = 2k for some k ∈ Z. Using
some algebra, we deduce that mn = m(2k) = 2(mk). Hence, mn is even and this
contradicts our assumption that mn is odd. Therefore, n is odd. ��
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In the proof of Theorem 3.8.5, we added the phrase “suppose, for a contradiction,
that . . .”. This is done as a courtesy to the reader. We have thus told the reader that
we are using proof by contradiction.

In elementary mathematics and in calculus we learned that for any real number
x≥ 0 there is a unique real number y≥ 0 such that y2 = x. We write y =

√
x and say

that y is the square root of x. Consequently, (
√

x)2 = x. Our next theorem shows that
the square root operation preserves the inequality relation < for positive numbers.

Theorem 3.8.6. Suppose a and b are positive real numbers. If a< b, then
√

a<
√

b.

Proof Analysis. We first construct proof diagrams (Proof Strategy 3.8.4 yields the
second diagram):

Assume a > 0 and b > 0.
Assume a < b.

Prove
√

a <
√

b.

Assume a > 0 and b > 0.
Assume a < b.

To prove
√

a <
√

b:
Assume

√
a≥√b.

Derive “a contradiction.”

Assume a > 0 and b > 0.
Assume a < b.

To prove
√

a <
√

b:
Assume

√
a >
√

b or
√

a =
√

b.
Derive “a contradiction.”

In the last diagram we are assuming an “or” statement. Thus, we will implicitly use
the “division by cases” Strategy 3.6.3(a) in our proof, where in each case we shall
derive a contradiction. A©A©
Proof. Suppose a and b are positive real numbers. Assume (�) a < b. We will prove
that
√

a <
√

b. Suppose, for a contradiction, that
√

a ≥ √b. So, either
√

a >
√

b
or
√

a =
√

b. If
√

a >
√

b, then a = (
√

a)2 > (
√

b)2 = b by Theorem 3.3.2 and so
a> b, which contradicts (�). If

√
a =
√

b, then a = (
√

a)2 = (
√

b)2 = b and so a = b,
which also contradicts (�). Therefore,

√
a <
√

b. ��
Definition 3.8.7. A positive rational number m

n , where m and n are natural numbers,
is in reduced form if m and n have no common factors greater than 1.

Example 1. The rational number 4
3 is in reduced form, 12

9 is not in reduced form.
Clearly every positive rational number can be put into reduced form.
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The ancient Greeks believed that all numbers were rational. Consequently, they
were convinced that the length of the diagonal in the unit square (which is

√
2)6

must be rational. Thus, by the Pythagorean Theorem, these ancient mathematicians
also believed that there is a rational number whose square is 2. At some point, one
of these early mathematicians made a revolutionary discovery and established the
following theorem.

Theorem 3.8.8. There is no rational number x such that x2 = 2.

Proof Analysis. In logical form, the statement of the theorem can be expressed as

¬(∃x ∈Q)(x2 = 2).

We build the following proof diagram by applying the proof-by-contradiction
Strategy 3.8.4.

To prove ¬(∃x ∈Q)(x2 = 2):
Assume (∃x ∈Q)(x2 = 2).

Derive “a contradiction.”

This diagram will guide our composition of a well-structured proof of the theorem
by contradiction. A©A©
Proof. Suppose, for a contradiction, that x2 = 2 for some rational number x. So, we
can consider x to be positive. Since x is rational, we can write x = m

n where m and
n are natural numbers. We can presume that the ratio m

n has been put into reduced
form. It follows that

m and n have no common factors greater than 1. (3.3)

Since x2 = 2 and x = m
n , we obtain m2

n2 = 2 and thus, m2 = 2n2. Since m2 is even, we
conclude that m is even by Theorem 3.8.2. So, m = 2k for some k ∈ N. Substituting
m = 2k into our equation 2n2 = m2, we obtain

2n2 = (2k)2

2n2 = 4k2

n2 = 2k2.

Therefore, n2 is even. So n is must be even as well. Hence, m and n have a common
factor of 2, which contradicts (3.3). This completes the proof. ��

Theorem 3.8.8 was a very important discovery in the history of mathematics.
Courant and Robbins [3, p. 59], in their book What is Mathematics?, state that:

6The ancient Greeks did not use the notation
√

2.
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This revelation was a scientific event of the highest importance. Quite possibly it marked
the origin of what we consider the specifically Greek contribution to rigorous procedure
[mathematical proof] in mathematics. Certainly it has profoundly affected mathematics and
philosophy from the time of the Greeks to the present day.

Since (
√

2)2 = 2, Theorem 3.8.8 implies that
√

2 is irrational. Thus, we now
know that there is at least one irrational number. Are there any others? Yes, there
are infinitely many irrational numbers. In fact, in Section 6.5 it will be shown that
there are more irrational numbers than there are rational ones (see Exercise 18 on
page 206). Consequently, one can prove that most irrational numbers cannot be
obtained by performing algebraic operations on rational numbers. In particular, the
vast majority of irrational numbers cannot be realized by taking the square root of a
rational number.

Exercises 3.8

Prove the following theorems and corollaries. A corollary is a statement that follows
from a previously established theorem. Each corollary below follows from the
theorem above it.

1. Theorem. Let x and y be real numbers. If x2 = y2, then |x|= |y|.
2. Theorem. Let a and b be natural numbers. If ab = 1, then a = 1 and b = 1.
3. Corollary. Let a and b be natural numbers. If a |b and b |a, then a = b.
4. Corollary. Let n be an integer. Then n is not both even and odd.
5. Theorem. Let r and s �= 0 be rational numbers. If x is irrational, then r + sx is

irrational.
6. Theorem. Let a > 0 be a real number. Then 1

a > 0.
7. Corollary. Let x and y be real numbers where x > 0. If xy > 0, then y > 0.
8. Corollary. Suppose a,b,c,d are all positive real numbers. If ab = cd and a≤ c,

then d ≤ b.
9. Corollary. Suppose a,b,c are positive real numbers. If a < c, then a

b < c
b .

10. Corollary. Let a,b,d be positive real numbers. If d < b, then a
b < a

d .
11. Corollary. Let a,b,d be positive real numbers. If a < c and d < b, then a

b < c
d .

12. Theorem. For all real numbers a and b, if a2 < b2, then |a|< |b|.
13. Theorem. For all real numbers x, if x > 1 then 0 < 1

x < 1.
14. Theorem. Let x > 0 be a real number. If x is irrational, then

√
x is irrational.

15. Theorem. The real number
√

2+
√

3 is an irrational number.
16. Theorem. Let a and b be positive real numbers. Then

√
a+
√

b >
√

a + b.
17. Theorem. Let m and n be integers. Then mn is even if and only if m is even or

n is even.
18. Theorem. Let a, b, c be integers. If a + b = c, then at least one of a, b, and c

must be even.
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19. Theorem. Let x and y be positive real numbers. Then x
y + y

x ≥ 2.

20. Theorem. Let x and y be positive real numbers. Then x+y
2 ≥

√
xy.

21. Theorem (Triangle Inequality). Let x,y be real numbers. Then |x + y|≤ |x|+ |y|.
22. Theorem. Let x be a real number. Then x2 < 1 if and only if −1 < x < 1.

Exercise Notes: For Exercise 4, if 2i = 2 j + 1 and i, j ∈ Z, then 2(i− j) = 1. For
Exercise 12, see Exercise 13 on page 88. For Exercise 15, assume

√
2 +
√

3 = a
b

for nonzero integers a and b. Solve for
√

3 and then square both sides to obtain
a contradiction. For Exercises 16 and 19, use contradiction. For Exercise 20, use
contradiction and Theorem 3.3.2. For Exercise 21, use contradiction, Theorem 3.3.2
and Exercises 10, 11 and 13 of Section 3.6. For Exercise 22, see Exercise 3 on
page 70 and Theorem 3.3.2.



CHAPTER 4
Mathematical Induction

Mathematical induction is a method of proof that is frequently used to establish
that certain statements are true for every natural number. Before we introduce this
method of proof, we must first discuss the well-ordering principle.

4.1 The Well-Ordering Principle

An important property of the set of natural numbers N is that any nonempty subset
of N has a least element. A set is nonempty if it contains at least one element.

Well-Ordering Principle 4.1.1. Let S be a nonempty set of natural numbers. Then
S has a least element, that is, there is a k ∈ S such that k ≤ n for all n ∈ S.

For example, let S be the set of integers greater than 20 which are divisible by
9. Then 27 is the least element in S. In this section we will use the well-ordering
principle to establish a theorem on the number of primes. First, we shall show that
the Well-Ordering Principle 4.1.1 implies a slightly more general principle.

Theorem 4.1.2 (General Well-Ordering Principle). Let b be an integer and let
S be a nonempty set of integers all of which are greater than or equal to b. Then S
has a least element.

Before we prove Theorem 4.1.2, consider the set S = {−3,−1,3,5,7,9, . . .}.
Observe that S is a nonempty set of integers satisfying −4 ≤ n for every n ∈ S. Let
S∗ be the set obtained by adding −(−4)+ 1 = 5 to each integer in the set S. Thus,
S∗ can be described by S∗ = {n− (−4)+1 : n ∈ S}= {2,4,8,10,12,14, . . .} which
is a subset of N. For every n∗ ∈ S∗ there is an n∈ S such that n∗ = n− (−4)+1. For
example, 8 ∈ S∗ and 8 = 3− (−4)+1 where 3 ∈ S. We will apply these ideas in the
following proof.

Proof. Let b be an integer and let S be a nonempty set of integers such that b ≤ n
for all n ∈ S. For any integer n, it follows (by properties of inequality) that

b≤ n if and only if 1≤ n−b + 1. (4.1)

Let S∗ = {n− b + 1 : n ∈ S}. It follows from (4.1) that S∗ is a nonempty set of
natural numbers. By the Well-Ordering Principle 4.1.1, S∗ has a least element k∗.
Since k∗ ∈ S∗, there is a k ∈ S such that k∗ = k− b + 1. Hence, k = k∗+ b− 1.

D.W. Cunningham, A Logical Introduction to Proof, DOI 10.1007/978-1-4614-3631-7 4,
© Springer Science+Business Media New York 2012
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We now show that k is the least element in S. Let n ∈ S. Then n− b + 1 is in S∗.
Thus, k∗ ≤ n−b + 1 and we conclude that k∗+ b−1≤ n. Therefore, k ≤ n. ��
Definition 4.1.3. A natural number p > 1 is a prime number if and only if for all
natural numbers a and b, if p = ab then either a = 1 or b = 1. A natural number
n > 1 is a composite number if and only if there are natural numbers a and b such
that n = ab where a�= 1 and b�= 1.

The first 25 prime numbers are:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.

Is there a prime number larger than all those in this list? The ancient Greeks were
fascinated by the prime numbers and it was initially not known how many prime
numbers there were among the natural numbers. The oldest known proof asserting
that there are infinitely many prime numbers is given by the Greek mathematician
Euclid in his Elements.1 Before we present this proof, we will identify the proof
strategy that was used by Euclid. This strategy, which is still in use today, employs
the well-ordering principle and proof by contradiction.

Remark 4.1.4. In this chapter we will be letting P(n) represent a statement in
which the free variable n represents an integer. If a variable is free, then substitution
may take place. So, we can replace n with any integer; for example, we can replace
n with 5 and obtain the statement P(5). Given an integer n, we shall say that P(n) is
defined when the resulting statement P(n) is meaningful and it is either true or false.
For example, let P(n) be the statement “n2 + 2n is even.” Clearly, P(2) is true and
P(3) is false. So the statements P(2) and P(3) are defined. In fact, P(n) is defined
for every integer n. For another example, let P(n) represent the statement “the sum
of the first n positive integers is odd.” Note that P(3) is false and P(5) is true. On
the other hand, the statement P(−10) is not meaningful and thus, it is neither true
nor false. Hence, P(−10) is undefined.

Let b is an integer and let P(n) be a statement that is defined for all integers
n ≥ b. To prove statements of the form (∀n ≥ b)P(n) mathematicians sometimes
use proof by contradiction. The proof typically begins by assuming ¬(∀n ≥ b)P(n)
and then concludes that (∃n≥ b)¬P(n). Thus, the set S = {n∈Z : n≥ b∧¬P(n)} is
nonempty. By the Well-Ordering Principle 4.1.2 the set S has a least element, say N.
Hence, N ≥ b and ¬P(N). Because N is the least element in S, it follows that for all
integers k, if b≤ k <N then P(k). This latter statement then leads to a contradiction.
The idea motivates our next proof strategy.

Proof Strategy 4.1.5 (Well-ordering proof strategy). Let b be a fixed integer and
let P(n) be a statement that is defined for all integers n≥ b. To prove a statement of
the form (∀n≥ b)P(n) by the well-ordering principle, use the diagram

1The Elements is a mathematical work consisting of 13 books written by Euclid around 300 BC.
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Assume that ¬P(n) holds for some integer n≥ b.
Let N ≥ b be the least integer satisfying ¬P(N).

Derive “a contradiction.”

Euclid used Proof Strategy 4.1.5 to prove our next lemma.2

Lemma 4.1.6. Every natural number n≥ 2 is divisible by a prime number.

Proof. Suppose, for a contradiction, that there is a natural number n ≥ 2 that is not
divisible by a prime. By the well-ordering principle, there is a least natural number
N ≥ 2 that is not divisible by a prime. Thus, we have that:

(1) N is not divisible by a prime.
(2) If 2≤ k < N, then k is divisible by a prime, when k is a natural number.

We consider two cases: either N is a prime or it is not a prime.

CASE 1: N is a prime. Since N is divisible by itself, this contradicts (1).

CASE 2: N is not a prime. So, N is a composite number and N = ab for some natural
numbers a and b with 2 ≤ a < N and 2 ≤ b < N. Since 2 ≤ a < N, assertion (2)
implies that p |a for some prime p. Because a |N, Theorem 3.5.6 implies that p |N.
Hence, N is divisible by a prime. This contradicts (1) and completes the proof. ��
Lemma 4.1.7. For any integer n and any prime number p, if p |n then p � (n + 1).

Proof. Let n be an integer and let p be a prime. Assume p |n, that is, assume n = pi
for some i∈Z. We prove that p � (n+1). Suppose, for a contradiction, that p |(n+1)
and so, (∗) n + 1 = pk for some k ∈ Z. Substituting n = pi into equation (∗), we
obtain ip + 1 = kp. Thus, 1 = (k− i)p with p > 1 and hence, (k− i) ≥ 1 as (k− i)
is an integer. Since (k− i)≥ 1 and p > 1, we conclude that (k− i)p > (k− i)≥ 1.
Thus, (k− i)p > 1. This contradiction completes the proof. ��

We now present Euclid’s ingenious proof that there are infinitely many primes.

Theorem 4.1.8 (Infinitude of the Primes). The set of prime numbers is infinite.

Proof. Suppose, for a contradiction, that the set of prime numbers is finite. Then we
can list all of the prime numbers as a finite list in ascending order, namely,

p1, p2, p3, . . . , pn (4.2)

where p1 is the first prime and pn is the last prime. Let N = p1 p2 p3 · · · pn +1. Since
N ≥ 2 and N is a natural number, Lemma 4.1.6 implies that p |N for some prime p.
Since every prime appears in the list (4.2), p must be an entry in this list. Therefore,
p |(p1 p2 p3 · · · pn) and thus, p � (p1 p2 p3 · · · pn +1) by Lemma 4.1.7. So p �N. Hence,
p |N and p � N. This contradiction completes the proof. ��

2In mathematics, a lemma is a ‘little theorem’ that is usually used in the proof of a more important
theorem.
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The proof of Theorem 4.1.8 shows that when you have a list (�) p1, p2, p3, . . . , pn

of the first n primes, then any prime number that evenly divides p1 p2 p3 · · · pn +1 is
not in the list (�). We illustrate this result with an example using the first six primes.
Observe that 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30,031 which is divisible only by the two
primes 59 and 509, both of which are not in the list 2,3,5,7,11,13.

Exercises 4.1

1. Explain why Theorem 4.1.2 implies the Well-Ordering Principle 4.1.1.
2. Let (∗) q1,q2, . . . ,qm be any finite list of prime numbers. Let p be a prime that

evenly divides q1q2 · · ·qm + 1. Prove that p is not in the list (∗).
3. Prove the statement: For all integers n ≥ 1, we can write n = 2k ·m for some

integers k and m where k ≥ 0 and m is odd.
4. Prove that for every integer n≥ 0, either n is even or n is odd.
5. Prove that for every integer n≥ 3, we have 2n ≥ 2n + 1.
6. Let P(n) be a statement that is defined for all integers n ≥ 1. Suppose the

following two conditions hold: (a) P(1) is true, and (b) for all integers n ≥ 1,
if P(n) holds then P(n + 1) also holds. Use the Well-Ordering Principle 4.1.1 to
prove that P(n) must be true for all integers n≥ 1.

Exercise Notes: For Exercise 3, use the well-ordering Proof Strategy 4.1.5 where
P(n) is the statement “n = 2k ·m for some integers k and m where k ≥ 0 and m is
odd.” There are two cases to consider about N. If N is even, then N = 2i for some
integer i where 1 ≤ i < N. If N is odd, then note that N = 20N. For Exercise 4, use
Proof Strategy 4.1.5. Show that N > 0. So, 0 ≤ N−1 < N and thus N−1 is either
even or odd. For Exercise 5, using Proof Strategy 4.1.5, one obtains the assumption
2N < 2N + 1. Observe that N > 3 and thus, 3 ≤ N− 1 < N. So, you can conclude
that 2N−1 ≥ 2(N−1)+1. Multiply both sides of this latter inequality by 2 to derive
a contradiction. For Exercise 6, if N ≥ 1 is the least such integer satisfying ¬P(N),
then explain why N = n + 1 for some n≥ 1 and observe that n < N.

4.2 Proof by Mathematical Induction

Mathematical induction is a powerful method for proving theorems about the natural
numbers. Suppose you have a statement P(n) that you want to prove is true for every
integer n greater than or equal to the integer b. How can you prove this statement
by mathematical induction? First you prove that the statement definitely holds for b.
Then you have to prove that whenever the statement holds for an integer n ≥ b,
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b b+2 n+1b+1 n

· · · · · ·· · · · · ·

Base step: Inductive step:

Fig. 4.1 The base step and inductive step force the dominoes to fall, one and all

then it must hold for the next integer n + 1 as well. In other words, mathematical
induction is a method of proof that works by first proving the statement P(b) is
true for the starting value b, which is called the base step. Then one must prove the
inductive step, which shows that the truth of the statement P(n) implies the truth of
the statement P(n + 1). If the base step and the inductive step are both proven, then
the statement P(n) is true for all the natural numbers n≥ b.

It may be helpful to think of the domino effect where one is presented with an
infinite row of dominoes, each standing on end, as pictured in Fig. 4.1. The base step
shows that the first domino will fall. The inductive step ensures that each domino is
perfectly aligned with the one ahead of it. Thus, we know that the first domino will
fall (base step) and whenever the n-th domino falls, the n + 1 domino will also fall
(inductive step). Therefore, all of the dominoes must fall.

The well-ordering principle implies the following related principle (see
Exercise 6 on page 102 and Remark 4.1.4).

Principle of Mathematical Induction. Let b be a given integer and let P(n) be a
statement that is defined for all integers n≥ b. Suppose that

1. P(b) is true, and
2. For all n≥ b, if P(n) then P(n + 1).

Then for all integers n≥ b, the assertion P(n) is true.

Many mathematical statements have the form: For every integer n ≥ b, “some-
thing about n happens,” where b is a fixed integer. The Principle of Mathematical
Induction motivates our next proof strategy called proof by mathematical induction.

Proof Strategy 4.2.1. Let b be a given integer and let P(n) be a statement that is
defined for all integers n ≥ b. To prove (∀n ≥ b)P(n) by mathematical induction,
use the diagram

Prove P(b).

Prove (∀n≥ b)[P(n)→ P(n + 1)].
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In other words, use the diagram

Base step:
Inductive step:

Prove P(b).

Let n≥ b be an integer.
Assume P(n).

Prove P(n + 1).

In a proof of a statement (∀n ≥ b)P(n) by mathematical induction, b is referred
to as the base value. The proof of P(b) is called the base step and the proof of
(∀n≥ b)[P(n)→ P(n+1)] is called the inductive step. In the second proof diagram
of Proof Strategy 4.2.1, the assumption P(n) is called the induction hypothesis (IH)
and the statement to be proven, P(n + 1), is called the induction conclusion (IC).

In the base step you must show that the statement P(b) is true. To do so, simply
replace n by b everywhere in P(n) and verify that P(b) holds.

The inductive step is more challenging. It requires you to reach the conclusion
that P(n + 1) is true after assuming P(n) is true. To prove that P(n + 1) is true, you
should somehow try to rewrite the statement P(n + 1) in terms that relate to the
assumption P(n) (as will soon be illustrated), for then you will be able to make use
of the assumption P(n). Appealing to the assumption P(n) is referred to as using
the induction hypothesis. After establishing that P(n + 1) is true, the proof will be
complete. A proof that uses Strategy 4.2.1 is also called an induction proof or proof
by induction.

Our next theorem can be proven in more than one way; however, we shall provide
a proof that uses mathematical induction. We will first present a “proof analysis” and
then we will prove the theorem by induction.

Theorem 4.2.2. For every integer n≥ 1, the number n2 + n + 2 is even.

Proof Analysis. When you are looking for a proof by induction, it is helpful to write
down the statement P(n). In this case we have

P(n) : n2 + n + 2 is even.

In this theorem our base value is b = 1. Next, we will construct a proof diagram by
letting b = 1 in the second diagram of Proof Strategy 4.2.1:

Base step:
Inductive step:

Prove P(1).

Let n≥ 1 be an integer.
Assume P(n).

Prove P(n + 1).

Now, we carefully write out the statements P(1) and P(n + 1). Upon replacing n
everywhere in the statement

P(n) : n2 + n + 2 is even

with 1, we obtain

P(1) : 12 + 1 + 2 is even.
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By replacing n with n + 1 everywhere in P(n), we obtain

P(n + 1) : (n + 1)2 +(n + 1)+ 2 is even.

Thus, we can rewrite our proof diagram as

Base step:
Inductive step:

Prove 12 + 1 + 2 is even.
Let n≥ 1 be an integer.

Assume n2 + n + 2 is even.
Prove (n + 1)2 +(n + 1)+ 2 is even.

We write out what it means for these values to be even as follows:

Base step:
Inductive step:

Prove 12 + 1 + 2 = 2k for some k ∈ Z.

Let n≥ 1 be an integer.
Assume n2 + n + 2 = 2i for some i ∈ Z.

Prove (n + 1)2 +(n + 1)+ 2 = 2 j for j ∈ Z.

For the base step we see that 12 + 1 + 2 = 2 · 2, which is clearly even. For the
inductive step, we must use the induction hypothesis

n2 + n + 2 = 2i where i ∈ Z (IH)

to deduce the induction conclusion

(n + 1)2 +(n + 1)+ 2 = 2 j for some j ∈ Z. (IC)

To prove this induction conclusion, we will begin with the left hand side of the
equality in (IC) and, using algebra, will make some changes so that the left hand
side of the equation in (IH) appears. From the induction hypothesis (IH) we have
that n2 + n + 2 = 2i. Using this equation, we will be able to prove (IC) and thus
conclude that the integer (n + 1)2 +(n + 1)+ 2 is even. A©A©

Our proof diagrams and analysis will guide the composition of a well-structured
proof of the Theorem 4.2.2 by mathematical induction.

Proof. We prove, by mathematical induction, that n2 + n + 2 is even for all n≥ 1.

Base step: For n = 1, we see that 12 + 1 + 2 = 2 ·2 is even.

Inductive step: Let n≥ 1 be an integer and assume the induction hypothesis that the
integer n2 + n + 2 is even, that is, assume

n2 + n + 2 = 2i where i ∈ Z. (IH)

We show that (n + 1)2 +(n + 1)+ 2 is even as follows:

(n + 1)2 +(n + 1)+ 2 = n2 + 2n + 1 + n +1+2 because (n+1)2 = n2 +2n+1

= n2 + n + 1 + 2n +2 by regrouping
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= (n2 + n + 1)+ 2(n + 1) by distributivity

= 2i+ 2(n + 1) by induction hypothesis (IH)

= 2(i+ n + 1) by distributivity.

Hence, (n + 1)2 + (n + 1)+ 2 = 2 j where j = i + n + 1 is an integer. Therefore,
(n + 1)2 +(n + 1)+ 2 is even and this completes the proof. ��

Exercises 4.2

1. Using mathematical induction, prove that for every integer n ≥ 0, the number
n2 + 3n + 5 is odd.

2. Prove, by induction, that for every integer n≥ 0, either n is even or n is odd.
3. Using Exercise 2, prove that every integer n is either even or odd.
4. Using Exercise 3, prove that for every integer n we have that n(n + 1) is even.

5. For any integer n ≥ 1, let P(n) be the statement: 1 + 2 + · · ·+ n = n(n+1)
2 . What

is statement P(3)? What is statement P(1)? What is statement P(n + 1)?

6. Prove that 1 + 2 + · · ·+ n = n(n+1)
2 for all integers n≥ 1, by induction.

Exercise Notes: For Exercise 2, use the induction proof strategy

Base step:
Inductive step:

Prove 0 is even or odd.
Let n≥ 0 be an integer.

Assume n is even or n is odd.
Prove n + 1 is even or n + 1 is odd.

In the inductive step, since you are assuming an ‘or’ statement, use a proof by cases.
For Exercise 3, there are two cases: (1) n ≥ 0; (2) n < 0. For Exercise 4, there are
two cases: (1) n is odd; (2) n is even.

4.3 Sequences, Sums, and Factorials

In mathematics one often works with regular patterns or repeated processes. The
main tool used to study repeated processes is the sequence, a fundamental concept
with a rich history in mathematics. Sequences are interesting mathematical objects
with lots of surprising properties, many of which can be verified by mathematical
induction.
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In this section we shall introduce the notation and terminology of sequences.
A sequence is just a list of real numbers; for example 1,3,5,7,9, . . . is an infinite
sequence. In general, an infinite sequence is usually written in the form

a1,a2,a3, . . . ,an,an+1, . . .

where the sequence starts with n = 1. Furthermore, for an integer m, a sequence
having the form

am,am+1,am+2, . . . ,an,an+1, . . .

starts with n = m. Many times a sequence is described by means of a formula f (n)
where an = f (n).

Example 1. Write out the first few terms of the sequences determined by the given
formula:

1. an = 2n−1 starting with n = 1.
2. an = 2n−1 starting with n = 3.
3. an = (−1)n starting with n = 0.
4. an = (−1)n starting with n = 1.
5. an = (−1)n+1 starting with n = 1.

Solution. For each formula, we evaluate some initial terms an, for n = 1,2,3, . . . ,
and obtain:

1. 1,3,5,7,9, . . .
2. 5,7,9,11, . . .
3. 1,−1,1,−1,1,−1,1, . . .
4. −1,1,−1,1,−1,1,−1, . . .
5. 1,−1,1,−1,1,−1,1, . . . . ��

The formulas given in items 3–5 of Example 1 can be used to generate sequences
having alternating signs. Items 3 and 5 start with a plus sign and item 4 starts with a
negative sign. We now show how to take advantage of these alternating sequences.

Example 2. Find a formula that generates the given sequence:

(a) 1, 1
4 ,

1
9 ,

1
16 ,

1
25 ,

1
36 , . . . starting with n = 1.

(b) 1,− 1
4 ,

1
9 ,− 1

16 ,
1
25 ,− 1

36 , . . . starting with n = 1.

(c) −1, 1
4 ,− 1

9 ,
1

16 ,− 1
25 ,

1
36 , . . . starting with n = 1.

Solution. For item (a), we see that the formula f (n) = 1
n2 for n ≥ 1 generates the

given sequence. The sequence in (b) is an alternating form of the sequence in (a)
that starts with a plus sign. Using our solution to item 5 of Example 1, we obtain
the formula g(n) = (−1)n+1 1

n2 which generates the sequence in (b). Similarly, the
sequence in (c) is also an alternating form of the sequence in (a) which starts with a
negative sign. The formula h(n) = (−1)n 1

n2 generates the sequence in (c). ��
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4.3.1 Summation Notation

Σ -notation, or summation notation, is used to write the sum of many terms in a

concise and compact way. Given a finite sequence a1,a2, . . . ,an we write
n
∑

k=1
ak as

shorthand for the sum a1 + a2 + · · ·+ an, that is,

n

∑
k=1

ak = a1 + a2 + a3 + · · ·+ an−1 + an.

For example,
n
∑

k=1
2k = 21 +22 +23 + · · ·+2n−1 +2n. More generally, given integers

m≤ n and a finite sequence am,am+1, . . . ,an we define

n

∑
k=m

ak = am + am+1 + am+2 + · · ·+ an−1 + an. (4.3)

In other words,
n
∑

k=m
ak is the summation of every ak from k equals m to n.

The capital Greek letter Σ is called sigma and we use this symbol to denote the

words sum or summation. Given the sum
n
∑

k=m
ak, we shall call k the index of the

summation. We will also say that m is the lower limit and that n is the upper limit
of the summation. We shall refer to ak as the summand.

Three of the most useful formulas for dealing with summations are given below.
One can prove these formulas using mathematical induction (see Theorem 4.4.3,
and Exercise 7 on page 122).

Theorem 4.3.1 (Linearity Properties). Let c is a fixed real number. For integers
m≤ n, we have the following three identities:

1.
n
∑

k=m
(ak + bk) =

n
∑

k=m
ak +

n
∑

k=m
bk

2.
n
∑

k=m
(ak−bk) =

n
∑

k=m
ak −

n
∑

k=m
bk

3.
n
∑

k=m
cak = c

n
∑

k=m
ak.

Linearity properties 1 and 2 allow us to split summations into simpler sums, and
property 3 allows us to factor out any constant multiple that does not involve the
summation index k.

We will also be working with sums of the form
n
∑

k=1
f (k) where n≥ 1 and f (k) is

a formula involving an integer variable k. There is nothing new here, since this form
satisfies the equation

n

∑
k=1

f (k) = f (1)+ f (2)+ · · ·+ f (n). (4.4)
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Items 1 and 2 of our next example are identities that are often used in proofs by
induction. Item 3 will be applied in the proof of Theorem 4.3.4. Item 4 can be used
to prove the binomial theorem (see Exercise 20 on page 116 and Exercise 16 on
page 122).

Example 3. Let f (k) be a formula involving an integer variable k. Show that:

1.
1
∑

k=1
f (k) = f (1).

2.
n+1
∑

k=1
f (k) =

(
n
∑

k=1
f (k)

)

+ f (n + 1), for n≥ 1.

3.
n
∑

k=1
f (k) =

i
∑

k=1
f (k)+

n
∑

k=i+1
f (k), when 1 < i < n.

4.
n+1
∑

k=0
f (k) = f (0)+

(
n
∑

k=1
f (k)

)

+ f (n + 1), when n≥ 1.

Solution. When n = 1 in (4.4), we obtain
1
∑

k=1
f (k) = f (1), which is the equation in

item 1. We justify equation 2 as follows:

n+1

∑
k=1

f (k) = f (1)+ f (2)+ · · ·+ f (n)+ f (n + 1) by def. of Σ notation

= ( f (1)+ f (2)+ · · ·+ f (n))+ f (n + 1) regrouping

=

(
n

∑
k=1

f (k)

)

+ f (n + 1) by def. of Σ notation.

Equations 3 and 4 can be justified in a similar manner. ��

Just as in the solution to Example 3, one can derive the identity
m
∑

k=m
f (k) = f (m)

and the identity
n+1
∑

k=m
f (k) =

(
n
∑

k=m
f (k)

)

+ f (n+1) for n≥m, where m is any integer.

4.3.2 Evaluating Sums

One way to evaluate the sum
n
∑

k=m
ak is to expand the sigma notation, as in (4.3), and

then add up all of the resulting terms. We shall call this an ‘open-form solution.’ Is
there another way to evaluate this sum? Many times there is a formula, which does
not involve the summation symbol, that can be used to get the correct answer.
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Definition 4.3.2. Let n≥m be integers and let am,am+1,am+2, . . . ,an be a sequence

of real numbers. Since
n
∑

k=m
ak = am + am+1 + am+2 + · · ·+ an, we call this an open-

form solution, or an open sum, for
n
∑

k=m
ak. A formula g(n) satisfying

n
∑

k=m
ak = g(n)

for every n≥ m, is called a closed-form solution for
n
∑

k=m
ak.

Example 4 (some open-form solutions). For all integers n≥ 1,

1.
n
∑

k=1
k = 1 + 2 + · · ·+ n

2.
n
∑

k=1
k2 = 12 + 22 + · · ·+ n2

3.
n
∑

k=1
k3 = 13 + 23 + · · ·+ n3.

Example 5 (some closed-form solutions). For all integers n≥ 1,

1.
n
∑

k=1
1 = n

2.
n
∑

k=0
1 = n + 1

3.
n
∑

k=1
3 = 3n.

To see why item 1 holds, notice that
n
∑

k=1
1 has the form

n
∑

k=1
ak, where ak = 1 for

k = 1,2, . . . ,n. So, expressing the sum
n
∑

k=1
1 as an open-form solution, we obtain the

identity
n
∑

k=1
1 = 1 + 1 + · · ·+ 1

︸ ︷︷ ︸

n times

= n. Items 2–3 are left as exercises.

Our next theorem presents closed-form solutions for the sums in Example 4 (see
Theorem 4.4.1, and also Exercises 6 and 11 starting on page 122).

Theorem 4.3.3. For all integers n≥ 1,

1.
n
∑

k=1
k = n(n+1)

2

2.
n
∑

k=1
k2 = n(n+1)(2n+1)

6

3.
n
∑

k=1
k3 =

[
n(n+1)

2

]2
.

Example 6. Using Theorems 4.3.1 and 4.3.3, find a closed-form solution for the

sum
n
∑

k=1
(k + 3)2.
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Solution. We have that

n

∑
k=1

(k + 3)2 =
n

∑
k=1

(k2 + 6k + 9) as (k +3)2 = k2 +6k +9

=
n

∑
k=1

k2 + 6
n

∑
k=1

k + 9
n

∑
k=1

1 by Theorem 4.3.1

=
n(n + 1)(2n + 1)

6
+ 6 · n(n + 1)

2
+ 9

n

∑
k=1

1 by Theorem 4.3.3

=
n(n + 1)(2n + 1)

6
+ 6 · n(n + 1)

2
+ 9n by Example 5(1)

=
n(n + 1)(2n + 1)

6
+ 3n(n + 4) by algebra.

Thus,
n
∑

k=1
(k + 3)2 = n(n+1)(2n+1)

6 + 3n(n + 4) is our closed-form solution. ��

Theorem 4.3.4. If
n
∑

k=m
ak = g(n) for all integers n≥m, then

n
∑

k=i
ak = g(n)−g(i−1)

whenever i is an integer satisfying m < i≤ n.

Proof. Assume
n
∑

k=m
ak = g(n) for all integers n ≥ m. Let i be an integer satisfying

m< i≤ n. Hence,
i−1
∑

k=m
ak = g(i−1) because i−1≥m. Since

n
∑

k=m
ak =

i−1
∑

k=m
ak +

n
∑

k=i
ak,

we conclude that g(n) = g(i− 1)+
n
∑
k=i

ak. Therefore,
n
∑

k=i
ak = g(n)−g(i−1). ��

Example 7. Find a closed-form solution for
n
∑

k=5
k2.

Solution. Theorem 4.3.3 states that
n
∑

k=1
k2 = n(n+1)(2n+1)

6 for every n ≥ 1. When

n≥ 5 we have that 1 < 5≤ n. Since 5− 1 = 4, Theorem 4.3.4 implies that

n

∑
k=5

k2 =
n(n + 1)(2n + 1)

6
− 4(4 + 1)(2 ·4 + 1)

6
=

n(n + 1)(2n + 1)

6
−30.

Therefore,
n
∑

k=5
k2 = n(n+1)(2n+1)

6 − 30. ��

Changing the Index Variable

Consider the sums
n
∑
j=1

a j and
n
∑

k=1
ak and notice that the only difference between these

sums is the use of the different index variables j and k. Observe that
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n

∑
j=1

a j = a1 + a2 + · · ·+ an

n

∑
k=1

ak = a1 + a2 + · · ·+ an.

and thus
n
∑
j=1

a j =
n
∑

k=1
ak. For this reason, the index variable of a sum is sometimes

called a “dummy” variable. More generally, we have that
n
∑

j=m
a j =

n
∑

k=m
ak.

Shifting the Lower Limit of a Sum

To find a closed-form solution for a particular sum, one may need to transform the
sum to one that has a different lower limit. The shift rule, below, will allow us to
change the lower limit of a sum without changing the value of the sum.

The Shift Rule. Consider the sum
n
∑

k=m
h(k) with lower limit m. To rewrite this sum

as one with the lower limit s, compute d = s−m and then

n

∑
k=m

h(k) =
n+d

∑
k=m+d

h(k− d) =
n+d

∑
k=s

h(k−d) (4.5)

which is easy to verify.

In our next example, we will apply the shift rule to show that
n
∑

k=3

1
k5 =

n+4
∑

k=7

1
(k−4)5 .

Example 8. Using (4.5), let us rewrite the sum
n
∑

k=3

1
k5 as an equal sum with lower

limit 7. Compute d = 7− 3 = 4. Then shift the upper and lower limits up by 4 and

modify the summand by shifting k down by 4, obtaining
n
∑

k=3

1
k5 =

n+4
∑

k=7

1
(k−4)5 .

Example 9. Let us shift the sum
n
∑

k=3

1
k5 to an equal sum with lower limit 1. We

obtain d = 1− 3 = −2. We now shift the upper and lower limit values down by 2

and modify the summand by shifting k up by 2, to obtain
n
∑

k=3

1
k5 =

n−2
∑

k=1

1
(k+2)5 .

The next example shows that if the upper limit value n appears in the summand,
then we must leave the value n in the summand alone when applying the shift rule.
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Example 10. We shall shift the sum
n
∑

k=1

n
k5 to an equal sum with lower limit 4.

First, d = 4−1 = 3. After shifting the upper and lower limits up by 3 and shifting

the variable k in the summand down by 3, we obtain
n
∑

k=1

n
k5 =

n+3
∑

k=4

n
(k−3)5 .

4.3.3 Factorial Notation

In mathematics, the factorial of a natural number n is the product of all the natural
less than or equal to n. This is written as n! and is called “n factorial.”

Definition 4.3.5. For each natural number n the value n! is defined to be

n! = n(n− 1)(n− 2) · · ·2 ·1.

By convention, we define 0! = 1 (which is used to simplify mathematical formulas).

Example 11. Note that

1. 8! = 8 ·7 ·6 ·5 ·4 ·3 ·2 ·1.
2. 7! = 7 ·6 ·5 ·4 ·3 ·2 ·1.
3. 8! = 8 ·7!.
4. n! = n(n−1)! for n≥ 1.
5. (n + 1)! = (n + 1)n! for n≥ 0.

Example 12. Using Example 11, we simplify the following expressions.

1.
8!
7!

=
8 ·7!

7!
= 8.

2.
(n + 1)!
(n−1)!

=
(n + 1)(n)(n− 1)!

(n− 1)!
= n(n + 1).

3.
6!

2! ·3!
=

6 ·5 ·4 ·3!
2! ·3!

=
6 ·5 ·4

2!
= 60.

We now introduce the binomial coefficient
(n

k

)

, an important tool that is used
in combinatorics (a branch of mathematics with a concentration on techniques of
counting).

Definition 4.3.6. Let n≥ k ≥ 0 be integers. Then
(n

k

)

= n!
k!(n−k)! .

Remark. Since 0! = 1, we obtain
(n

0

)

= 1 and
(n

n

)

= 1 for all integers n≥ 0.

The binomial coefficient
(n

k

)

is used in many areas of mathematics, for instance,
algebra and probability theory. In combinatorics, the number

(n
k

)

is used to count the
number of different subsets of a set that one can choose, when each subset must have
k many elements and the set has n elements. Hence,

(n
k

)

is often read as “n choose
k.” For example, the set A = {a,b,c,d,e} has five elements. How many subsets of A
are there that have exactly three elements? The answer is

(5
3

)

= 5!
3!(5−3)! = 10.
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Exercises 4.3

1. For each sequence find a formula that generates the sequence:

(a) 1
3 ,

2
9 ,

3
27 ,

4
81 ,

5
243 , . . . starting with n = 1.

(b) 1
3 ,

2
9 ,

3
27 ,

4
81 ,

5
243 , . . . starting with n = 0.

(c) − 1
3 ,

2
9 ,− 3

27 ,
4
81 ,− 5

243 , . . . starting with n = 1.

(d) 1
3 ,− 2

9 ,
3

27 ,− 4
81 ,

5
243 , . . . starting with n = 0.

2. Justify equations 3 and 4 of Example 3 on page 109.
3. Justify the identities 2 and 3 presented in Example 5 on page 110.

4. Rewrite
n+1
∑

k=1

1
k2 by separating the last term.

5. Rewrite
n+1
∑

k=1
2k by separating the last two terms.

6. Let r�= 0 be a real number. Justify the identities:

(a)
0
∑

k=0
rk = 1.

(b)
n+1
∑

k=0
rk =

(
n
∑

k=0
rk

)

+ rn+1 when n≥ 0.

(c)

(
n+3
∑

k=0
rk

)

−
(

n
∑

k=0
rk

)

= rn(r3 + r2 + r) when n≥ 0.

7. Find a formula h(k) and a formula f (k) that generates the respective sum:

(a)
5
∑

k=1
h(k) = (1− 1

2 )+ ( 1
2 − 1

3 )+ ( 1
3 − 1

4)+ ( 1
4 − 1

5)+ ( 1
5 − 1

6 ).

(b)
5
∑

k=1
f (k) = (1− 1

2 )− ( 1
2 − 1

3 )+ ( 1
3 − 1

4 )− ( 1
4 − 1

5)+ ( 1
5 − 1

6).

8. Let h(k) be any formula and let m,n,d be integers with m ≤ n. Verify the
following equality

n

∑
k=m

h(k) =
n+d

∑
k=m+d

h(k−d)

(given in the shift rule) by expressing each side of this equality as an open sum.
9. Transform the following sums as requested:

(a) Shift the sum
n
∑

k=1

(k−1)2

k! to an equal sum with starting value k = 7.

(b) Shift
n
∑

k=2

(k−1)2

k! to an equal sum with starting value k =−7.

(c) Shift the summation
n+2
∑

k=−2

(k+1)n

(k+3)! to an equal sum with starting value k = 2.
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10. Suppose
n
∑

k=1
h(k) yields the values (4.6). Find formulas h(k) and g(n) so that

n
∑

k=1
h(k) = g(n) for all n≥ 1, where g(n) is a proposed closed-form solution.

1

∑
k=1

h(k) =
1

1 ·3 =
1
3

2

∑
k=1

h(k) =
1

1 ·3 +
1

3 ·5 =
2
5

3

∑
k=1

h(k) =
1

1 ·3 +
1

3 ·5 +
1

5 ·7 =
3
7

4

∑
k=1

h(k) =
1

1 ·3 +
1

3 ·5 +
1

5 ·7 +
1

7 ·9 =
4
9
.

(4.6)

11. Suppose
n
∑

k=1
h(k) yields the values (4.7). Find formulas h(k) and g(n) so that

n
∑

k=1
h(k) = g(n) for all n≥ 1, where g(n) is a proposed closed-form solution.

1

∑
k=1

h(k) = 1 ·1! = 1

2

∑
k=1

h(k) = 1 ·1! + 2 ·2! = 5

3

∑
k=1

h(k) = 1 ·1! + 2 ·2!+3 ·3! = 23

4

∑
k=1

h(k) = 1 ·1! + 2 ·2!+3 ·3!+4 ·4! = 119.

(4.7)

12. Find a closed-form solution for the sum
n
∑

k=1
(4k2−1).

13. Write

(
n
∑

k=1
(6k− 3)

)

+

(
n
∑

k=1
(4− 5k)

)

as a single sum.

14. Write 2 ·
(

n
∑

k=1
(3k2− 4)

)

+ 3 ·
(

n
∑

k=1
(3k2 + 1)

)

as a single sum and obtain a

closed-form solution for this single sum.

15. Find closed-form solutions for
n
∑

k=10
k and

n
∑

k=11
k3 using Theorems 4.3.4

and 4.3.3.

16. Using the shift rule, find a closed-form solution for
n
∑

k=−29
(k + 28)2.
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17. Show that
n
∑

k=1
(2k− 2k−1) = 2n− 1.

18. Let 0≤ k ≤ n be integers. Prove that
(n

k

)

=
( n

n−k

)

.

19. Let 1≤ k ≤ n be integers. Prove that
(n+1

k

)

=
( n

k−1

)

+
(n

k

)

.
20. Justify the following sequence of equalities:

n+1

∑
k=0

(
n + 1

k

)

x(n+1)−kyk = xn+1 +

(
n

∑
k=1

(
n + 1

k

)

x(n+1)−kyk

)

+ yn+1

= xn+1 +

(
n

∑
k=1

[(
n
k

)

+

(
n

k− 1

)]

xn+1−kyk

)

+ yn+1

= xn+1 +

(
n

∑
k=1

(
n
k

)

xn+1−kyk

)

+

(
n

∑
k=1

(
n

k−1

)

xn+1−kyk

)

+ yn+1

= xn+1 +

(
n

∑
k=1

(
n
k

)

xn+1−kyk

)

+

(
n−1

∑
k=0

(
n
k

)

xn−kyk+1

)

+ yn+1

= xn+1 +

(

x
n

∑
k=1

(
n
k

)

xn−kyk

)

+

(

y
n−1

∑
k=0

(
n
k

)

xn−kyk

)

+ yn+1

= x

[

xn +
n

∑
k=1

(
n
k

)

xn−kyk

]

+ y

[
n−1

∑
k=0

(
n
k

)

xn−kyk + yn

]

= x
n

∑
k=0

(
n
k

)

xn−kyk + y
n

∑
k=0

(
n
k

)

xn−kyk.

Exercise Notes: For Exercise 17, express
n
∑

k=1
(2k− 2k−1) in open-form (see (4.4) on

page 108) with the first four terms and the last two terms appearing in the open
sum. For Exercise 11, compute 2!, 3!, 4!, 5!. For Exercise 20, review Exercise 19,
Example 3 on page 109, and the shift rule. This sequence of equalities can be used
to prove the Binomial Theorem (see Exercise 16 on page 122).

4.4 Proving Equations by Mathematical Induction

The key mathematical tool for verifying patterns and properties of a sequence or
summation is mathematical induction. Consider the sum of the natural numbers in
the sequence 1,2,3, . . . ,n. The next theorem establishes a closed-form solution for
this sum. We will first perform a “proof analysis” and then we will prove the theorem
by induction.
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Theorem 4.4.1. For every integer n ≥ 1, the equation 1 + 2 + 3 + · · ·+ n = n(n+1)
2

holds.

Proof Analysis. When you are using proof by induction, it is helpful to write down
the statement P(n). In this case we have

P(n) : 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

In this theorem our base value is b = 1. Next, we construct an induction proof
diagram by first starting with

Base step:
Inductive step:

Prove P(1).

Let n≥ 1 be an integer.
Assume P(n).

Prove P(n + 1).

We now write out the statements P(1) and P(n + 1). Replacing n everywhere in the
statement

P(n) : 1 + 2 + 3 + · · ·+ n = n(n+1)
2

with 1, we obtain

P(1) : 1 =
1(1+1)

2 .

By replacing n with n + 1 everywhere in P(n), we obtain

P(n + 1) : 1 + 2 + 3 + · · ·+(n + 1) = (n+1)(n+2)
2 .

Thus, we obtain our desired last proof diagram:

Base step:
Inductive step:

Prove 1 = 1(1+1)
2 .

Let n≥ 1 be an integer.

Assume 1 + 2 + 3 + · · ·+ n = n(n+1)
2 .

Prove 1 + 2 + 3 + · · ·+(n + 1) = (n+1)(n+2)
2 .

For the base step we must verify 1 =
1(1+1)

2 . This is easy to verify, using simple
arithmetic. For the inductive step, we must use the induction hypothesis

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
(IH)

to prove that the induction conclusion

1 + 2 + 3 + · · ·+(n + 1) =
(n + 1)(n + 2)

2
(IC)

is true. To prove this conclusion, we begin with the left hand side of the equality
in (IC) and make some changes so that the left hand side of the equality in (IH)
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appears. Using the induction hypothesis (IH), we can replace (1 + 2 + 3 + · · ·+ n)

with n(n+1)
2 and obtain (n+1)(n+2)

2 which will complete our proof. A©A©
Our last proof diagram and analysis will guide the composition of a well-

structured proof of Theorem 4.4.1 by mathematical induction.

Proof. We prove, by mathematical induction, that 1 + 2 + 3 + · · ·+ n = n(n+1)
2 for

all integers n≥ 1.

Base step: For n = 1, we see that 1 = 1(1+1)
2 .

Inductive step: Let n≥ 1 be an integer and assume the induction hypothesis

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
. (IH)

We prove the equation 1 + 2 + 3 + · · ·+(n + 1) = (n+1)(n+2)
2 as follows:

1 + 2 + 3 + · · ·+(n + 1) = (1 + 2 + 3 + · · ·+ n)+ (n + 1) by regrouping

=
n(n + 1)

2
+(n + 1) by ind. hypothesis (IH)

=
n(n + 1)

2
+

2(n + 1)

2
common denominator

=
n(n + 1)+ 2(n + 1)

2
by algebra

=
(n + 1)(n + 2)

2
by commutativity
and distributivity.

Hence, 1 + 2 + 3 + · · ·+(n + 1) = (n+1)(n+2)
2 and the proof is complete. ��

Our next theorem establishes an important formula in mathematics. A geometric
sequence has the form

1,r,r2,r3, . . . ,rn,rn+1, . . .

for some real number r. Note that r0 = 1 when r�= 0. Consider the open sum

n

∑
k=0

rk = r0 + r1 + r2 + · · ·+ rn.

We will show, when r�= 1 and r is nonzero, that this sum has a closed-form solution.
This closed-form solution is used throughout mathematics and has applications in
physics, biology, economics, and computer science.

Theorem 4.4.2 (Sum of a geometric sequence). Let r �= 1 be a nonzero real

number. For every integer n≥ 0, we have
n
∑

k=0
rk = rn+1−1

r−1 .
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Proof Analysis. We first write down the statement P(n). In this case we have

P(n) :
n

∑
k=0

rk =
rn+1−1

r−1
.

In this theorem our base value is b = 0. We generate an induction proof diagram by
first starting with

Base step:
Inductive step:

Prove P(0).

Let n≥ 0 be an integer.
Assume P(n).

Prove P(n + 1).

We now carefully write out the statements P(0) and P(n + 1). By replacing n
everywhere in the statement

P(n) :
n

∑
k=0

rk =
rn+1−1

r− 1

with 0, we obtain

P(0) :
0

∑
k=0

rk =
r0+1−1

r− 1
.

By replacing n with (n + 1) everywhere in P(n) and then simplifying, we obtain

P(n + 1) :
n+1

∑
k=0

rk =
rn+2−1

r−1
.

Thus, we obtain our desired final proof diagram:

Base step:

Inductive step:

Prove
0
∑

k=0
rk = r0+1−1

r−1 .

Let n≥ 0 be an integer.

Assume
n
∑

k=0
rk = rn+1−1

r−1 .

Prove
n+1
∑

k=0
rk = rn+2−1

r−1 .

For the base step, we must verify the equation
0
∑

k=0
rk = r0+1−1

r−1 . For the inductive

step, we shall assume the induction hypothesis

n

∑
k=0

rk =
rn+1− 1

r− 1
(IH)
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and use it to prove the induction conclusion

n+1

∑
k=0

rk =
rn+2− 1

r− 1
. (IC)

To prove this conclusion, we begin with the left hand side of the equality in (IC)
and make some changes so that the left hand side of the equality in (IH) appears.3

Then, using the induction hypothesis (IH), we can replace

(
n
∑

k=0
rk

)

with rn+1−1
r−1 and

obtain rn+2−1
r−1 . Thus, we will have derived (IC). A©A©

Our analysis and final proof diagram motivates our proof of the Theorem 4.4.2
by mathematical induction.

Proof. Let r�= 1 be a nonzero real number. We prove that
n
∑

k=0
rk = rn+1−1

r−1 for all

n≥ 0, by induction.

Base step: For n = 0, we have
0
∑

k=0
rk = r0 = 1 and

r0+1−1
r−1

= 1. So
0
∑

k=0
rk = r0+1−1

r−1 .

Inductive step: Let n≥ 0 be an integer and assume the induction hypothesis

n

∑
k=0

rk =
rn+1− 1

r− 1
. (IH)

We show that
n+1
∑

k=0
rk = rn+2−1

r−1 as follows:

n+1

∑
k=0

rk =

(
n

∑
k=0

rk

)

+ rn+1 by property of Σ notation

=
rn+1− 1

r− 1
+ rn+1 by induction hypothesis (IH)

=
rn+1− 1

r− 1
+

(r− 1)rn+1

r− 1
common denominator

=
rn+1− 1 +(r− 1)rn+1

r− 1
by algebra

=
rn+1− 1 + rn+2− rn+1

r− 1
by distributivity

=
rn+2− 1

r− 1
by algebra.

Hence,
n+1
∑

k=0
rk = rn+2−1

r−1 and the proof is complete. ��

3See item 2 of Example 3 on page 109.



4.4 Proving Equations by Mathematical Induction 121

The formula for the sum of a geometric sequence, given in Theorem 4.4.2, is

valid for any nonzero r�= 1. We conclude that
n+1
∑

k=0
2k = 2n+2−1

2−1 = 2n+2−1.

Before reading the proof of our next theorem, one should review the sentence
presented after the solution of Example 3 on page 109.

Theorem 4.4.3. Let am,am+1, . . . and bm,bm+1, . . . be sequences where m is an

integer. Then
n
∑

k=m
(ak + bk) =

n
∑

k=m
ak +

n
∑

k=m
bk, for all n≥m.

Proof. Let am,am+1, . . . and bm,bm+1, . . . be sequences where m is an integer. We

prove that
n
∑

k=m
(ak + bk) =

n
∑

k=m
ak +

n
∑

k=m
bk, for all n≥ m.

Base step: For n = m, we have
m
∑

k=m
(ak + bk) = am + bm. Since

m
∑

k=m
ak = am and

m
∑

k=m
bk = bm, we conclude that

m
∑

k=m
(ak + bk) =

m
∑

k=m
ak +

m
∑

k=m
bk.

Inductive step: Let n≥ m be an integer and assume the induction hypothesis

n

∑
k=m

(ak + bk) =
n

∑
k=m

ak +
n

∑
k=m

bk. (IH)

We show that
n+1
∑

k=m
(ak + bk) =

n+1
∑

k=m
ak +

n+1
∑

k=m
bk as follows:

n+1

∑
k=m

(ak + bk) =

(
n

∑
k=m

(ak + bk)

)

+ an+1 + bn+1 property of Σ notation

=

(
n

∑
k=m

ak +
n

∑
k=m

bk

)

+ an+1 + bn+1 by ind. hypothesis (IH)

=

(
n

∑
k=m

ak

)

+ an+1 +

(
n

∑
k=m

bk

)

+ bn+1
by commutativity
and associativity

=
n+1

∑
k=m

ak +
n+1

∑
k=m

bk property of Σ notation.

Hence,
n+1
∑

k=m
(ak + bk) =

n+1
∑

k=m
ak +

n+1
∑

k=m
bk and the proof is complete. ��
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Exercises 4.4

1. Prove, for every integer n≥ 1, that 1 + 3 + 5 + · · ·+(2n−1) = n2.
2. Prove, for every integer n≥ 0, that 1 + 2 + 22 + · · ·+ 2n = 2n+1−1.
3. Prove that 2 + 6 + 18 + · · ·+ 2 ·3n−1 = 3n− 1, for every integer n≥ 1.

4. Prove that
(

1− 1
4

)(

1− 1
9

) · · ·
(

1− 1
n2

)

= n+1
2n , for all integers n≥ 2.

5. Prove that
n
∑

k=1
(2k − 2k−1) = 2n − 1 for all integers n ≥ 1, by mathematical

induction.

6. Prove that
n
∑

k=1
k2 = n(n+1)(2n+1)

6 holds, for every integer n≥ 1.

7. Let c be a real number and let am,am+1, . . . be a sequence where m is an integer.

Prove that
n
∑

k=m
cak = c

n
∑

k=m
ak, for all n≥ m.

8. Prove, for every integer n≥ 1, that
n
∑

k=1

1
4k2−1

= n
2n+1 .

9. Prove that
n
∑

k=1
k · k! = (n + 1)!− 1, for all integers n≥ 1.

10. Prove that
n
∑

k=1
(−1)kk2 = (−1)n n(n+1)

2 , for all integers n≥ 1.

11. Prove, for every integer n≥ 1, that
n
∑

k=1
k3 =

[
n(n+1)

2

]2
.

12. Prove for all integers n≥ 1 that
(n

k

)

is a natural number whenever k is an integer
satisfying 0≤ k≤ n.

13. Find a closed-form solution for the sum
n
∑

k=0
(2k−1)(3k + 1).

14. Prove that
n
∑

k=1

1
(2k−1)(2k+1) = n

2n+1 , for all integers n≥ 1.

15. Let r�= 1 be nonzero. Find a closed-form solution for the sum
n
∑

k=−9
rk.

16. (The Binomial Theorem) Let x and y be variables, representing real numbers.

Prove for every integer n≥ 1 that
n
∑

k=0

(n
k

)

xn−kyk = (x + y)n.

Exercise Notes: For Exercise 8, note that 4(n + 1)2 − 1 = (2n + 1)(2n + 3). For
Exercise 12, use induction on n and Exercise 19 on page 116. For Exercise 16, in
the inductive step use Exercise 20 on page 116.
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4.5 More Proofs by Mathematical Induction

In this section we use mathematical induction to prove statements about inequality,
divisibility, and recursively defined sequences. The basic steps in each proof are
the same as before; one must identify the statement P(n) and then prove the base
step and inductive step. Before reading the proofs of our next lemma and theorem,
the reader should review the substitution properties of inequality 3.3.3 presented on
page 69. The following Lemma 4.5.1 will be used in the proof of Theorem 4.5.2.

Lemma 4.5.1. Let n be an integer. If n≥ 3, then n2 > 2n + 1.

Proof. Assume n≥ 3. We prove that n2 > 2n + 1 as follows:

n2 = n ·n by property of exponents

≥ 3n because n≥ 3

= 2n + n as 3n = 2n+n

> 2n + 1 because n > 1.

Therefore, n2 > 2n + 1. ��
Theorem 4.5.2. For every integer n≥ 5, the inequality 2n > n2 holds.

Proof. We prove, by mathematical induction, that 2n > n2 for all n≥ 5.

Base step: For n = 5, we see that 2n = 32 and n2 = 25. Thus, 25 > 52.

Inductive step: Let n ≥ 5 be an integer. We shall show, assuming the induction
hypothesis (IH) 2n > n2, that 2n+1 > (n + 1)2 as follows:

2n+1 = 2 ·2n property of exponents

> 2n2 by the induction hypothesis (IH)

= n2 + n2 because 2a = a+a

> n2 + 2n + 1 because n2 > 2n+1, by Lemma 4.5.1

= (n + 1)2 by factoring.

Therefore, 2n+1 > (n + 1)2 and the proof is complete. ��
Theorem 4.5.3. For every integer n≥ 1, we have 3 |(n3−n).

Proof. We prove, by mathematical induction, that 3 |(n3−n) for all n≥ 1.

Base step: For n = 1, we see that (13− 1) = 0. Since 3 |0, we see that 3 |(13−1).

Inductive step: Let n≥ 1 be an integer. Assume the induction hypothesis 3 |(n3−n),
that is, assume

n3− n = 3 j for some j ∈N. (IH)
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We show that (n + 1)3− (n + 1) is evenly divisible by 3 as follows:

(n + 1)3− (n + 1) = n3 + 3n2 + 3n + 1− n−1 by expanding (n+1)3

= (n3− n)+ 3n2 + 3n by regrouping

= 3 j + 3n2 + 3n by (IH)

= 3( j + n2 + n) by distributivity.

Thus, (n + 1)3− (n + 1) = 3k where k = j + n2 + n is an integer and therefore,
3 |((n + 1)3− (n + 1)). ��

4.5.1 Recursive (Inductive) Definitions

A sequence is defined recursively if some its initial terms are first specified and each
of the remaining terms are then defined using one (or more) of the earlier terms. For
example, suppose that the first term of a sequence is given to be a1 = 1, and to form
the second term we add 3 to the first term to obtain a2 = a1 + 3 = 4. Similarly, to
get the third tern we must add 3 to a2 and so, a3 = a2 + 3 = 7. By continuing in
this manner we can construct every term of the sequence. A more succinct way of
describing this sequence is to first define a1 = 1 and then define the remaining terms
by an+1 = an +3 for all natural numbers n≥ 1. Actually, one can prove by induction
that each term in this sequence is given by an = 3n−2.

We now offer a general description of a recursively defined sequence where the
first term is identified and thereafter, each successive term is defined in terms of the
previous term.

Defining Sequences by Recursion. Suppose that M[x] is a “method” or formula
for computing a number m using another number x. We write this as m = M[x]. Let
b be a given number and let i be a fixed integer. We define an infinite sequence
ai,ai+1,ai+2, . . . ,an, . . . of numbers, starting at n = i, by recursion as follows:

(1) ai = b
(2) an+1 = M[an] for all n≥ i.

A definition involving the above steps (1) and (2) is called a recursive definition
or an inductive definition. Step (1) identifies the first term ai of the sequence and
step (2) allows us to compute the value an+1, if we already know the value of an.

Example 1. Define a sequence a1,a2,a3, . . . by recursion by using b = 1 and using
the “method” M[an] = 2an + 1. Determine the values a1, a2, a3, and a4.

Solution. The sequence is defined by the recursion

1. a1 = 1
2. an+1 = 2an + 1 for all n≥ 1.
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So, a1 = 1, a2 = 2a1 + 1 = 3, a3 = 2a2 + 1 = 7, and a4 = 2a3 + 13 = 15. Is there a
formula f (n) such that an = f (n) for all n≥ 1? ��
Example 2 (Factorial function n!). Define a sequence a0,a1,a2, . . . by recursion
by using b = 1 and using the “method” M[an,n] = (n+1) ·an. Determine the values
of a0, a1, a2, a3 and a4.

Solution. The sequence is defined by the recursion

1. a0 = 1
2. an+1 = (n + 1)an for all n≥ 0.

We see that a0 = 1, a1 = 1 ·a0 = 1, a2 = 2a1 = 2, a3 = 3a2 = 6 and a4 = 4a3 = 24.
Observe that an = n! for all n≥ 0. ��

If a sequence has been defined recursively, then proofs of statements about this
sequence often use “proof by induction.” Example 2 shows that n! can be defined
recursively. Thus, the proof of our next theorem is by mathematical induction.

Theorem 4.5.4. For every integer n≥ 4, we have n! > 2n.

Proof. We prove, by mathematical induction, that n! > 2n for all n≥ 4.

Base step: For n = 4, we see that n! = 24 and 2n = 16. So 4! > 24.

Inductive step: Let n ≥ 4 be an integer and assume (IH) n! > 2n. We prove that
(n + 1)! > 2n+1 as follows:

(n + 1)! = (n + 1)n!

> (n + 1)2n by induction hypothesis (IH)

> 2 ·2n because n+1 > 2, as n≥ 4

= 2n+1 by property of exponents.

Hence, (n + 1)! > 2n+1 and this completes the proof. ��
When a sequence is defined by recursion, it can be very difficult or impossible to

find an explicit formula for the sequence. If you discover such a formula, then you
must prove that the formula is correct by using mathematical induction.

Example 3. Consider the sequence a1,a2,a3, . . . defined recursively by

1. a1 = 1
2. an+1 = 2an + 1 for all n≥ 1.

Find a formula for an and prove (by induction) that your formula is correct.

Solution. Using a1 = 1 and an = 2an−1 +1 for n≥ 2, we obtain the following table
of values: One makes the conjecture that an = 2n−1, for all n≥ 1. ��
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n an

1 1
2 3
3 7
4 15
5 31
6 63
7 127

Theorem 4.5.5. Consider the sequence a1,a2,a3, . . . defined recursively by

1. a1 = 1
2. an+1 = 2an + 1 for all n≥ 1.

Then, an = 2n−1 for all n≥ 1.

Proof. We prove, by mathematical induction, that an = 2n−1 for all n≥ 1.

Base step: For n = 1, we see that an = 1 and 21− 1 = 1. Thus, a1 = 21−1.

Inductive step: Let n ≥ 1 be an integer and assume that (IH) an = 2n−1. We show
that an+1 = 2n+1−1 as follows:

an+1 = 2an + 1 by definition of sequence

= 2(2n− 1)+ 1 by induction hypothesis (IH)

= 2n+1− 1 by arithmetic.

Therefore, an+1 = 2n+1− 1 and the proof is complete. ��

Exercises 4.5

1. Prove for each integer n≥ 1, that 4n− 1 is divisible by 3.
2. Prove that 8 |(9n− 1), for every integer n≥ 1.
3. Prove that the inequality 2n > n holds for every integer n≥ 2.
4. Prove, for every integer n≥ 6, that n! > 2n+2.
5. Let a,b be positive real numbers where a < b. Prove that an < bn, for every

integer n≥ 1.
6. Prove that 6 |n(n2 + 5), for every integer n≥ 1.
7. Let x≥−1 be a real number. Prove that (1+x)n ≥ 1+nx for all integers n≥ 1.
8. Consider the sequence a1,a2,a3, . . . defined recursively by

(a) a1 = 1
(b) an+1 = 5an + 1 for all n≥ 1.

Prove, by induction, that an = 5n−1
4 for all integers n≥ 1.
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9. Consider the sequence a1,a2,a3, . . . defined recursively by

(a) a1 = 3
(b) an+1 = 2an + 3 for all n≥ 1.

Prove, by induction, that an = 3(2n− 1) for all integers n≥ 1.
10. Consider the sequence a1,a2,a3, . . . defined recursively by

(a) a1 = 2
(b) an+1 = (n + 1)an for all n≥ 1.

Prove, by induction, that an ≥ 2n for all integers n≥ 1.
11. Consider the sequence s1,s2, . . . defined recursively by

(a) s1 = 2
(b) sn+1 = 1

4 (sn + 5) for all n≥ 1.

Prove, by induction, that 1≤ sn+1 ≤ sn ≤ 2 for all integers n≥ 1.
12. Consider the sequence a1,a2,a3, . . . defined recursively by

(a) a1 = 1
(b) an+1 = an

n+1 for all n≥ 1.

Prove, by induction, that an = 1
n! for all integers n≥ 1.

13. Consider the sequence a1,a2,a3, . . . defined recursively by

(a) a1 = 3
(b) an+1 = an + 2n + 3 for all n≥ 1.

Find a formula for an and prove (by induction) that your formula is correct.
14. Let c < d be real numbers. Suppose that a1,a2,a3, . . . is an infinite sequence of

real numbers satisfying c≤ an ≤ d for all n≥ 1. Prove that c≤ a1+a2+···+an
n ≤ d

for all integers n≥ 1.

Exercise Notes: Exercise 7 is called Bernoulli’s inequality. For Exercise 11, in the
inductive step start with sn+1 ≤ sn and derive the inequality sn+2 ≤ sn+1; also start
with 1 ≤ sn+1 and derive 1 ≤ sn+2. For Exercise 14, multiply both sides of the
induction hypothesis inequality by n and then use the assumption c ≤ an+1 ≤ d,
together with Theorem 3.1.8.

4.6 Strong Mathematical Induction

A variation of “proof by induction” arises when in the inductive step you are having
difficulty relating P(n + 1) to P(n), or when the relationship you discover does not
prove fruitful. Suppose, however, that you can relate P(n) to P(k) for some (or all)
k satisfying b ≤ k < n, where b is the base value. In this case, you would like to
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use the fact that P(k) is true to conclude that P(n) is true; but, can you assume
that P(k) is true? The answer is yes and, in fact, you can assume all the statements
P(b),P(b + 1), . . . ,P(n− 1) are true.

4.6.1 Strong Induction with One Base Step

Principle of Strong Induction I. Let b be a given integer and let P(n) be a
statement that is defined for all integers n≥ b. Suppose that

1. P(b) is true, and
2. For all n > b, if P(b), P(b + 1), . . . , P(n− 1) are true, then P(n) is true.

Then for all integers n≥ b, the statement P(n) is true.

Remark. Another way to assert that all the statements P(b),P(b + 1), . . . ,P(n−1)
hold is to write ∀k(b ≤ k < n→ P(k)).

The principle of strong induction justifies our next proof strategy, which is often
used in mathematical proofs.

Proof Strategy 4.6.1. Let b be a fixed integer and let P(n) be a statement that is
defined for all integers n ≥ b. To prove (∀n ≥ b)P(n) by strong induction, use the
diagram

Prove P(b).

Prove (∀n > b)[(∀k(b ≤ k < n→ P(k))→ P(n)].

In other words, use the diagram

Base step:
Inductive step:

Prove P(b).

Let n > b be an integer.
Assume P(k) whenever b≤ k < n.

Prove P(n).

So to prove a statement (∀n ≥ b)P(n) by strong induction, one would use the
above final diagram in Proof Strategy 4.6.1. One way to interpret this final diagram
is, once again, to think of the domino effect as pictured in Fig. 4.2. The base step
verifies that the first domino will fall. The above inductive step can be thought
of asserting that each domino is perfectly aligned with all of the dominos that
come before it. Thus, we can be sure that the first domino will fall (base step) and
whenever all of the dominoes that precede the n-th domino fall, we can be certain
that the n-th domino will also fall (inductive step). Therefore, all of the dominoes
must fall.

A proof of a statement of the form (∀n ≥ b)P(n) by strong induction is very
much like a proof by mathematical induction. Strong induction just changes the
focus slightly. Rather than trying to prove P(n+1), one tries to prove the statement
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b b+1 b+2

· · · · · ·· · · · · ·

Base step: Inductive step:

n−1 n

Fig. 4.2 Strong induction forces all of the dominoes to fall

P(n) by relating P(n) to one (or all) of the statements P(k) where k < n. Our next
theorem applies the strong induction Proof Strategy 4.6.1 to establish a result on the
uniqueness of certain types of decimal expansions.

One can prove that every real number has an infinite decimal expansion. For
example, 1

4 = 0.2500000 · · ·, 4
3 = 1.3333333 · · ·, and π = 3.1415926 · · ·. Some real

numbers have two infinite decimal expansions. It is easy to show (see Example 2
on page 63) that 1.00000 · · · = 0.99999 · · · and thus, the number 1 has more than
one decimal expansion. One can also show that 0.450000000 · · ·= 0.449999999 · · ·.
So, decimal expansions are not necessarily unique. Let us now consider decimal
expansions where 9 is not allowed as a digit. Can a real number have two different
decimal expansions, neither of which contain any 9’s? Does 0.8888888 · · · have a
second decimal expansion that also does not contain any 9’s? Our next theorem
shows that decimal expansions of the form 0.z1z2z3 · · · with 0≤ zi ≤ 8 are unique.

Theorem 4.6.2. Suppose 0.x1x2x3 · · · = 0.y1y2y3 · · · where 0 ≤ xi ≤ 8 and 0 ≤ yi

≤ 8 for each natural number i. Then xn = yn for all n≥ 1.

Proof Analysis. We write down the statement P(n), which is xn = yn. Next, we
construct a proof diagram using the strong induction Proof Strategy 4.6.1:

Base step:
Inductive step:

Prove x1 = y1.

Let n > 1 be an integer.
Assume xk = yk whenever 1≤ k < n.

Prove xn = yn.

This diagram will guide our proof. A©A©
Proof. We have that

0.x1x2x3 · · ·= 0.y1y2y3 · · · (4.8)

where 0≤ xi,yi ≤ 8 for each i≥ 1. We prove that xn = yn for all n≥ 1.

Base step: Let n = 1. We will prove that x1 = y1. By multiplying both sides of (4.8)
by 10, we obtain the equations

x1.x2x3x4 · · ·= y1.y2y3y4 · · ·
x1 + 0.x2x3x4 · · ·= y1 + 0.y2y3y4 · · · . (4.9)
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Let a = 0.x2x3x4 · · · and b = 0.y2y3y4 · · · . Since 0 ≤ a ≤ 0.888 · · · < 1, it follows
that 0 ≤ a < 1. Similarly, we conclude that 0 ≤ b < 1. Hence, −1 < b−a < 1. So,
if b− a is an integer, then b− a = 0. We can now rewrite (4.9) as x1 + a = y1 + b
and, by algebra, obtain the equation x1− y1 = b− a. Since x1− y1 is an integer, we
see that b−a is also an integer. Therefore b− a = 0 and consequently, x1 = y1.

Inductive step: Let n > 1 be a natural number and assume the strong induction
hypothesis

x1 = y1, x2 = y2, . . . , xn−1 = yn−1. (IH)

We shall prove that xn = yn. By multiplying both sides of (4.8) by 10, we obtain

x1.x2x3x4 · · ·= y1.y2y3y4 · · ·

and thus,
x1 + 0.x2x3x4 · · ·= y1 + 0.y2y3y4 · · · . (4.10)

Since x1 = y1, we see from (4.10) that

0.x2x3x4 · · ·= 0.y2y3y4 · · · . (4.11)

By multiplying equation (4.11) by 10 we obtain

x2 + 0.x3x4x5 · · ·= y2 + 0.y3y4y5 · · ·

and, since x2 = y2, we see that 0.x3x4x5 · · · = 0.y3y4y5 · · · . Because x3 = y3, . . . ,
xn−1 = yn−1, we can continue this reasoning and conclude that

0.xnxn+1xn+2 · · ·= 0.ynyn+1yn+2 · · · . (4.12)

The argument used in the base step, applied to (4.12), shows that xn = yn. Therefore,
xn = yn for all n≥ 1. ��
Remark 4.6.3. We shall say that a decimal expansion of a real number ends with
a string of 9’s if it ends with an infinite repeating sequence of 9’s; for example,
the decimal expansion 0.12327739999999 · · · ends with a string of 9’s. Similarly,
we will say the a decimal expansion ends with a string of 0’s if it ends with an
infinite repeating sequence of 0’s. Exercises 2 and 3 of this section imply that if
a real number has two different decimal expansions, then one of the expansions
must end with a string of 9’s and the other expansion must end with a string of
0’s. Consequently, the real number 0.989898 · · · has no other decimal expansions.
Furthermore, one can prove that a real number which has a decimal expansion
ending in a string of 9’s also has a decimal expansion that ends with a string of 0’s.
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4.6.2 Strong Induction with Multiple Base Steps

Suppose you are trying to prove a statement of the form (∀n ≥ b)P(n) by strong
induction and, in the inductive step, you see how to relate P(n) to some P(k) where
k < n. In addition, you also discover that it may be the case that k < b. You know
that when k < b one cannot assume P(k) as part of the induction hypothesis. Is there
a way to around this difficulty? To handle such unusual cases, we introduce another
version of strong induction in which there can be multiple base steps.

Principle of Strong Induction II. Let b be an integer and let P(n) be a statement
that is defined for all integers n≥ b. Suppose for an integer c > b we have that

1. P(b), P(b + 1), . . . , P(c) are all true, and
2. For all n > c, if P(b), P(b + 1), . . . , P(n− 1) are true, then P(n) is true.

Then for all integers n≥ b, the statement P(n) is true.

The above item 2 is similar to the corresponding item in the Strong Induction
Principle I (see page 128); however, item 1 is different and states that the property
must be true for more than one initial value. Our next proof strategy shows how to
put all of the pieces of this principle together to obtain a proof by strong induction.
This strategy is essentially the same as that for strong induction with one base step.
The new ingredient is that one has to know, beforehand, the number of base steps
that are required in the proof. We will address this issue in Remark 4.6.5.

Proof Strategy 4.6.4. Let b be an integer and let P(n) be a statement that is defined
for all integers n ≥ b. To prove (∀n ≥ b)P(n) by strong induction, identify the
integer c > b and then use the diagram

Prove P(b).

Prove P(b + 1).
...

Prove P(c).
Prove (∀n > c)[(∀k(b ≤ k < n→ P(k))→ P(n)].

In other words, use the diagram

Base steps:
Inductive step:

Prove P(i) for each i satisfying b≤ i≤ c.
Let n > c be an integer.

Assume P(k) whenever b≤ k < n.
Prove P(n).

Remark 4.6.5. In this latter proof diagram, the value one needs for c depends
on the proof of P(n) in the inductive step. Suppose the proof of P(n) requires
P(n1),P(n2), . . . ,P(n j) to hold in the induction hypothesis where n1,n2, . . . ,n j < n.



132 4 Mathematical Induction

Then c is chosen so that if n > c, we will be assured that each ni ≥ b when 1≤ i≤ j.
We shall illustrate this idea in the proof of our next theorem which involves three
base steps.

Theorem 4.6.6. Let a1,a2, . . . be the sequence recursively defined by

1. a1 = 1
2. a2 = 2
3. a3 = 3
4. an = an−1 + an−2 + an−3 for all integers n > 3.

Then an ≤ 2n for all integers n≥ 1.

Proof Analysis. We write down the statement P(n). In this case we have

P(n) : an ≤ 2n.

Next, we construct a proof diagram using the strong induction Proof Strategy 4.6.1.
Our base value is b = 1. In our inductive step, we will need to prove that an ≤ 2n.
Since an = an−1 + an−2 + an−3, our induction hypothesis must hold for n−1, n−2
and n−3. Thus we must have n− 3 ≥ 1, that is, we need n ≥ 4. So, we take c = 3
and obtain the following proof diagram:

Base step:
Base step:
Base step:
Inductive step:

Prove a1 ≤ 21.

Prove a2 ≤ 22.

Prove a3 ≤ 23.

Let n > 3 be an integer.
Assume ak ≤ 2k when 1≤ k < n.

Prove an ≤ 2n.

This diagram will guide our proof. A©A©
Proof. Let a1,a2, . . . be the sequence defined recursively in the statement of the
theorem. We prove, by strong induction, that an ≤ 2n for all n≥ 1.

Base step: We see that a1 = 1≤ 21.
Base step: We see that a2 = 2≤ 22.
Base step: We see that a3 = 3≤ 23.

Inductive step: Let n > 3 be an integer and assume

ak ≤ 2k whenever 1≤ k < n. (IH)

We will show that an ≤ 2n. Note that an = an−1 + an−2 + an−3 by item 4 of the
definition of the sequence. Thus

an = an−1 + an−2 + an−3 by definition of sequence

≤ 2n−1 + 2n−2 + 2n−3 by induction hypothesis (IH)
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= 2n−3(22 + 21 + 1) by distributivity

≤ 2n−3 ·23 because 22 +21 +1 = 7≤ 23

= 2n by property of exponents.

Therefore, an ≤ 2n and the proof is complete. ��
When we divide a natural number by 4 we expect a remainder between 0 and 3.

We will now give a proof establishing that this is the case.

Theorem 4.6.7. Every integer n ≥ 0 can be expressed as n = 4q + r for integers q
and r where 0≤ r < 4.

Proof Analysis. We write down the statement P(n). In this case we have

P(n) : “n = 4q + r for some integers q and 0≤ r < 4.”

Next, we construct a proof diagram using the strong induction Proof Strategy 4.6.1.
Our base value is b = 0. In our proof we will need the induction hypothesis to hold
for n−4. Thus, we require that n− 4≥ 0 and so, we need n≥ 4. So, we take c = 3
(see Remark 4.6.5). We use b = 0 and c = 3 to obtain the proof diagram:

Base step:
Base step:
Base step:
Base step:
Induct. step:

Prove 0 = 4q + r for some integers q and 0≤ r < 4.
Prove 1 = 4q + r for some integers q and 0≤ r < 4.
Prove 2 = 4q + r for some integers q and 0≤ r < 4.
Prove 3 = 4q + r for some integers q and 0≤ r < 4.
Let n > 3 be an integer.

Assume k = 4i+ j for integers i and 0≤ j < 4, if 0≤ k < n.
Prove n = 4q + r for some integers q and 0≤ r < 4.

We will use this diagram as a guide for our proof. A©A©
Proof. We prove, by strong mathematical induction, that every integer n≥ 0 can be
written as n = 4q + r for some integers q and r where 0≤ r < 4.

Base step: We see that 0 = 4(0)+ 0.
Base step: We see that 1 = 4(0)+ 1.
Base step: We see that 2 = 4(0)+ 2.
Base step: We see that 3 = 4(0)+ 3.

Inductive step: Let n > 3 be an integer and assume

k = 4i+ j for some integers i and j where 0≤ j < 4, whenever 0≤ k < n. (IH)

We will show that n = 4q+r for some integers q and 0≤ r < 4. Since n> 3, we have
that 0≤ n−4 < n. The induction hypothesis (IH) implies that (∗) n−4 = 4i+ r for
some integers i and r where 0≤ r < 4. Solving (∗) for n, we obtain n = 4(i+1)+ r.
Thus, n = 4q + r where q = i + 1 and 0 ≤ r < 4 are integers. This completes the
proof. ��
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Our next theorem, Theorem 4.6.8, has many applications in number theory and
abstract algebra. Theorem 4.6.8 generalizes Theorem 4.6.7 and precisely expresses
the outcome of the usual process of division by an integer d ≥ 1. Our proof of this
theorem is very similar to the proof of Theorem 4.6.7. In particular, the base steps
show that the result holds for each of the integers 0,1,2, . . . ,d−1.

Theorem 4.6.8. Let n and d be integers, where n ≥ 0 and d ≥ 1. Then there exist
unique integers q and r such that n = dq + r and 0≤ r < d.

Proof. Let d ≥ 1 be an integer. We first prove, by strong mathematical induction,
that every integer n≥ 0 can be written as n = dq+r for some integers q and r where
0≤ r < d.

Base steps: When 0≤ �≤ d− 1, we see that � = d ·0 + � where 0≤ � < d.

Inductive step: Let n > d− 1 be an integer and assume the induction hypothesis

k = di+ j for some integers i and j where 0≤ j < d, whenever 0≤ k < n. (IH)

We show that n = dq + r for some integers q and r where 0 ≤ r < d. Clearly, we
have that 0 ≤ n−d < n, since n ≥ d > 0. So, by the induction hypothesis (IH), we
conclude that n−d = di+ r for some integers i and r where 0 ≤ r < d. Solving for
n, we obtain n = d(i + 1)+ r. Thus, letting q = i + 1, we have that n = dq + r and
0≤ r < d. This completes the induction proof.

To show uniqueness, let n and d be integers where n ≥ 0 and d ≥ 1. Suppose
that n = dq + r for integers q and r where 0 ≤ r < d, and suppose i and j are also
integers satisfying n = di+ j and 0≤ j < d. We shall show that q = i and r = j. Since
n = dq+ r and n = di+ j, it follows that dq+ r = di+ j and so, (�) (q− i)d = j− r.
First we prove that r = j. Suppose, for a contradiction, that r�= j. Without loss of
generality, we shall presume that r < j. Hence, 0 < j− r. Because 0 ≤ r < j < d,
we obtain 0 < j− r < d. We now conclude from (�) that 0 < (q− i)d < d. But then
0 < (q− i) < 1; however, since (q− i) is an integer, the inequality 0 < (q− i) < 1
cannot hold. This contradiction shows that we must have r = j and equation (�)
implies that q = i. ��
Example 1. Let n = 173 and d = 9. To find q and r satisfying n = dq + r with
0≤ r < 9, one performs the long division 9 |173 to obtain the quotient q = 19 and
the remainder r = 2. Thus, 173 = 9 ·19 + 2.

Theorem 4.6.8 applies to all non-negative integers n. We shall extend this
theorem to any integer n. This extension is called the division algorithm because,
as noted earlier, if |n| ≥ d, then one can obtain the quotient q and remainder r by
performing long division.

Theorem 4.6.9 (Division Algorithm). Let n and d be integers, where d ≥ 1. Then
there exist unique integers q and r such that n = dq + r and 0≤ r < d.

Proof. Let n and d be integers where d ≥ 1. If n ≥ 0, then the result follows from
Theorem 4.6.8. Suppose n < 0. Then −n > 0. By Theorem 4.6.8, there are integers
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i and j such that −n = di+ j and 0≤ j < d. So (�) n = d(−i)− j. Since 0≤ j < d,
there are two cases to consider; namely, 0 = j and 0 < j. If 0 = j, then (�) becomes
n = d(−i)+0 and we can let q =−i and r = 0. If 0 < j then, since 0 < j < d, we see
that 0< d− j < d. We can rewrite (�) as n = d(−i)−d +d− j = d(−i−1)+(d− j)
and so, we can let q = (−i− 1) and r = (d− j). We conclude that n = dq + r for
integers q and r where 0 ≤ r < d. The proof that q and r are unique follows just as
in the proof of Theorem 4.6.8. ��

The greatest common divisor of two nonzero integers m and n is the largest
natural number that evenly divides both m and n. We now give a precise definition.

Definition 4.6.10 (Greatest Common Divisor). For integers m and n where m�= 0
or n�= 0, the greatest common divisor of m and n, denoted by gcd(m,n), is the
integer d satisfying:

(1) d ≥ 1.
(2) d |m and d |n.
(3) For all c ∈ Z, if c |m and c |n, then c |d.4

Let m and n be integers with at least one being nonzero. The next important
theorem shows that there is a natural number d that satisfies conditions (1)–(3) of
Definition 4.6.10. The proof of this theorem uses the well–ordering principle.

Theorem 4.6.11. For integers m and n where m�= 0 or n�= 0, the greatest common
divisor d = gcd(m,n) exists and can be written as d = sm + tn for some integers s
and t.

Proof. See Exercise 11. ��
Theorem 4.6.11 asserts that d, the greatest common divisor of m and n, can be

written in the form d = sm+ tn for some integers s and t. This equation is frequently
used in number theory and abstract algebra.

Definition 4.6.12. Let a and b be integers. We say that a and b are relatively prime
when 1 is the only natural number that evenly divides both a and b.

In other words, the integers a and b are relatively prime if gcd(a,b) = 1. For
example, 6 and 35 are relatively prime. Whereas, 6 and 27 are not relatively prime
because they are both divisible by 3. We can now derive the following corollary.5

Corollary 4.6.13. Let m and n be integers with either m �= 0 or n �= 0. Then
gcd(m,n) = 1 if and only if sm + tn = 1 for some integers s and t.

Proof. Let m and n be integers where either m �= 0 or n�= 0. If gcd(m,n) = 1,
then Theorem 4.6.11 implies that sm + tn = 1 for some integers s and t. To prove

4Consequently, c≤ d.
5A corollary is a statement that follows from a previously proven theorem.
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the converse, assume sm + tn = 1 where s and t are integers. We will prove that
gcd(m,n) = 1. Let d = gcd(m,n). Since d |m and d |n, Theorem 3.5.7 implies that
d |1. Therefore, d = 1. ��
Theorem 4.6.14. Let m,a,b be nonzero integers. If m |(ab) and gcd(m,a) = 1,
then m |b.

Proof. See Exercise 12. ��

Exercises 4.6

1. Let n be a natural number. Under the assumptions of Theorem 4.6.2, explicitly
prove that the equality

0.xnxn+1xn+2 · · ·= 0.ynyn+1yn+2 · · ·

implies xn = yn.
2. Suppose 0.x1x2x3 · · · and 0.y1y2y3 · · · are two infinite decimal expansions,

where 0≤ xi ≤ 9 and 0≤ yi ≤ 9 for each i∈N, that satisfy the two conditions:

(a) 0.x1x2x3 · · ·= 0.y1y2y3 · · ·
(b) 0.xixi+1xi+1 · · ·< 1 and 0.yiyi+1yi+2 · · ·< 1 for all i ∈ N.

Prove that xn = yn for all n ≥ 1. (Remark: Condition (b) is another way of saying that

neither decimal expansion ends with a string of 9’s (see Remark 4.6.3).)

3. Suppose 0.x1x2x3 · · · and 0.y1y2y3 · · · are two infinite decimal expansions,
where 0≤ xi ≤ 9 and 0≤ yi ≤ 9 for each i∈N, that satisfy the two conditions:

(a) 0.x1x2x3 · · ·= 0.y1y2y3 · · ·
(b) 0.xixi+1xi+1 · · ·> 0 and 0.yiyi+1yi+2 · · ·> 0 for all i ∈ N.

Prove that xn = yn for all n ≥ 1. (Remark: Condition (b) means that neither decimal

expansion ends with a string of 0’s (see Remark 4.6.3).)

4. For each pair of integers n and d, find q and r such that n = dq + r where
0≤ r < d.

(a) n = 335 and d = 17.
(b) n =−335 and d = 17.
(c) n = 121 and d = 13.
(d) n =−121 and d = 13.

5. Use the division algorithm with d = 3 to prove that the square of every integer
n has the form 3k or 3k + 1 for some integer k.

6. Define a sequence a1,a2, . . . recursively as follows:

(a) a1 = 1
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(b) a2 = 2
(c) an = an−1 + an−2 for all integers n > 2.

Use strong induction to prove that an ≤
(

5
3

)
n for all integers n≥ 1.

7. Consider the sequence a1,a2, . . . defined recursively as follows:

(a) a1 = 6
(b) a2 = 3
(c) an = 4an−1 + 5an−2 for all integers n > 2.

Prove that 3 |an for all integers n≥ 1.
8. Let m and n be nonzero integers that are relatively prime. Suppose m |� and n |�

for an integer �. Prove that mn |�.
9. Let s ∈Q and d ∈N be such that s≥ 0 and d ≥ 1. Prove that there exist unique

numbers q ∈N and r ∈Q such that s = dq + r and 0≤ r < d.
10. The following offers another proof of Theorem 4.6.9. This proof uses the well-

ordering principle 4.1.2 and does not use strong induction. Let d ≥ 1 and n be
integers.

(a) Prove that there exists an integer k such that n−dk≥ 0.
(b) Let A = {m ∈ Z : m≥ 0 and m = n− dk for some k ∈ Z}. By (a), the set A

is nonempty. Thus, A has a least element r by the well-ordering principle.
Prove that n = dq + r for some q ∈ Z and that 0≤ r < d.

11. Let A = {k ∈ N : k = sm + tn for some integers s, t} where m,n are integers
with m�= 0 or n�= 0. Exercise 12 on page 80 implies that A�= ∅. By the well-
ordering principle, A has a least element d ≥ 1. Prove the following statements
in the order given.

(1) There are integers s, t satisfying d = sm+ tn.
(2) For all c ∈ Z, if c |m and c |n, then c |d.
(3) d |m and d |n.

12. Let m,a,b ∈ Z where gcd(m,a) = 1. By Corollary 4.6.13 there are integers s
and t such that 1 = sa + tm. Using this equation, prove Theorem 4.6.14.

13. Let n,a,b ∈ Z be nonzero and let d = gcd(a,b). Suppose that d |n. Show that
there exist integers x and y such that n = xa + yb.

14. Prove that every integer n≥ 0 can be expressed as

n = ai3i + ai−13i−1 + · · ·+ a232 + a13 + a0

for some integers i≥ 0 and 0≤ a j ≤ 2 for j = 0,1,2, . . . , i.
15. Define the Fibonacci sequence f0, f1, . . . recursively as follows:

(a) f0 = 0
(b) f1 = 1
(c) fn = fn−1 + fn−2 for all integers n > 1.

Prove that fn = 1√
5

(
1+
√

5
2

)n− 1√
5

(
1−√5

2

)n
for all integers n≥ 0.
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Exercise Notes: For Exercise 4, when n > 0 see Example 1; when n < 0 read the
proof of Theorem 4.6.9. For Exercise 8, since gcd(m,n) = 1, there are integers s
and t such that 1 = sm + tn. Now multiply both sides of this equation by �. Fore
Exercise 11(3), to prove that d |m, assume d � m and obtain a contradiction from
the following: By Theorem 4.6.9 there are integers q and r where qd = m− r with
1≤ r < d. Multiply both sides of the equation in (1) by q to obtain a new equation.
In this new equation replace qd with m−r and solve for r. For Exercise 12, multiply
both sides of the equation 1 = sa+tm by b. For Exercise 14, use the strong induction
Strategy 4.6.1. By Theorem 4.6.8 every integer n ≥ 0 can be written as n = 3q + r
for integers q and 0≤ r ≤ 2.

4.7 Fundamental Theorem of Arithmetic

In number theory, Euclid’s fundamental theorem of arithmetic (or unique factoriza-
tion theorem) states that every natural number greater than 1 can be written as a
unique product of prime numbers. For example, 23,456,700 = 22 · 33 · 52 · 67 · 389
and there is no other factorization of 23,456,700 into prime numbers. Because
multiplication is commutative and associative, the order of the prime factors is
usually written in ascending order, that is, from least to greatest.

We shall prove the fundamental theorem of arithmetic in two steps. First we
prove Theorem 4.7.1 which states that every natural number n≥ 2 can be written as
a product of primes. In the second step we prove that there is only one such prime
factorization (see Theorem 4.7.6). Both of these proofs are by strong induction.

Theorem 4.7.1 (Existence of Prime Factorization). Every natural number n≥ 2
can be expressed as a product of primes.

Proof Analysis. We shall apply Proof Strategy 4.6.1. First we write down the
statement P(n). In this case we have

P(n) : “n is a product of primes.”

Next, we construct a strong induction proof diagram with base value b = 2:

Base step:
Inductive step:

Prove 2 is a product of primes.
Let n > 2 be an integer.

Assume k is a product of primes, whenever 2≤ k < n.
Prove n is a product of primes.

This diagram will guide the composition of the following proof. A©A©
Proof. We prove, by strong mathematical induction, that every natural number n≥ 2
is a product of primes.

Base step: For n = 2, we see that 2 is clearly a ‘product’ of one prime.
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Inductive step: Let n > 2 be a natural number. Assume the induction hypothesis

k is a product of primes, whenever 2≤ k < n. (IH)

We show that n can be expressed as a product of primes. Clearly, either n is a prime
or n is not a prime. Thus, there are two cases to consider:

CASE 1: n is a prime p. Since n = p is a prime, n is a ‘product’ of one prime.

CASE 2: n is not a prime. Since n is not a prime, then n can be expressed as a product
n = i j where 2≤ i < n and 2≤ j < n. By the induction hypothesis (IH), i and j can
expressed as a product of primes, say i = p1 p2 · · · pk and j = q1q2 · · ·q�. Therefore,

n = i j = (p1 p2 · · · pk)(q1q2 · · ·q�) = p1 p2 · · · pkq1q2 · · ·q�

and so, n can be expressed as a product of primes. This completes the proof. ��
Euclid was the first to prove our next lemma which shows that if a prime number

p evenly divides the product of two natural numbers ab, then either p divides a or p
divides b. Euclid’s lemma is used to prove the uniqueness of a prime factorization.

Lemma 4.7.2 (Euclid’s Lemma). Let a and b be natural numbers and let p be a
prime. If p |(ab), then p |a or p |b.

Proof. Let a and b be natural numbers and let p be a prime so that p |(ab). Suppose
p � a. Since p is a prime and p � a, it follows that gcd(a, p) = 1. Theorem 4.6.14 now
implies that p |b. ��
Corollary 4.7.3. Let a be a natural number and p be a prime. If p |a2, then p |a.

Our next theorem can be proven by induction on n, using Lemma 4.7.2 in the
inductive step.

Theorem 4.7.4. Let a1,a2, . . . ,an be natural numbers and let p be a prime. If
p |(a1a2 · · ·an), then p |ai for some i where 1≤ i≤ n.

Definition 4.7.5. A prime factorization n = p1 p2 · · · pk, for a natural number n > 1,
is in ascending order if pi ≤ p j when 1 ≤ i ≤ j ≤ k. Such a factorization shall be
referred to as an ascending prime factorization.

Example 1. Here are four examples of ascending prime factorizations: 10 = 2 · 5,
20 = 2 ·2 ·5, 13 = 13, 84 = 2 ·3 ·3 ·7.

Theorem 4.7.6 (Uniqueness of Prime Factorization). Let n ≥ 2 be a natural
number. Suppose n = p1 p2 · · · pr and n = q1q2 · · ·qs are ascending prime factor-
izations of n. Then r = s and p1 = q1, p2 = q2, . . . , pr = qs.

Proof. We prove, by strong mathematical induction, that for all natural numbers
n≥ 2, there is only one ascending prime factorization of n.

Base step: For n = 2, we see that n = 2 is the only prime factorization of n.
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Inductive step: Let n > 2 be a natural number. Assume that

there is only one ascending prime factorization of k, whenever 2≤ k < n. (IH)

If n is a prime number p, then n = p is the only prime factorization of n. So we will
now consider the case when n is not a prime. Suppose that

n = p1 p2 · · · pr and n = q1q2 · · ·qs. (4.13)

are ascending prime factorizations of n where r > 1 and s > 1. We must prove that
these factorizations are exactly the same. We first prove that pr = qs. Suppose, for a
contradiction, that pr�= qs. Thus, either pr < qs or pr > qs. Suppose that (�) pr < qs.
Since n = q1q2 · · ·qs, it follows that qs |n. Moreover, because n = p1 p2 · · · pr, we
have that qs |(p1 p2 · · · pr). By Theorem 4.7.4, there is an i with 1 ≤ i ≤ r such that
qs | pi. Since qs and pi are both primes, we see that qs = pi. Since pi ≤ pr, we
conclude that qs ≤ pr. Since the inequality qs ≤ pr contradicts (�), we infer that
pr < qs is impossible. A similar argument (see Exercise 9) shows that pr > qs is
also impossible. Therefore, pr = qs. Now since pr = qs, let p = pr = qs be this
common value. From (4.13) we see that

n = p1 p2 · · · pr−1 p = q1q2 · · ·qs−1 p.

By canceling p, we obtain

k = p1 p2 · · · pr−1 = q1q2 · · ·qs−1

with 2≤ k < n. Since 2≤ k < n, our induction hypothesis (IH) implies that

r−1 = s− 1 and p1 = q1, p2 = q2, . . . , pr−1 = qs−1.

Thus, r = s and because pr = qs, the ascending prime factorizations in (4.13) are
exactly the same. This completes the proof. ��

If a prime appears more than once in an ascending prime factorization, then we
can simplify the factorization by using exponents, e.g., 882 = 2 ·3 ·3 ·7 ·7 = 2 ·32 ·72.
So, each ascending prime factorization can be written as n = pa1

1 pa2
2 · · · pak

k where
p1, p2, . . . , pk are distinct ascending primes and a1,a2, . . . ,ak are natural numbers.
Theorems 4.7.1 and 4.7.6 easily imply our next result.

Theorem 4.7.7 (Fundamental Theorem of Arithmetic). Let n > 1 be a natural
number. There exist primes p1 < p2 < · · · < pk and natural numbers a1,a2, . . . ,ak

such that n = pa1
1 pa2

2 · · · pak
k . Furthermore, if n = qb1

1 qb2
2 · · ·qb�

� is any ascending
prime factorization into distinct primes, then � = k, p1 = q1, p2 = q2, . . . , pk = q�
and a1 = b1, a2 = b2, . . . , ak = b�.
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Example 2. If 2i5k = 2453 where i, j are natural numbers, then Theorem 4.7.7
implies that i = 4 and k = 3. In addition, if p1, p2, p3 are distinct ascending prime
numbers and a,b,c are natural numbers satisfying pa

1 pb
2 pc

3 = 21057114, then p1 = 2,
p2 = 5, p3 = 11 and a = 10, b = 7, and c = 4.

Exercises 4.7

1. Prove Theorem 4.7.4.
2. Let a and b be integers and let p be a prime. Prove that if p |a and p |(a2 + b2),

then p |b.
3. Let p be a prime. Prove that

√
p is irrational.

4. Let p be a prime and let m > 1 be a natural number. Prove that if p � m, then
√

mp
is irrational.

5. Let a,b ∈ N and p be a prime. Prove for all natural numbers n, if pn |(ab) and
p � a, then pn |b.

6. Let a,b,c,d are natural numbers where a,b are relatively prime and c,d are
relatively prime. Suppose a

b = c
d . Prove a = c and b = d.

7. In the proof of Theorem 4.7.6 it was stated that if n is a prime number p, then
n = p is the only prime factorization of n. Explain why this is true.

8. The following begins another proof of Theorem 4.7.1. You are asked to complete
this proof.
Proof. Suppose, for a contradiction, that there are natural numbers greater than 1
that cannot be expressed as a product of primes. By the well-ordering principle,
there is a smallest such natural number. Let N be this smallest natural number.
[Complete the proof!]

9. In our proof of Theorem 4.7.6 we said that “A similar argument shows that
pr > qs is also impossible.” Under the assumptions used in our proof of
Theorem 4.7.6, present this similar argument.

Exercise Notes: For Exercise 5, use induction on n. For Exercise 6, see
Theorem 4.6.14 and Exercise 9 on page 84.





CHAPTER 5
Set Theory

In modern mathematics, many of the most important ideas are expressed in terms
of sets. A set is a collection of objects, which can be numbers, words, other
sets, functions, etc. In general, the objects that are in a set are referred to as the
elements of the set. We are already familiar with the set of natural numbers N

and the set of real numbers R. In this chapter we will view sets more abstractly
and investigate the operations and relations on sets that are commonly used in
mathematics. Furthermore, we will learn how to prove theorems about sets.

5.1 Basic Definitions of Set Theory

An object x may or may not belong to a given set A. If x belongs to the set A, then
we say that x is an element of A and we write x ∈ A. Otherwise, x is not an element
of A and we write x /∈ A.

Definition 5.1.1. The following set notation is used throughout mathematics.

1. For sets A and B we write A = B when both sets have exactly the same elements.
2. For sets A and B we write A ⊆ B to mean that the set A is a subset of the set B,

that is, every element of A is also an element of B.
3. We say that the set A is a proper subset of the set B when A⊆ B and A�= B, that

is, when every element of A is an element of B but there is at least one element
in B that is not in A.

4. We write ∅ for the empty the set, that is, the set with no elements.
5. If A is a finite set, then |A| represents the number of elements in A.
6. Two sets A and B are disjoint if they have no elements in common.

Venn diagrams are geometric shapes that are used to depict sets and their
relationships. In Fig. 5.1a we present a Venn diagram that illustrates the subset
relation, a very important concept in set theory and mathematics. Figure 5.1b
portrays two sets that are disjoint.

A B
A B

Fig. 5.1a Venn diagram of A⊆ B Fig. 5.1b Disjoint sets A and B

D.W. Cunningham, A Logical Introduction to Proof, DOI 10.1007/978-1-4614-3631-7 5,
© Springer Science+Business Media New York 2012
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Remark 5.1.2. Since A⊆ B means that every element in A is also an element of B,
we can express this relationship in logical form. By taking negations, we can also
represent the assertion A�⊆ B in logical form as well. The relation A = B means that
an element belongs to A if and only if it belongs to B. Thus, we have the following
logical forms:

1. A⊆ B iff ∀x(x ∈ A→ x ∈ B); that is, for all x, if x ∈ A then x ∈ B.
2. A�⊆ B iff ∃x(x ∈ A∧ x /∈ B); that is, there is an x such that x ∈ A and x /∈ B.
3. A = B iff ∀x(x ∈ A↔ x ∈ B); that is, for all x, we have x ∈ A if and only if x ∈ B.

It follows that A⊆ A and ∅ ⊆ A, for any set A. To see why ∅ ⊆ A, suppose that
∅�⊆ A. Then, by item 2 of Remark 5.1.2, there exists an x ∈ ∅ such that x /∈ A.
Because there is no x such that x ∈ ∅, we arrive at a contradiction. Therefore, we
must have that ∅⊆ A.

Recalling Definition 2.1.1, given a set A and a property P(x) we can form the
truth set {x ∈ A : P(x)} which is a subset of A.

Example 1. Evaluate each of the truth sets.

1. A = {x ∈N : 3 < x < 12}
2. B = {y ∈ Z : y2 = 4}
3. C = {z ∈ N : 3 |z}
4. D = {y ∈R

+ : 1≤ y2 ≤ 4}.
Solution. A = {4,5,6,7,8,9,10,11}, B = {2,−2}, C = {3,6,9,12,15, . . .}, and
D = [1,2] using interval notation. ��
Example 2. Let A = {1,8,27,64, . . .} and B = {. . . ,−12,−8,−4,0,4,8,12, . . .}.
Express each of these sets as a truth set.

Solution. We obtain A = {n ∈ N : n = k3 for some k ∈ N}, and B = {n ∈ Z : 4 |n}
or B = {n ∈ Z : n = 4i for some i ∈ Z}. ��
Definition 5.1.3. Let A be a set. The power set of A, denoted by P(A), is the set
whose elements are all of the subsets of A. That is, P(A) = {X : X ⊆ A}.

Thus, X ∈ P(A) if and only if X ⊆ A. One can show that if A is a finite set with n
many elements, then the set P(A) has 2n many elements. The set A = {1,2,3} has
three elements and thus P(A) has eight elements, namely,

P(A) = {∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.

5.1.1 Set Operations

For a pair of sets A and B, there are three important and fundamental operations that
we can perform on these sets: the union, the intersection and the difference. A fourth
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A B A B

Fig. 5.2a Venn diagram of A∪B Fig. 5.2b Venn diagram of A∩B

A B

AAc

U

Fig. 5.2c Venn diagram of A\B Fig. 5.2d Venn diagram of Ac

operation is called the complement of a set. The complement of a set A is performed
when A is completely contained in a particular set U .

Definition 5.1.4. Given sets A and B, we can build new sets using the following set
operations:

(a) A∪B = {x : x ∈ A or x ∈ B} is the union of A and B.
(b) A∩B = {x : x ∈ A and x ∈ B} is the intersection of A and B.
(c) A \B = {x : x ∈ A and x /∈ B} is the set difference of A and B (also stated in

English as A “minus” B).
(d) Given a universe of objects U and A⊆U , the set Ac = U \A = {x ∈U : x /∈ A}

is called the complement of A.

The four set operations defined in Definition 5.1.4 are illustrated in Fig. 5.2a–d.
Shading is used to identify the result of each set operation.

Remark 5.1.5. The definition of A∪B states that for an object to be an element of
A∪B, it must be in A or it must be in B. For an object to belong to A∩B it must be
in A and it must be in B. An element in A\B belongs to A and does not belong to B.
Thus, we can express these set operations in logical form:

(a) x ∈ A∪B iff x ∈ A∨ x ∈ B; that is, x ∈ A or x ∈ B.
(b) x ∈ A∩B iff x ∈ A∧ x ∈ B; that is, x ∈ A and x ∈ B.
(c) x ∈ A\B iff x ∈ A∧ x /∈ B; that is, x ∈ A and x /∈ B.
(d) x ∈ Ac iff x /∈ A (when x ∈U is understood).

When the elements of A and B are clearly presented, then one can easily evaluate
the operations of union, intersection, and difference.

Example 3. Let A = {1,2,3,4,5,6} and B = {2,4,6,8,10,12}. Then

• A∪B = {1,2,3,4,5,6,8,10,12}.
• A∩B = {2,4,6}.
• A\B = {1,3,5}.
• B\A = {8,10,12}.
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• (A\B)∪ (B\A) = {1,3,5,8,10,12}.
• (A\B)∩ (B\A) = ∅.

Example 4. Recalling the notation (see page 33) for intervals on the real line,
evaluate the result of the following set operations:

1. (−3,2)∩ (1,3).
2. (−3,4)∪ (0,∞).
3. (−3,2)\ [1,3).

Solution. While reading the solution to each of these items, it may be helpful to
sketch the relevant intervals on the real line.

1. Since x ∈ (−3,2)∩ (1,3) if and only if x ∈ (−3,2) and x ∈ (1,3), we see that x
is in this intersection when x satisfies both (a)−3 < x < 2 and (b) 1 < x < 3. We
infer that the only values for x that satisfies both (a) and (b) are those such that
1 < x < 2. So, (−3,2)∩ (1,3) = (1,2).

2. Since x∈ (−3,4)∪(0,∞) if and only if x∈ (−3,4) or x∈ (0,∞), we conclude that
x is in this union precisely when x satisfies either (a) −3 < x < 4 or (b) 0 < x.
Hence, the only values for x that satisfies either (a) or (b) are those such that
−3 < x. Consequently, (−3,4)∪ (0,∞) = (−3,∞).

3. Since x ∈ (−3,2) \ [1,3) if and only if x ∈ (−3,2) and x /∈ [1,3), we observe
that x is in this set difference precisely when x satisfies (a) −3 < x < 2 and
(b) ¬(1 ≤ x < 3). Therefore, the only values for x that satisfies both (a) and (b)
are those such that −3 < x < 1. Thus, (−3,2)\ [1,3) = (−3,1). ��
In our next example, we will perform set operations on sets two C and D which

will produce a pair of disjoint sets. Recall that two sets A and B are disjoint if they
have no elements in common, that is, A∩B = ∅.

Example 5. Let C = {1,2,3,4,5,6} and D = {2,4,6,8,10,12}. Consider the sets
C \D = {1,3,5}, D\C = {8,10,12}, and C∩D = {2,4,6}. Since

(C \D)∩ (D\C) = ∅,

we see that C\D and D\C are disjoint sets. Because (C∩D)∩ (D\C) =∅, the sets
C∩D and D\C are also disjoint.

Remark 5.1.6. What does it mean to say that an object is not in A∪B? This means
that the object is not in A and it is not in B. Similarly, when we say that an object
does not belong to A∩B, then we are stating that either it is not in A or it is not in
B. We can now put these observations in logical form.

(a) x /∈ A∪B iff x /∈ A∧ x /∈ B; that is, x /∈ A and x /∈ B.
(b) x /∈ A∩B iff x /∈ A∨ x /∈ B; that is, x /∈ A or x /∈ B.
(c) x /∈ A\B iff x /∈ A∨ x ∈ B; that is, x /∈ A or x ∈ B.

Items (a)–(c) in Remark 5.1.6 follow from the corresponding items in Re-
mark 5.1.5, using De Morgan’s Laws, as follows:
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x /∈ A∪B iff ¬(x ∈ A∪B) iff ¬(x ∈ A∨ x ∈ B) iff (x /∈ A∧ x /∈ B) (a)

x /∈ A∩B iff ¬(x ∈ A∩B) iff ¬(x ∈ A∧ x ∈ B) iff (x /∈ A∨ x /∈ B) (b)

x /∈ A\B iff ¬(x ∈ A\B) iff ¬(x ∈ A∧ x /∈ B) iff (x /∈ A∨ x ∈ B). (c)

5.1.2 Cartesian Products

Definition 5.1.7. An ordered pair has the form (a,b), where a is called the first
component and b is called the second component.

Let (x,y) and (a,b) be ordered pairs. Then (x,y) = (a,b) if and only if x = a and
y = b. For example, (2,3) is an ordered pair, and so is (3,2). Note that (2,3)�= (3,2).

Definition 5.1.8. Let A and B be sets. The Cartesian product A×B is defined to
be the set

A×B = {(a,b) : a ∈ A and b ∈ B}.
In other words, A×B is the set of all ordered pairs with first component in A and
second component in B. Thus, (a,b) ∈ A×B if and only if a ∈ A and b ∈ B.

Example 6. Let A = {1,2,c} and B = {c,d}. We evaluate A×B and B×A to obtain

A×B = {(1,c), (1,d), (2,c), (2,d), (c,c), (c,d)}
B×A = {(c,1), (c,2), (c,c), (d,1), (d,2), (d,c)} .

Thus, (1,d) ∈ A×B and (1,d) /∈ B×A.

Thus, for sets A and B, the Cartesian product A× B is the set of all possible
ordered pairs whose first component is a member of A and whose second component
is a member of B. We are already familiar with the Cartesian coordinate system
R×R, or R2 for short, which is just the set of all ordered pairs of real numbers. In
elementary algebra we were taught how to plot the points (1,2) and (−3,4) in this
coordinate system, also called the xy-plane.

5.1.3 Partitions

A partition of a set is a way of breaking up the set into disjoint subsets. For example,
Fig. 5.3 depicts a set A that is broken up into four disjoint subsets X ,Y,U,V . We can
then say that P = {X ,Y,U,V} is a partition of the set A because every element of A
is in one of the sets X ,Y,U,V and any two of these sets are disjoint. The following
definition formalizes this notion of breaking up a set into disjoint pieces.
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A

X
Y

V
U

Fig. 5.3 A partition of A

Definition 5.1.9. Let A be a set. Let P be a collection of nonempty subsets of A.
We say that P is a partition of A if the following two conditions are true:

1. For every element a ∈ A there is a set S ∈ P such that a ∈ S.
2. For all S,T ∈ P if S�= T , then S∩T = ∅.

Item 1 of Definition 5.1.9 asserts that every element in A belongs to a set in the
partition P. Item 2 states that any two different sets in P are disjoint. When this
occurs we say that the sets in P are pairwise disjoint.

Example 7. Consider the subsets of Z defined by

S0 = {n ∈ Z : n = 3k for some k ∈ Z}= {. . . ,−6,−3,0,3,6, . . .}
S1 = {n ∈ Z : n = 3k + 1 for some k ∈ Z}= {. . . ,−5,−2,1,4,7, . . .}
S2 = {n ∈ Z : n = 3k + 2 for some k ∈ Z}= {. . . ,−4,−1,2,5,8, . . .}.

Then the set P = {S0,S1,S2} forms a partition of the set of integers Z, as illustrated
by the figure

Z =

...
...

...
6 7 8
3 4 5
0 1 2
−3 −2 −1
−6 −5 −4

...
...

...
↑ ↑ ↑
S0 S1 S2

In conclusion, a partition of a set A divides the set into non-overlapping parts that
cover all of A.

Exercises 5.1

1. Recalling our discussion on interval notation on page 33, evaluate the following
set operations:

(a) (−2,0)∩ (−∞,2).



5.1 Basic Definitions of Set Theory 149

(b) (−2,4)∪ (−∞,2).
(c) (−∞,0]\ (−∞,2].
(d) R\ (2,∞).
(e) (R\ (−∞,2])∪ (1,∞).

2. Express the following sets as truth sets.

(a) A = {1,4,9,16,25, . . .}
(b) B = {. . . ,−15,−10,−5,0,5,10,15, . . .}.

3. Evaluate the truth sets.

(a) A = {x ∈ N : 0 < x2 < 24}
(b) B = {y ∈ Z : y |12}
(c) C = {z ∈ N : 4 |z}
(d) D = {y ∈ R

− : 1≤ y2 ≤ 4}.
4. Let A, B, and C be the sets in Exercise 3. Evaluate the following sets: A∪B,

A∩C, A\B, B\A, and C \ (A∪B).
5. Find two elements in the set R\Q. Explain why Q\R= ∅.
6. Let A = {2,3} and B = {a,b,c}. Evaluate A×A, A×B, B×A, and B×B.
7. Let A = {2,3} and B = {3,a}. Evaluate P(A∪B) and P(A)∪P(B).
8. Find P(∅) and P(P(∅)).
9. Let A = {2,3}, B = {a,b} and C = {x,y}. Evaluate (A×B)×C and P(A×B).

10. Let A = {2,3}, B = {3,4} and C = {3,y}. Is A× (B∪C) = (A×B)∪ (A×C)?
11. Let A, B, and C be sets. Determine which of the following statements are always

true and which are not always true.

(a) If x ∈ A, then x ∈ A∪B.
(b) If x ∈ A∪B, then x ∈ A.
(c) If x ∈ B and A⊆ B, then x ∈ A.
(d) If x /∈ B and A⊆ B, then x /∈ A.
(e) If x ∈ A and A�⊆ B, then x /∈ B.
(f) If x ∈C and A = C, then x ∈ A.
(g) If x ∈ A∩B, then x ∈ A∪B.
(h) If x /∈ A∩B, then x /∈ A∪B.
(i) If x /∈ A\B, then x /∈ A or x ∈ B.
(j) If (x,y) ∈ A×B, then x ∈ A and y ∈ B.
(k) If (x,y) /∈ A×B, then y ∈ A and x ∈ B.
(l) If A ∈ P(B), then A⊆ B.

12. Let E be the set of even integers and let O be the set of odd integers. Is {E,O}
a partition of Z? Justify your answer.

13. Find a partition P = {S0,S1,S2,S3} of Z, similar to the one in Example 7 on
page 148, that breaks Z up into 4 disjoint subsets.

14. Find a partition P = {S0,S1,S2,S3,S4} of Z, similar to the one in Example 7,
that breaks Z up into 5 disjoint subsets.
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15. Is the given collection P a partition of the set A? Justify your answers.

(a) A = {1,2, . . . ,10} and P = {{2,4,6,8},{1,3,5,7,9}}.
(b) A = Z and P = {{n ∈ Z : n > 0},{n ∈ Z : n < 0}}.
(c) A = Z and P = {{n ∈ Z : n≥ 0},{n ∈ Z : n≤ 0}}.
(d) A = Q and P = {Q+,{0},Q−}.
(e) A =R and P = {[n,n+1) : n∈Z}, where [n,n+1) is the half-open interval.

5.2 Proofs in Set Theory

In this section we shall offer strategies for proving that a set is a subset of another
set and for proving that two sets are equal. You will encounter such proofs in your
future mathematics courses.

In the real number system there are many things that one can prove about the
operations +, ·, − and the relations = and ≤. For example, one can prove that
a2 + b2 ≤ (a + b)2 when a and b are non-negative. Similarly, there are many things
in set theory that can be proven concerning the operations ∪, ∩, \ and the relations
= and⊆. In particular, one can prove that A∩(B∪C) = (A∩B)∪(A∩C) when A, B
and C are sets. In this section, and in Section 5.3, we will investigate the fundamental
properties of sets that are necessary for advanced mathematics.

5.2.1 Strategy for Proving a Subset Relation

Given two sets A and B, to prove the statement A⊆ B, one takes an arbitrary x ∈ A
and shows that x ∈ B. Thus, we have our first set theoretic proof strategy.

Proof Strategy 5.2.1. Given a diagram containing the form

Prove A⊆ B

replace this form with

Prove ∀x(x ∈ A→ x ∈ B).

In other words, use the diagram

Let x ∈ A.
Prove x ∈ B.

The above strategy is used frequently in mathematical proofs. We will be
applying this strategy in this chapter and in each of the remaining chapters of this
book. In particular, it will be used to prove our next theorem.

Theorem 5.2.2. Given any two sets A and B, we have that (A∪B)\B⊆ A.
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Proof Analysis. The only assumption is “A and B are sets.” We have to prove that
(A∪B) \B ⊆ A. Now we construct proof diagrams where we apply Strategy 5.2.1
to obtain the final proof diagram:

Assume A and B are sets.
Prove (A∪B)\B⊆ A.

Assume A and B are sets.
Let x ∈ (A∪B)\B.

Prove x ∈ A.

These diagrams will guide our composition of a proof of the theorem. A©A©
Proof. Let A and B be sets. We shall prove that (A∪B)\B⊆ A. Let x ∈ (A∪B)\B.
We show that x ∈ A. Since x ∈ (A∪B) \B, it follows that x ∈ A∪B and x /∈ B. So
x ∈ A or x ∈ B, and x /∈ B. Therefore, x ∈ A.1 ��

In mathematics one often assumes that a set is a subset of another set, and then
wants to use this assumption to establish something new; for example, to show that
another subset relation holds. We now offer a simple assumption strategy that can
be used in such a proof.

Assumption Strategy 5.2.3. Given a diagram containing the form

Assume A⊆ B

there are two approaches:

(a) If you are assuming or can prove x ∈ A, then you can conclude x ∈ B.
(b) If you are assuming or can prove x /∈ B, then you can conclude x /∈ A.

5.2.2 Strategies for Proving Set Equality

Definition 5.2.4 (Set Equality). For sets A and B we write A = B when these sets
have exactly the same elements.

For sets A and B, there are two alternative ways of asserting that A = B:

1. A⊆ B and B⊆ A;
2. For all x, we have x ∈ A if and only if x ∈ B.

Thus, there are two strategies that we can employ to prove that two sets are equal.

Proof Strategy 5.2.5. Given a diagram containing the form

Prove A = B

1We used disjunctive syllogism.
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where A and B are sets, there are two approaches:

(a) Replace the form with

Prove A⊆ B
Prove B⊆ A.

(b) Replace this form with

Prove ∀x(x ∈ A↔ x ∈ B).

That is, use the diagram

Let x be arbitrary.
Prove x ∈ A↔ x ∈ B.

We will refer to Strategy 5.2.5(a) as the “double-subset” strategy, and we shall
describe strategy (b) as the “iff” strategy. One efficient way of executing strategy (b)
is to derive a string of equivalences starting with x ∈ A and ending with x ∈ B. This
is usually accomplished by citing appropriate logic laws (see Section 1.1.5).

To illustrate the difference between the “double-subset” strategy and the “iff”
strategy, we will give two proofs of our next theorem. The first proof will employ
the proof diagram (a) given in 5.2.5 and the second proof will apply proof diagram
(b) also given in 5.2.5.

Theorem 5.2.6. Suppose A, B and C are sets. Then A∩ (B\C) = (A∩B)\C.

Proof Analysis. We must prove that A∩ (B \C) = (A∩B) \C. To see how we can
prove this set equality, we shall first construct proof diagrams using the double-
subset Strategy 5.2.5(a):

Assume A, B and C are sets.
Prove A∩ (B\C) = (A∩B)\C.

Assume A, B and C are sets.
Prove A∩ (B\C)⊆ (A∩B)\C
Prove (A∩B)\C⊆ A∩ (B\C).

These proof diagrams will guide our first proof of Theorem 5.2.6. A©A©
First Proof. Let A, B and C be sets. We prove that A∩ (B\C) = (A∩B)\C.

(⊆). Let x∈ A∩(B\C). We shall prove that x∈ (A∩B)\C. Since x∈ A∩(B\C),
it follows that x ∈ A and x ∈ B\C. Thus, x ∈ A and, x ∈ B and x /∈C. Because x ∈ A
and x ∈ B, we have that x ∈ A∩B. Since we also have that x /∈C, we conclude that
x ∈ (A∩B)\C.

(⊇). Let x ∈ (A∩B)\C. We will prove that x ∈ A∩ (B\C). Since x ∈ (A∩B)\C,
we see that x ∈ A∩B and x /∈C. Because x ∈ A∩B, we have that x ∈ A and x ∈ B.
Since we also have that x /∈ C, we see that x ∈ B \C. Furthermore, we know that
x ∈ A. Hence, x ∈ A∩ (B\C).

Therefore, A∩ (B\C) = (A∩B)\C. ��
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In our first proof of Theorem 5.2.6, the annotations (⊆) and (⊇) are added as a
courtesy to the reader. The notation (⊆) is used to make it clear to the reader that we
are proving that the first set2 is a subset of the second set. The notation (⊇) indicates
that we are proving that the second set is a subset of the first set.

We shall now reprove Theorem 5.2.6 using the iff strategy.

Proof Analysis. The only assumption is “A, B and C are sets.” We must prove that
A∩ (B\C) = (A∩B)\C. To see how to prove this set equality, we construct proof
diagrams using Strategy 5.2.5(b) as follows:

Assume A, B and C are sets.
Prove A∩ (B\C) = (A∩B)\C.

Assume A, B and C are sets.
Let x be arbitrary.

Prove x ∈ A∩ (B\C)↔ x ∈ (A∩B)\C.

These proof diagrams will be used to direct our second proof of Theorem 5.2.6. A©A©
Second Proof. Suppose that A, B and C are sets. Let x be arbitrary. We prove that
x ∈ A∩ (B\C) iff x ∈ (A∩B)\C, as follows:

x ∈ A∩ (B\C) iff x ∈ A∧ x ∈ (B\C) by the definition of ∩
iff x ∈ A∧ (x ∈ B∧ x /∈C) by the definition of \
iff (x ∈ A∧ x ∈ B)∧ x /∈C by logical associativity

iff x ∈ A∩B∧ x /∈C by the definition of ∩
iff x ∈ (A∩B)\C by the definition of \.

Therefore, A∩ (B\C) = (A∩B)\C. ��
In our second proof of Theorem 5.2.6, we translated the statement

x ∈ A∩ (B\C) (5.1)

into another statement that involved logical connectives and no set operations. This
was done, in steps, by using parentheses to identify the order in which the set
operations are to be performed; namely, one must translate from the “outside-in.”
For example, ∩ is the “outer most” set operation in (5.1). Thus, we first translated
∩. After identifying the “next outer most” operation to be \, we translated it to
obtain the statement

x ∈ A∧ (x ∈ B∧ x /∈C)

2When proving X = Y for sets X and Y , we shall say that X is the first set and Y is the second set.
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which involves logical connectives and no set operations. We then applied a relevant
logic law to obtain the logically equivalent statement

(x ∈ A∧ x ∈ B)∧ x /∈C. (5.2)

Afterwards, we translated the expression (5.2) into a statement involving only set
operations. One must perform this translation in a particular order, as well; namely,
one must translate from the “inside-out.” We shall refer to the logical connective ∧
appearing within the parentheses in (5.2) as an “inner most” logical connective. We
shall refer to the other occurrence of ∧ in (5.2) as the “next inner most” logical
connective. In the second proof of Theorem 5.2.6, we translated (5.2) by first
translating the “inner most” logical connective ∧ into the set operation ∩. This was
followed by translating the “next inner most” logical connective into a set operation.
We were able to conclude that (5.2) is equivalent to the assertion x ∈ (A∩B) \C,
which involves only set operations. We also follow this procedure in the proof of
our next theorem.

Theorem 5.2.7 (Distributive Laws). Suppose A, B and C are sets. Then

(1) A∪ (B∩C) = (A∪B)∩ (A∪C),
(2) A∩ (B∪C) = (A∩B)∪ (A∩C).

Proof. To prove (1), let x be arbitrary. We prove the equivalence x ∈ A∪ (B∩C) if
and only if x ∈ (A∪B)∩ (A∪C), as follows:

x ∈ A∪ (B∩C) iff x ∈ A∨ x ∈ (B∩C) by the definition of ∪
iff x ∈ A∨ (x ∈ B∧ x ∈C) by the definition of ∩
iff (x ∈ A∨ x ∈ B)∧ (x ∈ A∨ x ∈C) by logical distributivity

iff x ∈ A∪B∧ x ∈ A∪C by the definition of ∪
iff x ∈ (A∪B)∩ (A∪C) by the definition of ∩.

Therefore, A∪(B∩C) = (A∪B)∩(A∪C). The proof of (2) is left as an exercise. ��
Theorem 5.2.8 (Associative Laws). Suppose A, B and C are sets. Then

(1) A∪ (B∪C) = (A∪B)∪C.
(2) A∩ (B∩C) = (A∩B)∩C.

Proof. See Exercise 6. ��
Assumption Strategy 5.2.9. When assuming A = B, if you are also assuming or
can prove x ∈ A, then you can deduce that x ∈ B. If you are assuming or can prove
x /∈ A, then you can conclude x /∈ B.

We will apply Assumption Strategy 5.2.9 in the proof of our next theorem, where
we shall assume the set equality A∩B = A.
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Theorem 5.2.10. Suppose A and B are sets. If A∩B = A, then A⊆ B.

Proof. Let A and B be sets and assume that A∩B = A. To prove that A⊆ B, let x∈ A.
We shall show that x ∈ B. Since x ∈ A and A = A∩B, it follows that x ∈ A∩B. That
is, x ∈ A and x ∈ B. Therefore, x ∈ B and the proof is complete. ��
Theorem 5.2.11. Let A, B, and C be sets. Then

(1) A× (B∪C) = (A×B)∪ (A×C).
(2) A× (B∩C) = (A×B)∩ (A×C).

In our proof of Theorem 5.2.11, we shall use the double-subset strategy to prove
item (1) and then the iff strategy to prove (2).

Proof. Let A, B, and C be sets. We first prove that A× (B∪C) = (A×B)∪ (A×C).

(⊆). Let (x,y) ∈ A×(B∪C). So x∈ A and y∈ B∪C. Thus, x∈ A and either y∈ B
or y ∈C. If y ∈ B, then (x,y) ∈ A×B. If y ∈C, then (x,y) ∈ A×C. In each case we
can conclude that (x,y) ∈ (A×B)∪ (A×C).

(⊇). Let (x,y)∈ (A×B)∪(A×C). Thus, either (x,y)∈ (A×B) or (x,y)∈ (A×C).
If (x,y) ∈ A×B, then x ∈ A and y ∈ B. Hence x ∈ A and y ∈ B∪C. Consequently,
(x,y) ∈ A× (B∪C). If (x,y) ∈ A×C, then x ∈ A and y ∈C. So x ∈ A and y ∈ B∪C,
and thus (x,y) ∈ A× (B∪C). Therefore, in either case (x,y) ∈ A× (B∪C).

Now we prove that A× (B∩C) = (A×B)∩ (A×C). Let x and y be arbitrary. We
show that (x,y) ∈ A× (B∩C) if and only if (x,y) ∈ (A×B)∩ (A×C), as follows:

(x,y) ∈ A× (B∩C) iff x ∈ A∧ y ∈ (B∩C) by the definition of ×
iff x ∈ A∧ (y ∈ B∧ y ∈C) by the definition of ∩
iff x ∈ A∧ y ∈ B∧ y ∈C by logical associativity

iff x ∈ A∧ x ∈ A∧ y ∈ B∧ y ∈C by the idempotent law

iff (x ∈ A∧ y ∈ B)∧ (x ∈ A∧ y ∈C) by logical commutativity

iff (x,y) ∈ A×B∧ (x,y)∈ A×C by the definition of ×
iff (x,y) ∈ (A×B)∩ (A×C) by the definition of ∩.

This completes the proof. ��
Theorem 5.2.12. Let A and B be sets. Then P(A∩B) = P(A)∩P(B).

Proof. Let A and B be sets. We shall prove that P(A∩B) = P(A)∩P(B).

(⊆). Let X ∈ P(A∩B). So, X ⊆ A∩B. Thus, X ⊆ A and X ⊆ B (see Exercise 3).
Hence, X ∈ P(A) and X ∈ P(B). Therefore, X ∈ P(A)∩P(B).

(⊇). Let X ∈P(A)∩P(B). Thus, X ∈P(A) and X ∈P(B). So, X ⊆ A and X ⊆ B.
Therefore, X ⊆ A∩B (see Exercise 3) and we conclude that X ∈ P(A∩B). ��

Theorem 5.2.12 motivates the following question: Can one prove the equality
P(A∪B) =P(A)∪P(B) for any two sets A and B? The answer is no. Let A = {1,2}
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and B = {2,3}. Clearly, the set X = {1,3} is subset of A∪B and thus, X ∈P(A∪B).
Since X is not a subset A and is also not a subset of B, we see that X /∈P(A)∪P(B).
So X ∈ P(A∪B) and X /∈ P(A)∪P(B). Therefore, P(A∪B)�= P(A)∪P(B).

Exercises 5.2

Prove the following theorems, where A, B, C, and D are sets.

1. Theorem. If A⊆ B, then A⊆ A∪B and A∩B⊆ A.
2. Theorem. If A⊆ B and B⊆C, then A⊆C.
3. Theorem. C ⊆ A and C ⊆ B if and only if C ⊆ A∩B.
4. Theorem. A∩ (B∪C) = (A∩B)∪ (A∩C).
5. Theorem. (A\B)∩ (C\B) = (A∩C)\B.
6. Theorem. A∩ (B∩C) = (A∩B)∩C and A∪ (B∪C) = (A∪B)∪C.
7. Theorem. (A∪B)\ (A∩B) = (A\B)∪ (B\A).
8. Theorem. If A\B⊆C, then A\C⊆ B.
9. Theorem. If A⊆ B and B∩C = ∅, then A⊆ B\C.

10. Theorem. If A\B⊆C and A�⊆C, then A∩B�= ∅.
11. Theorem. A× (B\C) = (A×B)\ (A×C).
12. Theorem. (A×B)∩ (C×D) = (A∩C)× (B∪D).
13. Theorem. (A×B)∪ (C×D)⊆ (A∪C)× (B∪D).
14. Theorem. A⊆ B if and only if P(A)⊆ P(B).
15. Theorem. P(A)∪P(B)⊆ P(A∪B).

Exercise Notes: For Exercises 4–6: Use Proof Strategy 5.2.5(b) and review the
propositional logic laws in Section 1.1.5. For Exercise 7, one may want to use Proof
Strategy 5.2.5(a). For Exercise 8, to prove that x ∈ B, use proof by contradiction.
For Exercise 10, review Remark 5.1.2(2).

5.3 Indexed Families of Sets

Given a property P(x) we can form the truth set {x : P(x)} when the universe is
understood. There is another way to build sets. For example, consider the set S of
all perfect squares, that is, the set of all numbers of the form n2 for some natural
number n. We can define S in two ways:

1. S = {x : (∃n ∈ N)(x = n2)}= {1,4,9,16,25, . . .}.
2. S = {n2 : n ∈ N}= {1,4,9,16,25, . . .}.
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In item 1 we have expressed S as a truth set. Item 2 offers an alternative method for
constructing the same set S. For each n ∈ N we obtain the new number n2. So S is
just the set of all these new numbers. This alternative method is a special case of the
following technique used to build a set from the set N of natural numbers. Suppose
for each n ∈ N we have some object an. Then we can form the set A = {an : n ∈ N}
of all such objects. In this case, the set N is called the index set and the set A is
called an indexed set. Since this concept is used so often in mathematics, we will
now formulate this idea in terms of a general definition.

Definition 5.3.1. Let I be any nonempty set and for each i∈ I, let xi be some object.
Then we can form the set S = {xi : i ∈ I}. The set I is called the index set and the
set S is called an indexed set.

Consider an indexed set S = {xi : i ∈ I}. Since S = {x : (∃i ∈ I)(x = xi)}, we see
that S can also be defined as a truth set.

Example 1. Explain what the following statements mean.

1. y ∈ {sin(x) : x ∈Q}.
2. {xi : i ∈ I} ⊆ A.
3. {xi : i ∈ I}�⊆ A.

Solution. The first statement y ∈ {sin(x) : x ∈ Q} means that y = sin(x) for some
x∈Q. The second statement {xi : i∈ I}⊆A means that xi ∈A for every i∈ I. Finally,
the third statement {xi : i ∈ I}�⊆ A means that xi /∈ A for some i ∈ I. ��
Definition 5.3.2. A set F , whose elements are sets, is called a family of sets.

Definition 5.3.3. Let I be any nonempty set and for each i ∈ I, let Ci be a set. Then
we can form the set F = {Ci : i∈ I}. The set I is called the index set and F is called
an indexed family of sets.

Example 2. Let An = {1,2, . . . ,n} for each natural number n. Thus, can construct
the indexed family of sets F = {An : n ∈ N} = {A1,A2,A3, . . .} where the set N of
natural numbers is the index set.

Example 3. For each real number x > 0, let Bx = {y ∈R :−x < y < x+1}, that is,
Bx = (−x,x + 1). Define the indexed family of sets by F = {Bx : x ∈ R

+}, where
R

+ is the index set. Note that B2∩B 5
2

= (−2,3)∩ (− 5
2 ,

7
2 ) = (−2,3).

Example 4. Consider the index set I = {i ∈ R : i > 1}. For each real number i ∈ I,
let Bi = [−i, 1

i ], that is, Bi = {x∈R :−i≤ x≤ 1
i }. Define the indexed family of sets

by F = {Bi : i ∈ I}. Note that B2∩B 5
2

= [−2, 1
2 ]∩ [− 5

2 ,
2
5 ] = [−2, 2

5 ].

5.3.1 Generalized Unions and Intersections

Given two sets A and B we can form the union A∪B and the intersection A∩B
of these sets. In mathematics we often need to form the union and intersection of
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many more than just two sets. To see how this is done, we need to generalize the
operations of union and intersection so that they will apply to more than two sets.
We do this by first extending these operations to a finite number of sets, and then to
an infinite number of sets.

We know that x ∈ A∪B means that x is in at least one of the two sets A and B.
We can generalize this notion of union to any number of sets. For finitely many sets,
say A1,A2, . . . ,An, we will say that x is in the union

A1∪A2∪·· ·∪An

when x is in at least one of the sets A1,A2, . . . ,An; that is, x ∈ Ai for some natural
number i between 1 and n. There is a more compact way to denote this union. Using
I = {1,2, . . . ,n} as an index set, we define

⋃

i∈I
Ai to be

⋃

i∈I

Ai = A1∪A2∪·· ·∪An

and so, x∈ ⋃

i∈I
Ai means that x∈Ai for some i∈ I. For example, let I = {1,2,3,4} and

let A1 = {0,2,4,11}, A2 = {0,1,4,9}, A3 = {0,3,4,7,10}, A4 = {6,5,8,10,11}.
Then

⋃

i∈I

Ai = {0,1,2,3,4,5,6,7,8,9,10,11}.

Recall that x ∈ A∩B means that x is in both of the sets A and B. We can also
generalize the intersection operation to more than two sets. For finitely many sets,
say A1,A2, . . . ,An, we shall say that x is in the intersection

A1∩A2∩·· ·∩An

when x is in every one of the sets A1,A2, . . . ,An; that is, x ∈ Ai for every natural
number i between 1 and n. There is easier way to express this intersection. Using
I = {1,2, . . . ,n} as an index set, we define

⋂

i∈I
Ai to be

⋂

i∈I

Ai = A1∩A2∩·· ·∩An

and so, x ∈ ⋂

i∈I
Ai means that x ∈ Ai for every i ∈ I. For example, let I = {1,2,3,4}

and let A1 = {0,2,4,9}, A2 = {0,1,4,9}, A3 = {0,3,4,7,9}, A4 = {0,1,4,5,8,9}.
Then

⋂

i∈I

Ai = {0,4,9}.

Similarly, we can form the union and intersection of an indexed family of sets
{Ci : i ∈ I}, where I can be a finite or an infinite set. We now generalize the union
and intersection operations to any indexed collection of sets.
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Definition 5.3.4. Let {Ci : i ∈ I} be an indexed family of sets. The union
⋃

i∈I
Ci is

the set of elements x such that x ∈Ci for at least one i ∈ I; that is,

⋃

i∈I

Ci = {x : x ∈Ci for some i ∈ I}.

The union
⋃

i∈I
Ci contains just those elements that are in at least one of the sets Ci.

In other words,
⋃

i∈I
Ci is the set obtained by putting together the elements that belong

to any one of the Ci’s.

Definition 5.3.5. Let {Ci : i ∈ I} be an indexed family of sets. The intersection
⋂

i∈I
Ci is the set of elements x such that x ∈Ci for all i ∈ I; that is,

⋂

i∈I

Ci = {x : x ∈Ci for every i ∈ I}.

The intersection
⋂

i∈I
Ci consists of those elements that belong to each and every

one of the sets Ci. Thus,
⋂

i∈I
Ci is the result of collecting the elements that are common

to all of the Ci’s and then putting them together to form a set.

Example 5. For each n ∈ N, let Cn be the closed interval Cn =
[

1,1 + 1
n

]

. Then
{Cn : n ∈ N} is an indexed family of sets. Evaluate the sets

⋃

n∈N
Cn and

⋂

n∈N
Cn.

Solution. First observe that C1 = [1,2], C2 =
[

1, 3
2

]

, C3 =
[

1, 4
3

]

, and C4 =
[

1, 5
4

]

.
We evaluate the union

⋃

n∈N
Cn as follows:

x ∈
⋃

n∈N
Cn iff x ∈Cn for some n ∈N by def. of

⋃

iff x ∈
[

1,1 +
1
n

]

for some n ∈N by def. of Cn

iff 1≤ x≤ 1 +
1
n

for some n ∈ N by interval notation

iff 1≤ x≤ 2 by Exercise 3.

Hence,
⋃

n∈N
Cn = [1,2]. We now evaluate the intersection

⋂

n∈N
Cn:

x ∈
⋂

n∈N
Cn iff x ∈Cn for every n ∈N by def. of

⋂

iff x ∈
[

1,1 +
1
n

]

for every n ∈N by def. of Cn
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iff 1≤ x≤ 1 +
1
n

for every n ∈ N by interval notation

iff x = 1 by Exercise 4.

Thus,
⋂

n∈N
Cn = {1}. Since 1 + 1

n gets closer and closer to 1 as n gets larger and

larger, it follows that 1 is the only number that is in every Cn. ��
We now know what it means to say that an object belongs to an indexed union or

to an indexed intersection of sets. What does it mean to say that an object does not
belong to an indexed union or intersection of sets?

Example 6. Suppose that {Ci : i ∈ I} is an indexed family of sets. Explain why the
following statements are true.

(1) x ∈ ⋃

i∈I
Ci means that x ∈Ci for some i ∈ I.

(2) x /∈ ⋃

i∈I
Ci means that x /∈Ci for every i ∈ I.

(3) x ∈ ⋂

i∈I
Ci means that x ∈Ci for every i ∈ I.

(4) x /∈ ⋂

i∈I
Ci means that x /∈Ci for some i ∈ I.

Solution. We first note that the assertion x /∈ ⋃

i∈I
Ci in (2) is the negation of statement

in (1). Similarly, the statement x /∈ ⋂

i∈I
Ci in (4) is the negation of that in (3).

(1) Clearly, x ∈ ⋃

i∈I
Ci means x ∈Ci for some i ∈ I, by Definition 5.3.4. We conclude

that x ∈ ⋃

i∈I
Ci iff (∃i ∈ I)(x ∈Ci).

(2) In our solution to (1), we observed that x ∈ ⋃

i∈I
Ci iff (∃i ∈ I)(x ∈ Ci). Thus,

using a bounded quantifier negation law, we obtain

x /∈
⋃

i∈I

Ci iff ¬(∃i ∈ I)(x ∈Ci) iff (∀i ∈ I)(x /∈Ci).

So, x /∈ ⋃

i∈I
Ci means (∀i ∈ I)(x /∈Ci), that is, x /∈Ci for every i ∈ I.

(3) From Definition 5.3.5, we see that x ∈ ⋂

i∈I
Ci means x ∈ Ci for every i ∈ I.

Consequently, x ∈ ⋂

i∈I
Ci iff (∀i ∈ I)(x ∈Ci).

(4) In our solution to (3) we noted that x ∈ ⋂

i∈I
Ci iff (∀i ∈ I)(x ∈Ci). Hence, using

a bounded quantifier negation law, we obtain

x /∈
⋂

i∈I

Ci iff ¬(∀i ∈ I)(x ∈Ci) iff (∃i ∈ I)(x /∈Ci).

So, x /∈ ⋂

i∈I
Ci means (∃i ∈ I)(x /∈Ci), that is, x /∈Ci for some i ∈ I. ��
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Example 6 shows that the definitions of indexed unions and intersections, and
their negations, can be expressed in terms of quantifiers over the index set. One is
advised to have a clear understanding of the four items presented in this example.

De Morgan’s Laws for Families of Sets

We will apply the “double-subset” Proof Strategy 5.2.5(a) in the proof of our next
theorem. Before reading this proof, one should review items (1)–(4) of Example 6.

Theorem 5.3.6. Suppose that A is a set and that {Bi : i ∈ I} is an indexed family of
sets. Then (1) A\ ⋃

i∈I
Bi =

⋂

i∈I
(A\Bi) and (2) A\ ⋂

i∈I
Bi =

⋃

i∈I
(A\Bi).

Proof. We shall prove that A\ ⋃
i∈I

Bi =
⋂

i∈I
(A\Bi) and leave (2) as an exercise.

(⊆). Let x ∈ A\ ⋃
i∈I

Bi. We prove that x ∈ ⋂

i∈I
(A\Bi) as follows3:

x ∈ A\
⋃

i∈I

Bi ⇒ x ∈ A and x /∈
⋃

i∈I

Bi by the definition of \

⇒ x ∈ A and x /∈ Bi for every i ∈ I by the definition of
⋃

⇒ x ∈ A\Bi for every i ∈ I by the definition of \

⇒ x ∈
⋂

i∈I

(A\Bi) by the definition of
⋂

.

Therefore, A\ ⋃
i∈I

Bi ⊆ ⋂

i∈I
(A\Bi).

(⊇). Let x ∈ ⋂

i∈I
(A\Bi). We prove that x ∈ A\ ⋃

i∈I
Bi as follows:

x ∈
⋂

i∈I

(A\Bi) ⇒ x ∈ A\Bi for every i ∈ I by the definition of
⋂

⇒ x ∈ A and x /∈ Bi for every i ∈ I by the definition of \

⇒ x ∈ A and x /∈
⋃

i∈I

Bi by the definition of
⋃

⇒ x ∈ A\
⋃

i∈I

Bi by the definition of \.

Therefore,
⋂

i∈I
(A\Bi)⊆ A\ ⋃

i∈I
Bi. The proof of (1) is complete. ��

3The arrow⇒ will be used to abbreviate the word “implies.”
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5.3.2 Unindexed Families of Sets

Indexed families of sets occur frequently in mathematics. Moreover, mathematicians
also deal with families of sets that are not described as an indexed set. Fortunately,
by a simple change in notation, every family of sets can be expressed as an indexed
set. Let F be a family of sets. Then F = {CA : A ∈ F} where F is the index set and
CA = A for each A ∈ F .

Since every family F of sets can be expressed as an indexed family of sets, it
follows that all of the operations and theorems we presented in Section 5.3.1 also
apply to families of sets. When F is a family of sets, the union

⋃F is the set of
elements x such that x ∈C for some C ∈ F ; that is,

⋃

F = {x : x ∈C for some C ∈ F}.

The intersection
⋂F is the set of elements x such that x ∈C for all C ∈ F ; that is,

⋂

F = {x : x ∈C for every C ∈ F}.

For example, let F be the family of sets defined by F = {{1,2,9},{2,9},{4,9}}.
Then

⋃F = {1,2,4,9} and
⋂F = {9}. Furthermore, letting A = {1,4,9,10,11},

we can construct the following new family of sets

{A\B : B ∈ F}= {{4,10,11},{1,4,10,11},{1,10,11}}.

We have the following “unindexed” version of De Morgan’s Theorem 5.3.6.

Theorem 5.3.7. Suppose that A is a set and that F is a family of sets. Then

(1) A\⋃F =
⋂{A\B : B ∈ F},

(2) A\⋂F =
⋃{A\B : B ∈ F}.

Exercises 5.3

1. Let I = {2,3,4,5} and for each i ∈ I, let Ci = {i, i+ 1, i−1,2i}. For each i ∈ I,
explicitly list the elements of Ci. Then find

⋂

i∈I
Ci and

⋃

i∈I
Ci.

2. For each n ∈N, let An = {0,1,2, . . . ,n,n + 1}. Evaluate
⋃

n∈N
An and

⋂

n∈N
An.

3. Let x ∈ R. Prove that 1≤ x≤ 2 if and only if 1≤ x≤ 1 + 1
n for some n ∈N.

4. Let x ∈ R. Prove that x = 1 if and only if 1≤ x≤ 1 + 1
n for all n ∈N.

5. For each n ∈N, let On be the open interval On =
(

1,1 + 1
n

)

. Then {On : n ∈N}
is an indexed family of sets. Evaluate

⋂

n∈N
On and

⋃

n∈N
On.
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6. Let I = {i∈R : 1≤ i}= [1,∞) and let Ai =
{

x ∈ R :− 1
i ≤ x≤ 2− 1

i

}

, for each
i ∈ I. Express

⋃

i∈I
Ai and

⋂

i∈I
Ai in interval notation, if possible.

7. Let p and q be prime numbers. Define A = {pi : i ∈ N} and B = {qi : i ∈ N}.
Prove that if A∩B�= ∅, then A = B.

8. In our proof of Theorem 5.3.6(1) we applied the “double-subset” Proof
Strategy 5.2.5(a). Reprove Theorem 5.3.6(1) using the “iff” Strategy 5.2.5(b).

9. Prove the following theorems:

(a) Theorem. Let {Ai : i ∈ I} and {Bi : i ∈ I} be indexed families of sets with
the same indexed set I. Suppose Ai ⊆ Bi for all i ∈ I. Then

⋃

i∈I
Ai ⊆ ⋃

i∈I
Bi.

(b) Theorem. Let {Ai : i ∈ I} and {Bi : i ∈ I} be indexed families of sets with
the same indexed set I. Suppose Ai ⊆ Bi for all i ∈ I. Then

⋂

i∈I
Ai ⊆ ⋂

i∈I
Bi.

(c) Theorem. Let {Ai : i ∈ I} and {B j : j ∈ J} be indexed families of sets. If
there is an i0 ∈ I such that Ai0 ⊆ B j for all j ∈ J, then

⋂

i∈I
Ai ⊆ ⋂

j∈J
B j.

(d) Theorem. Suppose that A is a set and that {Bi : i ∈ I} is an indexed family
of sets. Then A∩ ⋃

i∈I
Bi =

⋃

i∈I
(A∩Bi).

(e) Theorem. Suppose that A is a set and that {Bi : i ∈ I} is an indexed family
of sets. Then A∪ ⋂

i∈I
Bi =

⋂

i∈I
(A∪Bi).

(f) Theorem. Suppose that A is a set and that {Bi : i ∈ I} is an indexed family
of sets. Then A\ ⋂

i∈I
Bi =

⋃

i∈I
(A\Bi).

10. Let {Bx : x ∈ R
+} be the family of sets in Example 3 on page 157. Evaluate

⋂

x∈R+
Bx and

⋃

x∈R+
Bx.

11. Let {Bi : i ∈ I} be the family of sets in Example 4. Evaluate
⋂

i∈I
Bi and

⋃

i∈I
Bi.

12. Prove Theorem 5.3.7.
13. Let F and G be two families of sets. Prove that

⋃
(F ∪G) = (

⋃F)∪ (
⋃G).

5.4 The Axioms of Set Theory

Albert Einstein devoted much of his professional life to the search for a unified
theory of physics, that is, a theory that fully explains and links together all known
physical phenomena. Einstein was not successful in his quest to find such a theory.
Since then one of the most engaging goals for researchers in physics has been to
construct a unifying theory for physics. Stephen Hawking concludes his book A
Brief History of Time with the hope that someone will discover a unified theory
and observes that if such a theory can be realized, then “it would be the ultimate
triumph – for then we would know the mind of God.”
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Georg Cantor spent much of his professional life in the development of a new
branch of mathematics: Set Theory. Little did he know that his work would lead
to a unifying theory for mathematics. In his earlier work, Cantor started with a
set P of real numbers and then formed the derived set P′ of all limit points of P.
Then he repeated this operation and obtained further derived sets P′′, P′′′, . . . .
Using these derived sets he was able to prove a theorem on trigonometric series.
This work lead Cantor to investigate sets in a more general setting and then
to develop an abstract theory of sets which would change the whole course of
mathematics.

5.4.1 The Zermelo-Fraenkel Axioms

Throughout this chapter we have been informally using set theoretic concepts in the
same way that they are used by most contemporary mathematicians. Cantor also
used an informal approach in his development of set theory. For example, Cantor
regularly used the Comprehension Principle: The collection of all mathematical
objects that share a property forms a set. In other words, given a property P(x),
the comprehension principle asserts that the collection {x : P(x)} is a set. Such a
principle, unfortunately, leads to contradictions. The most well-known of which is
called Russel’s paradox and is due to Bertrand Russell. Consider the property x /∈ x,
where x is understood to represent a set. The comprehension principle would allow
us to conclude that A = {x : x /∈ x} is a set. Thus, (�) the set A consists of all the sets
x that satisfy x /∈ x. Clearly, either A ∈ A or A /∈ A. Suppose A ∈ A. Then, as noted
in (�), A must satisfy the property A /∈ A which is a contradiction. Suppose A /∈ A.
Since A satisfies A /∈ A, we infer from (�) that A ∈ A which is again a contradiction.
After Russell’s paradox appeared, it became clear that the comprehension principle
needed to be restricted in some way.

Ernst Zermelo resolved the problems discovered with the comprehension princi-
ple by producing a collection of axioms for set theory. Shortly afterward, Abraham
Fraenkel amended Zermelo’s axioms to obtain the Zermelo-Fraenkel axioms for set
theory. These axioms have now become the accepted formulation of Cantor’s ideas
about the nature of sets.

After years of effort, mathematicians have shown that virtually all mathematical
concepts and results can be formalized within set theory. This has been recognized
as one of the greatest achievements of modern mathematics and, as a result, we can
now say that “set theory is a unifying theory for mathematics.”

We now present the Zermelo-Fraenkel axioms. Each of these axioms is first stated
in English and then written in logical form. After the presentation, we will discuss
these axioms and some of their consequences.

1. Extensionality Axiom. Two sets are equal if and only if they have the same
elements.

∀A∀B(A = B↔∀x(x ∈ A↔ x ∈ B)).
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2. Empty Set Axiom. There is a set with no elements.

∃A∀x(x /∈ A).

3. Pairing Axiom. For every u and v there is a set that consists of just u and v.

∀u∀v∃A∀x(x ∈ A↔ (x = u∨ x = v)).

4. Union Axiom. For every F there is a set U that consists of all the elements that
belong to at least one set in F .

∀F ∃U ∀x(x ∈U ↔∃C(x ∈C∧C ∈ F)).

5. Power Set Axiom. For every set A there is a set P that consists of all the sets that
are subsets of A.

∀A∃P∀x(x ∈ P↔∀y(y ∈ x→ y ∈ A)).

6. Subset Axiom. Let P(x) be a formula with one free variable x. For every set A
there is a set S that consists of all the elements x ∈ A such that P(x) holds.

∀A∃S∀x(x ∈ S↔ (y ∈ A∧P(x))).

7. Infinity Axiom. There is a set I that contains the empty set as an element and
whenever x ∈ I, then x∪{x} ∈ I.

∃I (∅ ∈ I∧∀x(x ∈ I→ x∪{x} ∈ I)).

8. Replacement Axiom. Let P(x,y) be a formula with two free variables x and y.
For every set A if for each x ∈ A there is a unique y such that P(x,y), then there
is a set S that consists of all the elements y such that P(x,y) for some x ∈ A.

∀A((∀x ∈ A)∃!yP(x,y)→∃S∀y(y ∈ S↔ (∃x ∈ A)P(x,y))).

9. Regularity Axiom. Any nonempty set A has an element that is disjoint from A.

∀A(A�= ∅→∃x(x ∈ A∧ x∩A = ∅)).

The extensionality axiom is a restatement of Definition 5.1.1(1). The empty set
axiom asserts that there is a set with no elements. Since the extensionality axiom
implies that this set is unique, we let ∅ denote the empty set. The pairing axiom just
states that the set {u,v} exists for any two elements u and v. Since {u,u}= {u}, it
follows that the set {u} also exists for each u.

The union axiom proclaims the union of a family of sets F exists, that is, the
set

⋃F exists. In particular, the union axiom and the pairing axiom can be used to
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show that the union of two sets exists. Let A and B be two sets. The pairing axiom
yields the set {A,B}. Thus, by the union axiom, the set

⋃{A,B} exists, which is
the set A∪B. The power set axiom states that for any set A the set P(A) exists (see
Definition 5.1.3).

The subset axiom affirms that whenever we have a property P(x) and a set A, we
can then form the set {x ∈ A : P(x)} which is a subset of A. Of course, the subset
axiom is a restricted form of the comprehension principle but it does not lead to the
contradiction that we encountered in Russell’s paradox. The subset axiom allows us
to show that the intersection of two sets exists. Let A and B be two sets and let P(x)
be the property x ∈ B. Then the set {x ∈ A : P(x)} is just A∩B. Similarly, one can
conclude that the intersection of a family of sets also exists (see Exercise 2).

The infinity axiom declares that there is a set I such that ∅ ∈ I and whenever
x ∈ I, then x∪{x} ∈ I. Since ∅ ∈ I, we conclude that ∅∪{∅} = {∅} ∈ I. Since
{∅} ∈ I, we have that {∅}∪ {{∅}} = {∅,{∅}} ∈ I. Continuing in this manner,
we see that the set I must contain all of the sets

∅, {∅}, {∅,{∅}}, {∅,{∅},{∅,{∅}}}, . . .

One can show that all of the sets in the above list are distinct. Thus, the set I contains
an infinite number of elements; that is, I is an infinite set.

The replacement axiom asserts that for any set A if for every x ∈ A there is a
unique element y that is “directly connected” to x, then we can replace each x ∈ A
with its connection y and the result forms a new set. In the words of Paul Halmos [8],
“anything intelligent that one can do to the elements of a set yields a set.”

Can a set belong to itself? The regularity axiom rules out this possibility. Using
this axiom one can prove that A /∈ A for all sets A (see Exercise 3). This completes
our discussion of the individual axioms introduced by Zermelo and Fraenkel.

In Sections 5.1–5.3 we presented the basic concepts and results in set theory that
you will need for your future mathematics courses. In this section we wanted to let
you know that there is another approach to set theory, that is, one that employs the
axiomatic method. One advantage of working with a set of axioms is that the initial
assumptions that one can use in a proof are made explicit.

As noted earlier, it is a remarkable fact that essentially all mathematical objects
can be defined as sets. For example, the natural numbers and the real numbers can
be constructed within set theory. Consequently, the theorems of mathematics can be
viewed as statements about sets. Moreover, one can prove these theorems using just
the axioms of set theory. Thus, it has been said that “mathematics can be embedded
in set theory.”

5.4.2 The Axiom of Choice

Suppose that we have a family of nonempty sets. Is it possible to uniformly select
exactly one element from each set in the family? Alternatively, can we choose one



5.4 The Axioms of Set Theory 167

element from each of these sets and then form a set consisting of just the chosen
elements? The following set theoretic principle answers these questions.

Axiom of Choice. Let {Ai : i ∈ I} be an indexed family of nonempty sets. Then
there is an indexed set {xi : i ∈ I} such that xi ∈ Ai for all i ∈ I.

Definition 5.4.1. Suppose {Ai : i ∈ I} is an indexed family of nonempty sets. A set
{xi : i ∈ I} shall be called a choice set if xi ∈ Ai for all i ∈ I.

Given an indexed family {Ai : i ∈ I} of nonempty sets, if there is a method for
identifying a single element in Ai and if this method works for each i ∈ I, then
we can construct a choice set without using the axiom of choice. On the other hand,
sometimes the only way to obtain a choice set is by appealing to the axiom of choice.
In Examples 1 and 2 below, we will construct a choice set without the axiom of
choice. Example 3 presents an indexed family of sets where it is not clear how to
define a choice set and thus, one must use the axiom of choice.

Example 1. Suppose {Ai : i ∈ Z} is an indexed family of nonempty sets of natural
numbers. Define a choice set without using the axiom of choice.

Solution. By the Well-Ordering Principle 4.1.1, we know that every set Ai has a
least element. Let ni be the least element in Ai for each i ∈ Z. Thus, {ni : i ∈ Z}
is a choice set for the family {Ai : i ∈ Z}. So, we have defined the desired choice
set. ��
Example 2. Consider the indexed family of open intervals {(ai,bi) : i ∈ N} where
ai < bi are real numbers for each i ∈ N. Define a choice set without employing the
axiom of choice.

Solution. For each i ∈ N, let xi = ai+bi
2 and note that ai < xi < bi. So {xi : i ∈ N} is

a choice set for the family {(ai,bi) : i ∈ N}. We have thus defined a choice set and
did not use the axiom of choice. ��
Example 3. Suppose {Ai : i ∈ N} is an indexed family of nonempty sets of real
numbers. Can you define a choice set without applying the axiom of choice?

Solution. All we know is that each set Ai is a nonempty set of real numbers. It is not
clear how to uniformly define, for every i ∈N, a distinct real number xi ∈ Ai. So we
must use the axiom of choice to obtain a choice set for the family {Ai : i ∈ N}. ��

If the index set is finite, then one can prove that there is a choice set without using
the axiom of choice. Mathematicians often use the axiom of choice when the index
set is infinite and it is not clear how to construct a choice set. We will be using the
axiom of choice, for this very reason, in our proof of Theorem 6.5.18 in Chapter 6.

The Zermelo-Fraenkel system of axioms is frequently denoted by ZF and the
axiom of choice is abbreviated by AC. The axiom of choice was formulated by
Ernst Zermelo; however, Zermelo and Fraenkel did not include this axiom in ZF.
For this reason, the result of adding the axiom of choice to ZF is denoted by ZFC.
There were some early attempts to prove the axiom of choice using just the axioms
in ZF; however, these attempts were not successful. Mathematicians then began to
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doubt the possibility of proving the axiom of choice and, eventually, this was shown
to be the case. The combined work of Paul Cohen and Kurt Gödel proved that the
axiom of choice is independent of the Zermelo-Fraenkel axioms. In other words,
AC cannot be proven or refuted using only the axioms in ZF.4 Nevertheless, the
axiom of choice is a powerful tool in mathematics and there are important theorems
that cannot be proven without it. Consequently, mathematicians typically assume
the axiom of choice and usually cite the axiom when they use it in a proof.

Exercises 5.4

1. Let u, v and w be sets. By the pairing axiom, we know that {u} and {v,w} are sets.
Using the pairing axiom again and the union axiom, show that the set {u,v,w}
exists.

2. Let F be a family of sets. By the union axiom we know that the set
⋃F exists.

Let P(x) be the property (∀C ∈ F)(x ∈ C). So, by the subset axiom, the set
{x ∈ ⋃F : P(x)} exists. Show that {x ∈ ⋃F : P(x)} is just the set

⋂F .
3. Let A be a set. Thus, the pairing axiom implies that the set {A} exists. Using the

regularity axiom, show that A∩{A}= ∅. Conclude that A /∈ A.
4. Given sets A and B, the set {A,B} exists by the pairing axiom. Suppose A ∈ B.

Using the regularity axiom, show that A∩{A,B}= ∅. Conclude that B /∈ A.
5. Let A, B, and C be sets. Suppose that A ∈ B and B ∈ C. Using the regularity

axiom, show that C /∈ A.
6. Let F be a family of nonempty sets. Using the axiom of choice, show that there

is a set {xA : A ∈ F} such that xA ∈ A for all A ∈ F .
7. Define a choice set, without using the axiom of choice, for each of the following

family of sets:

(a) {Ai : i ∈N} is a family of nonempty subsets of R, where each Ai has exactly
three elements.

(b) {Ai : i ∈ R} is a family of nonempty subsets of Z−.
(c) {Ai : i ∈ Z} is a family of nonempty subsets of Q+.

8. Let A⊆ R and suppose that for all n ∈ N there is an x ∈ A such that 0 < x < 1
n .

Using the axiom of choice, show that there is an indexed set {xn : n ∈ N} such
that 0 < xn <

1
n and xn ∈ A, for all n ∈N.

4Presuming that ZF does not lead to a contradiction.



CHAPTER 6
Functions

One of the most essential ideas in modern mathematics is the concept of a function.
A function is a way of associating each element of a set A with exactly one element
of another set B. The set A will be referred to as the domain of the function, and B
will be called the co-domain. Functions should be familiar to you from calculus and
other mathematics courses you have taken; for example, f (x) = x2 is a function that
one can differentiate and integrate. The functions studied in your first-year calculus
course have the set R of real numbers, or subsets of R, as domain and co-domain.
In this chapter, we will look at functions in a more general context and examine
some important properties that functions may possess. To do this, we must first give
a precise set-theoretic definition of a function.

6.1 Functions Defined on General Sets

Let A and B be sets. A function f from A to B is a subset of A×B such that for each
x ∈ A there is exactly one y ∈ B so that (x,y) ∈ f . We now express this notion in
terms of a formal definition.

Definition 6.1.1. Let A and B be sets, and let f ⊆ A× B. Then f is said to be a
function from A to B if the following two conditions hold:

(1) For each x ∈ A there is a y ∈ B such that (x,y) ∈ f .
(2) If (x,y) ∈ f and (x,z) ∈ f , then y = z.

The set A is called the domain of f and the B is called the co-domain of f .

Example 1. Let A = {a,b,c,d,e} and B = {5,6,7,8,9}. Then

f = {(a,8),(b,7),(c,9),(d,6),(e,5)}

is a function from A to B because for each x ∈ A there is exactly one y ∈ B such that
(x,y) ∈ f . On the other hand, the set of ordered pairs

g = {(a,8),(b,7),(c,9),(d,6),(b,8),(e,5)}

is not a function from A to B because (b,7) ∈ g and (b,8) ∈ g, but 7�= 8. Hence,
item (2) of Definition 6.1.1 fails to hold. In addition, the set

h = {(a,8),(b,7),(c,9),(e,5)}

D.W. Cunningham, A Logical Introduction to Proof, DOI 10.1007/978-1-4614-3631-7 6,
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Fig. 6.1 Arrow diagram of the function given in Example 2

is not a function from A to B because d ∈ A and there is no y∈ B such that (d,y)∈ h.
Thus, item (1) of Definition 6.1.1 does not hold.

We write f : A→ B to indicate that f is a function from the set A to the set B.
Thus, for each x ∈ A there is exactly one y ∈ B such that (x,y) ∈ f . This unique y
is called “the value of f at x” and is denoted by f (x). Thus, (x,y) ∈ f if and only if
f (x) = y. The value f (x) is called “ f of x,” or “the image of x under f .” In addition,
we shall say that x ∈ A is an input for the function f and that f (x) is the resulting
output. We will also say that x gets mapped to f (x).

Remark 6.1.2. Technically speaking, when f is a set of ordered pairs, one can use
the notation f (x) only when it is known, or it is clear, that f is a function.

Consider the set of ordered pairs f = {(x,y) ∈ R×R : y = 3x2− 1}. One can
easily show that f satisfies the conditions of Definition 6.1.1. Thus, f is a function
and we can write f (x) = 3x2− 1 for all x ∈ R.

Remark 6.1.3. Given a function f : A→ B, we know that each x ∈ A is mapped to
exactly one element f (x) in B. Consequently, we shall say that f is single-valued.

When A and B are finite sets, then a function f : A→ B can be represented by
drawing an arrow from each element x ∈ A to the corresponding element f (x) ∈ B
(see Fig. 6.1). Such a drawing is called an arrow diagram. These diagrams can help
us gain a better understanding of the concept of a function together with its domain
and co-domain.

Example 2. Let A = {a,b,c,d} and B = {1,2,3,4,5}. Now consider the function
f : A→ B defined by

f = {(a,3),(b,5),(c,1),(d,3)}.

Thus,
f (a) = 3, f (b) = 5, f (c) = 1, and f (d) = 3.

Since A and B are finite, we can illustrate the function f by means of the arrow
diagram in Fig. 6.1. Clearly, each element x ∈ A is mapped to exactly one element
f (x) in B. Observe that a�= d and f (a) = f (d). So it is possible for distinct elements
in the domain to produce the same value under a function f . In fact, many functions
have this “repeated value” property (see Example 7 on page 174).
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Fig. 6.2a Why is this not a function? Fig. 6.2b Why is this not a function?

6.1.1 Is it a Function?

In this section we will discuss certain ways in which one may fail to have a function.
First we recall a key property that a function must possess. A function f : A→ B
must be single valued; that is, it must satisfy the property:

For every element of x ∈ A there is exactly one value f (x) in B. (�)

If this property is not satisfied, then we do not have a function. Figure 6.2a, b
presents two arrow diagrams from a set A to a set B that fail to satisfy (�).

Putting the Cart Before the Horse

In mathematics, the expression well-defined means that a particular object, which
has been described, satisfies the required properties.1 Usually this object is specified
without ambiguity and it is clear that the object satisfies the necessary properties.
On the other hand, sometimes it may not be obvious that the object satisfies each of
the critical properties and then one must verify that these properties in fact do hold.
These issues commonly arise in the definition of a function.

Suppose that A and B are sets and R(x,y) is a predicate. Let

f = {(x,y) ∈ A×B : R(x,y)} (6.1)

and suppose that f satisfies conditions (1) and (2) of Definition 6.1.1. Thus f is a
function and for x ∈ A and y ∈ B we can conclude that

f (x) = y if and only if R(x,y). (6.2)

1“Putting the horse before the cart” is an expression that is used when the order of certain facts or
ideas have been reversed.
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Before introducing the notation f (x) in (6.2), we stated that f in (6.1) was a
function; however, mathematicians often put the “cart” before the “horse.” That is,
a mathematician will typically introduce f (x), as in (6.2), without first proving that
the set f in (6.1) is a function. This rarely creates a problem, but it can sometimes
lead to erroneous conclusions.

In calculus, we often introduce a function f by specifying a formula for f (x). For
example, we say “let f : R→ R be defined by f (x) = x3− x” which is another way
of stating that

f (x) = y if and only if y = x3− x.

This is a situation where the set f = {(x,y) ∈R×R : y = x3− x} is a function, as it
clearly satisfies the properties given in Definition 6.1.1.

Example 3. Suppose a fellow student wants to know if the description (or rule)

f (x) = y if and only if y2 = x (6.3)

produces a function f : R+→ R. Show that f is not a function.

Solution. Let f = {(x,y) ∈ R
+×R : y2 = x}. Note that (4,2) ∈ f as 22 = 4, and

(4,−2) ∈ f because (−2)2 = 4. Since (4,2) ∈ f and (4,−2) ∈ f , we see that f is
not a function. ��

After changing the “co-domain” of the alleged function in Example 3, we will
prove in our next proposition that the description (6.3) will then yield a function f .
Such a proof is often referred to as proving that the function is well-defined.

Proposition 6.1.4. Consider the proposed function f : R+→ R
+ described by

f (x) = y if and only if y2 = x. (6.4)

Then f is a function.

Proof. Let f = {(x,y) ∈ R
+×R

+ : y2 = x}. For each x ∈ R
+, we know that

√
x

is a positive real number (see page 95). Since (
√

x)2 = x, we see that (x,
√

x) ∈ f .
Suppose that (x,y) ∈ f and (x,z) ∈ f . Then y2 = x and z2 = x. So y2 = z2 and thus,
y =

√

y2 =
√

z2 = z because y > 0 and z > 0. Hence, y = z and f is a function. ��
Many mathematical objects have multiple representations; for instance, 2 can be

represented by 2
1 and 10

5 . Thus, two things may look different when, in fact, they
are the same. This multiplicity is one of the main reasons why an apparent function
may not be well defined.

Example 4. Consider the purported function f : Q→Q described by the rule

f
(m

n

)

=
m− 1

n
, (6.5)

where m and n�= 0 are integers. Show that f is not a function.
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Solution. The rule in (6.5) is an abbreviation for the more formal description

f (x) = y if and only if (∃m ∈ Z)(∃n ∈ Z)

(

x =
m
n

and y =
m−1

n

)

for rational numbers x and y. Using the above description, we see that the intended
subset f of Q×Q satisfies

(x,y) ∈ f if and only if (∃m ∈ Z)(∃n ∈ Z)

(

x =
m
n

and y =
m−1

n

)

.

Observe that ( 1
2 ,0) ∈ f because 1

2 = 1
2 and 0 = 1−1

2 . Also, ( 1
2 ,

1
4) ∈ f since 1

2 = 2
4

and 1
4 = 2−1

4 . Since ( 1
2 ,0) ∈ f and ( 1

2 ,
1
4 ) ∈ f , we see that f is not a function. ��

Proposition 6.1.5. Let Q
∗ be the set of nonzero rational numbers and let the

putative function f : Q∗ →Q
∗ be described by the rule

f
(m

n

)

=
n

2m
(6.6)

where m and n are nonzero integers. Then f is a function.

Proof. Let Z∗ be the set of nonzero integers. The rule (6.6) informally describes the
subset f of Q∗ ×Q

∗ defined by

(x,y) ∈ f if and only if (∃m ∈ Z
∗)(∃n ∈ Z

∗)
(

x =
m
n

and y =
n

2m

)

.

We shall prove that f is a function. First we prove that f satisfies property (1) of
Definition 6.1.1. Let x ∈ Q

∗. So there are nonzero integers m and n so that x = m
n .

Since y = n
2m is also in Q

∗, we see that (x,y) ∈ f . Now we prove that f satisfies
property (2) of Definition 6.1.1. Suppose that (x,y) ∈ f and (x,z) ∈ f . We must
prove that y = z. Since (x,y) ∈ f , we have that x = m

n and y = n
2m for some nonzero

integers m and n. Similarly, as (x,z) ∈ f , there are nonzero integers a and b such
that x = a

b and z = b
2a . Since x = m

n and x = a
b , we have that m

n = a
b . To prove that

y = z we shall show that

m
n

=
a
b

implies
n

2m
=

b
2a

. (6.7)

Given that m
n = a

b , we have that mb = na by Definition 2.1.3. Thus na = mb and so,
n(2a) = b(2m). Hence, n

2m = b
2a . Therefore, y = z and f is a function. ��

In Example 4 and Proposition 6.1.5, we encountered two proposed functions that
were described by rules having the form f (x) = y where x and y were represented as
a ratio of integers. Each rational number has many such representations. We showed
that the rule given in Example 4 does not define a function. On the other hand,
we were able to prove that the rule presented in Proposition 6.1.5 does produce a
function. Such a proof is also referred to as proving that the function is well-defined.
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Remark 6.1.6. The proof given in Proposition 6.1.5 can be shortened as follows:
Let m,n,a,b ∈ Z

∗. To prove property (1) of Definition 6.1.1, it is enough to observe
that n

2m ∈Q∗ when m
n ∈Q∗. To prove property (2) of Definition 6.1.1, it is sufficient

to just prove implication (6.7) which shows that the rule (6.6) is independent of the
representation used for an input x ∈Q

∗.

For the remainder of this chapter (and book) we will be working with a variety
of functions. Each such function f will be introduced by defining f (x) directly, or
indirectly as in (6.2). This will not cause a problem as each of these definitions will
clearly produce a function.

6.1.2 The Range of a Function

Given a function f : A→ B and an element x ∈ A, we know that the value f (x) is an
element in B. We now consider the set of all such values of the function f .

Definition 6.1.7. For a function f : A→ B the range of f , denoted by ran( f ), is the
subset of B defined by

ran( f ) = { f (a) : a ∈ A}= {b ∈ B : b = f (a) for some a ∈ A}.

The range of a function is the set of all “output” values produced by the function.
For the function f in Fig. 6.3a, we see that ran( f ) = {1,3,5}.
Remark 6.1.8. Let h : X → Y be a function. Then b ∈ ran(h) means that b = f (x)
for some x ∈ X ; that is, b is a value of the function f obtained by some input.

Example 5. For any set A, the identity function iA : A→ A is defined by iA(x) = x
for all x ∈ A. Thus, ran(iA) = {iA(x) : x ∈ A}= {x : x ∈ A}= A.

Example 6. Let A and B be nonempty sets. For each c ∈ B, the constant function
g : A→ B is defined by g(x) = c for all x ∈ A. So, ran(g) = {g(x) : x ∈ A}= {c}.
Example 7. Let f : R → R be the function in Fig. 6.3b defined by the formula
f (x) = x2−x. Then ran( f ) = { f (x) : x ∈R}= {x2−x : x ∈R}= [− 1

4 ,∞). Observe
that f (−2) = 6 and f (3) = 6. Thus, this function has a “repeated value.”

For the function f in Fig. 6.3b, note that −1 /∈ ran( f ). Similarly, there are
elements in the co-domain of the function in Fig. 6.3a that are not in the range of
this function. Thus, the range of a function may not equal its co-domain.

6.1.3 Equality of Functions

In your ensuing mathematics courses, you will be asked (at some point) to prove
that two functions are equal. Before we address this issue, we present and prove a
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Fig. 6.3a Arrow diagram of a function Fig. 6.3b Graph of function in Example 7

theorem stating that two functions f and g are equal (i.e., f = g) when they have
the same domain and the same value f (x) = g(x) for all x in their common domain.
In Section 5.2.2 we discussed strategies for proving, and assuming, that two sets are
equal. Since a function is a set of ordered pairs, these ideas will be used in the proof
of our next theorem.

Theorem 6.1.9 (Function Equality). Let f : A→ B and g : A→ B be functions.
Then f = g if and only if f (x) = g(x) for all x ∈ A.

Proof. Let f : A→ B and g : A→ B be functions. We shall prove that f = g if and
only if f (x) = g(x) for all x ∈ A.

(⇒). Assume that f = g. Let x ∈ A. Since f is a function from A to B, there is a
y ∈ B such that (x,y) ∈ f . Thus, f (x) = y. In addition, because f = g, it follows that
(x,y) ∈ g. Hence, g(x) = y. Therefore, f (x) = g(x).

(⇐). Assume that f (x) = g(x) for all x ∈ A. We shall prove that f = g. Let
(x,y) ∈ A×B. We shall prove that (x,y) ∈ f if and only if (x,y) ∈ g as follows:

(x,y) ∈ f iff f (x) = y because f is a function

iff g(x) = y because f (x) = g(x)

iff (x,y) ∈ g because g is a function.

Therefore, f = g and this completes the proof. ��
We can now identify a key strategy for proving that two functions are equal.

Proof Strategy 6.1.10. Given a diagram containing the form

Prove f = g

where f : A→ B and g : A→ B, use the diagram:

Let x ∈ A.
Prove f (x) = g(x).
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Proposition 6.1.11. Let f : R→R be defined by f (x) = (x−1)2 and let g : R→R

be defined by g(x) = x2− 2x + 1. Prove that f = g.

Proof. Let f : R→ R and g : R→ R be defined as stated in the proposition. Let
x ∈ R. We prove that f (x) = g(x) as follows:

f (x) = (x− 1)2 by the definition of f

= x2− 2x + 1 by algebra

= g(x) by definition of g.

Therefore, f = g. ��

Proposition 6.1.12. Let f : R→ R and g : R→ R be functions. Define s : R→ R

and t : R→ R by

s(x) = f (x) ·g(x) for all x ∈ R (6.8)

t(x) = g(x) · f (x) for all x ∈ R. (6.9)

Then s = t.

Proof. Let f : R→ R and g : R→ R be functions and let s : R→ R and t : R→ R

be defined by (6.8) and (6.9). Let x be a real number. We shall prove that s(x) = t(x)
as follows:

s(x) = f (x) ·g(x) by (6.8)

= g(x) · f (x) by the commutative law of multiplication

= t(x) by (6.9).

Therefore, s = t. ��
Remark 6.1.13. Given functions f : A→ B and g : A→ B, to show that f �= g you
must find at least one element x ∈ A and show that f (x)�= g(x).

Exercises 6.1

1. Let f : Z→ Z be defined by f (n) = 4n + 1. Determine the range of f .
2. Let f : R→ R be defined by f (x) =−x2 + 4x. Determine the range of f .

3. Consider the functions f : R+→ R and g : R+→ R defined by f (x) = 16x2−1
4x+1

and g(x) = 4x− 1 for all x ∈R
+. Prove that f = g.

4. Let f : R→ R and g : R→ R be functions. Define s : R→ R and t : R→ R by

s(x) = 2 f (x)+ 3g(x) for all x ∈ R (6.10)

t(x) = 6 f (x)− g(x) for all x ∈ R. (6.11)

Prove that if s = t, then f = g.
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5. Consider the purported function f : Q → R defined by f (m
n ) = 2m3n where

m,n ∈ Z and n�= 0. Show that f is not well defined.

6. Consider the purported function f : Q→ Q defined by f ( i
j ) = i j+i2

j2
whenever

i, j ∈ Z and j�= 0. After reviewing Remark 6.1.6, prove that f is well-defined.
7. Consider the purported functions f : Q→Q and g : Q→ Z defined by

(a) f ( i
j ) = i+ j

j2

(b) g( i
j ) = 6i− j

where i, j ∈ Z and j �= 0. Are f and g functions? Provide a proof, or give a
counterexample, to verify your answers. (Review Remark 6.1.6.)

8. Consider the purported function g : N→ N defined by g(n) = i if and only if
n = ik for some k ∈ N. Show that g is not a function.

9. Consider the purported function f : (0,1)→{0,1,2, . . . ,9} defined by

f (x) = x3 where x = 0.x1x2x3 · · · is an infinite decimal expansion of x.

Show that f is not a function. Now read Remark 4.6.3 and then change the
definition of f , slightly, so that your new definition will produce a function.

6.2 One-to-One, Onto, and Inverse Functions

In this section, we will examine two of the most useful properties that a function
may have; namely, the property of being one-to-one and the property of being
onto. Roughly speaking, a function is one-to-one if it has no repeated values, and
a function is onto when every element in its co-domain is a value of the function.
We will present formal mathematical definitions and proof strategies that deal with
these important concepts. A function that is both one-to-one and onto will allow us
to construct a new function, called the inverse function.

6.2.1 One-to-One Functions

Some functions (see Fig. 6.3a, b) may have two inputs that are assigned to the
same output and thus, such functions have a repeated value. When a function never
produces a repeated value, then we will say that the function is one-to-one. For
example, it is easy to see that the function in Fig. 6.4 is one-to-one. Unfortunately,
the vast majority of mathematical functions cannot be represented by an arrow
diagram. Without an arrow diagram, it is more difficult to determine whether or
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Fig. 6.4 Arrow diagram of a one-to-one function f : A→ B

not a function is one-to-one. We need an alternative approach. We need to know
how to prove whether or not a function is one-to-one.

Definition 6.2.1. A function f : A→ B is said to be one-to-one (or an injection), if
distinct elements in A get mapped to distinct elements in B; written in logical form

(∀x ∈ A)(∀y ∈ A)[x�= y→ f (x)�= f (y)]

or equivalently (using the contrapositive),

(∀x ∈ A)(∀y ∈ A)[ f (x) = f (y)→ x = y].

In many of your future mathematics courses, you will be required to prove that
a given function is one-to-one. The following strategy presents a very easy method
which can be used to provide such a proof.

Proof Strategy 6.2.2. To prove that a function f : A→ B is one-to-one:

Prove (∀x ∈ A)(∀y ∈ A)[ f (x) = f (y)→ x = y].

That is, use the diagram:

Let x ∈ A and y ∈ A.
Assume f (x) = f (y).

Prove x = y.

Proposition 6.2.3. Define f : R→ R by f (x) = 2x + 3. Then f is one-to-one.

Proof Analysis. First we construct the proof diagrams:

Prove (∀x ∈ R)(∀y ∈ R)[ f (x) = f (y)→ x = y]

Let x ∈R and y ∈ R.
Assume f (x) = f (y).

Prove x = y.

Let x ∈R and y ∈ R.
Assume 2x + 3 = 2y + 3.

Prove x = y.
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These diagrams will guide our composition of a well-structured proof. A©A©
Proof. We have f : R→ R defined by f (x) = 2x + 3. We shall prove that f is one-
to-one. Let x and y be real numbers. Assume f (x) = f (y). We will prove that x = y.
Since f (x) = f (y), we see that 2x + 3 = 2y + 3. Subtracting 3 from both sides of
this equality, we obtain 2x = 2y. By dividing both sides by 2, we get that x = y.
Therefore, the function f is one-to-one. ��

Given a function f : A→B, to show that f is not one-to-one you must find x,y∈A
such that x�= y and f (x) = f (y), that is, you must show that f has a repeated value.

Example 1. Show that f : R→R defined by f (x) = (x−2)2 +1 is not one-to-one.

Solution. Clearly, 1�= 3 but f (1) = 2 = f (3). Thus, f is not one-to-one. ��
Many times in mathematics one knows that a certain function is one-to-one and

wants to use this fact to establish something new, for example, to show that another
function is one-to-one. Our next strategy offers a simple observation that can be
used in such a proof. It is a strategy that is often used in mathematical proofs.

Assumption Strategy 6.2.4. Suppose in a proof that you are assuming f : A→ B
is one-to-one. If x,y ∈ A and you are given or can prove that f (x) = f (y), then you
can conclude that x = y.

We will apply Proof Strategy 6.2.2 and Assumption Strategy 6.2.4 in our proof
of the following theorem.

Theorem 6.2.5. Suppose f : R→ R is one-to-one and let c ∈R be nonzero. Define
g : R→ R by g(x) = c f (x). Then g is one-to-one.

Proof. Suppose f : R→R is one-to-one and c�= 0. We shall prove that g : R→R is
one-to-one, where g is defined by g(x) = c f (x). Let x,y∈R and assume g(x) = g(y).
Thus, c f (x) = c f (y) by the definition of g. So, f (x) = f (y) because c is nonzero.
Since f (x) = f (y) and f is one-to-one, we have that x = y. Hence, g is one-to-one
and this completes the proof. ��

6.2.2 Onto Functions

We will now focus our attention on the co-domain of a function. Consider the
function given by the arrow diagram in Fig. 6.4 on page 178. Observe that 2 ∈ B
is not a value of this function. So a function may have elements in its co-domain
that are not realized as a value of the function; however, when every element in
the co-domain is a value of the function, we shall say that the function is onto. For
example, the function in Fig. 6.5 is onto because for every element y ∈ B there is an
x ∈ A such that f (x) = y, that is, every element in B has an arrow pointing to it.



180 6 Functions

a

b

c

d

e

1

2

3

4

A
B

Fig. 6.5 Arrow diagram of an onto function f : A→ B

Definition 6.2.6. A function f : A→ B is said to be onto (or a surjection), if every
element y ∈ B gets mapped-to by some x ∈ A; written in logical form

(∀y ∈ B)(∃x ∈ A)[ f (x) = y ].

In your more advanced mathematics courses, you will be asked to prove that a
given function is onto. To do this, you must show that for every element y in the
co-domain, there is an element x in the domain that maps to y. Thus, we have our
second very important proof strategy.

Proof Strategy 6.2.7. To prove that a function f : A→ B is onto:

Prove (∀y ∈ B)(∃x ∈ A)[ f (x) = y].

In other words, use the diagram:

Let y be an element in B.
Let x = (the element in A you found).

Prove f (x) = y.

Proposition 6.2.8. Let f : R→ R be defined by f (x) = 3x + 2. Then f is onto.

Proof Analysis. First we construct the proof diagrams:

Prove (∀y ∈R)(∃x ∈ R)[ f (x) = y].

Let y be a real number.
Prove (∃x ∈ R)[ f (x) = y].

Let y be a real number.
Let x = (the element in R you found).

Prove f (x) = y.

Let y be a real number.
Let x = y−2

3 .

Prove f (x) = y.
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How did we find the value for x in the latter diagram? We just solved the equation
f (x) = y for x, that is, we solved 3x+2 = y for x. This completes our analysis. This
latter diagram will guide our composition of a well-structured proof. A©A©
Proof. Let y be a real number. Let x = y−2

3 . We shall show that f (x) = y as follows:

f (x) = f

(
y− 2

3

)

= 3

(
y− 2

3

)

+ 2 = (y−2)+ 2 = y.

Therefore, the function f is onto. ��
Given a function f : A→B, to show that f is not onto you must find a value y∈ B

that satisfies f (x)�= y for all x ∈ A.

Proposition 6.2.9. Let A = {x ∈ R : x�=−1}. Then the function f : A→ R defined
by f (x) = 2x

x+1 is not onto.

Proof. Let y = 2. We shall prove that f (x) �= 2 for all x ∈ A. Suppose, for a
contradiction, that f (x) = 2 for some x ∈ A. Thus, 2x

x+1 = 2. Hence, 2x = 2(x + 1).
So, 2x = 2x + 2. From this equation we derive 0 = 2, a contradiction. ��
Remark. The value y = 2, in the proof of Proposition 6.2.9, was found by solving
the equation 2x

x+1 = y for x and obtaining x = y
2−y which is undefined when y = 2.

Suppose you are given that a function is onto and you need to use this fact in a
mathematical proof. Our next strategy is one that will be very useful.

Assumption Strategy 6.2.10. When assuming f : A→B is onto, then for any y∈B
you can conclude that there is an x ∈ A that satisfies f (x) = y.

Proof Strategy 6.2.7 and Assumption Strategy 6.2.10 will be used in our next
proof of the following theorem.

Theorem 6.2.11. Suppose f : R → Q is onto and let c ∈ Q be nonzero. Define
g : R→Q by g(x) = c f (x). Then g is onto.

Proof Analysis. We are given that f : R→ Q is onto and we want to prove that
g : R→Q is onto. Let y ∈Q. We need to find an x ∈ R that satisfies g(x) = y, that
is, c f (x) = y. First we solve this latter equation for f (x) and obtain f (x) = y

c . Since
f is onto and y

c is a rational number, there is an x ∈R such that f (x) = y
c . This is the

x that we will use in our proof. A©A©
Proof. We are given that f : R→Q is onto. We shall prove that g : R→Q is onto,
where g(x) = c f (x) for all x ∈ R and c ∈ Q is nonzero. Let y be a rational number.
Since f is onto and y

c ∈ Q, there is an x ∈ R such that f (x) = y
c . We prove that

g(x) = y as follows: g(x) = c f (x) = c
( y

c

)

= y. Therefore, g is onto. ��

6.2.3 Inverse Functions

In calculus you study the inverse trigonometric functions, and you also learn that
the two functions ln(x) and ex are inverses of each other. The inverse of a function
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Fig. 6.6a f : A→ B Fig. 6.6b f−1 : B→ A

is another function that “reverses the action” of the original function. Not every
function has an inverse. The only functions that do have an inverse are those that are
one-to-one and onto.

Theorem 6.2.12. Suppose that f : A→ B is one-to-one and onto. Then there is a
function f−1 : B→ A that satisfies

f−1(b) = a iff f (a) = b (6.12)

for all b ∈ B and a ∈ A.

Proof. Suppose f : A → B is one-to-one and onto. We shall prove that f−1, as
defined by (6.12), is a function from B to A. To do this, we shall show that f−1

is single-valued. Let b ∈ B. Since f : A→ B is onto, there is an a ∈ A such that
f (a) = b. Suppose that a′ ∈ A also satisfies f (a′) = b. Thus, f (a) = f (a′). Because
f is one-to-one, it follows that a = a′. Therefore, for every b ∈ B there is exactly
one a ∈ A such that f (a) = b. Hence, the formula f (a) = b used in (6.12) defines a
function f−1 : B→ A. ��
Definition 6.2.13. Suppose f : A→ B is one-to-one and onto. Then the function
f−1 : B→ A, defined by (6.12), is called the inverse function of f .

An arrow diagram of a one-to-one and onto function f : A→ B is given in the
Fig. 6.6a. The arrow diagram for the inverse function f−1 : B→ A is portrayed in
Fig. 6.6b. Observe that the inverse function f−1 reverses the action of f and that
f (x) = y if and only if f−1(y) = x, for each x ∈ A and y ∈ B.

Finding the Inverse of a “Calculus” Function

Let D and E be nonempty subsets of R. When a function f : D→ E is one-to-one
and onto, then the inverse function f−1 : E→D exists. If a formula is given for f (x),
then we may be able to find a formula for f−1(y) by following the procedure:

Fix y in the co-domain E of f . Solve the equation f (x) = y for the unique x in D,
and set f−1(y) equal to your solution for x.
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Example 2. One can show that the function f : R→R given by f (x) = (x−4)3 +2
is one-to-one and onto. Find a formula for the inverse function f−1.

Solution. After solving the equation (x−4)3 +2 = y for x, we obtain x = 4+ 3
√

y−2.
Therefore, f−1(y) = 4+ 3

√
y− 2 is the formula for the inverse function. One can now

show that f (x) = y if and only if f−1(y) = x, for all x,y ∈ R. ��
Unfortunately, the above procedure for finding a formula for an inverse function

can fail. For example, consider the one-to-one and onto function f : R→ R defined
by f (x) = x5 +x3. It is impossible, using radicals, to algebraically solve the equation
x5 + x2 = y for x and thus, there is no elementary formula for f−1.

Theorem 6.2.14. Suppose f : A→ B is one-to-one and onto. Let f−1 : B→ A be
the inverse of f . Then f−1 is also one-to-one and onto.

Proof. Let f : A→ B be one-to-one and onto. We first prove that f−1 : B→ A is
one-to-one. Let b,b′ ∈ B. Assume f−1(b) = f−1(b′). Let a ∈ A be this common
value. Thus, f−1(b) = a and f−1(b′) = a. So f (a) = b and f (a) = b′, by (6.12).
Since f is a function, we conclude that b = b′. Hence, f−1 is one-to-one.

To prove that f−1 : B→ A is onto, let a ∈ A. So there is a b ∈ B be such that
f (a) = b. By (6.12), f−1(b) = a. Therefore, f−1 is onto. ��

Exercises 6.2

1. Define f : Z→ Z by f (n) = 3n + 2.

(a) Is f one-to-one? Prove it, or provide a counterexample.
(b) Is f onto? Prove it, or provide a counterexample.

2. Define f : R→ R by f (x) = x2.

(a) Is f one-to-one? Prove it, or provide a counterexample.
(b) Is f onto? Prove it, or provide a counterexample.

3. Define a function f : N→ N that is one-to-one but not onto.
4. Define a function f : N→ N that is onto but not one-to-one.
5. Let A = {x ∈ R : x�= −1}. Define f : A→ R by f (x) = 2x

x+1 . Prove that f is
one-to-one.

6. Let A = {x ∈R : x�= 1}. Define f : A→ R by f (x) = 3x
2x−2 . Prove f is not onto.

7. Define f : R→ R by f (x) = x− x3. Is f one-to-one? Is it onto?
8. Let A = {x ∈ R : x�= 2} and let B = {y ∈ R : y�= 4}. Define f : A→ B by

f (x) = 4x
x−2 . Prove that f is onto.

9. Let A = {x∈R : x�= 2} and let B = {y∈R : y�= 4}. Prove the function f : A→B
defined by f (x) = 4x

x−2 is one-to-one.
10. Let a,b ∈ R with a�= 0 and define the function f : R→ R by f (x) = ax + b.

Given that f is one-to-one and onto, find a formula for f−1 : R→ R.
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11. Prove that the function f : R→ R, defined below, is one-to-one and onto.

f (x) =

{

x2, if x≥ 0;

−x2, if x < 0.
(6.13)

12. Let f : R→ R be the function defined by (6.13) in Exercise 11. Given that f is
one-to-one and onto, find a formula for the inverse function f−1 : R→ R.

13. Suppose that f : R→ R
+ is one-to-one. Define g : R→ R

+ by g(x) = ( f (x))2.
Prove that g is one-to-one.

14. Suppose that f : R→ R
+ is onto. Define g : R→ R

+ by g(x) = ( f (x))2. Prove
that g is onto.

15. Suppose f : R→R is one-to-one and let a,b∈R where a�= 0. Define g : R→R

by g(x) = a f (x)+ b. Prove that g is one-to-one.
16. Suppose f : R→ R is onto and let a,b ∈ R where a�= 0. Define g : R→ R by

g(x) = a f (x)+ b. Prove that g is onto.
17. Define f : N×N→ N by f (m,n) = 2m3n. Prove that f is one-to-one.
18. Let f : R→ R be as in Example 2. Prove that f is one-to-one and onto.

Exercise Notes: For Exercise 11, if x2 = y2 then |x| = |y|. For Exercise 17, let
m,n, i, j ∈ N. Assume f (m,n) = f (i, j). Prove m = i and n = j.

6.3 Composition of Functions

If the domain of a function equals the co-domain of another function, then we can
use these two functions to construct a new function called the composite function.
The composite function is defined by taking the output of one these functions and
using that as the input for the other function. The formal mathematical definition
appears below.

Definition 6.3.1. For functions g : A→ B and f : B→C, one forms the composite
function ( f ◦g) : A→C by defining ( f ◦ g)(x) = f (g(x)) for all x ∈ A.

For example, let g : A→ B and f : B→C be the functions in Fig. 6.7. An arrow
diagram for the composite function ( f ◦ g) : A→C appears in Fig. 6.8.

Example 1. Let g : R→ R and f : R→ R be the functions defined by f (x) = 1
x2+2

and g(x) = 2x−1. Find formulas for ( f ◦ g)(x) and (g◦ f )(x). Is f ◦g = g◦ f ?

Solution. Let x ∈ R. We evaluate the function ( f ◦g)(x) as follows:

( f ◦ g)(x) = f (g(x)) = f (2x− 1) =
1

(2x−1)2 + 2
.
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Fig. 6.7 Two functions f and g where the domain of f equals the co-domain of g

( f ◦ g) : A → C
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Fig. 6.8 The resulting composite function f ◦g for the functions in Fig. 6.7

Thus, ( f ◦g)(x) = 1
(2x−1)2+2

. We evaluate (g ◦ f )(x) to obtain

(g◦ f )(x) = g( f (x)) = g

(
1

x2 + 2

)

= 2

(
1

x2 + 2

)

−1 =
2

x2 + 2
−1.

Hence, (g◦ f )(x) = 2
x2+2
−1. Since ( f ◦g)(0) = 1

3 and (g◦ f )(0) = 0, we conclude
that f ◦g�= g◦ f (review Remark 6.1.13). ��

One cannot form the composition of just any two functions. When in doubt here
is a simple rule to follow: The composition f ◦ g is defined when the domain of the
left function f is equal to the co-domain of the right function g.

Remark 6.3.2. Given two functions g : A→ E and f : B→C, if ran(g) ⊆ B, then
one can also define the composition ( f ◦g) : A→C. In other words, if f (b) is defined
for every value b of the function g, then one can define f ◦g.

6.3.1 Composing a Function with the Identity Function

The identity function just takes an input x and returns x as its output value. As a
result, when one composes a function f with the identity function, the result will
just be the function f .

Theorem 6.3.3. Let f be any function f : A→ B. Let iA : A→ A be the identity
function on A and let iB : B→ B be the identity function on B. Then
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(1) ( f ◦ iA) = f ,
(2) (iB ◦ f ) = f .

Proof. Clearly, ( f ◦ iA)(x) = f (iA(x)) = f (x) and (iB ◦ f )(x) = iB( f (x)) = f (x), for
each x ∈ A. ��

6.3.2 Composing a Function with Its Inverse

Since the inverse of a function “reverses the action” of the original function, the
result of composing these two functions leads to “no action.”

Theorem 6.3.4. Suppose f : A→ B is one-to-one and onto. Let f−1 : B→ A be the
inverse of f . Then

(1) f−1( f (a)) = a for all a ∈ A,
(2) f ( f−1(b)) = b for all b ∈ B.

Proof. First we prove (1). Let a ∈ A. Since f (a) ∈ B, let b ∈ B be such that
f (a) = b. Theorem 6.2.12 implies (∗) f−1(b) = a. After substituting b = f (a) into
equation (∗), we see that f−1( f (a)) = a. To prove (2), let b ∈ B. Since f−1(b) ∈ A,
let a ∈ A be such that f−1(b) = a. Thus, (†) f (a) = b by Theorem 6.2.12. Upon
substituting a = f−1(b) into equation (†), we obtain f ( f−1(b)) = b. ��
Corollary 6.3.5. Suppose f : A→ B is one-to-one and onto. Let f−1 : B→ A be the
inverse of f . Then

(1) ( f−1 ◦ f ) = iA
(2) ( f ◦ f−1) = iB

where iA is the identity function on A and iB is the identity function on B.

Proof. Since iA(a) = a for a ∈ A and iB(b) = b for b ∈ B, items (1) and (2) follow
from the corresponding items in Theorem 6.3.4. ��

6.3.3 Composing One-to-One Functions

Our next theorem shows that the composition of two one-to-one functions is also
one-to-one. Our proof employs Proof Strategy 6.2.2 and Assumption Strategy 6.2.4.

Theorem 6.3.6. If g : A→ B and f : B→C are one-to-one, then ( f ◦g) : A→C is
one-to-one.

Proof Analysis. First we construct the proof diagrams:
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Assume g : A→ B is one-to-one.
Assume f : B→C is one-to-one.

Prove ( f ◦ g) : A→C is one-to-one.

Assume g : A→ B is one-to-one.
Assume f : B→C is one-to-one.

Let x ∈ A and y ∈ A.
Assume ( f ◦ g)(x) = ( f ◦g)(y).

Prove x = y.

We shall use this last diagram as the guide for our proof. A©A©
Proof. Assume g : A→ B and f : B→C are one-to-one. To prove that the function
( f ◦ g) : A→ C is one-to-one, let x ∈ A and y ∈ A. Assume ( f ◦ g)(x) = ( f ◦ g)(y).
Thus, (i) f (g(x)) = f (g(y)) by the definition of composition. Since f is one-to-one,
we conclude from (i) that g(x) = g(y). Because g is one-to-one, we see that x = y.
This completes the proof. ��

6.3.4 Composing Onto Functions

The next theorem asserts that the composition of two onto functions yields an onto
function. Our proof applies Proof Strategy 6.2.7 and Assumption Strategy 6.2.10.

Theorem 6.3.7. If g : A→ B and f : B→C are onto, then ( f ◦g) : A→C is onto.

Proof Analysis. First we construct the proof diagrams:

Assume g : A→ B is onto.
Assume f : B→C is onto.

Prove ( f ◦ g) : A→C is onto.

Assume g : A→ B is onto.
Assume f : B→C is onto.

Let z be an element in C.
Let x = (the element in A you found).

Prove ( f ◦ g)(x) = z.

These proof diagrams will guide our proof. A©A©
Proof. Assume g : A→ B and f : B→C are onto. We shall prove that the function
( f ◦g) : A→C is onto. Let z ∈C. Since f : B→C is onto and z ∈C, there is a y ∈ B
such that f (y) = z. Because y ∈ B and g : A→ B is onto, there is an x ∈ A such that
g(x) = y. We will show that ( f ◦ g)(x) = z as follows:
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( f ◦ g)(x) = f (g(x)) by definition of composition

= f (y) because g(x) = y

= z because f (y) = z. ��

Exercises 6.3

1. Let f : R→ R be defined by f (x) = x2− 1 and let g : R→ R be defined by
g(x) = x3 + 1. Evaluate the values:

(a) ( f ◦g)(1)

(b) (g◦ f )(1)

(c) ( f ◦ f )(1)

(d) (g◦g)(1).

2. Let f : R→ R be defined by f (x) = x2− 1 and let g : R→ R be defined by
g(x) = x3 + 1. Obtain formulas for the following compositions:

(a) ( f ◦g)(x)
(b) (g◦ f )(x)
(c) ( f ◦ f )(x)
(d) (g◦g)(x).

3. Let f : A→ B and g : B→ A be functions. Suppose that f (g(b)) = b for all
b∈ B and g( f (a)) = a for all a∈ A. Prove that f and g are one-to-one and onto.

4. For a,b∈R with a�= 0, define the function Ta,b : R→R by Ta,b(x) = ax+b. Let
G be the set of all such functions, that is, let G = {Ta,b : a,b ∈ R and a�= 0}.
(a) Let Ta,b ∈G and Tc,d ∈ G. Show that Ta,b ◦Tc,d = Tac,ad+b.
(b) Let Ta,b ∈G and Tc,d ∈ G. Show that (Ta,b ◦Tc,d) ∈ G.
(c) Let Ta,b ∈G. Prove that Ta,b is one-to-one and onto.
(d) Let I : R→ R be the identity function. Show that I ∈G.
(e) Let Ta,b ∈G. Show that T−1

a,b = T1
a ,− b

a
and thus, T−1

a,b ∈ G.

(f) Find a Ta,b ∈ G and Tc,d ∈G so that (Ta,b ◦Tc,d)�= (Tc,d ◦Ta,b).

5. Given a ∈Q with a�= 0 and b ∈R, define Ta,b : R→R by Ta,b(x) = ax+b. Let
H = {Ta,b : a ∈Q, b ∈R and a�= 0}.
(a) For any Ta,b ∈ H and Tc,d ∈ H, show that (Ta,b ◦Tc,d) ∈H.
(b) Let I : R→ R be the identity function. Show that I ∈H.
(c) Let Ta,b ∈H. Show that T−1

a,b ∈H.

6. Let g : A→ B and f : B→C. Suppose that ( f ◦g) : A→C is one-to-one. Prove
that g is one-to-one.

7. Let g : A→ B and f : B→C. Suppose that ( f ◦g) : A→C is one-to-one and g
is onto. Prove that f is one-to-one.
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8. Let f : B→C and g : A→ B. Suppose that ( f ◦g) : A→C is onto. Prove that f
is onto.

9. Let g : A→ B and f : B→ C. Suppose that ( f ◦ g) : A→ C is onto and f is
one-to-one. Prove that g is onto.

10. Let h : A→ B, g : B→C and f : C→ D. Prove that ( f ◦g)◦h = f ◦ (g◦h).

Exercise Notes: For Exercise 4(a), find a formula for Ta,b(Tc,d(x)). For Exercise 4(e),
find a formula for T−1

a,b .

6.4 Functions Acting on Sets

There are times when we are more interested in what a function does to an entire
subset of its domain, rather than how it affects an individual element in the domain.
Understanding this behavior on sets can allow one to better understand the function
itself and can reveal some properties concerning its domain and range. The concept
of a function “acting on a set,” is one that appears in every branch of mathematics.

Definition 6.4.1 (Image of a Set). Let f : X→Y be a function. Let S⊆ X . The set
f [S], called the image of S, is defined by

f [S] = { f (x) : x ∈ S}= {y ∈ Y : y = f (x) for some x ∈ S}.

Figure 6.9 illustrates Definition 6.4.1. The square S represents a subset of the
domain of the function f . The image f [S], represented by the rectangle, is the set of
all values of the function that are obtained from the inputs that are in the set S.

Example 1. Let f : R→ R be defined by f (x) = |x| and S = {−12,−3,2,3}. Then
the image of S is f [S] = { f (x) : x ∈ S} = {|x| : x ∈ S} = {2,3,12}. Observe that
f (12) ∈ f [S] and yet 12 /∈ S.

Example 2. Let f : R→ R be defined by f (x) = x2 and S = {−4,−3,2,3}. Then
the image of S is f [S] = { f (x) : x ∈ S} = {x2 : x ∈ S} = {16,9,4}. Let U be the
interval [−2,3]. Then f [U ] = { f (x) : x ∈U}= {x2 :−2≤ x≤ 3}= [0,9].

X Y

f [S]

S

x

y

f : X → Y

Fig. 6.9 Starting with S⊆ X we can construct the image f [S]⊆Y
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f : X → Y

T

y

x

f −1[T ]

X Y

Fig. 6.10 Starting with T ⊆Y we can construct the inverse image f−1[T ]⊆ X

Given a subset S of the domain of a function f , the set f [S] is a subset of the
co-domain of f which consists of all the values of the function that result from
evaluating f (x) for every x in the set S. We will now turn this process around. Our
next definition will allow us to start with a subset T of the co-domain and then
construct a subset of the domain.

Definition 6.4.2 (Inverse Image of a Set). Let f : X→Y be a function. Let T ⊆Y .
The set f−1[T ] is the subset of X defined by

f−1[T ] = {x ∈ X : f (x) ∈ T}.

The set f−1[T ] is called the inverse image of T .

Definition 6.4.2 is depicted in Fig. 6.10. The circle T represents a subset of the
co-domain of the function f . The inverse image f−1[T ] is represented by an ellipse.
The set f−1[T ] consists of those inputs in the domain whose value under f belongs
to the set T .

Example 3. Let f : R→ R be defined by f (x) = |x| and let T = {−8,2,3}. Then
f−1[T ] = {x ∈ R : f (x) ∈ T}= {x ∈ R : |x| ∈ T}= {−3,−2,2,3}.
Example 4. Let f : R→ R be defined by f (x) = x2. Let T = {−4,−3,4,25} and
V = [−2,9] where [−2,9] = {x ∈R :−2≤ x≤ 9}. Then the inverse image of T and
V are given by

f−1[T ] = {x ∈ R : f (x) ∈ T}= {x ∈ R : x2 ∈ T}= {−5,−2,2,5}

and
f−1[V ] = {x ∈R : f (x) ∈V}= {x ∈ R :−2≤ x2 ≤ 9}= [−3,3].

The notation f−1, presented in Definition 6.4.2, should not be confused with that
of an inverse function. Theorem 6.2.12 implies that the inverse function exists if and
only if the original function is one-to-one and onto. Definition 6.4.2 applies to all
functions, even those that are not one-to-one and onto.

Our next remark makes four observations that can be very useful when working
with the image or the inverse image of a set.
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Remark 6.4.3. Let f : X → Y , S ⊆ X , T ⊆ Y , a ∈ X and b ∈Y .

1. If a ∈ S, then f (a) ∈ f [S].
2. b ∈ f [S] if and only if b = f (x) for some x ∈ S.
3. If a ∈ f−1[T ], then f (a) ∈ T .
4. If f (a) ∈ T , then a ∈ f−1[T ].

Image Warning: If f (a) ∈ f [S], then we cannot necessarily conclude that a ∈ S
(see Example 1); however, we can conclude that f (a) = f (x) for some x ∈ S.

Theorem 6.4.4. Let f : X → Y be a function. Let S be a subset of X, and let T be a
subset of Y . Then f [S]⊆ T if and only if for all x ∈ S we have f (x) ∈ T .

Theorem 6.4.5. Let f : X → Y be a function. Let C,D be subsets of X and let U,V
be subsets of Y . Then

(a) f [C∩D]⊆ f [C]∩ f [D]

(b) f [C∪D] = f [C]∪ f [D]

(c) f−1[U ∩V ] = f−1[U ]∩ f−1[V ]

(d) f−1[U ∪V ] = f−1[U ]∪ f−1[V ].

Proof. We shall prove only (a) and (d). Let f : X → Y be a function. Let C,D be
subsets of X and let U,V be subsets of Y .

(a). We prove f [C ∩D] ⊆ f [C] ∩ f [D]. Let y ∈ f [C ∩D]. We will show that
y ∈ f [C]∩ f [D]. Since y ∈ f [C∩D], there is an x ∈ C∩D such that y = f (x) (see
Remark 6.4.3(2)). Because x ∈ C ∩D, we see that x ∈ C and x ∈ D. Therefore,
f (x) ∈ f [C] and f (x) ∈ f [D]. Since y = f (x), we conclude that y ∈ f [C]∩ f [D].

(d). We prove f−1[U ∪V ] = f−1[U ]∪ f−1[V ].

(⊆). To show that f−1[U ∪V ]⊆ f−1[U ]∪ f−1[V ], let x ∈ f−1[U ∪V ]. We prove
x ∈ f−1[U ]∪ f−1[V ] as follows:

x ∈ f−1[U ∪V ]⇒ f (x) ∈U ∪V by definition of inverse image

⇒ f (x) ∈U or f (x) ∈V by definition of ∪

⇒ x ∈ f−1[U ] or x ∈ f−1[V ] by definition of inverse image

⇒ x ∈ f−1[U ]∪ f−1[V ] by definition of ∪.

Therefore, f−1[U ∪V ]⊆ f−1[U ]∪ f−1[V ].

(⊇). Now we prove that f−1[U ]∪ f−1[V ]⊆ f−1[U∪V ]. Let x∈ f−1[U ]∪ f−1[V ].
We prove that x ∈ f−1[U ∪V ] as follows:

x ∈ f−1[U ]∪ f−1[V ]⇒ x ∈ f−1[U ] or x ∈ f−1[V ] by definition of ∪
⇒ f (x) ∈U or f (x) ∈V by def. of inverse image

⇒ f (x) ∈U ∪V by definition of ∪

⇒ x ∈ f−1[U ∪V ] by def. of inverse image.
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Therefore, f−1[U ]∪ f−1[V ]⊆ f−1[U ∪V ]. This completes the proof of (d). ��
Theorem 6.4.6. Let f : X → Y be a function. Let C,D be subsets of X. If f is one-
to-one, then f [C∩D] = f [C]∩ f [D].

Proof. Let f : X → Y be a function. Let C,D be subsets of X and assume that f is
one-to-one. We shall prove that f [C∩D] = f [C]∩ f [D]. Theorem 6.4.5(a) implies
that f [C∩D]⊆ f [C]∩ f [D]. To show that f [C]∩ f [D]⊆ f [C∩D], let y∈ f [C]∩ f [D].
We will prove that y ∈ f [C ∩D]. Since y ∈ f [C]∩ f [D], we see that y ∈ f [C] and
y∈ f [D]. Because y ∈ f [C], there is a c∈C such that f (c) = y. Also, since y∈ f [D],
there is a d ∈ D such that f (d) = y. Hence, y = f (c) = f (d). Since f is one-to-one,
we have c = d. Thus, c ∈ D. So c ∈ C∩D and therefore, y = f (c) ∈ f [C∩D]. We
conclude that f [C∩D] = f [C]∩ f [D]. ��

Exercises 6.4

1. Using Definitions 6.4.1 and 6.4.2, explain why items 1–4 of Remark 6.4.3 hold.
2. Prove Theorem 6.4.4.
3. Prove item (b) of Theorem 6.4.5.
4. Prove item (c) of Theorem 6.4.5.
5. Given a,b ∈R with a > 0, define the function f : R→ R by f (x) = ax+b. Let

U = [2,3]. Using interval notation, evaluate f [U ] and f−1[U ].
6. Define the function f : R→ R by f (x) = x2 and let U = [−1,4]. Show the

following:

(a) f [ f−1[U ]]�= U .
(b) f−1[ f [U ]]�= U .
(c) f [ f−1[U ]]�= f−1[ f [U ]].

7. Let f : X → Y be a function and let A⊆ X and B⊆ X . Prove that if A⊆ B, then
f [A]⊆ f [B].

8. Let f : R→ R be the function defined in Example 1 on page 189. Find A⊆ R

and B⊆ R such that f [A]⊆ f [B] and A�⊆ B.
9. Suppose f : X → Y is a one-to-one function. Let A ⊆ X and B⊆ X . Prove that

if f [A]⊆ f [B], then A⊆ B.
10. Let f : X → Y be a function and let C ⊆Y and D⊆Y . Prove that if C⊆D, then

f−1[C]⊆ f−1[D].
11. Let f : R→ R be the function defined in Example 3. Find C ⊆ R and D ⊆ R

such that f−1[C]⊆ f−1[D] and C�⊆ D.
12. Suppose f : X →Y is onto and let C⊆Y and D⊆Y . Prove if f−1[C]⊆ f−1[D],

then C ⊆ D.
13. Let f : X → Y be a function. Let A be a subset of X . Prove that A⊆ f−1[ f [A]].
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14. Suppose f : X → Y is one-to-one. Let A ⊆ X and x ∈ X . Prove if f (x) ∈ f [A],
then x ∈ A.

15. Suppose that f : X → Y is one-to-one. Let A⊆ X . Prove that A = f−1[ f [A]].
16. Let f : X → Y . Suppose A = f−1[ f [A]] for all finite subsets A of X . Prove f is

one-to-one.
17. Let f : X → Y be a function. Let C be a subset of Y . Prove that f [ f−1[C]]⊆C.
18. Assume that f : X→Y is an onto function. Let C⊆Y . Prove that f [ f−1[C]] =C.
19. Given a,b ∈ R with a > 0, define the function f : R→ R by f (x) = ax + b.

Using Exercises 15 and 18, prove that f [ f−1[U ]] = f−1[ f [U ]] for every U ⊆R.
20. Let f : X →Y be a function. Let {Ci : i ∈ I} be an indexed family of sets where

Ci ⊆ X for all i ∈ I. Prove that f

[
⋃

i∈I
Ci

]

=
⋃

i∈I
f [Ci].

Exercise Notes: Exercise 8 shows that the converse of Exercise 7 is not necessarily
true for all functions. Exercise 9, however, shows that this converse is true for all
one-to-one functions (review assumption strategy 6.2.4 on page 179). Similarly,
Exercise 11 shows that the converse of Exercise 10 is not true for all functions; but,
Exercise 12 shows that this converse is true for all functions that are onto (review
Assumption Strategy 6.2.10 on page 181).

6.5 On the Size of Infinite Sets

The size of a finite set can easily be measured; for example, the size of the set
A = {1,2,3, . . . ,50} is 50 because it has 50 elements, and the size of the sets
B = {π ,2,30,−2} and C = {9,11,−1,5} is 4. Clearly, the size of A is bigger than
the size of B. In addition, the sets B and C have the same size. Can the idea of “size”
be extended to infinite sets? Georg Cantor was the first mathematician to seriously
address and answer this question. Cantor found a way to measure the size of any
infinite set. He first observed that two sets A and B have the same size if there is
a one-to-one correspondence between A and B; that is, there is a way of evenly
matching the elements in A with the elements in B. In other words, Cantor observed
that A and B have the same size, if there is a one-to-one and onto function f : A→ B.

For example, the arrow diagram in Fig. 6.11 presents a function that is one-to-one
and onto. As a result, we can use this function to construct the following one-to-one
correspondence (6.14) between the sets A and B:

A : a b c d e
� � � � �

B : 3 5 1 2 4
(6.14)
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1
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b
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d

e

f : A → B

A B

Fig. 6.11 Arrow diagram of a one-to-one and onto function

Thus, the function f allows us to set up a pairing between the elements in A and the
elements in B such that each element in A is matched with exactly one element in
B and each element in B is thereby matched with exactly one element in A. Cantor
observed that we can now conclude that the sets A and B have the same size.

For another example, let E = {k ∈ N : k is even} and let f : N→ E be defined
by f (n) = 2n. Since f is one-to-one and onto, we obtain the following one-to-one
correspondence between the set N of natural numbers and the set E of even natural
numbers:

N : 1 2 3 4 5 6 · · · n · · ·
� � � � � � · · · � · · ·

E : 2 4 6 8 10 12 · · · 2n · · ·
Consequently, each natural number n corresponds to the even number 2n, and each
even natural number 2i is thereby matched with i. The bijection f : N→ E specifies
a one-to-one match-up between the elements in N and the elements in E . Cantor
concluded that the set N and E have the same size.

After discovering how to determine if two infinite sets have the same size, Cantor
was able to prove that the set Q of rational numbers has the same size as the set N
of natural numbers. As a result, Cantor conjectured that the set of real numbers also
has the same size as the set N. It came as a complete surprise to Georg Cantor in
1874 when he discovered that these two infinite sets have different sizes. In fact,
Cantor showed that the set of real numbers is much larger than the set of natural
numbers. This completely unexpected result would have an enormous impact on the
future of mathematics.

When Cantor first presented his research on the size of infinite sets, a few of his
contemporaries actually refused to accept his discoveries. Henri Poincaré referred to
Cantor’s work as a “disease” which would infect mathematics. Nevertheless, Cantor
and his important ideas would eventually be recognized. In 1904, the Royal Society
presented Cantor with its Sylvester Medal “for his brilliant” mathematical research.
David Hilbert, a very influential mathematician, described Cantor’s work as

the finest product of mathematical genius and one of the supreme achievements of purely
intellectual human activity.

In this section we will investigate Cantor’s early work in set theory. We shall
first formally define the notion of a finite set and then we will classify sets into
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two categories: sets whose elements can be enumerated in a sequence (countable
sets) and those sets for which it is impossible to enumerate all of their elements
(uncountable sets). In mathematics, an uncountable set is an infinite set that is just
too big to be countable.

6.5.1 Countable Sets

Clearly, a set is infinite if it is not finite. Moreover, a set is finite if it has at most
n many elements for some natural number n. The following definition is just a
rephrasing of this notion.

Definition 6.5.1. A set X is said to be finite when there is a one-to-one function
f : X → {1,2,3, . . . ,n} for some natural number n.

It should be noted that the empty set is also considered to be finite. Now that we
have a formal definition of what it means for a set to be finite, we can use the Well-
Ordering Principle 4.1.1 to precisely define the notion of the “number of elements”
in a finite set.

Definition 6.5.2. Suppose that X is a nonempty finite set. Let n be the least natural
number such that there is a one-to-one function f : X → {1,2,3, . . . ,n}. Then n is
the number of elements in the set X and we write |X |= n.

Let X , f and n be as in Definition 6.5.2. Then one can prove that the function
f must be onto (see Exercise 7). Our next theorem confirms that two nonempty
finite sets have the same number of elements if and only if there is a one-to-one
correspondence between the two sets.

Theorem 6.5.3. Let A and B be nonempty finite sets and let n,m ∈ N be such that
|A| = n and |B| = m. There exists a one-to-one and onto function h : A→ B if and
only if n = m.

Proof. See Exercise 8. ��
The following theorem just shows that our definition of the number of elements

in a finite set yields exactly what one would expect.

Theorem 6.5.4. Let A be a set and let n be a natural number. If f : A→{1,2, . . . ,n}
is one-to-one and onto, then |A|= n.

Proof. Theorem 6.5.3 and Exercise 9 easily imply the result. ��
Recall that N = {1,2,3, . . .} is the set of natural numbers. A set is countable if

it has the same “number of elements” as some subset of N. In other words, a set is
countable if there is a one-to-one correspondence between the set and a subset of N.
Our next definition captures this concept in mathematical terms.

Definition 6.5.5. A set X is countable if there is a one-to-one function f : X → N.
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Hence, every finite set is countable and each subset S of N is countable because
the identity function i : S→ N is one-to-one, where i(x) = x for all x ∈ S. Thus, in
particular, the set of natural numbers N is countable. In this section, we shall show
that the set of integers and the set of rational numbers are also countable. We will
then prove in Section 6.5.2 that the set of real numbers is not countable.

Definition 6.5.6. A set X is countably infinite if it is countable and infinite.

The set N is countably infinite as it is countable and it is infinite (see Exercise 10).
When one can prove that a set is countable and it is clear that it is infinite, then we
can conclude that the set is countably infinite. We will show in our next theorem
that the set {0,1,2,3, . . .} is countable and hence, this set countably infinite.

Theorem 6.5.7. The set A = {0,1,2,3, . . .} of non-negative integers is countable.

Proof. Define f : A→N by f (n) = n+1. Since f is one-to-one, A is countable. ��
Theorem 6.5.8. The set of integers Z is countable.

Proof. Define the function f : Z→ N be

f (n) =

{

2n, if n≥ 0;

3−n, if n < 0.
(6.15)

We prove that f : Z→ N is one-to-one. Let i, j be integers. Assume f (i) = f ( j).
We prove that i = j. Since f (i) = f ( j), it follows from (6.15) that we cannot
have i ≥ 0 and j < 0. To see why, suppose i ≥ 0 and j < 0. Since f (i) = f ( j),
definition (6.15) implies that (∗) 2i = 3− j where i ≥ 0 and − j > 0. If i > 0, then
equation (∗) contradicts Theorem 4.7.7, the fundamental theorem of arithmetic. If
i = 0, then (∗) leads to 1 = 3− j, which is impossible because − j �= 0. Similarly,
we cannot have i < 0 and j ≥ 0. Thus, either (a) i ≥ 0 and j ≥ 0, or (b) i < 0 and
j < 0. Because f (i) = f ( j), we see that if (a) holds, then 2i = 2 j and Theorem 4.7.7
implies i = j. If (b) holds, then 3−i = 3− j. Hence−i =− j and so, i = j. Therefore,
f is one-to-one and Z is countable. ��
Theorem 6.5.9. Let A and B be sets where B is countable. If there is a one-to-one
function g : A→ B, then A is countable.

Proof. Let A and B be sets. Suppose B is countable and that g : A→ B is one-to-
one. We shall prove that A is countable. Since B is countable, there is a one-to-one
function f : B→ N. By Theorem 6.3.6, we have that ( f ◦g) : A→ N is one-to-one.
We conclude that A is countable. ��
Theorem 6.5.10. Suppose that B is a countable set and A⊆ B. Then A is countable.

Proof. Suppose B is countable and A ⊆ B. Let i : A→ B be the identity function,
that is, i(x) = x for all x ∈ A. Since i is one-to-one, Theorem 6.5.9 implies that A is
countable. ��
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Theorem 6.5.11. Suppose that A and B are countable sets. Then A∪B is countable.

Proof. Because A and B are countable, there are one-to-one functions f : A→ N

and g : B→ N. Now, define the function h : A∪B→ N by

h(x) =

{

2 f (x), if x ∈ A;

3g(x), if x ∈ B\A,
(6.16)

for each x ∈ A∪ B. We prove that h : A∪ B→ N is one-to-one. Let x,y ∈ A∪ B
and assume h(x) = h(y). We shall prove that x = y. First, because h(x) = h(y), we
cannot have x ∈ A and y ∈ B \ A. To see this, suppose that x ∈ A and y ∈ B \ A.
Since h(x) = h(y), definition (6.16) implies that 2 f (x) = 3g(y) and this contradicts the
fundamental theorem of arithmetic. Similarly, we cannot have y ∈ A and x ∈ B\A.
Thus, we must have either x,y ∈ A or x,y ∈ B \A. If x,y ∈ A, then 2 f (x) = 2 f (y).
Theorem 4.7.7 implies that f (x) = f (y) and hence x = y, because f is one-to-one.
If x,y ∈ B\A, then 2g(x) = 2g(y). We conclude that g(x) = g(y). As g is one-to-one,
we have x = y. Therefore, h is one-to-one and A∪B is countable. ��

Using Theorem 6.5.11, one can prove by mathematical induction that a finite
union of countable sets is countable. We shall not do this here, as we will soon
prove a more general result (see Corollary 6.5.19).

Before we prove that the set of rational numbers is countable, we shall first prove
that sets Q+ and Q

− are countable.

Lemma 6.5.12. The set of positive rational numbers Q+ is countable.

Proof. Define f : Q+→N by f (m
n )= 2m3n for each m

n ∈Q+ in reduced form, where
m and n are natural numbers.2 We prove that f is one-to-one. Let a

b ,
c
d ∈ Q

+ be in
reduced form. Assume f ( a

b ) = f ( c
d ). Thus, 2a3b = 2c3d . Theorem 4.7.7 implies that

a = c and b = d. Hence a
b = c

d . Therefore, f is one-to-one and Q
+ is countable. ��

Lemma 6.5.13. The set of negative rational numbers Q− is countable.

Proof. Define f : Q− → Q
+ by f (q) = −q for each q ∈ Q

−. Clearly, f is one-to-
one. Since Q

+ is countable, we have that Q− is countable by Theorem 6.5.9. ��
Theorem 6.5.14. The set of rational numbers Q is countable.

Proof. Clearly Q = Q
− ∪ {0} ∪Q+ and so, Q is the union of three sets. From

Lemmas 6.5.12 and 6.5.13, we conclude that each set in this union is countable.
Therefore, Q is countable by Theorem 6.5.11. ��

Our next result shows that any countably infinite set can be put into a one-to-one
correspondence with the set of natural numbers.

2There is only one way that such a positive rational number can be written in reduced form (see
Definition 3.8.7 and Exercise 6 on page 141). Thus, f is well-defined.
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Theorem 6.5.15. If A is a countably infinite set, then there is a function g : N→ A
that is one-to-one and onto.

Proof. Assume A is a countably infinite set. Thus, there is a function f : A→ N

that is one-to-one. Since A is not finite, the range of f must be an infinite subset
of N. Let R = ran( f ). Since R is an infinite set of natural numbers, we can list the
elements of R in strictly increasing order, say R = {n1,n2,n3, . . .} where ni < ni+1

for all i ∈ N. So, (�) n1 < n2 < n3 < · · · , where n1 is the first element in R, n2 is the
second element in R, etc.3 Define g : N→ A as follows:

g(i) = a if and only if f (a) = ni. (6.17)

Since f is one-to-one, it follows that g is a function.4 To prove that g is one-to-one,
let i, j be natural numbers. Assume that g(i) = g( j) and let a ∈ A be this common
value. So, g(i) = a and g( j) = a. It follows from (6.17) that f (a) = ni and f (a) = n j.
Hence, n j = n j. Because the ordering (�) of R is without repetition, we conclude that
i = j. Therefore, g is one-to-one. To prove that g is onto, let a ∈ A. Since f (a) ∈ R,
let n j ∈ R be so that f (a) = n j. Thus, g( j) = a and so, g is onto. ��
Corollary 6.5.16. A set A is countably infinite if and only if there is a one-to-one
and onto function g : N→ A.

Proof. If A is a countably infinite set, then Theorem 6.5.15 implies there is one-to-
one and onto function g : N→ A. Conversely, suppose that there is a one-to-one and
onto function g : N→A. Thus, A is infinite (see Exercise 10). Theorem 6.2.12 asserts
the existence of the inverse function g−1 : A→ N. Furthermore, Theorem 6.2.14
implies that g−1 : A→ N is one-to-one. Therefore, A is countable and infinite. ��

Theorem 6.5.17. Suppose that A is a countably infinite set. Then there exists an
enumeration a1,a2,a3, . . . ,an, . . . of all of the elements in A such that every element
in A appears in this enumeration exactly once.

Proof. Suppose A is countably infinite. Theorem 6.5.15 implies there is a function
g : N→ A that is one-to-one and onto. For each n ≥ 1, let an = g(n). Since g is
one-to-one and onto, it follows that the enumeration a1,a2,a3, . . . ,an, . . . lists every
element in A exactly once. ��

As a result of Theorem 6.5.17, countably infinite sets are said to be denumerable;
that is, we can list the elements of a denumerable set in the same way that we list the
natural numbers, namely, 1,2,3,4,5, . . . . We will soon show that it is impossible to
list all of the real numbers in such a manner. In other words, R is not denumerable.

Theorem 6.5.18. If {Ai : i ∈ N} is a family of countable sets, then
⋃

i∈N
Ai is

countable.

3The sequence n1,n2,n3, . . . can be defined by recursion using the Well-Ordering Principle 4.1.1.
4g(i) is the unique element a ∈ A such that f (a) = ni, the i-th element in R. See the proof of
Theorem 6.2.12.
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Proof. Suppose {Ai : i ∈ N} is a family of countable sets. Since Ai is countable,
there is a one-to-one function fi : Ai→ N for each i ∈ N.5 Now consider the infinite
list of all the primes in strictly increasing order p1 < p2 < p3 < · · ·< pi < · · · where
p1 = 2, p2 = 3, etc. Define the function g :

⋃

i∈N
Ai→ N by

g(x) = p fi(x)
i where i is the least i ∈ N such that x ∈ Ai

for all x ∈ ⋃

i∈N
Ai. We shall prove that g is one-to-one. Let x,y ∈ ⋃

i∈N
Ai and assume

g(x) = g(y). Let i ∈ N be the least natural number such that x ∈ Ai and let j ∈ N

be the least such that y ∈ A j. As g(x) = g(y), we have p fi(x)
i = p

f j(x)
j . It follows,

from Theorem 4.7.7, that pi = p j and fi(x) = f j(y). Since pi = p j, we must have
that i = j. Thus, fi(x) = fi(y). We conclude that x = y, because fi is one-to-one.
Therefore, g is one-to-one and

⋃

i∈N
Ai is countable. ��

We can now prove that a countable union of countable sets is countable. Thus
using countable sets one can construct many more countable sets.

Corollary 6.5.19. Let J be a nonempty countable set. If {B j : j ∈ J} is a family of
countable sets, then

⋃

j∈J
B j is countable.

Proof. Let J be a nonempty countable set and assume {B j : j ∈ J} is a family of
countable sets. Thus, B j is countable for each j ∈ J. Since J is countable, there is a
one-to-one function h : J→ N. Let k ∈ J be fixed. Consider the family {Ai : i ∈ N}
defined by

Ai =

{

B j, if i ∈ ran(h) and h( j) = i;

Bk, if i /∈ ran(h),
(6.18)

for each i ∈ N. Therefore, Ai is countable for all i ∈ N and
⋃

j∈J
B j =

⋃

i∈N
Ai.

Theorem 6.5.18 now implies that
⋃

j∈J
B j is countable. ��

Since a finite set is countable, Corollary 6.5.19 implies that a finite union of
countable sets is also countable. This completes our introduction to countable sets.

6.5.2 Uncountable Sets

In the previous section we showed that there are many countable sets. Are there any
sets that are not countable? In this section we will show that there are such sets; but
first, we identify a slightly easier way to say that a set is “not countable.”

5We are tacitly using the axiom of choice to obtain the choice set { fi : i ∈ N} for the family
{Fi : i ∈ N}, where Fi is the set of one-to-one functions fi : Ai→ N for each i ∈N (see page 167).
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Definition 6.5.20. A set is uncountable if it is not countable.

An uncountable set is an infinite set that is much “bigger” than any countable set.
Cantor was the first mathematician to discover and prove that uncountable sets exist.
In his proof, Cantor introduced a new and very clever proof technique which is often
referred to as a diagonal argument. This argument has had a profound influence on
mathematics ever since its introduction. The proof of our next theorem illustrates
Cantor’s argument. When you read this proof, see if you can find the diagonal.

Theorem 6.5.21. Let S = {0,1,2, . . . ,8}. Consider the set F consisting of all the
functions f : N→ S, that is, let F = { f | f : N→ S}. Then the set F is uncountable.

Proof. Let S and F be as stated in the theorem. We prove that F is uncountable.
Suppose, for a contradiction, that F is countable. Since the set F is infinite (see
Exercise 19), Theorem 6.5.17 implies that there is an enumeration

f1, f2, f3, . . . , fn, . . . (6.19)

of all of the functions in F ; that is, every function in F appears in the list (6.19).
Define the function g : N→ S by

g(i) =

{

fi(i)+ 1, if fi(i) < 8;

0, if fi(i) = 8,
(6.20)

for each i ∈ N. Since g : N → S, we see that g ∈ F . Since each function in F
appears in the list (6.19), the function g is in this list. So there is an n ∈ N such
that g = fn. Thus, g(i) = fn(i) for all i ∈ N. Consequently, (�) g(n) = fn(n). Since
fn : N → S, either fn(n) < 8 or fn(n) = 8. If fn(n) < 8, then g(n) = fn(n) + 1
by (6.20). In addition, we have that g(n) = fn(n) by (�). We conclude that
fn(n)+1 = fn(n). Hence 1 = 0, which is a contradiction. If fn(n) = 8, then g(n) = 0
by (6.20). Moreover, we have that g(n) = fn(n) by (�). Thus 0 = 8, which is also a
contradiction. Therefore,F is not countable and thus, F is uncountable. ��

Where Is the Diagonal?

One may wonder why the technique used in the proof of Theorem 6.5.21 is referred
to as a diagonal argument. To answer this inquiry, we shall now revisit this proof.
Given a function f : N→ S there is a way of writing the values of f as an infinite
sequence of terms from the set {0,1,2, . . .8}. For example suppose f (i) = 3 if i is
even and f (i) = 5 of i is odd. So

f (1) = 5, f (2) = 3, f (3) = 5, f (4) = 3, . . .

and we can represent f as follows:

f = 〈5, 3, 5, 3, 5, 3, 5, . . . 〉 .
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Furthermore if you are told that h : N→ S is represented by

h = 〈4, 2, 6, 3, 8, 0, 1, . . . 〉 ,
then you know that

h(1) = 4, h(2) = 2, h(3) = 6, h(4) = 3, h(5) = 8, h(6) = 0, h(7) = 1, . . . .

Consider the list (6.19) of functions in F . Let us represent each fi in this list as a
sequence, that is, let

fi = 〈 fi(1), fi(2), fi(3), fi(4), fi(5), fi(6), . . . 〉 .

Using this notation, we shall now rewrite the list of functions (6.19) in the following
vertical form:

f1 = 〈 f1(1), f1(2), f1(3), f1(4), f1(5), f1(6), . . . 〉
f2 = 〈 f2(1), f2(2), f2(3), f2(4), f2(5), f2(6), . . . 〉
f3 = 〈 f3(1), f3(2), f3(3), f3(4), f3(5), f3(6), . . . 〉 (6.21)

f4 = 〈 f4(1), f4(2), f4(3), f4(4), f4(5), f4(6), . . . 〉
f5 = 〈 f5(1), f5(2), f5(3), f5(4), f5(5), f5(6), . . . 〉
f6 = 〈 f6(1), f6(2), f6(3), f6(4), f6(5), f6(6), . . . 〉

...

In the proof of Theorem 6.5.21, we defined a function g : N→ S that is not equal
to any function in the list (6.21). This is done by going down this list and assigning
a value to g(i) that is different from the diagonal value fi(i) for each fi appearing
in (6.21). To illustrate this idea, let us give some specific values to the entries that can
appear in the diagonal of (6.21). Suppose f1(1) = 6, f2(2) = 4, f3(3) = 8, f4(4) = 7,
f5(5) = 1 and f6(6) = 0. Thus, (6.21) becomes:

f1 = 〈 6 , f1(2), f1(3), f1(4), f1(5), f1(6), . . .〉
f2 = 〈 f2(1), 4 , f2(3), f2(4), f2(5), f2(6), . . .〉
f3 = 〈 f3(1), f3(2), 8 , f3(4), f3(5), f3(6), . . .〉 (6.22)

f4 = 〈 f4(1), f4(2), f4(3), 7 , f4(5), f4(6), . . .〉
f5 = 〈 f5(1), f5(2), f5(3), f5(4), 1 , f5(6), . . .〉
f6 = 〈 f6(1), f6(2), f6(3), f6(4), f6(5), 0 , . . .〉

...

g = 〈 7 , 5 , 0 , 8 , 2 , 1 , . . .〉
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We have put the function g below the infinite list (6.22) where the values of g are
determined by applying definition (6.20) given in the proof of Theorem 6.5.21. For
example, to evaluate g(1) we see that f1(1) = 6 < 8 and so, g(1) = 7 by (6.20).
Thus, g(1)�= f1(1) and we are thereby assured that g�= f1. Now we evaluate g(2).
Since f2(2) = 4 < 8, we obtain g(2) = 5. So g(2)�= f2(2) and hence, g�= f2. Again,
because f3(3) = 8, we obtain g(3) = 0 and g�= f3. Continuing in this manner we
construct a function g : N→ S that is different from every function in the list (6.22).
This is the clever diagonal argument that Cantor introduced to mathematics.

Theorem 6.5.22. Let A and B be sets. Suppose that A is uncountable and g : A→ B
is a one-to-one function. Then B is uncountable.

Proof. Assume A is uncountable and that g : A→ B is one-to-one. We shall prove
that B is uncountable. Suppose, for a contradiction, that B is countable. Since
g : A→ B is one-to-one, Theorem 6.5.9 implies that A is countable. This contradicts
our assumption that A is uncountable. Therefore, B is uncountable. ��

Before we prove our next theorem, we make an observation. Suppose that
f : N → {0,1,2, . . . ,8} is a function. Thus, 0 ≤ f (n) ≤ 8 for all n ∈ N. So we
can use f to define a real number by means of an infinite decimal expansion. Let
fn = f (n) for each n∈N. Then we have the real number given by the infinite decimal
expansion 0. f1 f2 f3 f4 · · · fn · · · . For example, suppose f (1) = 2, f (2) = 4, f (3) = 1,
f (4) = 8, . . . . Then

0. f1 f2 f3 f4 · · · fn · · ·= 0.2418 · · · fn · · · .

Theorem 6.5.23. The set of real numbers R is uncountable.

Proof. Let S = {0,1,2, . . . ,8} and let F = { f | f : N→ S}. By Theorem 6.5.21, we
know that F is uncountable. For each f ∈ F let us write (�) fn = f (n) for all n ∈N.
So fn is a natural number satisfying 0≤ fn ≤ 8 for every n ∈N. Define the function
G : F → R by

G( f ) = 0. f1 f2 f3 · · · (6.23)

for each f ∈ F . We will prove that G is one-to-one. Let f and h be functions in F .
Assume G( f ) = G(h). We must prove that f = h. Since G( f ) = G(h), we conclude
from (6.23) that

0. f1 f2 f3 · · ·= 0.h1h2h3 · · ·
Theorem 4.6.2 implies fn = hn for all n ∈ N. From (�), we see that f (n) = h(n) for
all n∈N. Therefore f = h and thus, G is one-to-one. Since G : F →R is one-to-one
and F is uncountable, Theorem 6.5.22 implies that R is uncountable. ��
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6.5.3 Cardinality

The cardinality of a set is a measure of how many elements are in the set. In
particular, the set A = {1,2,3, . . . ,25} contains 25 elements and so, the cardinality of
A is 25. We let |A| denote the cardinality of A and thus, |A|= 25. The cardinality of
an infinite set X is also denoted by |X | and we will present a method for measuring
the size of the set X that does not rely on numbers. There are examples, as we will
see, of two infinite sets where one of these sets has cardinality much larger than
that of the other infinite set. In other words, it is possible for one infinite set to have
“many more” elements than another infinite set.

What does it mean to say that two sets have the same cardinality, that is, the same
size? Georg Cantor discovered a mathematically precise and simple answer to this
question.

Definition 6.5.24. Let A and B be sets. Then A has the same cardinality as B,
denoted by |A|= |B|, if there is a function f : A→ B that is one-to-one and onto.

Remark 6.5.25. Unfortunately, the expression |A| = |B| looks like an equation;
however, the assertion |A| = |B| should be viewed only as an abbreviation for the
statement “A has the same cardinality as B.” In other words, |A| = |B| means that
“there is a function f : A→ B that is one-to-one and onto.”

What does it mean to say that one set has smaller cardinality than another set?
Cantor found a simple answer to this question, as well.

Definition 6.5.26. Let A and B be sets. We say that A has cardinality strictly less
than that of B, denoted by |A|< |B|, if there is a one-to-one function f : A→ B and
there is no function g : A→ B that is both one-to-one and onto.

Using our cardinality notation, we will summarize some of the results that were
previously established about countable and uncountable sets.

Theorem 6.5.27 (Cantor). |N|= |Z| and |N|= |Q|.
Proof. Theorems 6.5.8 and 6.5.14 imply that Z and Q are countably infinite. By
Theorem 6.5.15, there are functions f : N→ Z and g : N→ Q that are one-to-one
and onto. Therefore, |N|= |Z| and |N|= |Q|. ��
Theorem 6.5.28 (Cantor). |N|< |R|.
Proof. Consider the function f : N→ R defined by f (n) = n. This function is one-
to-one. We now show that there is no function g : N→R that is one-to-one and onto.
Suppose, for a contradiction, there is such a function g. Then g−1 : R→ N would
be one-to-one by Theorem 6.2.14 and thus, R would be countable. This contradicts
Theorem 6.5.23. Therefore, |N|< |R|. ��

Recalling Definition 5.1.3, for any set A the power set P(A) is the set of all
subsets of A, that is, P(A) = {X : X ⊆ A}. For example, consider the set A = {a,b}.
ThenP(A) = {∅,{a},{b},{a,b}} and we observe that |A|< |P(A)|. One can prove
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that if A is any finite set with n many elements, then P(A) has 2n many elements.
Thus, |A| < |P(A)| whenever A is a finite set. But what happens if A is an infinite
set? Cantor answered this intriguing question as well, using his diagonalization
argument.

Theorem 6.5.29 (Cantor). Let A be any set. Then |A|< |P(A)|.
Proof. Let A be a set. Consider the function f : A→P(A) defined by f (a) = {a}
for all a ∈ A. It is easy to show that f is one-to-one. We now show that there is
no function g : A→P(A) that is one-to-one and onto. Suppose, for a contradiction,
that there is a bijection g : A→ P(A). Observe that g(x) ⊆ A for all x ∈ A. Let
X = {x ∈ A : x /∈ g(x)}. Clearly, X ⊆ A and thus X ∈ P(A). Since g is onto, there is
an a ∈ A such that g(a) = X . There are two cases to consider, namely, either a ∈ X
or a /∈ X . For the first case, assume that a ∈ X . Then, from the definition of X , we
conclude that a /∈ g(a). Since g(a) = X , we have that a /∈ X which contradicts our
assumption. For the other case, assume that a /∈ X . Thus, a ∈ g(a) by the definition
of X . As g(a) = X , we deduce that a ∈ X which is again a contradiction. So, there
is no g : A→P(A) that is one-to-one and onto. Therefore, |A|< |P(A)|. ��
Definition 6.5.30. Let A and B be sets. We say that A has cardinality less than or
equal to B, denoted by |A| ≤ |B|, if there is a function f : A→ B that is one-to-one.

Our next theorem is very useful for proving many results about cardinality.

Theorem 6.5.31 (Schröder-Bernstein). If |A| ≤ |B| and |B| ≤ |A|, then |A|= |B|.
Theorem 6.5.31 states that if there are one-to-one functions f : A → B and

g : B→ A, then there is a one-to-one and onto function h : A→ B. The theorem
sounds very reasonable; however, its proof is quite challenging and even eluded
the brilliant Georg Cantor. The mathematicians Ernst Schröder and Felix Bernstein
discovered a proof based on standard set theory. We will not prove Theorem 6.5.31
in this book; but, we have covered all of the set-theoretic tools needed to read and
understand a proof of this deep theorem (see [12, pp. 298–300]).

Our next theorem, also due to Cantor, uses the Schröder-Bernstein theorem to
show that the interior of the unit square S has the same cardinality as the interior
of the unit interval I (see Fig. 6.12). Thus, there are just as many points in the unit
square as there are points in the unit interval. Cantor initially believed that the set of
points in the two-dimensional square S must have cardinality much larger than the
set of points in the one-dimensional interval I. Then he discovered a proof showing
that his initial belief was wrong. This prompted Cantor to exclaim “I see it but I do
not believe it” (see [4, p. 273]).

Theorem 6.5.32 (Cantor). Let S = (0,1)× (0,1) and let I = (0,1). Then |S|= |I|.
Proof. We will first define a one-to-one function f : I→ S and then we shall define
a one-to-one function g : S→ I. For each z ∈ I define f (z) = (z, 1

2 ). It is easy to
see that f is one-to-one. By Definition 6.5.30, we have that |I| ≤ |S|. To define the
function g, let (x,y) ∈ S. So, 0 < x < 1 and 0 < y < 1. Now, let x = 0.x1x2x3 . . .
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Fig. 6.12 The unit square and the unit interval

and let y = 0.y1y2y3 . . . be infinite decimal expansions of x and y, where 0≤ xi ≤ 9
and 0 ≤ yi ≤ 9 for each i ∈ N. To eliminate any duplicate representations, we insist
that whenever x has two decimal representations, one ending with a string 0’s and
the other ending with a string of 9’s, we will choose the one ending with a string
0’s (see Remark 4.6.3 on page 130). Similarly, we will not use a decimal expansion
for y that ends in a string of 9’s. Define g(x,y) = 0.x1y1x2y2x3y3 · · · . One can show
that g is one-to-one (see Exercise 3). Thus, |S| ≤ |I|. Theorem 6.5.31 now implies
that |S|= |I|. ��

Exercises 6.5

1. Let A = {4,8,12,16, . . .} and let B = {n ∈ Z : n <−25}.
(a) Define a one-to-one and onto function f : A→ N.
(b) Define a one-to-one and onto function g : B→ N.

2. Let A and B be as in Exercise 1. Define a one-to-one function h : A∪B→ N.
3. Prove that the function g : S→ I defined in the proof of Theorem 6.5.32 is one-

to-one.
4. Suppose that the set B is finite and A⊆ B. Prove that A is finite.
5. Suppose that A and B are finite sets. Prove that A∪B is finite.
6. Suppose that A and B are finite sets. Prove that A×B is finite.
7. Let X , f and n be as in Definition 6.5.2. Prove that the function f is onto.
8. Using Definition 6.5.2, prove Theorem 6.5.3. (For the direction (⇐) use

Exercise 7.)
9. Using Definition 6.5.2, Exercise 7 and mathematical induction, prove that
|{1,2, . . . ,n}|= n for all natural numbers n.

10. Prove that for all n ∈ N there is no one-to-one function f : N→{1,2,3, . . . ,n}.
Conclude that if g : N→ A is one-to-one, then A is infinite.
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11. Let A = {x ∈ R : 0 < x < 1} and B = {x ∈R : 2 < x < 5}. Prove that |A|= |B|.
12. Prove that N×N is countable.
13. Let A and B be countable sets. Prove that A×B is countable.
14. Let A be uncountable. Prove that A×B is uncountable for any nonempty set B.
15. Prove that there exists a function f : N→ N×N that is one-to-one and onto.
16. Let A be a set. Suppose that f : N→ A is onto. Prove that A is countable.
17. Let A and B be sets. Suppose A is uncountable and B is countable. Prove that

A\B is uncountable.
18. Prove that the set of irrational numbers is uncountable; that is, prove that R\Q

is uncountable.
19. Let F be as in Theorem 6.5.21. Let (�) f1, f2, . . . , fn be a finite list of functions

in F . Using the argument in the proof of Theorem 6.5.21, define a new function
g ∈ F that is not in the list (�). Therefore, F is infinite.

20. Let S = {〈a1,a2, . . . ,ak〉 : a1,a2, . . . ,ak ∈N for some k ∈N}, the set of all finite
sequences of elements from N. Prove that S is countable.

21. Let A and B be countably infinite sets. Prove that |A|= |B|.
22. Let A and B be sets. Prove that if |A|= |B|, then |B|= |A|.
23. Let A, B and C be sets. Prove that if |A|= |B| and |B|= |C|, then |A|= |C|.
24. Let A, B and C be sets. Prove that if |A|< |B| and |B|= |C|, then |A|< |C|.
25. Let A and B be sets. Suppose B is countable. Prove that if |A| ≤ |B|, then A is

also countable.
26. Let A, B and C be sets. Prove that if |A|< |B| and |B|< |C|, then |A|< |C|.
27. Prove that the set P(N) is uncountable.
28. Suppose someone asserts that the set of real numbers in the interval (0,1) is

countable and that all of these real numbers can be enumerated as in (6.24),
where each such real number is represented by an infinite decimal expansion:

x1 = ...12345689234 · · ·
x2 = ...68729958219 · · ·
x3 = ...05050506620 · · ·
x4 = ...57591884622 · · · (6.24)

...

xi = ...xi1xi2xi3xi4xi5 · · ·
...

You are to show that this assertion is false. Using Cantor’s diagonal argument,
define a decimal expansion for a real number b in (0,1) that is not in the
list (6.24). Ensure that your decimal expansion b = .b1b2b3 . . .bi . . . contains
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neither of the digits 0 or 9.6 Then identify the first 4 decimal digits in the
decimal expansion of b and prove b�= xn for all n ∈N.

29. Let S = {q ∈Q : 0 < q < 1}. Theorems 6.5.10 and 6.5.14 imply S is countable.
We can thus enumerate all of the elements in S in a list (�) q1,q2,q3, . . . , by
Theorem 6.5.17. Since each of these rational numbers has an infinite decimal
expansion qi = ...qi1qi2qi3qi4qi5 · · · , one can define a real number b ∈ (0,1) that
is not in the list (�), just as in Exercise 28. Is b a rational number? Justify your
answer.

30. Let A = {a,b,c,d,w,y,z} and let g : A→P(A) be the function given by

g(a) = {b,c,g}
g(b) = {a,b,c,w,z}
g(c) = {b,c}
g(d) = {d}
g(w) = A

g(y) = {a,b,c,d,w}
g(z) = ∅.

The function g is one-to-one. The proof of Theorem 6.5.29 shows that g is not
onto because the subset of A defined by X = {x ∈ A : x /∈ g(x)} is not in the
range of g. Evaluate the set X .

Exercise Notes: For Exercise 3, use Exercise 2 on page 136. For Exercise 7, assume
that f is not onto. Let 1 ≤ i ≤ n be the largest such that i /∈ ran( f ). If i = n then
get a contradiction. If i < n, let a ∈ X be such that f (a) = n. Define a one-to-one
function g : X →{1,2, . . . ,n−1}. For Exercise 9, in the inductive step suppose that
|{1,2, . . . ,n,n + 1}|= k < n + 1. Let f : {1,2, . . . ,n,n + 1}→ {1,2, . . . ,k} be one-
to-one and onto. Let 1≤ j ≤ k be such that f (n + 1) = j and let 1 ≤ � ≤ n be such
that f (�) = k. Define a one-to-one function g : {1,2, . . . ,n}→ {1,2, . . . ,k−1}. For
Exercise 10, suppose that n ∈ N is the least such that there is a one-to-one function
f : N→{1,2, . . . ,n}. Show that 1< n and show that f is onto. Let i∈N be such that
f (n) = i. Then h : N→N\{i} defined by h(k) = i+k is one-to-one. Define a one-to-
one function g : N→ {1,2, . . . ,n− 1}. For Exercise 16, let Ia = {n ∈ N : f (n) = a}
for each a ∈ A. Since f is onto, each Ia is nonempty and has a least element. For
Exercise 20, define h : S→N by h(〈a1,a2, . . . ,am〉) = 2a1 ·3a2 ·5a3 · · · pam

m where pm

is the m-th prime. For Exercise 28, review the proof of Theorem 6.5.21 and note that
the diagonal digit xii is in the i-th decimal place for each xi in (6.24); for example,
x22 = 8 and x44 = 9.

6So b will have a unique decimal representation. Thus, if the decimal expansions of b,x ∈ (0,1)
have different digits in at least one decimal place, then b�= x. See Remark 4.6.3 on page 130.





CHAPTER 7
Relations

We are already familiar with the relations a = b (equality), a < b (less than),
X ⊆ Y (subset), and m |n (evenly divides). Many of the fundamental concepts of
mathematics can be described in terms of relations. In this chapter we shall view
relations as mathematical objects and explore various properties that relations may
possess.

7.1 Relations on a Set

We first recall the definition of an ordered pair and that of a Cartesian product of a
set with itself.

Definition 7.1.1. An ordered pair has the form (a,b), where a is called the first
component and b is called the second component.

Example 1. (2,3) is an ordered pair and so is (3,2). Note that these are different
ordered pairs, that is, (2,3)�= (3,2).

Definition 7.1.2. Given a set A, the Cartesian product A×A is defined to be

A×A = {(a,b) : a ∈ A and b ∈ A}.

In other words, A×A is the set of all ordered pairs with first component in A and
second component also in A.

Definition 7.1.3. A relation R on A is a subset of A×A, that is, R⊆ A×A.

We will use the symbols R and∼ to denote relations. Suppose that R is a relation
on the set A. For a,b ∈ A, we shall write aRb to mean that (a,b) ∈ R. When we
use the notation aRb, we shall say that “a is related to b.” Similarly, when ∼ is a
relation on A, we write a ∼ b to mean that (a,b) ∈ ∼ and say that a is related to b.
We shall also write a�∼ b to assert that “a is not related to b.”

Example 2. Let A = {2,a,b,c,3}. Then R = {(2,a), (2,b), (3,b), (3,c), (3,3)} is a
relation on A. Thus 3Rc. Furthermore,∼= {(b,c), (c,c), (2,3)} is another relation
on A. So, b∼ c and c�∼ b.

An ordered pair (a,b) is often viewed as an arrow a −→ b, going from a to b.
The double arrow a←→ b is also used to portray the ordered pairs (a,b) and (b,a),
that is, a−→ b and b−→ a. Using arrows to represent ordered pairs, we can “draw”
a picture of a relation, called a directed graph.

D.W. Cunningham, A Logical Introduction to Proof, DOI 10.1007/978-1-4614-3631-7 7,
© Springer Science+Business Media New York 2012
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Fig. 7.1 Visualizing a relation by a directed graph

Example 3. The relation R = {(2,a), (a,2), (2,b), (3,b), (3,c), (3,3)} defined on
the set A = {2,a,b,c,3} is represented by the directed graph in Fig. 7.1.

Given a property P(x,y), there is another way to specify a relation on A; namely,
let ∼ be the relation on A defined by x ∼ y if and only if P(x,y), for all x,y ∈ A.
Consequently, the relation ∼ is the set {(x,y) ∈ A×A : P(x,y)}.
Example 4. Let A = {0,2,3,4,5,6,7,8}. For x,y ∈ A define x∼ y if and only if x |y
and x < y. Determine the pairs in the relation ∼.

Solution. Thus,∼ = {(x,y) ∈ A×A : x |y and x < y} and we obtain

∼ = {(2,4), (2,6), (2,8), (3,6), (4,8)}. ��

7.1.1 Reflexive, Symmetric, and Transitive Relations

The concept of equality permeates all of mathematics. We now recognize three fun-
damental properties of equality. For quantities x, y, and z, we have the following:

1. x = x (reflexive).
2. If x = y, then y = x (symmetric).
3. If x = y and y = z, then x = z (transitive).

In this section we will investigate relations that share some, or all, of the above
properties that hold for equality. We shall define what it means for a relation to
be reflexive, symmetric, and transitive. We also present proof strategies that can
be used to prove that a relation has one of these properties. These strategies will
be employed throughout most of this chapter. Relations that have all three of these
properties frequently appear in mathematics.

Reflexive Relations

A relation on a set A is reflexive if every element in the set A is related to itself.
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2 3

a

b

c

Fig. 7.2 A reflexive relation

Definition 7.1.4. A relation ∼ on a set A is reflexive if (∀x ∈ A)(x ∼ x), that is,
when x∼ x for all x ∈ A.

Example 5. Let A = {a,b,c,2,3}. The relation

∼ = {(2,a), (2,b), (3,c), (2,2), (a,a), (b,b), (3,3), (c,c)}

on A is reflexive, which is represented by the directed graph in Fig. 7.2, where every
element x in A has an arrow x−→ x pointing to itself by means of a loop.

Proof Strategy 7.1.5. To prove that a relation ∼ on A is reflexive:

Prove (∀x ∈ A)(x∼ x).

In other words, use the diagram

Let x ∈ A.
Prove x∼ x.

Symmetric Relations

A relation on A is symmetric if whenever x is related to y, then y is also related to x.

Definition 7.1.6. A relation ∼ on a set A is symmetric when

(∀x ∈ A)(∀y ∈ A)(x∼ y→ y∼ x),

that is, if x∼ y then y∼ x, for all x,y ∈ A.

Example 6. Consider the relation ∼ on the set A = {a,b,c,2,3} defined by

∼ = {(2,a), (a,2), (2,b), (b,2), (2,2), (3,b), (b,3), (3,c), (c,3), (3,3), (c,c)}.

The relation ∼ is symmetric and is portrayed in Fig. 7.3. Observe that whenever
there is an arrow x−→ y, then there is an arrow y−→ x.
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Fig. 7.3 A symmetric relation
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Fig. 7.4 A transitive relation

Proof Strategy 7.1.7. To prove that a relation ∼ on A is symmetric:

Prove (∀x ∈ A)(∀y ∈ A)(x∼ y→ y∼ x).

That is, use the diagram

Let x,y ∈ A.
Assume x∼ y.

Prove y∼ x.

Transitive Relations

A relation on a set A is transitive if whenever x is related to y and y is related to z,
then x is also related to z.

Definition 7.1.8. A relation ∼ on a set A is transitive if

(∀x ∈ A)(∀y ∈ A)(∀z ∈ A)[(x∼ y∧ y∼ z)→ x∼ z],

in other words, if x∼ y and y∼ z, then x∼ z for all x,y,z ∈ A.

Example 7. Draw a transitive relation on the set A = {a,b,c,2,3} and then express
this relation as a set of ordered pairs.

Solution. Figure 7.4 illustrates a transitive relation on A. Thus, for all x,y,x ∈ A if
there is an arrow x −→ y and an arrow y −→ z, then there is an arrow x −→ z. For
example, in the figure we have the arrows a −→ 2 and 2 −→ b. So a −→ b. Since
the arrows c−→ 3 and 3−→ c appear in this graph, we also have the arrow c−→ c.
Written as a set, the relation is {(a,2), (2,b), (a,b), (c,3), (3,c), (c,c), (3,3)}. ��
Proof Strategy 7.1.9. To prove that a relation ∼ on A is transitive:

Prove (∀x ∈ A)(∀y ∈ A)(∀z ∈ A)[(x∼ y∧ y∼ z)→ x∼ z].
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In other words, use the diagram

Let x,y,z ∈ A.
Assume x∼ y.
Assume y∼ z.

Prove x∼ z.

Example 8. Define the relation ∼ on the set of natural numbers N by

x∼ y if and only if x = yk for some k ∈ N. (7.1)

Determine whether or not the relation ∼ is reflexive, symmetric, or transitive. You
must justify your answers with a proof if the relation is reflexive, symmetric, or
transitive. You must provide a counterexample if the relation fails to be reflexive,
symmetric, or transitive.

Solution. We have the relation ∼ on the set N defined by (7.1).

• The relation ∼ is reflexive.
Proof. Let x be a natural number. Since x = x · 1 where 1 ∈ N, we conclude that
x∼ x. 
�

• The relation ∼ is not symmetric. Let x = 6 and y = 2. Since x = y ·3, we see that
x∼ y. We also see that y�∼ x because 2�= 6 · k for any k ∈ N.

• The relation ∼ is transitive.

Proof. Let x,y,z be natural numbers. Assume x ∼ y and y ∼ z. Thus, (1) x = yk
and (2) y = z j for some k, j ∈ N. By substituting the value for y in equation (2)
into equation (1), we obtain x = (z j)k = z( jk). Therefore, x = z( jk) where jk∈N.
Hence, x∼ z. 
�

This completes our solution. ��

Exercises 7.1

1. Let ∼ be the relation on the set A = {0,1,2,3,4,5} defined by a ∼ b if and only
if a |(b + 1). Represent this relation as a set of ordered pairs.

2. Let∼ be the relation on the set R defined by x∼ y if and only if x+y≥ 0. Prove
that this relation is symmetric. Find counterexamples showing that this relation
is not reflexive and not transitive.

3. Let ∼ be the relation on the set R defined by x ∼ y if and only if xy ≥ 0. Prove
that this relation is reflexive and symmetric. Find a counterexample showing that
this relation is not transitive.

4. The relation∼ on the set Z is defined by m∼ n if and only if m−n is even. Prove
that this relation is reflexive, symmetric, and transitive.
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5. The relation∼ on the set Z is defined by m∼ n if and only if m−n is odd. Prove
that this relation is symmetric. Find counterexamples showing that this relation
is not reflexive and not transitive.

6. The relation ∼ on the set R is defined by x∼ y if and only if |x|= |y|. Prove that
this relation is reflexive, symmetric, and transitive.

7. The relation ∼ on the set Z is defined by m ∼ n if and only if 3 |(m−n). Prove
that this relation is reflexive, symmetric, and transitive.

8. Let the relation∼ on the set N be defined by m∼ n if and only if m |n. Prove that
this relation is reflexive and transitive. Find a counterexample showing that this
relation is not symmetric.

9. The relation ∼ on the set R is defined by x ∼ y if and only if sin(x) = sin(y).
Prove that this relation is reflexive, symmetric, and transitive.

7.2 Equivalence Relations and Partitions

Because the equality relation has been so useful, mathematicians have generalized
this concept. A relation is called an equivalence relation if it satisfies the three key
properties that are normally associated with equality.

Definition 7.2.1. A relation ∼ on a set A is called an equivalence relation if it is
reflexive, symmetric, and transitive.

Thus, to prove that a relation is an equivalence relation, three distinct proofs are
required; that is, one must prove that the relation is (1) reflexive, (2) symmetric,
and (3) transitive. Equivalence relations are used in many areas of mathematics.
An equivalence relation allows one to connect those elements of a set that have
a particular property in common. Example 1, below, identifies three equivalence
relations. The relation in item 1 joins the even integers and links the odd integers,
the relation in item 2 associates the real numbers that have the same absolute value,
and the equivalence relation in item 3 unites those integers (as we will see) that have
the same remainder when divided by 3.

Example 1. One can show that each one of the relations below is an equivalence
relation (see Exercises 4, 6 and 7 of Section 7.1):

1. The relation ∼ on the set Z defined by m∼ n if and only if m−n is even.
2. The relation ∼ on the set R defined by x∼ y if and only if |x|= |y|.
3. The relation ∼ on the set Z defined by m∼ n if and only if 3 |(m−n).

The main result that we will establish in the section is that an equivalence relation
on a set A induces a partition of A into disjoint subsets. This will allow us to create
a new mathematical object from an old one. For each a ∈ A, we must first form the
set of all those elements in A that are related to a.
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Definition 7.2.2. Let ∼ be an equivalence relation on a set A. Let a be an element
in A. The equivalence class of a, denoted by [a]∼, is the set of all elements in A that
are related to a; namely,

[a]∼ = {x ∈ A : x∼ a}.
In Definition 7.2.2 we shall write [a] = [a]∼ when the relation ∼ is understood.

Example 2. Let us work with the equivalence relation ∼ on R defined by x ∼ y if
and only if |x|= |y|. We evaluate the equivalence classes [1], [−1], and [2] as follows:

[1] = {x ∈R : x∼ 1}= {x ∈ R : |x|= |1|}= {1,−1}

[−1] = {x ∈R : x∼−1}= {x ∈R : |x|= |−1|}= {−1,1}

[2] = {x ∈R : x∼ 2}= {x ∈ R : |x|= |2|}= {2,−2}.

Thus, [1] = [−1] and [1]�= [2]. In addition, observe that [1]∩ [2] = ∅.

Example 3. Let ∼ be the equivalence relation on Z defined by m ∼ n if and only
if m− n is even. Thus, [k] = {m ∈ Z : m ∼ k} = {m ∈ Z : m− k is even} for each
integer k. We evaluate the equivalence classes [1], [2], and [3] as follows:

[1] = {m ∈ Z : m− 1 is even}= {. . . ,−5,−3,−1,1,3,5,7, . . .}

[2] = {m ∈ Z : m− 2 is even}= {. . . ,−6,−4,−2,2,4,6,8, . . .}

[3] = {m ∈ Z : m− 3 is even}= {. . . ,−5,−3,−1,1,3,5,7, . . .}.

Thus, [1] = [3] and [3]�= [2]. Furthermore, [3]∩ [2] = ∅.

Remark 7.2.3. Let ∼ be an equivalence relation on a set A and let a ∈ A. Then
[a]⊆ A and furthermore, x ∈ [a] if and only if x∼ a, for each x ∈ A.

For any equivalence relation, our next theorem shows that two elements are
related if and only if they have exactly the same equivalence classes.

Theorem 7.2.4. Let ∼ be an equivalence relation on A. Then for all a ∈ A and
b ∈ A,

a∼ b if and only if [a] = [b].

Proof. Let ∼ be an equivalence relation on a set A and let a,b ∈ A. We shall prove
that a∼ b if and only if [a] = [b].

(⇒) Assume a ∼ b. We prove that [a] = [b], that is, we prove that these two
sets are equal. First we prove that [a]⊆ [b]. Let x ∈ [a]. We shall show that x ∈ [b].
Since x ∈ [a], it follows that x ∼ a. By assumption, we also have that a ∼ b. So
x∼ a and a∼ b. Because ∼ is transitive, we conclude that x∼ b and hence, x ∈ [b].
Therefore, [a]⊆ [b]. We must prove that [b]⊆ [a]. Since the argument to prove this
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is very similar to the argument we just gave, this part of the proof will be left as an
exercise. Therefore, [a] = [b].

(⇐) Assume [a] = [b]. Since a ∈ [a], we see that a ∈ [b]. Hence, a∼ b. 
�
Corollary 7.2.5. Let∼ be an equivalence relation on a set A. Then for all a,b ∈ A,
we have that a ∈ [b] if and only if [a] = [b].

Let ∼ be an equivalence relation on a set A. The next theorem shows that the
set of all equivalence classes forms a partition of the set A (see Definition 5.1.9).
Thus, an equivalence relation on a set can be used to break up the set into nonempty
subsets which do not overlap.

Theorem 7.2.6 (Fundamental Theorem of Equivalence Relations). Let∼ be an
equivalence relation on a set A. The collection P = {[a] : a ∈ A} is a partition of A.

Proof. Let ∼ be an equivalence relation on a set A. We prove that the collection
P = {[a] : a ∈ A} is a partition of A. To do this, we show that

(1) for every element x ∈ A we have that x ∈ [x];
(2) for all x,y ∈ A, if [x]�= [y], then [x]∩ [y] = ∅.

To prove (1), let x ∈ A. Clearly, [x] ∈ P and x ∈ [x], as ∼ is reflexive. To prove (2),
let x,y ∈ A and assume [x]∩ [y] �= ∅ (we are using proof by contraposition). Thus
there is a z ∈ A such that z ∈ [x] and z ∈ [y]. Hence, z ∼ x and z ∼ y. Since ∼ is
symmetric, we have that x∼ z and z∼ y. Because ∼ is transitive, we conclude that
x ∼ y. Theorem 7.2.4 now implies that [x] = [y]. Therefore, P = {[a] : a ∈ A} is a
partition of the set A. 
�

An equivalence relation ∼ on a set A breaks up A into disjoint subsets, as
illustrated below

A =

...
...

...
...

a x c d · · ·
...

...
...

...
↑ ↑ ↑ ↑
[a] [x] [c] [d] · · ·

Definition 7.2.7. Let ∼ be an equivalence relation on a set A. We let A/∼ denote
the partition {[a] : a ∈ A} of A. The partition A/∼ shall be referred to as the partition
induced by ∼.

Mathematicians often use the partition of a set, induced by an equivalence
relation, to learn something new about the set itself.

Example 4. Consider the equivalence relation∼ on Z defined by m∼ n if and only
if 3 |(m−n). One can check, for any m,n ∈ Z, that m∼ n if and only if m = 3k + n
for some k ∈ Z. Therefore,

[n] = {m ∈ Z : m∼ n}= {3k + n : k ∈ Z}
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for each integer n. We can evaluate the equivalence classes [0], [1], and [2] as follows:

[0] = {3k : k ∈ Z}= {. . . ,−9,−6,−3,0,3,6,9, . . .}

[1] = {3k + 1 : k ∈ Z}= {. . . ,−8,−5,−2,1,4,7,10, . . .}

[2] = {3k + 2 : k ∈ Z}= {. . . ,−7,−4,−1,2,5,8,11, . . .}.

The partition Z/∼ is {[n] : n∈ Z}= {[0], [1], [2]} (see Exercise 4 of this section) and
is illustrated in our next figure:

Z =

...
...

...
6 7 8
3 4 5
0 1 2
−3 −2 −1
−6 −5 −4

...
...

...
↑ ↑ ↑
[0] [1] [2]

Exercises 7.2

1. Let R∗ = {x ∈ R : x�= 0} and define x∼ y if and only if x · y > 0, for x,y ∈ R
∗.

Prove that ∼ is an equivalence relation on R
∗ and then identify the equivalence

classes of ∼.
2. Let R∗ = {x ∈R : x�= 0} and let∼ be the relation on R

∗ defined by x∼ y if and
only if x · y−1 ∈Q. Prove that ∼ is an equivalence relation on R

∗.
3. Let R∗ = {x ∈ R : x �= 0} and let ∼ be the equivalence relation on R

∗ defined
by x∼ y if and only if x · y−1 ∈ {1,−1}. Identify the equivalence classes of ∼.

4. Let∼ be the equivalence relation onZ defined by m∼ n if and only if 3 |(m−n).
Using the division algorithm (see Theorem 4.6.9), show that for every integer
i we have that either i ∼ 0, i ∼ 1, or i ∼ 2. Conclude that [i] = [0], [i] = [1], or
[i] = [2] for every integer i.

5. Let∼ be the equivalence relation onZ defined by m∼ n if and only if 3 |(m−n).
From Exercise 4 we know that one of the equations [i] = [0], [i] = [1], [i] = [2]
is true for every integer i. Determine which of these equations is true for each
of the integers i = 4,5,6,−7.

6. Let f : A→ B be a function. Define a relation ∼ on A by x ∼ y if and only if
f (x) = f (y) for all x,y ∈ A. Prove that ∼ is an equivalence relation on A. Let
a ∈ A be given. Describe the equivalence class [a].
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7. Define the equivalence relation ∼ R by x ∼ y if and only if sin(x) = sin(y).
Describe the equivalence classes [0] and [ π

2 ].
8. Let∼ be an equivalence relation on a set A and let a,b,c ∈ A. Prove each of the

following statements directly from the definition of an equivalence relation and
the definition of an equivalence class (that is, do not use the theorems presented
in this section).

(a) a ∈ [a].
(b) if b ∈ [a], then a∼ b.
(c) if b∼ c and a ∈ [b], then c∼ a.
(d) if b∼ a and [b] = [c], then [a] = [c].

9. Define a relation ∼ on N×N by (a,b)∼ (c,d) iff a + d = b + c. Prove that ∼
is an equivalence relation on N×N. List five elements in [(3,1)].

10. Let ∼ be the relation on R defined by x∼ y if and only if x− y ∈Q. Prove that
∼ is an equivalence relation on R. Identify the equivalence classes [0] and [

√
2].

11. Define a relation ∼ on N×N by (a,b)∼ (c,d) iff ad = bc.

(a) Prove that ∼ is an equivalence relation on N×N.
(b) Describe the equivalence classes [(1,1)] and [(1,2)].

12. Let Q∗ = {x ∈ Q : x �= 0}. Define the relation ∼ on Q
∗ by x ∼ y if and only if

x · y−1 ∈ Z. Show that ∼ is not an equivalence relation on Q
∗.

7.3 Congruence Modulo m

Karl Friedrich Gauss (1777–1855) has been called the “Prince of Mathematicians”
for his many contributions to pure and applied mathematics. One of Gauss’s most
important contributions to number theory was the introduction of an equivalence
relation on the integers called congruence modulo m, where m≥ 1 is an integer. We
will explore Gauss’s congruence relation and show that the operations of addition,
subtraction, and multiplication preserve Gauss’s relation (see Theorem 7.3.5).

Definition 7.3.1 (Congruence modulo m). Let m≥ 1 be an integer. For integers a
and b, we define a≡ b(mod m) if and only if m |(a−b).

When a ≡ b(mod m) we say that a is congruent to b modulo m. We also write
a �≡ b(mod m), when we wish to say that a is not congruent to b modulo m. Here
are some more examples of this notation:

• 10≡ 2(mod 4) because 4 |(10− 2),
• −5≡ 3(mod 4) since 4 |(−5− 3),
• 24≡ 0(mod 4) as 4 |(24− 0),
• 3�≡ 1(mod 4) because 4 � (3− 1).
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Remark 7.3.2. The notation a ≡ b(mod m) is just a statement about divisibility
and is used mainly to simplify reasoning about the divisibility concept. When m≥ 1
is an integer and a,b are integers, one can easily verify that the following assertions
are all equivalent:

1. a≡ b(mod m),
2. m |(a−b),
3. a−b = km for some k ∈ Z,
4. a = b + km for some k ∈ Z.

The above equivalences are very important and will be implicitly used for the
remainder of this section.

Example 1. Let m≥ 1 be an integer. Then m≡ 0(mod m) and km≡ 0(mod m) for
any integer k, because m |(m− 0) and m |(km− 0).

Example 2. Let n be an integer. By the division algorithm (see Theorem 4.6.9),
there are integers k and r such that n = 4k + r and 0 ≤ r < 4. Thus, we have either
n = 4k + 0, n = 4k + 1, n = 4k + 2, or n = 4k + 3. Hence, n− 0 = 4k, n− 1 = 4k,
n− 2 = 4k, or n− 3 = 4k. Therefore, either n ≡ 0(mod 4), or n ≡ 1(mod 4), or
n≡ 2(mod 4), or n≡ 3(mod 4).

7.3.1 Fundamental Properties

Recall that the equality relation is reflexive, symmetric, and transitive. So equality
is an equivalence relation. Notice that the congruence relation symbol ≡ resembles
the equality symbol. The main reason for this resemblance is that the congruence
relation and the equality relation share many of the same properties. In particular,
the congruence relation is also an equivalence relation. Throughout this section, m
will be a natural number and a,b shall be integers.

Theorem 7.3.3. The congruence modulo m relation is an equivalence relation on
the set of integers.

Proof. We prove that the congruence modulo m relation on the set of integers is an
equivalence relation; that is, we prove the relation is (1) reflexive, (2) symmetric,
and (3) transitive, respectively, as follows:

(1) Let x be an integer. Since x− x = 0m, we conclude that x≡ x(mod m).
(2) Let x,y∈Z and assume x≡ y(mod m). So x−y = km for some k ∈Z. We prove

that y≡ x(mod m). Since x− y = km, it follows that y− x = (−k)m where −k
is an integer. Therefore, y≡ x(mod m).

(3) Let x,y,z be integers. Assume x≡ y(mod m) and y≡ z(mod m), that is, assume
(a) x−y = im and (b) y−z = jm for some i, j ∈ Z. By adding the corresponding
sides of (a) and (b), we obtain x− z = im + jm = (i + j)m where i + j is an
integer. Therefore, x≡ z(mod m). 
�
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We recall a property of equality that we often use when solving equations. Given
an equation a = b and an integer c, we can add c to both sides of the equation
to obtain a + c = b + c. We can also multiply both sides of the equation by c and
conclude that ac = bc. The congruence relation also satisfies these properties.

Theorem 7.3.4. If a≡ b(mod m), then for all integers c we have

1. a + c≡ b + c(mod m),
2. a− c≡ b− c(mod m),
3. ac≡ bc(mod m).

Proof. Assume a≡ b(mod m) and let c be an integer, that is, assume that

a− b = mi (7.2)

for some integer i.

1. To prove (a+c)≡ (b+c)(mod m), we first add and subtract c on the left side of
(7.2) to obtain a + c− c− b = mi. Since −c− b =−(b + c), we have

(a + c)− (b + c)= mi.

Hence, (a + c)≡ (b + c)(mod m).
2. To prove (a−c)≡ (b−c)(mod m), we first subtract and add c on the left side of

(7.2) to obtain a− c + c− b = mi. Since c− b =−(b− c), we obtain

(a− c)− (b− c)= mi.

Therefore, (a− c)≡ (b− c)(mod m).
3. To prove ac≡ bc(mod m), we multiply (both sides of) (7.2) by c which gives us

ac−bc = mic. Thus, ac− bc = m(ic). Therefore, ac≡ bc(mod m). 
�
When we have two equations a = b and c = d, we can derive a new equation

by adding both sides of these equations to obtain a + c = b + d. Similarly, we can
multiply both sides of these equation and conclude that ac = bd. So, the equality
relation is preserved under addition and multiplication. These important algebraic
properties of equality are frequently used to solve equations.

In this section, we will develop a congruence algebra; that is, we will show that
when we are given two congruence relations a ≡ b(mod m) and c ≡ d (mod m),
we can also add, subtract, and multiply both sides of these congruences to derive a
new congruence. The following theorem is a fundamental result which shows that
the congruence modulo m relation is preserved under the operations of addition,
subtraction, and multiplication.

Theorem 7.3.5. If a≡ b(mod m) and c≡ d (mod m), then

1. (a + c)≡ (b + d)(mod m),
2. (a− c)≡ (b−d)(mod m),
3. ac≡ bd (mod m).
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Proof. Assume that a ≡ b(mod m) and c≡ d (mod m). Theorem 7.3.4 implies that
(a + c)≡ (b + c)(mod m), because a≡ b(mod m). Similarly, since c≡ d (mod m),
Theorem 7.3.4 also implies that (b + c) ≡ (b + d)(mod m). Thus, we have the two
congruences (a + c) ≡ (b + c)(mod m) and (b + c) ≡ (b + d)(mod m). Therefore,
(a+c)≡ (b+d)(mod m) as the congruence relation is transitive by Theorem 7.3.3.
The proofs of items 2 and 3 are similar and are left as an exercise. 
�

The next theorem shows that one can square both sides of a congruence relation
to derive a new congruence.

Theorem 7.3.6. If a≡ b(mod m), then a2 ≡ b2 (mod m).

Proof. Assume a ≡ b(mod m). Theorem 7.3.5(3) implies that aa ≡ bb(mod m).
Therefore, a2 ≡ b2 (mod m). 
�

Using Theorem 7.3.5(3) and mathematical induction on k, one can prove (see
Exercise 16) the following theorem.

Theorem 7.3.7. If a≡ b(mod m), then ak ≡ bk (mod m) for every integer k ≥ 1.

Theorems 7.3.3–7.3.7 will allow us to derive new congruence relations by using
congruence algebra and congruence substitution.

Example 3. Let m > 1 be an integer. Suppose a≡ 4(mod m), b≡ 10(mod m), and
c≡ 3(mod m). Show that 3a2− 2b− c3 + 4m≡ 1(mod m).

Solution. We are given that

a≡ 4(mod m), b≡ 10(mod m), and c≡ 3(mod m). (7.3)

We will show that 3a2− 2b− c3 + 4m≡ 1(mod m) as follows:

3a2−2b− c3 + 4m≡ 3a2− 2b− c3 (mod m) because 4m≡ 0(mod m)

≡ 3 ·42− 2 ·10− 33(mod m) by (7.3)

≡ 1(mod m) because 3 ·42−2 ·10−33 = 1.

Therefore, 3a2 + 2b + c3 + 4m≡ 1(mod m). ��

7.3.2 Congruence Classes

Let m ≥ 1 be an integer. We shall temporarily use ≡ to abbreviate the congruence
relation (mod m). Thus, ≡ is an equivalence relation on the set of integers Z,
by Theorem 7.3.3. For each a ∈ Z, recalling Definition 7.2.2, the set [a]≡ is the
equivalence class of a. Because the relation ≡ is so closely connected with m,
we will use [a]m to denote [a]≡. Hence, [a]m = {x ∈ Z : x ≡ a(mod m)}. Since
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x ∈ [a]m iff x ≡ a(mod m) iff x = a + mk for some k ∈ Z, we conclude that
[a]m = {a + mk : k ∈ Z}. We shall call [a]m the congruence class of a (mod m).
Applying Theorem 7.2.4, we see that

a≡ b(mod m) if and only if [a]m = [b]m (7.4)

for all a,b ∈ Z. It follows from Theorem 7.2.6 and Definition 7.2.7 that

Z/≡ = {[a]m : a ∈ Z}

is the partition of the set of integers Z induced by ≡. We shall use the notation Zm

to denote the partition Z/≡.

Lemma 7.3.8. Let m > 1 be an integer. For all a ∈ Z and b ∈ Z, we have that

1. [a]m = [b]m if and only if a≡ b(mod m);
2. a ∈ [b]m if and only if a≡ b(mod m).

Proof. Since congruence modulo m is an equivalence relation on Z, items 1 and 2
follow from Theorem 7.2.4 and Corollary 7.2.5, respectively. 
�

We now determine the number of distinct equivalence classes that are in Zm.

Theorem 7.3.9. Let m ≥ 1 be an integer. For each integer a there is exactly one
integer r in the list 0,1, . . . ,m− 1 such that a≡ r (mod m).

Proof. Let m≥ 1 be an integer and let a be an integer. We will prove that there is a
unique integer r in the list 0,1, . . . ,m− 1 such that a≡ r (mod m).

Existence: By Theorem 4.6.9, there exist integers q and r such that a = qm+r where
0≤ r < m. So, a− r = qm and therefore, a≡ r (mod m) and 0≤ r < m.

Uniqueness: Let r be as in the existence part of our proof. Thus, a≡ r (mod m) and
a = qm + r where 0 ≤ r < m. Let i be any integer that also satisfies a ≡ i(mod m)
and 0 ≤ i < m. We shall prove that r = i. Since a ≡ i(mod m), there is an integer j
such that a− i = jm, that is, a = jm+ i where 0 ≤ i < m. Because a = qm+ r and
0≤ r < m, Theorem 4.6.9 implies that r = i. 
�
Example 4. Show that every perfect square is congruent to 0 or 1 (mod 4).

Solution. Let n be a perfect square. So n = k2 for some integer k. Theorem 7.3.9
asserts that k ≡ r (mod 4) for some r in the list 0,1,2,3. Thus, either

k≡ 0(mod 4), k ≡ 1(mod 4), k ≡ 2(mod 4), or k ≡ 3(mod 4).

Theorem 7.3.6 implies that either

k2 ≡ 0(mod 4), k2 ≡ 1(mod 4), k2 ≡ 4(mod 4), or k2 ≡ 9(mod 4). (7.5)
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Since 4 ≡ 0(mod 4) and 9 ≡ 1(mod 4), the last two congruences in (7.5) are
redundant versions of the first two. Hence, either k2 ≡ 0(mod 4) or k2 ≡ 1(mod 4).
As n = k2, we see that n≡ 0(mod 4) or n≡ 1(mod 4). ��

Given an integer m ≥ 1, Theorem 7.3.9 asserts that every integer is congruent
(mod m) to exactly one of the numbers in the list 0,1, . . . ,m−1. For this reason, we
shall call this list a complete residue system (mod m).

Corollary 7.3.10. Let m ≥ 1 be an integer. For each integer k there is exactly one
integer r in the list 0,1, . . . ,m− 1 such that [k]m = [r]m.

Proof. Let k be an integer. By Theorem 7.3.9, there is exactly one integer r in the
list 0,1, . . . ,m−1 such that k≡ r (mod m). Lemma 7.3.8(1) implies that [k]m = [r]m.
It thus follows that there is exactly one such r satisfying [k]m = [r]m. 
�
Corollary 7.3.11. Let m ≥ 1 be an integer. Let k and r be distinct integers in the
list 0,1, . . . ,m−1. Then [k]m �= [r]m and hence, [k]m and [r]m are disjoint.

Proof. Let k �= r both be in the list 0,1, . . . ,m− 1. Corollary 7.3.10 implies that
[k]m �= [r]m. Thus, by Theorem 7.2.6, we have [k]m∩ [r]m = ∅. 
�

Let m≥ 1 be an integer. Corollaries 7.3.10 and 7.3.11 assert that there are exactly
m many distinct congruence classes (mod m) for a given integer m≥ 1. Therefore,

Zm = {[a]m : a ∈ Z}= {[0]m, [1]m, [2]m, . . . , [m−1]m} .

Example 5. Let Z be the set of integers. Consider the equivalence relation ≡ on Z

defined by
a≡ b if and only if a≡ b(mod 5),

and let Z5 be the partition of Z induced by ≡.

1. For every a ∈ Z, we have [a]5 = {a + 5k : k ∈ Z}.
2. Corollaries 7.3.10 and 7.3.11 imply that Z= [0]5∪ [1]5∪ [2]5∪ [3]5∪ [4]5 and that

the sets [0]5, [1]5, [2]5, [3]5, [4]5 are all mutually disjoint. Thus,

Z5 = {[0]5, [1]5, [2]5, [3]5, [4]5}.

3. The set Z5 is a partition of Z as illustrated in the diagram (7.6).

Z =

...
...

...
...

...
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4
−5 −4 −3 −2 −1
−10 −9 −8 −7 −6

...
...

...
...

...
↑ ↑ ↑ ↑ ↑
[0]5 [1]5 [2]5 [3]5 [4]5

(7.6)
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Remark 7.3.12. Let m ≥ 1 be an integer. When the integer m is understood, we
shall drop the subscripts; that is, we will just use [a] instead of [a]m and shall write
Zm = {[0], [1], [2], . . . , [m− 1]}. Many texts just let Zm = {0,1,2, . . . ,m−1}, which
clearly simplifies the notation, and at times we will do the same.

Exercises 7.3

1. Which of the following are valid congruences? 5≡ 13(mod 4), 4≡ 14(mod 6),
and 18≡−2(mod 10).

2. By dividing 97 by 7, find a so that a ≡ 97(mod 7) and 0 ≤ a < 7. Now find b
so that b≡−97(mod 7) and 0≤ b < 7.

3. Let m ≥ 1 be an integer. Show that if n ≡ 1(mod m), then n2 + n ≡ 2(mod m)
for every integer n.

4. Show that the converse of Theorem 7.3.6 does not hold, via a counterexample.
5. Prove that for every odd integer k we have k2 ≡ 1(mod 8).
6. Prove that (m−1)2 ≡ 1(mod m) for every integer m > 1.
7. Let m ≥ 1 be an integer and let a,b,k be integers where k ≥ 1. Prove that if

a≡ b(mod m) and k |m, then a≡ b(mod k).
8. Let m ≥ 1 be an integer and let a,b,k be integers where k ≥ 1. Prove that if

a≡ b(mod m), then ak≡ bk (mod mk).
9. Let m≥ 1 be an integer and let a,b,k be integers. Suppose gcd(k,m) = 1. Prove

that if ka≡ kb(mod m), then a≡ b(mod m).
10. Show that every perfect square is congruent to 0, 1 or 4 (mod 8).
11. Let p be a prime and let 1≤ k < p be an integer. Prove that

(p
k

)≡ 0(mod p).

12. Show that n3 ≡ n(mod 3), for all integers n.
13. For every pair of integers x and y, show that x2 + y2 is congruent to 0, 1 or 2

(mod 4). Conclude that if an integer n is congruent to 3 (mod 4), then n is not
the sum of two perfect squares.

14. Let p be a prime and let a,b ∈ Z. Prove that (a + b)p ≡ ap + bp (mod p).
15. Prove items 2 and 3 of Theorem 7.3.5.
16. Prove Theorem 7.3.7 using mathematical induction.
17. Let m = 6 and define the equivalence relation on Z: a ≡ b if and only if

a≡ b(mod 6). Let Z6 = {[0], [1], [2], [3], [4], [5]} be the partition induced by ≡,
where [a] = [a]6 for each a ∈ Z. Determine which of the following are true.

(a) [2] = [3].
(b) [2] = [−4].
(c) 5 ∈ [8].
(d) 5 ∈ [11].
(e) [3 + 4] = [1].
(f) [3 ·4] = [0].
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18. Let a and m > 1 be integers. Prove that [a]m = [0]m if and only if m |a.
19. Let a, b and m > 1 be integers. Prove that [a]m = [b]m if and only if a−b = mi

for some integer i.
20. Let Z6 = {[0], [1], [2], [3], [4], [5]}. Consider the purported function f : Z6→ Z

defined by f ([a]) = a for all [a] ∈ Z6. Show that f is not well defined.

Exercise Notes: For Exercise 3, use Theorems 7.3.6 and 7.3.5. For Exercise 5,
see Exercise 4 on page 106. For Exercise 9, show that m |k(a− b) and then use
Theorem 4.6.14. For Exercise 11, since 1 ≤ k < p, it follows that 1 ≤ p− k < p as
well. We also know that the value

(p
k

)

= p!
k!(p−k)! is a natural number by Exercise 12

on page 122. For Exercise 12, we know by Theorem 7.3.9 that there are three cases
to consider: n ≡ 0(mod 3), n ≡ 1(mod 3), or n ≡ 2(mod 3). For Exercise 13, use
Example 4 and congruence algebra and congruence substitution. For Exercise 14,
expand (a + b)p using the Binomial Theorem (see Exercise 16 on page 122) and
then use Exercise 11. For Exercise 17, review Lemma 7.3.8. For Exercise 20, review
Lemma 7.3.8 and Example 4 on page 172.

7.4 Modular Arithmetic

Modular arithmetic is a system of arithmetic that is based on the congruence modulo
m relation. Carl Friedrich Gauss first introduced modular arithmetic in 1801 and it
has become an important tool in number theory. In the next definition, we will first
recall the rules of integer arithmetic that we all learned in elementary school. These
rules are referred to as the axioms of arithmetic. We shall soon see that modular
arithmetic also satisfies these same rules. Let Z be the set of integers with the usual
operations + and · which we call addition and multiplication.

Integer Arithmetic 7.4.1. The number system (Z,+, ·) satisfies the following nine
AXIOMS OF ARITHMETIC:

1. a + b = b + a for all a,b ∈ Z.
2. (a + b)+ c = a +(b + c) for all a,b,c ∈ Z.
3. a + 0 = a for all a ∈ Z.
4. For all a ∈ Z there exists a b ∈ Z such that a + b = 0.
5. (a ·b) · c = a · (b · c) for all a,b,c ∈ Z.
6. a · (b + c) = a ·b + a · c for all a,b,c ∈ Z.
7. (b + c) ·a = b ·a + c ·a for all a,b,c ∈ Z.
8. a ·1 = 1 ·a = a for all a ∈ Z.
9. a ·b = b ·a for all a,b ∈ Z.

The above nine axioms identify the fundamental properties of integer arithmetic.
For example, Axiom 1 asserts that addition is commutative and Axiom 2 states that



226 7 Relations

addition is also associative. Axiom 3 states that 0 is the additive identity element
and Axiom 4 declares that every integer has an additive inverse. The distributive
properties of arithmetic are given in Axioms 6–7. Axiom 8 identifies the integer 1
as the multiplicative identity element.

Let m ≥ 1 be an integer. We shall now define operations of addition ⊕ and
multiplication� on the finite set Zm. For [a], [b] ∈ Zm define ⊕ and � by

[a]⊕ [b] = [a + b] (7.7)

[a]� [b] = [a ·b]. (7.8)

To perform the operation [a]⊕ [b], one first adds the integers a and b, obtaining
a + b. Then the value of the sum [a]⊕ [b] is the congruence class [a + b]. Thus, the
equation [a]⊕ [b] = [a + b] is another way of saying “the sum of two congruence
classes is the congruence class of the sum.”

Similarly, to perform the operation [a]� [b], one first multiplies the integers a and
b, obtaining a ·b. Then the value of the product [a]� [b] is the congruence class [a ·b].
Therefore, the equation [a]� [b] = [a ·b] states that “the product of two congruence
classes is the congruence class of the product.”

Example 1. Let m = 7 and write [a] for [a]7 whenever a ∈ Z. Let us evaluate
and simplify the sum [4]⊕ [5] in Z7. Thus, [4]⊕ [5] = [4 + 5] = [9]. To simplify
this answer, we know from Corollary 7.3.10 there is exactly one integer r in
the list 0,1, . . . ,6 such that [9] = [r]. Clearly, r = 2 because 9 ≡ 2(mod 7) (see
Lemma 7.3.8(1)). So we have that [4]⊕ [5] = [2]. Let us evaluate and simplify the
product [4]� [5] in Z7. We obtain [4]� [5]= [4 ·5]= [20] = [6], since 20≡ 6(mod 7).

Now, let us revisit Example 1 where m = 7 and [a] = [a]7 for each a∈Z. Observe
that [4] = [11] and [5] = [19], since 4 ≡ 11(mod 7) and 5 ≡ 19(mod 7). Thus, [4]
and [5] each have more than one representation. Will the sum [11]⊕ [19] give us the
same answer as the sum [4]⊕ [5]? Let us evaluate and simplify the sum [11]⊕ [19]
as we did in Example 1. We obtain [11]⊕ [19] = [11 + 19] = [30] = [2], where the
last equality holds since 30≡ 2(mod 7). So [4]⊕ [5] = [11]⊕ [19], that is, the sums
are equal. It appears that the sum does not depend on the representations used to
perform the operation ⊕. It is important to verify that this will be the case, for both
of the operations⊕ and �, for any m≥ 1.

Theorem 7.4.2 shows that the operations ⊕ and � are well-defined, that is, the
sum ⊕ and product � do not depend on the representations used to perform these
operations (see Section 8.1.1 on page 241).

Theorem 7.4.2. Let m≥ 1 be an integer and let [a], [b], [c], [d]∈Zm. If [a] = [b] and
[c] = [d], then

(1) [a]⊕ [c] = [b]⊕ [d]

(2) [a]� [c] = [b]� [d].
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Proof. We shall prove only (1) and leave (2) as an exercise. Let m≥ 1 be an integer.
Let [a], [b], [c], [d] ∈ Zm. Suppose that

[a] = [b] and [c] = [d]. (7.9)

We shall prove that [a]⊕ [c] = [b]⊕ [d], that is, we prove that [a + c] = [b + d].
From (7.9) and Lemma 7.3.8(1), we conclude that

a≡ b(mod m) and c≡ d (mod m).

Theorem 7.3.5(1) implies that (a+c)≡ (b+d)(mod m). Therefore, [a+c]= [b+d]
by Lemma 7.3.8(1). 
�

For each integer m≥ 1, Theorem 7.4.2 implies that the operations of addition ⊕
and multiplication� on the set Zm, given by (7.7) and (7.8), are well-defined. Thus,
we can add and multiply any two elements in Zm. The number system (Zm,⊕,�)
will be referred to as modular arithmetic and is used extensively in number theory,
abstract algebra, and cryptography.

We know that addition is associative in integer arithmetic. The next lemma shows
that addition is also associative in modular arithmetic.

Lemma 7.4.3. Let m ≥ 1 be an integer. The operation ⊕ is associative in the
number system (Zm,⊕,�).

Proof. Let [a], [b], [c] ∈ Zm. We prove ([a]⊕ [b])⊕ [c] = [a]⊕ ([b]⊕ [c]) as follows:

([a]⊕ [b])⊕ [c] = [a + b]⊕ [c] by (7.7)

= [(a + b)+ c] by (7.7)

= [a +(b + c)] because + is associative in Z

= [a]⊕ [b + c] by (7.7)

= [a]⊕ ([b]⊕ [c]) by (7.7).

Therefore, ([a]⊕ [b])⊕ [c] = [a]⊕ ([b]⊕ [c]). 
�
We shall write ⊕ as + and write � as ·, to simplify our notation. Accordingly,

we shall write (7.7) and (7.8) as

[a]+ [b] = [a + b] (7.10)

[a] · [b] = [a ·b]. (7.11)

In Theorem 7.4.4, below, we show that modular arithmetic satisfies the same rules
of arithmetic that were given in 7.4.1.
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Theorem 7.4.4 (Modular Arithmetic). Let m > 1 be an integer. Let (Zm,+, ·) be
the algebraic system where the operations + and · are defined by (7.10) and (7.11).
Then (Zm,+, ·) satisfies the following nine AXIOMS OF ARITHMETIC:

1. [a]+ [b] = [b]+ [a] for all [a], [b] ∈ Zm.
2. ([a]+ [b])+ [c] = [a]+ ([b]+ [c]) for all [a], [b], [c] ∈ Zm.
3. [a]+ [0] = [a] for all [a] ∈ Zm.
4. For all [a] ∈ Zm there exists a [b] ∈ Zm such that [a]+ [b] = [0].
5. ([a] · [b]) · [c] = [a] · ([b] · [c]) for all [a], [b], [c] ∈ Zm.
6. [a] · ([b]+ [c]) = [a] · [b]+ [a] · [c] for all [a], [b], [c] ∈ Zm.
7. ([b]+ [c]) · [a] = [b] · [a]+ [c] · [a] for all [a], [b], [c] ∈ Zm.
8. [a] · [1] = [1] · [a] = [a] for all [a] ∈ Zm.
9. [a] · [b] = [b] · [a] for all [a], [b] ∈ Zm.

Proof. Lemma 7.4.3 establishes item 2. Each of the items in 1–9 can be established
by using the idea in the proof of Lemma 7.4.3. For example, to establish item 1, let
[a], [b] ∈ Zm. Then [a]+ [b] = [a+b] = [b+a] = [b]+ [a] by (7.10) and the fact that
addition is commutative in (Z,+, ·). One can easily prove the other items. 
�

Theorem 7.4.4 states that the operations of addition and multiplication in modular
arithmetic are associative, commutative, and satisfy the distributive properties given
in Axioms 6–7. Axiom 3 states that [0] is the additive identity element and Axiom 8
asserts that the congruence class [1] is the multiplicative identity element.

From Integer Arithmetic 7.4.1 and Theorem 7.4.4, we know that integer arith-
metic and modular arithmetic both satisfy the axioms of arithmetic. Thus, integer
arithmetic and modular arithmetic possess the same basic rules of algebra. On the
other hand, there are some differences between these two systems of arithmetic.
Recall that if a and b are integers and a · b = 0, then either a = 0 or b = 0. Also
recall that if a · b = 1, where a,b are integers, then we must have that a = b = ±1.
These properties may fail for modular arithmetic.

Definition 7.4.5. Let m > 1 and a be integers. Let [a] ∈ Zm be such that [a] �= [0].
Then [a] is a zero divisor in Zm whenever [a] · [b] = [0] for some [b]�= [0] in Zm.

Definition 7.4.6. Let m > 1 and a be integers. We say [a] is invertible in Zm if
[a] · [b] = [1] for some [b] in Zm called the multiplicative inverse of [a].

Theorem 7.4.7. Let m > 1 and a be integers. Then the following hold:

(1) The structure (Zm,+, ·) has zero divisors if and only if m is composite.
(2) [a] is invertible in Zm if and only if gcd(a,m) = 1.
(3) [a] is a zero divisor in Zm if and only if m � a and gcd(a,m) > 1.

Proof. Let m > 1 and a be integers. We shall only prove (3) and leave (1)–(2) as
exercises. Let [a] ∈ Zm. We shall prove that [a] is a zero divisor in Zm if and only if
m � a and gcd(a,m) > 1.
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(⇒). Assume that [a] is a zero divisor, that is, assume that [a]�= [0] and there is a
[b] ∈ Zm such that [a] · [b] = [0] where [b]�= [0]. By (7.11), we have that

[ab] = [0], [a]�= [0] and [b]�= [0].

Lemma 7.3.8(1) implies ab≡ 0(mod m), a�≡ 0(mod m) and b�≡ 0(mod m). Hence,
m |ab, m � a and m � b. Since m |ab and m � b, Theorem 4.6.14 forces us to conclude
that gcd(a,m) > 1. Thus, m � a and gcd(a,m) > 1.

(⇐). Assume m � a and gcd(a,m) > 1. Since m � a, we infer that [a] �= [0]. Let
d = gcd(a,m). Thus,

d |a and d |m. (7.12)

Since d |m, we see that d ≤ m. Furthermore, as m � a, we also see that d < m (for if
d = m, then m |a because d |a). Hence, 1 < d < m. From (7.12), we obtain

a = di (7.13)

m = d j (7.14)

for some integers i and j. Since 1 < d < m, (7.14) implies that 1 < j < m and
so, [ j] �= [0] by Corollary 7.3.11. Multiplying both sides of (7.13) by j and then
using (7.14), we get a j = di j = im. Thus, a j≡ 0(mod m) and so [a] · [ j] = [0] where
[a]�= [0] and [ j]�= [0]. Therefore, [a] is a zero divisor. 
�

Given any integer m ≥ 1, we have introduced Zm = {[0], [1], [2], . . . , [m− 1]},
the set of all congruence classes (mod m). To simplify our notation, we shall write
Zm = {0,1,2, . . . ,m− 1}. We will now look at two different systems of modular
arithmetic, namely, the system (Z5,+, ·) and the system (Z6,+, ·). Of course these
two systems satisfy the axioms of arithmetic; however, there are some algebraic
properties that they do not share.

Addition and Multiplication Tables for the System (Z5,+, ·)

Consider the set Z5 = {0,1,2,3,4}. By Theorem 7.3.9, for any two integers a and b
in the list (�) 0,1,2,3,4, there is a unique r in this list such that a+b≡ r (mod 5). For
example, 3+2≡ 0(mod 5) and 3+3≡ 1(mod 5). Similarly, for any pair of integers
a and b in the list (�), there is a unique r in the list such that a · b≡ r (mod 5). For
example, 3 ·4≡ 2(mod 5) and 3 ·3≡ 4(mod 5). The end result is the addition and
multiplication tables in Table 7.1 for the system (Z5,+, ·).
SOME OBSERVATIONS ABOUT (Z5,+, ·):
1. Theorem 7.4.4(3) states that 0 is the additive identity element in Z5.
2. Theorem 7.4.4(8) states that 1 is the multiplicative identity for Z5.
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Table 7.1 Modular arithmetic (mod 5)

+ 0 1 2 3 4 · 0 1 2 3 4

0 0 1 2 3 4 0 0 0 0 0 0
1 1 2 3 4 0 1 0 1 2 3 4
2 2 3 4 0 1 2 0 2 4 1 3
3 3 4 0 1 2 3 0 3 1 4 2
4 4 0 1 2 3 4 0 4 3 2 1

Addition in Z5 Multiplication in Z5

Table 7.2 Modular arithmetic (mod 6)

+ 0 1 2 3 4 5 · 0 1 2 3 4 5

0 0 1 2 3 4 5 0 0 0 0 0 0 0
1 1 2 3 4 5 0 1 0 1 2 3 4 5
2 2 3 4 5 0 1 2 0 2 4 0 2 4
3 3 4 5 0 1 2 3 0 3 0 3 0 3
4 4 5 0 1 2 3 4 0 4 2 0 4 2
5 5 0 1 2 3 4 5 0 5 4 3 2 1

Addition in Z6 Multiplication in Z6

3. Theorem 7.4.4(4) states that every a ∈ Z5 has an additive inverse. For example,
note that 4 + 1 = 0. So, 1 is the additive inverse of 4 and we write −4 = 1. Also,
note that 3 + 2 = 0. Thus, 2 is the additive inverse of 3 and we write −3 = 2.

4. Theorem 7.4.7(2) states that a ∈ Z5 is invertible if and only if gcd(a,5) = 1.
Therefore 1,2,3,4 have multiplicative inverses. Note that 2 · 3 = 1. So, 3 is the
multiplicative inverse of 2 and we write 2−1 = 3. Also, note that 4 ·4 = 1. Hence,
4 is the multiplicative inverse of 4 and we write 4−1 = 4.

5. Since m = 5 is a prime, (Z5,+, ·) has no zero divisors by Theorem 7.4.7(1).

When m is a prime number, then all of the nonzero elements in the system
(Zm,+, ·) will have multiplicative inverses, as was observed in the system (Z5,+, ·).
Furthermore, if m is a prime, then the system (Zm,+, ·) has no zero divisors. On the
other hand, if m is a composite number, then (Zm,+, ·) will have zero divisors.

Addition and Multiplication Tables for the System (Z6,+, ·)

The set of (mod 6) congruence classes is Z6 = {0,1,2,3,4,5}. We can perform
arithmetic on the set Z6. Observe that 3 + 5≡ 2(mod 6) and 3 + 3 ≡ 0(mod 6). In
addition, we see that 3 ·5 ≡ 3(mod 6) and 3 ·3 ≡ 3(mod 6). Table 7.2 presents the
resulting addition table and multiplication table for the system (Z6,+, ·).
SOME OBSERVATIONS ABOUT (Z6,+, ·):
1. Theorem 7.4.7(2) states that a ∈ Z6 is invertible if and only if gcd(a,6) = 1.

Therefore, 1 and 5 have multiplicative inverses. Note that 1 ·1 = 1 and 5 ·5 = 1.
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So, 5 is the multiplicative inverse of 5 and we write 5−1 = 5. Theorem 7.4.7(2)
implies that 1 and 5 are the only invertible elements in (Z6,+, ·).

2. Theorem 7.4.7(1) implies that (Z6,+, ·) has zero divisors, as m = 6 is composite.
Theorem 7.4.7(3) implies an a ∈ Z6 is a zero divisor if and only if a �= 0 and
gcd(a,6)> 1. It follows that 2, 3, and 4 are the only zero divisors in Z6. Observe
that 2 ·3 = 0 and 4 ·3 = 0.

Exercises 7.4

1. Use Table 7.2 to evaluate (2 ·4) ·5, 2 · (4 ·5), and 2 +(4 ·5) in Z6.
2. Perform the following operations in Z8.

(a) [3]+ [5]

(b) [3] · [5]

(c) ([6] · [5])+ ([4] · [7]).

3. Prove item (2) of Theorem 7.4.2.
4. Find all of the zero divisors in each of the following: (a) Z12, (b) Z27, (c) Z13.
5. Find the invertible elements in each of the following: (a) Z12, (b) Z27, (c) Z13.
6. Prove Theorem 7.4.4(6) where m > 1 is an integer. That is, prove that

[a] · ([b]+ [c]) = [a] · [b]+ [a] · [c]

for all [a], [b], [c] ∈ Zm.
7. Let (Zm,+, ·) be the algebraic system presented in Theorem 7.4.4 where m > 1

is an integer. Let a, b, c, s, t be integers. Prove that [s] · [a]+ [t] · [b] = [c] if and
only if sa + tb− c = mi for some integer i.

8. Let a,b,m be integers where m > 1. Suppose [a]m = [b]m. Prove that a = mq+ r
and b = sm+ r for some integers s,q,r where 0≤ r < m.

9. Let Z3 = {[0]3, [1]3, [2]3} and Z6 = {[0]6, [1]6, [2]6, [3]6, [4]6, [5]6} be the set of
congruence classes (mod 3) and (mod 6). A purported function f : Z6→ Z3 is
defined by f ([a]6) = [a]3 for all [a]6 ∈ Z6. Prove that f is well-defined.

10. Given that Z3 = {[0]3, [1]3, [2]3} and Z6 = {[0]6, [1]6, [2]6, [3]6, [4]6, [5]6}, con-
sider the purported function f : Z3 → Z6 defined by f ([a]3) = [2a]6 for all
[a]3 ∈ Z3. Prove that f is well-defined.

11. Prove item (1) of Theorem 7.4.7.
12. Prove item (2) of Theorem 7.4.7.
13. Construct addition and multiplication tables, as in Table 7.2, for (Z7,+, ·).
14. Construct addition and multiplication tables, as in Table 7.2, for (Z8,+, ·). List

all of the zero divisors in this modular system of arithmetic.

Exercise Notes: For Exercise 8 use Corollary 7.3.10. For Exercises 9–10, review
Example 6.1.5 on page 173, Remark 6.1.6, and Lemma 7.3.8. For Exercise 11,
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review Lemma 4.7.2 and note that [x] = [0] if and only if m |x. For Exercise 12,
review Corollary 4.6.13 and prove [a] · [b] = [1] if and only if ab−1 = mi for some
i ∈ Z.

7.5 Order Relations

We generalized the equality relation in Section 7.2 by introducing the notion of an
equivalence relation. An equivalence relation satisfies three key properties that are
normally associated with equality; namely, the relation is reflexive, symmetric, and
transitive. In this section we will generalize the concept of ‘less than or equal to.’

The relation≤ on the set N puts an order on the natural numbers. This relation is
reflexive and transitive; but, since 2≤ 4 and 4 � 2, the relation ≤ is not symmetric.
Furthermore, for x,y ∈ N, if x≤ y and y≤ x, then x = y. We therefore say that ≤ is
antisymmetric. We now present a general definition.

Definition 7.5.1. A relation R on a set A is antisymmetric when

(∀x ∈ A)(∀y ∈ A)((xRy∧ yRx)→ x = y),

that is, if xRy and yRx, then x = y whenever x,y ∈ A.

Since many of the theorems and proofs given in a calculus book require the reader
to understand inequalities, most of these books begin by reviewing the properties of
the relation ≤ on the set of real numbers. Let us recall three fundamental properties
of this relation. For all a,b,c ∈ R we have:

1. a≤ a (reflexive).
2. If a≤ b and b≤ a, then a = b (antisymmetric).
3. If a≤ b and b≤ c, then a≤ c (transitive).

The above three properties are the ones that constitute the notion of ‘order.’ We
can now generalize the concept of ‘less than or equal to’ and apply it to a variety of
sets. To do this, we shall use the symbol � to denote a relation on a set.

Definition 7.5.2. A relation � on a set A is called a partial order if � is reflexive,
antisymmetric, and transitive; that is, for all x,y,z ∈ A, the following hold:

1. x � x.
2. If x � y and y � x, then x = y.
3. If x � y and y � x, then x � z.

When � is a partial order on the set A, we shall say that the pair (A,�) is a
partially order set or a poset. In particular, the pair (R,≤) is a poset because the
relation ≤ on the set of real numbers is reflexive, antisymmetric, and transitive.
Similarly, (Z,≤) and (N,≤) are also posets.
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Example 1. Let F be a family of sets and let ⊆ be the subset relation. Show that
(F ,⊆) is a partially ordered set.

Solution. Let A,B,C be sets in F . To show that ⊆ is a partial order on F , we prove
that the following three properties hold:

1. A⊆ A.
2. If A⊆ B and B⊆ A, then A = B.
3. If A⊆ B and B⊆C, then A⊆C.

Clearly, (1) holds. If A ⊆ B and B ⊆ A, then the sets A = B by the definition of set
equality. Thus, (2) holds. Finally, item (3) follows from Exercise 2 on page 156. ��
Example 2. For integers a and b, the divisibility relation a |b means that b = ai for
some i ∈ Z. Let A be any subset of N, the set of natural numbers. Show that (A, |)
is a partially ordered set.

Solution. We show that the divisibility relation on the set A is reflexive, antisymmet-
ric, and transitive. Let a,b,c be natural numbers in A. We must verify the following
three items:

1. a |a.
2. If a |b and b |a, then a = b.
3. If a |b and b |c, then a |c.

Since a = a · 1, we have that a |a. Exercise 9 on page 84 shows that (2) is true.
Theorem 3.5.6 establishes item (3). ��
Definition 7.5.3. Let � be a partial order on a set A. The relation � is called a total
order if � satisfies the additional property:

(∀x ∈ A)(∀y ∈ A)(x � y∨ y � x),

that is, for all x,y ∈ A, either x � y or y � x.

When (A,�) is a poset and � is a total order, then we shall say that (A,�) is a
totally ordered set. The posets (R,≤) and (Q,≤) are totally ordered sets. On the
other hand, let A = {2,5,4,8,9} and let | be the divisibility relation. Then (A, |) is
a poset but since 2 � 5 and 5 � 2, we see that (A, |) is not a totally ordered set.

Definition 7.5.4. Let � be a partial order on a set A. For x,y ∈ A, we write x ≺ y
if and only if x � y and x �= y. The relation ≺ on A shall be called the strict order
corresponding to �.

Lemma 7.5.5. Let � be a partial order on a set A and let ≺ be the strict order
corresponding to �. Then for all x,y,z ∈ A we have the following:

1. x ⊀ x.
2. If x≺ y, then y ⊀ x.
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3. If x≺ y and y≺ z, then x≺ z.
4. If � is a total order on A, then exactly one of the following holds: x≺ y, y ≺ x,

or x = y.

Proof. See Exercise 3. 
�
Let � be a partial order on a set A and let x,y ∈ A. If x ≺ y, we will say that x is

smaller than y and that y is larger than x.

Definition 7.5.6. Let � be a partial order on a set A. An element b ∈ A is called a
maximal element if and only if b ⊀ x for all x ∈ A; that is, there is nothing in A that
is larger than b.

Definition 7.5.7. Let � be a partial order on a set A. An element a ∈ A is said to be
a minimal element if and only if x ⊀ a for all x ∈ A; that is, there is nothing in A
that is smaller than a.

Example 3. Consider the poset (A, |) where A = {2,3,4,5,6,9} and | is the
divisibility relation. Then 2,3,5 are a minimal elements and 5,6,9 are maximal
elements.

Definition 7.5.8. Suppose � is a partial order on a set A and S⊆ A. Let a,b∈ A.

• If b satisfies (∀x ∈ S)(x � b), then b is called an upper bound for S.
• If a satisfies (∀x ∈ S)(a � x), then a is called a lower bound for S.

Let (A, |) be the poset in Example 3 where A = {2,3,4,5,6,9}. Thus, S = {2,3}
is a subset of A. We see that 6 is an upper bound for S. In addition, observe that there
is no lower bound for S in A.

Definition 7.5.9. Suppose � is a partial order on a set A and S ⊆ A.

• If � is an upper bound for S and � � b whenever b is another upper bound for S,
then � is called the least upper bound for S.

• If g is a lower bound for S and a � g whenever a is another lower bound for S,
then g is called the greatest lower bound for S.

We now prove that whenever a least upper bound for a set exists, it is unique.
Similarly, if a greatest lower bound exists, it too is unique.

Lemma 7.5.10. Let � be a partial order on a set A and let S ⊆ A. If � and �′ are
least upper bounds for S, then � = �′. If g and g′ are greatest lower bounds for S,
then g = g′.

Proof. Suppose that � and �′ are least upper bounds for S. Since � is a least upper
bound and �′ is another upper bound for S, it follows from the definition of least
upper bound that � � �′. Similarly, it follows that �′ � �. By antisymmetry, we
conclude that � = �′. An analogous argument shows that if g and g′ are greatest
lower bounds for S, then g = g′. 
�



7.5 Order Relations 235

Consider the poset (N, |) and let S = {6,9,12}. We see that 36 is the least upper
bound for S and that 3 is the greatest lower bound for S.

Definition 7.5.11. Suppose � is a partial order on a set A. Let S ⊆ A and let
a,b ∈ A.

• If (∀x ∈ S)(x � b) and b ∈ S, then b is called the largest element of S.
• If (∀x ∈ S)(a � x) and a ∈ S, then a is called the smallest element of S.

Note that an upper bound, or a lower bound, for S need not be an element of
the set S. A largest element of S is just an upper bound that is also an element of S
(see Exercise 5). This is the only difference between an upper bound and a largest
element. Similarly, a smallest element of S is a lower bound that is also an element
of the set S.

Lemma 7.5.12. Let � be a partial order on a set A and let S ⊆ A. If b and b′ are
largest elements of S, then b = b′. If a and a′ are smallest elements of S, then a = a′.

Proof. Let b and b′ be largest elements of S. Thus, in particular, b and b′ are both
elements in S. Since b is a largest element of S and b′ ∈ S, it follows that b′ � b.
Similarly, it follows that b� b′. By antisymmetry, we have that b = b′. An analogous
argument shows that if a and a′ are smallest elements of S, then a = a′. 
�

Let S be the interval (2,3], a subset of R. So 3 is the largest element of S in the
poset (R,≤). On the other hand, 2 is the greatest lower bound for S in this poset, but
the set S has no smallest element.

Let � be a partial order on a set A. Even though � may not be a total order on A,
the relation � can be a total order on certain subsets of A.

Definition 7.5.13. Let � be a partial order on a set A and let C⊆A. Then C is called
a chain in A if for all x,y ∈C, either x � y or y � x.

Example 4. Let | be the divisibility relation on the set of natural numbers N. Then
(N, |) is a poset. The set {1,2,4,8} is a chain in N that has 16 as an upper bound.
The set {2n : n ∈ N} is also a chain in N and this chain has no upper bound.

We end this section with the statement of a deep theorem that has applications
in linear algebra, abstract algebra, and in real analysis. The proof of this theorem
requires the axiom of choice. One can find a proof of this theorem in [8].

Theorem 7.5.14 (Zorn’s Lemma). Let (A,�) be a nonempty partially ordered set.
If every chain in A has an upper bound, then A contains a maximal element.

Using Zorn’s lemma, one can prove that every vector space has a basis. It should
be noted that Zorn’s lemma is actually equivalent to the axiom of choice. Thus, it is
impossible to prove Zorn’s lemma without using the axiom of choice.
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Exercises 7.5

1. Define a relation � on the set of integers Z by

x � y if and only if x≤ y and x + y is even

for all x,y ∈ Z. Prove that � is a partial order on Z. Since (Z,�) is a poset,
answer the following questions:

(a) Is S = {1,2,3,4,5,6, . . .} a chain in Z?
(b) Is S = {1,3,5,7, . . .} a chain in Z?
(c) Does the set S = {1,2,3,4,5} have a lower bound or an upper bound?
(d) Does the set S = {1,2,3,4,5} have any maximal or minimal elements?

2. Let P(A) be the set of all subsets of the set A = {a,b,c}. Thus, (P(A),⊆) is a
partially ordered set where

P(A) = {∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}.

Find an upper bound, the least upper bound, a lower bound, and the greatest
lower bound of the following subsets of P(A).

(a) S = {{a},{a,b}}
(b) S = {{a},{b}}
(c) S = {{a},{a,b},{a,b,c}}
(d) S = {{a},{c},{a,c}}
(e) S = {∅,{a,b,c}}
(f) S = {{a},{b},{c}}.

3. Prove Lemma 7.5.5.
4. Find the greatest lower bound of the set S = {15,20,30} in the poset (N, |).

Now find the least upper bound of S.
5. Let (A,�) be a poset and let S ⊆ A. Suppose that b is the largest element of S.

Prove that b is also the least upper bound of S.
6. Let � be a partial order on a set A and let S ⊆ A. Suppose g and g′ are both

greatest lower bounds of S. Prove that g = g′.
7. Consider the poset (P(R),⊆) where P(R) = {A : A⊆ R}, that is, P(R) is the

set of all subsets of R. Let C be the chain in P(R) defined by

C = {{1},{1,2,3},{1,2,3,4,5},{1,2,3,4,5,6,7}, . . .}

Does C have an upper bound? A least upper bound?
8. Consider the poset (P,⊆) where P = {A : A is a finite subset of R}, that is, P is

the set of all finite subsets of R. Let C be the chain in P defined by

C = {{1},{1,2,3},{1,2,3,4,5},{1,2,3,4,5,6,7}, . . .}

Does C have an upper bound? A least upper bound?
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9. Let � be a partial order on a set A and let S ⊆ A. Suppose a and a′ are both
smallest elements of S. Prove that a = a′.

10. Let (A,�) be a poset and let S⊆ A. Suppose that a is the smallest element of S.
Prove that a is also the greatest lower bound of S.

11. Let A be a set and let (B,�′) be a poset. Suppose h : A→ B is a one-to-one
function. Define the relation � on A by x � y if and only if h(x) �′ h(h) for all
x,y ∈ A. Prove that � is a partial order on A.

12. Let (A,�) and (B,�′) be posets. Suppose that a function h : A→ B satisfies
x � y if and only if h(x) �′ h(h) for all x,y ∈ A. Prove that h is one-to-one.

13. Let (A,�) and (B,�′) be posets. Suppose that a function h : A→ B satisfies

x � y if and only if h(x) �′ h(h)

for all x,y ∈ A. Let C ⊆ A. Prove the following:

(a) If C is a chain in A, then the image h[C] is a chain in B.
(b) If h[C] is a chain in B, then C is a chain in A.
(c) If C has an upper bound, then h[C] has an upper bound.
(d) If h[C] has an upper bound and h is onto, then C has an upper bound.

14. Let (A,�) be a poset. For each x ∈ A, let Px = {a ∈ A : a � x}. Let F be the
family of sets defined by F = {Px : x ∈ A}. Thus, (F ,⊆) is a poset. Prove that
x � y if and only if Px ⊆ Py, for all x,y ∈ A.





CHAPTER 8
Core Concepts in Abstract
Algebra

Abstract algebra is typically the course where students are introduced to algebraic
structures. What does ‘algebraic’ mean? As a means to answer this question, one of
the first topics covered in an abstract algebra course is the important definition of a
binary operation. This definition then leads to the study of algebraic structures and
their properties. The eventual emphasis will be on two particular kinds of algebraic
structures: groups and rings.

8.1 Binary Operations

A binary operation on a set A is a function that assigns to every ordered pair of
elements in the set A a unique element that is also in A. Binary operations on a
set A are frequently written as a ∗ b, a + b, a · b or, more simply, as ab whenever
a,b ∈ A. Typical examples of binary operations are the operations of addition and
multiplication on the set of integers, as well as the operation of composition on a set
of functions.

Definition 8.1.1. Let A be a nonempty set. We shall say that ∗ is a binary operation
on A to mean that ∗ : A×A→ A, that is, ∗ is a function from A×A to A. Given
x,y ∈ A, we shall write x∗ y for the value ∗(x,y).
1. The operation ∗ is associative on A if (x∗ y)∗ z = x∗ (y∗ z) for all x,y,z ∈ A.1

2. The operation ∗ is commutative on A if x∗ y = y∗ x for all x,y ∈ A.
3. The operation ∗ has an identity element if there is a member e ∈ A such that

e∗ x = x∗ e = x for all x ∈ A.
4. Suppose (A,∗) has an identity element e. For x ∈ A if there is a y ∈ A such the

x∗ y = y∗ x = e, then y is an inverse of x.

A binary operation combines two elements from a set and produces another
element in the same set. In some cases a set may have several binary operations on
it. Each such operation will then be represented by a distinguished name/symbol, for
example, ·, ∗, ◦, or +. These symbols may, or may not, denote the usual operations
of addition and multiplication, as we will see throughout this chapter.

1Associativity implies than one can write x∗ y∗ z without ambiguity.

D.W. Cunningham, A Logical Introduction to Proof, DOI 10.1007/978-1-4614-3631-7 8,
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Some Examples of Binary Operations on Sets

Example 1. The operation of subtraction (−) is a binary operation on Z. This
binary operation is not associative, for example, (7− 2)− 5 �= 7− (2− 5). It is
also not commutative since 5− 3�= 3− 5.

Example 2. The operation of subtraction (−) is not a binary operation on N,
because 3−5 =−2 /∈N; that is, there is a pair of natural numbers whose difference
is not a natural number.

Example 3. A 2×2 matrix is a rectangular array of real numbers having the form

A =

[
a11 a12

a21 a22

]

and the number ai j is called the i j-th entry of the matrix A. Let M2(R) be the set of
all such 2× 2 matrices with entries from R. The binary operation +, called matrix
addition, is defined by

[

a b
c d

]

+

[

e f
g h

]

=

[

a + e b + f
c + g d + h

]

This binary operation is associative and commutative. In addition, this binary

operation has the identity element

[
0 0
0 0

]

and each matrix in M2(R) has an (additive)

inverse (why?).

Example 4. Let M2(R) be the set of 2× 2 matrices with entries from R. Consider
the binary operation of matrix multiplication ∗ defined by

[

a b
c d

]

∗
[

e f
g h

]

=

[

ae + bg a f + bh
ce + dg c f + dh

]

.

Matrix multiplication is an associative binary operation; but it is not commutative,
as there are matrices A and B in M2(R) so that A ∗ B �= B ∗ A. For example, let

A =

[
1 −1
1 0

]

and B =

[
0 1
1 0

]

. Then A∗B =

[−1 1
0 1

]

and B∗A =

[
1 0
1 −1

]

. In addition,

this binary operation has the identity element

[
1 0
0 1

]

; however, not every matrix in

M2(R) has a (multiplicative) inverse.

Example 5. Let m ∈N and let Zm = {[0], [1], . . . , [m−1]} be the set of congruence
classes (mod m). For [a], [b] ∈ Zm define the binary operations⊕ and � on Zm by

[a]⊕ [b] = [a + b]

[a]� [b] = [a ·b].

These binary operations are associative and commutative (see Theorem 7.4.4).
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8.1.1 Is it a Binary Operation?

A binary operation � on a set A is a function � : A×A→ A. We will now restate
Definition 6.1.1 on page 169 so that it directly applies to such functions.

Definition 8.1.2. Let A be a set, and let � ⊆ (A×A)×A. Then � is said to be a
function from A×A to A if the following two conditions hold:

(1) For each (x,y) ∈ A×A there is a z ∈ A such that ((x,y),z) ∈�.
(2) If ((x,y),z) ∈� and ((x,y),w) ∈�, then z = w.

Thus, for each x ∈ A and y ∈ A there is exactly one z ∈ A such that ((x,y),z) ∈ �.
This unique z is called “the value of � at (x,y)” and is denoted by �(x,y) or x� y.
We shall refer to the function � as a binary operation on A.

At some point in your first abstract algebra course the topic of a “well-defined
binary operation” will be discussed. Your instructor may then describe a purported
binary operation � on a set A and prove that it is a function by verifying that �
satisfies the above properties (1) and (2). This is usually done when the elements of
the set A have multiple representations and when the proposed operation is described
in terms of such representations. As a result, it is usually not at all clear that the
proposed operation is in fact a function (see Section 6.1.1 starting on page 171).

Example 6. Each element in the set Z6 of congruence classes (mod 6) has multiple
representations, for example, [3]6 = [9]6 = [15]6 (see Lemma 7.3.8(1)). Consider the
proposed binary operation ∗ on Z6 described by rule

[a]6 ∗ [b]6 = [max(a,b)]6 (8.1)

where max(a,b) is the maximum of the two integers a and b. Is ∗ a function from
Z6×Z6 to Z6? It is not obvious! Show that ∗ is not a function.

Solution. Suppose, for a contradiction, that ∗ is a function. The rule in (8.1) is thus
an abbreviation for the more formal description (see Example 4 on page 172)

x∗ y = z iff (∃a ∈ Z)(∃b ∈ Z)( (x,y) = ([a]6, [b]6) and z = [max(a,b)]6 ) (8.2)

for elements x, y and z in Z6. Let x = [2]6 and y = [4]6. Since z = [max(2,4)]6 = [4]6,
the above description (8.2) would allow us to conclude that x ∗ y = [4]6. Moreover,
by Lemma 7.3.8(1), we have that [2]6 = [8]6. Hence, x = [8]6 and y = [4]6. Upon
evaluating z = [max(8,4)]6 = [8]6, we can also conclude from (8.2) that x∗y = [8]6.
Thus, x∗y = [4]6 and x∗y = [8]6. Since [4]6 �= [8]6, we have derived a contradiction.
Therefore, ∗ is not a function. ��
Proposition 8.1.3. Let m be a natural number and let Zm be the set of congruence
classes (mod m). Consider the putative binary operation � on Zm described by
the rule

[a]m � [b]m = [ab− a]m (8.3)

where a and b are integers. Then � is a binary operation on Zm.
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Proof Analysis. The intended subset � of (Zm×Zm)×Zm satisfies

((x,y),z) ∈� iff (∃a ∈ Z)(∃b ∈ Z)( (x,y) = ([a]m, [b]m) and z = [ab−a]m )

(see Proposition 6.1.5 on page 173). We show how Remark 6.1.6 (on page 173) can
be adapted to prove that � is a function of two inputs. We must first prove that �
satisfies property (1) of Definition 8.1.2. Let (x,y) ∈ Zm×Zm. So there are integers
a and b so that x = [a]m and y = [b]m. Since z = [ab−a]m is also in Zm, we see that
((x,y),z) ∈�. To prove that � satisfies property (2) of Definition 8.1.2, suppose that
((x,y),z) ∈ � and ((x,y),w) ∈ �. We must prove that z = w. Since ((x,y),z) ∈ �,
there are integers a and b such that x = [a]m, y = [b]m and z = [ab−a]m. Similarly, as
((x,y),w) ∈�, we have that x = [c]m, y = [d]m and w = [cd− c]m for some integers
c and d. We now have that

x = [a]m = [c]m and y = [b]m = [d]m.

Thus, to show that z = w we just need to prove that

([a]m = [c]m and [b]m = [d]m) implies [ab−a]m = [cd− c]m. (8.4)

Hence, a proof of Proposition 8.1.3 can be accomplished as follows: Let a,b,c,d
be integers. To prove that � is a function, we must verify that properties (1) and
(2) of Definition 8.1.2 are satisfied. That property (1) holds, is obvious because
[ab− a]m ∈ Zm when [a]m ∈ Zm and [b]m ∈ Zm. For this reason, we will omit the
proof of (1). To prove property (2), it is sufficient to prove (8.4) as this implication
shows that the rule (8.3) is independent of the representations used for a pair of
inputs x ∈ Zm and y ∈ Zm. We will now prove that � is a function; that is, we shall
prove that � is a well-defined binary operation. A©A©
Proof. Let a,b,c,d be integers. Assume [a]m = [c]m and [b]m = [d]m. Lemma 7.3.8(1)
implies a ≡ c(mod m) and b ≡ d (mod m). From b ≡ d (mod m), we conclude that
(b− 1) ≡ (d− 1)(mod m) by Theorem 7.3.4(2). Since a ≡ c(mod m), we obtain
(ab− a) ≡ (cd − c)(mod m) by Theorem 7.3.5(3). Thus, [ab− a]m = [cd − c]m.
Therefore, � is a binary operation on Zm. �
Remark 8.1.4. As was noted in the above proof analysis, the formula (8.3) easily
implies property (1) of Definition 8.1.2. Thus, in our proof of Proposition 8.1.3 we
did not verify that this property holds. Most mathematicians and textbooks will do
the same whenever it is obvious that property (1) holds.

Example 7. Each rational number also has multiple representations, for example,
3
4 = 6

8 = 9
12 . Consider the proposed binary operation ∗ on Q described by

m
n
∗ a

b
=

(m− 1)(a−1)

nb
(8.5)
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where m,n,a,b are integers and n,b are nonzero. Is ∗ a function from Q×Q to Q?
It is not obvious! Show that ∗ is not a function.

Solution. Suppose, for a contradiction, that ∗ is a function. Thus, the rule (8.5)
yields the more formal description (see Example 4 on page 172):

x∗ y =z iff (x,y) =
(m

n
,

a
b

)

and z =
(m−1)(a−1)

nb

for some m,n,a,b ∈ Z where n �= 0 and b �= 0.

(8.6)

Let x = 2
3 and y = 3

4 . Since z = (2−1)(3−1)
12 = 1

6 , the description (8.6) yields x∗y = 1
6 .

We also know that 2
3 = 4

6 . Thus, x = 4
6 and y = 3

4 . Because z = (4−1)(3−1)
24 = 1

4 , we
can also conclude from (8.6) that x∗y = 1

4 . We conclude that x∗y = 1
6 and x∗y = 1

4 .
Since 1

6 �= 1
4 , we have derived a contradiction. Therefore, ∗ is not a function. ��

Proposition 8.1.5. Let Q be the set of rational numbers. Consider the purported
binary operation on Q described by the rule

m
n
∗ i

j
=

m j + ni
n j

(8.7)

where m,n, i, j are integers and n, j are nonzero. Then ∗ is a binary operation on Q.

Proof Analysis. After adapting Remark 6.1.6, a proof of Proposition 8.1.5 can be
attained as follows: Let i

j ,
a
b ,

m
n ,

c
d be rational numbers, where the numerators are

integers and the denominators are nonzero integers. To prove that ∗ is a function,
we must verify that properties (1) and (2) of Definition 8.1.2 are satisfied. To prove
that (1) holds, it is enough to observe that in+ jm

jn ∈ Q when i
j ∈ Q and m

n ∈ Q. As
this is clear, we shall not mention it in our proof below. To prove property (2), it is
sufficient to prove that (see the proof of Proposition 6.1.5)

(
m
n

=
a
b

and
i
j
=

c
d

)

implies
m j + ni

n j
=

ad + bc
bd

as this implication shows that the rule (8.7) is independent of the representations
used for a pair of inputs x ∈Q and y ∈Q. A©A©
Proof. Let ∗ be the rule described by (8.7). Let i

j ,
a
b ,

m
n ,

c
d be rational numbers, where

the numerators are integers and the denominators are nonzero integers. Assume that
m
n = a

b and i
j = c

d . Thus, (�) mb = na and (#) id = jc, by Definition 2.1.3. We prove
that (m j + ni)bd = n j(ad + bc) as follows:

(m j + ni)bd = (m j)(bd)+ (ni)(bd) by distributivity

= ( jd)(mb)+ (nb)(id) by commutativity and associativity

= ( jd)(na)+ (nb)( jc) by (�) and (#)
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= (n j)(ad)+ (n j)(bc) by commutativity and associativity

= n j(ad + bc) by distributivity.

Hence, (m j+ni)bd = n j(ad +bc) and from Definition 2.1.3 we conclude that m j+ni
n j

= ad+bc
bd . Therefore, ∗ is a binary operation on Q. �

In elementary school we learned to use the right hand side of the rule (8.7) to
add two rational numbers m

n and i
j . School teachers rarely, if at all, explain to their

students why this rule describes a well-defined binary operation.

Exercises 8.1

1. Define the binary operation ∗ on R by x∗ y = exy for all x,y ∈ R. Show that for
all x > 0 there is a y > 0 such that x∗ y = x.

2. Define the binary operation ∗ on R by x∗ y = sin(xy) for all x,y ∈R. Show that
for all x ∈ R,

(a) If x �= 0, then there is a y such that x∗ y = 1;
(b) If −1≤ x≤ 1, then there is a y such that x∗ y = x.

3. Define the binary operation ∗ on R by x∗ y = sin(xy) for all x,y ∈R. Show that
this binary operation does not have an identity element.

4. For each of the following binary operations ∗ on R, answer the three questions:
Is ∗ commutative? Is ∗ associative? Does ∗ have an identity element?

(a) x∗ y = xy + x + y
(b) x∗ y = x + xy
(c) x∗ y = |x|+ |y|.

5. Using Definition 2.1.3 (as in the proof of Proposition 8.1.5), prove that the
following purported binary operations on Q

+ are well-defined.

(a) m
n ∗ i

j = ni
m j

(b) m
n ∗ i

j = (mi)2

(n j)2

where m,n, i, j are natural numbers.
6. Let m ≥ 1 be an integer and let Zm be the set of congruence classes (mod m).

Define the alleged binary operation ∗ on Zm by [a]m ∗ [b]m = [a2 + b2]m for all
[a]m, [b]m ∈ Zm. Prove that ∗ is well-defined.

7. Let Q be the set of rational numbers. Show that the following purported binary
operations on Q are not functions from Q×Q to Q.

(a) m
n ∗ i

j = mi
n

(b) m
n ∗ i

j = i
n

(c) m
n ∗ i

j = i+m
j+n

where m,n, i, j are integers and n, j are nonzero.
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8. Let F(R) be the set of all functions f : R→R. The operation of composition ◦
is a binary operation on F(R). Show that ◦ has an identity element.

9. Let Z5 be the set of congruence classes (mod 5). Define the proposed binary
operation ∗ on Z5 by [a]5 ∗ [b]5 = [|ab|]5 for all [a]5, [b]5 ∈ Z5, where |ab| is the
absolute value of ab. Show that ∗ is not a binary operation on Z5.

8.2 Algebraic Structures

Definition 8.2.1. Let A be a nonempty set with one or more binary operations
∗,+, . . . on A. We shall call A= (A,∗,+, . . .) an algebraic structure.

When it is said that A = (A,∗,+, . . . ) is an algebraic structure, one should not
presume thatA satisfies any specific ‘axioms’ or properties (e.g., associativity).A is
an algebraic structure if and only if the binary operations ∗,+, . . . are defined on all
pairs of elements in the nonempty set A. Definition 8.2.1 coincides with the one
given by Bourbaki [2, page xxii] followed by the statement

for the structures defined in this way we reserve precisely the name algebraic structures and
it is the study of these which constitutes Algebra.

Thus, abstract algebra is the study of algebraic structures and their properties.

Examples of Algebraic Structures

In elementary school and in high school we learned about the algebraic structures
presented in Examples 1–3 below.

Example 1. Let Z be the set of integers. Let · be ordinary multiplication and let +
be ordinary addition. Then (Z,+, ·) is an algebraic structure.

Example 2. Let Q be the set of rational numbers. Let · be ordinary multiplication
and let + be ordinary addition. Then (Q,+, ·) is an algebraic structure.

Example 3. Let R be the set of real numbers and let + and · be standard addition
and multiplication, respectively. Thus (R,+, ·) is an algebraic structure.

The following algebraic structure is one that has two unusual binary operations.

Example 4. Define two binary operations on R by x ∗ y = exy and x♦ y = sin(xy)
for all x,y ∈ R. Then (R,∗,♦) is an algebraic structure.

Our last four examples present algebraic structures that you may see again in
your future mathematics courses.

Example 5. Let F(R) be the set of all functions of the form f : R→R. For f and g
in F(R), define ( f ·g) : R→ R by ( f ·g)(x) = f (x)g(x) and define ( f +g) : R→ R

by ( f + g)(x) = f (x)+ g(x). Then (F(R),+, ·) is an algebraic structure.
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Example 6. Let F(Z) be the set of all functions of the form f : Z→ Z. Let f and g
be functions in F(Z). Define the function ( f ·g) : Z→Z by ( f ·g)(x) = f (x)g(x) and
define the function ( f + g) : Z→ Z by ( f + g)(x) = f (x)+ g(x). Then (F(Z),+, ·)
is an algebraic structure.

Example 7. Let M2(R) be the set of all such 2× 2 matrices with entries from R.
Then (M2(R),+,∗) is an algebraic structure where + is matrix addition and ∗ is
matrix multiplication, as defined in Examples 3 and 4 of the previous section.

Example 8. Let m > 1 be an integer. By Theorem 7.4.4, we see that (Zm,⊕,�) is
an algebraic structure.

8.2.1 Substructures

Definition 8.2.2. Let ∗ be a binary operation on a set A and let S⊆ A be nonempty.
The set S is closed under the binary operation ∗ if and only if x∗y∈ S for all x,y∈ S.

Definition 8.2.3. Let (A,∗,+, . . . ) be an algebraic structure and let S ⊆ A. When S
is closed under all of the binary operations ∗,+, . . . , we shall say that (S,∗,+, . . .)
is a substructure of (A,∗,+, . . .) or, more succinctly, that S is a substructure of A.

Example 9. Let (Z,+, ·) be the algebraic structure in Example 1. Let E ⊆ Z be the
set of even integers. Since E is closed under addition and multiplication, we see that
E is a substructure of Z.

Example 10. Let (R,+, ·) be as in Example 3. Let Q ⊆ R be the set of rational
numbers. Because Q is closed under addition and multiplication, we can conclude
that Q is a substructure of R.

Example 11. Recall the algebraic structure (M2(R),∗,+) presented in Example 7.
Let S ⊆M2(R) be defined by

S =

{[

x 0
0 y

]

: x,y ∈R

}

.

One can easily check that S is closed under matrix addition and multiplication. Thus,
S is a substructure of M2(R).

Exercises 8.2

1. Let (A,∗,+, . . .) be an algebraic structure and let B be a substructure of A.
Suppose that ∗ is commutative on A. Show that ∗ is commutative on B.
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2. Let (A,∗) be an algebraic structure. Let a,b ∈ A satisfy

a ∗ x = x∗ a = x for all x ∈ A

b ∗ x = x∗ b = x for all x ∈ A.

Prove that a = b.
3. Let (R,+, ·) be the algebraic structure in Example 3. Let S ⊆ R be defined by

S = {i+ j
√

2 : i, j ∈ Z}. Show that S is a substructure of R.
4. Let (R,+, ·) be as in Example 3. Define S ⊆ R by S = {a + b

√
3 : a,b ∈ Q}.

Show that S is a substructure of R.
5. Let (A,∗,+) be an algebraic structure and let B and C be substructures of A.

Suppose B∩C �= ∅. Prove that B∩C is a substructure of A.
6. Consider the algebraic structure (F(R),+, ·) defined in Example 5. Show that S

is a substructure of F(R) where S = { f ∈ F(R) : f (1) = 0}.
7. Let (F(Z),+, ·) be the algebraic structure defined in Example 6. Show that S is

a substructure of F(Z) where S = { f ∈ F(Z) : 5 | f (i) for all i ∈ Z}.
8. Let F(R) be the set of all functions f : R → R. For each f and g in F(R),

define the function ( f ◦g) : R→R by ( f ◦g)(x) = f (g(x)). Clearly we have that
(F(R),◦) is an algebraic structure. Let I ⊆ F(R) be the set of those functions in
F(R) that are one-to-one. Let S ⊆ F(R) be the set of those functions in F(R)
that are onto. Show that I and S are both substructures of F(R).

8.3 Groups

A group is an algebraic structure (G,∗) with only one binary operation that
satisfies three properties. Since groups are so important both within and outside
of mathematics, group theory2 has become a central subject in contemporary
mathematics.

Definition 8.3.1. An algebraic structure (G,∗), with one binary operation ∗, is a
group if the three GROUP AXIOMS hold:

1. (a∗b)∗ c = a∗ (b ∗ c) for all a,b,c ∈G (associative law).
2. There is a distinguished element e ∈ G satisfying e ∗ a = a ∗ e = a for all a ∈ G

(e is called the identity element).
3. For all a ∈ G there exists a b ∈ G such that a ∗ b = b∗a = e (b is written as a−1

and is called the inverse of a).

2Group Theory is the branch of mathematics that deals with groups.
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We will soon show that a group has exactly one identity element and that each
element of a group has exactly one inverse. We note that associativity implies that
one can write a∗b∗ c without ambiguity, for any three elements a,b,c in a group.

Remark 8.3.2. Let (G,∗) be a group. Now let a and b be in G, and let n be a natural
number. We shall write:

1. ab as shorthand for the “product” a ∗ b;
2. an as shorthand for the “product” aaa · · ·a

︸ ︷︷ ︸

n times

;

3. a−n as shorthand for (a−1)n, that is, for the “product” a−1a−1a−1 · · ·a−1
︸ ︷︷ ︸

n times

;

4. a0 is defined to be e, the identity element in G, that is, a0 = e.

One can prove, using mathematical induction, that ei = e, aia j = ai+ j, (ai) j = ai j,
and (ai)−1 = a−i for all i, j ∈N.

Definition 8.3.3 (Abelian Group). Let (G,∗) be a group. We say that G is an
abelian group if ab = ba for all a,b ∈ G.

An abelian group is also called a commutative group. A group that is not abelian
is called nonabelian.

Examples of Groups

To create groups we must first define the set G and define the binary operation ∗.
Then we must verify that the structure (G,∗) satisfies the group axioms. We now
present several examples of groups.

Example 1. Define a binary operation ∗ on the set of integers Z by a ∗ b = a + b
whenever a,b ∈ Z, where + is ordinary addition. We shall verify that the (Z,+)
satisfies the group axioms.

1. The associative law holds for (Z,+), because addition is associative.
2. Since a + 0 = 0 + a = a for all a ∈ Z, the required identity element is e = 0.
3. For a ∈ Z, because a +(−a) = (−a)+ a = 0, we conclude that a−1 = −a is the

required inverse of a.

Since all of the group axioms hold, we see that (Z,+) is a group.

Example 2. Let + be the usual binary operation of addition on Q, the set of rational
numbers. As in Example 1, one can easily verify that (Q,+) satisfies the group
axioms. Thus, (Q,+) is a group.

Example 3. Let R∗ = {x ∈ R : x �= 0} be the set of nonzero real numbers and let ·
be the standard operation of multiplication on the real numbers. We shall show that
algebraic structure (R∗, ·) satisfies the group axioms.
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1. Since multiplication is associative, the associative law holds for (R∗, ·).
2. Clearly e = 1 is the identity element, because a ·1 = 1 ·a = a for all a ∈ R

∗.
3. For a ∈ R

∗, since a · ( 1
a) = ( 1

a ) ·a = 1, the required inverse element is a−1 = 1
a .

Since all of the group axioms hold, we see that (R∗, ·) is a group.

Example 4. Let R+ = {x∈R : x> 0} and · be the usual operation of multiplication
on the real numbers. We now confirm that (R+, ·) satisfies the group axioms.

1. The associative law holds for (R+, ·), as multiplication is associative.
2. Let e = 1 ∈ R

+. Clearly, 1 is an identity element for ordinary multiplication.
3. For each a ∈ R

+, since a · ( 1
a) = ( 1

a) ·a = 1, the inverse of a is a−1 = 1
a > 0.

Since all of the group axioms hold, we see that (R+, ·) is a group.

All of the groups in Examples 1–4 are abelian groups. Our next three examples
present groups that are not abelian.

Example 5. For each a,b ∈ R with a �= 0, define the function Ta,b : R → R by
Ta,b(x) = ax+b. Let G = {Ta,b : a,b∈R and a�= 0}. Now we define Ta,b ◦Tc,d to be
ordinary function composition. Let Ta,b ∈ G and Tc,d ∈ G. So a �= 0 and c �= 0. One
can show that Ta,b ◦Tc,d = Tac,ad+b (review Exercise 4 on page 188). Since ac �= 0,
we conclude that Ta,b ◦Tc,d ∈ G, that is, G is closed under ◦ and hence, (G,◦) is an
algebraic structure.

1. The associative law holds for (G,◦), since functional composition is associative
(see Exercise 10 on page 189).

2. Let e = T1,0 be the identity function. Since T ◦T1,0 = T1,0◦T = T for every T ∈G,
the function T1,0 is the identity element for the binary operation ◦.

3. Let Ta,b ∈ G. Since T−1
a,b = T1

a ,− b
a

(Exercise 4 on page 188) and 1
a �= 0, we

see that T−1
a,b is also in G. Furthermore,

(

Ta,b ◦T−1
a,b

)

=
(

T−1
a,b ◦Ta,b

)

= T1,0 by

Corollary 6.3.5. Thus, (Ta,b)
−1 = T−1

a,b is the requisite inverse element.

Since all of the group axioms hold, we see that (G,∗) is a group. To see that this
group is not abelian, review Exercise 4 on page 188.

Example 6. Consider the set G = {e,u,v,w,x,y} and let ∗ be the binary operation
defined by the following “multiplication table” where c∗r, in the upper-left corner
of the table,

c∗r e u v w x y

e e u v w x y
u u v e x y w
v v e u y w x
w w y x e v u
x x w y u e v
y y x w v u e
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stands for “column entry” ∗ “row entry.” For example, u ∗ x = y and x ∗ u = w.
One can check that the group axioms hold for (G,∗); however, when working with
a multiplication table, it is often tedious to verify associativity. On the other hand,
using the above multiplication table, we see that u−1 = v, v−1 = u, w−1 = w, x−1 = x,
and y−1 = y. Since u ∗ x �= x∗ u, the group is not abelian.

We offer another example of a nonabelian group that closely resembles the group
presented in Example 5.

Example 7. Let M2(R) be the set of all 2× 2 matrices over the real numbers. Let

G be the set of matrices A in M2(R) that have the form A =

[
a b
0 1

]

where a �= 0.

One can show that A∗B ∈ G for all A ∈ G and B ∈ G, where the binary operation ∗
is matrix multiplication as defined in Example 4 on page 240. Thus, (G,∗) is an
algebraic structure. Furthermore, one can show that (G,∗) is a nonabelian group

with identity element I =

[
1 0
0 1

]

(see Exercise 2).

Some Structures that are not Groups

Example 8. Let · be ordinary multiplication on the set of integers Z. Then (Z, ·) is
an algebraic structure because Z is closed under multiplication. Is (Z, ·) a group?

1. Since multiplication is associative, we see that the associative law holds for (Z, ·).
2. Clearly, 1 is an identity element for multiplication.
3. Let a = 2. Since there is no integer i such that i ·2 = 2 · i = 1, axiom 3 does not

hold for the structure (Z, ·).
Since one of the group axioms fails, we see that (Z, ·) is a not a group.

Example 9. Let G = {x ∈ R : x �= 0}, the set of non-zero real numbers. For each
a,b∈G, define a∗b = a2 ·b where · is ordinary multiplication. Since the product of
non-zero real numbers is non-zero, G is closed under ∗ and so, (G,∗) is an algebraic
structure. To show that (G,∗) is not a group, we must show that (G,∗) does not
satisfy at least one of the group axioms. Does the associative law hold for (G,∗)?
Let a = 3,b = 1,c = 1. Then

a∗ (b ∗ c) = a ∗ (b2 · c) = a2 · (b2 · c) = 32 · (12 ·1) = 9

(a∗ b)∗ c = (a2 ·b)∗ c = (a2 ·b)2 · c = (32 ·1)2 ·1 = 81.

Thus a ∗ (b ∗ c) �= a ∗ (b ∗ c) and so, the associative law does not hold for (G,∗).
Since one of the group axioms fails, we see that (G,∗) is a not a group.
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8.3.1 Fundamental Properties of a Group

In this section we identify the important properties that are shared by all groups. For
a group (G,∗) and a,b ∈ G, we will write ab as shorthand for the “product” a∗b.

Lemma 8.3.4 (Uniqueness of the identity). Let (G,∗) be a group. Then there is
exactly one element b ∈G satisfying xb = bx = x for all x ∈G.

Proof. Since G is a group, there is an identity element e ∈ G such that for all x ∈ G

xe = x. (8.8)

Suppose that c ∈G is also an identity element in G. We shall prove that c = e. Since
c is an identity element, we see that for all x ∈ G

cx = x. (8.9)

Letting x = c in (8.8), we infer ce = c. Substituting x = e into (8.9), we get ce = e.
Therefore, c = e. �
Lemma 8.3.5 (Cancellation Laws). Let (G,∗) be a group. Let a,b,c ∈ G. Then
the following hold:

(1) If ab = ac, then b = c.
(2) If ba = ca, then b = c.

Proof. To prove (1), assume ab = ac. Let a−1 be an inverse of a. Since ab = ac, we
see that a−1(ab) = a−1(ac). By associativity, we obtain (a−1a)b = (a−1a)c. Thus
eb = ec and so, b = c. A similar proof will establish (2). �
Lemma 8.3.6 (Uniqueness of an inverse). Let (G,∗) be a group. For each a ∈ G
there is exactly one element b ∈ G such that ab = ba = e.

Proof. Let a ∈ G. Since G is a group, we know that there is a b ∈ G that acts as an
inverse for a. Hence,

ab = e. (8.10)

Suppose that c ∈ G is also acts as an inverse for a. We prove that c = b. Since c is
an inverse for a, we see that

ac = e. (8.11)

From (8.10) and (8.11) we obtain ac = ab. Therefore, c = b by Lemma 8.3.5. �
Lemma 8.3.7. Let (G,∗) be a group and let x ∈ G and y ∈ G. If xy = e or yx = e,
then x−1 = y.

Proof. Let x ∈ G and y ∈ G. Assume xy = e. Thus, x−1xy = x−1e and so, y = x−1.
Hence, x−1 = y. Similarly, if yx = e, then yxx−1 = ex−1 which implies x−1 = y. �
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Remark 8.3.8. Let G be a group and let a,x ∈G. To prove an equation of the form
x−1 = a, Lemma 8.3.7 implies that it is sufficient to prove that ax = e or xa = e. In
particular, since ee = e, it follows that e−1 = e.

We will apply Remark 8.3.8 in the proof of our next lemma.

Lemma 8.3.9. Let (G,∗) be a group. Let a ∈ G. Then (a−1)−1 = a.

Proof. Let e ∈ G be the identity element. Let a ∈ G and let a−1 be the inverse of a.
Since aa−1 = e, Lemma 8.3.7 implies that (a−1)−1 = a. �
Lemma 8.3.10. Let (G,∗) be a group. For every a,b ∈ G, we have (ab)−1 =
b−1a−1.

Proof. See Exercise 3. �

8.3.2 Subgroups

A common strategy in the study of a group is to investigate subsets of the group
that are also groups. Let (G,∗) be a group and let H be a substructure of G (see
Definition 8.2.3). Thus, H is a nonempty subset of G that is closed under ∗, that is,
a ∗ b ∈ H whenever a,b ∈ H. When (H,∗) is also a group, we will say that H is a
subgroup of G.

Definition 8.3.11. Let (G,∗) be a group. Then H is called a subgroup of G, if H is
a substructure of G that also satisfies the group axioms.

Each group with two or more elements has at least two subgroups, namely, the
entire group itself and the subgroup {e} containing just the identity element.

Definition 8.3.12. Let (G,∗) be a group and let H be a subgroup of G. We shall
call H a proper subgroup if H �= {e} and H �= G.

Example 10. We introduced the group (Z,+) (see Example 1) with the identity
element 0. Observe that N is a substructure of Z; however, (N,+) does not satisfy
the group axioms, as N does not have an identity element for addition. Thus, a
substructure of a group may not be a subgroup.

Example 11. Consider the group (G,∗) introduce in Example 6, where ∗ is defined
by the “multiplication table”

c∗r e u v w x y

e e u v w x y
u u v e x y w
v v e u y w x
w w y x e v u
x x w y u e v
y y x w v u e
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and G = {e,u,v,w,x,y}. Let H = {e,w}. One can easily see that H is closed under ∗.
So, H is a substructure of G with multiplication table given by

c∗r e w

e e w
w w e

One can now verify that (H,∗) satisfies the group axioms. So, H is a subgroup of
G. For another example, let K = {e,u,v}. Because K is closed under ∗, we see that
K is also a substructure of G with multiplication table given by

c∗r e u v

e e u v
u u v e
v v e u

Since (K,∗) satisfies the group axioms, we conclude that K is also subgroup of G.

Example 12. Let (G,◦) be the group presented in Example 5, where the binary
operation ◦ is composition. Define H ⊆ G by

H = {Ta,b ∈ G : a ∈Q and b ∈ R}.

Let Ta,b ∈H and Tc,d ∈H. Thus, a,c∈Q, a�= 0 and c�= 0. Since Ta,b◦Tc,d = Tac,ad+b

and ac is a nonzero rational number, we conclude that Ta,b ◦Tc,d ∈ H. Therefore, H
is closed under ◦ and so H is a substructure of G. We now show that the structure
(H,◦) satisfies the group axioms.

1. The associative law holds for (H,◦), since functional composition is associative.
2. Recall that T1,0 is the identity element for the group G. Since 1 ∈ Q, we see that

T1,0 ∈ H. For every T ∈ H we have T ◦T1,0 = T1,0 ◦T = T .
3. Let Ta,b ∈ H. Thus, a ∈Q and a �= 0. Hence, 1

a ∈Q and 1
a �= 0. In Example 5 we

showed that T1
a ,− b

a
is the inverse element for Ta,b in G. Since T1

a ,− b
a
∈ H, we see

that Ta,b has an inverse element in H.

Thus, all of the group axioms hold. So, H is a subgroup of G.

Our next lemma gives three (very useful) conditions that a subset of a group G
must satisfy in order to be a subgroup.

Lemma 8.3.13 (Subgroup Lemma). Let (G,∗) be a group and let H be a subset
of G. Then H is a subgroup of G if and only if

(1) e ∈ H,
(2) ab ∈ H whenever a,b ∈ H,
(3) a−1 ∈H whenever a ∈ H.
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Proof. Let (G,∗) be a group and let H be a subset of G. We shall show that H is a
subgroup of G if and only if the above three properties hold.

(⇒). Suppose H is a subgroup, that is, assume that (H,∗) is a group relative to
the binary operation ∗ of G. We shall first prove that (1) and (2) hold. Let e be the
identity element of G. We will show that e ∈ H. Since (H,∗) is a group, there is an
element e′ ∈H such that ae′ = a for all a ∈H. We shall show that e′ = e. Let a ∈H
be an element in H. Since ae′ = a holds in (H,∗), it follows that ae′ = a also holds
in (G,∗). Furthermore, because e ∈ G is the identity element, we have ae = a in G.
Hence, ae′ = ae. Lemma 8.3.5 implies that e′ = e and thus, e ∈ H. Item (2) holds
because H is a substructure of G and is therefore closed under the binary operation.

Now, to prove that (3) holds, let a ∈ H. Let a−1 be the inverse of a in (G,∗). We
shall show that a−1 ∈H. Since (H,∗) is a group, there exists an element a′ ∈H such
that aa′ = e. An argument similar to the one in the previous paragraph, shows that
a′ = a−1 and thus, a−1 ∈ H.

(⇐). Suppose H satisfies properties (1)–(3). From property (1) we see that H is
nonempty. Property (2) implies that H is closed under ∗ and so, H is a substructure
of G. We will show that (H,∗) satisfies the group axioms. Since ∗ is associative in
G, we see that the associative law also holds for (H,∗). By (1), we have that e ∈ H
where e is an identity element for G. So, e is also the identity element for H. Let
a∈H. By (3), we have that a−1 ∈H. Since a−1 is the inverse for a in G, we see that
a−1 is the inverse element for a in H as well. Therefore, H is a subgroup of G. �
Example 13. Let (G,◦) be the group presented in Example 5 on page 249, where
◦ is composition. Define N ⊆ G to be N = {T1,b ∈ G : b ∈ R}. To show that N is a
subgroup of G, we shall verify that items (1)–(3) of Lemma 8.3.13 hold.

(1) Clearly T1,0 ∈ N.
(2) Let T1,b and T1,c be in N. Since T1,b ◦T1,c = T1,c+b, we see that T1,b ◦T1,c is in N.

(3) Let T1,b ∈ N. Because T−1
1,b = T1,−b, we conclude that T−1

1,b ∈ N.

Since (1)–(3) hold, Lemma 8.3.13 implies that N is a subgroup of G.

Lemma 8.3.13 gives three essential properties that must be verified before one
can conclude that a subset H of a group G is a subgroup. Furthermore, if one is
assuming that H is a subgroup of G, then one can take advantage of these three
properties. Thus, we have the following proof and assumption strategies.

Proof Strategy 8.3.14. Let (G,∗) be a group and let H be a subset of G. To prove
that H is a subgroup of G, use the three-step proof diagram:

Step (1): Prove e ∈H.

Step (2): Let a,b ∈ H.

Prove ab ∈ H.

Step (3): Let a ∈H.

Prove a−1 ∈ H.
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Assumption Strategy 8.3.15. Let (G,∗) be a group and suppose in a proof you
are assuming that H is a subgroup of G. Then you know that e ∈ H, and if you
are assuming or can prove that a,b ∈ H, then you can conclude that ab ∈ H and
a−1 ∈ H.

In the proof of our next theorem we will employ both Proof Strategy 8.3.14 and
Assumption Strategy 8.3.15.

Theorem 8.3.16. Let (G,∗) be a group. Suppose that H and K are subgroups of G.
Then H ∩K is also a subgroup of G.

Proof. Suppose that H and K are subgroups of G. We shall prove that H ∩K is a
subgroup of G.

(1) Since H and K are subgroups of G, Lemma 8.3.13 implies that e∈H and e∈K.
Thus, e ∈ H ∩K.

(2) Let a,b ∈H ∩K. So, a,b ∈ H and a,b ∈ K. Since H and K are subgroups of G,
Lemma 8.3.13 implies that ab ∈H and ab ∈ K. Therefore, ab ∈ H ∩K.

(3) Let a ∈H∩K. Thus, a ∈H and a ∈ K. Because H and K are subgroups of G, it
follows from Lemma 8.3.13 that a−1 ∈ H and a−1 ∈ K. Hence, a−1 ∈ H ∩K.

Lemma 8.3.13 now implies that H ∩K is a subgroup of G. �

8.3.3 Normal Subgroups

A normal subgroup is a special kind of subgroup that can be used to construct a
new group. This new group is obtained by using a relevant equivalence relation (see
Section 8.6.1).

Definition 8.3.17. Let (G,∗) be a group and let N be a subgroup of G. For each
a∈G, define the set a−1Na = {a−1na : n ∈ N}. In other words, the set a−1Na is the
collection of all products of the form a−1na for some n ∈ N.

Clearly, for each a ∈ G, the set a−1Na is a subset of G.

Theorem 8.3.18. Let (G,∗) be a group and let N be a subgroup of G. Then for all
a ∈ N, we have that a−1Na⊆ N.

Proof. Suppose that (G,∗) is a group and N is a subgroup of G. Let a ∈ N. So
a−1 ∈ N, as N is a subgroup. Thus, a−1na ∈ N for all n ∈ N, because N is closed
under ∗. Therefore, a−1Na⊆ N. �

We know, by the above theorem, that for each a ∈ N the set a−1Na is a subset of
N whenever N is a subgroup of G. Suppose for each a ∈G we also have that a−1Na
is a subset of N. Then N will be called a normal subgroup.
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Definition 8.3.19. Let (G,∗) be a group and let N be a subgroup of G. We shall call
N a normal subgroup if a−1Na⊆N for every a∈G. We shall write N� G to mean
that N is a normal subgroup of G.

In our next example, we present a normal subgroup of finite group G and then
another subgroup of G that is not normal. To show that a subgroup H is not normal,
one must find an element a ∈ G and an element h ∈ H and show that a−1ha /∈ H.

Example 14. Consider the group (G,∗) presented in Example 6. Recall that ∗ is
defined by the “multiplication table”

c∗r e u v w x y

e e u v w x y
u u v e x y w
v v e u y w x
w w y x e v u
x x w y u e v
y y x w v u e

where G = {e,u,v,w,x,y}. In Example 11 we identified the subgroup K = {e,u,v}
of G. We shall show that K is a normal subgroup; that is, we show that a−1Ka⊆ K
for each a ∈ G. By Theorem 8.3.18, we just need to show that a−1Ka⊆ K for each
a ∈ G\K = {w,x,y}. We do this as follows:

1. w−1Kw = {w−1kw : k ∈ K}= {w−1ew, w−1uw, w−1vw}= {e,v,u} ⊆ K

2. x−1Kx = {x−1kx : k ∈ K}= {x−1ex, x−1ux, x−1vx}= {e,v,u} ⊆ K

3. y−1Ky = {y−1ky : k ∈ K}= {y−1ey, y−1uy, y−1vy}= {e,v,u} ⊆ K.

Therefore, K is normal subgroup of G. In Example 11, we also showed that
H = {e,w} is a subgroup of G. Observe that H is not a normal subgroup, because
x−1wx = y /∈H.

Example 15. A group can have more than one normal subgroup. Let (G,◦) be the
group in Example 5 on page 249, where ◦ is composition.

1. Let H = {Ta,b ∈ G : a ∈ Q and b ∈ R}. In Example 12 we showed that H is a
subgroup of G. Furthermore, for any Tc,d ∈ G and any Ta,b ∈ H, one can show
(see Exercise 11) that T−1

c,d Ta,bTc,d ∈ H. Hence T−1
c,d HTc,d ⊆ H and therefore, H

is a normal subgroup of G.
2. In Example 13, we showed that N = {T1,b ∈ G : b ∈ R} is a subgroup of G. For

any Tc,d ∈ G and any T1,b ∈ N, one can verify that T−1
c,d T1,bTc,d = T1,� for some

real number �. Thus T−1
c,d NTc,d ⊆ N. So, N is another normal subgroup of G.

Definition 8.3.19 provides a clear strategy for proving that a subgroup of a group
is a normal subgroup.
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Proof Strategy 8.3.20. Let (G,∗) be a group and let N be a subgroup of G. To
prove that N is a normal subgroup of G, use the proof diagram:

Let a ∈G.

Prove a−1Na⊆ N.

In other words, use the diagram

Let a ∈G and n ∈ N.
Prove a−1na ∈ N.

Assumption Strategy 8.3.21. Let (G,∗) be a group and suppose in a proof that
you are assuming N is a normal subgroup of G. Let a ∈ G be any element. When
you are assuming or can prove that n ∈ N, then you can conclude that a−1na∈ N or,
equivalently, that a−1na = h for some h ∈ N.

The proof of our next theorem uses Strategies 8.3.20 and 8.3.21.

Theorem 8.3.22. Let (G,∗) be a group. If H� G and K� G, then H ∩K� G.

Proof. Suppose H � G and K � G. By Theorem 8.3.16, we know that H ∩K is a
subgroup of G. We shall prove that H ∩K is a normal subgroup of G. Let a ∈ G
and n ∈ H ∩K. We shall prove that a−1na ∈H ∩K. Since n ∈ H ∩K, it follows that
n ∈ H and n ∈ K. Now, because H and K are normal subgroups of G, we have that
a−1na ∈ H and a−1na ∈ K. Hence, a−1na ∈ H ∩K. �

8.3.4 The Order of an Element in a Group

In group theory the term order is used for two closely related concepts.

1. The order of a group G is simply the number of elements in G.
2. The order of an element a in a group is the smallest natural number m (if it exists)

such that am = e, where e is the identity element of the group.

Here are the official definitions.

Definition 8.3.23. Let (G,∗) be a group.

1. The order of G, denoted by |G|, is the cardinality (number of elements) of G.
2. The order of a ∈ G, denoted by o(a), is the least natural number m such that

am = e. If no such m exists, then we say that the order of a does not exist.

Example 16. Let (G,∗) be the group (see Example 7) of all matrices A in

M2(R) that have the form A =

[
a b
0 1

]

where a �= 0 and the operation ∗ is matrix

multiplication. Since G contains an infinite number of elements, the group G has

infinite order. Let A ∈ G be given by A =

[−1 1
0 1

]

. Since A2 =

[
1 0
0 1

]

, we conclude



258 8 Core Concepts in Abstract Algebra

that A has order 2. On the other hand, the order of the matrix B =

[
2 0
0 1

]

does not

exist, because Bm =

[
2m 0
0 1

]

�=
[

1 0
0 1

]

for all natural numbers m.

We shall say that G is a finite group if G has a finite number of elements, and
we use the notation |G| to denote this number.

Example 17. Let (G,∗) be the group in Example 6, where G = {e,u,v,w,x,y} and ∗
is defined by the “multiplication table”

c∗r e u v w x y

e e u v w x y
u u v e x y w
v v e u y w x
w w y x e v u
x x w y u e v
y y x w v u e

We see that G is a finite group of order 6, that is, |G|= 6. To determine the order of
the element v ∈G, observe that v �= e, v2 �= e and v3 = e. Thus, o(v) = 3, that is, the
element v has order 3.

We now show that the order of any element in a finite group exists.

Theorem 8.3.24. Let (G,∗) be a finite group. For every a ∈ G there is a natural
number k such that ak = e and thus, the order of a exists.

Proof. Suppose that (G,∗) is a finite group and let a ∈ G. Consider the infinite list
of elements in G

a,a2, . . . ,ai,ai+1, . . .

Since G is finite, there must be repetitions in the above list. So there are natural
numbers i < j such that a j = ai. Hence, a ja−i = e and a j−i = e. So, for k = j− i≥ 1,
we have that ak = e. Therefore, there is a natural number k such that ak = e. By the
well-ordering principle, there is a least such k and hence the order of a exists. �

Let a �= e be an element in a finite group G and let k be a natural number. To
prove that o(a) = k, you must prove (1) ak = e and (2) for all i ∈ N, if i < k then
ai �= e. We shall apply this strategy in the proof of the next lemma.

Lemma 8.3.25. Let (G,∗) be a finite group and let a ∈ G. If n = o(a) and n = jk
for natural numbers j > 1 and k > 1, then o(a j) = k.

Proof. Let (G,∗) be a finite group and let a∈G. Suppose n = o(a) and n = jk, where
j > 1 and k > 1. Since n = o(a), we know that an = e and am �= e whenever m < n
is a natural number. To show that o(a j) = k, we first prove that (a j)k = e as follows:
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(a j)k = a jk = an = e. Now, let i < k be a natural number. We have (a j)i = a ji �= e
because ji < jk = n. Therefore, o(a j) = k. �
Lemma 8.3.26. Let (G,∗) be a finite group and let a ∈G. For each n ∈ Z, if an = e
then o(a) |n.

Proof. Let (G,∗) be a finite group with a ∈ G. Let d = o(a). Let n be any integer.
Assume an = e. We shall prove that d |n. By Theorem 4.6.9 (the division algorithm),
n = qd + r for some q,r ∈ Z where 0 ≤ r < d. We shall prove that r = 0. Since
n = qd + r, we have (see Remark 8.3.2) that

an = aqd+r = aqdar =
(

ad
)q

ar.

So, an =
(

ad
)q

ar. Since an = e and ad = e, the equation an =
(

ad
)q

ar implies that
ar = e. Because 0 ≤ r < d and d is the least natural number satisfying ad = e, we
must have r = 0. Therefore, n = qd and d |n. �

Exercises 8.3

1. Determine if the following algebraic structures are groups. If not, identify a
group axiom that fails in the structure.

(a) (Z,∗) where a ∗ b = a− b for all integers a and b.
(b) (Z,∗) where a ∗ b = a + ab + b for all integers a and b.
(c) (G,+) where G = {3k : k ∈ Z} and + is ordinary addition.

2. Let (G,∗) be the algebraic structure in Example 7 on page 250. Show that (G,∗)
is a nonabelian group.

3. Prove Lemma 8.3.10 by showing (ab)(b−1a−1) = e.
4. Let (G,∗) be a group. Suppose (ab)2 = a2b2 for all a,b ∈ G. Prove that G is

abelian.
5. Let (G,∗) be an abelian group and let a,b∈G. Prove by mathematical induction

that (ab)n = anbn for all natural numbers n.
6. Let (G,∗) be a finite abelian group and let a,b ∈ G. Suppose o(a) = m and

o(b) = n. Using the result of Exercise 5, prove that o(ab)≤ mn.
7. Let (G,∗) be a finite group and let a∈G. Prove that if o(a)= n, then o(a−1) = n.
8. Let (G,∗) be a group. Let a ∈ G define H ⊆ G by H = {an : n ∈ Z}. Prove that

H is a subgroup of G.
9. Let (G,∗) be a group. Let a ∈ G and define H = {g ∈ G : ag = ga}. Prove that

H is a subgroup of G.
10. Let (G,∗) be a group. Let H = {g ∈ G : gx = xg for all x ∈ G}. Prove that H is

a subgroup of G.
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11. Let (G,◦) be the group presented in Example 5 on page 249. We know that
H = {Ta,b ∈ G : a ∈Q and b ∈ R} is a subgroup of G (see Example 12). Show
that H is a normal subgroup of G.

12. Let (G,∗) be a group with subgroups H and K. Suppose H ⊆ K. Explain why
H is also a subgroup of K.

13. Let (G,∗) be a group with normal subgroup N. Suppose that N ⊆ K where K is
also subgroup of G. Explain why N is a normal subgroup of K.

14. Let (G,∗) be a group and suppose N� G. Let n ∈ N. Prove that ana−1 ∈ N, for
all a ∈ G.

15. Let (G,∗) be an abelian group. Prove that every subgroup H of G is normal.
16. Let (G,∗) be a group and let a ∈ G. Suppose that N is a normal subgroup of G.

Prove the following:

(a) For all n ∈ N there exists a j ∈ N such that na = a j.
(b) For all n ∈ N there exists a k ∈ N such that an = ka.

17. Let (G,∗) be a group. Suppose H� G and K� G. Prove that HK is a subgroup
of G, where HK = {hk : h ∈ H and k ∈ K}.

18. Let (G,∗) be a group. Suppose H� G and K�G. Given that HK in Exercise 17
is a subgroup of G, prove that HK� G.

19. Let (G,∗) be a group and suppose that N � G. Prove that N ⊆ a−1Na, for all
a ∈ G. Conclude that N = a−1Na for each a ∈ G.

20. Let (G,∗) be a group and let N be a normal subgroup of G. Let a,b,c,d ∈ G.
Suppose ac−1 ∈ N and bd−1 ∈ N. Prove that (ab)(cd)−1 ∈ N.

21. Let (G,∗) be a group. For a,b ∈ G, define a ∼ b if and only if a = gbg−1 for
some g ∈ G. Prove that ∼ is an equivalence relation on G.

22. Let (G,∗) be a group and let {Hi : i ∈ I} be an indexed family of subgroups of
G. Prove that

⋂

i∈I
Hi is a subgroup of G.

23. Let (G,∗) be a group. Suppose that {Ni : i ∈ I} is an indexed family of normal
subgroups of G. Prove that

⋂

i∈I
Ni is a normal subgroup of G.

Exercise Notes: For Exercise 2, use Example 5 as a guide. For Exercise 3, see
Remark 8.3.8. For Exercise 17, use Exercise 16. For Exercise 18, the identity
xy = xaa−1y is useful. For Exercise 19, use Exercise 14. For Exercise 20, verify
that (ab)(cd)−1 = (ab)(d−1c−1) = a(bd−1)c−1. Now use Exercise 16(b).

8.4 Permutation Groups

The group concept has its roots in the study of permutations. What is a permutation?
If S is a nonempty set, then a permutation of S is a one-to-one and onto function
σ : S→ S. In this section we shall be using lower case Greek letters to denote such
functions.
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Example 1. Let Z be the set of integers and define π : Z→ Z by π(x) = x + 2.
Since π is one-to-one and onto, the function π is a permutation of Z.

Example 2. Let R be the set of real numbers and let a,b ∈ R with a �= 0. Define
the function σ : R→ R by σ(x) = ax + b. Then σ is a permutation of R.

Definition 8.4.1. Let S be a nonempty set. Then Per(S) is the set of all one-to-one
and onto functions from S to S. We call Per(S) the set of all permutations of S. For
σ ,τ ∈ Per(S), we let σ ◦ τ be the composition of the functions σ and τ .

A permutation group is a group whose elements are permutations of a given
set with composition as its binary operation. We will soon show that (Per(S),◦) is
a group. One reason permutation groups are important is that every group can be
represented as a group of permutations on a suitable set. Thus, every group can be
thought of as set of permutations.

Remark 8.4.2. Let σ and τ be permutations in Per(S) where S is a nonempty set,
and let n be a natural number. Then we shall write:

1. στ as shorthand for the composition σ ◦ τ .
2. σ−1 for the inverse function of σ .
3. ι for the identity function from S to S (ι is the Greek letter iota).
4. σn for the composition σσσ · · ·σ

︸ ︷︷ ︸

n times

.

5. σ−n as shorthand for (σ−1)n, that is, the composition σ−1σ−1σ−1 · · ·σ−1
︸ ︷︷ ︸

n times

.

6. σ0 = ι .

Note that σ−1 ∈ Per(S) by Theorem 6.2.14. Since ι is one-to-one and onto, we see
that ι ∈ Per(S). It follows that ι i = ι , σ iσ j = σ i+ j, (σ i) j = σ i j and (σ i)−1 = σ−i

for all i, j ∈ Z.

Lemma 8.4.3. Let S be a nonempty set and let σ ,τ,γ be elements in Per(S). Then

(a) στ ∈ Per(S).
(b) (στ)γ = σ(τγ).
(c) ισ = σι = σ .
(d) σσ−1 = σ−1σ = ι .

Thus, (Per(S),◦) is a group.

Proof. Since the composition of one-to-one and onto functions is also a one-to-one
and onto function (by Theorems 6.3.6 and 6.3.7), we see that (a) holds. Part (b)
follows from the fact that functional composition is associative (see Exercise 10 on
page 189). Item (c) follows from Theorem 6.3.3, and Theorem 6.3.4 implies (d).
This completes the proof. �

Item (a) of Lemma 8.4.3 shows that (Per(S),◦) is an algebraic structure, and
the remaining items (b)–(d) show that (Per(S),◦) is a group. Since (Per(S),◦) is a
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group, we know by Lemma 8.3.10 that (στ)−1 = τ−1σ−1 whenever σ and τ are
functions in Per(S). Because σ and τ are functions, one can also prove this identity
directly.

8.4.1 The Symmetric Group

The quadratic formula x = −b±
√

b2−4ac
2a explicitly yields the roots of each sec-

ond degree polynomial ax2 + bx + c when a,b,c are real numbers and a �= 0.
For centuries mathematicians wanted to know if it were possible to similarly solve
for the roots of a polynomial of any degree. Évariste Galois solved this very difficult
problem after he discovered an important connection between the ability to solve for
the roots of a polynomial and a certain permutation group. This connection allowed
Galois to give precise conditions that must be satisfied before one can successfully
solve for the roots of a polynomial using radicals. Galois then showed that there is
no formula, like the quadratic formula, that can be used to solve for the roots of each
polynomial of degree n, when n ≥ 5. It was this major discovery that gave birth to
group theory. In this section we will investigate the permutation groups that Galois
used to solve this famous problem in mathematics.

Definition 8.4.4. Let n be a natural number and let S = {1,2,3, . . . ,n}. We let Sn

denote the set of all one-to-one and onto functions from S to S. In other words,
Sn = Per(S).

In this section we will focus on the permutation group Sn. Each σ ∈ Sn is called
a permutation on n. Define the binary operation ◦ on Sn to be composition, that is,
σ ◦τ for σ ,τ ∈ Sn. Then (Sn,◦) is called the symmetric group of degree n. We note
that Sn is a finite group with n! many elements.

Matrix Notation

Let n be a natural number and let S = {1,2,3, . . . ,n}. It will be useful to have more
than one way to represent a permutation in Sn. We can identify a permutation σ ∈ Sn

by simply listing how σ acts on each element in S as follows:

σ(1) = i1, σ(2) = i2, . . . , σ(n) = in.

Another way to capture all of the values of σ is to use the matrix notation

σ =

(
1 2 3 · · · n
i1 i2 i3 · · · in

)

where we list all the elements of S in the first row of the matrix and below each of
these elements, we put their image under σ .
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Example 3. Let S = {1,2,3,4,5} and let σ ∈ S5 be defined by σ =

(
1 2 3 4 5
5 1 4 2 3

)

.

So, σ(1) = 5, σ(2) = 1, σ(3) = 4, σ(4) = 2, and σ(5) = 3.

Example 4. Let S = {1,2,3,4} and let σ ∈ S4 be defined by σ =

(
1 2 3 4
3 1 4 2

)

. Thus,

σ−1 =

(
1 2 3 4
2 4 1 3

)

.

Example 5. Let S = {1,2,3,4,5}. If σ =

(
1 2 3 4 5
2 3 5 1 4

)

and τ =

(
1 2 3 4 5
4 3 5 1 2

)

, then

στ =

(

1 2 3 4 5
1 5 4 2 3

)

.

Cycle Notation

We offer an alternative method, called cycle notation, for representing permutations
in Sn. Cycle notation has several advantages over matrix notation.

Definition 8.4.5. Let i1, i2, . . . , ik be distinct elements in S = {1,2,3, . . . ,n}where n
is a natural number and 1≤ k≤ n. The expression (i1, i2, i3, . . . , ik) is called a k-cycle
and denotes the permutation σ ∈ Sn where σ(i1) = i2, σ(i2) = i3, . . . , σ(ik) = i1, and
σ( j) = j for all j ∈ S not listed in (i1, i2, i3, . . . , ik). We will also call (i1, i2, i3, . . . , ik)
a cycle and refer to i1, i2, i3, . . . , ik as the components of the cycle.

Let S = {1,2,3,4,5,6} and consider the permutation σ ∈ S6 represented by the
4-cycle σ = (1,3,4,2). So,

σ(1) = 3, σ(3) = 4, σ(4) = 2, σ(2) = 1 (8.12)

where σ(5) = 5 and σ(6) = 6, because 5 and 6 are not listed in the cycle (1,3,4,2).
Using the notation i �→ j to denote the fact that σ(i) = j, we can express (8.12) as

1 �→ 3 �→ 4 �→ 2 �→ 1.

We see the last item in the cycle (1,3,4,2), namely 2, gets mapped to the first
item in this cycle. Using (8.12), we can express σ in matrix notation and obtain

σ =

(

1 2 3 4 5 6
3 1 4 2 5 6

)

. One simple advantage of the cycle notation σ = (1,3,4,2) is

that it is easy to represent σ−1. All one has to do is reverse the order of the cycle
σ = (1,3,4,2) to obtain σ−1 = (2,4,3,1).

We note that cycle notation is not unique. Again, let σ = (1,3,4,2) represent a
permutation in S6. Let us move the last component 2 of the cycle σ around to the
first position, obtaining τ = (2,1,3,4). Thus,

τ(2) = 1, τ(1) = 3, τ(3) = 4, τ(4) = 2 (8.13)
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where τ(5) = 5 and τ(6) = 6, because 5 and 6 are not listed in the cycle (2,1,3,4).
From (8.13), we see that σ = τ . Similarly, σ = (2,1,3,4) = (4,2,1,3) = (3,4,2,1).

Another thing to note is that any 1-cycle is just the identity permutation. To see
this, let us work in S6 and consider the 1-cycle σ = (4). Since 4 is the first and last
item in this cycle, we see that σ(4) = 4 and σ(i) = i for every i not listed in the
cycle (4). So, σ is the identity permutation.

Now let σ = (i1, i2, i3, . . . , ik) be a k-cycle in Sn. Since

σ(i1) = i2, σ(i2) = i3, . . . , σ(ik) = i1,

we see that σ can also be viewed as

σ = (i1,σ(i1),σ2(i1), . . . ,σ k−1(i1))

where σ k(i1) = i1. For example, let σ ∈ S7 be the cycle defined by σ = (2,3,5,6).
Then σ = (2,σ(2),σ2(2),σ3(2)) and σ4(2) = 2.

8.4.2 Cycle Products

Suppose we have two permutations σ = (i1, . . . , ik) and τ = ( j1, . . . , j�) that are
represented by cycles. Then the product of the two cycles

(i1, . . . , ik)( j1, . . . , j�)

denotes the composition στ . We now present some examples in which we evaluate
the composition of two permutations that are given in cycle notation.

Example 6. Let σ ∈ S6 be defined by the 4-cycle σ = (3,2,4,1) and let τ be
the 5-cycle τ = (3,5,6,2,1). Evaluate the composition στ using the cycle product
(3,2,4,1)(3,5,6,2,1).

Solution. We are to evaluate the cycle product στ = (3,2,4,1)(3,5,6,2,1); that is,
we need to compute (στ)(1), (στ)(2), . . . , and (στ)(6). We will just determine
the values for (στ)(1) and (στ)(5). One can then easily evaluate the remaining
values. Of course, (στ)(1) = σ(τ(1)) and (στ)(5) = σ(τ(5)) by the definition of
composition. We will use the notation τ : i �→ j to denote the fact that τ(i) = j, and
similarly for σ . Thus, σ : 2 �→ 4 and τ : 6 �→ 2. To determine σ(τ(1)) we shall use
the given cycle product rewritten below as (8.14):

(3,2,4,1)(3,5,6,2,1). (8.14)

We first locate 1 in the right cycle representing τ . We see that τ : 1�→ 3. Now we find
3 in the left cycle representing σ and we see that σ : 3�→ 2. Therefore, (στ)(1) = 2.
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Similarly, to evaluate (στ)(5) we first find 5 in the right cycle in (8.14) and we
see that τ : 5 �→ 6 and since 6 does not appear in the left cycle, we have σ : 6 �→ 6.
We conclude that (στ)(5) = 6. ��
Example 7. Let σ ∈ S6 be the 4-cycle σ = (3,2,4,1) and let τ ∈ S6 be the
3-cycle τ = (5,3,6). Show that στ �= τσ .

Solution. We have that στ = (3,2,4,1)(5,3,6) and τσ = (5,3,6)(3,2,4,1).
Observe that 3 appears in both of the cycles σ and τ . Note that (στ)(3) = 6
and (τσ)(3) = 2. Hence, στ �= τσ . ��
Definition 8.4.6. Two cycles are said to be disjoint if the cycles have no compo-
nents in common.

Example 8. Consider the disjoint cycles σ = (2,5,3) and τ = (8,6,4,7) in S8.
Show that στ = τσ .

Solution. Since στ = (2,5,3)(8,6,4,7) and τσ = (8,6,4,7)(2,5,3) we see that

(στ)(1) = 1 = (τσ)(1)

(στ)(2) = 5 = (τσ)(2)

(στ)(3) = 2 = (τσ)(3)

(στ)(4) = 7 = (τσ)(4)

(στ)(5) = 3 = (τσ)(5)

(στ)(6) = 4 = (τσ)(6)

(στ)(7) = 8 = (τσ)(7)

(στ)(8) = 6 = (τσ)(8).

Therefore, στ = τσ . ��
Our next result shows any two disjoint cycles commute.

Theorem 8.4.7. Let σ and τ be disjoint cycles in Sn. Then στ = τσ .

Proof. Let σ and τ be disjoint cycles in Sn. Let 1 ≤ i ≤ n. We will show that
(στ)(i) = (τσ)(i). There are three cases to consider.

CASE 1: i does not appear in either of the cycles σ or τ . In this case we see that
τ(i) = i and σ(i) = i. Consequently, σ(τ(i)) = i = τ(σ(i)).

CASE 2: i appears in τ . Since σ and τ are disjoint, we conclude that i and τ(i) do not
appear in σ . Therefore, σ(τ(i)) = τ(i) and σ(i) = i. Thus σ(τ(i)) = τ(i) = τ(σ(i)).

CASE 3: i appears in σ . Because σ and τ are disjoint, we have that i and σ(i) do not
appear in τ . Thus, τ(i) = i and τ(σ(i)) = σ(i). Hence, σ(τ(i)) = σ(i) = τ(σ(i)).

In each case we conclude that (στ)(i) = (τσ)(i). Therefore, στ = τσ . �
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8.4.3 Cycle Decomposition

In this section we will present a cycle decomposition algorithm3 that will allow
us to express each permutation in Sn as a product (composition) of disjoint cycles.
Observe that the identity permutation ι ∈ Sn can be written as ι = (1) and so, it is
easy to express ι as a ‘product’ of one cycle. Before we present our algorithm, we
must first explain what it means for an element to be moved by a permutation and
then establish a method for generating cycles.

Definition 8.4.8. Let S = {1,2,3, . . . ,n} where n > 1 is a natural number. Let π ∈
Sn. The permutation π is said to move i∈ S, if π(i)�= i. We let Mπ = {i∈ S : π(i)�= i}
be the set of elements in S that are moved by π . We shall let |Mπ | denote the number
of elements in Mπ .

Example 9. Let τ ∈ S6 be the permutation τ =

(
1 2 3 4 5 6
3 2 4 6 5 1

)

. Then τ moves

1,3,4,6. Thus Mτ = {1,3,4,6} and |Mτ |= 4.

We now identify a method for constructing cycles. Suppose σ ∈ Sn and i ∈Mσ .
Let k be the least natural number satisfying σ k(i) = i (see Lemma 8.4.9, below) and
let τ be the cycle defined by

τ = (i,σ(i),σ2(i), . . . ,σ k−1(i)). (8.15)

Since σ k(i) = i, we shall say that τ is the cycle obtained by “starting at i and cycling
through σ until returning to i.”

Given a specific permutation σ ∈ Sn and i ∈Mσ , it is quite easy to construct the
cycle τ given in (8.15).

Example 10. Let σ ∈ S6 be the permutation σ =

(
1 2 3 4 5 6
5 2 6 3 4 1

)

. Since σ(1) �= 1,

we have that 1 ∈Mσ . Starting at 1, we cycle through σ until returning to 1 to obtain
the cycle τ = (1,σ(1),σ2(1),σ3(1),σ4(1)) = (1,3,4,5,6) where σ5(1) = 1.

1 2 3 4 5 6

3 2 4 5 6 1

For a permutation σ on S and X ⊆ S, recall that σ [X ] is the image of X (see
Definition 6.4.1).

Lemma 8.4.9. Let σ be a permutation in Sn. Then σ [Mσ ] = Mσ and for each i∈Mσ
there is a natural number k ≤ |Mσ | such that σ k(i) = i.

3An algorithm is a step-by-step procedure for solving a problem.
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Proof. Let σ be a permutation in Sn where S = {1,2, . . . ,n}. We first prove that
σ [Mσ ]⊆Mσ . Let x∈Mσ and thus, σ(x)�= x. We show that σ(x)∈Mσ . Suppose, for
a contradiction, that σ(σ(x)) = σ(x). Since σ is one-to-one, we infer that σ(x) = x.
This contradiction forces us to conclude the σ(x) ∈Mσ and so, σ [Mσ ]⊆Mσ .

To prove that Mσ ⊆ σ [Mσ ], let x ∈Mσ . We shall show that x ∈ σ [Mσ ]. Since σ
is onto, there is an i ∈ S such that (1) σ(i) = x. We show that i ∈Mσ . Suppose, for
a contradiction, that i /∈Mσ . So, (2) σ(i) = i. Equations (1) and (2) yield x = i and
thus x /∈Mσ , which is a contradiction. Hence, must have that i ∈Mσ . Now, because
σ(i) = x, we see that x ∈ σ [Mσ ]. So, Mσ ⊆ σ [Mσ ] and therefore, σ [Mσ ] = Mσ .

Now, let i ∈ Mσ and m = |Mσ |. We shall prove that there is a natural number
k ≤m such that σ k(i) = i. Consider the list

i,σ(i),σ2(i), . . . ,σm(i). (8.16)

Since i ∈Mσ and σ [Mσ ]⊆Mσ , it follows that each item in the list (8.16) is in Mσ .
Furthermore, because m = |Mσ | and the list has m + 1 many terms, two of these
terms must be equal. If the first term i in (8.16) is equal to another term σ k(i),
then σ k(i) = i where 1 ≤ k ≤ m and we have our desired conclusion. Suppose that
(�) σb(i) = σa(i) for some natural numbers 1 ≤ a < b≤ m. It follows, by applying
the function σ−a to both sides of the equation (�), that σb−a(i) = i. Thus, σ k(i) = i
where k = b−a≤ m and k is a natural number. �
Lemma 8.4.10. Let σ be a permutation in Sn and i ∈Mσ . Let � be the least natural
number satisfying σ �(i) = i. Then 2 ≤ � ≤ |Mσ | and i,σ(i),σ2(i), . . . ,σ �−1(i) are
distinct elements in Mσ .

Proof. See Exercise 18. �
We now present our procedure for expressing a permutation on n, as a product of

disjoint cycles.

Cycle Decomposition Algorithm. Given σ ∈ Sn and σ �= ι , let L be a list of all the
elements in Mσ .

1. Pick the first item, say i, in the list L.
2. Construct the cycle τ by starting at i and cycling through σ until returning to i.
3. Record the cycle τ and delete all items from the list L that appear in τ .
4. If the list L is empty, then stop; otherwise, go to Step 1.

After completing this algorithm, σ is the product of all the recorded disjoint cycles.

Example 11. Let σ ∈ S9 be defined by σ =

(
1 2 3 4 5 6 7 8 9
4 9 3 6 2 1 5 8 7

)

. Using the cycle

decomposition algorithm, express σ as a product of disjoint cycles.
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Solution. Because Mσ = {1,2,4,5,6,7,9}, we let L = 1,2,4,5,6,7,9. Since 1 is
the first item in the list L, we start at 1 and cycle through σ until we return to 1 as
follows:

1 2 3 4 5 6 7 8 9

4 9 3 6 2 1 5 8 7

We obtain our first cycle τ1 = (1,4,6). Removing 1,4,6 from the list L we obtain
the new list L = 2,5,7,9. Since 2 is the first item in the list L, we start at 2 and cycle
through σ until we return to 2:

1 2 3 4 5 6 7 8 9

4 9 3 6 2 1 5 8 7

We obtain our second cycle τ2 = (2,9,7,5). Removing 2,9,7,5 from the list L we
obtain the empty list. Hence, σ = τ2τ2 = (1,4,6)(2,9,7,5) is the product of the
resulting disjoint cycles. ��

The proof of our next theorem verifies that the cycle decomposition algorithm is
correct; that is, the proof shows that the algorithm will “always work.”

Theorem 8.4.11. Let n be a natural number. Every permutation σ ∈ Sn can be
expressed as a product of pairwise disjoint cycles.

Proof. Let S = {1,2, . . . ,n}where n is a natural number. Since ι = (1) is a ‘product’
of one cycle, we shall only consider permutations σ ∈ Sn where σ �= ι . We will
prove, by strong induction on |Mσ |, the following statement:

Whenever |Mσ | ≥ 2, the permutation σ can be written as a product of disjoint
cycles whose components are in Mσ .

Base step: Suppose |Mσ |= 2. Let i∈Mσ . Lemma 8.4.10 implies that Mσ = {i,σ(i)}
and σ = (i,σ(i)). Thus, σ is a product of one cycle whose components are in Mσ .

Inductive step: Suppose |Mσ |> 2 and assume the strong induction hypothesis:

If π ∈ Sn satisfies 2≤ |Mπ |< |Mσ |, then π can be expressed as
a product of disjoint cycles whose components are in Mπ .

(IH)(IH)

Let i∈Mσ and � be the natural number given by Lemma 8.4.10. Thus, 2≤ �≤ |Mσ |,
σ �(i) = i, and τ = (i,σ(i),σ2(i), . . . ,σ �−1(i)) is a cycle whose components are in
Mσ . There are two cases to consider: � = |Mσ | and � < |Mσ |.
CASE (1): � = |Mσ |. Since � = |Mσ |, it follows that σ = τ and σ is a product of one
cycle whose components are in Mσ .

CASE (2): � < |Mσ |. Let X = Mσ \{i,σ(i),σ2(i), . . . ,σ �−1(i)}. Since 2≤ � < |Mσ |,
we see that X is nonempty and |X | < |Mσ |. One can now show that σ [X ] = X and
|X | ≥ 2 (see Exercise 19). Let π : S→ S be defined by



8.4 Permutation Groups 269

π(a) =

{

a, if a /∈ X ;

σ(a), if a ∈ X

for all a ∈ S. Because σ [X ] = X , one can show that π is one-to-one and onto. Thus,
π is a permutation in Sn and Mπ = X . Furthermore, we see that σ = τπ . Since
2≤ |Mπ |< |Mσ |, our induction hypothesis (IH) implies that π is a product of disjoint
cycles whose components are in Mπ . Because σ = τπ , we conclude that σ can be
written as product of disjoint cycles with components in Mσ . �

Let σ ∈ Sn for some natural number n > 1. By Definition 8.3.23, the order of σ
is the least natural number k such that σ k = ι , where ι is the identity permutation.
Our next result shows that if σ can be written as a cycle, then the order of σ is equal
to the length of the cycle.

Theorem 8.4.12. Let σ = (a1,a2,a3, . . . ,am) be an m-cycle in Sn, where 1≤m≤ n
are natural numbers. Then the order of σ is m.

Proof. See Exercise 11. �
Given natural numbers m and n, we know that both m and n evenly divide the

natural number mn. Thus, by the well-ordering principle, there is a smallest natural
number k that is divisible by both m and n. This number k is called the least common
multiple of m and n.

Definition 8.4.13. Let m and n be natural numbers. The least common multiple of
m and n is the natural number k satisfying:

(1) m |k and n |k.
(2) For all i ∈ N, if m | i and n | i, then k ≤ i.

The least common multiple of m and n is denoted by lcm(m,n).

For example, lcm(12,16) = 192, that is, the least common multiple of 12 and 16
is 192. More generally, given a finite number of natural numbers m1,m2, . . . ,mk we
let lcm(m1,m2, . . . ,mk) denote the smallest natural number � such that mi |� for all
i = 1, . . . ,k. Thus, lcm(4,3,8) = 24.

Theorem 8.4.14. Let σ = (a1a2,a3, . . . ,am) and τ = (b1,b2,b3, . . . ,b�) be disjoint
cycles in Sn, where n > 1. Then the order of στ is lcm(m, �).

Proof. See Exercises 12–14. �
Let σ1σ2 · · ·σk be a product of pairwise disjoint cycles in Sn, where n > 1. One

can show that o(σ1σ2 · · ·σk) = lcm(o(σ1),o(σ2), . . . ,o(σk)) by extending the proof
of Theorem 8.4.14. Thus, Theorems 8.4.11 and 8.4.12 yield a method for evaluating
the order of any element in Sn.

Example 12. Find the order of the permutation γ ∈ S9 given by

γ =

(

1 2 3 4 5 6 7 8 9
3 9 5 8 6 1 2 4 7

)

.
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Solution. By applying the cycle decomposition algorithm, we express γ as the
product of three disjoint cycles, namely, γ = (1,3,5,6)(2,9,7)(4,8). We conclude,
from Theorem 8.4.12, that o(1,3,5,6) = 4, o(2,9,7) = 3 and o(4,8) = 2. Since
lcm(4,3,2) = 12, we see that o(γ) = 12 by an extension of Theorem 8.4.14. ��

A 2-cycle (i, j) is a permutation that interchanges the two elements i and j while
leaving all the other elements fixed. Thus, a 2-cycle is also called a transposition. In
the solution of our next example we will show how to write the cycle (5,4,3,2,1)
as a product of 2-cycles.

Example 13. Express the cycle (5,4,3,2,1) in S6 as a product of transpositions.

Solution. This can be done in several ways: (5,4,3,2,1) = (1,2)(1,3)(1,4)(1,5)
and (5,4,3,2,1) = (5,4)(3,4)(3,1)(3,2). There is yet another way that works in
every case: Start with the left most component and then “pair it” with every other
component in the following order: (5,4,3,2,1) = (5,1)(5,2)(5,3)(5,4). ��

Our solution in Example 13 shows there is more than one way to express a cycle
as a product of transpositions. We ended this solution by applying a method that
“works in every case.” In our next lemma we will formally identify this method and
show that each cycle can be expressed as a product of 2-cycles.

Lemma 8.4.15. Let n > 1 be a natural number. Every cycle in Sn can be expressed
as a product of transpositions.

Proof. Let σ = (i1, i2, i3, . . . , ik) be a cycle in Sn. Then

(i1, i2, i3, . . . , ik) = (i1, ik)(i1, ik−1)(i1, ik−2) · · · (i1, i3)(i1, i2).

The product on the right gives σ(i1) = i2,σ(i2) = i3, . . . ,σ(ik) = i1. �
We cannot expect to be able to write a cycle as a product of pairwise disjoint

2-cycles.

Theorem 8.4.16. Let n > 1. Every permutation in Sn can be expressed as a product
of transpositions.

Proof. By Theorem 8.4.11, every permutation in Sn can be expressed as a product
of disjoint cycles. Since Lemma 8.4.15 implies that every cycle can be written as a
product of transpositions, we conclude that every permutation can also be expressed
as a product of transpositions. �

We now know that every permutation in Sn can be written as a product of
transpositions, that is, 2-cycles. We also saw that there can be more than one way
to express a permutation as a product of transpositions. Even though there may be
multiple ways of decomposing a particular permutation into a product of 2-cycles,
these different products have something in common. If one decomposition has an
even (odd) number of transpositions, then any other such decomposition will also
have an even (odd) number of transpositions. In other words, it is impossible to write
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a permutation π as a product of an even number of transpositions and then express
π as another product which consists of an odd number of transpositions.

Theorem 8.4.17. Let n be a natural number. Let π be a permutation in Sn. Suppose
that σ1,σ2, . . . ,σs are transpositions and that τ1,τ2, . . . ,τt are also transpositions.
If π = σ1σ2 · · ·σs = τ1τ2 · · ·τt , then s and t are either both even or both odd.

We will not prove Theorem 8.4.17 in this book; but you will see a proof of this
theorem in your abstract algebra courses (see [10, Theorem 3.3.1]). As a result of
Theorem 8.4.17, we can define the parity of a permutation π to be even when it
decomposes into a product of an even number of transpositions, and the parity of π
to be odd if it can be decomposed into a product of an odd number of transpositions.
Theorem 8.4.17 implies that a permutation cannot be both even and odd.

Exercises 8.4

1. Let a∈ S. Define the relation∼ on Per(S) by σ ∼ τ if and only if στ−1(a) = a.
Prove that ∼ is an equivalence relation on Per(S).

2. Let a ∈ S and let H = {α ∈ Per(S) : α(a) = a}. Show the following:

(a) ι ∈ H.
(b) If σ ,τ ∈ H, then στ ∈ H.
(c) If σ ∈ H, then σ−1 ∈H.

Conclude that H is a subgroup of Per(S). Suppose that a,b,c∈ S are all distinct.
Show that H is not a normal subgroup of Per(S).

3. Let a,b ∈ S be such that a �= b. Now, let H = {α ∈ Per(S) : α(a) = a} and let
K = {β ∈ Per(S) : β (b) = b}. Suppose that γ ∈ Per(S) satisfies γ(a) = b. Show
the following:

(a) If β ∈ K, then γ−1β γ ∈ H.
(b) If α ∈ H, then γαγ−1 ∈ K.

4. Let α ∈ S8 be the following product of disjoint cycles α = (2,3,1,5,6)(4)(7,8).
Evaluate α(i) for i = 1,2, . . . ,8.

5. Let (4,5,3),(5,4) ∈ S6. Show that

(a) (4,5,3)(5,4) = (4,3)

(b) (5,4)(4,5,3) = (5,3).

6. Let n > 1 be a natural number and let S = {1,2,3, . . . ,n}. Consider the 2-cycle
σ = (i, j) in Sn. Show that σ−1 = σ .

7. One can easily verify that S3 = {ι,(1,2,3),(1,3,2),(1,2),(1,3),(2,3)}. Let K
be the subset of S3 given by K = {ι,(1,2,3),(1,3,2)}. First show that K is a
subgroup of S3, and then show that K is a normal subgroup of S3.

8. Let m,n be a natural numbers where m ≤ n. Let σ = (a1,a2,a3, . . . ,am) be an
m-cycle in Sn. Show that σ−1 = (am,am−1, . . . ,a1).
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9. Let k≤ n be natural numbers and let π ∈ Sn. Suppose that π = σ1σ2 · · ·σk−1σk

where each σi is a transposition. Prove that π−1 = σkσk−1 · · ·σ2σ1.
10. Let m and n be natural numbers and let � = lcm(m,n). Suppose that k is an

integer satisfying m |k and n |k. Prove that � |k.
11. Let n > 1 be a natural number. The m-cycle σ = (a1,a2,a3, . . . ,am) denotes a

permutation in Sn where σ(a1) = a2, σ(a2) = a3, . . . , and σ(am) = a1.

(a) Prove by induction on k ≥ 1 that if k + i ≡ j (mod m), then σ k(ai) = a j,
whenever 1≤ i≤ m and 1≤ j ≤ m.

(b) Prove that σm = ι .
(c) Prove by induction on k ≥ 1 that if σ k(ai) = a j, then k + i ≡ j (mod m),

whenever 1≤ i≤ m and 1≤ j ≤ m.
(d) Prove that the order of σ is m.

12. Let σ = (a1a2,a3, . . . ,am) and τ = (b1b2,b3, . . . ,b�) be two disjoint cycles in
Sn, where n > 1 is a natural number.

(a) Prove by induction on k that for all k ≥ 1, we have (στ)k = σ kτk = τkσ k.
(b) Let k ∈ N. Prove that (στ)k(ai) = σ k(ai) for each ai in the cycle σ .
(c) Let k ∈ N. Prove that (στ)k(bi) = τk(bi) for each bi in the cycle τ .
(d) Let k ∈ N. Prove that if (στ)k = ι , then σ k = ι and τk = ι .

13. Let σ = (a1a2,a3, . . . ,am) and τ = (b1b2,b3, . . . ,b�) be disjoint cycles in Sn,
where n > 1 is a natural number. By Theorem 8.4.12, m = o(σ) and � = o(τ).
Suppose (στ)k = ι where k ∈N. Using Exercise 12(d), prove that m |k and � |k.

14. Let σ = (a1a2,a3, . . . ,am) and τ = (b1b2,b3, . . . ,b�) be disjoint cycles in Sn,
where n > 1 is a natural number. Prove that if k ∈N satisfies m |k and � |k, then
(στ)k = ι . Conclude from Exercise 13 that o(στ) = lcm(m, �).

15. Write each of the given permutations in S7 as a product of disjoint cycles.

(a)

(
1 2 3 4 5 6 7
3 5 1 4 6 7 2

)

(b) (1,3,4,5)(5,4,7,6).

16. Using Theorems 8.4.12 and 8.4.14, evaluate the order of the two permutations
in S7:

(a)

(
1 2 3 4 5 6 7
3 5 1 4 6 7 2

)

(b) (1,3,4,5)(5,4,7,6).

17. Let n≥ 3 and let σ ∈ Sn. Prove that if ασ = σα for all α ∈ Sn, then σ = ι .
18. Prove Lemma 8.4.10.
19. Let X and σ be as in Case (2) of the inductive step in the proof on page 268 of

Theorem 8.4.11. Prove that σ [X ] = X and |X | ≥ 2.

Exercise Notes: For Exercise 11(a), note that when (k+1)+ i≡ j (mod m), we have
k + i≡ j−1(mod m). If j = 1, then j ≡ m+ 1(mod m). For Exercise 11(c): When
σ k+1(ai) = a j, we have σ k(σ(ai)) = a j. If i < m then σ(ai) = ai+1. If i = m then
σ(ai) = a1. For Exercise 18, review the proof of Lemma 8.4.9. For Exercise 19, to
prove σ [X ] = X , first review the proof of Lemma 8.4.9. Using the fact that σ [X ] = X
and X is nonempty, one can show that |X | ≥ 2.
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8.5 Rings

Any book on abstract algebra will define a ring to be an algebraic structure which
is endowed with two binary operations (usually called addition and multiplication)
and satisfies certain axioms. These axioms ensure that a ring will possess many
of the familiar properties of addition and multiplication that hold in the number
system (Z,+, ·) (see Axioms of Arithmetic 7.4.1). To qualify as a ring, an algebraic
structure of the form (R,+, ·) must satisfy the ring axioms.

Definition 8.5.1. Let (R,+, ·) be an algebraic structure where + and · are two
binary operations. Then (R,+, ·) is called a ring if the seven RING AXIOMS hold:

1. a + b = b + a for all a,b ∈ R.
2. (a + b)+ c = a +(b + c) for all a,b,c ∈ R.
3. There is a 0 ∈ R such that a + 0 = a for all a ∈ R (0 is called the zero element).
4. For every a ∈ R there is a b ∈ R such that a + b = 0 (b is written as −a and is

called the additive inverse of a).
5. (a ·b) · c = a · (b · c) for all a,b,c ∈ R.
6. a · (b + c) = a ·b + a · c for all a,b,c ∈ R.
7. (b + c) ·a = b ·a + c ·a for all a,b,c ∈ R.

We shall say that (R,+, ·) is a ring with unity if it satisfies the additional axiom:

8. There is a unity element 1 ∈ R, where 1 �= 0, such that a · 1 = 1 · a = a for all
a ∈ R (sometimes 1 is called the multiplicative identity element).

We will say that (R,+, ·) is a commutative ring if it also satisfies the axiom:

9. a ·b = b ·a for all a,b ∈ R.

Our next two results show, respectively, that a ring has exactly one zero element
and each element of the ring has exactly one additive inverse. One can also show
that a ring with unity has only one unity element.

Lemma 8.5.2. Let (R,+, ·) be a ring. There is exactly one element b ∈ R satisfying
a + b = a for all a ∈ R.

Proof. See Exercise 4. �
Lemma 8.5.3. Let (R,+, ·) be a ring. For each a ∈ R there is exactly one element
b ∈ R such that a + b = 0.

Proof. See Exercise 5. �
Remark 8.5.4. Axioms 1–4 of the ring axioms assert that (R,+) is an abelian group
with identity element 0. Lemma 8.5.2 shows that identity element 0 is unique, and
Lemma 8.5.3 shows that the additive inverse−a is unique for each element a in the
ring. Furthermore, Axiom 5 states that multiplication is associative. Axioms 6 and 7
affirm that (R,+, ·) satisfies the distributive laws.
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Whenever a and b are in a ring, Lemma 8.5.3 implies that if a + b = 0, then
b =−a. This fact will be used several times in our proof of Lemma 8.5.8 below.

Definition 8.5.5. Let (R,+, ·) be a ring. We say that an element a�= 0 in R is a zero
divisor if a ·b = 0 for some b �= 0 in R.

Definition 8.5.6. Let (R,+, ·) be a commutative ring with unity. R shall be called
an integral domain if a ·b = 0 implies that a = 0 or b = 0, for all a,b ∈ R.

Thus, a commutative ring with unity is an integral domain whenever the ring has
no zero divisors; that is, the only way that a product can be zero is when one of the
factors is zero. Below, we present some examples of rings with zero divisors and
rings that are integral domains.

Definition 8.5.7. Let (R,+, ·) be a ring with unity element 1. We say that an
element a ∈ R is a unit if a has a multiplicative inverse, that is, a · b = b · a = 1
for some b ∈ R.

Let (R,+, ·) be a ring. For a,b ∈ R we shall often write a · b as ab. In addition,
we may write a +(−b) more succinctly as a− b.

Examples of Rings

Example 1. Let R =Z be the set of integers. Define + as ordinary addition and · as
ordinary multiplication of integers. Then (Z,+, ·) is a commutative ring with unity.
In addition, (Z,+, ·) is an integral domain.

Example 2. Let R = Q with + and · defined, respectively, to be the usual addition
and multiplication of rational numbers. Then (Q,+, ·) is a commutative ring with
unity. The ring (Q,+, ·) is also an integral domain.

Example 3. Let R = R with + and · defined to be the standard addition and
multiplication of real numbers. Then (R,+, ·) is a commutative ring with unity.
The ring (R,+, ·) is also an integral domain.

Example 4. It follows from Theorem 7.4.4 that (Z6,+, ·) is a commutative ring
with unity element [1] and with zero element [0]. Furthermore, (Z6,+, ·) is not an
integral domain because [2] · [3] = [6] = [0] with [2] �= [0] and [3] �= [0].

Example 5. Let C(R) be the set of all continuous functions f : R→ R. We now
define how to add and multiply two functions in C(R). For each f ∈ C(R) and
g ∈ C(R), define the function ( f + g) : R → R by ( f + g)(x) = f (x) + g(x) and
define the function ( f · g) : R→ R by ( f · g)(x) = f (x)g(x) for all x ∈ R. Because
f and g are continuous, we have that f + g and f · g are also continuous functions
in C(R). The zero element of C(R) is the continuous, constant function 0: R→ R

defined by 0(x) = 0 for all x ∈ R. The additive inverse of each f ∈ C(R) is the
continuous function (− f ) : R→R defined by (− f )(x) =− f (x). Thus, (C(R),+, ·)
is a commutative ring with unity element 1, where 1 is the function in C(R) defined
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by 1(x) = 1 for all x ∈ R. Furthermore, (C(R),+, ·) is not an integral domain. Let
f : R→ R and g : R→ R be the continuous nonzero functions defined by

f (x) =

{

0, if x≤ 1;

2x− 2, if x > 1
g(x) =

{

2x−2, if x≤ 1;

0, if x > 1.

Thus f ·g = 0 where f �= 0 and g �= 0.

Example 6. Let p be a prime. By Theorem 7.4.4, (Zp,+, ·) is a commutative ring
with unity element [1] and zero element [0]. Moreover, the ring (Zp,+, ·) is also
an integral domain. To prove this, let [a], [b] ∈ Zp. Assume [a] · [b] = [0]. Thus,
[ab] = [0]. Therefore, ab ≡ 0(mod p) and so, p |(ab). Lemma 4.7.2 implies that
p |a or p |b, that is, [a] = [0] or [b] = [0]. Hence, (Zp,+, ·) is an integral domain.

Example 7. Let F(Z) be the set of all functions of the form f : Z→ Z. Let f and
g be in F(Z). Define the function ( f + g) : Z→ Z by ( f + g)(i) = f (i)+ g(i) and
define the function ( f ·g) : Z→ Z by ( f ·g)(i) = f (i)g(i) for all i ∈ Z. The constant
function 0 : Z→ Z, defined by 0(i) = 0 for all i ∈ Z, is the zero element of F(Z).
For each f ∈F(Z), the additive inverse of f is the function (− f ) : Z→Z defined by
(− f )(i) = − f (i) for all i ∈ Z. We see that (F(Z),+, ·) is a commutative ring with
unity element 1, where 1 is the function in F(Z) defined by 1(i) = 1 for all i ∈ Z.

Example 8. Let M2(R) be the set of all 2× 2 matrices over the real numbers.
Define + to be matrix addition and ∗ to be matrix multiplication. Thus,

(M2(R),+,∗) is a ring with unity element

[
1 0
0 1

]

and zero element

[
0 0
0 0

]

. In

addition, (M2(R),+,∗) is not a commutative ring, because there are matrices A and
B such that A∗B �= B∗A (see Example 4 on page 240). Furthermore, (M2(R),+,∗)
has zero divisors. Let A and B in M2(R) be given by A =

[

1 −1
1 −1

]

and B =

[

1 1
1 1

]

.

Since A∗B =

[
0 0
0 0

]

, we see that A and B are zero divisors.

8.5.1 Fundamental Properties of Rings

In the previous section, our first example of a ring was the ring of integers (Z,+, ·).
We also presented some examples of rings that do not look anything like the ring
of integers; however, because these rings all satisfy the ring axioms, there are some
important properties that they all share. The next lemma establishes some algebraic
identities that are true for all rings.

Lemma 8.5.8. Let (R,+, ·) be a ring and let a,b ∈ R. Then

(1) a0 = 0a = 0.
(2) a(−b) = (−a)b =−(ab).
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(3) −(−a) = a
(4) −(a + b) = (−a)+ (−b)
(5) (−a)(−b) = ab.
(6) If R has unity element 1, then (−1)a =−a.
(7) If a + b = a + c, then b = c.

Proof. We shall prove items (1)–(7). Throughout our proof we shall be referring to
Axioms 1–9 of the ring axioms given in Definition 8.5.1.

(1) We show that a0 = 0. Since 0 + 0 = 0, we have a(0 + 0) = a0. By applying
Axiom 6, we derive a0 + a0 = a0. Upon adding −a0 to both sides, we obtain
the equation (a0 + a0)+ (−a0) = a0 +(−a0). So, (a0 + a0)+ (−a0) = 0 by
Axiom 3. Hence, a0 +(a0 +(−a0))= 0 by Axiom 2. From Axiom 4, we have
a0+0 = 0 and then a0 = 0 by Axiom 3. A similar argument shows that 0a = 0.

(2) We first establish that a(−b) = −(ab), by showing that ab + a(−b) = 0, as
follows: ab + a(−b) = a(b +(−b)) = a0 = 0 where the last equality holds by
item (1) above. A similar argument shows that (−a)b =−(ab).

(3) Since a +(−a) = 0, the additive inverse of (−a) is a. Therefore,−(−a) = a.
(4) We establish the equation−(a + b) = (−a)+ (−b) by showing that

(a + b)+ ((−a)+ (−b))= 0

which follows from Axioms 1, 2, 3, and 4.
(5) We shall prove (−a)(−b) = ab by using item (2) twice:

(−a)(−b) =−(a(−b)) =−(−(ab)) = ab

where the last equality follows from (3).
(6) Suppose that R has unity element 1. We prove that (−1)a =−a, by showing that

a +(−1)a = 0, as follows: a +(−1)a = 1a +(−1)a = (1 +(−1))a = 0a = 0.
(7) Suppose a + b = a + c. Then (−a)+ (a + b) = (−a)+ (a + c). Using Axioms

1, 2, 3 and 4, one can show that b = c. �

Lemma 8.5.9 (Cancellation Law). Let (R,+, ·) be an integral domain and let
a,b,c ∈ R where c �= 0. If ac = bc, then a = b.

Proof. Let a,b,c ∈ R where c �= 0. Assume ac = bc. Thus, ac−bc = (a−b)c = 0.
Because c �= 0 and (R,+, ·) is an integral domain, we conclude that a− b = 0 and
hence, a = b. �

8.5.2 Subrings

Let (R,+, ·) be a ring and let S ⊆ R be a substructure of R (see Definition 8.2.3).
So, S is nonempty and is closed under the binary operations + and · (addition and
multiplication). If (S,+, ·) is also a ring, then we say that S is a subring of R.



8.5 Rings 277

Definition 8.5.10. Let (R,+, ·) be a ring. Then S is called a subring of R if S is
a substructure of R that also satisfies the ring axioms. In other words, the structure
(S,+, ·) is a ring.

Lemma 8.5.11. Let (R,+, ·) be a ring and let S⊆ R. Then S is a subring of R if and
only if 0 ∈ S, a ·b∈ S, −b ∈ S, and a + b∈ S for all a,b ∈ S.

Proof. The ideas used in the proof of Lemma 8.3.13 (page 253) apply here. �
Example 9. Let (R,+, ·) be the ring of real numbers and define Z[

√
3] ⊆ R by

Z[
√

3] = {i+ j
√

3 : i, j ∈ Z}. Show that Z[
√

3] is a subring of R.

Solution. We shall apply Lemma 8.5.11. Since 0 = 0+0
√

3, we see that 0∈ Z[
√

3].
Let i+ j

√
3 and m+n

√
3 be elements in Z[

√
3], where i, j,m,n ∈ Z. We shall show

that (i+ j
√

3)(m+ n
√

3) is in Z[
√

3] as follows:

(i+ j
√

3)(m+ n
√

3) = im+ in
√

3+ jm
√

3+ jn
√

3
√

3 by algebra

= im+ in
√

3+ jm
√

3+ 3 jn because
√

3
√

3 = 3

= im+(in + jm)
√

3+ 3 jn by distributivity

= (im+ 3 jn)+ (in + jm)
√

3 by algebra.

Since im+ 3 jn and in + jm are in Z, we see that (i+ j
√

3)(m+ n
√

3) is in Z[
√

3].
Because −(i + j

√
3) = −i + (− j)

√
3, we have that −(i + j

√
3) ∈ Z[

√
3]. Finally,

observe that

(i+ j
√

3)+ (m+ n
√

3) = (i+ m)+ ( j + n)
√

3

and thus (i + j
√

3) + (m + n
√

3) ∈ Z[
√

3], because i + m and j + n are in Z.
Lemma 8.5.11 implies that Z[

√
3] is a subring of R. ��

Lemma 8.5.12. Let (R,+, ·) be a commutative ring with unity element 1. Suppose
that S is a subring of R with 1 ∈ S. If R is an integral domain, then S is also an
integral domain.

Proof. Since R is commutative and 1 ∈ S, it follows that S is a commutative ring
with unity element. Let a,b ∈ S be such that a · b = 0. Because R is an integral
domain, we have either a = 0 or b = 0. Therefore, S is an integral domain. �

8.5.3 Ideals

An ideal is a special subset of a ring that allows one to generalize some important
properties of the integers like “even number” and “multiple of 5.” For example, the
set of even integers contains 0 and is closed under addition. Moreover, any integer
multiple of an even integer is also even.
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Definition 8.5.13. Let (R,+, ·) be a ring. A subset I ⊆ R is called an ideal of R if
the following three properties hold:

(1) 0 ∈ I.
(2) For all i ∈ I and all j ∈ I, we have i+ j ∈ I and −i ∈ I.
(3) For all r ∈ R and all i ∈ I, we have ir ∈ I and ri ∈ I.

Item (2) of Definition 8.5.13 states that I is closed under addition and additive
inverses. Item (3) asserts that for any element in i ∈ I and any element in r ∈ R, the
products i · r and r · i are in I. Since I ⊆ R, we conclude that I is closed under the
multiplication of elements in I, as well. It follows that an ideal I of a ring R is a
subring of R. Before proceeding further, we shall present some examples of ideals.

Example 10. Let (R,+, ·) be a ring with zero element 0. Then the sets {0} and R
are ideals of the ring R.

Example 11. Let (Z,+, ·) be the ring of integers and let m be a natural number.
Then the set I = {mk : k ∈ Z} is an ideal of the ring of integers. To verify this, we
shall show that I satisfies items (1)–(3) of Definition 8.5.13. (1) Clearly, 0 = m · 0
and thus, 0 ∈ I. (2) Let i ∈ I and j ∈ I. So i = mk and j = m� for some k, � ∈ Z. We
see that i + j = mk + m� = m(k + �). Since k + � ∈ Z, we conclude that i + j ∈ I.
Since −i = −mk = m(−k), where −k ∈ Z, we have that −i ∈ I. (3) Let r ∈ Z and
let i ∈ I. So, i = mk for some k ∈ Z. Since ri = r(mk) = m(rk) where rk ∈ Z, we see
that ri ∈ I. Because the ring Z is commutative, we also have that ir ∈ I. Therefore, I
is an ideal of the ring of integers.

Example 12. From Theorem 7.4.4 we conclude that (Z12,+, ·) is a commutative
ring with zero element [0]. One can show that I = {[0], [4], [8]} is an ideal of Z12.

Example 13. Let (C(R),+, ·) be the ring of all continuous functions f : R→ R

given in Example 5. Recall that zero element of C(R) is the constant function
0 : R → R defined by 0(x) = 0 for all x ∈ R. Let a be a fixed real number. We
will show that the set I = { f ∈ C(R) : f (a) = 0} is an ideal of the ring C(R).
To do this, we shall confirm that I satisfies items (1)–(3) of Definition 8.5.13.
(1) Clearly, 0(a) = 0 and thus, 0 ∈ I. (2) Let f ∈ I and g ∈ I. So f (a) = 0 and
g(a) = 0. We see that ( f + g)(a) = f (a) + g(a) = 0 and conclude that f + g ∈ I.
Since (− f )(a) =− f (a) = 0, we have that (− f ) ∈ I. (3) Let h ∈C(R) and let f ∈ I.
Thus, (h · f )(a) = h(a) · f (a) = h(a) · 0 = 0. We see that h f ∈ I. Because the ring
C(R) is commutative, we also have that f h ∈ I. Therefore, I is an ideal.

One of the motivations for the concept of an ideal is that it can be used to build a
new ring called the quotient ring (see Section 8.6.2). To prove that a subset I of a ring
R is an ideal, you must show that I satisfies properties (1)–(3) of Definition 8.5.13.
On the other hand, when assuming that I is an ideal, then you know that 0 ∈ I, and
if you are assuming or can prove that i, j ∈ I, then you can conclude that i + j ∈ I
and−i ∈ I. In addition, if you have that i ∈ I and r ∈ R, then you can infer that ir ∈ I
and ri ∈ I.
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Theorem 8.5.14. Let (R,+, ·) be a ring. Suppose that I and J are ideals of R. Then
the set K = {i+ j : i ∈ I and j ∈ J} is also an ideal of R.

Proof. Let (R,+, ·) be a ring and let I and J be ideals of R. We will prove that

K = {i+ j : i ∈ I and j ∈ J}

is an ideal of R by establishing items (1)–(3) of Definition 8.5.13.

(1) We first prove that 0∈K. Since I and J are ideals, it follows that 0 ∈ I and 0∈ J.
Thus, 0 + 0∈ K and, because 0 + 0 = 0, we see that 0 ∈ K.

(2) Let x,y ∈ K. So x = i+ j and y = m+ n for some i,m ∈ I and j,n ∈ J. Because
I and J are ideals, we have that i+ m ∈ I and j + n ∈ J. Since

x + y = (i+ j)+ (m+ n) = (i+ m)+ ( j + n),

we conclude that x + y ∈ K. Furthermore, −x = −i +− j and thus, −x ∈ K
because−i ∈ I and − j ∈ J.

(3) Let r ∈ R and let x ∈ K. Given that x ∈ K, we have x = i+ j for some i ∈ I and
j ∈ J. Since I and J are ideals, we know that ri, ir ∈ I and r j, jr ∈ J. We evaluate
rx to be

rx = r(i+ j) = ri+ r j

and therefore, rx ∈ K. A similar argument shows that xr ∈ K.

Therefore, K is an ideal of R. �

Exercises 8.5

1. Let R be the set of matrices of the form

[
0 a
0 b

]

where a,b ∈ R. Show that

(R,+,∗) is a ring, where + and ∗ are matrix addition and multiplication. Is
this ring R commutative? Does R have a unity element? Does R have any zero
divisors?

2. Let (F(Z),+, ·) be the commutative ring defined in Example 7. Show that
(F(Z),+, ·) is not an integral domain.

3. Let (R,+, ·) be a ring and let a,b ∈ R. Prove that −(a−b) = b−a.
4. Prove Lemma 8.5.2.
5. Prove Lemma 8.5.3.
6. Prove Lemma 8.5.11.
7. Find all of the zero divisors (if any) of the following rings: Z8, Z25, and Z17.

Then find all of the elements in each of these rings that are units.
8. Let (R,+, ·) be the ring of real numbers. Define the subset Z[

√
2] of R by

Z[
√

2] = {a + b
√

2 : a,b ∈ Z}.
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(a) Prove that Z[
√

2] is a subring of R (see Example 9).
(b) Prove that Z[

√
2] is an integral domain.

(c) Let a,b ∈ Z be such that a + b
√

2 = 0. Prove that a = b = 0.
(d) Show that 1 +

√
2 is a unit in Z[

√
2].

(e) Show that 2 + 2
√

2 is not a unit in Z[
√

2].
(f) Prove that for a,b ∈ Z, if a2− 2b2 =±1, then a + b

√
2 is a unit in Z[

√
2].

9. Consider the ring (Z[
√

2],+, ·) given in Exercise 8. Let S ⊆ Z[
√

2] be defined
by S = {a + b

√
2 : a,b ∈ Z and a is even}. Prove that S is a subring of Z[

√
2].

10. Let (R,+, ·) be a ring and suppose that {S� : � ∈ L} is an indexed family of
subrings of R. Prove that

⋂

�∈L
S� is a subring of R.

11. We know from Theorem 7.4.4 that (Z12,+, ·) is a commutative ring with zero
element [0]. Let I = {[0], [4], [8]}. Show that I is an ideal of Z12.

12. Let (Z[
√

2],+, ·) be the ring given in Exercise 8. Let I ⊆ Z[
√

2] be defined by
I = {a+b

√
2∈Z[

√
2] : 3 |a and 3 |b}. Prove that I is an ideal of the ring Z[

√
2].

13. By Example 9, we know that (Z[
√

3],+, ·) is a ring. Let I ⊆ Z[
√

3] be defined
by I = {a + b

√
3 ∈ Z[

√
3] : 3 |a}. Prove that I is an ideal of Z[

√
3].

14. Let (M2(R),+,∗) be the ring of 2× 2 matrices given in Example 8. Define
S2(R)⊆M2(R) by

S2(R) =

{[

a b
0 a

]

: a,b ∈ R

}

.

Show that S2(R) is a subring of the ring M2(R).
15. Let (S2(R),+,∗) be the ring of 2× 2 matrices given in Exercise 14, where +

and ∗ are matrix addition and multiplication, respectively. Define I ⊆ S2(R) by

I =

{[

0 b
0 0

]

: b ∈R

}

.

Show that I is an ideal of the ring S2(R).
16. Let (R,+, ·) be the ring of real numbers. Let Q be the set of rational numbers.

Define the subset Q(
√

3) of R by Q(
√

3) = {a + b
√

3 : a,b ∈Q}.
(a) Prove that Q(

√
3) is a subring of R.

(b) Prove that for all x ∈Q(
√

3), if x �= 0, then x is a unit in Q(
√

3).

17. Let (R,+, ·) be a commutative ring and let a ∈ R. Define I = {x ∈ R : xa = 0}.
Prove that I is an ideal of R.

18. Let (R,+, ·) be a ring. Suppose that I ⊆ R and J ⊆ R are ideals of R. Prove that
I∩ J is also an ideal of R.

19. Let (R,+, ·) be a commutative ring. Let I be an ideal of R and let a ∈ R. Define
H ⊆ R by H = {ax : x ∈ I}. Prove that H is an ideal of R.

20. Let (F(Z),+, ·) be the ring in Example 7 on page 275, where F(Z) is the set of
all functions of the form f : Z→ Z. Let I = { f ∈ F(Z) : 5 | f (1)}. Prove that I
is an ideal of F(Z).
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21. Let (R,+, ·) be a ring. Suppose that {I� : � ∈ L} is an indexed family of ideals
of R. Prove that

⋂

�∈L
I� is an ideal of R.

Exercise Notes: For Exercise 4, show that the equation a + b = a implies that
b = 0. For Exercise 5, show that the equation a + b = 0 implies b = −a. For
Exercise 8(b), use Lemma 8.5.12 and the fact that (R,+, ·) is an integral domain.
For Exercise 8(c), assume b �= 0 and derive a contradiction. For Exercise 16(b),
rationalize the denominator in 1

a+b
√

3
.

8.6 Quotient Algebras

In Section 7.4 we constructed the modular number system (Zm,+, ·) from the inte-
ger number system (Z,+, ·). The key ingredient that allowed us to construct the new
system (Zm,+, ·) was the congruence modulo m relation. This equivalence relation
on Z is called a congruence relation because addition and multiplication preserve
the relation, namely: For all a,b,c,d in Z, if a≡ b(mod m) and c≡ d (mod m), then
(a + c)≡ (b + d)(mod m) and ac≡ bd (mod m) (see Theorem 7.3.5).

In this section we will see how this method of construction can be generalized.
As a result we will be able to build new algebraic structures from old ones. We first
must define what it means for a binary operation to preserve an equivalence relation.

Definition 8.6.1. Let ∼ be an equivalence relation on a set A and let ∗ be a binary
operation on A. Then ∗ preserves the relation∼ when for all a,b,c,d ∈ A

if a∼ c and b∼ d, then (a ∗ b)∼ (c∗d).

Definition 8.6.2. Let A = (A,∗,+, . . .) be an algebraic structure and let ∼ be an
equivalence relation on the set A. We say that ∼ is a congruence relation on A if
all of the binary operations ∗,+, . . . preserve the relation ∼.

Examples of Congruence Relations

The definition of a congruence relation depends on the type of algebraic structure
under consideration. We first give an example of a congruence relation defined on a
group and then give two examples of a congruence relation defined on a ring.

Example 1. Let R∗ = {x ∈ R : x �= 0}, the set of non-zero real numbers. Thus,
(R∗, ·) is an abelian group where · is ordinary multiplication (see Example 3 on
page 248). Let ∼ be the equivalence relation on R

∗ defined by x ∼ y if and only if
x · y−1 ∈Q. Show that ∼ is a congruence relation on (R∗, ·).
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Solution. Let x,y,z,w ∈ R
∗ and assume that x∼ y and z∼ w, that is,

xy−1 ∈Q and zw−1 ∈Q.

We shall prove that (x · z) ∼ (y · w). Since xy−1 ∈ Q and zw−1 ∈ Q, we have
(xy−1)(zw−1) ∈ Q. By algebra, we conclude that (xy−1)(zw−1) = (xz)(yw)−1 and
hence, (xz)(yw)−1 ∈Q. Therefore, (x · z)∼ (y ·w). ��
Example 2. Let (Z,+, ·) be the ring of integers, where + and · are the standard
operations of addition and multiplication. Let m > 1 be a natural number. Define the
equivalence relation ∼ on Z by

x∼ y if and only if x≡ y(mod m) (8.17)

for all x,y ∈ Z. Then ∼ is a congruence relation on (Z,+, ·) by Theorem 7.3.5.

Example 3. Let (F(Z),+, ·) be the ring in Example 7 on page 275, where F(Z)
is the set of all functions of the form f : Z→ Z. Recall that ( f + g) : Z→ Z is
defined by ( f + g)(i) = f (i) + g(i) and the function ( f · g) : Z→ Z is defined by
( f · g)(i) = f (i)g(i). Let ∼ be the equivalence relation on F(Z) defined by f ∼ g
if and only if 5 |( f (1)− g(1)), for all f ,g ∈ F(Z). Show that ∼ is a congruence
relation on (F(Z),+, ·).
Solution. For f ,g ∈ F(Z), observe that

f ∼ g if and only if f (1)≡ g(1)(mod 5). (8.18)

Let f ,g,h,k ∈ F(Z). Assume f ∼ g and h∼ k. We shall show that

( f + h)∼ (g + k) and ( f ·h)∼ (g · k).

Since f ∼ g and h∼ k, we see from (8.18) that

f (1)≡ g(1)(mod 5) and h(1)≡ k(1)(mod 5).

Thus, by Theorem 7.3.5, we have that

( f (1)+ h(1))≡ (g(1)+ k(1))(mod 5) and ( f (1) ·h(1))≡ (g(1) · k(1))(mod 5).

Hence, ( f +h)∼ (g+k) and ( f ·h)∼ (g ·k) and therefore,∼ is a congruence relation
on (F(Z),+, ·). ��

The next theorem introduces an important concept that allows one to construct
a new algebraic structure from an old algebraic structure. The elements of the new
structure are the equivalence classes of a congruence relation on the old structure.
Recall that when ∼ is an equivalence relation on a set A, we let A/∼ denote the
partition {[a] : a ∈ A} of A induced by ∼ (see Definition 7.2.7).
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Theorem 8.6.3 (Quotient Algebra). Suppose that A = (A,∗,+, . . .) is an alge-
braic structure. Let ∼ be a congruence relation on A. Then there exist well-defined
binary operations �,⊕, . . . on A/∼ such that

[a]� [b] = [a ∗ b]

[a]⊕ [b] = [a + b]

...

for all a,b∈ A. Therefore, B= (A/∼,�,⊕, . . .) is also an algebraic structure, called
the quotient algebra.

The conclusion of Theorem 8.6.3 is illustrated in the following figure where
A/∼ = { . . . , [a], . . . , [b], . . . , [a+b], . . . , [a∗b], . . .}.

A =

...
...

...
...

...
...

...
...

...
a b a+b a∗b

...
...

...
...

...
...

...
...

...
c d c+d c∗d

...
...

...
...

...
...

...
...

...
↑ ↑ ↑ ↑
[a] [b] [a+b] [a∗b]

Before reading the proof below, one should review Section 8.1.1 which begins
on page 241 and ends on page 244.

Proof (of Theorem 8.6.3). We only prove that if ∗ preserves the relation ∼, then
there exists a well-defined binary operation � on A/∼ such that [a]� [b] = [a∗b] for
all a,b ∈ A. (The argument is the same for the other binary operations.) So assume
that ∗ preserves the relation ∼. Thus, for all a,b,c,d ∈ A

if a∼ c and b∼ d, then (a ∗ b)∼ (c∗d). (8.19)

We must show that the definition [a]� [b] = [a ∗ b] for any a,b ∈ A, produces a
well-defined binary operation. Assume [a] = [c] and [b] = [d]. We will show that
[a ∗ b] = [c ∗ d]. Since [a] = [c] and [b] = [d], we have that a ∼ c and b ∼ d, by
Theorem 7.2.4. So, by (8.19), we see that (a ∗ b)∼ (c ∗ d). Theorem 7.2.4 implies
that [a∗b] = [c∗d]. Therefore, � is a well-defined binary operation on A/∼. �

In the next two sections, we will use Theorem 8.6.3 to construct quotient groups
and quotient rings.
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8.6.1 Quotient Groups

We shall apply the method given in Theorem 8.6.3 to construct a new group from
an old group. The new group can then yield some important information about the
original group.

Theorem 8.6.4 (Quotient Group). Let (G,∗) be a group and let ∼ be a congru-
ence relation on (G,∗). Then (G/∼,�) is a group, where the binary operation � on
G/∼ is well-defined by

[a]� [b] = [a ∗ b]

for all a,b ∈G. The group (G/∼,�) is called a quotient group.

Proof. Theorem 8.6.3 asserts that the binary operation � on G/∼ is well-defined by

[x]� [y] = [x∗ y] (8.20)

for all x,y ∈ G. We shall show that the algebraic structure (G/∼,�) satisfies the
group axioms. Recall that G/∼ = {[a] : a ∈ G}.
1. ASSOCIATIVITY: For [a], [b], [c] ∈ G/∼, we have the following:

[a]� ([b]� [c]) = [a]� [b ∗ c] by (8.20)

= [a ∗ (b ∗ c)] by (8.20)

= [(a ∗ b)∗ c)] by associativity in (G,∗)
= [a ∗ b]� [c] by (8.20)

= ([a]� [b])� [c] by (8.20).

Therefore, [a]� ([b]� [c]) = ([a]� [b])� [c].
2. IDENTITY ELEMENT EXISTS: Let e ∈ G be the identity element for the group

(G,∗). Thus, [e] ∈ G/∼. We show that [e] is the identity element for (G/∼,�).
Let [a] ∈ G/∼. Then [a]� [e] = [a∗ e] = [a] and [e]� [a] = [e∗a] = [a], by (8.20)
and the fact that e is the identity element in G. So [a]� [e] = [e]� [a] = [a] and
therefore, [e] is the identity element for (G/∼,�).

3. INVERSE ELEMENTS EXIST: Let [a]∈G/∼. Let [a]−1 = [a−1]. One can check that
[a]� [a]−1 = [a]−1 � [a] = [e], using (8.20) and the fact that a−1 is the inverse for
a in G.

Since all of the group axioms hold, we see that (G/∼,�) is a group. �

Definition 8.6.5. Let (G,∗) be a group and let H be a subgroup of G. Let ∼H be
the relation on G defined by a∼H b if and only if ab−1 ∈ H, for all a,b ∈ G.

Theorem 8.6.6. Let (G,∗) be a group and let H be a subgroup of G. The relation
∼H is an equivalence relation on G.

Proof. See Exercise 5. �
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Definition 8.6.7. Let (G,∗) be a group and let H be a subgroup of G. For each
a ∈ G, the equivalence class of a is defined by [a] = {b ∈ G : b ∼H a}. We write
G/H as the set of equivalence classes of the relation ∼H , that is, G/H = G/∼H =
{[a] : a ∈ G}.

The notion of a right coset is very useful for ‘computing’ each equivalence class
in G/H, whenever H is a subgroup of a group G.

Definition 8.6.8 (Right Cosets). Let H be a subgroup of a group G. A right coset
of H is a subset of G having the form Ha = {ha : h ∈ H} for some a ∈ G.

Theorem 8.6.9. Let (G,∗) be a group and let H be a subgroup of G. Consider the
equivalence relation ∼H. For each a ∈ G we have that [a] = Ha. Consequently,
G/H = {[a] : a ∈ G}= {Ha : a ∈G}.
Proof. Let G and H be as stated in the theorem. Recall that the equivalence relation
∼H on G is defined by

a∼H b if and only if ab−1 ∈ H (8.21)

for all a,b ∈G. Now, let a ∈G. We shall prove that [a] = Ha, that is, we shall prove
that these two sets are equal. For each x ∈ G we see that

x ∈ [a] iff x∼H a by the definition of [a]

iff xa−1 ∈ H by (8.21)

iff (xa−1)a ∈Ha by the definition of Ha

iff x ∈Ha since (xa−1)a = x.

Therefore, [a] = Ha. Consequently, G/H = {[a] : a ∈G}= {Ha : a ∈ G}. �
Normal subgroups are important in group theory because they can be used to

construct quotient groups.

Theorem 8.6.10. Let (G,∗) be a group. If N is a normal subgroup of G, then the
binary operation ∗ preserves the equivalence relation ∼N.

Proof. Let (G,∗) be a group and let N be a normal subgroup of G. Let a,b,c,d ∈ G
and assume a∼N c and b∼N d. Thus, by Definition 8.6.5, ac−1 ∈ N and bd−1 ∈ N.
By Exercise 20 on page 260, we have (ab)(cd)−1 ∈ N. Hence (ab)∼N (cd), that is,
(a∗b)∼N (c∗d) �

The next theorem gives “possibly the single most important construction in group
theory” (see [10, page 79]).

Theorem 8.6.11. Let (G,∗) be a group and let N be a normal subgroup of G. Then
the algebraic structure (G/N,�) is a group where the binary operation � on G/N
is well-defined by [a]� [b] = [a ∗ b] for all a,b ∈ G.
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Proof. Theorem 8.6.10 asserts that ∼N is a congruence relation on (G,∗). Thus,
Theorem 8.6.3 implies that the binary operation � on G/N is well-defined. Hence,
(G/N,�) is a group by Theorem 8.6.4. �

Examples of Quotient Groups

Example 4. Let (R∗, ·) be the group of nonzero real numbers under multiplication.
Because (R∗, ·) is an abelian group, it follows that N = {−1,1} is a normal
subgroup of R∗ (see Exercise 15 on page 260). We will construct the quotient group
(R∗/N,�). The relation ∼N is defined by x ∼N y if and only if xy−1 ∈ N, for all
x,y ∈ R

∗. Since xy−1 ∈ N means that x
y = ±1, we have that x ∼N y if and only if

x =±y. Because x =±|x|, we see that x∼ |x| and thus, by Theorem 7.2.4, we have
that [x] = [ |x| ] for each x ∈ R

∗. Hence, R∗/N = {[x] : x ∈ R
+} and

[x]� [y] = [x · y] and [x]−1 = [x−1] =

[
1
x

]

for all x,y ∈ R
+. So the quotient group (R∗/N,�) is very similar4 to the group

(R+, ·) of positive real numbers under multiplication (see Example 4 on page 249).

Example 5. Define the function Ta,b : R→ R by Ta,b(x) = ax + b, whenever a,b ∈
R with a �= 0. Let G = {Ta,b : a,b ∈ R and a �= 0}, the set of all such functions. We
know that (G,◦) is a group where ◦ is functional composition (see Example 5 on
page 249). In Example 15 on page 256 we showed that N = {T1,b ∈ G : b ∈ R} is a
normal subgroup of G. Let us construct and investigate the quotient group (G/N,�).
Recall that ∼N is defined by

Ta,b ∼N Tc,d if and only if Ta,b ◦T−1
c,d ∈ N

for all Ta,b,Tc,d ∈G. One can easily show that Ta,b◦T−1
c,d = Ta

c ,�
for some real number

�. Since Ta
c ,�
∈ N means that a

c = 1, we conclude that

Ta,b ∼N Tc,d if and only if a = c. (8.22)

Therefore, (8.22) implies that Ta,b ∼N Ta,d for any value of d. So, we can use d = 0.
Consequently, for every a,b ∈R we have that Ta,b ∼N Ta,0. Thus, [Ta,b] = [Ta,0]. We
conclude that G/N = {[Ta,0] : a ∈ R}. Since Ta,0 ◦Tc,0 = Tac,0 and T−1

a,0 = T1
a ,0

, we

also have that

[Ta,0]� [Tc,0] = [Ta,0 ◦Tc,0] = [Tac,0] and [Ta,0]
−1 = [T−1

a,0 ] = [T1
a ,0

].

4In fact, the two groups are isomorphic (see page 68 of [10]).
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The above operations in (G/N,�) behave very much like those in the group (R∗, ·)
of nonzero real numbers (see Example 3 on page 248). In particular, the group
(G/N,�) is abelian. Thus, we have constructed the abelian group (G/N,�) from
the nonabelian group (G,◦).

8.6.2 Quotient Rings

In Section 7.4 we constructed the ring (Zm,⊕,�) from the ring of integers (Z,+, ·).
We will now investigate how to generalize this construction. The first step in the
construction of (Zm,⊕,�) was the equivalence relation a ≡ b(mod m) on Z, given
in Definition 7.3.1. Similarly, the first step in our generalization will be to define an
appropriate equivalence relation on the elements of a ring.

Theorem 8.6.12. Let (R,+, ·) be a ring and let I ⊆ R be an ideal. Define the
relation ∼ on R by

a∼ b if and only if (a−b) ∈ I (8.23)

for all a,b ∈ R. Then ∼ is an equivalence relation on R.

Proof. See Exercise 13. �
Definition 8.6.13. Let (R,+, ·) be a ring. Whenever I ⊆ R is an ideal, let ∼I be the
equivalence relation on R defined by a∼I b if and only if (a−b)∈ I, for all a,b∈ R.
Let R/I denote the set of equivalence classes of the relation∼I , that is, R/I = R/∼I .

Theorem 8.6.14. Let (R,+, ·) be a ring and let I ⊆ R be an ideal. Then ∼I is a
congruence relation on (R,+, ·).
Proof. We must show that + and · preserve the equivalence relation ∼I . Let
a,b,c,d ∈ R and assume a∼I c and b∼I d, that is, assume that

(a− c) ∈ I (8.24)

(b− d)∈ I. (8.25)

We first prove (a + b) ∼I (c + d). Since I is closed under +, we conclude
from (8.24) and (8.25) that (a−c)+(b−d)∈ I. In addition, by Lemma 8.5.8 and the
ring axioms, we have (a−c)+(b−d)= (a+b)−(c+d) . Thus, (a+b)−(c+d)∈ I
and hence, (a + b)∼I (c + d).

To prove ab ∼I cd, we need to show that (ab− cd) ∈ I. Since I is an ideal, we
see from (8.24) that (a− c)b = (ab− cb)∈ I (see Definition 8.5.13(2)). In addition,
from (8.25), we conclude that c(b− d) = (cb− cd) ∈ I, again because I is an ideal.
Thus, (ab− cb)+ (cb− cd) ∈ I, as I is a closed under +. Hence, (ab− cd) ∈ I.
Therefore,∼I is a congruence relation. �
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Abstract algebra evolved from the desire to find the roots of polynomials. Our
next theorem can be used (as you will see in your abstract algebra courses) to
construct a new ring in which a particular polynomial has a root.

Theorem 8.6.15 (Quotient Ring). Let (R,+, ·) be a ring and let I ⊆ R be an ideal.
Then (R/I,⊕,�) is also a ring where the binary operations ⊕ and � on R/I are
well-defined by

[a]⊕ [b] = [a + b] (8.26)

[a]� [b] = [a ·b] (8.27)

for all a,b ∈ R. The ring (R/I,⊕,�) is called a quotient ring.

Proof. Theorem 8.6.14 states that∼I is a congruence relation on (R,+, ·). Thus, the
binary operations � and ⊕ on R/I are well-defined by Theorem 8.6.3. The proof
that (R/I,⊕,�) is a ring is analogous to the proof of Theorem 8.6.4. �

Examples of Quotient Rings

Example 6. Let (Z,+, ·) be the ring of integers and let m be a natural number. Then
the set I = {mk : k ∈ Z} is an ideal of the ring of integers. We will construct and
evaluate the quotient ring (Z/I,⊕,�). The equivalence relation ∼I is defined by
x∼I y if and only if x− y ∈ I, for all x,y ∈ Z. Since x− y ∈ I means that m |(x− y),
we see that

x∼I y if and only if x≡ y(mod m) (8.28)

for all x,y ∈ Z. Thus, the relation∼I is the congruence relation (mod m) and hence,
Z/I =Zm. Moreover, it follows that the definitions of addition and multiplication for
the ring Z/I are exactly the same as that for (mod m) modular arithmetic. Therefore,
(Z/I,⊕,�) = (Zm,⊕,�).

Example 7. Let (C(R),+, ·) be the ring of all continuous functions f : R → R

given in Example 5 on page 274. Let a be a fixed real number. We know by
Example 13 on page 278 that I = { f ∈C(R) : f (a) = 0} is an ideal of C(R). We will
construct and evaluate the quotient ring (C(R)/I,⊕,�). The relation ∼I is defined
by

f ∼I g if and only if f −g ∈ I

for all f ,g ∈C(R). Since f − g ∈ I means that ( f −g)(a) = 0, we see that

f ∼I g if and only if f (a) = g(a)

for all f ,g ∈C(R). For each v ∈ R let v ∈C(R) be the constant function v : R→ R

defined by v(x) = v for all x ∈ R. For every f ∈ C(R) if f (a) = v, then f ∼I v
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and thus, [ f ] = [v]. Therefore, C(R)/I = {[v] : v ∈ R}. Because v + w = v + w and
v ·w = v ·w, we see that

[v]⊕ [w] = [v + w] = [v + w ] and [v]� [w] = [v ·w] = [v ·w ]

for all v,w ∈ R. We observe that the operations of addition and multiplication in
(C(R)/I,⊕,�) act very much like5 those in the ring (R,+, ·) of real numbers.

Exercises 8.6

1. Consider the algebraic structure (R,+, ·) where R is the set of real numbers, +
is addition, and · is multiplication. Let ∼ be the equivalence relation on the set
of real numbers defined by x∼ y if and only if |x|= |y|.
(a) Prove that · preserves the relation ∼.
(b) Show that + does not preserve the relation ∼.

2. Let A = Z×N = {(x,y) : x ∈ Z and y ∈ N}. Define the equivalence relation ∼
on A by

(x,y)∼ (s, t) iff xt = ys

and define the binary operation ∗ on A by (x,y) ∗ (s, t) = (xs,yt). Prove that ∗
preserves the relation ∼.

3. Let A = Z×N= {(x,y) : x ∈ Z and y ∈ N}. The relation ∼ on A define by

(x,y)∼ (s, t) iff xt = ys

is an equivalence relation. Consider the binary operation + defined on A by
(x,y)+ (s, t) = (xt + ys,yt). Prove that + preserves the relation ∼.

4. Let F = (F(R),+, ·) be the algebraic structure defined in Example 5 on
page 245. Let∼ be the equivalence relation on the set F(R) defined by f ∼ g if
and only if f (1) = g(1). Prove that ∼ is a congruence relation on F .

5. Prove Theorem 8.6.6.
6. Let (G,∗) be a group and let N be a subgroup of G. Define the equivalence

relation ∼ on G by a∼ b if and only if ab−1 ∈ N, for all a,b ∈ G. Prove that

(a) [e] = N, and
(b) For all a ∈ N we have that [a] = [e] = N.

7. Let (G,∗) be a group and let∼ be an equivalence relation on G. Suppose that ∗
preserves the relation ∼. Let a,b,c ∈ G. Prove the following:

(a) If a∼ b, then a ∗ c∼ b ∗ c.

5Actually, the two rings are isomorphic (see page 141 of [10]).
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(b) If a∼ b, then c∗ a∼ c∗ b.
(c) If a∼ b, then a−1 ∼ b−1.

8. Let (R∗, ·) be the group of nonzero real numbers under multiplication. Consider
the normal subgroup R

+ of R∗, where R
+ is the set of positive real numbers.

Construct and evaluate the quotient group (R∗/R+,�).
9. Consider the group (G,◦) where G = {Ta,b : a,b ∈ R and a �= 0} and ◦ is

functional composition (see Example 5 on page 249). One can verify that
N = {Ta,b : a = ±1 and b ∈ R} is a normal subgroup of G. Construct and
evaluate the quotient group (G/N,�).

10. Let (G,∗) be a group with normal subgroup N. Suppose that N ⊆ K where K
is also subgroup of G. First show that N is a normal subgroup of K. Now show
that K/N ⊆ G/N and that (K/N,�) is a subgroup of (G/N,�).

11. Let (G,∗) be a group and let ∼ be an equivalence relation on G. Assume that ∗
preserves the relation ∼. Let H = {a ∈ G : a ∼ e} where e ∈ G is the identity
element. Using the results of Exercise 7 prove the following:

(a) H is a subgroup of G.
(b) H is a normal subgroup of G.
(c) For all x,y ∈ G, we have x∼H y if and only if x∼ y.

12. Let (G,∗) be a group and let N be a normal subgroup of G. Thus, (G/N,�)
is a group by Theorem 8.6.11. Suppose that M is a subgroup of G/N. Define
M ⊆ G by M = {a ∈ G : [a] ∈M}.
(a) Prove that M is a subgroup of G.
(b) Prove that N ⊆M (see Exercise 6).
(c) Prove that if M� G/N, then M� G.

13. Prove Theorem 8.6.12.
14. Let ∼ be a congruence relation on a ring (R,+, ·). Let a,b,c ∈ R. Prove the

following:

(a) If a∼ b, then a · c∼ b · c.
(b) If a∼ b, then c ·a∼ c ·b.

15. Let ∼ be a congruence relation on a ring (R,+, ·). Let 0 be the zero element of
R and define I = {a ∈ R : a ∼ 0}. Using the results of Exercise 14 prove that I
is an ideal of R.

16. Let I be an ideal of the ring (R,+, ·) and let a∈ R. Then I +a = {i+a : i ∈ I} is
called a right coset of the ideal I. Now, let∼I be as defined in Definition 8.6.13.
Prove that [a] = I + a, where [a] = {x ∈ R : x∼I a}.

17. Let (R,+, ·) be a ring and let I be an ideal of R. Prove that if R is a commutative
ring, then R/I is also commutative.

18. Let (Z[
√

3],+, ·) be the ring introduced in Example 9 on page 277. Consider
the ideal of Z[

√
3] given by I = {a + b

√
3 ∈ Z[

√
3] : 3 |a}. Using the ideal

I, construct and evaluate the quotient ring (Z[
√

3]/I,⊕,�). Conclude that the
operations of addition and multiplication in the quotient ring act very much like
those of the ring (Z3,⊕,�).
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19. Let (S2(R),+, ·) be the ring presented in Exercise 14 on page 280 where

S2(R) is defined by S2(R) =

{[

a b
0 a

]

: a,b ∈ R

}

. Let J be the ideal of S2(R)

given by J =

{[
0 b
0 0

]

: b ∈ R

}

. Construct and evaluate the quotient ring

(S2(R)/J,⊕,�). Conclude that the operations of addition and multiplication
in the quotient ring act very much like the ring (R,+, ·) of real numbers.

20. The ring (Z[
√

2],+, ·) is defined in Exercise 8 on page 279. Let I ⊆ Z[
√

2] be
the ideal of Z[

√
2] defined by I = {a+b

√
2 ∈ Z[

√
2] : 3 |a and 3 |b}. Construct

and evaluate the quotient ring (Z[
√

2]/I,⊕,�).
21. Let (F(Z),+, ·) be the ring in Example 7 on page 275. Consider the ideal

I = { f ∈ F(Z) : 5 | f (1)} of F(Z). Construct and evaluate the quotient ring
(F(Z)/I,⊕,�). Conclude that the operations of addition and multiplication in
the quotient ring act very much like the ring (Z5,⊕,�).

Exercise Notes: For Exercise 5, review Lemma 8.3.13. For Exercise 10, look over
Exercise 13 on page 260 and Theorem 8.6.9. For Exercise 16, review the proof of
Theorem 8.6.9.





CHAPTER 9
Core Concepts in Real Analysis

Real analysis is a branch of mathematics that studies the set R of real numbers
and provides a theoretical foundation for the fundamental principles of the calculus.
The main concepts studied in a first real analysis course are bounded sets of real
numbers, functions, limits, sequences, continuity, differentiation, integration, and
sequences of functions. Among the first topics covered in such a course are the
field axioms and the definition of an ordered field. The concept of an ordered field
forms a basis for the algebraic operations and properties of order that are essential
in calculus and in real analysis.

9.1 Fields

We present eight fundamental properties that involve addition and multiplication.
These properties are called the field axioms. The real number system (R,+, ·) is
said to be a field because it satisfies the field axioms, and from these axioms one can
derive all of the other algebraic properties that hold for the real numbers.

Definition 9.1.1. Let F = (F,+, ·) be an algebraic structure where + and · are two
binary operations called addition and multiplication, respectively. Then F is called
a field if the following axioms are satisfied:

A1. x + y = y + x for all x,y ∈ F .
A2. x +(y + z) = (x + y)+ z for all x,y,z ∈ F .
A3. There is an element 0 ∈ F such that x+0 = x for all x ∈ F (0 is called the zero

element).
A4. For all x ∈ F there exists a y ∈ F such that x + y = 0 (y is written as −x and is

called the additive inverse of x).

M1. x · y = y · x for all x,y ∈ F .
M2. x · (y · z) = (x · y) · z for all x,y,z ∈ F .
M3. There is an element 1 ∈ F such that 1�= 0 and x ·1 = x for all x ∈ F (1 is called

the multiplicative identity element).
M4. For all x ∈ F if x �= 0, then there exists a y ∈ F such that x · y = 1 (y is written

as x−1, or 1
x , and it is called the multiplicative inverse of x).

D1. x · (y + z) = (x · y)+ (x · z) for all x,y,z ∈ F .

D.W. Cunningham, A Logical Introduction to Proof, DOI 10.1007/978-1-4614-3631-7 9,
© Springer Science+Business Media New York 2012
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Let F = (F,+, ·) be a field and let x ∈ F . Axiom A4 states that x + (−x) = 0.
From axiom A1 we conclude that (−x)+ x = 0. Similarly, if x�= 0, then axiom M4
yields the equation x · x−1 = 1 and from axiom M1 we have that x−1 · x = 1.

In our next result, items (2) and (3) respectively show that the zero element in a
field is unique and that each element in the field has a unique additive inverse.

Proposition 9.1.1. Let (F,+, ·) be a field. Then for all x,y,z ∈ F the following
hold:

(1) If x+ y = x + z, then y = z.
(2) If x+ y = x, then y = 0.
(3) If x+ y = 0, then y =−x.
(4) −(−x) = x.

Proof. Let x,y,z ∈ F . To prove (1) assume x + y = x + z. We prove that y = z as
follows:

x + y = x + z by assumption

y + x = z+ x by axiom A1

(y + x)+ (−x) = (z+ x)+ (−x) add (−x) to both sides

y +(x +(−x)) = z+(x +(−x)) by axiom A2

y + 0 = z+ 0 by axiom A4

y = z by axiom A3.

To prove (2) assume x + y = x. By axiom A3 we have that x + 0 = x. So, we see
that x+y = x+0. Item (1) implies that y = 0. We now prove (3). Suppose x+y = 0.
Because x +(−x) = 0 by axiom A4, we have that x + y = x +(−x). Item (1) yields
y =−x. Finally, to prove (4) note that (−x)+ x = 0 by axioms A4 and A1. Item (3)
allows us to infer that x =−(−x). ��

In a similar manner one can prove our next proposition which asserts that the
multiplicative identity element in a field is unique and each nonzero element has a
unique multiplicative inverse.

Proposition 9.1.2. Let (F,+, ·) be a field. For all x,y,z∈F the following statements
hold:

(1) If x�= 0 and x · y = x · z, then y = z .
(2) If x�= 0 and x · y = x, then y = 1.
(3) If x�= 0 and x · y = 1, then y = x−1, that is, y = 1

x .

(4) (x−1)−1 = x, that is, 1
1
x

= x.

Proposition 9.1.3. Let (F,+, ·) be a field. Then for all x,y ∈ F we have the next
four properties:

(1) x ·0 = 0.
(2) If x�= 0 and y�= 0, then x · y�= 0.
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(3) (−x) · y =−(x · y) = x · (−y).
(4) (−x) · (−y) = x · y.

Proof. Let x,y ∈ F . To prove (1) observe that

x ·0 = x · (0 + 0) because 0+0 = 0 by axiom A3

= x ·0 + x ·0 by axiom D1.

Thus, x · 0 + x · 0 = x · 0. Proposition 9.1.2(2) implies that x · 0 = 0. To prove (2),
assume that x �= 0 and y �= 0. Suppose, for a contradiction, that x · y = 0. Since
x ·0 = 0 by (1), we conclude that x ·y = x ·0. As x�= 0, item (1) of Proposition 9.1.2
implies that y = 0 which contradicts our assumption that y�= 0. Therefore, x ·y�= 0.
To establish (3), we see that

x · y + x · (−y) = x · (y +(−y)) = x ·0 = 0

by axiom D1, axiom A4, and item (1). Hence, x ·y+x ·(−y)= 0. Proposition 9.1.1(2)
implies that x · (−y) = −(x · y). Similarly, one can show that (−x) · y = −(x · y).
Finally,

(−x) · (−y) =−(x · (−y)) =−(−(x · y)) = x · y

by item (3) and Proposition 9.1.1(4). ��
When x and y are elements in a field, one can write x ·y as xy, denote x+(−y) by

x− y, and write x · x as x2. One can also express x−1 as 1
x and write y

x for y · 1
x .

As noted at the beginning of this section, the algebraic system (R,+, ·) is a field.
In addition, the system (Q,+, ·) is also a field. Thus, these systems satisfy all of the
properties presented in Propositions 9.1.1–9.1.3.

9.1.1 Ordered Fields

In Section 7.5 we said that a partial order ≤ on a set F is a relation that is reflexive,
antisymmetric, and transitive. Furthermore, if for every x,y∈ F we have either x≤ y
or y≤ x, then ≤ is a total order. We also defined the strict order < on F by x < y if
and only if x ≤ y and x �= y, for all x,y ∈ F (see Definitions 7.5.2–7.5.4). We shall
write x > y to mean y < x whenever x,y ∈ F .

The familiar relation ≤ on the set of real numbers is a total order. Moreover, this
relation satisfies many additional properties that involve addition and multiplication;
two of which are presented in our next definition.
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Definition 9.1.4. A structure (F,+, ·,≤) is called an ordered field if (F,+, ·) is a
field and≤ is a total order on F such that for all x,y,z ∈ F we have the following:

1. If x < y, then x + z < y + z.
2. If x > 0 and y > 0, then x · y > 0.

When x > 0 we shall say that x is positive and if x < 0, then x is negative.

The structures (Q,+, ·,≤) and (R,+, ·,≤) are ordered fields where≤ is the usual
‘less than or equal’ relation on the rational and real numbers. In fact, using the
axioms of set theory, one can actually construct these two number systems and prove
that they are ordered fields. The standard properties of inequality that hold in these
two fields also hold in every ordered field. In particular, when F is an ordered field
and x,y,z ∈ F , Lemma 7.5.5 implies the following:

1. If x < y and y < z, then x < z. (transitivity)
2. Exactly one of the following holds: x < y, y < x, or x = y. (trichotomy)

Furthermore, in an ordered field one can prove that the result of multiplying both
sides of an inequality by a positive value preserves the inequality and the result of
multiplying both sides by a negative value reverses the inequality.

Proposition 9.1.5. Let (F,+, ·,≤) be an ordered field. For all x,y,z ∈ F the
following properties of inequality hold:

(1) If x > 0, then −x < 0. If x < 0, then −x > 0.
(2) If x > 0 and y < z, then xy < xz.
(3) If x < 0 and y < z, then xy > xz.
(4) If x�= 0, then x2 > 0. In particular, 1 > 0.
(5) If x > 0, then 1

x > 0.

(6) If 0 < x < y, then 0 < 1
y < 1

x .

Proof. We will prove (1), (2), (4), (5) and leave items (3) and (6) as exercises. To
prove (1), assume that x > 0. From Definition 9.1.4(1) we obtain

x +(−x)> 0 +(−x).

Thus, by axioms A4 and A3, we have 0 > −x; that is, −x < 0. Now assume that
x < 0. Then x +(−x)< 0 +(−x). Hence, 0 <−x and so, −x > 0.

To prove item (2), assume x > 0 and y < z. Since y < z, we conclude that

y +(−y)< z+(−y)

by Definition 9.1.4(1). Thus, 0 < z− y. Because x > 0 and z− y > 0, we conclude
that x(z−y)> 0 from Definition 9.1.4(2). Axiom D1 and Proposition 9.1.3(3) imply
that x(z− y) = xz− xy and hence, 0 < xz− xy. Therefore, 0+ xy < (xz− xy)+ xy by
(1) of Definition 9.1.4. Thus, xy < (xz− xy)+ xy. From axioms A1, A2, and A4 we
have that (xz− xy)+ xy = xz. Therefore, xy < xz.



9.1 Fields 297

To establish (4), assume x �= 0. So, by trichotomy, we must have either x > 0
or x < 0. If x > 0, then xx > 0 by (2) of Definition 9.1.4. Thus, x2 > 0. If x < 0,
then −x > 0 by item (1) of the proposition. Again by Definition 9.1.4(2), we obtain
(−x)(−x) > 0. Proposition 9.1.3(4) implies that (−x)(−x) = xx. Hence, x2 > 0.
Since 12 = 1, we infer that 1 > 0.

Finally, to prove item (5), assume that x > 0. Suppose, for a contradiction, that
1
x ≤ 0. If 1

x = 0, then x · 1
x = x ·0 = 0. Since x · 1

x = 1, we conclude that 1 = 0 which
contradicts axiom M3. If 1

x < 0, then x · 1
x < x ·0 = 0, as x > 0. Thus, 1 < 0. This is

impossible, because 1 > 0 by item (4) of the proposition. Therefore, 1
x > 0. ��

Exercises 9.1

1. Let (F,+, ·) be a field with x,y ∈ F . Prove the following:

(a) −x− y =−(x + y).
(b) −(y− x) = x− y.

2. Let (F,+, ·,≤) be an ordered field with x,y ∈ F . Prove the following:

(a) 1 < 1 + 1 and 1
1+1 < 1.

(b) x < y if and only if −y <−x.
(c) x · y = 0 if and only if x = 0 or y = 0.

3. Let (F,+, ·,≤) be an ordered field where x and y are elements in F . Prove if
x < y, then x(y + 1)< y(x + 1).

4. Prove items (3) and (6) of Proposition 9.1.5.
5. Let (F,+, ·,≤) be an ordered field where x is an element in F . Prove that if

x < 0, then 1
x < 0.

6. Let (F,+, ·,≤) be an ordered field with x,y ∈ F . Prove that if x < 0 and y < 0,
the xy > 0.

7. Let (F,+, ·,≤) be an ordered field where a,b,c,d are elements in F . Prove that
if a < b and c < d, then a + c < b + d.

8. Let (F,+, ·,≤) be an ordered field where a,b,c,d are positive elements in F .
Prove that if a < b and c < d, then ac < bd. Conclude that a2 < b2.

9. Let (F,+, ·,≤) be an ordered field where a,b,c,d are positive elements in F .
Prove the following:

(a) If a < c, then a
b < c

b .
(b) If d < b, then a

b < a
d .

(c) If a≤ c and d ≤ b, then a
b ≤ c

d .

10. Let (F,+, ·,≤) be an ordered field where x and y are positive elements in F .
Prove that if x2 < y2, then x < y.

11. Let (F,+, ·) be a field and let x,y ∈ F where x �= −y. Prove that x2 + y2 > xy
and x2 + y2 >−xy.
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9.2 The Real Field

For the remainder of this chapter, we will be investigating the ordered field of real
numbers (R,+, ·,≤) which is sometimes referred to as the real field. Since the real
field is an ordered field, we can apply all of the propositions and definitions that we
presented in the previous section. In particular, using the properties of an ordered
field we can prove our next theorem.

Theorem 9.2.1. Let x,y ∈ R. Suppose x≤ y + ε for all ε > 0. Then x≤ y.

Proof. Let x,y ∈ R and assume that x ≤ y + ε for all ε > 0. We will prove that
x≤ y. Suppose, for a contradiction, that x > y. So x− y > 0 and ε = x−y

2 > 0. Thus,
x≤ y + ε by our assumption. Since ε = x−y

2 < x− y, we obtain

x≤ y + ε = y +

(
x− y

2

)

< y +(x− y) = x

which implies that x < x. This contradiction forces us to conclude that x≤ y. ��
The absolute value function is a very important function in real analysis because

it provides us with a notion of distance between two real numbers. Many of the
proofs in real analysis establish inequalities that involve the absolute value of a real
number or the absolute value of the difference of two real numbers.

Definition 9.2.2 (Absolute Value). Given a real number x, the absolute value of
x, denoted by |x|, is defined by

|x|=
{

x, if x≥ 0;

−x, if x < 0.

Theorem 9.2.3 (Basic Properties of Absolute Value). For all a,x∈R, with a≥ 0,
the following hold:

(a) 0≤ |x| and |−x|= |x|.
(b) x≤ |x| and −x≤ |x|.
(c) If |x|= 0, then x = 0.
(d) |x| ≤ a if and only if −a≤ x≤ a.
(e) |xy|= |x| |y|.
(f) | xy |= |x|

|y| when y�= 0.

(g) |x|2 = x2.
(h) |x + y| ≤ |x|+ |y|. (triangle inequality)

Proof. Items (a)–(g) follow directly from Definition 9.2.2. We shall prove (h). Since
|x + y|2 = (x + y)2, we have that

|x + y|2 = x2 + 2xy + y2 ≤ x2 + |2xy|+ y2 = |x|2 + 2 |x| |y|+ |y|2 = (|x|+ |y|)2.
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So, |x + y|2 ≤ (|x|+ |y|)2. Exercise 10 (page 297) implies that |x+y| ≤ |x|+ |y|. ��
The triangle inequality is used frequently in real analysis. For example, suppose

|x− �|< 1. Using the triangle inequality we can show that |x|< |�|+ 1 as follows:

|x|= |x− �+ �| ≤ |x− �|+ |�|< 1 + |�| .

Thus, |x| < |�|+ 1. In the proof of our next theorem, we will be using the triangle
inequality to derive other useful properties of the absolute value function.

Theorem 9.2.4 (More Properties of Absolute Value). For all x,y,k ∈ R, where
k > 0, we have

(1) |x|< k if and only if −k < x < k.
(2) |x|> k if and only if x <−k or x > k.
(3) |x|− |y| ≤ |x− y|.
(4) |y|− |x| ≤ |x− y|.
(5)

∣
∣ |x|− |y| ∣∣≤ |x− y|. (backward triangle inequality)1

Proof. Items (1)–(2) follow from Definition 9.2.2. We shall prove (3), (4), and (5).
To prove (3), observe that |x|= |x− y + y|. So the triangle inequality implies that

|x|= |x− y + y| ≤ |x− y|+ |y| .

Hence |x| ≤ |x− y|+ |y| and thus, |x|− |y| ≤ |x− y|.
Now we prove (4). By interchanging x and y in (3), we obtain |y|− |x| ≤ |y− x|.

Since |y− x|= |x− y|, we also have that |y|− |x| ≤ |x− y|.
Finally, we prove (5). From (4) we conclude that−|x− y|≤−(|y|−|x|) and thus,

−|x− y| ≤ |x|− |y| .

From (3) we see that |x| − |y| ≤ |x− y|. Hence, −|x− y| ≤ |x| − |y| ≤ |x− y|.
Theorem 9.2.3(d) implies that

∣
∣ |x|− |y| ∣∣≤ |x− y|. Our proof is complete. ��

Given a finite nonempty set of real numbers A, we let maxA, or max(A), denote
the maximum number in A. We also define minA, or min(A), to be the minimum
number in A. For example, max{−1,2,π ,3}= π and min{−1,2,π ,3}=−1.

Lemma 9.2.5. Let x, a, and b be real numbers. If a ≤ x ≤ b, then |x| ≤
max{|a| , |b|}.
Proof. Assume a ≤ x ≤ b. We shall prove that |x| ≤ max{|a| , |b|}. First suppose
that x ≥ 0. Because x ≤ b, we see that b ≥ 0. So |x| = x and |b| = b. Since x ≤ b,
we deduce that |x| ≤ |b| and therefore, |x| ≤max{|a| , |b|}. Now suppose that x < 0.
Then, because a≤ x, we have that a < 0. Thus, |x|=−x and |a|=−a. Since a≤ x,
we see that −x≤−a and hence, |x| ≤ |a|. Therefore, |x| ≤max{|a| , |b|}. ��

1This inequality is also called the reverse triangle inequality.
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Exercises 9.2

1. Prove (4), (5), (6), and (7) of Theorem 9.2.3.
2. Prove (1) and (2) of Theorem 9.2.4.
3. Let x, a, and b be real numbers. Prove that if a≤ x≤ b, then min{|a| , |b|} ≤ |x|.
4. Let a and b be real numbers. Using Theorem 9.2.4, prove that |a + b| ≥ |a|− |b|.
5. Prove by mathematical induction that for all n ≥ 1 if x1,x2, . . . ,xn are real

numbers, then |x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|.
6. Let x,y be real numbers. Prove that x2 + y2 = 0 if and only if x = 0 and y = 0.
7. Let x and y be real numbers. Prove that |x + y|= |x|+ |y| if and only if xy≥ 0.

8. Let x and y be real numbers. Prove that max{x,y} = x+y+|x−y|
2 . Conclude that

|x|= 2max{x,0}− x.

9. Let x and y be real numbers. Prove that min{x,y} = x+y−|x−y|
2 . Conclude that

|x|= x−2min{x,0}.

9.3 The Completeness Axiom

Since the real field is ordered, we often use the real line to give a geometric picture
of this field where every real number appears as a point on the line. The field of
rational numbers is another ordered field which we shall call the rational field.
Since the rational field is also ordered, we can imagine a rational number line that
consists of just the rational numbers. Because

√
2 is not a rational number, it does

not appear on the rational number line; however, it does appear on the real line.
So, in a sense, the real line fills in the holes that exist in the rational line. Does the
real line possess any holes? The real line is without holes, because the real field
satisfies a key property called completeness. We shall express this completeness
property in terms of a formal mathematical axiom. To state this axiom, we need
some preliminary definitions.

Definition 9.3.1 (Upper and Lower Bounds). Let S ⊆R be nonempty.

• The set S is bounded above if there is a real number b such that x ≤ b for all
x ∈ S. The number b is called an upper bound for S.

• The set S is bounded below if there is a real number a such that a ≤ x for all
x ∈ S. The number a is called a lower bound for S.

• If S has both a lower bound and an upper bound, then we say that S is bounded.

Theorem 9.3.2. Let S ⊆ R be nonempty. Then S is bounded if and only if there is
an M > 0 so that |x| ≤M for all x ∈ S.

Proof. Let S ⊆ R be nonempty. Assume that S is bounded. So there are nonzero
real numbers a and b such that a ≤ x ≤ b for all x ∈ S. Let M = max{|a| , |b|} > 0.
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Fig. 9.1 The set { 2
n : n ∈ N} is bounded below by 0 and bounded above by 3

b

S x b

a

Sxa

Fig. 9.2a β = sup(S) Fig. 9.2b α = inf(S)

Lemma 9.2.5 implies that |x| ≤M for all x ∈ S. For the converse, assume |x| ≤M
for all x ∈ S where M > 0. From Theorem 9.2.3(b), we conclude that x ≤ |x| ≤M
and −x≤ |x| ≤M. Thus, −M ≤ x≤M for all x ∈ S and so, S is bounded. ��
Definition 9.3.3 (Supremum and Infimum). Let S ⊆ R be nonempty.

• Suppose that β is an upper bound for S. If β is the least upper bound for S, then
β is called the supremum of S and we write β = sup(S).

• Suppose that α is a lower bound for S. If α is the greatest lower bound for S,
then α is called the infimum of S and we write α = inf(S).

The set S = { 2
n : n ∈ N} (see Fig. 9.1) is bounded. We note that 0 is the greatest

lower bound for S and that 2 is the least upper bound for S. Thus, 0 = inf(S) and
2 = sup(S).

Let S ⊆ R be nonempty. The equation β = sup(S) means that (i) β is an upper
bound for S and (ii) β is the smallest upper bound for S. On the other hand, the
equation α = inf(S) means that (i) α is a lower bound for S and (ii) α is the largest
lower bound for S. The next remark repeats and clarifies these observations.

Remark 9.3.4. Let S⊆R be nonempty and let α,β ∈R (see Fig. 9.2a, b). Then we
have that

1. β = sup(S) if and only if the following two conditions hold:

(i) x≤ β for all x ∈ S,
(ii) for all real numbers b, if b is an upper bound for S, then β ≤ b.

2. α = inf(S) if and only if the following two conditions hold:

(i) α ≤ x for all x ∈ S,
(ii) for all real numbers a, if a is a lower bound for S, then a≤ α .

The properties of an ordered field that we investigated in Section 9.1 identify
many of the important properties possessed by the real numbers. In real analysis,
however, almost every significant result relies on our next axiom which proclaims
that every nonempty set of real numbers that is bounded above has a supremum.
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Completeness Axiom. Every nonempty S ⊆ R that is bounded above has a least
upper bound.

The completeness axiom just asserts that if a set S⊆R is nonempty and bounded
above, then there is a real number β that satisfies the equation β = sup(S). Even
though it is stated as an axiom, Richard Dedekind in 1858 discovered a proof of
the completeness axiom using concepts from set theory (see [11, Theorem 1.19]).
Moreover, one can prove that the ordered field of rational numbers does not satisfy
the completeness axiom; that is, one can show that there are bounded subsets of Q
which do not have a least upper bound in Q. Thus, the real field is a very special
ordered field.

9.3.1 Proofs on the Supremum of a Set

Remark 9.3.4(1) inspires the following very useful strategy for proving equations of
the form β = sup(S).

Proof Strategy 9.3.5. Given a real number β and a nonempty S⊆ R, to prove that
β = sup(S) use the two-step proof diagram:

Step (1): Prove x≤ β for all x ∈ S.
Step (2): Assume b is an upper bound for S.

Prove β ≤ b.

In other words, to prove that β = sup(S) you must first prove that β is an upper
bound for S and then prove that β is the smallest upper bound for S. Similarly,
Remark 9.3.4(1) yields a strategy that allows one to take advantage of an assumption
having the form β = sup(S).

Assumption Strategy 9.3.6. Let S ⊆ R be nonempty and let β ∈ R. Suppose you
are assuming that β = sup(S). Then you can infer (1) x ≤ β for all x ∈ S, and
(2) whenever b is an upper bound for S, you can deduce that β ≤ b.

Our proof of the next theorem employs both Proof Strategy 9.3.5 and Assumption
Strategy 9.3.6. Given a set S ⊆ R and a real number k we can form the new set of
real numbers defined by A = {kx : x∈ S}. The set A is sometimes denoted by kS. We
will now show that there is a connection between the supremum of S (if it exists)
and the supremum of A.

Theorem 9.3.7. Let S⊆R be nonempty and bounded above, and let k > 0. Suppose
A = {kx : x ∈ S}. Then the set A is bounded above and sup(A) = k sup(S).

Proof Analysis. Since the set S is bounded above, there is a real number β satisfying
β = sup(S) by the completeness axiom. Let k > 0 and A = {kx : x ∈ S}. We need
to prove that kβ = sup(A). First note that every element in A has the form kx for
an x ∈ S. So to prove that kβ is an upper bound for A, we just need to show that
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kx≤ kβ for all x ∈ S. Appealing to Proof Strategy 9.3.5, we construct the following
proof diagram:

Assume β = sup(S).
Prove kx≤ kβ for all x ∈ S.
Assume c is an upper bound for A.

Prove kβ ≤ c.

The first line of the above proof diagram indicates that, in our proof, we will be
assuming β = sup(S). Thus, we can use Assumption Strategy 9.3.6. The second
line in this proof diagram asserts that we must prove that kβ is an upper bound for
the set A. The third line states that we will assume c is an upper bound for A. We
will then have to prove that kβ ≤ c. Since every element in A has the form kx for an
x ∈ S, to say that c is an upper bound for A just means that kx≤ c for all x ∈ S. We
now have all of the necessary ingredients that we need to compose a correct proof
of the theorem. A©A©
Proof (of Theorem 9.3.7). Suppose that S ⊆ R is nonempty and bounded above.
The completeness axiom asserts that S has a least upper bound β and so, β = sup(S).
Hence, x ≤ β for all x ∈ S. Let k > 0 and A = {kx : x ∈ S}. We shall prove that
kβ = sup(A). We first prove that kβ is an upper bound for A. Since x ≤ β for all
x ∈ S and k > 0, we have kx≤ kβ for all x ∈ S. Thus, kβ is an upper bound for A.

Let c be an upper bound for A. We shall prove that kβ ≤ c. Since c is an upper
bound for A, we have that kx≤ c for all x ∈ S. Because k > 0, we see that x≤ c

k for
all x ∈ S. Thus, c

k is an upper bound for S. Since β is the smallest upper bound for
S, we conclude that β ≤ c

k and so kβ ≤ c. Therefore, kβ = sup(A). ��

9.3.2 Proofs on the Infimum of a Set

Our next proof strategy, motivated by Remark 9.3.4(2), can be used to prove an
equation of the form α = inf(S).

Proof Strategy 9.3.8. Given a real number α and a nonempty S ⊆R, to prove that
α = inf(S) use the two-step proof diagram:

Step (1): Prove α ≤ x for all x ∈ S.
Step (2): Assume a is a lower bound for S.

Prove a≤ α.

The completeness axiom asserts that a nonempty set of real numbers, which is
bounded above, has a supremum. In the proof of our next theorem, we will show that
the completeness axiom implies that if a set S is nonempty and bounded below, then
S has an infimum; that is, there is a real number α satisfying the equation α = inf(S).
Before reading the proof of Theorem 9.3.9, one should read Remark 9.3.4 and Proof
Strategy 9.3.8.
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Theorem 9.3.9. Let S ⊆ R be nonempty and bound below. Then S has a greatest
lower bound.

Proof. Let S ⊆ R be a nonempty set with lower bound a. Let S∗ = {−x : x ∈ S}.
So every element in S∗ has the form −x for an x ∈ S. Since a is a lower bound for
S, we have a ≤ x for all x ∈ S. Thus, −x ≤ −a for all x ∈ S and so, −a is an upper
bound for S∗. By the completeness axiom, S∗ has a least upper bound β . Hence,
β = sup(S∗); that is, −x≤ β for all x ∈ S and β is the smallest such upper bound.

We shall prove that −β = inf(S). Since −x ≤ β for each x ∈ S, it follows that
−β ≤ x for all x ∈ S. Hence, −β is a lower bound for S. To prove that −β is the
largest lower bound for S, let a be a lower bound for S. By the argument in the first
paragraph of this proof, we see that −a is an upper bound for the set S∗. Since β
is the least such upper bound for S∗, we have that β ≤ −a. So, a ≤−β . Therefore,
−β is the greatest lower bound for S, that is, −β = inf(S). ��
Assumption Strategy 9.3.10. Let S⊆R be nonempty and let α ∈R. Suppose you
are assuming that α = inf(S). Then you can conclude (1) α ≤ x for all x ∈ S, and
(2) whenever a is a lower bound for S, you can deduce that a≤ α .

Theorem 9.3.11. Let S ⊆ R be nonempty and bounded below, and let k > 0.
Suppose A = {kx : x ∈ S}. Then the set A is bounded below and inf(A) = k inf(S).

Proof Analysis. Since the set S is bounded below, there is a real number α satisfying
α = inf(S) by the completeness axiom (that is, by Theorem 9.3.9). Let k > 0 and
A = {kx : x ∈ S}. We must prove that kα = inf(A). First note that every element in
A has the form kx for x ∈ S. So to prove that kα is a lower bound for A, we just need
to show that kα ≤ kx for all x ∈ S. Appealing to Proof Strategy 9.3.8, we construct
the following proof diagram:

Assume α = inf(S).
Prove kα ≤ kx for all x ∈ S.
Assume c is a lower bound for A.

Prove c≤ kα.

The first line of the above proof diagram indicates that, in our proof, we will be
assuming α = inf(S). Thus, we can use Assumption Strategy 9.3.10. The second
line asserts that we must prove that kα is a lower bound for the set A. The third line
states that we will assume that c is a lower bound for A. We will then have to prove
that c ≤ kα . Since every element in A has the form kx for x ∈ S, to say that c is a
lower bound for A just means that c≤ kx for all x ∈ S. We have now identified all of
the essential components that we need to prove the theorem. A©A©
Proof (of Theorem 9.3.11). Let S ⊆ R be nonempty and bounded below. Let k > 0
and A = {kx : x∈ S}. Theorem 9.3.9 implies that S has a greatest lower bound α and
so, α = inf(S). Thus, α ≤ x for all x ∈ S. First we prove that kα is a lower bound
for A. Since α ≤ x for all x ∈ S and k > 0, we have that kα ≤ kx for all x ∈ S. Hence,
kα is a lower bound for A.
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Let c be a lower bound for A. We will prove that c ≤ kα . Since c be a lower
bound for A, we see that c≤ kx for all x ∈ S. Because k > 0, we have that c

k ≤ x for
all x ∈ S. Thus, c

k is a lower bound for S. Since α is the largest lower bound for S,
we conclude that c

k ≤ α . Therefore, c≤ kα and kα = inf(A). ��
Theorem 9.3.12. Let S ⊆ R be nonempty and bounded above, and let k < 0.
Suppose A = {kx : x ∈ S}. Then the set A is bounded above and sup(A) = k inf(S).

Proof. See Exercise 7. ��
Theorem 9.3.13. Let S ⊆ R be nonempty and bounded above, and let k < 0.
Suppose A = {kx : x ∈ S}. Then the set A is bounded below and inf(A) = k sup(S).

Proof. See Exercise 8. ��

Theorem 9.3.14. Let A⊆ R and B⊆ R be non-empty. Suppose x ≤ y for all x ∈ A
and all y ∈ B. Then A is bounded above, B is bounded below, and sup(A)≤ inf(B).

Proof. Suppose that
x≤ y for all x ∈ A and all y ∈ B. (9.1)

Let y ∈ B be arbitrary. From (9.1) we have that x ≤ y for all x ∈ A. Thus, y is an
upper bound for A (see Fig. 9.3). The completeness axiom implies that γ = sup(A)
exists. Since y is an upper bound for A and γ is the least such upper bound, it follows
that γ ≤ y. As y is an arbitrary element in B, it follows that γ ≤ y for all y ∈ B. Thus,
γ is a lower bound for B. Theorem 9.3.9 implies that δ = inf(B) exists. Because γ
is a lower bound for B and δ is the greatest such lower bound, we see that γ ≤ δ .
Therefore, sup(A)≤ inf(B). ��
Definition 9.3.15 (Maximum and Minimum Elements). Let S⊆ R.

• If b = sup(S) and b∈ S, then b is called the maximum element of S and we write
b = max(S).

• If a = inf(S) and a ∈ S, then a is called the minimum element of S and we write
a = min(S).

For example, let S = [2,5]. Because 5 = sup(S) and 5∈ S, we see that 5 = max(S).
Since 2 = inf(S) and 2 ∈ S, we conclude that 2 = min(S). For another example, let
T = { 1

n : n ∈ N}. Because 1 = sup(T ) and 1 ∈ T , we have that 1 = max(T ). Since
0 = inf(T ) and 0 /∈ T , we infer that min(T ) is undefined.

x yA B

sup(A) inf(B)

Fig. 9.3 An illustration for the proof of Theorem 9.3.14
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D x y

g[D]

inf(g[D])

sup(f [D])

f [D]

graph of g

graph of f

g(y)

f (x)

Fig. 9.4 Representation of Theorem 9.3.18

9.3.3 Bounded Functions

Let f : D→R be a function and let S⊆D. Then f [S] = { f (x) : x∈ S} is the image of
S and ran( f ) = { f (x) : x ∈ D} is the range of f . Observe that ran( f ) = f [D]. Thus,
our next definition states that a function is bounded if the range of the function is a
bounded set.

Definition 9.3.16. A function f : D→ R is bounded if the set f [D] is bounded.

Suppose f : D→ R is bounded. Thus, the set f [D] = { f (x) : x ∈ D} is bounded.
Let β = sup( f [D]) and α = inf( f [D]). Then α ≤ f (x)≤ β for all x ∈D.

Remark 9.3.17. Let f : D→ R. Theorem 9.3.2 implies that there are two equiva-
lent ways of saying that the set f [D] = { f (x) : x ∈ D} is bounded, namely:

(1) There are real numbers a,b such that a≤ f (x) ≤ b for all x ∈ D,
(2) There is a real number M > 0 such that | f (x)| ≤M for all x ∈D.

Theorem 9.3.18. Let f : D→ R and g : D→ R be functions. If f (x) ≤ g(y) for all
x,y ∈ D, then the set f [D] is bounded above, the set g[D] is bounded below, and
sup( f [D]) ≤ inf(g[D]).

Proof. Assume (�) f (x) ≤ g(y) for all x,y ∈ D (see Fig. 9.4). We will show that
a≤ b for all a ∈ f [D] and all b ∈ g[D]. Let a ∈ f [D] and b ∈ g[D]. So a = f (x) and
b = g(y) for some x,y ∈ D. Hence, a = f (x) ≤ g(y) = b by (�). Thus, a ≤ b for all
a ∈ f [D] and all b ∈ g[D]. Theorem 9.3.14 implies that f [D] is bounded above, g[D]
is bounded below, and that sup( f [D])≤ inf(g[D]). ��

Our next theorem shows that the sum of two bounded functions is also bounded.
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Theorem 9.3.19. If f : D→ R and g : D→ R are bounded, then ( f + g) : D→ R

is bounded and

(a) sup(( f + g)[D])≤ sup( f [D])+ sup(g[D]),
(b) inf( f [D])+ inf(g[D])≤ inf(( f + g)[D]).

Proof. Assume f : D→ R and g : D→R are bounded. We shall prove only (b) and
leave (a) as an exercise. Since f [D] and g[D] are bounded below, let ε = inf( f [D])
and δ = inf(g[D]). Consequently,

ε ≤ f (x) for all x ∈ D (9.2)

δ ≤ g(x) for all x ∈ D. (9.3)

Inequalities (9.2) and (9.3) imply that ε + δ ≤ f (x)+ g(x) for all x ∈ D and, since
( f + g)(x) = f (x)+ g(x), we conclude that ε + δ ≤ ( f + g)(x) for all x ∈ D. Thus,
ε + δ is a lower bound for ( f + g)[D]. Hence, γ = inf(( f + g)[D]) exists. Because
γ is the greatest lower bound for ( f + g)[D], we obtain ε + δ ≤ γ and therefore,
inf( f [D])+ inf(g[D])≤ inf(( f + g)[D]). ��

9.3.4 Alternative Proof Strategies

Our earlier proofs on the supremum and infimum relied on Remark 9.3.4 in which
we noted that the equation β = sup(S) means that (i) β is an upper bound for S and
(ii) β is the smallest upper bound for S. Given (i), another way to state (ii) is to say
that “every number r < β is not an upper bound for S.” A similar observation holds
for the infimum of a set. We record these observations in Remark 9.3.20, below,
where items 1 and 2 are illustrated in Fig. 9.5a, b, respectively.

Remark 9.3.20. Let S⊆ R be nonempty and let α,β ∈ R. Then

1. β = sup(S) if and only if the following two conditions hold:

(i) x≤ β for all x ∈ S,
(ii) for all real numbers r if r < β , then there is an x ∈ S so that r < x.

2. α = inf(S) if and only if the following two conditions hold:

(i) α ≤ x for all x ∈ S,
(ii) for all real numbers q if α < q, then there is an x ∈ S so that x < q.

S r x

β

Sx q

α

Fig. 9.5a β = sup(S) Fig. 9.5b α = inf(S)
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Remark 9.3.20(1) thus leads to the following alternative proof and assumption
strategies for dealing with equations of the form β = sup(S).

Proof Strategy 9.3.21. Given a real number β and a nonempty S⊆R, to prove that
β = sup(S) use the two-step proof diagram:

Step (1): Prove x≤ β for all x ∈ S.
Step (2): Assume r < β .

Prove r < x for some x ∈ S.

Assumption Strategy 9.3.22. Let S⊆ R be nonempty and let β ∈R. Suppose you
are assuming that β = sup(S). Then you can conclude that (1) x ≤ β for all x ∈ S,
and (2) whenever r < β there is an x ∈ S such that r < x.

The proof of our next theorem again illustrates the ideas that are used to prove
theorems on the supremum of a set of real numbers. Actually, we will present
two proofs of this theorem. Our first proof applies the alternative Strategies 9.3.21
and 9.3.22. In our second proof we use Strategies 9.3.5 and 9.3.6.

Theorem 9.3.23. Let A⊆R and B⊆R be nonempty and bounded above. Then the
set C = {x + y : x ∈ A and y ∈ B} is bounded above and sup(C) = sup(A)+ sup(B).

Proof Analysis. Since the sets A and B are bounded above, there are real numbers α
and β satisfying α = sup(A) and β = sup(B) by the completeness axiom. Thus, we
must prove that α +β = sup(C). First note that every element in z ∈C has the form
z = x + y for some x ∈ A and some y ∈ B. So to prove that α + β is an upper bound
for C, we need to show that x+y≤ α +β for each x ∈ A and each y ∈ B. Appealing
to Proof Strategy 9.3.21, we construct the following proof diagram:

Assume α = sup(A) and β = sup(B).
Prove z≤ α + β for all z ∈C.
Assume s < α + β .

Prove s < z for some z ∈C.

The first line of this proof diagram indicates that we will be assuming α = sup(A)
and β = sup(B). Thus, we can use Assumption Strategy 9.3.22. The second line
asserts that we must prove that α +β is an upper bound for the set C. The third line
states that we will assume that s is a value satisfying s < α + β . We will then have
to prove that there is an element in C that is larger than s. Since every element in C
has the form x+y for x ∈ A and y∈ B, we just need to find an x∈ A and a y∈ B such
that s < x + y. We now present our first proof. A©A©
Proof (of Theorem 9.3.23). Suppose that α = sup(A) and β = sup(B). We shall
prove that α + β = sup(C), where C = {x + y : x ∈ A and y ∈ B}. Let z ∈ C. So
z = x + y for some x ∈ A and some y ∈ B. Since x ≤ α and y ≤ β , it follows that
z = (x + y)≤ (α + β ). We conclude that α + β is an upper bound for C.
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To prove that α + β is the least upper bound for C, assume that s < α + β . So,
s−β < α . Since α = sup(A), there is an x ∈ A such that s−β < x. Thus, s−x < β .
Since β = sup(B), there is a y∈B such that s−x< y. Hence, s < x+y and x+y∈C.
Therefore, α + β = sup(C). ��

We will give another proof of Theorem 9.3.23 using Strategies 9.3.5 and 9.3.6.
Thus, the logical structure of our second proof will be as follows:

Assume α = sup(A) and β = sup(B).
Prove z≤ α + β for all z ∈C.
Assume c is an upper bound for C.

Prove α + β ≤ c.

Of course, the initial part of our next proof will be the same as in the first proof.
The only difference between these two proofs lies in the second part of both proofs.
In the second part of the proof below, we will be assuming that c is an upper bound
for C and will prove that α + β ≤ c.

Proof (of Theorem 9.3.23). Let α = sup(A) and β = sup(B). We shall prove that
α +β = sup(C), whereC = {x+y : x∈A and y∈B}. Let z∈C. So z = x+y for some
x ∈ A and some y ∈ B. Since x≤ α and y≤ β , we have that z = (x + y)≤ (α + β ).
So α + β is an upper bound for C.

To prove that α + β is the least upper bound for C, suppose that c is an upper
bound for C. Because c is an upper bound for C, we have that

x + y≤ c for all x ∈ A and all y ∈ B. (9.4)

Let y ∈ B be arbitrary. From (9.4) we have that x + y ≤ c for all x ∈ A. Hence,
x ≤ c− y for all x ∈ A. Thus c− y is an upper bound for A. Since α = sup(A), we
infer that α ≤ c− y. Since y was arbitrary, we conclude that y≤ c−α for all y ∈ B.
So c−α is an upper bound for B. Since β = sup(B), we have that β ≤ c−α . Hence,
α + β ≤ c, and therefore α + β = sup(C). ��

Remark 9.3.20(2) (see Fig. 9.5b) provides us with the following alternative
strategies for working with an equation of the form α = inf(S).

Proof Strategy 9.3.24. Given a real number α and a nonempty S⊆R, to prove that
α = inf(S) use the two-step proof diagram:

Step (1): Prove α ≤ x for all x ∈ S.
Step (2): Assume α < q.

Prove x < q for some x ∈ S.

Assumption Strategy 9.3.25. Let S⊆R be nonempty and let α ∈R. Suppose you
are assuming that α = inf(S). Then you can infer (1) α ≤ x for all x ∈ S, and
(2) whenever α < q there is an x ∈ S such that x < q.
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Exercises 9.3

1. For each of the following subsets S of R, answer the following two questions:
Is the set S bounded above? Is the set S bounded below?

(a) S = [2,5] (b) S = [2,5)

(c) S = (2,∞) (d) S = N

(e) S = {x ∈ R : (x2 + 1)−1 > 1
2} (f) S = { 1

n : n ∈ N}
(g) S = {q ∈Q : 0≤ q≤√2} (h) S = {x ∈R : |2x + 1|< 5}.

2. For each subset S of R identify the sup(S) and inf(S), if they exist.

(a) S = [2,5] (b) S = [2,5)

(c) S = (2,∞) (d) S = N

(e) S = {x ∈ R : (x2 + 1)−1 > 1
2} (f) S = { 1

n : n ∈ N}
(g) S = {q ∈Q : 0≤ q≤√2} (h) S = {x ∈R : |2x + 1|< 5}.

3. For each subset S of R identify the max(S) and min(S), if they exist.

(a) S = {2,5,6} (b) S = N

(c) S = (2,∞) (d) S = {q ∈Q : 0≤ q≤√2}.
4. Suppose S ⊆ R is nonempty and bounded. Let A ⊆ S be nonempty. Prove that

A is bounded. Then prove that sup(A)≤ sup(S) and inf(S)≤ inf(A).
5. Suppose S⊆R is nonempty and bounded. Let β = sup(S). Prove that for every

ε > 0 there exists an x ∈ S such that β − ε < x.
6. Suppose S ⊆ R is nonempty and bounded. Let α = inf(S). Prove that for every

ε > 0 there exists an x ∈ S such that x < α + ε .
7. Prove Theorem 9.3.12.
8. Prove Theorem 9.3.13.
9. Let S⊆R be nonempty and bounded. Let k ∈R and define A = {k + x : x ∈ S}.

Prove (a) sup(A) = k + sup(S) and (b) inf(A) = k + inf(S).
10. Let S be a bounded (nonempty) subset of R. Let k > 0 and c ∈R. Prove that the

set A = {kx + c : x ∈ S} is bounded. Now prove (a) sup(A) = k sup(S)+ c and
(b) inf(A) = k inf(S)+ c.

11. Using the alternative Proof and Assumption Strategies 9.3.21 and 9.3.22, give
a proof of Theorem 9.3.7 that is different than the one presented in the text.

12. Suppose S ⊆ R and T ⊆ R are nonempty and bounded. Prove that S∪ T is
bounded, and then prove the following:

(a) sup(S∪T ) = max{sup(S),sup(T )}
(b) inf(S∪T ) = min{inf(S), inf(T )}.

13. Prove part (a) of Theorem 9.3.19.
14. Let S ⊆ R

+ and T ⊆ R
+ be nonempty and bounded above. Prove that the set

P = {xy : x ∈ S and y ∈ T} is bounded above and that sup(P) = sup(S) · sup(T ).
15. Let f : D→ R be bounded. Let E ⊆ D be nonempty. Prove that the set f [E] is

bounded. Then prove that sup( f [E])≤ sup( f [D]) and inf( f [D]) ≤ inf( f [E]).
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16. Let f : D→ R and g : D→ R be bounded. Assume f (x) ≤ g(x) for all x ∈ D.
Prove that sup( f [D])≤ sup(g[D]).

17. (The Archimedean Property) Prove that for each x ∈ R there is an n ∈ N such
that x < n.

18. Suppose A⊆R and B⊆R are nonempty and bounded below. Prove that the set
C = {x + y : x ∈ A and y ∈ B} is bounded below and inf(C) = inf(A)+ inf(B).

19. Let S ⊆ R
+ and T ⊆ R

+ be nonempty and bounded below. Prove that the set
P = {xy : x ∈ S and y ∈ T} is bounded below and inf(P) = inf(S) · inf(T ).

Exercise Notes: For Exercise 1, |2x + 1|< 5 is equivalent to −5 < 2x + 1 < 5. For
Exercises 5 and 6, see Remark 9.3.20. For Exercises 9 and 10, review the analysis
and proofs for Theorems 9.3.7 and 9.3.11. For Exercise 14, review the analysis and
proof of Theorem 9.3.23. For Exercise 17, let x∈R and suppose, for a contradiction,
that n≤ x for all n∈N. Thus, N⊆R is bounded above. Hence, by the completeness
axiom, β = sup(N) exists. Since β − 1 < β , there is an m ∈ N such that β −1 < m
(see Remark 9.3.20(1-ii)). Therefore, β < m + 1 = n ∈ N. For Exercise 18, review
strategies 9.3.24 and 9.3.25. For Exercise 19, show that α = inf(S) ≥ 0 and that
β = inf(T ) ≥ 0; and review strategies 9.3.8 and 9.3.10. Let c be a lower bound for
P. If c≤ 0, then clearly c≤ αβ . Suppose c > 0 and let y∈ T . Prove that c

y is a lower
bound for S.

9.4 Convergence of Sequences

Sequences are fundamental in real analysis and, while you may already be familiar
with sequences, it is important to have a formal definition. A sequence, as depicted
in Fig. 9.6, will be defined as a function from the set of natural numbers to the set of
real numbers R.

Definition 9.4.1. A sequence is a function s : N→ R. We shall denote the value
s(n) by sn. We will write s as 〈sn〉 or as 〈s1,s2,s3, . . . 〉.

Figure 9.6 illustrates the functional view of a sequence where the value s(n), or
sn, is the length of the n-th arrow. An arrow that is pointing up has positive length and
an arrow pointing down has negative length. Furthermore, a sequence 〈sn〉 is often
viewed as an infinite list 〈s1,s2,s3, . . . 〉 of real numbers. The numbers s1,s2, . . . are
called the terms of the sequence and sn is called the n-th term. For example, we can
view the sequence

〈 1
n

〉

as the infinite list
〈

1, 1
2 ,

1
3 ,

1
4 , . . .

〉

where 1
5 is the fifth term of

this sequence.
The limit of a sequence is one of the oldest and most important concepts in real

analysis. A sequence converges to a limit � if the terms of the sequence get closer
and closer to the real number �. We now give a precise definition of this concept.
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· · · · · ·
· · · · · ·
· · · · · ·

1 2 3 4 5 6 7 8 9 10 11 · · · · · ·

Fig. 9.6 Functional representation of a sequence: s(4) = s4 > 0 and s(6) = s6 < 0

Definition 9.4.2. A sequence 〈sn〉 converges to the real number � provided that for
every ε > 0 there exists a natural number N such that for all n ∈ N, if n > N then
|sn− �|< ε . If a sequence does not converge, then we shall say that it diverges.

Figure 9.7 illustrates the convergence concept given in Definition 9.4.2 and, in
this figure, when n > N, the length of the n-th arrow is within ε of �; in other words,
if n > N then |sn− �|< ε . When a sequence 〈sn〉 converges to �, then � is called the
limit of the sequence 〈sn〉 and we write lim

n→∞
sn = �.

The logical form of the convergence concept can be expressed as

(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N→ |sn− �|< ε) (9.5)

and this logical form motivates our next proof strategy.

Proof Strategy 9.4.3. To prove that lim
n→∞

sn = � use the proof diagram:

Let ε > 0 be a real number.
Let N = (the natural number you found).

Let n > N be a natural number.
Prove |sn− �|< ε.

· · ·

`+e

`−e

1 2 3 ···
N

`

Fig. 9.7 For all n > N we have |sn− �|< ε
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To apply Proof Strategy 9.4.3 on a specific sequence, first let ε > 0. We must find
a natural number N such that when n > N, we can prove that |sn− �| < ε . To find
the desired N, we will first attempt the following:

Using algebra and properties of inequality on the expression |sn− �|, ‘extract
out’ a larger value that resembles 1

n .

We shall then use this larger value to find N so that when n > N we will
have that |sn− �| < ε . We shall illustrate this idea in our proof analysis of
Theorems 9.4.5–9.4.8. Before we discuss these theorems, we identify three sub-
stitution properties of inequality that follow from Exercise 9 on page 297. These
properties are very useful for proving theorems about convergence and extend the
substitution properties 3.3.3 given on page 69.

Substitution Properties of Inequality 9.4.4. Let a,b,c,d be positive real num-
bers. Then the following hold:

(1) Given the ratio a
b , if a < c, then you can conclude that a

b < c
b .

(Replacing a numerator with a larger value yields a larger ratio.)

(2) Given the ratio a
b , if d < b, then you can conclude that a

b < a
d .

(Replacing a denominator with a smaller value yields a larger ratio.)

(3) Given the ratio a
b , if a≤ c and d ≤ b, then you can conclude that a

b ≤ c
d .

(Replacing a numerator with a larger value and denominator with a smaller value yields a

larger ratio.)

The Substitution Properties 9.4.4 and 3.3.3 will be implicitly used in nearly all
of the remaining proofs of this chapter. To apply the above 1–3, you must first
know that a,b,c,d are positive. To illustrate how we will be using these properties,
suppose x > 0 and that we working with the ratio x

4 . It follows that x
4 < x+1

4 by item
(1) of 9.4.4 because x < x + 1. We can also conclude from item (2) of 9.4.4 that
x
4 < x

2 since 2 < 4.

Example 1. Property (2) in 9.4.4 implies the following assertions:

1. 1
n < 1

N when n > N > 0.

2. 1√
n
< 1√

N
when n > N > 0, by Theorem 3.8.6 on page 95.

3. 1
2n < 1

n when 2n > n > 0.

We shall now apply Proof Strategy 9.4.3 in the proofs of our next four theorems.
In each such proof we will first let ε > 0 and then we will tell the reader the value
for N that we will use to complete the proof. Prior to each of these proofs, we
shall also present a proof analysis in which we discuss how we actually found
N. In these proofs we will also be using some of the inequalities identified in
Example 1.
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Theorem 9.4.5. lim
n→∞

1
n = 0.

Proof Analysis. Given ε > 0, we must find an N ∈ N such that if n > N, then
∣
∣ 1

n −0
∣
∣ < ε . Since

∣
∣ 1

n − 0
∣
∣ = 1

n , we need to find N so that if n > N, then 1
n < ε .

Solving the inequality 1
n < ε for n, we see that we must have n > 1

ε . So if we take
a natural number N ≥ 1

ε , then we will be able to prove the desired result. We shall
now present a logically correct proof using Proof Strategy 9.4.3 as a guide. A©A©
Proof. Let ε > 0 and let N ≥ 1

ε be a natural number. For each n > N we prove that
∣
∣ 1

n −0
∣
∣< ε as follows:

∣
∣
∣
∣

1
n
− 0

∣
∣
∣
∣
=

∣
∣
∣
∣

1
n

∣
∣
∣
∣

by algebra

=
1
n

because
1
n
> 0

<
1
N

because n > N

≤ 1
1
ε

because N ≥ 1
ε

= ε by algebra.

Therefore,
∣
∣ 1

n −0
∣
∣< ε . ��

In the proof of our next theorem we will be using item (2) of Example 1. Item (3)
of the same example will be used in the proof of the subsequent Theorem 9.4.7.

Theorem 9.4.6. lim
n→∞

1√
n = 0.

Proof Analysis. Given ε > 0, we must find an N ∈ N so that when n > N, we have∣
∣
∣

1√
n −0

∣
∣
∣ < ε . Since

∣
∣
∣

1√
n − 0

∣
∣
∣ = 1√

n , we need to find N such that if n > N, then
1√
n < ε . Solving the inequality 1√

n < ε for n, we obtain n > 1
ε2 . So if we take a

natural number N ≥ 1
ε2 , then we will be able to prove the desired result. A©A©

Proof. Let ε > 0. Let N ≥ 1
ε2 be a natural number. For n > N, we have that

∣
∣
∣
∣

1√
n
− 0

∣
∣
∣
∣
=

∣
∣
∣
∣

1√
n

∣
∣
∣
∣

by algebra

=
1√
n

because
1√
n
> 0

<
1√
N

because n > N
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≤ 1
√

1
ε2

because N ≥ 1
ε2

= ε by algebra.

Therefore,
∣
∣
∣

1√
n −0

∣
∣
∣< ε . ��

Theorem 9.4.7. lim
n→∞

1 + 1
2n = 1.

Proof Analysis. Given ε > 0, we need to find an N ∈ N so that if n > N, then
∣
∣1 + 1

2n −1
∣
∣< ε . Since

∣
∣1 + 1

2n − 1
∣
∣ = 1

2n , we want an N ∈ N so that if n > N, then
1
2n < ε . Solving the inequality 1

2n < ε for n is difficult and so, we use a different
approach. It is easy to show by induction that n < 2n and thus, 1

2n < 1
n when n ≥ 1.

We solve the inequality 1
n < ε for n and obtain n > 1

ε . So if we take N ≥ 1
ε , then we

will be able to prove the desired result using Proof Strategy 9.4.3. A©A©
Proof. Let ε > 0 and let N ≥ 1

ε be a natural number. For each n > N we have that

∣
∣
∣
∣

(

1 +
1
2n

)

− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

1
2n

∣
∣
∣
∣

by algebra

=
1
2n because

1
2n > 0

<
1
n

because n < 2n

<
1
N

because n > N

≤ 1
1
ε

because N ≥ 1
ε

= ε by algebra.

Therefore,
∣
∣1 + 1

2n − 1
∣
∣< ε . ��

Theorem 9.4.8. lim
n→∞

2n+3
3n+5 = 2

3 .

Proof Analysis. For ε > 0, we want an N ∈N so that if n > N, then
∣
∣ 2n+3

3n+5 − 2
3

∣
∣< ε .

We see that
∣
∣ 2n+3

3n+5 − 2
3

∣
∣=

∣
∣ −1

9n+15

∣
∣= 1

9n+15 , as 9n + 15> 0 for n∈N. Thus we need to

find N so that if n>N then 1
9n+15 < ε . One could now solve the inequality 1

9n+15 < ε
for n, but we take an easier approach. Since 1

9n+15 < 1
9n (see 9.4.4(2)), we shall find

an N so that if n > N then 1
9n < ε . Solving the inequality 1

9n < ε for n, we obtain
n > 1

9ε . If we take N ≥ 1
9ε , then we will be able to prove the desired result. A©A©
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Proof. For ε > 0, let N ≥ 1
9ε be a natural number. For n > N we have

∣
∣
∣
∣

2n + 3
3n + 5

− 2
3

∣
∣
∣
∣
=

∣
∣
∣
∣

(2n + 3)3− 2(3n+5)

3(3n + 5)

∣
∣
∣
∣

common denominator

=

∣
∣
∣
∣

6n + 9− 6n +10)

3(3n + 5)

∣
∣
∣
∣

by distributivity

=

∣
∣
∣
∣

−1
9n + 15

∣
∣
∣
∣

by algebra

=
1

9n + 15
because 9n+15 > 0

<
1

9n
because 9n < 9n+15

<
1

9N
because n > N

≤ 1

9 1
9ε

because N ≥ 1
9ε

= ε by algebra.

Therefore,
∣
∣ 2n+3

3n+5 − 2
3

∣
∣< ε and this completes the proof. ��

Remark 9.4.9. In each of the proofs of Theorems 9.4.5–9.4.8, we identified a real
number x and then selected a natural number N ≥ x. The Archimedean Property (see
Exercise 17 on page 311) asserts that whenever x is a real number, there is such a
natural number N ≥ x.

Suppose in a proof you are assuming that a given sequence converges and you
want to use this assumption to prove that another sequence converges. The next
strategy will then be essential.

Assumption Strategy 9.4.10. Suppose you are assuming that lim
n→∞

sn = �. Then for

any ε > 0 there is an N ∈ N such that |sn− �|< ε for all n > N.

Given that lim
n→∞

sn = �, using Assumption Strategy 9.4.10, you can conclude that

for any positive value v > 0 there is a natural number N such that for all n > N we
have that |sn− �|< v. We shall express this observation as “we can make |sn− �| as
small as we want.”

We apply this idea in the proof of our next theorem where we will be assuming
that lim

n→∞
sn = � with � > 0. In the proof, we will use the positive value v = ε

√
l. As

lim
n→∞

sn = �, we will conclude there is an N such that |sn− �|< ε
√

l for all n > N.

Theorem 9.4.11. Suppose that lim
n→∞

sn = � where � > 0 and sn > 0 for all n ≥ 1.

Then lim
n→∞

√
sn =

√
�.
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Proof Analysis. In a proof of the above theorem, we assume that lim
n→∞

sn = � and

we must prove that lim
n→∞

√
sn =

√
�. How can one apply Proof Strategy 9.4.3 and

Assumption Strategy 9.4.10 to find such a proof? First of all, our proof will need to
have the following logical structure:

Assume lim
n→∞

sn = �.

Let ε > 0 be a real number.
Let N = (the natural number you found).

Let n > N be a natural number.

Prove
∣
∣
∣
√

sn−
√
�
∣
∣
∣< ε.

For any given ε > 0 we must find a natural number N such that if n > N, then
|√sn−

√
�|< ε . We shall use the assumption lim

n→∞
sn = � to find the desired N. Here

is the basic plan that we will apply to get N.

Using algebra and properties of inequality on the expression |√sn−
√
�|,

“extract out” a larger value containing |sn− �| and no other occurrences
of sn.

Since lim
n→∞

sn = �, we can make |sn− �| “as small as we want.” We should then be

able to make |√sn−
√
�|< ε and find the N that we need. Let us execute this plan!

First we start with |√sn−
√
�| and extract out |sn− �| as follows:

∣
∣
∣
√

sn−
√
�
∣
∣
∣ =

∣
∣
∣
∣
∣

(
√

sn−
√
�)

1
(
√

sn +
√
�)

(
√

sn +
√
�)

∣
∣
∣
∣
∣

rationalizing the numerator

=

∣
∣
∣
∣
∣

sn− �√
sn +
√
�

∣
∣
∣
∣
∣

by algebra

=
|sn− �|√
sn +
√
�

because
√

sn +
√
� > 0

<
|sn− �|√

�
because

√
� <
√

sn +
√
�.

We started with |√sn−
√
�| and extracted out the larger value |sn−�|√

�
which contains

|sn− �| and no other occurrences of sn. Consequently,
∣
∣
∣
√

sn−
√
�
∣
∣
∣<

|sn−�|√
�

. Thus, if

|sn−�|√
�

< ε , then we will have that
∣
∣
∣
√

sn−
√
�
∣
∣
∣ < ε . How small must |sn− �| be to

ensure that |sn−�|√
�

< ε? To answer this question, we just solve this latter inequality

for |sn− �| to obtain |sn− �| < ε
√
�. Hence, we need an N so that |sn− �| < ε

√
�
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when n > N. Since lim
n→∞

sn = �, there is such an N. This is the value for N that we

will use in our proof. A©A©
Proof (of Theorem 9.4.11). Assume that lim

n→∞
sn = � where � > 0 and sn > 0 for all

n ≥ 1. We shall prove that lim
n→∞

√
sn =

√
�. Let ε > 0. Since lim

n→∞
sn = �, there is a

natural number N such that (�) |sn− �|< ε
√
� for all n > N. Let n > N be a natural

number. We prove that
∣
∣
∣
√

sn−
√
�
∣
∣
∣< ε as follows:

∣
∣
∣
√

sn−
√
�
∣
∣
∣ =

∣
∣
∣
∣
∣

(
√

sn−
√
�)

1
(
√

sn +
√
�)

(
√

sn +
√
�)

∣
∣
∣
∣
∣

rationalizing the numerator

=

∣
∣
∣
∣
∣

sn− �√
sn +
√
�

∣
∣
∣
∣
∣

as (
√

sn−
√
�)(
√

sn +
√
�) = sn− �

=
|sn− �|√
sn +
√
�

because
√

sn +
√
� > 0

<
|sn− �|√

�
because

√
� <
√

sn +
√
�

<
ε
√
�√
�

by (�) because n > N

= ε by algebra.

Therefore,
∣
∣
∣
√

sn−
√
�
∣
∣
∣< ε and this completes the proof. ��

Theorem 9.4.12 (Uniqueness of the Limit). If a sequence converges, then there is
only one limit of the sequence.

Proof. Suppose the sequence 〈sn〉 converges. To prove that there is only one limit
of this sequence, suppose that � and �′ are both limits of the sequence 〈sn〉. We
shall prove that � = �′. For a contradiction, assume � �= �′. Let ε = |�− �′|. Since
��= �′, we have that ε > 0. Because 〈sn〉 converges to �, there is an N ∈ N such that
|sn− �|< ε

2 for all n > N. Since 〈sn〉 also converges to �′, there is an N′ ∈ N such
that |sn− �′|< ε

2 for all n > N′. Therefore, for all n > max{N,N′} we have that

∣
∣�− �′

∣
∣ =

∣
∣(�− sn)+ (sn− �′)

∣
∣≤ |�− sn|+

∣
∣sn− �′

∣
∣<

ε
2

+
ε
2

= ε.

Hence, |�− �′|< ε . As ε = |�− �′|, we can conclude that ε < ε . This contradiction
completes the proof of the theorem. ��

If you are assuming that a given sequence converges and you need to prove
that another sequence converges, then Assumption Strategy 9.4.10 will be useful.
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For instance, suppose you are assuming that lim
n→∞

an = a and you are also working

with ε > 0. Using Assumption Strategy 9.4.10 you can conclude for any positive
v < ε (for example, v = ε

2 ), there is an N′ such that for all n > N′ we have
|an−a|< v.

Theorem 9.4.13. Let 〈sn〉, 〈an〉 be sequences and let � ∈ R. If

(1) |sn− �| ≤ k |an| for all n≥ m where k > 0 and m ∈ N,
(2) lim

n→∞
an = 0,

then lim
n→∞

sn = �.

Proof Analysis. Let us assume that |sn− �| ≤ k |an| for all n ≥ m, where k > 0 and
m ∈ N. We shall also assume that lim

n→∞
an = 0. Because lim

n→∞
an = 0, we can make

|an| = |an−0| “as small as we want.” Given ε > 0, we must find an N ∈ N so that
if n > N, then |sn− �|< ε . Since |sn− �| ≤ k |an| whenever n ≥ m, we need to find
an N ≥ m so that k |an|< ε for n > N. Solving the inequality k |an|< ε for |an|, we
obtain |an| < ε

k . Because lim
n→∞

an = 0, there is an N′ ∈ N such that if n > N′, then

|an−0|= |an|< ε
k . Thus, we will use N = max{N′,m}. This value for N will ensure

that when n > N, we will have n > N′ and n > m. A©A©
Proof. Let 〈sn〉, 〈an〉 be sequences and let � ∈ R. Assuming (1) and (2), in the
statement of the theorem, we prove that lim

n→∞
sn = �. Let ε > 0. By (1), we have

|sn− �| ≤ k |an| for all n≥ m (9.6)

where k > 0 and m ∈ N. By (2) there is an N′ ∈N such that

|an− 0|= |an|< ε
k

for all n > N′. (9.7)

Let N = max{m,N′}. If n > N, then

|sn− �| ≤ k |an| by (9.6) because n > N ≥m

< k
(ε

k

)

by (9.7) because n > N ≥ N′

= ε by algebra.

Therefore |sn− �|< ε . This completes the proof of the theorem. ��
Corollary 9.4.14. Let x be a real number satisfying 0 < x < 1. Then lim

n→∞
xn = 0.

Proof. Let x ∈ R be such that 0 < x < 1. Since 1
x > 1, there is a c > 0 such that

1 + c = 1
x . Let n be a natural number. By Bernoulli’s inequality (see Exercise 7 on

page 126) we have that (1 + c)n ≥ 1 + nc. Hence, 1
xn = (1 + c)n ≥ 1 + nc > nc and
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so, xn < 1
nc . Thus, |xn− 0| = xn < 1

cn for all n ≥ 1. Because lim
n→∞

1
n = 0 and c > 0,

Theorem 9.4.13 implies that lim
n→∞

xn = 0. ��
The next corollary can be helpful for proving that a particular sequence 〈un〉

converges to r if you know that another related sequence converges.

Lemma 9.4.15. If lim
n→∞

sn = �, then lim
n→∞

(sn− �) = 0.

Proof. Assume lim
n→∞

sn = �. We shall prove that lim
n→∞

(sn− �) = 0. Let ε > 0. Since

lim
n→∞

sn = �, there is an N ∈ N where |sn− �| < ε for all n > N. So if n > N, then

|(sn− �)−0|= |sn− �|< ε and this completes the proof. ��
Corollary 9.4.16. Let 〈sn〉 be a sequence such that lim

n→∞
sn = � for a real number �.

Suppose that 〈un〉 is a sequence satisfying |un− r| ≤ k |sn− �| for all n ≥ m, where
k > 0 and r are real numbers, and m ∈ N. Then lim

n→∞
un = r.

Proof. Suppose that lim
n→∞

sn = � and (�) |un− r| ≤ k |sn− �| for all n ≥ m, where

k > 0 and m ∈ N. Since lim
n→∞

sn = �, Lemma 9.4.15 implies that lim
n→∞

(sn− �) = 0.

Theorem 9.4.13, together with (�), implies that lim
n→∞

un = r. ��
Recall that the logical form of the assertion lim

n→∞
sn = � can be expressed as

(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N→ |sn− �|< ε). (9.8)

Upon taking the negation of (9.8) and applying the appropriate logic laws, we obtain
our next remark which expresses what it means for a sequence not to converge to �.

Remark 9.4.17. The sequence 〈sn〉 does not converge to � if and only if there exists
an ε > 0 such that for all N ∈ N there is an n > N such that |sn− �| ≥ ε .

Definition 9.4.18. Let x∈R and let ε > 0. The open interval (x−ε,x+ε), centered
at x, is called a neighborhood of x.

Let x be a real number and let Uε be the neighborhood (x− ε,x + ε) of x where
ε > 0. Then a real number s is in Uε if and only if |s− x|< ε . Thus, Uε consists of
all the points whose distance from x is less than ε . Our next theorem shows that the
notion of convergence can be expressed in terms of neighborhoods (see Fig. 9.8).

( )
s1 s2 s3 s4 s5 · · · · · · sn

`+e
`

`−e

Fig. 9.8 An illustration for Theorem 9.4.19
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Theorem 9.4.19. Let 〈sn〉 be a sequence and let � be a real number. The following
statements are equivalent:

1. lim
n→∞

sn = �.

2. For every ε > 0 there is an N ∈N so that for all n ∈N, if n > N then |sn− �|< ε .
3. For every neighborhood Uε of � there is an N ∈ N so that for all n ∈ N, if n > N

then sn ∈Uε .

Corollary 9.4.20. Let 〈sn〉 be a sequence of distinct points and suppose 〈sn〉
converges to �. Then every neighborhood of � contains an infinite number of points
from the sequence 〈sn〉.
Proof. Suppose U is a neighborhood of � and that the sequence 〈sn〉 converges to �.
Theorem 9.4.19 states that there is an N ∈ N such that for all n ∈ N, if n > N then
sn ∈U . Therefore, an infinite number of points from the sequence 〈sn〉 are in U . ��

9.4.1 Bounded Sequences

Definition 9.4.21. A sequence 〈sn〉 is bounded if there are real numbers a and b
such that a≤ sn ≤ b for all n≥ 1.

Remark 9.4.22. A sequence 〈sn〉 is bounded if and only if there is an M > 0 such
that |sn| ≤M for all n ∈ N (see Theorem 9.3.2).

Theorem 9.4.23. Let 〈sn〉 be a convergent sequence. Then 〈sn〉 is bounded.

Proof. Assume lim
n→∞

sn = �. Thus, for any ε > 0 there is an N ∈N so that |sn− �|< ε
for all n > N. Let us take ε = 1 and let N ∈N be such that |sn− �|< 1 for all n > N.
By the backward triangle inequality, we conclude that |sn|− |�| ≤ |sn− �|< 1 for all
n > N. Hence |sn|− |�|< 1, that is, |sn|< |�|+ 1 for all n > N. Let

M = max{|s1| , . . . , |sN | , |�|+ 1} .

We see that |sn| ≤M for all n ∈ N. Therefore, 〈sn〉 is a bounded sequence. ��
Remark 9.4.24. If a sequence 〈sn〉 is unbounded, then the sequence 〈sn〉 diverges.

In our next example, we show that the sequence of harmonic sums diverges.

Example 2. Consider the sequence 〈sn〉 where sn =
n
∑

k=1

1
k = 1 + 1

2 + 1
3 + · · ·+ 1

n .

Now imagine n to be very large and write

sn = 1 +
1
2

+
1
3

+
1
4

+
1
5

+ · · ·+ 1
n

= 1 +
1
2

+

(
1
3

+
1
4

)

+

(
1
5

+
1
6

+
1
7

+
1
8

)

+

(
1
9

+ · · ·+ 1
16

)

+ · · ·+ 1
n
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> 1 +
1
2

+

(
1
4

+
1
4

)

+

(
1
8

+
1
8

+
1
8

+
1
8

)

+

(
1

16
+ · · ·+ 1

16

)

+ · · ·+ 1
n

= 1 +
1
2

+
1
2

+
1
2

+
1
2

+ · · ·+ 1
n
.

It is clear that by taking n sufficiently large we can introduce as many 1
2 ’s in the sum

as we wish. Therefore, the sequence 〈sn〉 is unbounded and so, it diverges.

Exercises 9.4

1. Let a ∈ R. Prove that the sequence
〈

a +(−1)n 2n+1
n

〉

is bounded.

2. Let k�= 0. Use Definition 9.4.2 to prove that lim
n→∞

k
n = 0.

3. Use Definition 9.4.2 to prove that lim
n→∞

n+1
n+2 = 1.

4. Use Definition 9.4.2 to prove that lim
n→∞

3n
n+2 = 3.

5. Use Definition 9.4.2 to prove that lim
n→∞

6n−7
3n−2 = 2.

6. Use Definition 9.4.2 to prove that lim
n→∞

6n−7
2n−7 = 3.

7. Prove that the limits given in Exercises 3–6 hold by applying Theorems 9.4.13
and 9.4.5.

8. Let �≥ 0. Prove that lim
n→∞

(−1)n �= �.

9. Prove Theorem 9.4.11 using Corollary 9.4.16.
10. Let 〈sn〉 be a convergent sequence and let c ∈R. Suppose lim

n→∞
sn = �. Prove that

lim
n→∞

(c + sn) = c + �.

11. Let 〈sn〉 be a convergent sequence and let c∈R be nonzero. Suppose lim
n→∞

sn = �.

Prove that lim
n→∞

(csn) = c�.

12. Let 〈sn〉 be a convergent sequence. Prove that if lim
n→∞

sn = �, then lim
n→∞
|sn|= |�|.

13. Let 〈sn〉 be a convergent sequence and let M > 0. Prove that if lim
n→∞

sn = � and

|sn| ≤M for all n≥ 1, then lim
n→∞

sn
2 = �2.

14. Let c ∈ R be constant. Prove that lim
n→∞

c = c.

15. Let 〈xn〉 and 〈yn〉 be two convergent sequences. Prove that there exists an M > 0
such that |xn| ≤M and |yn| ≤M for all n≥ 1.

16. Let 〈sn〉 a convergent sequence. Suppose that lim
n→∞

sn = �. Prove that there exists

an M > 0 such that |sn + �| ≤M for all n≥ 1.

17. Use Theorems 9.4.13 and 9.4.5 to prove that lim
n→∞

sin(n)
n = 0.

18. Use Theorems 9.4.13 and 9.4.6 to prove that lim
n→∞

(
√

n + 1−√n) = 0.
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19. Let 〈sn〉 a convergent sequence. Prove that if lim
n→∞

sn = �, then lim
n→∞

s2
n = �2.

Exercise Notes: For Exercise 5, observe that n≤ 3n−2 when n≥ 1. For Exercise 6,
note that n < |2n− 7| if n > 7. In this case, we would need N to be at least 7
and so, any N ≥ max{7, 14

ε } could be used in the proof. For Exercise 8, apply
Remark 9.4.17. For Exercise 18, show that

∣
∣
√

n + 1−√n
∣
∣ = 1√

n+1+
√

n
≤ 1

2
√

n .

9.5 Limit Theorems for Sequences

What are limit theorems? A limit theorem states that if you know the limits of some
given sequences, then you can determine the limit of another sequence which is
related to the given sequences. Limit theorems have the form:

Theorem. Suppose that lim
n→∞

sn = s and lim
n→∞

tn = t. Then one can evaluate the limit,

say lim
n→∞

un = u, of a sequence 〈un〉 that is constructed from 〈sn〉 and 〈tn〉.
How does one prove theorems of this form? The sequence 〈un〉 is defined from

the sequences 〈sn〉 and 〈tn〉. We are also assuming that lim
n→∞

sn = s and lim
n→∞

tn = t,

and we must prove that lim
n→∞

un = u. The following strategy will guide us.

Proof Strategy 9.5.1. To prove that lim
n→∞

un = u, our proof must contain the struc-
ture

Assume lim
n→∞

sn = s.

Assume lim
n→∞

tn = t.

Let ε > 0 be a real number.
Let N = (the natural number you found).

Let n > N be a natural number.
Prove |un− u|< ε.

To apply Proof Strategy 9.5.1, let ε > 0. We must find a natural number N such
that if n > N, then |un− u|< ε . To find the desired N, we shall use the assumptions
lim
n→∞

sn = s and lim
n→∞

tn = t. Here is the basic idea that we will apply to get N.

Using algebra and properties of inequality on the expression |un−u|, “extract
out” a larger value containing |sn− s| and |tn− t|, and no other occurrences
of sn or tn.

Since lim
n→∞

sn = s and lim
n→∞

tn = t, we can make |sn− s| and |tn− t| “as small as we

want.” We should then be able to make |un− u|< ε and find the N that we need. We
will apply these ideas in our proof analysis of the next two theorems.
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Theorem 9.5.2. Suppose that lim
n→∞

sn = s and lim
n→∞

tn = t. Then lim
n→∞

(sn + tn) = s+ t.

Proof Analysis. Let ε > 0. We are assuming that lim
n→∞

sn = s and lim
n→∞

tn = t. So we

can make |sn− s| and |tn− t| as small as we want. We need to make

|(sn + tn)− (s+ t)|< ε.

Using algebra and properties of inequality on the expression |(sn + tn)− (s+ t)| we
extract out |sn− s| and |tn− t| as follows:

|(sn + tn)− (s+ t)|= |(sn− s)+ (tn− t)| by algebra

≤ |sn− s|+ |tn− t| by the triangle inequality.

Thus, if we have that |sn− s|< ε
2 and |tn− t|< ε

2 , then we can conclude that

|(sn + tn)− (s+ t)|< ε.

Since lim
n→∞

sn = s, there is an Ns such that |sn− s|< ε
2 when n > Ns. Similarly, there

is an Nt such that |tn− t|< ε
2 when n > Nt . Let N = max{Ns,Nt}. When n > N, we

can be assured that n > Ns and n > Nt both hold. We now offer a logically correct
proof using Proof Strategy 9.5.1. A©A©
Proof. Suppose lim

n→∞
sn = s and lim

n→∞
tn = t. We shall prove that lim

n→∞
(sn + tn) = s+ t.

Let ε > 0. Since lim
n→∞

sn = s, there is an Ns ∈N such that

|sn− s|< ε
2

for all n > Ns. (9.9)

Also, because lim
n→∞

tn = t, there is an Nt ∈ N such that

|tn− t|< ε
2

for all n > Nt . (9.10)

Let N = max{Ns,Nt}. Thus for n > N we have that

|(sn + tn)− (s+ t)|= |(sn− s)+ (tn− t)| by distributivity and commutativity

≤ |sn− s|+ |tn− t| by the triangle inequality

<
ε
2

+
ε
2

by (9.9) and (9.10)

= ε by algebra.

Hence, |(sn + tn)− (s+ t)|< ε . Therefore, lim
n→∞

(sn + tn) = s+ t. ��
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In the proof of Theorem 9.5.2 we were able to ‘cleanly’ extract out |sn− s| and
|tn− t|, that is, there were no additional factors. This may not be the case when
applying Strategy 9.5.1 in the proof of other such theorems. After extracting out
|sn− s| or |tn− t|, there may be times when ‘unwanted’ factors appear that involve n,
sn or tn. We will then have to find an upper bound for these factors. This will be done
in the proofs of Theorems 9.5.3 and 9.5.5, below. In our proof of Theorem 9.5.3, we
obtain the unwanted factor |tn|. Since the sequence 〈tn〉 converges, Theorem 9.4.23
implies that there is a K > 0 such that |tn| ≤ K for all n ≥ 1. We will thus have our
desired upper bound. Actually, we shall use M = max{K, |s|} for the upper bound
to avoid the possibility that s = 0.

Theorem 9.5.3. Suppose lim
n→∞

sn = s and lim
n→∞

tn = t. Then lim
n→∞

(sntn) = st.

Proof Analysis. We are assuming that lim
n→∞

sn = s and lim
n→∞

tn = t. So, we can make

|sn− s| and |tn− t| as small as we want. We need to make |sntn− st|< ε . Since the
sequence 〈tn〉 converges, we know by Theorem 9.4.23 that this sequence is bounded.
Thus, there is a K > 0 such that

|tn| ≤ K for all n≥ 1. (9.11)

Let M = max{K, |s|}. Using algebra and properties of inequality on the expression
|sntn− st|, we extract out |sn− s| and |tn− t| as follows2:

|sntn− st|= |sntn− stn + stn− st| because −stn + stn = 0

= |tn(sn− s)+ s(tn− t)| by distributivity and commutativity

≤ |tn(sn− s)|+ |s(tn− t)| by the triangle inequality

= |tn| |sn− s|+ |s| |tn− t| by Theorem 9.2.3(e)

≤M |sn− s|+ M |tn− t| by (9.11) and K, |s| ≤M.

So if |sn− s|< ε
2M and |tn− t|< ε

2M , then we can conclude that |sntn− st|< ε . One
can now compose a logically correct proof guided by Proof Strategy 9.5.1. A©A©
Proof. See Exercise 7. ��

Our next lemma states that if the limit of a convergent sequence is nonzero and
all the terms in the sequence are also nonzero, then there is a single positive number
γ smaller than the absolute values of the limit and of all the terms in the sequence.

Lemma 9.5.4. Suppose that lim
n→∞

tn = t where t �= 0 and tn �= 0 for all n ≥ 1. Then

there is a real number γ > 0 such that γ ≤ |t| and γ ≤ |tn| for all n≥ 1.

2The algebraic “trick,” of adding and subtracting the same value, is used often in analysis.
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Proof Analysis. To better understand how to prove this lemma, we first construct
the following proof diagram:

Assume lim
n→∞

tn = t.

Assume t �= 0 and tn �= 0 for all n≥ 1.
Let γ = (the positive real number you found).

Prove γ ≤ |tn| for all n≥ 1.
Prove γ ≤ |t|.

Since lim
n→∞

tn = t, we can make |tn− t| as small as we would like. To find a positive γ
such that γ ≤ |tn| for all n≥ 1, we shall first start with |tn| and extract out a smaller
value involving |tn− t|. This can be done using the backward triangle inequality (see
Exercise 4 on page 300) as follows: |tn|= |t +(tn− t)| ≥ |t|− |tn− t|. Thus,

|t|− |tn− t| ≤ |tn| . (�)

We know that |t| is positive. So to ensure that |t|− |tn− t| is positive, we will need
|tn− t| to be smaller than |t|, say |t|2 . Since lim

n→∞
tn = t, there is a natural number N

such that |t− tn|< |t|
2 for all n > N. Using properties of inequality, we can conclude

from (�) that |t|2 < |tn| for all n > N. In addition, we have that |t|2 < |t|. Thus our

positive value for γ should satisfy γ ≤ |t|2 . To make sure that γ ≤ |tn| for all n ≥ 1,

we will use γ = min{|t1| , |t2| , . . . , |tN | , |t|2 }. A©A©
Proof. Suppose that lim

n→∞
tn = t where t �= 0 and tn �= 0 for all n ≥ 1. We prove that

there is a real number γ > 0 such that γ ≤ |t| and γ ≤ |tn| for all n ≥ 1. Because

lim
n→∞

tn = t and |t|2 > 0, there is an N ∈ N such that

|t− tn|< |t|2 for all n > N. (9.12)

Let γ = min{|t1| , |t2| , . . . , |tN | , |t|2 }. Hence, γ > 0 and γ ≤ |t|2 < |t|. If n ≤ N, then

clearly γ ≤ |tn|. Suppose n > N. We establish the inequality |tn|> |t|
2 as follows:

|tn|= |t +(tn− t)| because t− t = 0

≥ |t|− |tn− t| by the backward triangle inequality

> |t|− |t|
2

by (9.12)

=
|t|
2

by algebra.

Thus, |tn|> |t|
2 . Since γ ≤ |t|2 and |t|2 < |tn|, we have γ ≤ |tn|. ��
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Our next theorem shows that whenever a convergent sequence 〈tn〉 satisfies the

conditions of Lemma 9.5.4, then the reciprocal sequence
〈

1
tn

〉

also converges.

Theorem 9.5.5. Suppose that t �= 0 and tn �= 0 for all n ≥ 1. If lim
n→∞

tn = t, then

lim
n→∞

1
tn

= 1
t .

Proof Analysis. We are assuming that lim
n→∞

tn = t. So we can make |tn− t| as small

as we want. Let ε > 0. We need to make
∣
∣
∣

1
tn
− 1

t

∣
∣
∣< ε . Since t �= 0 and tn �= 0 for all

n≥ 1, we know by Lemma 9.5.4 that there is a real number γ > 0 such that

γ ≤ |t| and γ ≤ |tn| for all n≥ 1. (�)

We use algebra and properties of inequality on the expression
∣
∣
∣

1
tn
− 1

t

∣
∣
∣ to extract out

a larger value that contains |tn− t|, and no other factor involving |tn| as follows:

∣
∣
∣
∣

1
tn
− 1

t

∣
∣
∣
∣
=

∣
∣
∣
∣

t− tn
tnt

∣
∣
∣
∣
=
|t− tn|
|tn| |t| ≤

|t− tn|
γ2

where the inequality follows from (�). So if |tn− t| < γ2ε , then we can conclude

that
∣
∣
∣

1
tn
− 1

t

∣
∣
∣ < ε . We can now present a logically correct proof directed by Proof

Strategy 9.5.1. A©A©
Proof. Assume that lim

n→∞
tn = t where t �= 0 and tn�= 0 for all n≥ 1. By Lemma 9.5.4,

there is a real number γ > 0 such that γ ≤ |t| and γ ≤ |tn| for all n≥ 1. So,

γ2 ≤ |tnt| for all n≥ 1. (9.13)

To prove that lim
n→∞

1
tn

= 1
t , let ε > 0. Since lim

n→∞
tn = t, there is an N ∈ N such that

|tn− t|< εγ2 for all n > N. (9.14)

For n > N we have
∣
∣
∣
∣

1
tn
− 1

t

∣
∣
∣
∣
=

∣
∣
∣
∣

t− tn
tnt

∣
∣
∣
∣
=
|t− tn|
|tn| |t| common denominator and Theorem 9.2.3(e, f)

≤ |t− tn|
γ2 by (9.13)

<
εγ2

γ2 by (9.14)

= ε by algebra.
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Hence,
∣
∣
∣

1
tn
− 1

t

∣
∣
∣< ε . Therefore, lim

n→∞
1
tn

= 1
t . ��

Theorems 9.5.3 and 9.5.5 imply our next theorem.

Theorem 9.5.6. Suppose that lim
n→∞

sn = s and lim
n→∞

tn = t. If t �= 0 and tn �= 0 for all

n≥ 1, then lim
n→∞

sn
tn

= s
t .

Proof. Suppose that lim
n→∞

sn = s and lim
n→∞

tn = t, where t �= 0 and tn �= 0 for all n≥ 1.

Since sn
tn

= sn

(
1
tn

)

, Theorems 9.5.5 and 9.5.3 imply that lim
n→∞

sn
tn

= s
t . ��

Theorem 9.5.7 (Squeeze Theorem). Let 〈sn〉, 〈yn〉 and 〈tn〉 be sequences such that
lim
n→∞

sn = � and lim
n→∞

tn = �. If sn ≤ yn ≤ tn for all n≥ 1, then lim
n→∞

yn = �.

Proof. We have that lim
n→∞

sn = � and lim
n→∞

tn = �. Assume sn ≤ yn ≤ tn for all n ≥ 1.

To prove that lim
n→∞

yn = �, let ε > 0. Since lim
n→∞

sn = �, there is an Ns such that

|sn− �|< ε for all n > Ns. (9.15)

Similarly, since lim
n→∞

tn = �, there is an Nt such that

|tn− �|< ε for all n > Nt . (9.16)

Let N = max{Ns,Nt} and let n>N. We shall prove that |yn− �|< ε . By assumption,
we have sn ≤ yn ≤ tn and so, sn− � ≤ yn− � ≤ tn− �. Lemma 9.2.5 implies that
|yn− �| ≤ max{|sn− �| , |tn− �|}. Since n > Ns and n > Nt , it follows from (9.15)
and (9.16) that max{|sn− �| , |tn− �|}< ε . Therefore, |yn− �|< ε . ��

Exercises 9.5

1. Suppose lim
n→∞

sn = s and lim
n→∞

tn = t. Using Proof Strategy 9.5.1 as a guide, prove

that lim
n→∞

(sn− tn) = s− t.

2. Suppose lim
n→∞

sn = s and lim
n→∞

tn = t. Let a,b ∈ R be nonzero. Using Proof

Strategy 9.5.1, prove that lim
n→∞

(asn + btn) = as+ bt.

3. Assume lim
n→∞

xn = c. Suppose that a sequence 〈yk〉 satisfies |xk− yk| < 1
k for all

k≥ 1. Prove that lim
n→∞

yn = c.

4. Let 〈an〉 and 〈bn〉 be sequences, and let �,m ∈ R. Suppose that lim
n→∞

(an +bn) = �

and lim
n→∞

(an− bn) = m. Use Theorem 9.5.2 to prove that 〈an〉 converges and to

evaluate the limit lim
n→∞

an.
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5. Let 〈an〉 and 〈bn〉 be sequences, and let �,m ∈ R. Assume lim
n→∞

(an + bn) = � and

lim
n→∞

(an−bn) = m. Using Exercise 1, prove that 〈bn〉 converges and evaluate the

limit lim
n→∞

bn.

6. Suppose that 〈an〉 is bounded and that lim
n→∞

bn = 0. Prove that lim
n→∞

anbn = 0.

7. Prove Theorem 9.5.3.
8. Suppose lim

n→∞
sn = c and let σ : N→ N be one-to-one. Prove that lim

n→∞
sσ(n) = c.

Exercise Notes: For Exercise 7, use Proof Strategy 9.5.1 and the proof analysis on
page 325 as a guide. For Exercise 8, observe that the set {n∈N : σ(n)≤N} is finite
for any N ∈N, because σ is one-to-one.

9.6 Continuous Functions

What does it mean to say that a function f : D→ R is continuous? Intuitively, a
continuous function is one for which a small change in the input results in a small
change in the output. In this section we will be presuming that D ⊆ R. Here is the
precise definition which is illustrated in Fig. 9.9.

Definition 9.6.1. Let f : D→ R and let c ∈ D. We say that f is continuous at c
when the following holds: For every ε > 0 there exists a δ > 0 such that for all
x ∈ D if |x− c|< δ , then | f (x)− f (c)|< ε .

The logical form of Definition 9.6.1 can be expressed as

(∀ε > 0)(∃δ > 0)(∀x ∈D)(|x− c|< δ → | f (x)− f (c)|< ε) (9.17)

and it is this logical form that drives our next proof strategy.

Proof Strategy 9.6.2. Let f : D→ R and c ∈ D. To prove that f is continuous at c
use the proof diagram:

Let ε > 0 be a real number.
Let δ = (the positive real number found).

Let x be a real number in D.
Assume |x− c|< δ .

Prove | f (x)− f (c)|< ε.

c

f (x)

f (c)−e f (c)+ef (c)c+dc−d
( () )

Fig. 9.9 Illustration for Definition 9.6.1
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To apply Proof Strategy 9.6.2 to a specific function f , first let ε > 0. We must
find a δ > 0 such that when |x− c| < δ , we can then prove that | f (x)− f (c)| <
ε . To find the desired δ , we use algebra and properties of inequality on the
expression | f (x)− f (c)| to “extract out” a larger value containing |x− c| and no
other occurrences of x. We should then be able to find δ so that when |x− c|< δ ,
we will have that | f (x)− f (c)|< ε .

In the proof analysis of our next proposition we shall apply the above procedure
to find δ ; moreover, in the proof of the proposition we will not show the reader how
we found δ . At the beginning of the proof we shall let ε > 0 and then just identify
the value for δ that we will use to complete the proof.

Proposition 9.6.3. Let f : R→ R be defined by f (x) = 3x + 5 and let c ∈ R. Then
f is continuous at c.

Proof Analysis. Let c ∈ R and let ε > 0. We need to find a δ > 0 so that when
|x− c|< δ , we can conclude that | f (x)− f (c)| < ε . To find this δ , we use algebra
and properties of inequality on the expression | f (x)− f (c)| to extract out |x− c| as
follows:

| f (x)− f (c)|= |(3x + 5)− (3c + 5)| by definition of f

= |3(x− c)| by algebra

= 3 |x− c| by Theorem 9.2.3(e).

Thus, if we have 3 |x− c|< ε , then we will be able to deduce that | f (x)− f (c)|< ε .
Solving the inequality 3 |x− c|< ε for |x− c| we obtain |x− c|< ε

3 . So, we will let
δ = ε

3 . We now give a correct proof, guided by Proof Strategy 9.6.2. A©A©
Proof. Let f (x) = 3x + 5 and let c ∈ R. We shall prove that f is continuous at c.
Let ε > 0 be given. Now, let δ = ε

3 and let x ∈ R satisfy |x− c| < δ . We prove
| f (x)− f (c)|< ε as follows:

| f (x)− f (c)|= |(3x + 5)− (3c + 5)| by definition of f

= |3(x− c)| by algebra

= 3 |x− c| by Theorem 9.2.3(e)

< 3δ because |x− c|< δ

= 3
ε
3

because δ =
ε
3

= ε by algebra.

Hence, | f (x)− f (c)| < ε and therefore f is continuous at c. ��
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In the proof of Proposition 9.6.3 we were able to ‘cleanly’ extract out |x− c|;
however, this may not be the case when applying Strategy 9.6.2 in the proof of other
such results. Sometimes, after extracting out |x− c|, there will be some ‘unwanted’
factors involving x. If such factors appear, then we will have to find an appropriate
upper bound for these factors. We will execute this idea in our next proof analysis.

Proposition 9.6.4. Let f : R→ R be defined by f (x) = x2 and let c ∈ R. Then f is
continuous at c.

Proof Analysis. Let c ∈R and ε > 0. We need a δ > 0 so that when |x− c|< δ , we
can conclude that | f (x)− f (c)|< ε . To find this δ , we use algebra and properties of
inequality on the expression | f (x)− f (c)| to extract out |x− c| as follows:

| f (x)− f (c)|= ∣
∣x2− c2

∣
∣ by definition of f

= |(x + c)(x− c)| by factoring

= |x + c| |x− c| by Theorem 9.2.3(e). (�)

In this case, we end up with the unwanted factor |x + c|, which involves x. We need
to find an upper bound for this factor. How can we do this? We know that we can
make |x− c| as small as we would like. Thus, to obtain an upper bound for |x + c|,
we start with |x + c| and extract out a larger value containing |x− c| as follows:

|x + c|= |x− c + 2c| because c =−c+2c

≤ |x− c|+ 2 |c| by the triangle inequality.

So if we have |x− c|< 1, then we will be able to derive |x + c| ≤ 1 + 2 |c| and thus,
M = 1+2 |c|will be our desired upper bound. Hence, if we let δ ≤ 1 and |x− c|< δ ,
then we can continue (�) above to obtain | f (x)− f (c)| = |x + c| |x− c| ≤M |x− c|
and thus, we have cleanly extracted out |x− c| from | f (x)− f (c)|. Furthermore, if
we have M |x− c| < ε , then we can conclude that | f (x)− f (c)| < ε . Solving the
inequality M |x− c| < ε for |x− c|, we obtain |x− c| < ε

M . So we will also need
δ ≤ ε

M . Since we will require that δ ≤ 1 and δ ≤ ε
M in our proof, we shall use

δ = min{1, ε
M }. We now have all of the ingredients that are needed to prove the

theorem. A©A©
Proof. Let f (x) = x2 and let c∈R. Let ε > 0 be given and let δ = min{1, ε

M} where
M = 1 + 2 |c|. Let x ∈ R satisfy |x− c|< δ . Since |x− c|< δ ≤ 1, it follows that

|x + c|= |x− c + 2c| because c =−c+2c

≤ |x− c|+ 2 |c| by the triangle inequality

< 1 + 2 |c|= M because |x− c|< 1.
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Therefore, (�) |x + c| ≤M. We prove that | f (x)− f (c)|< ε as follows:

| f (x)− f (c)|= ∣
∣x2− c2

∣
∣ by definition of f

= |(x + c)(x− c)| by factoring

= |x + c| |x− c| by Theorem 9.2.3(e)

≤M |x− c| by (�)

< Mδ because |x− c|< δ

≤M
ε
M

because δ ≤ ε
M

= ε by algebra.

Thus, | f (x)− f (c)| < ε . Therefore, f is continuous at c. ��
The logical form of the definition of continuous at a point is given in (9.17). By

taking the negation of this logical form and using logic laws, we obtain our next
remark which expresses what it means for a function not to be continuous at a point.

Remark 9.6.5. Let f : D→ R and let c ∈ D. Then f is not continuous at c if and
only if there exists an ε > 0 such that for all δ > 0, there is an x ∈ D such that
|x− c|< δ and | f (x)− f (c)| ≥ ε .

9.6.1 Algebraic Operations on Functions

Given two functions f : D → R and g : D → R, we can form new functions by
adding, subtracting, multiplying, and dividing the values of f and g.

Definition 9.6.6. Let f : D→ R and g : D→ R be functions. We can define five
new functions as follows:

(1) The sum ( f + g) : D→ R is defined by ( f + g)(x) = f (x)+ g(x) for all x ∈ D.
(2) The difference ( f − g) : D→ R is defined by ( f − g)(x) = f (x)− g(x) for all

x ∈ D.
(3) The product ( f g) : D→ R is defined by ( f g)(x) = f (x)g(x) for all x ∈ D.
(4) For k ∈ R, the constant multiple (k f ) : D→ R is defined by (k f )(x) = k f (x)

for all x ∈ D.
(5) Suppose g(x) �= 0 for all x ∈ D. The quotient

(
f
g

)

: D → R is defined by
(

f
g

)

(x) = f (x)
g(x) for all x ∈D.

We will show, assuming f and g are continuous at a point c, that the operations
defined in Definition 9.6.6 will each produce a function that is also continuous at c.
Thus, the operations (1)–(5) preserve continuity. How can we take advantage of an
assumption stating that a function is continuous? The next strategy will be used
when working with such an assumption.
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Assumption Strategy 9.6.7. Let f : D → R and let c ∈ D. Suppose you are
assuming that f is continuous at c. Then for any ε > 0 there is a δ > 0 such that
| f (x)− f (c)|< ε whenever x ∈D satisfies |x− c|< δ .

Given that f is continuous at c, using Assumption Strategy 9.6.7, we can
conclude that for any positive value v > 0, there is a d > 0 such that whenever
x ∈ D and |x− c| < d, we will have that | f (x)− f (c)| < v. We shall express this
observation as “we can make | f (x)− f (c)| as small as we want.”

9.6.2 Preservation-of-Continuity Theorems

How can one prove theorems that have the following form?

Theorem. Let f : D→ R and g : D→ R be functions and let c ∈ D. Suppose that f
is continuous at c and g is continuous at c. Then the function h : D→R, constructed
from f and g, is also continuous at c.

In a proof of a theorem having the above form, we would assume that f and g are
continuous at c and then we would have to prove that h is continuous at c. To prove
such a theorem, we shall apply the following strategy.

Proof Strategy 9.6.8. To prove that h is continuous at c, use the proof diagram:

Assume f and g are continuous at c.
Let ε > 0 be a real number.

Let δ = (the positive real number found).
Let x be a real number in D.

Assume |x− c|< δ .
Prove |h(x)−h(c)|< ε.

To apply Proof Strategy 9.6.8, let ε > 0. We must find a δ > 0 such that
|h(x)−h(c)| < ε when |x− c| < δ . We will use the assumption that f and g are
continuous at c, to find the desired δ . Since f and g are continuous at c, we can
make | f (x)− f (c)| and |g(x)− g(c)| “as small as we want.” Here is the basic idea
that we will apply to get δ .

Using algebra and properties of inequality on the expression |h(x)−h(c)|,
extract out a larger value containing | f (x)− f (c)| and |g(x)−g(c)|, and no
other occurrences of x, f (x) or g(x).

Since we can make | f (x)− f (c)| and |g(x)− g(c)| as small as we want, we should
then be able to find δ . We will use these ideas in our proof analysis of the next
two theorems. Our first theorem shows that sum of two continuous functions is also
continuous. The second theorem shows that the reciprocal of a nonzero continuous
function is continuous as well.
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Theorem 9.6.9. Let f : D→ R and g : D→ R be functions and let c ∈ D. Suppose
that f and g are continuous at c. Then ( f + g) is continuous at c.

Proof Analysis. Let ε > 0. We are given that f and g are continuous at c. So we
can make | f (x)− f (c)| and |g(x)− g(c)| as small as we want. We need to make
|( f + g)(x)− ( f + g)(c)|< ε . Using algebra and properties of inequality, we extract
out | f (x)− f (c)| and |g(x)− g(c)| from the expression |( f + g)(x)− ( f + g)(c)| as
follows:

|( f + g)(x)− ( f + g)(c)|= |( f (x)+ g(x))− ( f (c)+ g(c))| by definition of f +g

= |( f (x)− f (c))+ (g(x)−g(c))| by algebra

≤ | f (x)− f (c)|+ |g(x)−g(c)| by triangle inequality.

So if we have that | f (x)− f (c)|< ε
2 and |g(x)− g(c)|< ε

2 , then we can deduce

|( f + g)(x)− ( f + g)(c)|< ε.

We now present a logically correct proof directed by Proof Strategy 9.6.8. A©A©
Proof. Let f : D→ R and g : D→ R be functions. Let c ∈ D. Assume that f and g
are continuous at c. We shall prove that f + g is continuous at c. Let ε > 0. Since f
is continuous at c, there is a δ1 > 0 such that for all x ∈ D we have

| f (x)− f (c)|< ε
2

when |x− c|< δ1. (9.18)

Because g is continuous at c, there is a δ2 > 0 such that for all x ∈ D we have

|g(x)− g(c)|< ε
2

when |x− c|< δ2. (9.19)

Let δ = min{δ1,δ2} and x ∈ D satisfy |x− c|< δ . So |x− c|< δ1 and |x− c|< δ2.
So, (9.18) and (9.19) apply. We prove that |( f + g)(x)− ( f + g)(c)|< ε as follows:

|( f + g)(x)− ( f + g)(c)|= |( f (x)+ g(x))− ( f (c)+ g(c))| by definition of f +g

= |( f (x)− f (c))+ (g(x)−g(c))| by algebra

≤ | f (x)− f (c)|+ |g(x)−g(c)| by triangle inequality

<
ε
2

+
ε
2

by (9.18) and (9.19)

= ε by algebra

and thus, |( f + g)(x)− ( f + g)(c)|< ε . Therefore, ( f + g) is continuous at c. ��
In the proof of Theorem 9.6.9 we were able to ‘cleanly’ extract out | f (x)− f (c)|

and |g(x)−g(c)|, that is, there were no additional factors. When applying Proof
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Strategy 9.6.8, after extracting out | f (x)− f (c)| or |g(x)−g(c)|, there may be some
‘unwanted’ factors involving x, f (x) or g(x). One must then find an appropriate
upper bound for these factors. This will be done in our proofs of Theorems 9.6.11
and 9.6.13. In the proof of Theorem 9.6.11, we will obtain the unwanted factor 1

|g(x)| .
Our next lemma yields an upper bound for this factor.

Lemma 9.6.10. Let g : D→ R be continuous at c ∈ D where g(c)�= 0. Then there
exist an m > 0 and a δ > 0 such that for all x ∈ D if |x− c|< δ , then |g(x)|> m.

Proof Analysis. To better understand how to prove this lemma, we first construct
the proof diagram:

Assume g is continuous at c.
Assume g(c)�= 0.

Let δ = (the positive real number found).
Let m = (the positive real number you found).

Let x be a real number in D.
Assume |x− c|< δ .

Prove |g(x)|> m.

Since g is continuous at c, we can make |g(x)− g(c)| as small as we would like. To
find a positive δ and a positive m such that |g(x)| > m when |x− c| < δ , we shall
first start with |g(x)| and extract out a smaller value involving |g(x)−g(c)|. This
can be done using the backward triangle inequality (see Exercise 4 on page 300) as
follows: |g(x)|= |g(c)+ (g(x)− g(c))| ≥ |g(c)|− |g(x)−g(c)|. Thus,

|g(x)| ≥ |g(c)|− |g(x)−g(c)| (�)

Since |g(c)| > 0, to ensure that |g(c)| − |g(x)− g(c)| is positive, we would need

|g(x)−g(c)| to be smaller than |g(c)|, say |g(c)|
2 . Because g is continuous at c, there

is a δ > 0 such that |g(x)− g(c)|< |g(c)|
2 when |x− c|< δ . We can conclude from (�)

that |g(x)|> |g(c)|
2 when |x− c|< δ . So we shall use m =

|g(c)|
2 in our proof. A©A©

Proof. Let g : D→ R be continuous at c ∈D where g(c)�= 0. Consider the positive

value |g(c)|
2 . Because g is continuous at c, there exists a δ > 0 such that

|g(x)− g(c)|< |g(c)|
2

when x ∈D and |x− c|< δ . (9.20)

Let x ∈ D satisfy |x− c|< δ . We shall show that |g(x)|> |g(c)|
2 as follows:

|g(x)|= |g(c)+ (g(x)− g(c))| because g(c)−g(c) = 0

≥ |g(c)|− |g(x)− g(c)| by the backward triangle inequality
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> |g(c)|− |g(c)|
2

by (9.20)

=
|g(c)|

2
by algebra.

Therefore, for m = |g(c)|
2 we have |g(x)|> m whenever x ∈ D and |x− c|< δ . ��

Theorem 9.6.11. Let g : D→R be such that g(x)�= 0 for all x ∈D. Suppose that g

is continuous at c ∈D. Then
(

1
g

)

is continuous at c.

Proof Analysis. Let ε > 0. We are given that g is continuous at c. So we can make

|g(x)−g(c)| as small as we want. We need to make
∣
∣
∣

1
g(x) − 1

g(c)

∣
∣
∣ < ε . Since g is

continuous at c, Lemma 9.6.10 implies that there is a δ1 > 0 and an m > 0 such that

|g(x)|> m when |x− c|< δ1 and x ∈D. (�)

Note that when |g(x)| > m, we have that 1
|g(x)| <

1
m . Also observe that (�) implies

that |g(c)| > m, because |c− c| = 0 < δ1. Thus, 1
|g(c)| <

1
m . Let x ∈ D and assume

|x− c|< δ1. We extract out |g(x)− g(c)| from the expression
∣
∣
∣

1
g(x) − 1

g(c)

∣
∣
∣ as follows:

∣
∣
∣
∣

1
g(x)
− 1

g(c)

∣
∣
∣
∣
=

∣
∣
∣
∣

g(c)− g(x)
g(x)g(c)

∣
∣
∣
∣
=
|g(x)−g(c)|
|g(x)| |g(c)| ≤

|g(x)−g(c)|
m2 .

So, if |g(x)−g(c)|< m2ε , then we will be able to deduce
∣
∣
∣

1
g(x) − 1

g(c)

∣
∣
∣< ε . We can

now give a logically correct proof using Proof Strategy 9.6.8 as a guide. A©A©
Proof. Let g : D→ R and let c ∈ D. Suppose g is continuous at c and g(c) �= 0.
Lemma 9.6.10 implies that there is a δ1 > 0 and an m > 0 such that

|g(x)|> m when |x− c|< δ1 and x ∈ D. (9.21)

To prove that
(

1
g

)

is continuous at c, let ε > 0. Since g is continuous at c, there is

a δ2 such that

|g(x)− g(c)|< εm2 when |x− c|< δ2 and x ∈D. (9.22)

Let δ = min{δ1,δ2} and x ∈ D be such that |x− c| < δ . Thus |x− c| < δ1 and

|x− c|< δ2. Hence, (9.21) and (9.22) apply. We prove
∣
∣
∣

1
g(x) − 1

g(c)

∣
∣
∣< ε as follows:
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∣
∣
∣
∣

1
g(x)
− 1

g(c)

∣
∣
∣
∣
=

∣
∣
∣
∣

g(c)− g(x)
g(x)g(c)

∣
∣
∣
∣

common denominator

=
|g(x)− g(c)|
|g(x)| |g(c)| by Theorem 9.2.3(e, f)

≤ |g(x)− g(c)|
m2 by (9.21)

<
εm2

m2 by (9.22)

= ε by algebra

and so
∣
∣
∣

1
g(x) − 1

g(c)

∣
∣
∣< ε . Therefore,

(
1
g

)

is continuous at c. ��
Suppose that f and g are continuous at a point c. To prove that f g is continuous

at c, one would start with |( f g)(x)− ( f g)(c)| and then extract out | f (x)− f (c)| and
|g(x)−g(c)|. To do this, one can get | f (x)| as an unwanted factor. Our next lemma
can be used to obtain an upper bound for this factor.

Lemma 9.6.12. Let f : D→R and let c ∈D. If f is continuous at c, then there is a
δ > 0 and an M > 0 such that | f (x)| ≤M for all x ∈ D satisfying |x− c|< δ .

Proof. Let f : D→ R be continuous at c ∈ D. So there exists a δ > 0 such that

| f (x)− f (c)|< 1 whenever x ∈ D and |x− c|< δ . (9.23)

Let x ∈ D satisfy |x− c|< δ . Thus,

| f (x)| = |( f (x)− f (c))+ f (c)| because − f (c))+ f (c) = 0

≤ | f (x)− f (c)|+ | f (c)| by the triangle inequality

< 1 + | f (c)| by (9.23).

Let M = 1 + | f (c)|. Therefore, | f (x)| ≤M for all x ∈ D satisfying |x− c|< δ . ��
Theorem 9.6.13. Suppose that f : D→ R and g : D→ R are continuous at c ∈ D.
Then f g is continuous at c.

Proof. See Exercise 11. ��
Theorem 9.6.14. Suppose that f : D→ R and g : D→ R are continuous at c ∈ D.

If g(c)�= 0, then
(

f
g

)

is continuous at c.

Proof. Suppose f : D→R and g : D→R are continuous at c∈D. Assume g(c)�= 0.

Theorem 9.6.11 implies that
(

1
g

)

is continuous at c. Since
(

f
g

)

= f ·
(

1
g

)

, we see

that
(

f
g

)

is continuous at c by Theorem 9.6.13. ��
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Our next theorem shows that the operation of composition preserves continuity.

Theorem 9.6.15. Let f : D→ R and g : E → R be functions such that f [D] ⊆ E.
Suppose f is continuous at c ∈D and g is continuous at f (c). Then (g◦ f ) : D→ R

is continuous at c.

Proof. Let f : D→ R and g : E→ R be functions such that f [D]⊆ E . Suppose that
f is continuous at c ∈ D and g is continuous at f (c). We shall prove that g ◦ f is
continuous at c. Let ε > 0. Since g is continuous at f (c), there is a δ1 > 0 such that

|g(y)−g( f (c))|< ε for all y ∈ E satisfying |y− f (c)|< δ1. (9.24)

Because f is continuous at c and δ1 > 0, there is a δ > 0 such that

| f (x)− f (c)|< δ1 for all x ∈D satisfying |x− c|< δ . (9.25)

Now, let x ∈D be such that |x− c|< δ . Then

|(g◦ f )(x)− (g ◦ f )(c)|= |g( f (x))− g( f (c))| by definition of g◦ f

< ε by (9.25) and (9.24).

Hence, |(g◦ f )(x)− (g ◦ f )(c)|< ε . Therefore, g ◦ f is continuous at c. ��
Our next lemma shows that when a continuous function is nonzero at a point,

then the function is also nonzero in a neighborhood of the point.

Lemma 9.6.16. Let f : D→ R be continuous at c ∈D and suppose f (c)�= 0.

(a) If f (c) > 0, there is a δ > 0 where f (x) > 0 for all x ∈D satisfying |x− c|< δ .
(b) If f (c) < 0, there is a δ > 0 where f (x) < 0 for all x ∈D satisfying |x− c|< δ .

Proof. Suppose f : D→ R is continuous at c ∈D and f (c)�= 0. Let ε = | f (c)|> 0.
Since f is continuous at c, there exists a δ > 0 such that

| f (x)− f (c)|< ε when x ∈ D and |x− c|< δ . (9.26)

To prove (a), assume f (c) > 0. Thus ε = f (c). Let x ∈D satisfy |x− c|< δ . We will
prove that f (x) > 0. Since |x− c|< δ and ε = f (c), we conclude from (9.26) that
| f (x)− f (c)|< f (c). Because f (c)− f (x)≤ | f (x)− f (c)|, we obtain the inequality
f (c)− f (x) < f (c). Therefore, f (c)− f (c) < f (x) and so, f (x)> 0. The proof of (a)
is now complete. The proof of (b) is very similar (see Exercise 12). ��
Definition 9.6.17. We say f : D→ R is continuous when f is continuous at every
point c ∈D.

Many of the important theorems in real analysis assume that a function is
continuous at every point in its domain. For example, the fundamental theorem of
calculus assumes that a function is continuous on a closed interval.
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Proposition 9.6.18. Suppose f : R→R is continuous. Then the function g : R→R

defined by g(x) = 3 f (x)− 2 is also continuous.

Proof. Assume that f : R→ R is continuous. We will prove that g is continuous,
where g : R→ R is defined by g(x) = 3 f (x)− 2. Let c be any real number and let
ε > 0. Since f is continuous, there is a δ > 0 such that

| f (x)− f (c)|< ε
3

when x ∈ R and |x− c|< δ . (9.27)

Assume |x− c|< δ . We prove that |g(x)− g(c)|< ε as follows:

|g(x)−g(c)|= |(3 f (x)− 2)+ (3 f (c)− 2)| by definition of g

= 3 | f (x)− f (c)| by algebra and Theorem 9.2.3(e)

< 3
ε
3

= ε by (9.27) and algebra

Thus, |g(x)−g(c)|< ε . Therefore, g is continuous. ��

Exercises 9.6

For Exercises 1–5 apply Proof Strategy 9.6.2. Apply Proof Strategy 9.6.8 in
Exercises 7 to 11.

1. Let m and d be real numbers where m �= 0. Consider the function f : R→ R

defined by f (x) = mx + d. Prove that f is continuous.
2. Let f : R→R be defined by f (x) = |x| for all x∈R. Prove that f is continuous.
3. Let f : [2,4]→ R be defined by f (x) = 3x2 + 1 for all x ∈ [2,4]. Prove that f is

continuous.
4. Let f : R+ → R be defined by f (x) =

√
x for all x ∈ R

+. Prove that f is
continuous.

5. Let f : [1,3]→ R be defined by f (x) = 1
x+2 for all x ∈ [1,3]. Prove that f is

continuous.
6. Suppose that f : D→ R and g : D→ R are continuous at c ∈ D. Prove that

there exist an M > 0 and a δ > 0 such that | f (x)| ≤ M and |g(x)| ≤ M when
|x− c|< δ and x ∈ D.

7. Let f : D→R and g : D→R be functions. Suppose that f and g are continuous
at c ∈ D. Prove that f − g is continuous at c.

8. Suppose that f : D→R is continuous at c ∈D and k ∈R is nonzero. Prove that
k f is continuous at c.

9. Let f : D→ R be continuous at c ∈ D. Define g : D→ R by g(x) = | f (x)| for
all x ∈ D. Prove that g is continuous at c.



340 9 Core Concepts in Real Analysis

10. Let f : D→ R and g : D→ R be functions. Suppose g is continuous at c ∈ D
and | f (x)− f (c)| ≤ |g(x)| |x− c| for all x ∈ D. Prove that f is continuous at c.

11. Prove Theorem 9.6.13.
12. Prove Lemma 9.6.16(b).
13. Let f : D→ R be continuous at c ∈ D and let h ∈ R. Prove the following:

(a) If f (c) > h, then there is a δ > 0 such that f (x) > h whenever x ∈ D and
|x− c|< δ .

(b) If f (c) < h, then there is a δ > 0 such that f (x) < h whenever x ∈ D and
|x− c|< δ .

Exercise Notes: For Exercise 3, note that |x + c|= x + c≤ 8 when x,c ∈ [2,4]. For

Exercise 4, evaluate (
√

x−√c)
√

x+
√

c√
x+
√

c . For Exercises 6 and 10, use Lemma 9.6.12.
For Exercise 11, to prove that the function f g is continuous at c, use the identity
| f (x)g(x)− f (c)g(c)| = | f (x)g(x)− f (x)g(c)+ f (x)g(c)− f (c)g(c)|. Now extract
out |g(x)−g(c)| and | f (x)− f (c)| and use Lemma 9.6.12. For the proof of Exercise
13, read the proof of Lemma 9.6.16.



APPENDIX

Summary of Strategies

Proof Strategies

1. To prove an algebraic equation, try one of the following:

(a) Transform one side of the equation into the other side of the equation.
(b) Derive the equation from any previously given, or assumed, equations.

2. To prove P→ Q, try one of the following:

(a) Assume P
Prove Q.

(b) Assume ¬Q
Prove ¬P.

3. To prove P∧Q, try the following:

Prove P
Prove Q.

4. To prove P∨Q, try one of the following:

(a) Assume ¬P
Prove Q.

(b) Assume ¬Q
Prove P.

(c) Try using a division by cases. In each case, prove P or prove Q.

5. To prove P↔ Q, try the following:

Prove P→ Q
Prove Q→ P.

6. To prove P by contradiction:

Assume ¬P
Derive “a contradiction.’

7. To prove ∀xP(x), or (∀x ∈ A)P(x):

Let x, or respectively let x ∈ A, be arbitrary. Now prove P(x).

8. To prove ∃xP(x), or (∃x ∈ A)P(x), try one of the following:

(a) Find an x, or respectively an x ∈ A, such that P(x) is true. Now prove P(x).
(b) Prove P(x) for some x, or respectively some x ∈ A.

D.W. Cunningham, A Logical Introduction to Proof, DOI 10.1007/978-1-4614-3631-7,
© Springer Science+Business Media New York 2012
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9. To prove ∃!xP(x):

First prove ∃xP(x). Then, assuming P(x) and P(y), prove x = y.

Assumption Strategies

1. When assuming P→ Q:

(a) If you are assuming or can prove P, then you can conclude Q.
(b) If you are assuming or can prove ¬Q, then you can conclude ¬P.

2. When assuming P∨Q:

(a) If required to prove R, try the following division by cases,

Case 1: Assume P.
Prove R.

Case 2: Assume Q.

Prove R.

(b) If you are assuming or can prove ¬P, then you can conclude Q.
(c) If you are assuming or can prove ¬Q, then you can conclude P.

3. When assuming P∧Q:

You can assume P and assume Q.

4. When assuming P↔ Q:

(a) If you are assuming or can prove P, then you can conclude Q.
(b) If you are assuming or can prove Q, then you can conclude P.

5. When assuming ¬P:

(a) In a proof by contradiction try to prove P and thereby derive a contradiction.
(b) Reexpress ¬P as a positive statement, and try to use the positive statement.

6. When assuming ∀xP(x), or (∀x ∈ A)P(x):

You may plug in any useful value for x, or respectively x ∈ A; say a, and
assume P(a).

7. When assuming ∃xP(x), or (∃x ∈ A)P(x):

Introduce a new variable x0, or respectively x0 ∈ A, representing an object
which makes P(x0) true and then assume P(x0).

8. Any established theorem can be assumed and used in a proof.
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Well-Ordering and Induction Proof Strategies

Let b be a fixed integer and let n be an integer variable.

1. To prove (∀n≥ b)P(n) by the well-ordering principle, use:

Assume that ¬P(n) holds for some integer n≥ b.
Let N ≥ b be the smallest such integer satisfying ¬P(N).

Derive “a contradiction.”

2. To prove (∀n≥ b)P(n) by mathematical induction, use:

Base step: Prove P(b).

Inductive step: Let n≥ b be an integer.
Assume P(n).

Prove P(n + 1).

3. To prove (∀n≥ b)P(n) by strong induction with one base step, use:

Base step: Prove P(b).

Inductive step: Let n > b be an integer.
Assume P(k) whenever b≤ k < n.

Prove P(n).

4. To prove (∀n ≥ b)P(n) by strong induction with multiple base steps, identify
the integer c > b and use:

Base step: Prove P(b).

Base step: Prove P(b + 1).
...

Base step: Prove P(c).
Inductive step: Let n > c be an integer.

Assume P(k) whenever b≤ k < n.
Prove P(n).

Proof and Assumption Strategies for Set Theory

1. To prove A⊆ B, use the form:

Let x ∈ A.
Prove x ∈ B.

2. To prove A = B, try one of the following:

(a) Prove A⊆ B
Prove B⊆ A.
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(b) Let x be arbitrary.
Prove x ∈ A↔ x ∈ B.

3. When assuming A⊆ B, if you know or can prove x ∈ A, then you can conclude
x ∈ B. If you know or can prove x /∈ B, then you can conclude x /∈ A.

4. When assuming A = B, if you know or can prove x ∈ A, then you can conclude
x ∈ B. If you know or can prove x /∈ A, then you can conclude x /∈ B.

Proof and Assumption Strategies for Functions

1. To prove f = g where f : A→ B and g : A→ B, use:

Let x ∈ A.
Prove f (x) = g(x).

2. To prove that a function f : A→ B is one-to-one, use:

Let x ∈ A and y ∈ A.
Assume f (x) = f (y).

Prove x = y.

3. To prove that a function f : A→ B is onto, use:

Let y ∈ B.
Let x = (the element in A you found).

Prove f (x) = y.

4. When assuming f : A→ B is one-to-one. If you are also assuming or can prove
that f (x) = f (y), then you can conclude that x = y whenever x,y ∈ A.

5. When assuming f : A → B is onto, then for any y ∈ B you can conclude that
f (x) = y for some x ∈ A.

Proof Strategies for Relations

1. To prove a relation ∼ on A is reflexive, use:

Let x ∈ A.
Prove x∼ x.

2. To prove a relation ∼ on A is symmetric, use:

Let x,y ∈ A.
Assume x∼ y.

Prove y∼ x.
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3. To prove a relation ∼ on A is transitive, use:

Let x,y,z ∈ A.
Assume x∼ y.
Assume y∼ z.

Prove x∼ z.

Proof and Assumption Strategies for Abstract Algebra

1. Let (G,∗) be a group and let H be a subset of G. To prove that H is a subgroup
of G, use:

Prove e ∈ H.

Let a,b ∈H.

Prove ab ∈H.

Let a ∈ H.

Prove a−1 ∈H.

2. Let (G,∗) be a group and let N be a subgroup of G. To prove that N is a normal
subgroup of G, use:

Let a ∈ G and n ∈ N.
Prove a−1na ∈ N.

3. Let (G,∗) be a group and suppose in a proof you are assuming that H is a
subgroup of G. Then you know that e ∈ H, and if you are assuming or can
prove that a,b ∈ H, then you can conclude that ab ∈H and a−1 ∈ H.

4. Let (G,∗) be a group and suppose in a proof that you are assuming N is a normal
subgroup of G. Let a ∈G be any element. If you are assuming or can prove that
n ∈ N, then you can conclude that a−1na ∈ N or, equivalently, that a−1na = h
for some h ∈ N.

Proof and Assumption Strategies for Real Analysis

1. Given a real number β and a nonempty S ⊆ R, to prove that β = sup(S), use
one of the following:

(a) Prove x≤ β for all x ∈ S.
Assume b is an upper bound for S.

Prove β ≤ b.

(b) Prove x≤ β for all x ∈ S.
Assume r < β .

Prove r < x for some x ∈ S.
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2. Given a real number α and a nonempty S ⊆ R, to prove that α = inf(S), use
one of the following:

(a) Prove α ≤ x for all x ∈ S.
Assume a is a lower bound for S.

Prove a≤ α .

(b) Prove α ≤ x for all x ∈ S.
Assume α < q.

Prove x < q for some x ∈ S.

3. Let 〈sn〉 be a sequence and � ∈ R. To prove that lim
n→∞

sn = �, use:

Let ε > 0 be a real number.
Let N = (the natural number you found).

Let n > N be a natural number.
Prove |sn− �|< ε.

4. Let f : D→ R and c ∈D. To prove that f is continuous at c, use:

Let ε > 0 be a real number.
Let δ = (the positive value you found).

Let x ∈ D.
Assume |x− c|< δ .

Prove | f (x)− f (c)|< ε.

5. Let S ⊆ R be nonempty and β ∈ R. When you are assuming that β = sup(S).
Then (1) x ≤ β for all x ∈ S; (2) whenever b is an upper bound for S, you can
deduce that β ≤ b; and (3) whenever r < β there is an x ∈ S such that r < x.

6. Let S ⊆ R be nonempty and α ∈ R. When you are assuming that α = inf(S).
Then (1) α ≤ x for all x ∈ S; (2) whenever a is a lower bound for S, you can
deduce that a≤ α; and (3) whenever α < q there is an x ∈ S such that x < q.

7. Suppose you are assuming that lim
n→∞

sn = �. Then for any ε > 0 there is an N ∈N

such that |sn− �|< ε for all n > N.

8. Let f : D→ R and c ∈ D. Suppose you are assuming that f is continuous at c.
Then for any ε > 0 there is an δ > 0 such that | f (x)− f (c)|< ε whenever x∈D
satisfies |x− c|< δ .
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∧,∨,¬, 2
�, 4
T, F, 4
⇔, 7
→, 12
↔, 16
∴, 19
a /∈ A, 30
x ∈ A, 30
N, 31
Q, 31
R, 31
Z, 31
{x ∈U : P(x)}, 31
∅, 32
Q

+, 32
Q
−, 32

R
+, 32

R
−, 32

Z
−, 32
⊆, 32
∞, 33
∀, ∃, 34
(∀x ∈ A), (∃x ∈ A), 39
(∀x < a), (∃x < a), 40
∃!, 54
��, 64
A©, 68
m |n, 81
m � n, 81
|x|, 88
⇒,⇐, 90

n
∑

k=1
ak , 108

(n
k

)

, 113
n!, 113
gcd(m,n), 135

∅, 143
⊆, 143
P , 144
�⊆, 144
∩, ∪, \, 145
A×B, 147
{Ci : i ∈ I}, 157
⋂

i∈I
Ci, 159

⋃

i∈I
Ci, 159

⋂F , 162
⋃F , 162
f : A→ B, 170
f (x), 170
ran( f ), 174
iA : A→ A, 174
f−1 : B→ A, 182
f ◦g, 184
f [S], 189
f−1[T ], 190
|A|, 203
|A|< |B|, 203
|A|= |B|, 203
|A| ≤ |B|, 204
(a,b), 209
aRb, 209
a∼ b, 209
[a]∼, 215
[a], 215
a≡ b(mod m), 218
[a]m, 222
Zm, 222
Zm, 223
", 226
⊕, 226
�, 232
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F(R), 245
F(Z), 246
�, 256
Per(S), 261
lcm(m,n), 269
�, 283
⊕, 283
a∼H b, 284
", 288

|x|, 298
max, 299
min, 299
inf(S), 301
sup(S), 301
max, 305
min, 305
〈sn〉, 311
lim
n→∞

sn = �, 312
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A
abelian group, 248
absolute value, 88, 298–299
abstract algebra, vii, viii, 227, 245
algebraic structure, 245
Archimedean property, 311
arrow diagram, 170
ascending prime factorization, 139
associative laws

for sets, 154
logical, 9

assumption strategies
biconditional, 90
conditional, 70
conjunction, 82
disjunction, 86
division by cases, 87
for all, 72
one-to-one function, 179
onto function, 181
proof by cases, 86
set equality, 154
subset relation, 151
there exists, 74

axiom of choice, 167
axiomatic method, 166
axioms of arithmetic, 225

B
backward triangle inequality, 299
base step, 104
base value, 104
Bernoulli’s inequality, 127, 319
biconditional

assumption strategy, 90
connective, 16

law, 16
proof strategy, 89

binary operation, 239
associative, 239
closed under, 246
commutative, 239
identity element, 239
inverse, 239
relation preserving, 281
well-defined formula, 226

binomial coefficient, 113
binomial theorem, 122
bound variable, 36
bounded

function, 306
sequence, 321
set, 300

bounded above, 300
bounded below, 300
bounded number quantifiers, 40
bounded quantifier negation laws, 44,

45
bounded set quantifiers, 39

C
cancellation law

for groups, 251
for integral domains, 276

Cantor’s diagonal argument, 200, 206
Cantor, Georg, 164, 193
cardinality, 203
Cartesian product

of 2 sets, 147
of a set with itself, 209

chain, 235
choice set, 167
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CL (conditional law), 14
closed under, 31, 246
closed-form solution, 110
Cohen, Paul, 168
commutative laws

logical, 9
complete residue system, 223
completeness axiom, 302
components of a cycle, 263
composite function, 184
composite number, 100
comprehension principle, 164
conditional

assumption strategies, 70
conclusion, 12
connective, 12
hypothesis, 12
laws, 14
proof strategy, 68

congruence algebra, 220
congruence relation, 281

modulo m, 218
on an algebraic structure, 281

conjecture, 61, 62
conjunction

assumption strategy, 82
connective, 2
proof strategy, 80

conjunctive addition, see inference rules, see
inference rules

conjunctive simplification, see inference rules
constant function, 174
constructive proof, 73
continuous function

at a point, 329
assumption strategy, 333, 346
proof strategy, 329

on its domain, 338
contradiction

law, 10
logical, 7
proof strategy, 93

contrapositive
logical, 14
proof strategy, 91

contrapositive law, 17
converse, 15
converse error, 22
corollary, 97
countable set, 195
countably infinite, 196
counterexample

refuting a conjecture, 62
refuting a universal statement, 35

cycle decomposition algorithm, 267
cycle notation, see permutation

D
De Morgan’s laws

for sets, 161, 162
logical, 8

decimal expansions, 129, 130, 136, 205, 206
deduction, 26
denumerable, 198
diagonal argument, 200, 206
difference, see set operations
direct proof, 68, 91
directed graph, 209
disjoint cycles, 265
disjoint sets, 143, 146
disjunction

assumption strategies, 86
connective, 2
proof strategies, 85

disjunctive addition, see inference rules
disjunctive syllogism, see inference rules, see

inference rules
distributive laws

for sets, 154
logical, 9

divisibility, 81
division algorithm, 134
division by cases, 85
DML (De Morgan’s law), 8
DNL (double negation law), 10

E
either-or, 3
element, 30, 143
element of, 30, 143
empty set, 32, 143
enumeration, 198
equations, how to prove, 63
equivalence class, 215
equivalence relation, 214
Euclid’s lemma, 139
even integer, 75
existence proofs, see there exists
existential statement, 35

F
factorial, 113
fallacy, 22, 59
family of sets, 157
Fibonacci sequence, 137
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field, 293
additive inverse, 293
algebraic properties, 293–295
axioms, 293
multiplicative identity, 293
multiplicative inverse, 293
ordered, 295–297
zero element, 293

finite set, 195
number of elements, 195

for all
assumption strategy, 72
proof strategy, 71

free variable, 36
function

co-domain, 169
domain, 169
continuous at a point, 329
equality, 175

proof strategy, 175
image of a set, 189
inverse image of a set, 190
one-to-one

assumption strategy, 179
definition, 178
proof strategy, 178

onto
assumption strategy, 181
definition, 180
proof strategy, 180

range, 174
single-valued, 170
well-defined, 171–173

fundamental theorem
of arithmetic, 140
of equivalence relations, 216

G
Gödel, Kurt, 168
Galois, Évariste, 262
Gauss, Carl Friedrich, 218, 225
geometric sequence, 118
geometric sum, 118
greatest common divisor, 135
greatest lower bound, 234, see infimum
group, 247

abelian, 248
axioms, 247
identity element, 247
order of an element, 257
order of the group, 257
subgroup, see subgroup

group theory, 247

I
ideal, 278
idempotent laws, 9
identity element, see binary operation, group
identity function, 174
if and only if, see biconditional
if-then statement, see conditional
iff, 16
image, see function
index set, 157
indexed family of sets, 157
indexed set, 157
indirect proof, 91
induction, see mathematical induction
induction conclusion (IC), 104
induction hypothesis (IH), 104
inductive step, 104
inductively defined sequence, 124
inequality

how to prove, 64
in ordered fields, 295–297
laws of, 64
substitution properties, 69, 313

inference rules, 24
conjunctive addition, 24, 58
conjunctive simplification, 24
disjunctive addition, 24
disjunctive syllogism, 24, 58
modus ponens, 20
modus tollens, 20
substitution, 25

infimum
assumption strategy, 304, 309
definition, 301
proof strategy, 303, 309

infinite set, 195
injection, see one-to-one
integer arithmetic, 225

additive identity, 226
additive inverse, 226
multiplicative identity, 226

integers, 31
intersection, see set operations
interval notation, 33
invalid argument

in propositional logic, 21
inverse error, 23
inverse function, 182
inverse image, see function
irrational numbers, 31, 97, 206

L
largest element, 235
least common multiple, 269
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least upper bound, 234, see supremum
lemma, 101
limit of a sequence, see sequence
logic law, 8
logic laws

substitution, 10
logical connectives, 2
logical equivalence, 7

not equivalent, 8
lower bound, 234, 300

M
mathematical induction, 102

base step, 104
base value, 104
induction conclusion (IC), 104
induction hypothesis (IH), 104
inductive step, 104
principle of, 103
proof strategy, 103
strong induction I, 128
strong induction II, 131
strong induction proof strategies

multiple base steps, 131
one base step, 128

mathematical proof, 66
matrix, 240
maximal element, 234
maximum, 299, 305
member, 30
member of, 30
minimal element, 234
minimum, 299, 305
mod, 218
modular arithmetic, 225, 227

additive identity, 228
additive inverse, 230
invertible, 228
multiplicative identity, 228
multiplicative inverse, 228
zero divisor, 228

modus ponens, see inference rules
modus tollens, see inference rules
moved element, by a permutation, 266
multiplicative inverse, 31

N
natural numbers, 31
necessary and sufficient, 14
negation

connective, 2

double negation law, 10
neighborhood, 320
neither-nor, 3
nonconstructive proof, 73
normal subgroup, 256

assumption strategy, 257
proof strategy, 256

O
odd integer, 75
one-to-one, see function
one-to-one correspondence, 193
only if, 14
onto, see function
open sum, 110
open-form solution, 110
order of group element, see group
ordered field, 296
ordered pair, 147, 209

equality, 147
first component, 147
second component, 147

P
pairwise disjoint, 148
partial order, 232
partially order set, 232
partition, 148, 214
perfect cube, 41
permutation

cycle notation, 263
2-cycle, 270
k-cycle, 263

matrix notation, 262
parity, 271

permutation group, 261
permutation of a set, 260
poset, 232
power set, 144, 203

cardinality of, 204
predicate, 29

domain, 29
prime number, 100
proof strategies

algebraic equations, 63
biconditional, 89
conditional, 68
conjunction, 80
contradiction, 93
contrapositive, 91
disjunction, 85
for all, 71
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function equality, 175
induction, 103
one-to-one function, 178
onto function, 180
reflexive relation, 211
set equality, 151
strong induction, 128, 131
subset relation, 150
symmetric relation, 212
there exits, 73
transitive relation, 212
uniqueness, 78
well-ordering, 100

proper subgroup, 252
proper subset, 143
proposition, 1
propositional components, 1, 4
propositional logic laws, 9
propositional sentence, 2, 17

Q
QNL (quantifier negation laws), 43
quantifier negation laws, 43–45
quantifiers, 34

adjacent, 46
existential, 34
mixed, 49, 77
multiple, 46
non-adjacent, 49
number bounded, 40
set bounded, 39
uniqueness, 54
universal, 34

quotient algebra, 283
quotient group, 284
quotient ring, 288

R
rational field, 300
rational numbers, 31

equality, 32
reduced form, 95

real analysis, vii, viii, 42, 88, 293, 311
real field, 298
real numbers, 31
recursively defined sequence, 124
relation

antisymmetric, 232
equivalence, 214
on a set, 209
reflexive, 211

proof strategy, 211

symmetric, 211
proof strategy, 212

transitive, 212
proof strategy, 212

relatively prime, 135
reverse triangle inequality, see backward

triangle inequality
right coset of a subgroup, 285
right coset of an ideal, 290
ring, 273

additive inverse, 273
axioms, 273
commutative, 273
integral domain, 274
subring, 277
unit, 274
with unity, 273
zero divisor, 274
zero element, 273

round-robin proof, 90
Russel’s paradox, 164, 166

S
sequence, 106, 311

bounded, 321
convergent, 312
limit of, 312

assumption strategy, 316
proof strategy, 312

limit theorems, 323
term, 311

set, 30, 143
set equality

assumption strategy, 154
definition, 143, 151
proof strategy, 151

double-subset strategy, 152
iff strategy, 152

set operations
complement, 145
difference, 145
intersection

of indexed family, 159
of two sets, 145

union
of indexed family, 158
of two sets, 145

single-valued, 170
smallest element, 235
square root, 95
squeeze theorem, 328
strict order, 233
string of 0’s, 130
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string of 9’s, 130
subgroup, 252

assumption strategy, 254
proof strategy, 254
proper, 252

subset relation
assumption strategy, 151
definition, 32, 143
proof strategy, 150

substructure, 246
summand, 69
summation notation, 108

index, 108
lower limit, 108
shift rule, 112
summand, 108
upper limit, 108

supremum
assumption strategy, 302, 308
definition, 301
proof strategy, 302, 308

surjection, see onto
symmetric group, 262

T
Tarski’s World, 37
Tarskian predicates, 38, 49
tautology

law, 10
logical, 7

theorem, 62
there exists

assumption strategy, 74
proof strategies, 73

total order, 233
totally ordered set, 233
transitivity law, see inequality
transposition, 270
triangle inequality, 98, 298
trichotomy law, 64, 296
truth assignment, 4

truth set, 31, 144
truth table, 4, 6
truth value, 4

U
uncountable set, 200
union, see set operations
uniqueness

proof strategies, 78
quantifier, 54

unity, see ring
universal converse error, 59
universal inverse error, 59
universal proofs, see for all
universal statement, 35
universe of discourse, 30, 31
upper bound, 234, 300

V
valid argument

in predicate logic, 58
in propositional logic, 20
substitution, 23

Venn diagram, 143

W
well-defined, 171
well-ordering principle, 99

general form, 99
proof strategy, 100

without loss of generality, 87

Z
Zermelo-Fraenkel axioms, 164
ZF, 167
ZFC, 167
Zorn’s Lemma, 235
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