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Preface

This book is intended as a text for a first-year graduate course in algebraic
topology; it presents the basic material of homology and cohomology theory.
For students who will go on in topology, differential geometry, Lie groups, or
homological algebra, the subject is a prerequisite for later work. For other stu-
dents, it should be part of their general background, along with algebra and real
and complex analysis.

Geometric motivation and applications are stressed throughout. The ab-
stract aspects of the subject are introduced gradually, after the groundwork has
been laid with specific examples.

The book begins with a treatment of the simplicial homology groups, the
most concrete of the homology theories. After a proof of their topological invar-
iance and verification of the Eilenberg-Steenrod axioms, the singular homology
groups are introduced as their natural generalization. CW complexes appear as
a useful computational tool. This basic “core” material is rounded out with a
treatment of cohomology groups and the cohomology ring.

There are two additional chapters. The first deals with homological alge-
bra, including the universal coefficient theorems and the Kiinneth theorem. The
second deals with manifolds—specifically, the duality theorems associated with
the names of Poincaré, Lefschetz, Alexander, and Pontryagin. Cech cohomol-
ogy is introduced to study the last of these.

The book does not treat homotopy theory; to do so would have made it
unwieldy. There is a thorough and readable elementary treatment of the fun-
damental group in Massey’s book [Ma]; for general homotopy theory, the
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reader may consult the excellent treatise by Whitehead, for which the present
text is useful preparation [Wh}.

Prerequisites

We assume the student has some background in both general topology and
algebra. In topology, we assume familiarity with continuous functions and com-
pactness and connectedness in general topological spaces, along with the sepa-
ration axioms up through the Tietze extension theorem for normal spaces. Stu-
dents without this background should be prepared to do some independent
study; any standard book in topology will suffice ([D], [W], [Mu], [K], for
example). Even with this background, the student might not know enough
about quotient spaces for our purposes; therefore, we review this topic when the
need arises (§20 and §37).

As far as algebra is concerned, a course dealing with groups, factor
groups, and homomorphisms, along with basic facts about rings, fields, and
vector spaces, will suffice. No particularly deep theorems will be needed. We
review the basic results as needed, dealing with direct sums and direct prod-
ucts in §5 and proving the fundamental theorem of finitely generated abelian
groups in §11.

How the book is organized

Everyone who teaches a course in algebraic topology has a different opinion
regarding the appropriate choice of topics. I have attempted to organize the
book as flexibly as possible, to enable the instructor to follow his or her own
preferences in this matter. The first six chapters cover the basic “core” material
mentioned earlier. Certain sections marked with asterisks are not part of the
basic core and can thus be omitted or postponed without loss of continuity. The
last two chapters, on homological algebra and duality, respectively, are inde-
pendent of one another; either or both may be covered.

The instructor who wishes to do so can abbreviate the treatment of sim-
plicial homology by omitting Chapter 2. With this approach the topological in-
variance of the simplicial homology groups is proved, not directly via simplicial
approximations as in Chapter 2, but as a consequence of the isomorphism be-
tween simplicial and singular theory (§34).

When the book is used for a two-semester course, one can reasonably
expect to cover it in its entirety. This is the plan I usually follow when I teach
the first-year graduate course at MIT; this allows enough time to treat the
exercises thoroughly. The exercises themselves vary from routine to challeng-
ing. The more difficult ones are marked with asterisks, but none is unreason-
ably hard.

If the book is to be used for a one-semester course, some choices will
have to be made about what material to cover. One possible syllabus consists of
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the first four chapters in their entirety. Another consists of the first five chap-
ters with most or all asterisked sections omitted.
A third possible syllabus, which omits Chapter 2, consists of the

following:

Chapter 1

Chapter 3 (omit §27)

Chapter 4 (insert §15 before §31 and §20 before §37)

Chapters 5 and 6
If time allows, the instructor can include material from Chapter 7 or the first
four sections of Chapter 8. (The later sections of Chapter 8 depend on omitted
material.)

Acknowledgments

Anyone who teaches algebraic topology has had many occasions to refer to
the classic books by Hilton and Wylie [H-W] and by Spanier [S]. I am no
exception; certainly the reader will recognize their influence throughout the
present text. I learned about CW complexes from George Whitehead; the treat-
ment of duality in manifolds is based on lectures by Norman Steenrod. From
my students at MIT, I learned what I know about motivation of definitions,
order of topics, pace of presentation, and suitability of exercises.

To Miss Viola Wiley go my thanks for typing the original set of lecture
notes on which the book is based.

Finally, I recall my debt to my parents, who always encouraged me to
follow my own path, though it led far from where it began. To them, with love
and remembrance, this book is dedicated.

J.RM.
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Homology Groups of a
Simplicial Complex

A fundamental problem of topology is that of determining, for two spaces,
whether or not they are homeomorphic. To show two spaces are homeomorphic,
one needs to construct a continuous bijective map, with continuous inverse,
mapping one space to the other. To show two spaces are not homeomorphic in-
volves showing that such a map does not exist. To do that is often harder. The
usual way of proceeding is to find some topological property (i.e., some property
invariant under homeomorphisms) that is satisfied by one space but not the
other. For example, the closed unit disc in R* cannot be homeomorphic with
the plane R?, because the closed disc is compact and the plane is not. Nor can
the real line R be homeomorphic with R?, because deleting a point from R
leaves a disconnected space remaining, while deleting a point from R* does not.

Such elementary properties do not carry one very far in tackling homeo-
morphism problems. Classifying all compact surfaces up to homeomorphism,
for instance, demands more sophisticated topological invariants than these. So
does the problem of showing that, in general, R” and R™ are not homeomorphic
if n# m.

Algebraic topology originated in the attempts by such mathematicians as
Poincaré and Betti to construct such topological invariants. Poincaré introduced
a certain group, called the fundamental group of a topological space; it is by its
definition a topological invariant. One can show fairly readily that a number
of familiar spaces, such as the sphere, torus, and Klein bottle, have fundamen-
tal groups that are different, so these spaces cannot be homeomorphic ([Mu],
Chapter 8). In fact, one can classify all compact surfaces using the fundamental
group ([Ma), Chapter 4).

Betti, on the other hand, associated with each space a certain sequence of
abelian groups called its homology groups. In this case, it was not at all obvious
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that homeomorphic spaces had isomorphic homology groups, although it was
eventually proved true. These groups can also be used to tackle homeomor-
phism problems; one advantage they possess is that they are often easier to com-
pute than the fundamental group.

We shall begin our discussion of algebraic topology by studying the homol-
ogy groups. Later on, we shall deal with other topological invariants, such as
the cohomology groups and the cohomology ring.

There are several different ways of defining homology groups, all of which
lead to the same results for spaces that are sufficiently “nice.” The two we shall
consider in detail are the simplicial and the singular groups. We begin with the
simplicial homology groups, which came first historically. Both conceptually
and computationally, they are concrete and down-to-earth. They are defined,
however, only for particularly “nice” spaces (polyhedra), and it is hard work to
prove their topological invariance. After that, we shall treat the singular homol-
ogy groups, which were introduced as a generalization of the simplicial groups.
They are defined for arbitrary spaces, and it is immediate from their definition
that they are topological invariants. Furthermore, they are much more conve-
nient for theoretical purposes than the simplicial groups. They are not as read-
ily computable as the simplicial groups, but they agree with the simplicial
homology groups when both are defined.

A third way of defining homology groups for arbitrary spaces is due to
E. Cech. The Cech homology theory is still not completely satisfactory, but

Cech cohomology theory is both important and useful. It will appear near the
end of this book.

SIMPLICES

Before defining simplicial homology groups, we must discuss the class of spaces
for which they are defined, which is the class of all polyhedra. A polyhedron is a
space that can be built from such “building blocks” as line segments, triangles,
tetrahedra, and their higher dimensional analogues, by “gluing them together”
along their faces. In this section, we shall discuss these basic building blocks; in
the next, we shall use them to construct polyhedra.

First we need to study a bit of the analytic geometry of euclidean space.

Given a set {a,, . . . ,a,} of points of R", this set is said to be geometrically
independent if for any (real) scalars ¢;, the equations

;t, =0 and Z;t,.a,. =0

imply that z, = ¢, = - - - =1, = 0. .
It is clear that a one-point set is always geometrically independent. Simple
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algebra shows that in general {a,, . . .,a,} is geometrically independent if and
only if the vectors

a,— Qy,...,a, — Q

are linearly independent in the sense of ordinary linear algebra. Thus two dis-
tinct points in R” form a geometrically independent set, as do three non-collinear
points, four non-coplanar points, and so on.

Given a geometrically independent set of points {g,, . . . ,a,}, we define the
n-plane P spanned by these points to consist of all points x of R" such that

n
X = Z tiaia

for some scalars t; with 2t;, = 1. Since the g; are geometrically independent, the
t; are uniquely determined by x. Note that each point g; belongs to the plane P.
The plane P can also be described as the set of all points x such that

X = a,+ Z‘i(ai - a,)

i=1

for some scalars ¢,, . . . ,t,; in this form we speak of P as the “plane through a,
parallel to the vectors a; — a,.”

It is elementary to check that if {a,, . ..,a,} is geometrically independent,
and if w lies outside the plane that these points span, then {w,a,, . . . ,a,} is geo-
metrically independent.

An affine transformation T of R" is a2 map that is a composition of transla-
tions (i.e., maps of the form T(x) = x + p for fixed p), and non-singular linear
transformations. If T is an affine transformation, it is immediate from the defi-
nitions that T preserves geometrically independent sets, and that T carries the
plane P spanned by aq,, . . . ,a, onto the plane spanned by Ta,, ... ,7a,.

Now the translation T(x) = x — g, carries. P onto the vector subspace
of R" having a, — q,, .. .,a, — a, as a basis; if we follow T by a linear trans-
formation of R" carrying a, — a,, . . . ,a, — a, to the first » unit basis vectors
&, . . - €, in RY, we obtain an affine transformation S of R" such that S(q,) =
0 and S(g;) = ¢; for i > 0. The map S carries P onto the plane R" X 0 of the

first n coordinates in R"; it is thus clear why we call P a “plane of dimension
n” in RV

Definition. Let {a,, . ..,a,} be a geometrically independent set in RY. We

define the n-simplex ¢ spanned by aq,, . . . ,a, to be the set of all points x of R¥
such that

n n
X = 2 t;a;, where 2 t,=1

i=0 i=0
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and ;= 0 for all i. The numbers ¢#; are uniquely determined by x; they are
called the barycentric coordinates of the point x of o with respect to a,, . . . ,a,.

Example 1. In low dimensions, one can picture a simplex easily. A O-simplex

is a point, of course. The 1-simplex spanned by g, and a, consists of all points of
the form

x=1a,+ (1 — a,

with 0 = 7 =< 1; this just the line segment joining g, and a,. Similarly, the 2-simplex
o spanned by a,, a,, a, equals the triangle having these three points as vertices. This
can be seen most easily as follows: Assume x # a,. Then

2

x = 48;=ta + (I — W)1/Na, + G/ a)

i=0

where A = 1 — ¢,. The expression in brackets represents a point p of the line seg-
ment joining a, and a,, since (7, + ,)/A =1 and ;/A = 0 for i = 1,2.

Thus x is a point of the line segment joining a, and p. See Figure 1.1. Con-
versely, any point of such a line segment is in ¢, as you can check. It follows that ¢

equals the union of all line segments joining a, to points of a,a,; that is, ¢ is a
triangle.

A similar proof shows that a 3-simplex is a tetrahedron.

a3

Figure 1.1

Let us list some basic properties of simplices. The proofs are elementary
and are largely left as exercises.

Throughout, let P be the n-plane determined by the points of the geometri-
cally independent set {a,, - . . ,4,}, and let ¢ be the n-simplex spanned by these
points. If x € o, let {#,(x)} be the barycentric coordinates of x; they are deter-
mined uniquely by the conditions

X = Zt,-a; and ;t,-= 1.

i=0

The following properties hold:
(1) The barycentric coordinates t,(x) of x with respect to a,, . .. ,a, are
continuous functions of x.
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(2) o equals the union of all line segments joining a, to points of the sim-
plex s spanned by a,,...,a, Two such line segments intersect only in the
point a,.

Recall now that a subset 4 of R" is said to be convex if for each pair x,y of
points of A, the line segment joining them lies in A.

(3) o is a compact, convex set in R, which equals the intersection of all
convex sets in RN containing a,, . . . ,a,.

(4) Given a simplex o, there is one and only one geometrically indepen-
dent set of points spanning o.

The points a,, . . . ,a, that span ¢ are called the vertices of o; the number n is
called the dimension of ¢. Any simplex spanned by a subset of {a,,....a,} is
called 2 face of ¢. In particular, the face of ¢ spanned by a,, . . . ,a,is called the
face opposite a,. The faces of ¢ different from ¢ itself are called the proper faces
of o; their union is called the boundary of ¢ and denoted Bd ¢. The interior of ¢
is defined by the equation Int ¢ = ¢ — Bd o; the set Int ¢ is sometimes called
an open simplex.

Since Bd o consists of all points x of ¢ such that at least one of the bary-
centric coordinates #;(x) is zero, Int ¢ consists of those points of ¢ for which
t;(x) > O for all i. It follows that, given x € o, there is exactly one face s of ¢
such that x € Ints, for s must be the face of ¢ spanned by those g; for which
t;(x) is positive.

(5) Into is convex and is open in the plane P; its closure is o. Further-
more, Int ¢ equals the union of all open line segments joining a, to points of
Ints, where s is the face of ¢ opposite a,.

Let us recall here some standard notation. If xisinR"”and x = (x,, ... ,x,),
then the norm of x is defined by the equation

el = [ z (x,.)z] }

i=1

The unit n-ball B" is the set of all points x of R” for which x| < 1, and the unit
sphere S” ~ !is the set of points for which x| = 1. The upper hemisphere E~,~
of §” = ! consists of all points x of $” ~ ! for which x, = 0; while the lower hemi-
sphere E~ "' consists of those points for which x, =< 0.

With these definitions, B® is a2 one-point space, B' equals the interval
[—1,1], and S°is the two-point space {—1,1}. The 2-ball B? is the unit disc in R?
centered at the origin; and S* is the unit circle.

(6) There is a homeomorphism of o with the unit ball B" that carries Bd ¢
onto the unit sphere S” "~ '.

We leave properties (1)-(5) as exercises, and prove (6). In fact, we shall
prove a stronger result, which will be useful to us later.

Recall that if w € R”, 2 ray & emanating from w is the set of all points of

the form w + ¢p, where p is a fixed point of R* — 0 and 7 ranges over the non-
negative reals.
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Lemma 1.1. Let U be a bounded, convex, open set in R"; let w € U.

(a) Each ray emanating from w intersects BAU = U — U in precisely
one point.

(b) There is a homeomorphism of U with B" carrying B4 U onto "~ '.
Proof. (a) Given a ray R emanating from w, its intersection with U is

convex, bounded, and open in . Hence it consists of all points of the form

w + tp, where 1 ranges over a half-open interval [0,z). Then R intersects
U — U in the point x = w + ap.

Suppose R intersects U — U in another point, say y. Then x lies between w
and y on the ray R. Indeed, since y = w + bp for some b > g, we have

x=(10=-dw+ 1y,

where ¢t = a/b. We rewrite this equation in the form
w=(x—1ty)/(1—1).

Then we choose a sequence y, of points of U converging to y, and we define
w, = (x —1y,)/(1 —1).

See Figure 1.2. The sequence w, converges to w, so that w, € U for some n. But

then since x = 1w, + (1 — ?)y,, the point x belongs to U, because U is convex.
This fact contradicts our choice of x.

Figure 1.2

(b) Assume w = 0 for convenience. The equation f(x) = x/|lx| defines a
continuous map fof R* — 0 onto S” ~ . By (a), f restricts to a bijection of Bd U
with S"~'. Since Bd U is compact, this restriction is a homeomorphism;
let g: S"~ ! — Bd U be its inverse. Extend g to a bijection G : B" — U by letting
G map the line segment joining 0 to the point u of "~ ' linearly onto the line
segment joining 0 to g(u). Formally, we define

lg(x/lIxhlix  if x = o,
G(")={o if x = 0.

Continuity of G for x # 0 is immediate. Continuity at 0 is easy: If M is a bound
for lg(x)ll, then whenever llx — 0] < 5, we have |G(x) — GO <Ms. O
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EXERCISES

1. Verify properties (1)-(3) of simplices. [Hint: If T is the affine transformation
carrying a, to 0 and g; to ¢;, then T carries the point

L

X = Zt‘a.

{had

i=0

to the point (¢,,. .. ,2,,0,...,0).]

~
H

Verify property (4) as follows:

(2) Show that if x € ¢ and x # aq,,...,a,, then x lies in some open line seg-
ment contained in ¢. (Assume n > Q.)

(b) Show that g, lies in no open line segment contained in g, by showing that if
G =tx+ (1 —)y,wherexyeocand 0 <1<}, thenx =y = a,.

3. Verify property (5).

4. Generalize property (2) as follows: Let s be spanned by a,, . . . .a,. Let s be the
face of o spanned by a,, . . . ,a, (where p < n); and let 7 be the fgce spanned by
@, 415 -« -4, Then 2 is called the face of o opposize s. )
(a) Show that o is the union of all line segments joining points of s to points of
2, and two of these line segments intersect in at most a common end point.
(b) Show that Int o is the union of all open line segments joining points of Int s
to points of Int z.

5. Let U be a bounded open set in R". Suppose U is star-convex relative to the
origin; this means that for each x in U, the line segment from 0 to x lies in U.
(2) Show that a ray from 0 may intersect Bd U in more than one point.

*(b) Show by example that U need not be homeomorphic to B".

§2. SIMPLICIAL COMPLEXES AND SIMPLICIAL MAPS

Complexes in RY

Definition. A simplicial complex K in R" is a collection of simplices in R¥
such that:

(1) Every face of a simplex of K is in K.

(2) The intersection of any two simplexes of X is a face of each of them.
Example 1. The collection K, pictured in Figure 2.1, consisting of 2 2-simplex and
its faces, is a simplicial complex. The collection K, consisting of two 2-simplices

with an edge in common, along with their faces, is a simplicial complex; while the
collection X is not. What about K,?

The following lemma is sometimes useful in verifying that a collection of
simplices is a simplicial complex:
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K
¢ X, 2
i: K
Figure 2.1

Lemma 2.1. A collection K of simplices is a simplicial complex if and
only if the following hold:

(1) Every face of a simplex of K is in K.
(2') Every pair of distinct simplices of. K have disjoint interiors.

Proof. First, assume K is a simplicial complex. Given two simplices & and
7 of K, we show that if their interiors have a point x in common, thene = 7. Let
s = ¢ N 7. If s were a proper face of s, then x would belong to Bd s, which it
does not. Therefore, s = ¢. A similar argument shows that s = 7.

To prove the converse, assume (1) and (2'). We show that if the set ¢ N 7
is nonempty, then it equals the face ¢’ of & that is spanned by those vertices
by, . . . b, of o that lie in 7. First, ¢’ is contained in o N 7 because ¢ N 7 is con-
vex and contains b,, . .. ,b,. To prove the reverse inclusion, suppose x € ¢ N 7.
Then x € Ints N Int ¢, for some face s of o and some face ¢ of 7. It follows
from (2') that s = #; hence the vertices of s lie in 7, so that by definition they
are elements of the set {b,, ... ,b,}. Then s is a face of o', so that x € ¢, as
desired. O

It follows from this lemma that if o is a simplex, then the collection consist-
ing of & and its proper faces is a simplicial complex: Condition (1) is immediate;
and condition (2') holds because for each point x € o, there is exactly one face s
of o such that x € Int s.

Definition. If L is a subcollection of K that contains all faces of its ele-
ments, then L is a simplicial complex in its own right; it is called a subcomplex
of K. One subcomplex of K is the collection of all simplices of X of dimension at
most p; it is called the p-skeleton of X and is denoted K. The points of the col-
lection K are called the vertices of K.

Definition. Let |K| be the subset of R” that is the union of the simplices of
K. Giving each simplex its natural topology as a subspace of R", we then topolo-
gize |K| by declaring a subset 4 of |K] to be closed in |K| if and only if 4 N o is
closed in o, for each o in K. It is easy to see that this defines a topology on |X|,
for this collection of sets is closed under finite unions and arbitrary intersec-
tions. The space |K| is called the underlying space of K, or the polytope of K.

A space that is the polytope of a simplicial complex will be called a pely-
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hedron. (We note that some topologists reserve this term for the polytope of a
finite simplicial complex.)

In general, the topology of |K| is finer (larger) than the topology |K/| inher-
its as a subspace of R™: If 4 is closed in |K| in the subspace topology, then
A = B N |K]| for some closed set B in R". Then B N ¢ is closed in ¢ for each o,
so B N |K| = A is closed in the topology of |K|, by definition.

The two topologies are different in general. (See Examples 2 and 3.) How-
ever, if K is finite, they are the same. For suppose K is finite and A is closed in
IK]. Then A N o is closed in o and hence closed in R". Because A4 is the union of
finitely many sets 4 N o, the set A4 also is closed in R".

Example 2. Let K be the collection of all 1-simplices in R of the form [m, m + 1],
where m is an integer different from O, along with all simplices of the form
[1/(n + 1), 1/n) for n a positive integer, along with all faces of these simplices.
Then X is a complex whose underlying space equals R as a ser but not as a topologi-
cal space. For instance, the set of points of the form 1/n is closed in |X] but not in R.

Example 3. Let K be the collection of 1-simplices o,,0,, ...2and their vertices,
where ¢, is the 1-simplex in R? having vertices 0 and (1,1/i). See Figure 2.2. Then
K is a simplicial complex. The intersection of |K| with the open parabolic arc
{(x,x*) | x > 0} is closed in |K|, because its intersection with each simplex o, is a
single point. It is not closed in the topology |K| derives from R?, however, because in
that topology it has the origin as a limit point.

Figure 2.2

We prove some elementary topological properties of polyhedra.

Lemma 2.2. If L is a subcomplex of K, then |L| is a closed subspace of
IK\. In particular, if o € K, then o is a closed subspace of |K|.

Proof. Suppose A is closed in |L|. If o is a simplex of K, then ¢ N |L} is the
union of those faces s; of o that belong to L. Since A is closed in L], the set
A N s;is closed in s; and hence closed in o. Since 4 N ¢ is the finite union of
the sets 4 N s,, it is closed in ¢. We conclude that A is closed in |K|.

Conversely, if B is closed in |K|, then B N ¢ is closed in ¢ for each ¢ € K,
and in particular for each o € L. Hence B N |L] is closed in |Z]. O

Lemma 2.3. A map f: |K| — X is continuous if and only if fl ¢ is con-
tinuous for each o € K.
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Proof. If fis continuous, so is f] o since o is a subspace of K. Conversely,
suppose each map f| ¢ is continuous. If C is a closed set of X, then f~*(C) N
o = (fl ¢)71(C), which is closed in ¢ by continuity of f|s. Thus f~'(C) is
closed in |K| by definition. O

Definition. If X is a space and if @ is a collection of subspaces of X whose
union is X, the topology of X is said to be coherent with the collection @, pro-
vided a set 4 is closed in X if and only if 4 N Cisclosed in C for each C € @. It

is equivalent to require that U be open in X if and only if U N Cis open in C for
each C.

In particular, the topology of |K| is coherent with the collection of sub-
spaces o, for o € K.

The analogue of Lemma 2.3 holds for coherent topologies in general; 2 map
f:X— Yis continuous if and only if f| C is continuous for each C € @.

Definition. If x is a point of the polyhedron |K|, then x is interior to pre-
cisely one simplex of K, whose vertices are (say) a,, - - - ,a,. Then

n
x = Etiai’
i=0

where 7, > O for each i and Z¢, = 1. If v is an arbitrary vertex of K, we define
the barycentric coordinate 7,(x) of x with respect to v by setting ¢,(x) = 0if v
is not one of the vertices a;, and 7,(x) = t;if v = a;.

For fixed v, the function t,(x) is continuous when restricted to a fixed
simplex o of K, since either it is identically zero on ¢ or equals the barycentric
coordinate of x with respect to the vertex v of ¢ in the sense formerly defined.
Therefore, z,(x) is continuous on |K|, by Lemma 2.3.

Lemma 24. |K| is Hausdorff.

Proof. Given x, # x,, there is at least one vertex v such that ¢,(x,) #
1,(x,). Choose r between these two numbers; then the sets {x | #,(x) < r} and
{x|2,(x) > r} are the required disjoint open sets. O

Lemma 2.5. If K is finite, then |K| is compact. Conversely, if a subset A
of K| is compact, then A C |K,| for some finite subcomplex K, of K.

Proof. If K is finite, then |K| is a finite union of compact subspaces o, and
hence is compact. Now suppose 4 is compact and 4 does not lie in the polytope
of any finite subcomplex of K. Choose a point x;, € 4 N Int s whenever this set
is nonempty. Then the set B = {x.} is infinite. Furthermore, every subset of B is
closed, since its intersection with any simplex o is finite. Being closed and dis-
crete, B has no limit point, contrary to the fact that every infinite subset of a
compact space has a limit point. [1
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Three particular subspaces of |K| are often useful when studying local
properties of |K|. We mention them here:

Definition. If v is a vertex of K, the star of v in K, denoted by St v, or
sometimes by St(v,K), is the union of the interiors of those simplices of K that
have v as a vertex. Its closure, denoted St v, is called the closed star of v in X. It
is the union of all simplices of K having v as a vertex, and is the polytope of a
subcomplex of K. The set St v — St v is called the link of v in K and is denoted
Lk v. See Figure 2.3.

Lk
J N vy

\— Lk v,

Yo

—\(Lk vy

Figure 2.3

The set St v is open in K|, since it consists of all points x of |K} such that
t.(x) > 0. Its complement is the union of all simplices of K that do not have v
as a vertex; it is thus the polytope of a subcomplex of K. The set Lk v is also the
polytope of a subcomplex of K; it is the intersection of St v and the complement
of St u. The sets St v and St v are easily seen to be path connected; the set Lk v
need not be connected, however.

Definition. A simplicial complex X is said to be locally finite if each ver-
tex of X belongs only to finitely many simplices of K. Said differently, a com-

plex K is locally finite if and only if each closed star St v is the polytope of a fi-
nite subcomplex of K.

Lemma 2.6. The complex K is locally finite if and only if the space |K| is
locally compact.

Proof. Suppose K is locally finite. Given x € |K], it lies in St v for some
vertex v of K. Since St v is a compact set, |K/ is locally compact. We leave the

converse as an exercise. [
Simplicial maps

Now we introduce the notion of a “simplicial map” of one complex into
another.

11
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Lemma 2.7. Let K and L be complexes, and let f : K® — ['® be a map.
Suppose that whenever the vertices v,, . . . ,v, of K span a simplex of K, the

points f(V), . .., f(v,) are vertices of a simplex of L. Then f can be extended
to a continuous map g : |K| — |L| such that

x = Z b o= g0 = 6f().
i=0

i=0

We call g the (linear) simplicial map induced by the vertex map f.

Proof. Note that although the vertices f(v,), - . .,f(v,) of L are not nec-
essarily distinct, still they span a simplex 7 of L, by hypothesis. When we “col-
lect terms” in the expression for g(x), it is still true that the coefficients are
non-negative and their sum is 1; thus g(x) is a point of 7. Hence g maps the
n-simplex o spanned by v,, . ..,v, continuously to the simplex 7 whose vertex
setis {f(v,),...,f(w)}

The map g is continuous as a map of ¢ into 7, and hence as a map of ¢ into
|L]. Then by Lemma 2.3, g is continuous as a map of |K| into [Z]. O

We remark that the composite of simplicial maps is simplicial: Suppose
g:1K|—|Ll and & :|L| — [M| are simplicial maps. By definition, if x = = z,v;
(where the v; are distinct vertices of ¢ € K), then g(x) = Z1,2(v)).

Now this same formula would hold even if the v; were not distinct, so long
as {v,, . . . ,u,} is the vertex set of a simplex of K. For example, suppose

X = Lv;,

where ¢, = 0 for all i and Z1; = 1; and suppose that v, = v, and the vertices
v,,...,0, are distinct. Write

X=(l+ L)+ o, + - - - + 1,0,
then by definition
glx) = @t + 1) g(,) + tzg(vz) + - +2,2(0)

Applying this remark to the present case, we note that even though the vertices
g(,), - . . ,g(v,) of L are not necessarily distinct, the following formula holds:

h(g(x)) = h(Z1,g(v))) = Zt:h(g(v))-

Therefore k o g is a simplicial map, as claimed.

Lemma 2.8. Suppose f:K®— L% is a bijective correspondence such
that the vertices v,,...,v, of K span a simplex of K if and only if
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f@,), ...,.f(v,) span a simplex of L. Then the induced simplicial map
g :|K| — |L| is a homeomorphism.

The map g is called a simplicial homeomorphism, or an isomorphism, of X
with L.

Proof. Each simplex ¢ of K is mapped by g onto a simplex 7 of L of the
same dimension as ¢. We need only show that the linear map & : 7 — o induced
by the vertex correspondence f ! is the inverse of the map g:¢ — 7. And for
that we note that if x = Zt,v;, then g(x) = Z¢, f(v;) by definition; whence

h(g(x)) = h(Ct, f(v)) = Zt. ' (f (v:))

= zt;l),' = X. D

Corollary 2.9. Let A" denote the complex consisting of an N-simplex and
its faces. If K is a finite complex, then K is isomorphic to a subcomplex of AY
for some N.

Proof. Let v, ...,uy be the vertices of K. Choose a,, .. .,a, to be geo-
metrically independent points in R, and let A" consist of the N-simplex they
span, along with its faces. The vertex map f(v;) = a; induces an isomorphism
of K with a subcomplex of A¥. O

General simplicial complexes

Our insistence that a simplicial complex K must lie in R" for some N puts a
limitation on the cardinality of K and on the dimension of the simplices of K.
We now remove these restrictions.

Let J be an arbitrary index set, and let R’ denote the J-fold product of R
with itself. An element of R’ is a function from J to R, ordinarily denoted in
“tuple notation” by (x,). . ;- The product R’ is of course a vector space with the
usual component-wise addition and multiplication by scalars.

Let E’ denote the subset of R’ consisting of all points (x,), ., such that
x, = O for all but finitely many values of . Then E’ is also a vector space under
component-wise addition and multiplication of scalars. If ¢_ is the map of J into
R whose value is 1 on the index o and 0 on all other elements of J, then the set
le, | @ € J} is a basis for E’. (It is not, of course, a basis for R’.)

We call E’ generalized euclidean space and topologize it by the metric

lx - J’I = max {lxc - yal}cel‘

Everything we have done for complexes in R" generalizes to complexes in
E’. The space E’ is the union of certain of its finite-dimensional subspaces—
namely, the subspaces spanned by finite subsets of the basis {¢, |« € J}. Each
such subspace is just a copy of R" for some N. Any finite set {a,,...,a,} of
points of E’ lies in such a subspace; if they are independent, the simplex they
span lies in the same subspace. Furthermore, the metric for E’ gives the usual

13
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topology of each such subspace. Therefore, any finite collection of simplices in
E’ lies in a copy of R" for some N. All that we are really doing is to allow
ourselves to deal with complexes for which the total collection of simplices
cannot be fitted entirely into any one R". Conceptually it may seem more com-
plicated to work in E’ than in R, but in practice it causes no difficulty at all.

We leave it to you to check that our results hold for complexes in E/. We
shall use these results freely henceforth.

Let us make one further comment. If X is a complex in R", then each
simplex of K has dimension at most N. On the other hand, if K is a complex in
E’, there need be no upper bound on the dimensions of the simplices of K. We
define the dimension of K, denoted dim K, to be the largest dimension of a
simplex of K, if such exists; otherwise, we say that K has infinite dimension.

EXERCISES

1. Let K be a simplicial complex; let ¢ € K. When is Int ¢ open in |[K|? When is ¢
open in |K|?

2. Show that in general, St v and St v are path connected.

3. (a) Show directly that the polyhedron of Example 3 is not locally compact.
(b) Show that, in general, if a complex K is not locally finite, then the space |K]|
is not locally compact.

4. Show that the polyhedron of Example 3 is not metrizable. [Hint: Show that
first countability axiom fails.]

5. If g: |K| — |L| is a simplicial map carrying the vertices of ¢ onto the vertices of
7, show that g maps some face of ¢ homeomorphically onto 7.

6

Check that the proofs of Lemmas 2.1-2.8 apply without change to complexes in
E’, if one simply replaces R" by E’ throughout.

7. Let K be a complex. Show that |K| is metrizable if and only if X is locally finite.
[Hint: The function

d(x,y) = lubz,(x) — 2,(»)|

is 2 metric for the topology of each finite subcomplex of K.]

8. Let K be a complex. Show that |K| is normal. [Hint: If A is closed in |K| and
if £:4—1[0,1) is continuous, extend f step-by-step to 4 U |[K|, using the
Tietze theorem.)

9. Let K be a2 complex in R”. Show that |K] is a subspace of R" if and only if each

point x of |K| lies in an open set of R" that intersects only finitely many sim-
plices of K. Generalize to E’.

10. Show that the collection of all simplices in R of the form [1/(n + 1), 1/n] for n
a positive integer, along with their vertices, is a complex whose polytope is the
subspace (0,1] of R.
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§3. ABSTRACT SIMPLICIAL COMPLEXES

In practice, specifying a polyhedron X by giving a collection of simplices whose
union is X is not a very convenient way of dealing with specific polyhedra. One
quickly gets immersed in details of analytic geometry; it is messy to specify all
the simplices and to make sure they intersect only when they should. It is much
easier to specify X by means of an “abstract simplicial complex,” a notion we
now introduce.

Definition. An abstract simplicial complex is a collection § of finite non-
empty sets, such that if 4 is an element of &, so is every nonempty subset of A.

The element A4 of § is called a simplex of §; its dimensionr is one less than
the number of its elements. Each nonempty subset of A is called a face of A.
The dimension of § is the largest dimension of one of its simplices, or is infinite
if there is no such largest dimension. The vertex set ¥ of & is the union of the
one-point elements of §; we shall make no distinction between the vertex v € V
and the 0-simplex {v} € §. A subcollection of § that is itself a complex is called
a subcomplex of §.

Two abstract complexes § and T are said to be isomorphic if there is a
bijective correspondence f mapping the vertex set of § to the vertex set of T
such that {a,, . ..,a,} € & if and only if {f(a,),. . .,f(a,)} € T.

Definition. If X is a simplicial complex, let ¥ be the vertex set of K. Let #
be the collection of all subsets {a,, . ..,a,} of ¥ such that the vertices a,, . .. ,aq,
span a simplex of K. The collection ¥ is called the vertex scheme of K.

The collection # is a particular example of an abstract simplicial complex.
It is in fact the crucial example, as the following theorem shows:

Theorem 3.1. (2) Every abstract complex § is isomorphic to the vertex
scheme of some simplicial complex K.

(b) Two simplicial complexes are linearly isomorphic if and only if their
vertex schemes are isomorphic as abstract simplicial complexes.

Proof. Part (b) follows at once from Lemma 2.8. To prove (a), we pro-
ceed as follows: Given an index set J, let A’ be the collection of all simplices in
E’ spanned by finite subsets of the standard basis {¢,} for E’. It is easy to see
that A’ is a simplicial complex; if ¢ and 7 are two simplices of A’, then their
combined vertex set is geometrically independent and spans a simplex of A’. We
shall call A’ an “infinite-dimensional simplex.”

Now let § be an abstract complex with vertex set V. Choose an index set
J large enough that there is an injective function f: V= {¢,}..,. (Let J = V' if
you wish.) We specify a subcomplex K of A’ by the condition that for each
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(abstract) simplex {ay,...,a,} € &, the (geometric) simplex spanned by
f(ay), .. .,f(a,)is tobein K. It is immediate that X is a simplicial complex and
& is isomorphic to the vertex scheme of K; f is the required correspondence
between their vertex sets. [

Definition. If the abstract simplicial complex § is isomorphic with the
vertex scheme of the simplicial complex K, we call X a geometric realization of
&. It is uniquely determined up to a linear isomorphism.

Let us illustrate how abstract complexes can be used to specify particular
simplicial complexes.

Example 1. Suppose we wish to indicate a simplicial complex K whose underlying
space is homeomorphic to the cylinder S* X I. (Here I denotes the closed unit
interval [0,1].) One way of doing so is to draw the picture in Figure 3.1, which
specifies KX as a collection consisting of six 2-simplices and their faces. Another way
of picturing this same complex K is to draw the diagram in Figure 3.2. This dia-
gram consists of two things: first, a complex L whose underlying space is a rectan-
gle, and second, a particular labelling of the vertices of L (some vertices being given
the same label). We shall consider this diagram to be a short-hand way of denoting
the abstract complex & whose vertex set consists of the letters a, b, ¢, d, e, and f, and
whose simplices are the sets {a, £, d}, {a, b, d}, {b, c, d}, {c, d, e}, la, c, €}, {a, e, £},
along with their nonempty subsets. Of course, this abstract complex is isomorphic to
the vertex scheme of the complex K pictured earlier, so it specifies precisely the

same complex (up to linear isomorphism). That is, the complex K of Figure 3.1is a
geometric realization of §.

a Figure 3.2

Figure 3.1

Let f: L'®— K be the map that assigns to each vertex of L the correspond-
ingly labelled vertex of K. Then f extends to a simplicial map g : |L| — |K|. Because
the spaces are compact Hausdorff, g is a quotient map, or “pasting map.” It identi-
fies the right edge of |L| linearly with the left edge of |L|. And of course this is the
usval way one forms a cylinder from a rectangular piece of paper—one bends it
around and pastes the right edge to the left edge!

Example 2. Now suppose we begin with a complex L and a labelling of its vertices.
Consider for instance the same complex L with a different labelling of the vertices,
as in Figure 3.3. Just as before, this diagram indicates a certain abstract complex &,
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Figure 3.3
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L
K

whose simplices one can list. Let X be a geometric realization of §. As before, the
vertices of X correspond to the letters a, ..., f; we consider the linear simplicial
map g: |L} — |K| that assigns to each vertex of L the correspondingly labelled ver-
tex of K. Again, g is a quotient map; in this case it identifies the left edge of |L| lin-
early with the right edge of |L|, but with a twist. The space |K| is the one we call the
Mobius band; it can be pictured in R® as the familiar space indicated in Figure 3.3.

Example 3. The torus is often defined as the quotient space obtained from a rect-
angle by making the identifications pictured in Figure 3.4. If we wish to construct a
complex whose underlying space is homeomorphic to the torus, we can thus obtain
it by using the diagram in Figure 3.5. You can check that the resulting quotient
map of L onto the geometric realization of this diagram carries out precisely the
identifications needed to form the torus.

BY

L)~ (=

A
> A
y YB —» B()
A
Figure 3.4

Example 4. Some care is required in general to make sure that the quotient map
g does not carry out more identifications than one wishes. For instance, you may
think that the diagram in Figure 3.6 determines the torus, but it does not. The
quotient map in this case does more than paste opposite edges together, as you will
see if you examine the diagram more closely.

Figure 3.5

a b ¢ a
e 7

d d

a b c a

Figure 3.6
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a b c a
4
d L e
4 h d
! j
a b 4 a
Figure 3.7

Exanfple 5. T-he diagram in Figure 3.7 indicates an abstract complex whose un-
derlying space is f:alled the Klein bottle. It is the quotient space obtained from the
rectangle by pasting the edges together as indicated in Figure 3.8. The resulting

space cannot be imbedded in R®, but one can picture it in R® by letting it “pass
through itself.”

N \\
BY AB —> B{,} BO —_— B

Figure 3.8

We now describe more carefully the process indicated in preceding exam-
ples: Given a finite complex L, a labelling of the vertices of L is a surjective
function f mapping the vertex set of L to a set (called the set of labels). Corre-
sponding to this labelling is an abstract complex & whose vertices are the labels
and whose simplices consist of all sets of the form {f(v,), . . .,f(v,)}, where
Uss - - - sU, Span a simplex of L. Let K be a geometric realization of &. Then the
vertex map of L onto K*¥ derived from f extends to a surjective simplicial map
g :|Ll — |K|. We say that X is the complex derived from the labelled complex L,
and we call g the associated pasting map.

Because || is compact and |K| is Hausdorff, g maps closed sets to closed
sets; thus g is a closed quotient map. Of course, g can in general map a simplex
of L onto a simplex of K of lower dimension. For instance, g might collapse all
of L to a single point. We are more interested in cases where this does not occur.
We are particularly interested in situations similar to those of the preceding
examples. We now state a lemma giving conditions under which the general
“pasting map” g behaves like those in our examples. First, we need a definition.

Definition. If L is 2 complex, a subcomplex L, of L is said to be a full sub-
complex of L provided each simplex of L whose vertices belong to L, belongs to
L, itself.
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For example, the boundary of the rectangle L pictured in Figure 3.5 is a full
subcomplex of L, but the boundary of the rectangle pictured in Figure 3.6 is not.

Lemma 3.2. Let L be a complex; let f be a labelling of its vertices; let
g:|Ll = |K| be the associated pasting map. Let L, be a full subcomplex of L.
Suppose that whenever v and w are vertices of L having the same label:

(1) v and w belong to L,.
(2) Stv and St w are disjoint.

Then dim g(o) = dim ¢ for all o € L. Furthermore, if g(s,) = g(0,), then o,
and ¢, must be disjoint simplices belonging to L,.

The proof is easy and is left as an exercise. In the usual applications of this
lemma, |L] is a polyhedral region in the plane or R, and |L,| is the boundary of
the region.

EXERCISES

1. The projective plane P? is defined as the space obtained from the 2-sphere S* by
identifying x with —x for each x € S*.
(2) Show P?is homeomorphic with the space obtained from B? by identifying x
with —x for each x ¢ S".
(b) Show that the labelled complex L of Figure 3.9 determines a complex K
whose space is homeomorphic to P>

a b c d
L
g h
f e
i
e
] k 7
d c b a
Figure 3.9

(c) Describe the space determined by the labelled complex of Figure 3.10.

a b [4 d
g h
f e
i
e ; < f
d c b a

Figure 3.10

19



20 Homology Groups of a Simplicial Complex Chapter 1

a C b a 4 b

b d a b d a
Figure 3.11 Figure 3.12

a b c a b C a

e e f
d d d d

c b a a b c a

Figure 3.13 Figure 3.14

2. Describe the spaces determined by the labelled complexes in Figures 3.11-3.14.
3. Prove Lemma 3.2.

4. Let S be a set with a partial order relation <. A standard technique in com-
binatorics is to associate with S the abstract complex § whose vertices are the
elements of S and whose simplices are the finite simply-ordered subsets of S.

Suppose one is given the partial order on {a,, . . . ,a,} generated by the following
relations:

a,=a,=a;, = a, a, =a, < a,;
a, =< g, < ay; a, =< a,.

Describe a geometric realization of &.

§4. REVIEW OF ABELIAN GROUPS

In this section, we review some results from algebra that we shall be using—
specifically, facts about abelian groups.

We write abelian groups additively. Then O denotes the neutral element,
and —g denotes the additive inverse of g. If n is a positive integer, then ng
denotes the n-fold sum g + - - - 4 g, and (—n)g denotes n(—g).

We denote the group of integers by Z, the rationals by Q, and the complex
numbers by C.

Homomorphisms

If f: G — H is a homomorphism, the kernel of fis the subgroup f ~'(0) of
G, the image of fis the subgroup f(G) of H, and the cokernel of f'is the quotient
group H/f(G). We denote these groups by ker f and im f and cok f, respec-
tively. The map fis a monomorphism if and only if the kernel of f vanishes (i.e.,
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equals the trivial group). And f is an epimorphism if and only if the cokernel of
f vanishes; in this case, f induces an isomorphism G/ker f = H.

Free abelian groups

An abelian group G is free if it has a basis—that is, if there is a family
lg.). s of elements of G such that each g € G can be written uniquely as a
finite sum

g = 2n,g,,

with »,_ an integer. Uniqueness implies that each element g, has infinite order;
that is, g, generates an infinite cyclic subgroup of G.

More generally, if each g € G can be written as a finite sum g = Zn,g,,
but not necessarily uniquely, then we say that the family {g,} generates G. In
particular, if the set {g_} is finite, we say that G is finitely generated.

If G is free and has a basis consisting of # elements, say g,, . . . ,g,, then it is
easy to see that every basis for G consists of precisely n elements. For the group
G/2G consists of all cosets of the form

(Ze¢g) + 26,

where ¢; = 0 or 1; this fact implies that the group G/2G consists of precisely 2*
elements. The number of elements in a basis for G is called the rank of G.

It is true more generally that if G has an infinite basis, any two bases for G
have the same cardinality. We shall not use this fact.

A crucial property of free abelian groups is the following: If G has a basis
{g.}, then any function f from the set {g,} to an abelian group H extends
uniquely to a homomorphism of G into H.

One specific way of constructing free abelian groups is the following: Given
a set S, we define the free abelian group G generated by S to be the set of all
functions ¢ : S — Z such that ¢(x) # 0 for only finitely many values of x; we
add two such functions by adding their values. Given x € S, there is a charac-
teristic function ¢, for x, defined by setting

_Jjo if y # x,
¢:() _{l if y=x

The functions {¢, | x € S} form a basis for G, for each function ¢ € G can be
written uniquely as a finite sum

¢ =2n.¢,

where n, = ¢(x) and the summation extends over all x for which ¢(x) # 0.
We often abuse notation and identify the element x € S with its characteristic
function ¢,. With this notation, the general element of G can be written uniquely
as a finite “formal linear combination”

¢ = Zn,x,

of the elements of the set S.
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If G is an abelian group, an element g of G has finite order if ng = 0 for
some positive integer n. The set of all elements of finite order in G is a subgroup
T of G, called the torsion subgroup. If T vanishes, we say G is torsion-free. A
free abelian group is necessarily torsion-free, but not conversely.

If T consists of only finitely many elements, then the number of elements in
T is called the order of T. If T has finite order, then each element of T has finite
order; but not conversely.

Internal direct sums

Suppose G is an abelian group, and suppose {G,}, . , is a collection of sub-
groups of G, indexed bijectively by some index set J. Suppose that each g in G
can be written uniquely as a finite sum g = Zg,, where g, € G, for each a.
Then G is said to be the internal direct sum of the groups G, and we write

G = @chGa'

If the collection {G,} is finite, say {G.} = {G,, .. . ,G,}, we also write this direct
sum in the form G =G, & - - - ©G,.

If each g in G can be written as a finite sum g = Zg,, but not necessarily
uniquely, we say simply that G is the sum of the groups {G,}, and we write
G = 2G,, or, in the finite case, G = G, + - - - + G,. In this situation, we also
say that the groups {G,} generate G.

If G = =G, then this sum is direct if and only if the equation 0 = =g,
implies that g, = 0 for each . This in turn occurs if and only if for each fixed

index a4, One has
G%O(E:Q)=ML

a # ag

In particular, if G = G, + G,, then this sum is direct if and only if G, N
G, = {ol.

The resemblance to free abelian groups is strong. Indeed, if G is free with
basis {g,}, then G is the direct sum of the subgroups {G,}, where G, is the infi-
nite cyclic group generated by g,. Conversely, if G is a direct sum of infinite
cyclic subgroups, then G is a free abelian group.

If G is the direct sum of subgroups {G,}, and if for each «, one has a homo-
morphism £, of G, into the abelian group H, the homomorphisms {f,} extend
uniquely to a homomorphism of G into H.

Here is a useful criterion for showing G is a direct sum:

Lemma 4.1. Let G be an abelian group. If G is the direct sum of the sub-
groups {G,}, then there are homomorphisms

Je:Gy— G and ms:G— Gy

such that w, o j, is the zero homomorphism if a # B, and the identity homo-
morphism if o = .
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Conversely, suppose {G,} is a family of abelian groups, and there are
homomorphisms j, and w4 as above. Then j, is a monomorphism. Furthermore,
if the groups j.(G,) generate G, then G is their direct sum.

Proof. Suppose G = @® G,. We define j, to be the inclusion homomor-
phism. To define 7, write g = Zg,, where g, € G, for each o; and let m,(g) =
gs- Uniqueness of the representation of g shows =, is a well-defined homo-
morphism.

Consider the converse. Because w_ o j, is the identity, j, is injective (and =,
is surjective). If the groups j (G,) generate G, every element of G can be writ-
ten as a finite sum X j, (g ), by hypothesis. To show this representation is
unique, suppose

2j(g) = Zj.(g).
Applying =,, we see that g, = gz. [

Direct products and external direct sums

Let {G,},., be an indexed family of abelian groups. Their direct product
II, ., G, is the group whose underlying set is the cartesian product of the sets
G, and whose group operation is component-wise addition. Their external di-
rect sum G is the subgroup of the direct product consisting of all tuples (g,). .,
such that g, = 0, for all but finitely many values of a. (Here 0, is the zero
element of G,.) The group G is sometimes also called the “weak direct product”
of the groups G,.

The relation between internal and external direct sums is described as fol-
lows: Suppose G is the external direct sum of the groups {G,}. Then for each
B, we define 75 : G — G, to be projection onto the Sth factor. And we define
Jg: Gs— G by letting it carry the element g € G, to the tuple (g,), . ,, where

. = 0, for all « different from B, and g; = g. Then 7 ¢ j, = 0 for & # B, and
7, © j. is the identity. It follows that G equals the internal direct sum of the
groups G, = j,(G,), where G/ is isomorphic to G,.

Thus the notions of internal and external direct sums are closely related.

The difference is mainly one of notation. For this reason, we customarily use
the notations

G=G®..-.8G, and G=6G0,

to denote either internal or external direct sums, relying on the context to make
clear which is meant (if indeed, it is important). With this notation, one can for
instance express the fact that G is free abelian of rank 3 merely by writing
C=19ZLBZ

If G, is a subgroup of G, we say that G, is a direct summand in G if there is
a subgroup G, of G such that G = G, ® G,. In this case, if H; is 2 subgroup of
G,;, for i = 1,2, then the sum H, + H, is direct, and furthermore,

G G G

=—&

H,®H, H, H,
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In particular, if G = G, ® G,, then G/G, = G,.
Of course, one can have G/G, = G, without its following that G = G, ® G,;
that is, G, may be a subgroup of G without being a direct summand in G. For

instance, the subgroup nZ of the integers is not a direct summand in Z, for that
would mean that

Z=nZ®G,

for some subgroup G, of Z. But then G, is isomorphic to Z/nZ, which is a group
of finite order, while no subgroup of Z has finite order.

Incidentally, we shall denote the group Z/nZ of integers modulo n simply
by Z/n, in accordance with current usage.

The fundamental theorem of
finitely generated abelian groups

There are actually two theorems that are important to us. The first is a
theorem about subgroups of free abelian groups. We state it here, and give a
proof in §11:

Theorem 4.2. Let F be a free abelian group. If R is a subgroup of F, then
R is also a free abelian group. If F has rank n, then R has rank r < n; further-

more, there is a basis e,, . .. ,e, for F and integers t,, . . . ,t, with t,>> 1 such
that

(1) tie,....tiexs€x 41y --,¢, is a basis for R.

Q@) |- - -1, that is, 1, divides t; , , for all i.

The integers t,, . . . ,1, are uniquely determined by F and R, although the basis
e, ...,e,1is not.

An immediate corollary of this theorem is the following:

Theorem 4.3 (The fundamental theorem of finitely generated abelian groups).
Let G be a finitely generated abelian group. Let T be its torsion subgroup.

() There is a free abelian subgroup H of G having finite rank 8 such that
G=HO®T

(b) There are finite cyclic groups T,,...,T,, where T; has order t;> 1,
such that t,11,} - - - |1, and

T=T,®&...©T,.
(¢) The numbers B and t,, . . . ,t, are uniquely determined by G.
The number 8 is called the betti number of G; the numbers ¢z,,. .., are
called the torsion coefficients of G. Note that 8 is the rank of the free abelian

group G/T = H. The rank of the subgroup H and the orders of the subgroups
T, are uniquely determined, but the subgroups themselves are not.
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Proof. Let S be a finite set of generators {g;} for G; let F be the free abe-
lian group on the set S. The map carrying each g; to itself extends to a homo-
morphism carrying F onto G. Let R be the kernel of this homomorphism. Then
F/R == G. Choose bases for F and R as in Theorem 4.2. Then

F=F®&...8F,
where F; is infinite cyclic with generator ¢;; and

R=tF,®.. . ®4F ®F,,,®..-OF

We compute the quotient group as follows:
F/IR=(F,/L,F,.& .. . ®F /tF)®(F,.,®. .- -®F).
Thus there is an isomorphism
[:G—=Z/1,®.. . 8Z/1)D(ZS.--DZ).

The torsion subgroup T of G must be mapped to the subgroup Z/1,® . - - &
Z/1, by f, since any isomorphism preserves torsion subgroups. Parts (a) and (b)
of the theorem follow. Part (¢) is left to the exercises. O

This theorem shows that any finitely generated abelian group G can be
written as a finite direct sum of cyclic groups; that is,

G=(Z&---©2)0Z/1,0..-8Z/1,

with ;> 1 and ¢, | 2,| - - - | 1,. This representation is in some sense a “canoni-
cal form” for G. There is another such canonical form, derived as follows:
Recall first the fact that if m and n are relatively prime positive integers,

then
Z/m@®Z/in=Z/mn.

It follows that any finite cyclic group can be written as a direct sum of cyclic
groups whose orders are powers of primes. Theorem 4.3 then implies that for
any finitely generated group G,

G=(Z®.-.-02)®(Z/a,®-- -®Z/a,)

where each g; is a power of a prime. This is another canonical form for G, since
the numbers g; are uniquely determined by G (up to a rearrangement), as we
shall see.

EXERCISES

1. Show that if G is a finitely generated abelian group, every subgroup of G is
finitely generated. (This result does not hold for non-abelian groups.)

2. (a) Show that if G is free, then G is torsion-free.
(b) Show that if G is finitely generated and torsion-free, then G is free.
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(c) Show that the additive group of rationals Q is torsion-free but not free.
[Hint: 1f {g,} is a basis for Q, let 8 be fixed and express g;/2 in terms of
this basis.]

3. (a) Show that if m and n are relatively prime, then Z/m® Z/n is cyclic of
order mn.

(b) f G=Z/18 D Z/36, express G as a direct sum of cyclic groups of prime
power order.

() HG=Z/20Z/4D®Z/3DZ/3DZ/9, find the torsion coefficients of G.

@) If G=Z/150Z/20® Z/18, find the invariant factors and the torsion
coefficients of G.

4. (a) Let p be prime; let b,, . .. ,b, be non-negative integers. Show that if
G =(Z/p)"®(Z/p)"® - - - ®(Z/p)",

then the integers b; are uniquely determined by G. [Hint: Consider the
kernel of the homomorphism f; : G — G that is multiplication by p’. Show
that f, and f; determine b,. Proceed similarly.]

(b) Let p,,...,py be a sequence of distinct primes. Generalize (a) to a finite
direct sum of terms of the form (Z/( p,-)“)b", where b, = 0.

(c) Verify (c) of Theorem 4.3. That is, show that the betti number, invariant
factors, and torsion coefficients of a finitely generated abelian group G are
uniquely determined by G.

(d) Show that the numbers ¢; appearing in the conclusion of Theorem 4.2 are
uniquely determined by F and R.

HOMOLOGY GROUPS

Now we are ready to define the homology groups. First we must discuss the no-
tion of “orientation.”

Definition. Let o be a simplex (either geometric or abstract). Define two
orderings of its vertex set to be equivalent if they differ from one another by an
even permutation. If dim o > 0, the orderings of the vertices of o then fall into
two equivalence classes. Each of these classes is called an orientation of ¢. (If &
is a O-simplex, then there is only one class and hence only one orientation of ¢.)
An oriented simplex is a simplex ¢ together with an orientation of .

If the points v,, . . . ,v, are independent, we shall use the symbol
Vy---U,
to denote the simplex they span, and we shall use the symbol

[vg, - - -50,)

to denote the oriented simplex consisting of the simplex v, . . . v, and the equiva-
lence class of the particular ordering (v,, . - . ,U,).



§5. Homology Groups

Occasionally, when the context makes the meaning clear, we may use a
single letter such as o to denote either a simplex or an oriented simplex.

Example 1. We often picture an orientation of a 1-simplex by drawing an arrow
onit. The oriented simplex [v,,v,] is pictured in Figure 5.1; one draws an arrow point-
ing from v, to v,. An orientation of a 2-simplex is pictured by a circular arrow. The
oriented simplex [v,,v;,0,] is indicated in the figure by drawing an arrow in the
direction from v, to v, to v,. You can check that [v,, v,, U,) and {v,, v,, v,] are indi-
cated by the same clockwise arrow. An arrow in the counterclockwise direction
would indicate the oppositely oriented simplex.

Similarly, the oriented simplex [uv,, v;, U;, U;] is pictured by drawing a spiral
arrow, as in the figure. The arrow in this picture is called a “right-hand screw”; if
one curls the fingers of the right hand in the direction from v, to v, to v,, the thumb
points toward u,. You can check that [uv,, vy, U, 1,), 2and each of the other ten
orderings equivalent to these two, also give rise to right-hand screws. A “left-hand
screw” is used to picture the opposite orientation.

These examples illustrate that our definition of orientation agrees with the
intuitive geometric notions derived from vector calculus.

v
vy 3
. vz 9
v
/l J
v2
Yo Yo Vo Y]

Figure 5.1

Definition. Let K be a simplicial complex. A p-chain on K is a function ¢
from the set of oriented p-simplices of K to the integers, such that:

(1) e(6) = —c(o’) if o and o’ are opposite orientations of the same simplex.
(2) ¢(o) = O for all but finitely many oriented p-simplices o.

We add p-chains by adding their values; the resulting group is denoted C,(K)
and is called the group of (oriented) p-chains of K. If p < 0 or p > dim K, we let
C,(K) denote the trivial group.

If o is an oriented simplex, the elementary chain ¢ corresponding to o is the
function defined as follows:

c(o) =1,
c(d) = —1 if o’ is the opposite orientation of o,
c(r) =0 for all other oriented simplices .

By abuse of notation, we often use the symbol ¢ to denote not only a simplex, or
an oriented simplex, but also to denote the elementary p-chain ¢ corresponding
to the oriented simplex o. With this convention, if ¢ and ¢’ are opposite orienta-
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tions of the same simplex, then we can write ¢’ = —a, because this equation
holds when o and ¢’ are interpreted as elementary chains.

Lemma 5.1. C,(K) is free abelian; a basis for C,(K) can be obtained by

orienting each p-simplex and using the corresponding elementary chains as
a basis.

Proof. The proof is straightforward. Once all the p-simplices of K are
oriented (arbitrarily), each p-chain can be written uniquely as a finite linear
combination

¢ = Zn,g;

of the corresponding elementary chains ¢;. The chain ¢ assigns the value n; to
the oriented p-simplex ¢;, the value —n; to the opposite orientation of ¢;, and
the value O to all oriented p-simplices not appearing in the summation. O

The group C,(K) differs from the others, since it has a natural basis (since
a O-simplex has only one orientation). The group C,(K) has no “natural” basis

if p > 0; one must orient the p-simplices of K in some arbitrary fashion in order
to obtain a basis.

Corollary 5.2. Any function f from the oriented p-simplices of K to an
abelian group G extends uniquely to a homomorphism C,(K) — G, provided
that f(—a) = —f (o) for all oriented p-simplices ¢. [

Definition. We now define a homomorphism

3,: C,(K) = C, _,(K)

called the boundary operator. If ¢ = [u,,...,0,] is an oriented simplex with
p > 0, we define

*) 8,0 = 3,00 ,0)) = D (1) [Wor - - 1800 ),

where the symbol 5; means that the vertex v; is to be deleted from the array.
Since C,(K) is the trivial group for p < 0, the operator 4, is the trivial homo-
morphism for p < 0.

We must check that g, is well-defined and that 4,(—¢) = —d,0. For this
purpose, it suffices to show that the right-hand side of (*) changes sign if we
exchange two adjacent vertices in the array [v,, . ..,v,]. So let us compare the
expressions for

3,[ves - - - s UpU; 4 15 - - - 50,) and 3,[e, - - - 30 4 1aUjs - - -0, ).

For i # j, j + 1, the ith terms in these two expressions differ precisely by a
sign; the terms are identical except that v; and v; . , have been interchanged.
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What about the ith terms for i = j and i = j + 1? In the first expression,
one has

(—1)’[ Ui = 150550+ 10j w20 - - ]
1)J+l[ j-lyuj’ +|;Uj+z,-. .].
In the second expression, one has
(—l)J[ J—-l, .).],U U .).2,...]
+(_l)l+l[ }—lyuj+l,1,v+2,...].

Comparing, one sees these two expressions differ by a sign.

Example 2. For a l-simplex, we compute 9, [v,,v,] = v, — v,. For a 2-simplex,
one has

az[Uo,UuUz] = [UnUz] - [onuz] + [onull»

And for a 3-simplex one has the formula
831U, Uy, U3, U] = [0,,05,65] = [V, 00 05] + [W0,0,,05) — (v, 05, 0,]

The geometric content of these formulas is pictured in Figure 5.2. If you remember
the versions of Green’s, Stokes’, and Gauss’ theorems you studied in calculus, these
pictures should look rather familiar.

Example 3. Consider the 1-chain 8,[v,,v,,v,] pictured in Figure 5.2. If you
apply the operator 4, to this 1-chain, you get zero; everything cancels out because
each vertex appears as the initial point of one edge and as the end point of an-
other edge. You can check that a similar cancellation occurs when you compute

8,0, [U, 503,05 ]

v

9 /1 = Y1~ %

Yo
vy Vi

3, =

vy yz
v
PO 0
V3 I)3

Yo vy Yo ]

Figure 5.2
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The computations discussed in Example 3 illustrate a general fact:

Lemma $3. §,_,¢4d,=0.

Proof. The proof is straightforward. We compute

P
3, - 19,[Ve, .. .,0,] = Z(—l)fa,,,[u,,,...,a,.,..., )]
i=0

= z (= (=1Y LBy e - ]

i<i

+ z(—l)"(—l)f"[...,a,.,...,aj, ]

i>i

The terms of these two summations cancel in pairs. O

Definition. The kernel of 3,: C,(K) — C,_,(K) is called the group of
p-cycles and denoted Z,(K) (for the German word “Zyklus”). The image of
3,4+1:C, 4 1(K)— C,(K) is called the group of p-boundaries and is denoted
B,(K). By the preceding lemma, each boundary of a p + 1 chain is automati-
cally a p-cycle. That is, B,(K) C Z,(K). We define

H,(K) = Z,(K)/B,(K),
and call it the pth homology group of K.

Let us compute a few examples.

Example 4. Consider the complex K of Figure 5.3, whose underlying space is the
boundary of a square with edges e,, e,, e,, €,. The group C,(K) is free abelian of
rank 4; the general 1-chain ¢ is of the form Zn.e;. Computing d,c, we see that its
value on the vertex v is n, — n,. A similar argument, applied to the other vertices,
shows that ¢ is a cycle if and only if n, = n, = n, = n,. One concludes that Z,(K) is
infinite cyclic, and is generated by the chain e, + e, + e, + e.. Since there are no
2-simplices in K, B,(K) is trivial. Therefore,

H(K)=Z,(K) =Z.

€3

<

€4

el’ v

Figure 5.3
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€4 es

€2

€1

Figure 5.4

Example 5. Consider the complex L of Figure 5.4, whose underlying space is a
square. The general 1-chain is of the form 2n;e;. One reasons as before to conclude
that this 1-chain is a cycle if and only if n, = n,, n, = n,, and n, = n; — n,. One can
assign values to n, and n, arbitrarily; then the others are determined. Therefore,
Z,(L) is free abelian of rank 2; a basis consists of the chain e, + e, — e, obtained by
taking n, = 1 and n, = 0, and the chain ¢, + e, + e, obtained by taking n, = 0 and
n, = 1. The first equals 3,0, and the second equals d,0,. Therefore,

H(L) = Z,(L)/B,(L) = 0.

Likewise, H,(L) = O; the general 2-chain m,0, + m,o, is a cycle if and only if
m, =nm, =0.

These examples may begin to give you a feeling for what the homology
groups mean geometrically. Only by computing many more examples can one
begin to “see” what a homology class is. Qur hope is that after you get a feeling
for what homology means geometrically, you will begin to believe what is at the
moment far from clear—that the homology groups of a complex X actually
depend only on the underlying space |K].

Now let us consider another example. It involves a complex having more
simplices than those in the preceding examples. In general, as the number of
simplices increases, calculating the group of cycles Z, and the group of bound-
aries B, becomes more tedious. We can short-cut some of these calculations by
avoiding calculating these groups and proceeding directly to a calculation of the
homology groups H,.

We deal here only with the groups H,(X) for p > 0, postponing discussion
of the group H,(X) to §7.

We need some terminology. We shall say that a chain ¢ is carried by a
subcomplex L of X if c has value 0 on every simplex that is not in L. And we say
that two p-chains ¢ and ¢’ are homologous if ¢ — ¢’ = 4, , ,d for some p + 1
chain 4. In particular, if ¢ = 9, ,d, we say that ¢ is homologous to zero, or
simply that ¢ bounds.

Example 6. Consider the complex M indicated in Figure 5.5, whose underlying
space is a square. Instead of computing the group of 1-cycles specifically, we reason
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as follows: Given a 1-chain ¢, let @ be the value of ¢ on e,. Then by direct computa-
tion, the chain

6 = ¢ + 4,(as;)

has value 0 on the oriented simplex e,. Intuitively speaking, by modifying ¢ by a
boundary, we have “pushed it off e,.” We then “push ¢, off ¢,” in a similar manner,
as follows: Let b be the value of ¢, on e,; then the chain

¢ = ¢, + 8,(bo;)

has value 0 on the oriented simplex e,. It also has value 0 on e,, since ¢, does not

appear in the expression for d,s,. Now letting d denote the value of ¢, on e,, one
sees that

¢ = ¢, + 8,(do;)

has value 0 on e, and on e, and on e,. We have thus “pushed c off” all of ¢,, ¢,, and
e;. Said differently, we have proved the following result:

Given a 1-chain c, it is homologous to a chain c, that is carried by the subcomplex
of M pictured in Figure 5.6.

Now if ¢ happens to be a cycle, then ¢, is also a cycle; it follows that the value
of ¢, on the simplex e, must be 0. (Otherwise, dc, would have non-zero value on the
center vertex v.) Thus every 1-cycle of M is homologous to a 1-cycle carried by the
boundary of the square. By the same argument as used before, such a cycle must be
some multiple of the cycle e; + ¢, + e, + ¢,. And this cycle bounds; indeed, it
clearly equals 6(c, + o, + o, + a,). Thus H,(M) = 0, as expected.

The fact that H,(M) = 0 is easy; one sees readily (as before) that Zm;oa; is a
cycle if and only if m; = 0 for all i.

Note that the homology groups of M are the same as the homology groups
of the complex L of Example 5. This fact lends some plausibility to our remark (yet
to be proved) that the homology groups of a compiex depend only on its underly-
ing space.

EXERCISES

1. Let & be the abstract complex consisting of the 1-simplices {v,,0,}, (v, 05}, . . .,
{v, - 1,0} {v,.v.} and their vertices. If K is a geometric realization of &, com-
pute H,(K).
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Figure 5.7 Figure 5.8

2. Consider the complex M pictured in Figure 5.7; it is the union of three triangles
and a line segment. Compute the homology groups H,(M) and H,(M).

3. A 1-dimensional complex is called a tree if its 1-dimensional homology van-
ishes. Is either of the complexes pictured in Figure 5.8 a tree?

4. Let K be the complex consisting of the proper faces of a 3-simplex. Compute
H,(K) and H,(K).

5. For what values of i is it true that
H.(K") = H,(K)?

6. An “infinite p-chain” on K is a function ¢ from the oriented p-simplices of X to
the integers such that c(0) = —c(¢’) if 0 and ¢’ are opposite orientations of the
same simplex. We do not require that ¢(¢) = O for all but finitely many ori-
ented simplices. Let C;°(K) denote the group of infinite p-chains. It is abelian,
but it will not in general be free.

(a) Show that if X is locally finite, then one can define a boundary operator

3y CR(K)y— CP_(K)
by the formula used earlier, and Lemma 5.3 holds. The resulting groups
HY(K) = ker 82 /im 83, ,

are called the homology groups based on infinite chaips.

(b) Let K be the complex whose space is R and whose vertices are the integers.
Show that

HE)=0 and H2K)=Z.

7. Let & be the abstract complex whose simplices consist of the sets {im,m},
{im,—m}, and {m, — m} for all positive integers m, along with their faces. If K is
a geometric realization of §, compute H,(X) and HP(K).

§6. HOMOLOGY GROUPS OF SURFACES

If K is a finite complex, then the chain group C,(K) has finite rank, so the cycle
group Z,(K) also has finite rank. Then H,(K) is finitely generated, so that the
fundamental theorem of abelian groups applies. The betti number and torsion
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coefficients of H,(K) are called, classically, the betti number of K and torsion
coefficients of K in dimension p. The fact that these numbers are topological
invariants of |K| will be proved in Chapter 2.

In former times, much attention was paid to numerical invariants, not only
in topology, but also in algebra and other parts of mathematics. Nowadays,
mathematicians are likely to feel that homology groups are the more important
notion, and one is more likely to study properties of these groups than to com-
pute their numerical invariants. Nevertheless, it is still important in many situa-
tions to compute the homology groups specifically—that is, to find the betti
numbers and torsion coefficients for a given space.

One of the greatest virtues of the simplicial homology groups is that it is in
fact possible to do precisely this. In §11 we shall prove a theorem to the effect
that, for a finite complex K, the homology groups are effectively computable.
This means that there is a specific algorithm for finding the betti numbers and
torsion coefficients of K.

In the present section, we shall compute the betti numbers and torsion
coefficients of the compact surfaces. The techniques we shall use may seem a
bit awkward and ad hoc in nature. But, in fact, they are effective on a large
class of spaces. In a later section, when we study CW complexes, we shall re-
turn to these techniques and show they are part of a systematic approach to
computing homology groups.

Convention. For convenience in notation, we shall henceforth delete the
dimensional subscript p on the boundary operator d,, and rely on the context to
make clear which of these operators is intended.

We shall compute the homology of the torus, the Klein bottle, and several
other spaces that can be constructed from a rectangle L by identifying its edges
appropriately. Thus we begin by proving certain facts about L itself.

Lemma 6.1. Let L be the complex of Figure 6.1, whose underlying space
is a rectangle. Let Bd L denote the complex whose space is the boundary of the
rectangle. Orient each 2-simplex o; of L by a counterclockwise arrow. Orient
the 1-simplices arbitrarily. Then:

(1) Every 1-cycle of L is homologous to a 1-cycle carried by Bd L.

Figure 6.1
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(2) Ifdis a 2-chain of L and 1f 3d is carried by Bd L, then d is a multiple
of the chain Zo,.

Proof. The proof of (2) is easy. If 0; and o; have an edge e in common,
then dd must have value 0 on e. It follows that d must have the same value on o,
as it does on o;. Continuing this process, we see that d has the same value on
every oriented 2-simplex o;.

To prove (1), we proceed as in Example 6 of the preceding section. Given a
1-chain ¢ of L, one “pushes it off” the 1-simplices, one at a time. First, one
shows that ¢ is homologous to a 1-chain ¢, carried by the subcomplex pictured
in Figure 6.2. Then one shows that ¢, is in turn homologous to a 1-chain ¢,
carried by the subcomplex of Figure 6.3. Finally, one notes that in the case
where the original chain ¢ is a cycle, then the chain ¢, is also a cycle. It follows
that ¢, must be carried by Bd L, for otherwise ¢, would have a non-zero coeffi-
cient on one or more of the vertices v,,...,vs.. 3

Vs V4
] .
1
4 ’, e *D
Figure 6.2 Figure 6.3

Theorem 6.2. Let T denote the complex represented by the labelled rec-
tangle L of Figure 6.4; its underlying space is the torus. Then:

H(NM=ZeZ and H,(T)=1Z.

Orient each 2-simplex of L counterclockwise; use the induced orientation of
the 2-simplices of T let ~y denote their sum. Let

wl = [aab] + [b,c] + [C9a],
z, = [a,d] + [d,e] + [e,al.
Then ~ generates H,(T) and w, and z, represent a basis for H,(T).

a b c a
L D
d d
e e g\)
92
a b < a T
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Proof. Let g:|L| — IT| be the pasting map; let 4 = g(IBd L|). Then 4 is
homeomorphic to a space that is the union of two circles with a point in com-
mon. (Such a space is called a wedge of two circles.) Orient the 1-simplices of T
arbitrarily. Because g makes identifications only among simplices of Bd L, the

arguments we gave earlier in proving Lemma 6.1 apply verbatim to prove the
following:

(1) Every l-cycle of T is homologous to a 1-cycle carried by A.
(2) Ifdisa2-chainof T and if 3d is carried by A, then d is a multiple of v.

However, in the complex T, two further results hold:

(3) Ifcis a l-cycle of T carried by A, then c is of the form nw, + mz,.
4) oy =0.

The proof of (3) is easy, given the fact that 4 is just the 1-dimensional
complex pictured in Figure 6.5. The proof of (4) is similarly direct: It is clear
that 3+ has value O on every 1-simplex of T not in 4. One checks directly that it
also has value 0 on each 1-simplex in 4. The elementary chain {a,b], for in-
stance, appears in the expression for dg, with value —1 and in the expression for
9o, with value +1, so that v has value O on [a,b]. (See Figure 6.4.)

Using results (1)—(4), we can compute the homology of T. Every 1-cycie of
T is homologous to a 1-cycle of the form ¢ = nw, 4+ mz,, by (1) and (3). Such a
cycle bounds only if it is trivial: For if ¢ = dd for some d, then (2) applies to
show that d = py for some p; since 3y = O by (4), we have ¢ = dd = 0. We
conclude that

H(T)=161Z,

and the (cosets of the) 1-cycles w, and z, form a basis for the 1-dimensional
homology.

To compute H,(T), note that by (2) any 2-cycle d of T must be of the form
pv for some p. Each such 2-chain is in fact a cycle, by (4), and there are no
3-chains for it to bound. We conclude that

H((T)=1Z,
and this group has as generator the 2-cycley. O

Figure 6.5
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Theorem 6.3. Let S denote the complex represented by the labelled rec-
tangle of Figure 6.6, its underlying space is the Klein bottle. Then
HS)=Z6Z/2 and  H,(S)=0.

The torsion element of H,(S) is represented by the chain z,, and a generator
for the group H,(S) modulo torsion is represented by w,, where

w, = [a,b] + [b,c] + [c,al,
z, = [a,d] + [d,e] + [e.,a].

a b 4 a
L Y
03
d e
b4
e d
04
I
a b c a
Figure 6.6

Proof. Let g:|L| — |S| be the pasting map. Let 4 = g(IBd Ll); as before,
it is the wedge of two circles. Orient the 2-simplices of S as before; let -y be their
sum. Orient the 1-simplices of S arbitrarily. Note that (1) and (2) of the pre-
ceding proof hold; neither involve the particular identifications on the bound-
ary. Because A4 is the wedge of two circles, (3) holds as well. The final condition
is different, however; one has gy = 2z,.

This equation follows by direct computation. For example, [a, b} appears in
do, with coefficient —1 and in do, with coefficient + 1, while [a,d] appears in
both 9o, and 9o, with coefficient +1.

Putting these facts together, we compute the homology of S: Every 1-cycle
of S is homologous to a cycle of the form ¢ = nw, + mz,, by (1) and (3). If
¢ = 3d for some d, then d = py by (2); whence dd = 2pz,. Thus nw, + mz,
bounds if and only if m is even and n is zero. We conclude that

H(S)=Z®Z/2.

The cycle z, represents the torsion element, and w, represents a generator of the
infinite cyclic group H,(S)/T,(S).

To compute H,(S), note that any 2-cycle d of S must be of the form py by
(2); since pv is not a cycle, by (4), we have

H,(S)=0. O
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a b c d
L
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e f B
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Figure 6.7

Theorem 6.4. Let P* be the complex indicated by the labelled rectangle of
Figure 6.7, its underlying space is called the projective plane. Then

H(P)Y=Z)2 and H,(P¥) = 0.
Proof. Let g:|L| —|P?Y be the pasting map. Let 4 = g(|Bd L}); it is
homeomorphic to a circle. Let v be as before; let
z, = [a,b] + [b,c] + lc,d] + [d,e] + le,f]1 + [ f.al.
Conditions (1) and (2) hold as before. The additional results, which are easy to
verify, are the following:
(3) Every 1-cycle carried by A is a multiple of z,.
(4) 9y = =2z,
From these facts, we conclude that
H((P)Y=1Z/2 and H,(P*) = 0.
The non-zero element of H, is represented by the cycle z,. [

Definition. The connected sum of P? with itself is defined as the space
obtained from two copies of the projective plane by deleting a small open disc
from each, and pasting together the pieces that remain, along their free edges.
We denote this space by P*# P2

The space P*# P? can be represented as a quotient space of a rectangle,
obtained by pasting its edges together in the manner indicated in Figure 6.8.
(Note that if you cut the rectangle along the dotted line C, you have two projec-
tive planes with an open disc removed from each, as indicated in the figure.)

2

Figure 6.8
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Theorem 6.5. Let P* 3 P? be the connected sum of two projective planes.
Then

H(P*#P)=2®Z/2 and H,(P*#P? =0.

Proof. We represent P? # P? by the same rectangle L as before, with an
appropriate vertex-labelling. In this case, the complex 4 = g(|Bd L) is again
the wedge of two circles. Let w, be the 1-cycle “running across the top edge”
and let z, be the 1-cycle “running down the left edge” in Figure 6.8, in the
directions indicated. Conditions (1) and (2) of Theorem 6.2 hold. Conditions
(3) and (4) are the following:

(3) Every l-cycle carried by A is of the form nw, + mz,.
(4) oy = 2w, + 2z,.

It is then clear that H,(P?# P?) = 0. But how can one compute H,? Some
diddling is needed. We want to compute the quotient of the group G having w,
and z, as basis, by the subgroup H generated by 2(w, + z,). For this purpose,
we need to choose bases for the two groups that are “compatible,” as in our
basic theorem on subgroups of free abelian groups (Theorem 4.2). In this case,
it is easy to see what is needed: we need to choose w, + z, to be one of the basis
elements for G. Can we do this? Of course; {w,,w, + z,} will serve as a basis for
G just as well as {w,,z,} does. (One can express each set in terms of the other:
w, = w,and z, = (—(w,) + (w, + z,).) If we use this basis for G, computation
is easy:

H@P#P)Y=261Z)2,

the torsion element is represented by w, + z,, and w, represents a generator of
H,/T,.

(We remark that w, is not the only cycle representing a generator of H,/T,.
The cycle z, does just as well; so does the cycle 2w, + 3z,, as well as many
others. For {z,,w, + z,} and {2w, + 3z,, w, + z,} are other bases for G, as you
can check.) O

The astute reader might notice that the answers here are the same as for
the Klein bottle. This is no accident, for the two spaces are in fact homeomor-
phic. Figure 6.9 indicates the proof.

2

Figure 6.9
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By now we have worked enough examples that you should be able to com-
pute the homology groups of the general compact surface. We leave this com-
putation to the exercises.

EXERCISES

1.

2.

3.

4.

Let w, and z, be the cycles on the Klein bottle pictured in Figure 6.6. Show that
w, + z, represents a generator of the infinite cyclic group H,(S)/T,(S).

The connected sum T # T of two tori is obtained by deleting an open disc from
each of two disjoint tori and gluing together the pieces that remain, along their
boundaries. It can be represented as a quotient space of an octagonal region
in the plane by making identifications on the boundary as indicated in Figure
6.10. (Splitting this octagon along the dotted line gives two tori with open discs
deleted.)

(a) Construct a complex K whose underlying space is T# T by an appropriate
vertex-labelling of the complex L pictured in Figure 6.11.

(b) Compute the homology of T# T in dimensions 1 and 2 by following the
pattern of Theorem 6.2. Specifically, let A be the image of Bd L under the
quotient map; then A is a wedge of four circles. Orient each 2-simplex of L
counterclockwise; let v be the sum of the correspondingly oriented sim-
plices of K. Show first that every 1-cycle of X is homologous to one carried
by A. Then show that every 2-chain of X whose boundary is carried by A is
a multiple of . Complete the computation by analyzing the 1-cycles car-
ried by A, and by computing 4+.

Figure 6.10 Figure 6.11

Represent the 4-fold connected sum P* # P* # P* % P* by an appropriate label-
ling of the complex L of Figure 6.11. Compute its homology in dimensions
1 and 2.

(a) Define the n-fold connected sum X, = T # - - - # T of tori, and compute
its homology in dimensions 1 and 2.

(b) Define the n-fold connected sum Y, = P*# - - - # P? of projective planes,
and compute its homology in dimensions 1 and 2.
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[It is a2 standard theorem that every compact surface is homeomorphic
to one of the spaces in the following list:

Sz; X),Xg,...; },1’},2,""

(See [Ma].) Once we have proved that the homology groups are topological
invariants, it then follows from the computations of this exercise that no
two of these surfaces are homeomorphic.]

5. Compute the homology of T # P2. To which of the surfaces listed in Exercise 4
must it be homeomorphic? Can you construct the homeomorphism?

6. (a) Compute the homology in dimensions 1 and 2 of the quotient space indi-
cated in Figure 6.12. We call this space the “S-fold dunce cap.”
(b) Define analogously the “k-fold dunce cap” and compute its homology.

7. Compute the homology of the space indicated in Figure 6.13.

8. Given finitely generated abelian groups G, and G,, with G, free, show thereis a
finite 2-dimensional complex K such that |K| is connected, H,(K) = G,, and
H,(K) = G,.

A

Figure 6.12 Figure 6.13
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We have not yet computed any zero-dimensional homology group. In this sec-
tion, we shall show that this group has a simple topological interpretation that
makes its computation trivial.

We prove the following theorem:

Theorem 7.1. Let K be a complex. Then the group H,(K) is free abelian.
If v} is a collection consisting of one vertex from each component of \K|, then
the homology classes of the chains v, form a basis for Hy(K).

Proof. Stepl. Ifuvandw are vertices of K|, let us define v ~ w if there is

a sequence
a,...,a

of vertices of K such thatv = g,and w = q,, and g;a; , , is a 1-simplex of K for
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each i. This relation is clearly an equivalence relation. Given v, define
C,= U {Stwlw~u].

We show that the sets C, are the components of |K].

Note first that C, is open because it is a union of open sets. Furthermore,
C,=C,ifv~uv'.

Second, we show C, is connected, in fact, path connected. Given v, let
w ~ v and let x be a point of St w. Choose a sequence a,, . . . ,a, of vertices of
K, as before. Then the broken line path with successive vertices a,, . . . ,a,,x lies
in C,: For a; ~ v by definition, so that Sta4; C C,, and in particular, the line
segment a;a; , , lies in C,. Similarly, the line segment a,x lies in St a,, which is
contained in C,. Hence C, is path connected.

Third, we show that distinct sets C, and C, are disjoint. Suppose x is a
point of C, N C,. Then x € St w for some w equivalent to v, and x € St w’ for
some w’ equivalent to v'. Since x has positive barycentric coordinates with
respect to both w and w’, some simplex of K has w and w' as vertices. Then ww’
must be a 1-simplex of K, so w ~ w'_ It follows that v ~ v/, so that the two sets
C, and C, are the same.

Being connected, open, and disjoint, the sets C, are necessarily the compo-
nents of |K|. Note that each is the space of a subcomplex of K; each simplex of
K (being connected) lies entirely in one component of |K|.

Step 2. Now we prove the theorem. Let {v,} be a collection of vertices
containing one vertex v, from each component C, of |K|. Given a vertex w of K,
it belongs to some component of |K|, say C,. By hypothesis, w ~ v, so there

is a sequence a,, . . . ,a, of vertices of K, as before, leading from v, to w. The
1-chain

[amall + [abazl + .-+ [an—l?all]

has as its boundary the O-chain a, — g, = w — v,. Thus the 0-chain w is ho-
mologous to the 0-chain v,. We conclude that every chain in X is homologous to
a linear combination of the elementary 0-chains v,.

We now show that no non-trivial chain of the form ¢ = Z n,v, bounds.
Suppose ¢ = dd for some 1-chain d. Since each 1-simplex of X lies in a unique
component of |[K|, we can write d = = d,, where d, consists of those terms of d
that are carried by C.. Since 3d = = 34, and a4, is carried by C,, we conclude
that ad, = n,v,. It follows that n, = 0 for each a. For let ¢: C;(K) — Z be
the homomorphism defined by setting ¢(v) = 1 for each vertex v of K. Then
e(@lv,w]) = e(w — v) = 1 — 1 = 0 for any elementary 1-chain [v,w]. Asare-
sult, €(8d) = O for every 1-chain d. In particular, 0 = ¢(dd,) = e(n,v,) = n,.

a

For some purposes, it is convenient to consider another version of 0-dimen-
sional homology. We consider that situation now.
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Definition. Let ¢: C,(K) — Z be the surjective homomorphism defined by
¢(v) = 1 for each vertex v of K. Then if ¢ is a 0-chain, ¢(c) equals the sum of
the values of ¢ on the vertices of K. The map ¢ is called an augmentation map for
Ci(K). We have just noted that ¢(3d) = 0 if 4 is a 1-chain. We define the re-
duced homology group of K in dimension 0, denoted H,(K), by the equation

H,(K) = ker ¢/im 3,
(If p > 0, we let f{,(K ) denote the usual group H,(K).)

The relation between reduced and ordinary homology is as follows:

Theorem 7.2. The group H,(K) is free abelian, and
H,(K) ® Z = H,(K).

Thus H,(K) vanishes if |K| is connected. If |K| is not connected, let {v,} consist
of one vertex from each component of |K|; let a, be a fixed index. Then the
homology classes of the chains v, — v,, for a # a,, form a basis for H,(K).

Proof. Given a O-chain ¢, it is homologous to a O-chain of the form
¢' =Z n,v,; and the chain ¢’ bounds only if #, = O for all a. Now if ¢ € kere,
then e(c) = e(c') = ¢(Sn,v,) = Zn, = 0. If |[K| has only one component, this
means that ¢’ = 0. If |k} has more than one component, it implies that ¢’ is a
linear combination of the 0-chains v, — v,. O

EXERCISE

1. (a) Let G be an abelian group and let ¢ : G — Z be an epimorphism. Show that
G has an infinite cyclic subgroup H such that

G = (ker¢) ® H.

[Hint: Define a homomorphism ¢ : Z — G such that ¢ o i is the identity;
let H=imy.]
(b) Show that if ¢ : C,(K) — Z is any epimorphism such that ¢ o 8, = 0, then

Hy(K) = (ker ¢)/(im 8,) ® Z.

§8. THE HOMOLOGY OF A CONE

Now we compute the homology of the n-simplex and of its boundary. A conve-
nient way of doing this is to introduce the notion of a cone.

Definition. Suppose that K is a complex in E’, and w is a point of E’ such
that each ray emanating from w intersects |K| in at most one point. We define
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the cone om K with vertex w to be the collection of all simplices of the form
wa, . ..a, where a,...a,is a simplex of K, along with all faces of such sim-
plices. We denote this collection w * K.

We show that w * K is a well-defined complex, and it contains K as a sub-
complex; K is often called the base of the cone.

First we show that the set {w,q,, . .. ,a,} is geometrically independent: If w
were in the plane P determined by a,, . .. ,a,, we could consider the line seg-
ment joining w to an interior point x of ¢ = g, . . . a,. The set Int ¢, being open
in P, would contain an interval of points on this line segment. But the ray from
w through x intersects |K]| in only one point, by hypothesis.

We now show that w * K is a complex. The simplices of w * K are of three
types: simplices a,...a, of K, simplices of the form wa,...a,, and the 0-
simplex w. A pair of simplices of the first type have disjoint interiors because K
is a complex. The open simplex Int(wa, . .. a,) is the union of all open line seg-
ments joining w to points of Int(a, . . . a,); no two such open simplices can inter-
sect because no ray from w contains more than one point of |K|. For the same
reason, simplices of the first and second types have disjoint interiors.

Example 1. If K, is the complex consisting of the simplex ¢ = v,...v, and its
faces, then K, = v, * K,, where s is the face of ¢ opposite v,. Thus every simplex of
positive dimension is a cone.

Example 2. 1If K is the complex in R? consisting of the intervals [n,n + 1} X 0 on
the x-axis and their vertices, and if w is a2 point on the y-axis different from the
origin, then w * K is the complex illustrated in Figure 8.1. Although |K] is a2 sub-
space of R?, lw x K| is not 2 subspace of R (See Exercise 9 of §2.)

Figure 8.1

One particularly useful consequence of the cone construction is the fol-
lowing:

Lemma 8.1. Let U be a bounded convex open set inR’; let w € U. If K is
a finite complex such that |K| = U — U, then w * K is a finite complex such
that lws K| = U.

Proof. It follows at once from Lemma 1.1 that each ray emanating from
w intersects |K| in precisely one point, and that U is the union of all line seg-
ments joining w to points of [K|. O
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Given K, we note that any two cones w * K and z * K over K are isomor-
phic. The vertex map that carries each vertex of K to itself and carries w to z
induces an isomorphism of w * K with z * K.

Note also that for a complex K in R", there may be no point w in R" such
that the cone complex w * K can be formed. However, we can always consider
K as a complex in RY X 0 C R¥*?; then the point w = (0,...,0,1) € RV*!
will do. A similar remark applies to a complex in E’.

Now we compute the homology of a cone, and show that it vanishes in posi-
tive dimensions. For this purpose, we shall introduce a certain bracket operation
that will also be useful later.

Definition. Let w* K be a cone. If 6 = [a,, ... ,q,] is an oriented simplex
of K, let [w,o] denote the oriented simplex {w,a,,...,a,] of w* K. This oper-
ation is well-defined; exchanging two vertices in the array [a,, . .. ,a,] results in
exchanging two vertices in the array [w,a,, . ..,a,]. More generally, if

CP = Eniai
is a p-chain of K, we define
[W,C,] = Zn; [w,o;].

This bracket operation is a homomorphism carrying C,(K) into C, . ,(w * K).

We compute readily from the boundary formula:

3Dw,a] = g—w if dime =0,
1 e — [w,00] if dime > 0.

This leads to the following more general formulas:
(*) a [wicl)] = Co - G(Co)w,
dlw,c,] = ¢, — [w,dc,] if p>0.
Theorem 8.2. If w*K is a cone, then for all p,
H,(w+K)=0.

In general, a2 complex whose reduced homology vanishes in all dimensions is
said to be acyclic.

Proof. The reduced homology of w * K vanishes in dimension 0, because
lw = K| is connected. Consider the case p > 0. Let z, be a p-cycle of w * K; we
show that z, bounds. Let us write

z,=c,+ [wd,_,],

where ¢, consists of those terms of z, that are carried by K, and d, _ , is a chain
of K. We show that

z,— d[w,c,] =0;

45
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then our result is proved. By direct computation,
z,— dlw,c,] = ¢, + [w,d,_,] — ¢, + [w,dc,]
= [we,_,],

where e, _, =d,_, + dc, is a chain of K. Now since z, is a cycle,

0={ep-1—f(ep-l)w if p=1,

e-1— [wae,_,] if p>1.
Now the portion of this chain carried by K is e, _,; therefore, e, _, = 0. We
conclude that
z,— d[w,c,] = [we,_,] =0,

as desired. O

Theorem 8.3. Let o be an n-simplex. The complex K, consisting of ¢ and
its faces is acyclic. If n> 0, let 2"~ denote the complex whose polytope is
Bd o. Orient 0. Then H, _,(Z" ") is infinite cyclic and is generated by the
chain do; furthermore, H,(Z"~') = 0 for i #n — 1.

Proof. Because K, is a cone, it is acyclic. Let us compare the chain groups
of K, and 2"~ !; they are equal except in dimension n:
6,, a,, -1 €
CK)—= C (k) —...— CK) —Z

P Il 3. I I
0 —=C_,Z" Y212 . -GE " HY—Z

It follows at once that H,(Z" ~') = H,(K,) = O for i # n — 1. Let us compute
the homology in dimension n — 1. First take the case n > 1. One has

H,_,C"")=2Z,_,(2""), because there are no n — 1 boundaries,
= kerd,_,
= im 4,, because H, _,(X,) = 0.
Now C,(K,) is infinite cyclic and is generated by o. Hence im 4, is cyclic and is
generated by d,0; it is infinite because C, _ ,(X,) has no torsion.

The argument for n =1 is similar, except that ,_, is replaced by e
throughout. O

EXERCISE

1. Let K be a complex; let w, * K and w, = K be two cones on X whose polytopes
intersect only in {K|.
(a) Show that (w, * K) U (w, = K) is a complex; it is called a suspension of K
and denoted S(X).
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(b) Using the bracket notation, define ¢:C,(K)— C,,,(S(K)) by the
equation

#(c,) = Wec,] — Wi,
Show that ¢ induces a homomorphism
e H,(K) = H, . ((S(K)).

(c) Show ¢, is an isomorphism when K consists of the proper faces of a
2-simplex.
We will see later that ¢, is an isomorphism in general (see §25).

a7

§9. RELATIVE HOMOLOGY

Suppose K, is a subcomplex of the complex K. In many of the applications of
topology, it is convenient to consider what are called the relative homology
groups of K modulo K,. We introduce them briefly here and compute some
examples, postponing a more complete discussion to Chapter 3.

If K, is a subcomplex of the complex K, then the chain group C,(K,) can be
considered to be a subgroup of the chain group C,(K) in the natural way. For-
mally, if ¢, is a chain on X, (that is, a function on the oriented simplices of X),
one extends it to a chain on K by letting its value be zero on each oriented p-
simplex of K not in K,. When we write ¢, as a linear combination of oriented
p-simplices of K,, we need merely to “consider” these simplices as belonging to
K in order to “consider” ¢, as a chain of K.

Definition. If X, is a subcomplex of K, the quotient group C,(K)/C,(K,)
is called the group of relative chains of X modulo X,, and is denoted by
C,(K,K,).

Note that the group C,(K,K,) is free abelian. Indeed, if we orient the
p-simplices of K so as to obtain a basis for C,(K), the subcollection consisting
of the oriented p-simplices of K, is a basis for C,(K,). Then the quotient
C,(K)/C,(K,) is free, for it has as basis all cosets of the form

{0’,-} =0; + Cp(Ko)1

where ¢; is a p-simplex of K that is not in K,
The boundary operator d: C,(K,) — C, _ ,(K,) is just the restriction of the
boundary operator on C,(K). We use the same symbol to denote both these

homomorphisms, when no confusion will resuit. This homomorphism induces a
homomorphism

G, (K.K,) — C,_(K.K,)
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of the relative chain groups, which we also denote by 3. As before, it satisfies
the equation d - = 0. We let

Z,(K,K,) = ker 0: C,(K,K;) — C, - ,(K,K,),
Bp(K9Ko) = im a : Cp + I(K,Ko) - CP(K,K,,),
Hp(K,Ko) = Zp(K’KO)/Bp(K7Ko)’

These groups are called, respectively, the group of relative p-cycles, the group of
relative p-boundaries, and the relative homology group in dimension p, of K
modulo K.

Note that a relative p-chain, which is a coset ¢, + C,(K,), is a relative cycle
if and only if dc, is carried by K,. Furthermore, it is a relative boundary if and
only if thereisa p + 1 chaind, , , of K such that ¢, — 44, . , is carried by K,.

Example 1. Let K consist of an n-simplex and its faces; let K, be the set of proper
faces of K. Then the group C, (K, K,) vanishes except when p = n, in which case it is
infinite cyclic. It follows that

H,(K,K,) =0 for i# n,
H, (K.K)=Z.

Example 2. Let K be a complex and let K, consist of a single vertex v of K. Using
the results of §7, one sees readily that H,(K,v) is free abelian; one obtains a basis
for H,(K,v) by choosing one vertex from each component of |K| other than the
component containing v. Then H,(K,v) = H,(K).

It is not hard to show that H,(K,v) = H,(K) for p > 0; see the exercises.

Example 3. Let K be the complex indicated in Figure 9.1, whose underlying space
is a square. Let K, be the subcomplex whose space is the boundary of the square. It
is easy to see that the 2-chain Tm,o; represents a relative cycle of X modulo X, if
and only if m, = m, = m, = m,. Since there are no boundaries in dimension 2,

H(K.K)=1

and the chain 4 = Zg; represents a generator.
We showed in Example 6 of §5 that any I-chain ¢ of K is homologous to a
1-chain ¢, carried by K, U ¢,. Now if ¢ represents a relative 1-cycle (so that dc is

&) ek
NV

2)

Ky

Figure 9.1
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carried by K,), 8¢, = dc is also carried by K,. It follows that the value of ¢, on e,
must be zero, whence ¢, is actually carried by K,. We conclude that

H,(K,K,) = 0.

Comparing this computation with that of Example 1 lends some plausibility to the
statement (yet to be proved) that the relative homology groups are topological
invariants.

Example 4. Let K be the complex indicated in Figure 9.2. Its underlying space
is called an annulus. Let K, denote the 1-dimensional complex whose space is the
union of the inner and outer edges of K. We compute the homology of X modulo X,.

First, H,(K,K,) = 0 because the relative chain group itself vanishes in dimen-
sion 0. To compute H, and H,, one first verifies three facts:

(i) If ¢ is a 1-chain of K, then c is homologous to a 1-chain of K that is car-
ried by the subcomplex M pictured in Figure 9.3.

(ii) Orient each 2-simplex of K counterclockwise. If d is any 2-chain of K such
that dd is carried by M, then d = nry, where « is the sum of all the
oriented 2-simplices of K.

(ili) a+ is carried by K.

o €0

> Ko

Figure 9.2 Figure 9.3

The computation then proceeds as follows: Let e, be the oriented 1-simplex
pictured in Figure 9.2; then e, represents a relative 1-cycle of K modulo K,, because
e, lies in K,. It follows from (i) that any relative 1-cycle {c} is relatively homologous
to a multiple of {e,). Furthermore, no such relative cycle bounds. For suppose
ne, — ad is carried by K, for some 2-chain d of K. Then ad is carried by M, whence
by (ii), d = my for some integer m. But ad = mad~ is carried by K, by (iii), so that
n = 0. We conclude that

H,(K,K)) = Z,

and the relative cycle e, represents a generator.
A similar argument, using (ii) and (iii), shows that

H(KK)=1Z,
and the relative cycle vy represents a generator.

Students often visualize the relative homology group H,(K,K,) as repre-

senting the homology of the quotient space X = |K|/|K,| obtained by collapsing
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|K,| to a point p, modulo that point. Assuming X is homeomorphic to a polyhe-
dron (so its simplicial homology is defined) this is in fact correct, but the proof
is not easy. (See Lemma 70.1 and the exercises of §39.)

Roughly speaking, the relative homology group H,(X,K,) depends only on
the part of K lying outside or on the boundary of K,; it “ignores” the part of K
lying inside K,. We express this fact formally in the following theorem:

Theorem 9.1 (Excision theorem). Let K be a complex; let K, be a subcom-
plex. Let U be an open set contained in |K,|, such that \K| — U is the polytope
of a subcomplex L of K. Let L, be the subcomplex of K whose polytope is
|\K,| — U. Then inclusion induces an isomorphism

H,(L,L,) = H,(K.K,).

We think of (JL|,}L,]) as having been formed by “excising away” the open
set U from |K] and |K,|. See Figure 9.4.

I Q L

U

7

7

NUMINNMNNNN

Figure 9.4

Proof. Consider the composite map ¢,
C,(L) — C,(K) — C,(K)/C,(K,),

which is inclusion followed by projection. Then ¢ is surjective, because C,(K)/
C,(K,) has as basis all cosets {s;} for ¢; not in K,, and L contains all such sim-
plices ;. The kernel of ¢ is precisely C,(L,). Thus ¢ induces an isomorphism

C,(L)/ Cy(Le) = C,(K)/C(Ko),

for all p. Since the boundary operator is preserved under this isomorphism, it
follows that H,(L,L,) = H,(K,K,). O

This elementary fact has some useful consequences we shall consider later.

EXERCISES

1. Let K be the complex pictured in Figure 9.2; let X, be its “outer edge.” Com-
pute H;(X) and H,(K,K,).
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2. Let X be a complex whose underlying space is the Mdbius band; let K, be its
“edge.” Compute H;(K) and H;(K,K,). [Hint: Seec Example 2 of §3. Here the
“edge” consists of the line segments ab, be, cd, de, ef, and fa.]

3. Show that if K is a complex and v is a vertex of K, then H;(K,v) = H;(K) for
all i. [Hint: Care is needed when i = 1.]

4. Describe H,(K,K,) in general.

8. Let |K| be the torus, represented by a labelled rectangle in the usuval way; let
K, be the subcomplex represented by the top edge of the rectangle. Compute
H;(K,K,). (See Figure 6.4; IK,| is the union of the line segments ab, bc, and ca.)

6. Let K be a 2-dimensional complex; let ¢ be a 2-simplex of K; let K, be the sub-
complex whose space is |K| — Int 0. Compute H;(K,K,).
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There is one further version of homology that we shall mention here, although
we shall not study it in detail until Chapter 6. It arises when one introduces an
arbitrary abelian group as “coefficient group.”

Let G be an abelian group. Let K be a simplicial complex. A p-chain of X
with coefficients in G is a function ¢, from the oriented p-simplices of K to G
that vanishes on all but finitely many p-simplices, such that

¢,(¢") = —c,(0)

if ¢’ and o are opposite orientations of the same simplex. Two chains are added
by adding their values. The resulting group is denoted C,(K;G).

If o is an oriented simplex and if g € G, we use go to denote the elementary
chain whose value is g on o, —g on the opposite orientation of ¢, and 0 on all
other oriented simplices. In this notation, g(—¢) = (—g) s, where —o as usual
denotes ¢ with the opposite orientation. If one orients all the p-simplices of X,
then each chain ¢, can be written uniquely as a finite sum

¢, = Zgo;

of elementary chains. Thus C,(K;G) is the direct sum of subgroups isomorphic
to G, one for each p-simplex of K.

The boundary operator 4 : C,(K;G) — C, _ ;(K;G) is defined easily by the
formula

9(go) = g(do)

where do is the ordinary boundary, defined earlier. As before, 3 ¢ d = 0; and we
define Z,(K;G) to be the kernel of the homomorphism

d:C(K;G) — C, - (K;G),
B, _(K;G) to be its image, and
H,(K;G) = Z,(K;G)/B,(K;G).
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These groups are called, respectively, the cycles, boundaries, and homeology of K
with coefficients in G.

Of course, one can also study relative homology with coefficients in G. The
details are clear. The groups in question are denoted by H,(K,K,;G).

We are not going to do much concerning homology with general coefficients
for some time to come. But you should be aware of its existence at an early
stage, for it is often useful.

Example 1. One group that is frequently used as a coefficient group is the group
Z/2 of integers mod 2. Let us calculate the homology of the torus and the Klein
bottle using these coefficients. The argument given in §6 goes through essentially
unchanged to show that

H(TZ/2) = Z/28 Z/2,
H(T:Z/2)= Z)2.

For the Klein bottle S, the argument goes through but with some changes. One has
the results

H(S:Z2)=Z/28Z]2,

H,(S;Z/2) = Z/2.
For with Z/2 coefficients, the basic 2-chain v, which is the sum of the 2-simplices
of S, has boundary zero. (In the group Z/2,onehas 2=1+1=0.)

Note that homology with Z/2 coefficients is inadequate to distinguish between
T and S.

Example 2. Let us compute the homology of the torus and Klein bottle using the
rational numbers Q as coefficients. The same arguments as before apply, but the
end results are different. For the torus, one has

H(T:Q=Q09Q H(T;Q)=Q
For the Klein bottle, one has

H(S;Q=Q H(S;Q) =0
For with Q coefficients, the cycle z, bounds the chain % v.

EXERCISES

1. Compute the homology of P2 with Z/2 and Q coefficients.

2. Show that homology with Q coefficients suffices to distinguish among S* and
the connected sums P*# ... # P*and T#...# T.

3. Let S be the Klein bottle; compute the homology of S with Z/3 and Z/4
coeflicients.

4. Compute the homology of the k-fold dunce cap with Z/n coefficients and with
Q coefficients. (See Exercise 6 of §6.)

5. Let (K,K,) be the pair consisting of the Mdbius band and its edge. Compute
H.(K,K,;Z/2) and H,(K,K,;Q). (See Exercise 2 of §9.)
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*§11. THE COMPUTABILITY OF HOMOLOGY GROUPS

We have computed the homology groups of some familiar spaces, such as the
sphere and the torus and the Klein bottle. Now we ask the question whether one
can in fact compute homology groups in general. For finite complexes, the an-
swer is affirmative. In this section, we present an explicit algorithm for carrying
out the computation.

First, we prove a basic theorem giving a “normal form” for homomor-
phisms of finitely generated free abelian groups. The proof is constructive in na-
ture. One corollary is the theorem about subgroups of free abelian groups that
we stated earlier as Theorem 4.2. A second corollary is a theorem concerning
standard bases for free chain complexes. And a third corollary gives our desired
algorithm for computing the homology groups of a finite complex.

First, we need two lemmas with which you might already be familiar.

Lemma 11.1. Let A be a free abelian group of rank n. If B is a subgroup
of A, then B is free abelian of rank r < n.

Proof. We may without loss of generality assume that B is a subgroup of
the n-fold direct product Z* =Z X - - - X Z. We construct a basis for B as
follows:

Let o, : Z" — Z denote projection on the ith coordinate. For each m < n,
let B,, be the subgroup of B defined by the equation

B,= BN (Z" X 0).

That is, B,, consists of all x € B such that =,(x) = 0 for i > m. In particular,
B, = B. Now the homomorphism
T B,—Z
carries B,, onto a subgroup of Z. If this subgroup is trivial, let x,, = 0; other-
wise, choose x,, € B, so that its image =,(x,) generates this subgroup. We
assert that the non-zero elements of the set {x,, . . .,x,} form a basis for B.
First, we show that for each m, the elements x,, . . . ,Xx,, generate B,.. (Then,

in particular, the elements x,, . .. ,Xx, generate B.) It is trivial that x, generates
B,; indeed if d is the integer ,(x,), then

x, = (d,0,...,0)

and B, consists of all multiples of this element.

Assume that x,,...,x, _, generate B, _,; let x& B,. Now =,(x) =
kx,(x,) for some integer k. It follows that

7, (X — kx,) =0,
so that x — kx,, belongs to B,, _,. Then
x_kxm=klxl+"‘+km—lxm-l

by the induction hypothesis. Hence x,, . . . ,X,, generate B,,.
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Second, we show that for each m, the non-zero elements in the set
{x,, . ...x,! are independent. The result is trivial when m = 1. Suppose it true
for m — 1. Then we show that if

MNXpF - FAX, =0,

then it follows that for each i, \; = O whenever x; # 0; independence follows.
Applying the map =, we derive the equation

A, 7a(X,) = 0.

From this equation, it follows that either \,, = 0 or x,, = 0. For if A\, % 0, then

Tm(Xn) = 0, whence the subgroup =,,(B,,) is trivial and x,, = 0 by definition.
We conclude two things:

A,=0 if x,%*0,
>‘lxl_'-" '+>\,,,_|xm-|=0.
The induction hypothesis now applies to show that for i < m,

=0 whenever x;#0. O

For later use, we generalize this result to arbitrary free abelian groups:

Lemma 11.2. If A is a free abelian group, any subgroup B of A is free.

Proof. The proof given for the finite case generalizes, provided we assume
that the basis for 4 is indexed by a well-ordered set J having a largest element.
(And the well-ordering theorem, which is equivalent to the axiom of choice, tells
us this assumption is justified.)

We begin by assuming A equals a direct sum of copies of Z; that is, 4 equals
the subgroup of the cartesian product Z’ consisting of all tuples (#,), ., such
that »n, = 0O for all but finitely many a. Then we proceed as before.

Let B be a subgroup of A. Let B, consist of those elements x of B such that
7, (x) = 0 for « > B. Consider the subgroup #z(B;) of Z; if it is trivial define
xg = 0, otherwise choose x; € B, so 74(X;) generates the subgroup.

We show first that the set {x, | @ < B} generates B,. This fact is trivial if

8 is the smallest element of J. We prove it in general by transfinite induction.
Given x € Bg, we have

75(X) = kwg(xs)

for some integer k. Hence #4(x — kx;) = 0. Consider the set of those indices &
for which =, (x — kx;) # 0. (If there are none, x = kx,; and we are through.)
All of these indices are less than 8, because x and x; belong to B;. Furthermore,
this set of indices is finite, so it has a largest element v, which is less than 8. But
this means that x — kx, belongs to B,, whence by the induction hypothesis,
X — kxgcan be written as a linear combination of elements x, witheach a =< «.

Second, we show that the non-zero elements in the set {x, | a < g} are inde-
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pendent. Again, this fact is trivial if 8 is the smallest element of J. In general,
suppose

AayXo, + - o - A X, + XX =0,
where o; < (. Applying #5, we see that
Ag7g(Xg) = 0.
As before, it follows that either A, = 0 or x, = 0. We conclude that
AN=0 if x,#0,
and
)\,,lx‘,l + ...+ )‘akxu = 0.
The induction hypothesis now implies that A, = O whenever x, # 0. O
We now prove our basic theorem. First we need a definition.

Definition. Let G and G’ be free abelian groups with bases q,, . . . ,a, and
ai,...,a,, respectively. If f : G — G’ is 2 homomorphism, then

1(@) =" N
i=1
for unique integers A;. The matrix ();) is called the matrix of f relative to the
given bases for G and G'.

Theorem 11.3. Let G and G' be free abelian groups of ranks n and m, re-
spectively; let f : G — G' be a homomorphism. Then there are bases for G and
G’ such that, relative to these bases, the matrix of f has the form

b, 0
. | 0
0 0
where b;= 1 and b,| b,| - - - | b,.

This matrix is in fact uniquely determined by f (although the bases involved
are not). It is called a normal form for the matrix of f.

Proof. We begin by choosing bases in G and G’ arbitrarily. Let 4 be the
matrix of f relative to these bases. We shall give shortly a procedure for modify-
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ing these bases so as to bring the matrix into the normal form described. It is
called “the reduction algorithm.” The theorem follows. O

Consider the following “elementary row operations” on an integer matrix A:
(1) Exchange row i and row k.

(2) Multiply row i by —1.

(3) Replace row i by (row §) 4 g(row k), where g is an integer and k + i.

Each of these operations corresponds to a change of basis in G’. The first
corresponds to an exchange of a] and a;. The second corresponds to replacing
a;by —a;. And the third corresponds to replacing a; by a; — ga/, as you can
readily check.

There are three similar “column operations” on A4 that correspond to changes
of basis in G.

We now show how to apply these six operations to an arbitrary matrix 4 so
as to reduce it to our desired normal form. We assume A is not the zero matrix,
since in that case the result is trivial.

Before we begin, we note the following fact: If ¢ is an integer that divides
each entry of the matrix A, and if B is obtained from A4 by applying any one of
these elementary operations, then ¢ also divides each entry of B.

The reduction algorithm

Given a matrix 4 = (a;) of integers, not all zero, let a:(A4) denote the small-
est non-zero element of the set of numbers |a;|. We call a;; 2 minimal entry of 4
if la;| = a(A).

The reduction procedure consists of two steps. The first brings the matrix
to a form where a(A) is as small as possible. The second reduces the dimensions
of the matrix involved.

Step 1. We seek to modify the matrix by elementary operations so as to
decrease the value of the function a. We prove the following:

If the number a(A) fails to divide some entry of A, then it is possible to de-
crease the value of a by applying elementary operations to A; and conversely.

The converse is easy. If the number a(A4) divides each entry of A, then it
will divide each entry of any matrix B obtained by applying elementary op-
erations to 4. In this situation, it is not possible to reduce the value of & by
applying elementary operations.

To prove the result itself, we suppose a;; is a minimal entry of A4 that fails
to divide some entry of A. If the entry a;; fails to divide some entry a,; in its
column, then we perform a division, writing
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where 0 < |r] <|a;|. Signs do not matter here; g and r may be either positive
or negative. We then replace (row k) of 4 by (row k) — g(row i). The result is
to replace the entry a,; in the kth row and jth column of 4 by a,; — ga; =r.
The value of a for this new matrix is at most |r|, which is less than a(A4).

A similar argument applies if g;; fails to divide some entry in its row.

Finally, suppose a;; divides each entry in its row and each entry in its col-
umn, but fails to divide the entry a,,, where s # i and ¢ # j. Consider the fol-
lowing four entries of A4:

a;---a

Because a;; divides a,;, we can by elementary operations bring the matrix to the
form where the entries in these four places are as follows:

P P, N

i 14

0-- 'asx+lai1

If we then replace (row i) of this matrix by (row i) + (row s), we are back in
the previous situation, where g;; fails to divide some entry in its row.

Step 2. At the beginning of this step, we have a matrix 4 whose minimal
entry divides every entry of 4.

Apply elementary operations to bring a minimal entry of 4 to the upper left
corner of the matrix and to make it positive. Because it divides all entries in its
row and column, we can apply elementary operations to make all the other en-
tries in its row and column into zeros. Note that at the end of this process, the
entry in the upper left corner divides all entries of the matrix.

One now begins Step 1 again, applying it to the smaller matrix obtained by
ignoring the first row and first column of our matrix.

Step 3. The algorithm terminates either when the smaller matrix is the
zero matrix or when it disappears. At this point our matrix is in normal form.
The only question is whether the diagonal entries b,, . . . ,b, successively divide
one another. But this is immediate. We just noted that at the end of the first
application of Step 2, the entry b, in the upper left corner divides all entries
of the matrix. This fact remains true as we continue to apply elementary op-
erations. In particular, when the algorithm terminates, b, must divide each of
by, ....b.

A similar argument shows b, divides each of b,,...,b,. And so on.

It now follows immediately from Exercise 4 of §4 that the numbers
b,,...,b,are uniquely determined by the homomorphism f. For the number / of
non-zero entries in the matrix is just the rank of the free abelian group f(G) C
G'. And those numbers b; that are greater than 1 are just the torsion coeffi-
cients 7,, . . . ,Z, of the quotient group G'/f (G).
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Applications of the reduction algorithm

Now we prove the basic theorem concerning subgroups of free abelian
groups, which we stated in §4.

Proof of Theorem 4.2. Given a free abelian group F of rank », we know
from Lemma 11.1 that any subgroup R is free of rank r << n. Consider the
inclusion homomorphism j: R— F, and choose bases g,,...,a, for R and
e, ...,e, for F relative to which the matrix of j is in the normal form of the
preceding theorem. Because j is a monomorphism, this normal form has no zero
columns. Thus j(a;) = b,e; fori = 1,...,r, where b, =1 and b,| 5,1 - - - | b,.
Since j(a;) = a,, it follows that b,e,, ... ,b,e, is a basis for R. O

Now we prove the “standard basis theorem” for free chain complexes.

Definition. A chain complex € is a sequence

4 3
c=C, 3 C,—2 C,

p_,—)...

of abelian groups C; and homomorphisms 3;, indexed with the integers, such

that 4,0 d,,, = 0 for all p. The pth homology group of € is defined by the
equation

H,(€) = kerd,/img, ..
If H,(@) is finitely generated, its betti number and torsion coefficients are called

the betti number and torsion coefficients of € in dimension p.

Theorem 11.4 (Standard bases for free chain complexes). Let {C,, 3,} be a

PP
chain complex; suppose each group C, is free of finite rank. Then for each p
there are subgroups U,, V,, W, of C, such that
C,=UeVv,ew,

where 8,(U,) C W,_, and 8,(V,) = 0 and 3,(W,) = 0. Furthermore, there
are bases for U, and W, _ , relative to which 3,: U,— W, _, has a matrix of
the form

where b,= 1 and b | b, ] - - - | b,.
Proof. Step 1. Let
Z,=kerd, and B,=1imd, ,,.

Let W, consist of all elements ¢, of C, such that some non-zero muitiple of ¢,
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belongs to B,. It is a subgroup of C,, and is called the group of weak boundaries.
Clearly

B,CW,CZ,CC,

(The second inclusion uses the fact that C, is torsion-free, so that the equation
mc, = 8, ,,d,, ,implies that d,c, = 0.) We show that W, is a direct summand
inZ,

Consider the natural projection

Z,— H,(C) — H,(€)/T,(6),

where T,(@) is the torsion subgroup of H,(@). The kernel of this projection
is W, therefore, Z,/W,= H,/T,. The latter group is finitely generated
and torsion-free, so it is free. If ¢, + W,,...,c, + W, is a basis for Z,/W,,
and d,,...,d, is a basis for W, then it is straightforward to check that
Cis- -+ sCisdy, . . . ,d;is a basis for Z,. Then Z, = V,® W,, where V, is the group
with basis ¢, . . . ,¢,.

Step 2. Suppose we choose bases e,,...,e, for C,, and e;,...,e, for

C, -, relative to which the matrix of d,: C,— C, _, has the normal form

€ -8 €4y --e,
e |5, 0 7
A
e |0 b,
€+
0 0
e, |
where b, = 1 and b, | b, - - - | . Then the following hold:

(1) ¢ 41,---,€,is a basis for Z,.
(2) e, ...,eis a basis for W, _,.
(3) bye;, ..., b is a basis for B, _,.

We prove these results as follows: Let ¢, be the general p-chain. We com-
pute its boundary; if

n !
c, = Z a.e;, then d,c, = z a;b;e].
i=1 i=1

To prove (1), we note that since b; # 0, the p-chain ¢, is a cycle if and only if
a;=0fori=1,...,.L To prove (3), we note that any p — 1 boundary d,c, lies
in the group generated by b,e,, . . . ,b,¢}; since b; # 0, these elements are inde-
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pendent. Finally, we prove (2). Note first that each of e;,...,e/ belongs to
W, _y, since b,e; = de;. Conversely, let

m
’
C’_,= zd,-e,-

i=1

bea p — 1 chain and suppose ¢, _, € W, _,. Then ¢, _, satisfies an equation of
the form

!

A, =0,¢,= 2 a;be]

for some A # 0. Equating coefficients, we see that A\d; = 0 for i > /, whence
d;=0fori> 1l Thuse;,...,eis a basis for W, _,.

Step 3. We prove the theorem. Choose bases for C,and C, _, as in Step 2.
Define U, to be the group spanned by e, . .. ,e; then

C,=U,®Z,

Using Step 1, choose V), so that Z, = V,@® W,. Then we have a decomposition
of C, such that 4,(V,) = 0 and 9,(W,) = 0. The existence of the desired bases
for U, and W, _, follows from Step 2. O

Note that W,and Z, = V, @ W, are uniquely determined subgroups of C,.
The subgroups U, and ¥, are not uniquely determined, however.

Theorem 11.5. The homology groups of a finite complex K are effectively
computable.

Proof. By the preceding theorem, there is a decomposition
CK)=U®oV,ew,

where Z, = V,® W, is the group of p-cycles and W, is the group of weak
p-boundaries. Now

H,(K) = Z,/B, =V, ® (W,/B,) = (Z,/W,) ® (W,/B,).

The group Z,/W, is free and the group W,/B, is a torsion group; computing
H,(K) thus reduces to computing these two groups.

Let us choose bases for the chain groups C,(K) by orienting the simplices
of K, once and for all. Then consider the matrix of the boundary homomor-
phism 4, : C,(K) — C, _ ,(K) relative to this choice of bases; the entries of this
matrix will in fact have values in the set {0,1,— 1}. Using the reduction algo-
rithm described earlier, we reduce this matrix to normal form. Examining Step
2 of the preceding proof, we conclude from the results proved there the follow-
ing facts about this normal form:
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(1) The rank of Z, equals the number of zero columns.
(2) The rank of W, _, equals the number of non-zero rows.
(3) There is an isomorphism

W,_ /B, ,=1/b,®Z/5,® - . -OL[b,

Thus the normal form for the matrix of d,: C, — C, _, gives us the torsion
coefficients of X in dimension p — 1; they are the entries of the matrix that are
greater than 1. This normal form also gives us the rank of Z,. On the other
hand, the normal form for 4, , ,: C,,, — C, gives us the rank of W,. The dif-
ference of these numbers is the rank of Z,/W,—that is, the betti number of X

in dimension p. O

EXERCISES

1. Show that the reduction algorithm is not needed if one wishes merely to com-
pute the betti numbers of a finite complex K; instead all that is needed is an
algorithm for determining the rank of a matrix. Specifically, show that if 4, is
the matrix of 4, : C,(K) — C, _ ,(K) relative to some choice of basis, then

B,(K) = rank C,(K) — rank 4, — rank 4, , ;.

2. Compute the homology groups of the quotient space indicated in Figure 11.1.
[Hint: First check whether all the vertices are identified.}

3. Reduce to normal form the matrix

2 6 4
4 -7 4.
4 8 4

Figure 11.1
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HOMOMORPHISMS INDUCED BY
SIMPLICIAL MAPS

If f is a simplicial map of |K| into |L|, then f maps each p-simplex o; of K onto a
simplex 7; of L of the same or lower dimension. We shall define a homomor-
phism of p-chains that carries a formal sum Zm;o¢; of oriented p-simplices of
K onto the formal sum Zm;r; of their images. (We delete from the latter sum
those simplices 7; whose dimension is less than p.) This map in turn induces a
homomorphism of homology groups, as we shall see.

As a general notation, we shall use the phrase

“f : K— L is a simplicial map”

to mean that f'is a continuous map of |K| into |L| that maps each simplex of K
linearly onto a simplex of L. Thus f maps each vertex of X to a vertex of L, and
it equals the simplicial map induced by this vertex map, as defined in §2.

Definition. Let f: K— L be a simplicial map. If v,...v, is a simplex of
K, then the points f(,), . - . , f(v,) span a simplex of L. We define a homomor-
phism f, : C,(K) — C,(L) by defining it on oriented simplices as follows:

o0, = {[ f@o),....f ()] iff(p),....f(v,)aredistinct,

0 otherwise.

This map is clearly well-defined; exchanging two vertices in the expression
[vs, . . .,v,] changes the sign of the right side of the equation. The family of

homomorphisms {f,}, one in each dimension, is called the chain map induced by
the simplicial map f.

Properly speaking, one should use dimensional subscripts to distinguish these
homomorphisms, denoting the map in dimension p by (f}),: C,(K) — C,(L).
Normally, however, we shall omit the subscript, relying on the context to make
the situation clear, just as we do with the boundary operator 3.

In a similar vein, we shall use the symbol 6 to denote the boundary opera-
tors in both K and L, in order to keep the notation from becoming cumbersome.
If it is necessary to distinguish them, we can use the notations dx and 6,.

Lemma 12.1. The homomorphism f, commutes with 3; therefore f; in-
duces a homomorphism f, - H,(K) — H,(L).

Proof. We need to show that
(*) fy([ves - - - ,0,)) = £4(B [, . - ., 0, ).
Let 7 be the simplex of L spanned by f(v,), - - - ,f (v,). We consider various cases.

Case 1. dimt = p. In this case, the vertices f(vo),...,f(v,) are dis-
tinct and the result follows at once from the definitions of f; and 6.
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Case 2. dimt=<p— 2. In this case, the left side of (*) vanishes be-
cause f(v,),.-.,f(v,) are not distinct, and the right side vanishes because

for each i, at least two of the points f(vo), . - ., f (Ui~ 1), f (Vi s 1)s ..., f(v,) are
the same.

Case 3. dim7 = p — 1. In this case, we may assume the vertices so or-
dered that f(v,) = f(v,),and f(v,), .. .,f(v,) are distinct. Then the left side of
(*) vanishes. The right side has only two non-zero terms; it equals

@), f(02), -, f(0)] = [f W), f (@), - - -, f ()]
Since f(v,) = f(v,), these terms cancel each other, as desired.

The homomorphism f, carries Cycles to cycles, since the equation dc, = 0
implies that df,(c,) = f,(3c,) = 0. And f, carries boundaries to boundaries,
since the equation ¢, = dd, ., , implies that f,(c,) = f,(d, . ,) = 8f;(d,.,).
Thus f, induces 2 homomorphism f, : H,(K) — H,(L) of homology groups. I

Theorem 12.2. (a) Let i: K— K be the identity simplicial map. Then
i, : H,(K) — H,(K) is the identity homomorphism.

(b) Let f:K— L and g:L— M be simplicial maps. Then (g f), =
24 © [, that is, the following diagram commutes:

H,(K) (& f)s H,(M)

f\ . / 2

Proof. It is immediate from the definition that i, is the identity and
(g f),; = gy ° f; as you can check. The theorem follows. [

This theorem expresses what are called the “functorial properties” of the
induced homomorphism. This phrase will be defined formally later when we
discuss categories and functors. For the present, we point out simply that the
operator H, assigns to each simplicial complex an abelian group, and the opera-
tor * assigns to each simplicial map of one complex into another, a homomor-
phism of the corresponding abelian groups. Because (2) and (b) hold, we say
that (H,,*) is 2 “functor” from the “category” of simplicial complexes and sim-
plicial maps to the “category” of abelian groups and homomorphisms.

Lemma 12.3. The chain map f, preserves the augmentation map ; there-
fore, it induces a homomorphism f, of reduced homology groups.

Proof. Let f: K — Lbesimplicial. Then¢f,(v) = 1 and ¢(v) = 1 for each
vertex v of K. Thus ¢ o f; = ¢. This equation implies that f, carries the kernel of
ex: Co(K) — Z into the kernel of ¢, : C,(L) — Z, and thus induces 2 homomor-
phism f, : Hy(K) — H,(L). O

Example 1. Consider the complexes K and 7 indicated in Figure 12.1. Their un-
derlying spaces are the circle and torus, respectively. Now H,(K) = Z; let us
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Figure 12.1

use the cycle z indicated in the figure as a generator. Similarly, H,(T) = Z @ Z; let
us use the cosets of the cycles w, = [4,B] + [B,C] + [C,A4] and z, = [4,D] +
[D,E} + [E,A] as a basis.

Now consider the simplicial maps:

fia—A g:a— A h:a— A

b—F b—B b—1I
¢c—D ce—C c—J
d—D d— A4 d—G
e—F e—E e—G
f—E f—D f—4

You can check that f;(z) is homologous to z,, that g;(z) equals w, — z,, and that
hy(z) is homologous to w, — z,. Thus g, and h, are equal as homomorphisms of
1-dimensional homology. They are also equal on 0-dimensional homology.

In general, a given homomorphism can be induced by quite different sim-
plicial maps, as the preceding example shows. This fact leads us to consider the
general question: Under what conditions do two simplicial maps induce the
same homomorphism of homology groups? Answering this question involves an
important technique, one we shall use many times. So we begin by explaining
the underlying motivation.

Given simplicial maps f,g : K — L, we wish to find conditions under which
f+(2) and g,(2) are homologous for each cycle z € Z,(K). Said differently, we
want to find conditions under which there is a function (commonly cailed D)
that assigns to each p-cycle z of K, a p + 1 chain Dz of L, such that

3Dz = g(2) — £,(2).

Let us consider an example in which this is possible. Suppose K is the
boundary of a triangle, and L consists of the sides of a triangular prism, as pic-
tured in Figure 12.2. Suppose f and g are the simplicial maps that carry K onto
the two ends of the prism, respectively. If z is the 1-cycle generating H,(K), as
indicated in the figure, it is quite easy to find a 2-chain Dz whose boundary is
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Figure 12.2

8/(2) — f,(2); we let Dz equal the sum of all the 2-simplices of L, oriented
appropriately. You can check that this 2-chain does the job.

In general, it is awkward to define D just for cycles, since that requires us
to compute the group of cycles. What proves more satisfactory is to define D as
a homomorphism on the entire chain group, because then one can define D one
simplex at a time. How might that procedure work in the present example? It is
fairly clear how to proceed. Given a vertex v of K, we define Dv to be the edge
of L that leads from f(v) to g(v), as indicated in Figure 12.3. And given the
oriented 1-simplex & of K, we define Do to be the sum of the two oriented sim-
plices that are heavily shaded in the figure, which form one side of the prism.
We proceed similarly for the other simplices of K. Since z is the sum of the
oriented edges of K, the chain Dz will be the sum of the oriented 2-simplices of
L, just as before, and dDz = g(z) — f,(2), as desired.

One can ask what sort of formula holds for D¢ when ¢ is an arbitrary
chain. The answer is clear from the definition. Given the oriented simplex o, we

compute D¢ = g;(¢) — Dv — f,(6) + Dw; see Figure 12.3 for verification.
That is,

*) (Do) = gy(e) — fy(a) — D(do).
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This same formula holds for the other simplices of K, as you can check.
This formula expresses the crucial algebraic property of the homomor-

phism D. It is the formula at which we were aiming; we make it part of the fol-
lowing definition.

Definition. Let f,g: K — L be simplicial maps. Suppose that for each p,
one has a homomorphism

D:C,(K)—C, (L)
satisfying the equation

oD + D3 = gy — f.
Then D is said to be a chain homotopy between f, and g,.

We have omitted dimensional subscripts in this formula; the following dia-
gram may make the maps involved clearer:

Coar(D)
D, la, +1
e i
l (g0,
%,

G, -1(K)
With subscripts, the formula becomes
ap+ IDp + Dp- !ap = (g#)p - (j;')p‘

This formula is more precise, but messier. We shall customarily omit dimen-
sional subscripts.

The importance of chain homotopies comes from the following theorem:

Theorem 12.4. If there is a chain homotopy between f, and g,, then the

induced homomorphisms f, and g,, for both reduced and ordinary homology,
are equal.

Proof. Let z be a p-cycle of K. Then
g4(2) — fi(z) = 8Dz 4 D3z = 8Dz + 0,

50 g,(2) and f,(z) are in the same homology class. Thus g,({z}) = f,({z}), as
desired. O

We still want to find conditions on two simplicial maps f and g under which
the induced homomorphisms f, and g, are equal. We have reduced this prob-
lem to the problem of finding conditions under which one can construct a chain
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homotopy between f, and g,. Here is one set of conditions under which this is
possible:

Definition. Given two simplicial maps f, g: K — L, these maps are said to
be contiguous if for each simplex v, . . . v, of K, the points

S @), - . f(1,).8(0), - - - ,&(V,)

span a simplex 7 of L. (The simplex = may be of any dimension from O to 2p + 1,
depending on how many of these points are distinct.)

Roughly speaking, this condition says that f and g are “fairly close”; one
can move the simplex f(s) to the simplex g(o) across some possibly larger
simplex 7 of which both are faces.

Theorem 12.5. If f, g: K — L are contiguous simplicial maps, then there
is a chain homotopy between f, and g,.

Proof. The argument we give here is a standard one; you should master it.

For each simplex s = v, . . . v, of K, let L (o) denote the subcomplex of L con-
sisting of the simplex whose vertex set is {f(v,), . - .,/ (v,),g(s), - - - ,&(,)},
and its faces. We note the following facts:

(1) L(o) is nonempty, and H,(L(s)) = O for all i.

(2) If s is a face of ¢, then L(s) C L(o).

(3) For each oriented simplex o, the chains f,(s) and g,(c) are carried

by L(0).

Using these facts, we shall construct the required chain homotopy D : C,(K) —
C, +1(L), by induction on p. For each o, the chain Do will be carried by L(o).

Let p = 0; let v be a vertex of K. Because f; and g, preserve augmentation,
e(gy(v) — f4(v)) =1 —1 =0, Thus g,(v) — f;(v) represents an element of

the reduced homology group H,(L(v)). Because this group vanishes, we can
choose a 1-chain Dv of L carried by the subcomplex L(v) such that

3(Dv) = gy (v) — f,(v).

Then dDv + Ddv = dDv + 0 = g,(v) — f,(v), as desired. Define D in this way
for each vertex of K.

Now suppose D is defined in dimensions less thar p, such that for each
oriented simplex s of dimension less than p, the chain Ds is carried by L(s), and
such that

dDs + Das = g,(s) — f,(s).

Let ¢ be an oriented simplex of dimension p. We wish to define Do so that
3(Ds) equals the chain

¢ = gy(6) — f4(c) — Dde.
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Note that ¢ is a well-defined chain; Dds is defined because do has dimension
p — 1. Furthermore, c is a cycle, for we compute

dc = d9g,(c) — df,(6) — aD(dc)
= 9gy(0) — 3fy(0) — [g)(30) — f4(30) — Da(b0)],
applying the induction hypothesis to the p — 1 chain do. Using the fact that
d 03 =0, we see that dc = 0.

Finally, we note that c is carried by L(c): Both g,(c) and f,(¢) are carried
by L(e), by (3). To show Ddg is carried by L (), note that the chain do is a sum
of oriented faces of ¢. For each such face s, the chain Ds is carried by L(s), and
L(s) C L(o) by (2). Thus Ddo is carried by L(o).

Since ¢ is a p-cycle carried by L(c), and since H,(L(s)) = 0, we can
choose a p 4+ 1 chain Do carried by L(¢) such that

Do = c = g,(6) — f,(6) — Dée.

We then define D(—o) = —D(o). We repeat this process for each p-simplex o
of K; then we have the required chain homotopy D in dimension p. The theorem
follows. [

Some students are bothered by the fact that constructing the chain
homotopy D involves arbitrary choices. They would be happier if there were a
definite formula for D. Unfortunately, there is no such neat formula, because
basically there are many possible chain homotopies between f, and g, and there
is no reason for preferring one over the other.

To illustrate this fact, let us consider the preceding proof in a particular
case. At the first step of the proof, when v is a vertex, the chain Dv is in fact
uniquely determined. Since Dv is to be a chain carried by L(v), then necessarily

Dv =0 if f(v) =g(),

Dv = [f(v).g@)] if f(v) # g(o).
In the first case, L(v) is a vertex; and in the second case, it consists of a 1-
simplex and its faces.

But at the very next step of the proof, choices can arise. Let 6 = vw be a
1-simplex, and suppose the points f (v), f(w), g(v), g(w) are all distinct, so they
span a 3-simplex 7, as indicated in Figure 12.4. The chains Dv and Dw are
indicated in the figure. How shall we define Ds? There are two obvious choices
for a 2-chain Do whose boundary is the 1-chain g,(¢) — f,(6) — Déc pictured
in Figure 12.5. One choice would consist of the front two faces of 7, oriented as
indicated; the other choice would consist of the back two faces, appropriately
oriented. There is no reason to prefer one choice to the other; we must simply
choose one arbitrarily.

Application to relative homology

Let K, be a subcomplex of K, and let L, be a subcomplex of L. Let
f : K — L be a simplicial map that carries each simplex of K, into a simplex of
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Figure 12.5
Figure 12.4

L,. We often express this by the phrase
“f(K,Ko) — (L,L,) is a simplicial map.”

In this case, it is immediate that f, maps C,(K,) into C,(L,), so that one has an
induced map (also denoted f;)

Ji: G(KK,) — C(L,L,).
This map commutes with ¢ and thus induces a homomorphism
f# : Hp(K’KO) - Hp(LaLo)'

The functorial properties stated in Theorem 12.2 carry over immediately to
relative homology.

Definition. Let f,g: (K.K,) — (L,L,) be two simplicial maps. We say
fand g are contiguous as maps of pairs if for each simplex ¢ = v,...v, of K,
the points

f@),....f(,).g,y),....g(,)

span a simplex of L, and if ¢ € K,, they span a simplex of L,.

Theorem 12.6. Let f, g: (K,K,) — (L,L,) be contiguous as maps of pairs.
Then there is for all p a homomorphism

D:C(K.K) — Gy y(L.Ls)

such that 8D + D3 = g, — f,. It follows that f, and g, are equal as maps of
relative homology groups.

Proof. The chain homotopy D constructed in the preceding proof auto-
matically maps C,(K,) into C, ., ,(L,). For if ¢ € K,, the complex L(¢) is by
definition a subcomplex of L,. Given o, the chain Do is carried by L(o); there-
fore, D maps C,(K,) into C, . ,(L,). Then D induces the required homomor-
phism of the relative chain groups. O
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EXERCISES

1.
2.

Check the assertions made in Example 1.

Consider the complex K indicated by the vertex labelling in Figure 12.6, whose
underlying space is the torus. Aithough this complex is slightly different from
the one considered earlier, the computation of the homology of the torus re-
mains the same. Let vy be the sum of all the 2-simplices of X, oriented counter-
clockwise; then < generates H,(K). The cycles

w, = [a,b) + [b,c] + [c,al and z, = [a,d] + [d,e] + le,a]

generate H, (K).
(a) Define simplicial maps f, g, &, k of K with itself such that

f:a—a g:a—a h:a—d k:a—p

b—d b—c b—p b—g
c—e c—b c—gq c—d
d—c¢ d—d d—d d—u
e—b e—e e—d e—b

(b) Compute the values of f,, g4, k., and k, on the homology classes {w,}, {z,},
and {~}.

a b (4 a
m n o
P q
d d
r s t
u v
e e
w X Y
a b ¢ a
Figure 12.6

. Use the complex in Figure 12.6, but with the letters 4 and e on the right-hand

edge reversed, to represent the Klein bottle S. Let w; and z, be as before.
(a) Define a simplicial map f: S — S such that £, ({w,}) = {z,}.
(b) Show there is no simplicial map g: S — S such that g, ({iz,}) = {w,}.

Let K be the torus, as in Exercise 2; let v be the 2-cycle indicated there. Let L

be the complex consisting of the proper faces of the 3-simplex having vertices

A, B, C, D: and let v’ be the 2-cycle 8[A4,B,C,D] of L.

(a) Show that any map of the vertices of K to the vertices of L induces a sim-
plicial map of K to L.

(b) Let f be the simplicial map carrying mand 7 to 4, pto B, band u to C, and
all other vertices to D. Compute the induced homomorphism f, : H,(X) —
H,(L), in terms of v and v'".
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(c) Let g be the simplicial map agreeing with f on the vertices of K except that
g(r) = C. Compute g,.

(d) Let h agree with g on the vertices of K except that A(u) = A. Compute A,.

5. Let f,g: (K, K,) — (L, L,) be simplicial maps. Show that if fand g are contigu-

ous as maps of X into L, and if L, is a full subcomplcx of L, then f and g are
contiguous as maps of pairs.

§13. CHAIN COMPLEXES AND ACYCLIC CARRIERS

Many of the definitions and constructions we have made within the context of
simplicial complexes also occur in more general situations. We digress at this
point to discuss this more general context. We shall use these results many
times later on. Proofs are left as exercises.

First we define the algebraic analogues to our chain groups. (We men-
tioned them earlier in §11.)

Definition. A chain complex € is a family {C,,d,} of abelian groups C, and
homomorphisms

3,:C,—C,_y
indexed with the integers, such that 3, ¢ 9, ., = 0 for all p.

If C, = 0 for p <O, then € is said to be a non-negative chain complex.
If C, is a free abelian group for each p, then @ is called a free chain complex.
The group

H,(C) =kerd,/img,,,

is called the pth homology group of the chain complex €.

If @ is a non-negative chain complex, an augmentation for € is an epimor-
phism ¢ : C, — Z such that ¢ o 3, = 0. The augmented chain complex {G, ¢} is the
chain complex obtained from € by adjoining the group Z in dimension —1 and
using ¢ as the boundary operator in dimension 0. The homology groups of the
augmented chain complex are called the reduced homology groups of the origi-
nal chain complex €, relative to the augmentation e. They are denoted either
H.({6,¢}) or H;(@). It follows readily that fI,(@) = H,(€) for p # 0, and

H,(€) = H,(C)B Z.

(See the exercises.)

An arbitrary chain complex D is said to be acyclic if H,(D) = 0 for all i.
In particular, the augumented chain complex {@,¢} is acyclic if H;({G,¢}) =
H,(@) = 0 for all i, or equivalently if H,(€) = Z and H,(€) = 0 for i # 0.
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Definition. Let @ = {C,,9,} and @' = {C,,d,} be chain complexes. A chain
map ¢ : € — @’ is a family of homomorphisms
%,:C,—C,
such that 9,0 ¢, = ¢,_, © 9, for all p.

A chain map ¢ : @ — @’ induces a homomorphism

(94),: H,(C) — H,(€).
Furthermore, the following hold:

(1) The identity map i of € is a chain map, and (i,), is the identity map of
H,(C).

(2) f ¢:@— @' and ¥ : @ — @” are chain maps, then ¥ ¢ ¢ is a chain
map, and (Y © ), = Yy © &,

If {@,¢} and {€/¢'} are augmented chain complexes, the chain map ¢ : @ — €@’ is
said to be augmentation-preserving if ¢’ o ¢, = ¢. If we extend ¢ to the (—1)-
dimensional groups by letting it equal the identity map of Z, then ¢ is called a
chain map of augmented chain complexes. It follows that an augmentation-
preserving chain map ¢ induces a homomorphism ¢, : H,(€) — H,(€’) of re-
duced homology groups.

Example 1. The chain complex
@(KvKo) = {Cp(K9Ko)76p}

defined in §9 is called the oriented chain complex of the simplicial pair (K, K,). It is
both free and non-negative, but, in general, it does not have an augmentation. (For
example, in Example 4 of §9 the entire group C,(X, K,) vanishes, so there can be no
surjective map C,(K,K,) — Z.) If X, is empty, then the complex C(K, @) = @(K)
has a standard augmentation, defined by ¢(v) = I for each vertex v of K, as we
have seen.

Example 2. If f: K — L is a simplicial map of simplicial complexes K and L, then
/, is an augmentation-preserving chain map of @(K) into @(L). However, in general
there exist augmentation-preserving chain maps ¢ : @(K) — @(L) that are not in-
duced by simplicial maps.

Definition. If ¢, ¢ : @ — €’ are chain maps, then a chain homotopy of ¢ to
¥ is a family of homomorphisms
D,:C,—C,,,
such that
941D, + D, 19, =¥, — &,
for all p.

Henceforth we shall normally omit subscripts on boundary operators and
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chain maps and chain homotopies. The preceding formula, for instance, then
assumes the more familiar form ¢'D + D0 = ¢ — ¢.

Definition. A chain map ¢: € — @’ is called a chain equivalence if there
is a chain map ¢’ : @' — € such that ¢' o ¢ and ¢ o ¢' are chain homotopic to
the identity maps of € and €', respectively. We call ¢’ a chain-homeotopy in-
verse to ¢.

We list several properties of chain homotopies; proofs are left to the
exercises.

(1) Chain homotopy is an equivalence relation on the set of chain maps
Jrom @ 10 €'.

(2) Composition of chain maps induces a well-defined composition oper-
ation on chain-homotopy classes.

(3) If ¢ and Y are chain homotopic, then they induce the same homomor-
phism in homology.

(4) If ¢ is a chain equivalence, with chain-homotopy inverse ¢', then ¢,
and (¢'), are homology isomorphisms that are inverse to each other.

(5) If $: @ — €' and  : @' — @" are chain equivalences, then y - ¢ is a
chain equivalence.

Now we investigate what all this means in the special case of augmented
chain complexes.

Lemma 13.1. Let @ and @' be non-negative chain complexes. Let
¢.¥: € — @' be chain maps; let D be a chain homotopy between them. Sup-
pose C and @' are augmented by ¢ and ¢, respectively. If ¢ preserves augmen-
tation, so does . If we extend ¢ and 10 be the identity in dimension —1, and
extend D to be zero in dimension —1, then D is a chain homotopy between the
extended chain maps.

Proof. 1If ¢, € C,, we have
3Dc, = ¢(c,) — ¥(co)
because dc, = 0. Then
0 = €' (dDc,) = €' ¢(c;) — €'Y (cy) = e(cy) — €' Y(cn)s
as desired. Furthermore, we have in dimension 0 the equation
De(c,) + aD(c,) = ¢(co) — ¥(c0),
because De(c,) = 0, and we have in dimension —1 the equation
(D) = ¢(1) —¥(1)

because both sides vanish. Thus D is a chain homotopy between the extended
chain maps. O
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Lemma 13.2. Let @ and @' be non-negative chain complexes. Let ¢ : € —
@' be a chain equivalence with chain-homotopy inverse ¢'. Suppose € and €’
are augmented by €, €' respectively. If ¢ preserves augmentation, so does ¢'.
Furthermore, ¢ and ¢' are chain-homotopy inverses as maps of augmented
complexes. Therefore, they induce inverse isomorphisms in reduced homology.

Proof. 1If D' is a chain homotopy between ¢ o ¢’ and the identity, then in
dimension 0,

0'D'cy = ¢3'(c)) —
s0

0=¢(aD'c;) = €'d¢’'(cg) — €' (c5) = ed’ () — €' (ca)-

Thus ¢’ preserves augmentation. The remainder of the statement follows from
Lemma 13.1. O

These definitions set up the general algebraic framework into which the
oriented simplicial chain groups fit as a special case. Now we seek to put into
this general context the method by which in the preceding section we con-
structed a chain homotopy. As motivation, we first consider the case where the
maps ¢ and ¥ are general chain maps, but the chain groups are the familiar
oriented simplicial chain groups. Later, we consider general chain complexes
and general chain maps.

Definition. Let K and L be simplicial complexes. An acyclic carrier from
K to L is a function & that assigns to each simplex o of K, a subcomplex ®(¢) of
L such that:

(1) ®(o) is nonempty and acyclic.
(2) If s is a face of 5, then ®(s5) C $(0).

If f: C,(K) — C,(L) is a homomorphism, we say that f is carried by & if for
each oriented p-simplex o of K, the chain f(s) is carried by the subcomplex
®(o) of L.

Theorem 13.3 (Acyclic carrier theorem, geometric version). Let & be an
acyclic carrier from K to L.

(a) If ¢ and  are two augmentation-preserving chain maps from € (K) to
@ (L) that are carried by ®, there exists a chain homotopy D of ¢ to  that is
also carried by ¥.

(b) There exists an augmentation-preserving chain map from @ (K) to
@(L) that is carried by &.

Proof. Part (a) of the theorem is proved by copying the proof of Theo-
rem 12.5; one simply replaces the subcomplex L(c) by the subcomplex & (o)
throughout. To prove (b), we proceed as follows: For each vertex v of K, define
¢(v) to be a O-chain ¢ of ®(v) such that ¢(c) = 1. This we can do because ®(v)
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is nonempty, so €: ®(v) — Z is surjective. (In fact, we can simply choose ¢(v)
to be a vertex of #(v).) Then ¢ preserves augmentation, and

3¢ (V) = 0 = ¢(dv).

Let ¢ = [v,w] be an oriented 1-simplex of XK. The chain ¢ = ¢(dc) is well-
defined because do is a 0-chain and ¢ has been defined in dimension 0. Further-
more, ¢ is carried by & (¢); for ¢(d0c) is carried by ®(v) and ®(w), both of which
are contained in (o) by (2). Finally,

€(c) = e¢(d0) = e(d0) = 0,

because ¢ preserves augmentation. Hence ¢ represents an element of H,(®(0)).
Because ® (o) is acyclic (by (1)), we can choose a 1-chain carried by &(o)
whose boundary is ¢. We denote this 1-chain by ¢ (¢); then

3¢ (c) = ¢ = ¢(d0).

For the induction step, let p > 1. Assume that if dim s < p, then ¢(s) is
defined and d¢(s) = ¢d(s). Let ¢ be an oriented simplex of dimension p; we
seek to define ¢(¢). The chain ¢ = ¢(do) is a well-defined p — 1 chain. It is
carried by ® (o), since ®(do) is carried by the union of the complexes &(s;),
where s; ranges over the p — 1 faces of ¢, and each of these complexes is con-
tained in ® (o). Furthermore, ¢ is a cycle since

dc = 3¢ (dc) = ¢d(dc) = 0.

Here we apply the induction hypothesis to the p — 1 chain de. Since ® (o) is
acyclic, we can choose ¢ (o) to be a p-chain carried by ®(¢) such that d¢ (¢) =
c. Then 3¢ (c) = $3(o), as desired.

The theorem follows by induction. [

With this proof as motivation, we now formulate an even more general
version of this theorem. In this form, all geometry disappears and only alge-
bra remains!

Definition. Let @ = {C,,5,} be a chain complex. A subchain complex D of
€ is a chain complex whose pth chain group is a subgroup of C,, and whose
boundary operator in each dimension p is the restriction of 4,.

Definition. Let {@,e} = {C,,3,,¢| be an augmented chain complex. Sup-
pose @ is free; let {0} be a basis for C,, as & ranges over some index set J,. Let
{€'¢'l = {C,,5,,¢'} be an arbitrary augmented chain complex. An acyclic car-
rier from € to €', relative to the given bases, is a function & that assigns to
each basis element ¢¢, a subchain complex & (¢3) of €, satisfying the following
conditions:

(1) The chain complex ®(¢%) is augmented by ¢’ and is acyclic.

(2) If o4 ., appears in the expression for 3,05 in terms of the preferred
basis for C, _,, then (4 _,) is a subchain complex of & (s7).
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A homomorphism f : C, — C; is said to be carried by ® if f(47) belongs to the
g-dimensional group of the subchain complex ®(o;) of €', for each a.

Theorem 13.4 (Acyclic carrier theorem, algebraic version). Let @ and €'
be augmented chain complexes; let C be free. Let ® be an acyclic carrier from
@ to €', relative to some set of preferred bases for C. Then there is an augmen-
tation-preserving chain map ¢ : € — @' carried by ®, and any two such are
chain homotopic; the chain homotopy is also carried by ®.

Proof. The proof of this theorem is just a jazzed-up version of the preced-
ing proof. The requirement that the restriction of ¢’ give an augmentation for
®(07) means that ¢’ must map the 0-dimensional group of this chain complex

onto Z; this corresponds to the requirement in the earlier version that & (¢) be
nonempty foralle. O

Application: Ordered simplicial homology

The algebraic version of the acyclic carrier theorem may seem unnecessar-
ily abstract to you. But it is indeed useful. Let us give one application now; it is
a theorem that we will use later when we study singular homology. This theo-
rem involves a new way of defining the simplicial homology groups, using or-
dered simplices rather than oriented simplices.

Let K be a simplicial complex. An ordered p-simplex of K is a p + 1 tuple
(e, - - - ,U,) of vertices of K, where v; are vertices of a simplex of K but need not
be distinct. (For example, if vw is a 1-simplex of K, then (v,w,w,v) is an or-
dered 3-simplex of K.)

Let C,(K) be the free abelian group generated by the ordered p-simplices
of K; it is called the group of ordered p-chains of K. As usual, we shall identify
the ordered p-simplex (v,, . . . ,0,) with the elementary p-chain whose value is 1
on this ordered simplex and O on all other ordered simplices. Then every ele-
ment of C,(K) can be written uniquely as a finite linear combination, with in-
tegral coefficients, of ordered p-simplices. We define 8, : C,(K) — C, _,(K) by
the formula

) 4
& (Vs - - - 50,) = Z (=1 Wor - - - Dsr -+ - 51,
i=0

Then 9, is a well-defined homomorphism; and one checks as before that
3,08,,,=0.

? Tphe chain complex €'(K) = {C",(K ),a;,} is called the ordered chain complex
of K. It is augmented by defining ¢ (v) = 1 for every vertex v of K. Although
much too huge to be useful for computational purposes, this chain complex is
sometimes quite convenient for theoretical purposes. Its homology is, surpris-
ingly enough, isomorphic to the simplicial homology of X, in a natural way. We
outline a proof of this fact, leaving the details to you.
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Lemma 13.5. Ifw * K is a cone over the complex K, thenw * K is acyclic
in ordered homology.

Proof. Define
D:C(w*K)—C,,,(w*K)
for p = 0 by the equation
D((vy, - - -»0,)) = (W,0,, . ..,0,)-

Note that it is irrelevant here whether any of the v; are equal to w. Let ¢, €
C,(w * K). We compute

01Dcy = ¢y — €' (co) W,
L+1Dc, = ¢, — Dac, if p>0.
The lemma follows: If ¢, is a cycle and p > 0, then ¢, = 3, ,Dc,; if ¢, is 2
0O-chain lying in ker €', then ¢, = 8;Dc,. O

Theorem 13.6. Choose a partial ordering of the vertices of K that induces
a linear ordering on the vertices of each simplex of K. Define ¢ : C,(K) —
C,(K) by letting

¢([v,, . ..,0,]) = (vy,...,0,)

ifve<v,< - .. <uv,inthe given ordering. Define y : C,(K) — C,(K) by the
equation

Ws,...,w,] ifthew,are distinct,

0 otherwise.

Y((Wo, - -, Wp)) = {

Then ¢ and  are augmentation-preserving chain maps that are chain-homotopy
inverses.

If K, is a subcomplex of K, then ¢ and \ induce chain maps of the relative
chain complexes that are chain-homotopy inverses.

The proof is an application of the acyclic carrier theorem; it is left as an
exercise.

It follows from this theorem that oriented and ordered homology are iso-
morphic in a rather “natural” way. To explain what we mean by “naturality,”
we need to consider how a simplicial map acts in ordered homology.

Definition. Let f : K — L be a simplicial map. Define f;: €'(K) — €' (L)
by the rule
ﬂ((vm s ,Up)) = (f(vo)s LRI 9f(vp))'

It is easy to check that f is a chain map, easier in fact than in the oriented case,
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for we need not worry whether or not vertices are distinct. Clearly f; preserves
augmentation. If f maps X, to L,, then f; induces a chain map

fi €'(KK)— €'(L,Ly),

and a corresponding homomorphism in homology.

Theorem 13.7. Let f:(K,K,) — (L,L,) be a simplicial map. Let ¢ and ¢
be as in the preceding theorem. Then the following diagram commutes:

H(K,K) L= H.(L L)

[ v. B [v.
HAC'(K.K)) L2 H(E'(L,Ly)).

Similarly, ¢, o f, = fi o ¢,.

Proof. One checks directly from the definition that f, o ¢ = ¢ o f;. Thus
the diagram already commutes on the chain level, so it commutes on the homol-
ogy level as well. It is not true that ¢ o f, = f; = ¢, since ¢ depends on a particu-
lar ordering of vertices. However, because ¢, is the inverse of ¢, it is true that

O °f& =f;°¢t' O

EXERCISES
1. If {C,¢} is an augmented chain complex, show that H ~1(@) = 0 and
H(C)®Z = H,(C).

(See the exercises of §7.) Conclude that {@,e¢} is acyclic if and only if H,(€) is
infinite cyclic for p = 0 and vanishes for p # 0.

2. Check properties (1)—(5) of chain homotopies. Only (2) and (5) require care.
3. Prove (a) of Theorem 13.3.

4. Consider Example 1 of §12. Show that although the maps g and & are not con-
tiguous, there is nevertheless a chain homotopy between g, and &, as follows:
(a) Define an acyclic carrier ® from K to L carrying both g, and A,.

(b) Define a specific chain homotopy between g, and h, that is carried by &.
(c) Define a chain map ¢ : @(K) — @(L) carried by $ that is not induced by a
simplicial map; define a chain homotopy between ¢ and k.

5. Check the details of the proof of Theorem 13.4.

6. Prove Theorem 13.6 as follows:
(a) Show ¢ and  are augmentation-preserving chain maps, and show thaty o ¢
equals the identity map of @(K).
(b) Define an acyclic carrier from €’'(X) to @'(X) that carries both ¢ o ¢ and
the identity map.



Topological Invariance of the
Homology Groups

In the preceding chapter, we defined a function assigning to each simplicial
complex K a sequence of abelian groups called its homology groups. We now
prove that these groups depend only on the underlying topological space of X.

The way to approach this problem is to study continuous maps of one
polyhedron to another, and what such maps do to the homology groups. We
show that a continuous map k4 : |K| — |L| of polyhedra induces, in a rather natu-
ral way, 2 homomorphism A, : H,(K) — H,(L) of the homology groups of the
corresponding simplicial complexes. Constructing this induced homomorphism
will prove to be a reasonably arduous task.

It turns out that when 4 is a homeomorphism of topological spaces, then &,
is an isomorphism of groups. The topological invariance of the simplicial ho-
mology groups follows.

It is not hard to see intuitively why there should be such an induced homo-
morphism. If one thinks of a homology class as a geometric object, it seems fairly
reasonable that its image under A should be a well-defined homology class. A
closed loop on the torus T, for instance, is mapped by & : T— X into a closed
loop in X. But to make this idea algebraically precise requires some effort.

We already know that a simplicial map f : IK| — |L| induces a homomor-
phism f, of homology groups. This chapter is devoted to showing that an arbi-
trary continuous map h can be approximated (in a suitable sense) by a simpli-
cial map f, and that the resulting induced homomorphism depends only on the
map h, not on the particular approximation chosen.
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SIMPLICIAL APPROXIMATIONS

In this section, we study what it means for an arbitrary continuous map to be
“approximated” by a simplicial map.

Definition. Let & : K| — |L| be a continuous map. We say that h satisfies

the star condition with respect to K and L if for each vertex v of K, there is a
vertex w of L such that

h(Stv) C Stw.

Lemma 14.1. Lez h: \K| — |L| satisfy the star condition with respect to K
and L. Choose f: K®— L™ so that for each vertex v of K,

h(Stv) C Stf(v).
(a) Given 6 € K. Choose x € Int g, and choose 7 so h(x) € Int 7. Then f

maps each vertex of ¢ to a vertex of 1.

(b) f may be extended to a simplicial map of K into L, which we also
denote by f.

(¢) If g: K — L is another simplicial map such that h(St v) C St g(v) for
each vertex v of K, then f and g are contiguous.
Proof. (a) Leto = v,...v,. Then x € St for each i, so
h(x) € h(Stv;) C St f(v).

This means that 2(x) has a positive barycentric coordinate with respect to each
of the vertices f(v;), for i = 0, ... ,p. These vertices must thus form a subset of
the vertex set of 7.

(b) Because f carries the vertices of ¢ to vertices of a simplex of L, it may
be extended to a simplicial map f: K — L.
(¢) Let g, x, and 7 be as before. Since

h(x) € h(Stv;) C St g(v;)

for i=0,...,p, the vertices g(v;) must also be vertices of 7. Hence f(v,),
s f(,), g, - . - ,8(v,) span a face of 7, so fand g are contiguous. O

Definition. Let h:|K| — |L| be a continuous map. If f: K — L is a simpli-
cial map such that
h(Stv) C Stf(v)
for each vertex v of K, then f is called a simplicial approximation to .
We think of the simplicial approximation f as being “close” to k in some

sense. One way to make this precise is to note that given x € IK|, there is a
simplex of L that contains both h(x) and f(x):
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Lemma 14.2. Let f: K — L be a simplicial approximation to h:|K|—
ILl. Given x € |K|, there is a simplex r of L such that h(x) € Intr and
f(x) e

Proof. This follows immediately from (a) of the preceding lemma. 0O

Theorem 14.3. Let h:|K|— |L| and k:|LI— M| have simplicial ap-
proximations f: K— L and g: L — M, respectively. Then g o f is a simplicial
approximation to k o h.

Proof. We know g o f is a simplicial map. If v is a vertex of K, then
h(Stv) C Stf(v)
because f is a simplicial approximation to . It follows that
k(h (Stv)) C k(Stf(v)) C Stg(f(v))
because g is a simplicial approximation to k. O

Example 1. Let K and L be the complexes pictured in Figure 14.1, whose underly-
ing spaces are homeomorphic to the circle and to the annulus, respectively. Let X*
be the complex obtained from K by inserting extra vertices, as pictured. Let & be the
indicated continuous map, where we denote h(a) by A4, and similarly for the other

vertices.
! K !
4 H
K G
L F
Y N M £ L
N
D
o\ 2
a g bt C
I Il= jl
/ X A G'
F=u
Ll
___f___;. M4 DE'
N'= o’
C=D
A'=p

Figure 14.1
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Now k does not satisfy the star condition relative to K and L, but it does satisfy
the star condition relative to X’ and L. Hence % has a simplicial approximation

S :K'— L. One such is pictured; we denote f(a) by A4', and similarly for the other
vertices.

If & :|K| — |L| satisfies the star condition (relative to K and L), there is a
well-defined homomorphism

h,:H(K)— H,(L)

obtained by setting 4, = f,, where fis any simplicial approximation to 4. It is
easy to see that the “functorial properties” are satisfied.

However, in general an arbitrary continuous map 4 : |K| — |L| will not
satisfy the star condition relative to X and L, so we cannot obtain an induced
homomorphism #4, in this way. How shall we proceed? There are two ideas
involved:

First, one shows that given A : Ikl =L, it is possible to “subdivide” K,
forming a new complex K’ with the same underlying space as K, such that 4
does satisfy the star condition relative to X' and L. (This is what we did in
Example 1 preceding.) This step is geometric in nature, and is carried out in
§15 and §16.

Second, one shows that the identity map i : [IK’| — |K| has a simplicial ap-
proximation g : K' — K, which induces a homology isomorphism g,. This step
is algebraic in nature and is carried out in §17.

The homomorphism 4, : H,(K) — H,(L) induced by # is then defined by
the equation h, = f, o g;'. It turns out that the “functorial properties” also
hold for this induced homomorphism, as we shall see in §18.

Application to relative homology

The preceding results about simplicial approximations generalize to rela-
tive homology with no difficulty:

Lemma 14.4. Let h : |K| = |L| satisfy the star condition relative to K and
L: suppose h maps |K,| into |L,|.

(a) Any simplicial approximation f: K — L to h also maps |K,| into |L,;
furthermore, the restriction of f to K, is a simplicial approximation to the
restriction of h 1o |K,.

(b) Any two simplicial approximations f, g to h are contiguous as maps
of pairs.

Proof. Let f, g be simplicial approximations to k. Given o € K,, choose
x € Int 6, and let 7 be the simplex of L such that A(x) € Int 7. Because 2 maps
IK,| into |L,|, the simplex = must belong to L,. Since both f and g map ¢ onto
faces of 7, they map K, into L,, and are contiguous as maps of pairs.
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We show f1K, is a simplicial approximation to the restriction of k to |K,l.
Let v be a vertex of K; then St(v,K,) = St(v,K) N |K,]. We conclude that

h(St(v,K,)) C h(St(v,K)) N h(KJ)
C St(f(),L) 0 |L| = St(f(v).L,),
as desired. O

EXERCISES

1. Consider the map & : IK| — || of Example 1. Determine how many different
simplicial approximations f: K’ — L to h there are. Let f and g be two such;
choose a cycle z generating H,(K'), and find a chain d of L such that ad =
Su(2) — gy(2).

2. A bomotopy between twomaps f, h: X — Yis acontinuous map F: X X I — Y,
where I = [0,1}, such that F(x,0) = f(x) and F(x,1) = h(x) for all x in X.
(a) Show that any two maps f,k : X — R" are homotopic; the formula

* F(x,t) = (1 — 1) f(x) + th(x)

is called the straight-line homotopy between them.

(b) Let X and L be finite complexes in R"; let f: K — L be a simplicial ap-
proximation to k:|K|— |L|. Show that (*) defines a homotopy between
fand &

*(c) Discuss (b) in the case where K and L are not finite. (We will return to this
case later.)
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In this section, we show that a finite complex may be “subdivided” into sim-
plices that are as small as desired. This geometric result will be used in the
present chapter in our study of simplicial homology, and again in Chapter 4
when we deal with singular homology.

Definition. Let K be a geometric complex in E/. A complex K’ is said to
be a subdivision of X if:

(1) Each simplex of K’ is contained in a simplex of K.

(2) Each simplex of K equals the union of finitely many simplices of K'.

These conditions imply that the union of the simplices of K’ equals the
union of the simplices of K—that is, that |K’| and |K| are equal as sets. The
finiteness part of condition (2) guarantees that |K'| and |K/| are equal as topo-
logical spaces, as you can readily check.
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Note that if K" is a subdivision of K’, and if K' is a subdivision of K, then
K" is a subdivision of K.

Also note that if K’ is a subdivision of X, and if K, is a subcomplex of K,
then the collection of all simplices of K’ that lie in IK,| is automatically a sub-
division of K, We call it the subdivision of K, induced by K'.

For later use, we note the following.

Lemma 15.1. Let K' be a subdivision of K. Then for each vertex w of K',
there is a vertex v of K such that

St(w,K') C St(v,X).

Indeed, if o is the simplex of K such that w € Int o, then this inclusion holds
precisely when v is a vertex of o.

Proof. 1If this inclusion holds, then since w belongs to St(w,K’), w must lie
in some open simplex of K that has v as a vertex.
Conversely, suppose w € Int ¢ and v is a vertex of ¢. It suffices to show that

Kl — St(v,K) c K| — St(w,K").

The set on the left side of this inclusion is the union of all simplices of X that do
not have v as a vertex. Hence it is also a union of simplices 7 of K'. No such
simplex 7 can have w as a vertex, because w € Into C St(v,K). Thus any such
simplex lies in K| — St(w,K"). O

Example 1. Let K consist of the 1-simplex [0,1] and its vertices. Let L consist of
the 1-simplices [1/(n + 1),1/n) and their vertices, for n a positive integer, along
with the vertex 0. Then |Z] = || as sets but not as topological spaces; L satisfies all
the conditions for a subdivision except the finiteness part of (2).

Example 2. Let I be the complex consisting of a 2-simplex ¢ and its faces. The
subdivision X of Bd ¢ indicated in Figure 15.1 can be extended to a subdivision Z’ of
Z by forming the cone w * K, where w is an interior point of ¢; the subdivision ' is
said to be obtained by “starring X from w.” This method of subdividing complexes
will prove very useful.

Now we describe the “starring” method for subdividing complexes in gen-
eral. We shall need the following lemma, whose proof is straightforward.

/\%&

Figure 15.1




§15. Barycentric Subdivision

Lemma 15.2. If K is a complex, then the intersection of any collection of
subcomplexes of K is a subcomplex of K. Conversely, if {K,} is a collection
of complexes in E’, and if the intersection of every pair Ik | 0 K| is the poly-
tope of a complex that is a subcomplex of both K, and K, then the union U K,
is a complex. O

Our method for constructing subdivisions is a step-by-step one. We de-
scribe one step in the process now.

Definition. Let K be a complex; suppose that L, is a subdivision of the
p-skeleton of K. Let s be a p + 1 simplex of K. The set Bd ¢ is the polytope of a
subcomplex of the p-skeleton of K, and hence of a subcomplex of L,; we denote
the latter subcomplex by L . If w_ is an interior point of o, then the cone w, * L,
is a complex whose underlying space is . We define L, , , to be the union of L,
and the complexes w, * L, as ¢ ranges over all p + 1 simplices of X. We show
L, . ,is a complex; it is said to be the subdivision of K'” * ¥ obtained by starring
L, from the points w,.

To verify that L, , , is a complex, we note that
w,+L| N |L] =Bdo,

which is the polytope of the subcomplex L, of both w, * L, and L,. Similarly,
if 7 is another p + 1 simplex of K, then the spaces fw, * L, and |w, * L | inter-
sect in the simplex ¢ N 7 of K, which is the polytope of a subcomplex of L, and
hence of both L, and L.. It follows from Lemma 15.2 that L, , , is a2 complex.

Now the complex L, , depends on the choice of the points w,. Often it is
convenient to choose a “canonical” interior point of o to use for starring pur-
poses. The usual such point is the following:

Definition. If ¢ = v, ... v,, the barycenter of o is defined to be the point

It is the point of Int o all of whose barycentric coordinates with respect to the
vertices of o are equal.

If o is a 1-simplex, then & is its midpoint. If ¢ is a O-simplex, then & = ¢. In
general, o equals the centroid of o, but that fact is not important for us.
Now we describe our general method of constructing subdivisions.

Definition. Let K be a complex. We define a sequence of subdivisions of
the skeletons of K as follows: Let L, = K', the O-skeleton of K. In general, if L,
is a subdivision of the p-skeleton of X, let L, , , be the subdivision of the p + 1
skeleton obtained by starring L, from the barycenters of the p + 1 simplices of
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K. By Lemma 15.2, the union of the complexes L, is a subdivision of K. It is
called the first barycentric subdivision of X, and denoted sd K.

Having formed a complex sd K, we can now construct its first barycentric
subdivision sd(sd K'), which we denote by sd*K. This complex is called the
second barycentric subdivision of K. Similarly one defines sd“K in general.

On some occasions it is convenient to have a specific description of the
simplices of the first barycentric subdivision. We give such a description now.
Let us use the notation ¢, 3 o, to mean “o, is a proper face of ¢,.”

Lemma 15.3. The complex sd K equals the collection of all simplices of
the form

G6y...0

nr

where o, 6,5 ... % O,

Proof. We prove this fact by induction. It is immediate that the simplices
of sd K lying in the subdivision of K® are of this form. (Each such simplex is a
vertex of K, and & = v for a vertex.)

Suppose now that each simplex of sd K lying in IK®} is of this form. Let 7
be a simplex of sd X lying in K * | and not in |K®|. Then = belongs to one of
the complexes ¢ * L, where ¢ is a p + 1 simplex of K and L, is the first bary-
centric subdivision of the complex consisting of the proper faces of o. By
the induction hypothesis, each simplex of L_ is of the form 6,6, ... &, where
0,503 ... >0,and o, is a proper face of 6. Then r must be of the form

66,6;...6

n’

which is of the desired form. O

Example 3. Consider the complex X indicated in Figure 15.2. Its first and second
barycentric subdivisions are pictured. Note that each of the simplices of sd X is of
the form described in Lemma 15.3. Note also how rapidly the simplices of sd"X
decrease in size as n increases. This is a general fact, which we shall prove now.

Theorem 15.4. Given a finite complex K, given a metric for |K|, and given
¢ > 0, there is an N such that each simplex of sd™K has diameter less than e.

Proof. Because K is finite, |K | is a subspace of the euclidean space E’ in
which it lies. Because |K| is compact, it is irrelevant which metric we use for
IK|. (For if d, and d, are two metrics for |K|, then the identity map of (IK1.d,) to
(Ikl.d,) is uniformly continuous. Thus given ¢ > 0, there is a > 0 such that
any set with d,-diameter less than § has d,-diameter less than ¢) Therefore we
may as well use the metric of E’, which is

Ix — yl = max|x, — y.}.

Step 1. We show that if ¢ = v,. .. v, is a simplex, then the diameter of ¢

equals the number / = max Jv; — vj], which is the maximum distance between
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the vertices of ¢. Because v;, v; € o, we know that diam o = /. We wish to prove

the reverse inequality.

We first show that |x — v} = I for every x € o. Consider the closed neigh-
borhood of v; of radius / in E’, defined by the equation

Cs)=ixlx—vl=i}

You can check that this set is convex. Therefore, since it contains all the ver-
tices of o, it must contain o. Then Ix — v,.l <lforxeo.

Now we show that |x — z| <[ for all x,z € g, so that diam ¢ </, as de-
sired. Given x, consider the closed neighborhood C(x;/). This set contains ali
the vertices of o, by the result of the preceding paragraph. Being convex, it
contains ¢. Thus |x — 2zl < I for x,z € 0.

Step 2. We show that if ¢ has dimension p, then for every z € o,

6 — 2zl = P
+

diam o.
1

For this purpose, we compute

Ivo_&l =

v = > (1/(p + Do;

i=0

P

= D1/(p + 1)) (v = v)|

i=1

= (p/(p + 1)) max|v, — v < (p/(p + 1)) diam .

A similar computation hoids for lv,- — ). Therefore the closed neighborhood
of & of radius (p/(p + 1)) diam o contains all vertices of 4. Being convex, it

contains o.
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Step 3. We show that if ¢ is a p-simplex and 7 is a simplex in the first
barycentric subdivision of ¢, then

diamr < (p/(p + 1)) diamo.

We proceed by induction. The result is trivial for p = 0; suppose it true
in dimensions less than p. Let o be a p-simplex. In view of Lemma 15.3 and

Step 1 preceding, it suffices to show that if s and s’ are faces of ¢ such that
s ', then

s — &l < (p/(p + 1)) diam.

If s equals o itself, this inequality follows from Step 2. If s is a proper face of ¢
of dimension g, then

15— 5l < (¢/(g + 1)) diam s < (p/(p + 1)) diam 0.

The first inequality follows by the induction hypothesis, and the second from
the fact that f(x) = x/(x + 1) is increasing for x > 0.

Step 4. Let K have dimension n; let d be the maximum diameter of a
simplex of K. The maximum diameter of a simplex in the Nth barycentric

subdivision of K is (n/(n + 1))Vd; if N is sufficiently large, this number is less
thane 0O

EXERCISES

1. Let K be a complex; let x, € IK].
(a) Show there is a subdivision of K whose vertex set contains x,.
*(b) Show there is a subdivision of X whose vertex set consists of x, and the
vertices of K.

2. If A and B are collections of sets, we say that B refines A if for each B € B,
there is an 4 € A such that B C 4.

A space X is said to have finite covering dimension if there is an integer m
satisfying the following condition: For every open covering A of X, there is an
open covering B of X that refines A, such that no point of X lies in more than
m + 1 elements of B.

The covering dimension of such a space X is the smallest integer m for
which this condition holds.

(a) Show that a discrete set has covering dimension 0.
(b) Show that [0,1] has covering dimension 1.
(c) Show that if X has covering dimension m, then any closed subspace 4 of X

has covering dimension at most m.

(d) Show that if X is a finite complex of dimension m, then the covering
dimension of |K| exists and is at most m. (We will see later that it is pre-

cisely m.)
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§16. THE SIMPLICIAL APPROXIMATION THEOREM

We now show that if & : |K| — |L| is a continuous map, then there is 2 subdivi-
sion K’ of K such that & has a simplicial approximation f : K’ — L. The proof
when K is finite follows easily from the results of the preceding section; bary-
centric subdivision will suffice. The general case requires a slightly more sophis-
ticated technique of subdivision, called generalized barycentric subdivision,
which we shall describe shortly.

Theorem 16.1 (The finite simplicial approximation theorem). Let K and L
be complexes; let K be finite. Given a continuous map h : |\K | = |L|, there is an
N such that h has a simplicial approximation f :sd"K — L.

Proof. Cover Ikl by the open sets 2~ ' (St w), as w ranges over the vertices
of L. Now given this open covering A of the compact metric space K, there isa
number A such that any set of diameter less than A lies in one of the elements of
A; such a number is called a Lebesgue number for A. If there were no such A,
one could choose a sequence C, of sets, where C, has diameter less than 1/n
but does not lie in any element of A. Choose x, € C,; by compactness, some
subsequence x,, converges, say to x. Now x € A for some 4 € A. Because 4 is
open, it contains C,_for i sufficiently large, contrary to construction.

Choose N so that each simplex in sd"K has diameter less than \/2. Then
each star of a vertex in sd"K has diameter less than A, so it lies in one of the sets
h="(St w). Then & : |K| — || satisfies the star condition relative to sd"K and L,
and the desired simplicial approximation exists. [J

As a preliminary step toward our generalized version of barycentric subdi-
vision, we show how to subdivide a complex K in a way that leaves a given sub-
complex K, unchanged.

Definition. Let K be a complex; let K, be a subcomplex. We define a se-
quence of subdivisions of the skeletons of K as follows: Let J, = K. In general,
suppose J, is a subdivision of the p-skeleton of K, and each simplex of K, of
dimension at most p belongs to J,. Define J,, , , to be the union of the complex
J,, all p + 1 simplices ¢ belonging to K,, and the cones & * J,, as o ranges over
all p + 1 simplices of K not in K,. (Here J, is the subcomplex of J, whose
potytope is Bd ¢.) The union of the complexes J, is a subdivision of K, denoted
sd(K/K,) and called the first barycentric subdivision of K, holding K, fixed.

As with barycentric subdivisions, this process can now be repeated. The
complex sd (sd (K/K,)/K,) will be called the second barycentric subdivision of X
holding K, fixed, and denoted by sd*(K/K,). And so on.

Example 1. Figure 16.1 illustrates the first barycentric subdivision sd K of a com-
plex K, and the first barycentric subdivision sd (K/K,) holding a complex K, fixed.
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K sdK sd(K/Kg)
Figure 16.1

To prove the general simplicial approximation theorem, iterated barycen-
tric subdivision will not suffice, because the Lebesgue number argument used in
the proof of Theorem 16.1 requires the space |K| to be compact. For a general
complex K, the number A that measures how finely a simplex must be subdi-
vided may vary from one simplex to another. Thus we must generalize our
notion of barycentric subdivision to allow for this possibility:

Definition. Let K be a complex. Let NV be a function assigning to each
positive-dimensional simplex o of K, a non-negative integer N(s). We construct
a subdivision of K as follows: Let L, = K'°. In general, suppose L, is a subdivi-
sion of the p-skeleton of K. For each p + 1 simplex o of X, let L, be the sub-
complex of L, whose polytope is Bd 0. Form the cone & * L,; then subdivide this
cone barycentrically N(o) times, holding L, fixed. Define L, , , to be the union
of L, and the complexes

sd™(@+ L,/L,),

as o ranges over all p + 1 simplices of K. Then L, . , is a subdivision of the
p + 1 skeleton of K. The union of the complexes L, is a subdivision of K. It is
called the generalized barycentric subdivision of K corresponding to the function
N(o).

The remainder of this section is devoted to showing that this generalized
barycentric subdivision is adequate to prove the general simplicial approxima-
tion theorem. The techniques involved in the proof will not be used later in the
book, so the reader may skip the details and simply take the theorem on faith
if desired.

Keep Figure 16.1 in mind as we compare the complex sd(K/K,) with the
complex sd K in general:

Lemma 16.2. Let K, be a subcomplex of K.
(a) If 7 is a simplex of sd(K/K,), then r is of the form

T=0y...6.0...0,

where s = v, . ..U, is a simplex of K,, and ¢,, . . . ,0, are simplices of K not in
K, ando,y ...5 0,5 s
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(b) Either v,...v,o0r §,...5, may be missing from this expression. The
simplex 7 is disjoint from |K,| if and only if v, . . . v, is missing; in this case, 7 is
a simplex of sd K.

Proof. (a) The result is true if 7 is in J,. In general, let = be a simplex of
J, .y not in J,. Then either = belongs to K,, in which case 7 is of the form
U,...U,, or 7 belongs to one of the cones ¢ * J,. Now each simplex of J, has the
form 6,...6,0,...0,, by the induction hypothesis, where ¢ $ 5,. Then 7 has
the form 66, ...6,0, . . . U,, as desired.

(b) Let r=4,...6,0,...0, If v,...0, is not missing from this expres-
sion, then 7 intersects IK,| in v, . .. v, at least. Conversely, if the set 7 N IK,| is
nonempty, then it contains a face of 7 and hence a vertex of r. Since none of the
points §,,...,4,1s in |, the term Uo. ..U, cannot be missing. [J

To prove the general simplicial approximation theorem, we need to show
that given an arbitrary continuous map k : |k| — |L|, there is a subdivision K’
of K such that A satisfies the star condition relative to K’ and L. This is equiva-
lent to the statement that if A is the open covering of K defined by

A = {1 (St(w,L)) | w a vertex of L},
then there is a subdivision of K’ of K such that the collection of open stars
B = {St(v.K') |v a vertex of K'}

refines A. (Recall that a collection B refines a collection A if for each element
B of B, there is an element 4 of A that contains B.)

To make the proof work, we actually need to prove something slightly
stronger than this. We shall construct a subdivision K’ of X fine enough that
the collection {St(v,K’)} of closed stars in K’ refines the collection A.

The following lemma gives the crux of the argument; it will enable us to
carry out the induction step of the proof.

Lemma 16.3. Let K = p * B be a cone over the finite complex B. Let A
be an open covering of K. Suppose there is a function assigning to each vertex
v of the complex B, an element A, of A such that

St(v,B) C A..

Then there is an N such that the collection of closed stars of the subdivision
sd"(K/B) refines A, and furthermore such that for each vertex v of B,

St(v,sd¥(K/B)) C A,.

Proof. We assume that |B] lies in R™ X 0 for some m, and that p=
©,...,0,0)inR" X R. Let n = dim K.

Step 1. In general, as N increases, the maximum diameter of the sim-
plices of sd"(K/B) does not go to zero. For if ¢ has a positive-dimensional face
in B, that face never gets subdivided. However, it is true that as NV increases, the
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simplices that intersect the plane R™ X 0 lie closer and closer to this plane.
More generally, we show that if K’ is any subdivision of K that keeps B fixed,
and if the simplices of K’ that intersect R™ X 0 lie in the strip R™ X [0,¢], then
any simplex r of sd(K'/B) that intersects R™ X O lies in the strip R™ X
[0,ne/(n + 1)].

The simplex 7 is of the form é,...6,0,...0v,, 25 in Lemma 16.2; assuming
7 intersects R™ X 0 but does not lie in it, neither 6, . . . &, nor v, . . . v, is missing
from this expression. Each vertex v; lies in R™ X 0.

Consider the vertex §; of 7. The simplex ¢; of K’ intersects R™ X 0 because
o; has v,...v, as 2 face; therefore o; C R™ X [0,¢]. Let w,,. .. ,w, be the ver-
tices of ¢;, and let = : R™ X R — R be projection on the last coordinate. Then
w(w) <efori=0,....k; and #{(w;) = O for at least one i. We compute

k

7(6;) = Z (k-li- 1)-;r(w,.) S(k f_ l)e.

i=0

Thus each vertex of 7 lies in the set R™ X [0,(n/(n + 1))e]. Because this set is
convex, all of 7 lies in it.

Step 2. For convenience, let K, denote the complex sd"(K/B). We show
there is an integer N, such that if N = N,, then for each vertex v of B,

*) St(v.Ky) C A,
This is part of what we want to prove.
We are given that St(v,B) C 4,. We assert that we can choose 6 > 0
so that
St(v.K) N (R" X [03]) C 4,

for each v € B. See Figure 16.2. To prove this assertion, consider the continu-
ous map p: IBl x I— |K| defined by p(x,f) = (1 — #)x + tp. The map p car-
ries St(v,B) X I onto St(v,K), because K is a cone over B. Furthermore, p
preserves the last coordinate, since

7p(x,1) = (1 — )w(x) + t=(p)
=(0—=8-041-1=x(x0).

St(w,ByXI

AULLLILIU LU I
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Now St(v,B) is a compact set. The “tube lemma” of general topology enables
us to choose & such that

St(v,B) X [0,8] C p~'(4,).

(More directly, one can cover St(v,B) X 0 with finitely many sets of the form
U, X [0,8,], each lying in p~'(A4,); then choose & = min§,.) It follows that
the set

p (St (v,B) X [0,8]) = St(v,K) N (R™ X [0,3])

lies in A,,, as desired.

Now we can choose N,. Applying Step 1, we choose N, so that for N = N,,
each simplex of K that intersects R” X 0 lies in R™ X [0,6]. Then if v is
a vertex of B, the set St(v,K) lies in R™ X [0,5]. Since this set also lies in
St(v,K), it lies in 4,, as desired.

Step 3. The integer N, is now fixed. Consider the complex Ky ., ,. Let P
be the union of all simplices of Ky, . ; that intersect B. Let Q be the union of all
simplices of Ky, ., that do not intersect B. See Figure 16.3. We prove the fol-
lowing: If N = N, + 1, then for each vertex w of K, lying in P but not in |,
there is an element 4 of A such that

** St(w,Ky) C A

We prove (**) first in the case N = N, 4+ 1. Now P is the polytope of a
subcomplex of Ky_ . , by definition. If w is a vertex of Ky, . , lying in P but not
in B, then w = & for some simplex o of K, that intersects B but does not lie in
B, by Lemma 16.2. See Figure 16.4. Let v be a vertex of o lying in B. Because w
lies in Int ¢, we have

St(w.Ky, +1) C St(v,Ky,)
by Lemma 15.1. Then
St(w.Ky, +1) C St(v.Ky) C 4,
by (*) of Step 2.

Figure 16.3 Figure 16.4
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Now we prove (**) in the case N> N, + 1. If w' is a vertex of K, lying
in P, then w' € St(w,Ky, ,,) for some vertex w of Ky ,, lying in P. Then

St(w',Ky) C St(w,Ky, +,), by Lemma 15.1. Then (**) follows from the result
of the preceding paragraph.

Step 4. We now complete the proof. Let A be a Lebesgue number for the
open covering A of |K]. Consider the space Q. It is the polytope of a subcom-
plex J of Ky, , ;- In forming the subdivision Ky, + 2» €ach simplex of J is subdi-
vided barycentrically, by the preceding lemma. Thus Ky, , , has sd J as a sub-
complex. Repeating the argument, we see that in general Ky . ; . » has sd™J as
a subcomplex.

Choose M large enough that each simplex of sd™J has diameter less than
A/2. Then if N= N, + 1 + M, and if w is a vertex of K, not in P, we show
that there is an element 4 of A such that

(***) St(w.Ky) C 4.

For since w is not in P, each simplex of K, having W as a vertex must lie in @
and hence must be a simplex of sd™J. Therefore St(w,K) has diameter less
than A, so it lies in an element of A.

The combination of (*), (**), and (***) proves the lemma. [J

Theorem 16.4. Let K be a complex; let A be an open covering of |K|.
There exists a generalized barycentric subdivision K' of K such that the collec-
tion of closed stars {St(w,K")}, for w a vertex of K', refines A.

Proof. We proceed step-by-step. Initially, we let L, = K%, and for each
point v of K%, we let 4, denote an element of A that contains v.

In general, we assume that a subdivision L, of K¥ is given, and that a
function f, is given assigning to each vertex v of L, an element 4, of A such
that

St(v,L,) C A4,

We extend L, to a subdivision L, , , of the p + 1 skeleton of K and we extend f,
to a function f, , ;, in a2 manner we now describe.

We proceed as follows: For each p + 1 simplex ¢ of K, the space Bd ¢ is the
polytope of a subcomplex L, of L, Consider the cone 6 * L,. By the preceding
lemma, there is an integer N (o) such that if we set

C(o) =sd™ (@=L, /L),
then the following conditions hold: For each vertex v of C(s)belonging to L,,
St(,C(0)) C 4.,

and for each vertex w of C(o) not in L,, there exists an element A4 of A such
that

St(w,C(0)) C A.

We define L, , , to be the union of L, and the complexes C(0), as ¢ ranges over
the p 4+ 1 simplices of K.
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__If v is a vertex of L, then §f(v,Lp +1) is the union of the sets
St(v,L,) and St(v,C(0)), as o ranges over the p + 1 simplices of K containing
v. Each of these sets lies in A4,, by construction.

On the other hand, if w is a vertex of L, , ; not in L, then w lies interior to
some p + 1 simplex ¢ of K| so that

St(w,L, ,,) = St(w,C(0)).

The latter set is contained in some element A of A; we define f, . ,(w) to be
such an element A, of A. Then the induction step is complete.

The theorem follows. The complex K’ is defined to be the union of the
complexes L, and the function f(v) = A4, from the vertices of K' to A is
defined to be the union of the functions f,. The function f satisfies the require-
ments of the theorem. For let v be a vertex of K'. Then v is a vertex of L, for
some p, and

§(U’Lp + k) Cc fp + k(v) =f(U) =4,
for all k = 0, from which it follows that St(v,K’) C 4,. O

Theorem 16.5 (The general simplicial approximation theorem). Let K and
L be complexes; let h : |[K| — |L| be a continuous map. There exists a subdivi-
sion K' of K such that h has a simplicial approximation f : K' — L.

Proof. Let A be the covering of |K| by the open sets 2~'(St(w,L)), as w
ranges over the vertices of L. Choose a subdivision K’ of K whose closed stars
refine A. Then h satisfies the star condition relative to X’ and L. O

EXERCISES

1. (a) Using Theorem 16.1, show that if K and L are finite and dim K = m, then
any continuous map k : IK| — |L| is homotopic to a map carrying K into
L'™, where ['™ is the m-skeleton of L. [Hint: See Exercise 2 of §14.]
We shall consider the non-finite case later.
(b) Show that if h:S™— S" and m < n, then h is homotopic to a constant
map. [Hint: Any map f: X — S" — p is homotopic to a constant.]
2. Let k:|K| — |L| be 2 continuous map. Given € > 0, show that there are subdi-
visions K’ and L' of K and L, respectively, and a simplicial map f:K'— L',
such that | f(x) — h(x)l < € for all x in |K].

3. Show that if X is 2 complex of dimension m, then |K| has covering dimension at
most m. (See the exercises of §15.)

a5

§17. THE ALGEBRA OF SUBDIVISION

Now we explore some of the algebraic consequences of subdivision, determining
what subdivision does to the homology groups. We prove that if X is any com-
plex and if X' is a subdivision of X, then there is a2 uniquely defined chain map
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A C(K) — C(K') called the subdivision operator that induces an isomor-
phism of homology groups. Furthermore, if g:K‘— K is any simplicial ap-
proximation to the identity map of |k|, then X and g, are chain-homotopy
inverse to each other, so g, is also an isomorphism.

Lemma 17.1. Let K' be a subdivision of K. Then the identity map
i : |kl — |K| has a simplicial approximation
g:K'— K
Let 7 be a simplex of K' and let ¢ be a simplex of K, if r C o, then g(7) C o.
Proof. By Lemma 15.1, the map i has a simplicial approximation g.

Given 7 C ¢, let w be a vertex of =. Then w lies interior to ¢ or to a face of ¢.
Then g maps w to a vertex of o, by Lemma 14.1. O

Definition. Let K’ be a subdivision of K. If o is a simplex of X, let K ()
denote the subcomplex of K consisting of ¢ and its faces, and let K'(s) denote
the subcomplex of X' whose polytope is o.

Theorem 17.2 (The algebraic subdivision theorem). Let K’ be a subdivision
of K. There is a unique augmentation-preserving chain map
AMCK)—C(KY)

such that \(¢) is carried by K'(¢) for each ¢. If g: K' — K is a simplicial
approximation to the identity, then \ and g, are chain-homotopy inverses, so
Ay and g, are isomorphisms.

We call A the subdivision operator.

Proof. Step 1. We show first that the theorem holds if K' satisfies the
condition that for each o € K the induced subdivision K'(¢) of ¢ is acyclic. We
shall use Theorem 13.3, the geometric version of the acyclic carrier theorem.
We define acyclic carriers as follows:

‘I’CK'—é—A-‘—'.-K':)i’

The carriers ¥ and A are easy to define; we set
¥ (0) = K (o),
A(e) = K'(0),
for each ¢ € K. The complex K (o) is acyclic because it consists of a simplex and
its faces, and the complex K'(s) is acyclic by hypothesis. The inclusion con-
dition for an acyclic carrier is immediate; if s < o, then K(s) C K(s) and
K'(s) C K'(0)-
To define © and ®, we proceed as follows: For each simplex 7 € K, let ¢, be
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the simplex of K of smallest dimension such that r C o,. Then if ¢ is a face of 7,
we have ¢, C ¢,. For since both ¢, and ¢, contain ¢, their intersection also con-

tains #; because ¢, has minimal dimension, it must equal this intersection. We
define

8(7) = K(s,),
&(7) = K'(0.);

both complexes are acyclic. The inclusion condition follows from the fact that if

t L 7, then ¢, C o,. See Figure 17.1, which illustrates these carriers in the case
where K’ = sd K.

By Theorem 13.3, there exist chain maps A and 6
A '
GAK) = CK)

preserving augmentation and carried by A and O, respectively.

Now the identity map C,(K) — C,(K) is carried by ¥ (trivially). We show
that @ o X is also carried by ¥; whence it follows that 6 ¢ X is chain homotopic to
the identity. If & is a simplex of K, then A(s) is a chain of K'(s). Now each
simplex 7 in the subdivision X'(¢) of ¢ is contained in &, whence ¢, equals ¢ or a
face of ¢. In any case, if r appears in the chain A(s), then 6(7) is carried by
K(s,) C K(o). Thus 8(\(s)) is a chain of K(s), so 0 - A is carried by V.

The identity map C,(K') — C,(K’) is carried by &; for 7 is contained in o,
by definition, so that 7 is a simplex of K’ (o,). We show that A o 8 is also carried
by &, whence ) o 6 is chain homotopic to the identity. If r € K’, then 8(7) is
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carried by the complex K (s,) consisting of o, and its faces, so it equals a sum of
oriented faces of o,. Now if s is any face of ¢,, then A(s) is carried by K'(s) C
K'(0,). 1t follows that A\0(7) is carried by K'(s,) = ®(7), as desired.

The preceding discussion is independent of the choice of the particular
chain maps 6 and A. One choice for 8 is the chain map g,; it follows from the
preceding lemma that g, is carried by ©. Therefore, g, and A are chain-homo-
topy inverses.

We show that X is unique. Suppose A\’ is another augmentation-preserving
chain map carried by A. Then by Theorem 13.3, there is a chain homotopy D,
also carried by A, between X and N'. Note that if ¢ is a p-simplex, then A (¢) =
K'(0) is a complex of dimension p. Since D(s) is a p + 1 chain carried by
K'(0), it must be zero. Thus D is identically zero; the equation 4D + D3 =
A — X' now implies that A = X',

Step 2. The theorem holds if K’ = sd K. For in this case, given ¢ € K, the
complex K'(¢) is a cone. In fact, K'(¢) equals o » J, where J is the first barycen-
tric subdivision of Bd 0. And we know from Theorem 8.2 that cones are acyclic.

This is a place where barycentric subdivisions are essential to the proof.

Step 3. The theorem is true if K’ = sd"K. In view of Step 1, it suffices to
prove that for any simplex ¢ of K, the complex sd"K (o) is acyclic. This follows
from Step 2, which implies that for any complex L,

H(L) = H(dL) = H.(sd’L) = - - - .
In particular, if L is acyclic, so is sd"L.

Step 4. The theorem holds in general. In view of Step 1, it suffices to
prove that if ¢ € K and if K’ is any subdivision of K, then K'(¢) is acyclic.

Let L = K(¢) and L' = K’(0). Then L is acyclic, and we wish to prove that
L' is acyclic. We proceed as follows: Let g: L' — L be a simplicial approxima-
tion to the identity. Choose N so that the identity map of IL| to itself has a
simplicial approximation f : sd”L — L’; for this we need the (finite) simplicial
approximation theorem. Proceeding similarly, choose M so the identity has a
simplicial approximation k : sd™(L’) — sd"L.

sdM(L")

Now we note that g o fis a simplicial approximation to the identity, so that by
Step 3, (g °f)s = £, ° f, is an isomorphism. For the same reason, (f o k), =
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f, ° k, is an isomorphism. The first fact implies f, is injective and the second
implies f, is surjective. Thus f, is an isomorphism. Finally, because g, o f, and
f, are isomorphisms, so is g,. Thus L’ is acyclic. O

Definition. In the special case where K’ is the first barycentric subdivision
of K, we denote the subdivision operator A by

sd : C,(K) — C,(sd K)

and call it the barycentric subdivision operator. (Here we abuse notation, letting
sd denote both the “algebraic” and “geometric” subdivision operators.)

There is an inductive formula for the operator sd. It is the following:
sd(v) = v,
sd (o) = [5,5d(d0)],

where the bracket notation has the meaning we gave it in §8. We leave this for-
mula for you to check.

Application to relative homology

We can generalize the preceding theorem to relative homology with no
difficulty:

Theorem 17.3. Let K, be a subcomplex of K. Given the subdivision K' of
K, let K, denote the induced subdivision of K, The subdivision operator \ in-
duces a chain map

A C(K.K,) — C(K',Ky).

If g: (K'.K}) — (K,K,) is any simplicial approximation to the identity, then X
and g, are chain-homotopy inverse to each other.

Proof. We check that each of the acyclic carriers defined in Step | of the
preceding proof preserves the subcomplexes involved. Certainly if ¢ € K|, then
¥(s) = K(¢) and A(o) = K'(o) are subcomplexes of K, and K, respectively.
On the other hand, if 7 € K, then 7 is contained in some simplex ¢ of K,; it
follows that the simplex o, of X of smallest dimension containing = must belong
to K. Thus if 7 € K, then ©(r) = K(0,) and () = K'(0,) are subcomplexes
of K, and K, respectively.

It follows that the chain maps A and 6 carried by A and ©, respectively,
induce chain maps on the relative level, and that the chain homotopies of 8 o \
and X o 8 to the respective identity maps induce chain homotopies on the rela-
tive level as well. Since one choice for 8 is the map g,, it follows that g, and A
are chain-homotopy inverses on the relative level. [
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EXERCISES

1. Let XK' be a subdivision of K; let A : C,(K) — C,(K') be the subdivision opera-
tor. Let g: K' — K be a simplicial approximation to the identity. Show that
& © A equals the identity map of C,(X).

2. Let K and K’ be the complexes pictured in Figure 17.2, whose common under-
lying space is a square.
(2) Find a formula for the subdivision operator X : C,(K) — C,(K").
(b) Find two different simplicial approximations g, g’ : K’ — X to the identity.
Conclude that the chain equivalence 8 constructed in the proof of Theorem
17.2 is not unique.
(c) Check that A o g, does not equal the identity on the chains of K'.
3. (a) Show that the inductive formula for the barycentric subdivision operator sd

defines an augmentation-preserving chain map that is carried by A.
(b) Compute sd ¢ for the case of a 1-simplex and a 2-simplex.

Figure 17.2

§18. TOPOLOGICAL INVARIANCE OF THE
HOMOLOGY GROUPS

In this section, we achieve the basic goal of this chapter, to prove the topologi-
cal invariance of the simplicial homology groups.

Definition. Let K and L be simplicial complexes; let h: 1Kl — |L| be a
continuous map. Choose a subdivision K’ of K such that i has a simplicial
approximation f : K’ — L. Let A : @(K) — @ (K") be the subdivision operator.
We define the homomorphism induced by 4,

h,: H(K) — H/(L),
by the equation &, = f, o A,.
Note that once K’ has been chosen, the homomorphism A, is independent
of the particular choice of the simplicial approximation f : K’ — L to h. For any

two such simplicial approximations are contiguous.
Note also that if g: K’ — K is a simplicial approximation to the identity
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map i of K| with itself, then \, and g, are inverse to one another. Therefore,
one could just as well define

hy=/fy° (g*)-l'

We use this fact to show that h, is independent of the choice of the subdivision
K'. Suppose K" is another subdivision of X such that k has a simplicial approxi-
mation mapping K” into L. We show that if k, is defined using the subdivision
K", the result is the same as if one uses K'.

The proof is especially easy in the case where the identity map of |K| has a
simplicial approximation k : K” — K, as in the following diagram:

K"&K'———f"“"(

—

Then since g o k and f o k are simplicial approximations to the identity and to
h, respectively, the homomorphism #,, defined using the subdivision K", equals
the composite

(f° k)t ° (g°k);l = (fx °ka=) °(gt °kt)-l =ft °g;l-

The result is thus the same as when A, is defined using the subdivision K'.
The general case is proved by choosing a subdivision K" of K such that the
identity map has simplicial approximations

k:K"—K' and kK" —K".

Then using K" to define h, gives the same result as using K’ or K”.

We should remark that, properly speaking, the homomorphism &, depends
not only on the spaces X = |K| and Y = |L| and the continuous map h: X — Y,
but also on the particular complexes K and L whose polytopes are X and Y, re-
spectively. If M and N are other complexes whose polytopes are X and Y,
respectively, then h also induces 2 homomorphism

h, : H(M)— H/N).

One should really use a notation such as (hy;), and (k). to distinguish
between these homomorphisms. We shall abuse terminology, however, and use
the simple notation k,, relying on the context to make the meaning clear. We
return to a further discussion of this point later, when we define the homology
of a triangulable space (§27).

Theorem 18.1 (The functorial properties). The identity map i :|K| — |K|
induces the identity homomorphism i, : H(K) — H,(K). If h:|k|— |L| and
k:\L| — |M| are continuous maps, then (k o h), = k, o h,. The same results
hold for reduced homology.

Proof. That i, is the identity is immediate from the definition. To check
the second statement, choose f,: L' — M and g,: L' — L as simplicial approxi-
mations to k and i, respectively. Then choose f,: K' — L' and g,: K’ — K as
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simplicial approximations to 4 and iy, respectively. We have the following dia-
gram of continuous maps and simplicial maps:

TAEA Y

K L M
go]/fo
LI

e

k N
Now £, o f, is a simplicial approximation to k e h; therefore,

(koh)y = (foo fi)uo(8)i"

by definition. Since g, © f; is a simplicial approximation to A, we have

h, = (& °f;)* ° (gl);‘ and k, = (ﬁ))# ° (go):”

again by definition. Combining these equations and applying Theorem 12.2, we
obtain the desired result,

(koh),=kyoh, O

Corollary 18.2 (Topological invariance of homology groups). If h: |K|—
ILl is a homeomorphism, then h, : H,(K)— H,/(L) is an isomorphism. The
same result holds for reduced homology.

Proof. Let k:|Ll — IK]| be the inverse of k. Then h, o k, equals (i),
and k, o h, equals (i) ,. Thus k, o k, and k, o h, are isomorphisms, so A, is
an isomorphism. [J

Application to relative homology

We have proved the topological invariance of the (absolute) homology
groups. Can we do the same for the relative homology groups? Yes. Everything
we have done in this section goes through for relative homology with no diffi-
culty. One simply replaces each occurrence of a complex by the appropriate
pair consisting of a complex and a subcomplex, and applies Theorems 12.6,
14.4, and 17.3 freely. We restate the preceding theorems in this situation.

Theorem 18.3. The identity map i of (IK|,|K,|) with itself induces the
identity homomorphism in relative homology. If

AKLIKD 2 dZLiLd) % (vliMy)

are continuous maps, then (k o h), = k, o h, in relative homology. If h is a
homeomorphism of \K| with |\L| that maps |K,| onto |L,\, then h, is an isomor-
phism in relative homology.
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Homomorphisms Induced by Homotopic Maps

EXERCISES

. If 4 C X, a retraction r: X — A is a continuous map such that r(a) = a for

eacha e A.

(a) If r: X — A is a retraction and X is Hausdorff, show A is closed in X.

(b) Let r: Kl —IK,] be a retraction, where K, is a subcomplex of K. Show
ryt Hy(K) — H,(K,) is surjective and the homomorphism j, induced by
inclusion j : IK,| — IK| is injective.

(c) Show there is no retraction r: B> — S"~ .

. (a) Show there is a retraction of the Klein bottle S onto the imbedded circle 4

pictured in Figure 18.1, but no retraction of S onto the circle C.
(b) Show there is no retraction of the projective plane onto the imbedded circle
C pictured in Figure 18.2.

. Determine whether there are retractions of the torus onto the tube 4 pictured

in Figure 18.3, onto the disc B, and onto the circle C.

' PZ
A

Figure 18.2
Figure 18.1

Figure 18.3
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§19. HOMOMORPHISMS INDUCED BY
HOMOTOPIC MAPS

We now introduce the important concept of homotopy, which was mentioned
earlier in the exercises. Throughout, let I denote the closed unit interval [0,1].

Definition. If X and Y are topological spaces, two continuous maps

h,k: X — Y are said to be homotopic if there is a continuous map

F:XxXI-Y,
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such that F(x,0) = h(x) and F(x,1) = k(x) for all xe X. If h and k are
homotopic, we write & =~ k. The map F is called a homotopy of % to k. We think
of F as a way of “deforming” 4 continuously to %, as ¢ varies from 0 to 1.

We shall prove that if 4, k : |K| — |L| are homotopic, then the homology
homomorphisms 4,, k, they induce are the same. This leads to the important

result that the homology groups are invariants of the “homotopy type” of a
space.

Example 1. Let X = S'. Then H,(X) is infinite cyclic; choose the cycie z generat-
ing H,(X) indicated by the arrow in Figure 19.1. Let T denote the torus; let
h, k : X — T be the maps indicated in Figure 19.1. These maps are clearly homo-
topic, for one can “push & around the ring” until it coincides with k. It is geometri-
cally clear also that the cycles A,(z) and k,(z) are homologous. Indeed, the 2-chain
d obtained by chopping the right half of the torus into triangles and orienting them
appropriately satisfies the equation 3d = h,(z) — k,(z). Since z represents a gener-
ator of H,(X), it follows that in this case at least, h, = k,.

Figure 19.1

We now prove in general that if % == k, then h, = k,. We need two pre-
liminary results. The first is a basic fact about the topology of |K| X I, which
we shall prove in the next section:

The topology of the product space \K| X I is coherent with the subspaces
¢ X 1 foreo e K.

The second concerns the fact that [K| X I is a polyhedron:

Lemma 19.1. If K is a complex, then |K| X I is the polytope of a complex
M, such that each set ¢ X 1 is the polytope of a subcomplex of M, and the sets
o X 0 and ¢ X | are simplices of M, for each simplex ¢ of K.

Proof. We have |K| C E’ for some J. Then |K| X I C E’ X R. We shall
subdivide |K| X I into simplices by a variant of the starring procedure used in
defining barycentric subdivision.

For p = 0, let us define

X, = (kI x0) U (Kl x 1) U (IK?] X I).

We proceed inductively to subdivide X, into simplices. Consider the case p = 0.
The space (IKl X 0) U (IKl X 1) is the polytope of a complex consisting of all
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simplices of the form ¢ X 0 and ¢ X 1, for o € K. The space |K®| X I is the
polytope of the complex consisting of all 1-simplices of the form v X I, for
v € K, and their vertices. Their union is a complex M, whose polytope is X,.
In general, suppose M, _ , is a complex whose polytope is X, _,, such that
each set s X 1, for s a simplex of K of dimension less than p, is the polytope of a
subcomplex of M, _, Let dim ¢ = p, and consider the set ¢ X I. Now let

Bd(o XI)=(e XI)— (Into X Int 1)
= (Bdo) XU (e X0 U (6 X1).

Since Bd ¢ is the union of simplices s of K of dimension p — 1, Bd(¢ X I)is the
polytope of a subcomplex M, of M, _ ,. It is finite because Bd (¢ X I) is com-
pact. Let w, denote the point (¢,%2) € ¢ X I. Then the cone w, * M_ is a com-
plex whose polytope is o X 1. The intersection of lw, * M| and IM, _,| is the
polytope of a subcomplex of each of them.

Define M, to be the union of M, _, and the cones w, * M, as o ranges over
all p-simplices of K. Finally, define M to be the union of the complexes M, for
all p.

Now M is a complex whose underlying space consists precisely of the points
of the space |K| X I. However, it is not at all obvious that the spaces |M| and
IK| X I are equal as topological spaces. To prove that result, we need the fact
about the topology of |K| X I that was just quoted.

We know that the topology of |K| X 1 is coherent with the subspaces o X I,
for ¢ € K. On the other hand, the topology of M| is coherent with the sub-
spaces s, for s € M. Now if Cis closed in |K| X I, then C N (¢ X I) is closed in
¢ X I. If 5 is a simplex of M lying in ¢ X I, then s is a subspace of ¢ X I (both
are subspaces of E’ X R, being compact). Hence C N s is closed in s. It follows
that C is closed in M.

Conversely, if C is closed in |M], then C N s is closed in s for each s & M.
Because ¢ X I is a finite union of simplices s of M, the set C N (¢ X 1) is
closed in o X I. Thus g is closed in [K| X 1. O

Example 2. If K is the complex consisting of a 1-simplex and its faces, then
Ikl X I is by the procedure of the preceding lemma subdivided into the complex
pictured in Figure 19.2. If it is the complex consisting of a 2-simplex and its faces,
then |K!| X I is subdivided into the complex pictured in Figure 19.3.

IKI X1

Figure 19.2
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KIXd

Figure 19.3

Theorem 19.2. If h, k: |K| — |L| are homotopic, then h,, k, : H,(K)—
H,(L) are equal. The same holds for reduced homology.

Proof. Let K be a complex. Let M be a complex whose underlying space
is [K| X 1, such that for each ¢ € K, both ¢ X 0 and o X 1 are simplices of M,
and ¢ X I is the polytope of a subcomplex of M.

Let F:|K| X I— |L| be the homotopy of & to k. Let i, j: [K| — |K| X I'be
the maps i(x) = (x,0) and j(x) = (x,1), as pictured in Figure 19.4. Then { and
Jj are simplicial maps of K into the complex M; furthermore,

Fei=h and Foj=k.

We assert that the chain maps i, and j, induced by i and j are chain
homotopic. Consider the function $ assigning, to each simplex ¢ of X, the sub-
complex of M whose polytope is ¢ X I. Now the space ¢ X I is acyclic because
it is homeomorphic to a closed ball. And if s < o, thens X J C ¢ X I, 50 ®(s) is

1K M|
IL]
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a subcomplex of ®(o). Therefore, & is an acyclic carrier from K to M. Further-
more, it carries both i, and j,, for both i(¢) = ¢ X 0 and j(o) = ¢ X 1 belong
to ®(o0). It follows from Theorem 13.3 that i, and j, are chain homotopic. We
conclude that i, = j,. Then

h’=F’oi‘=F‘ojt=k”
as desired. O

This result carries over readily to the relative homology groups. Given maps
h, k: (KLIK)) — (ILLIL,), we say they are homotopic (as maps of pairs of
spaces) if there is a homotopy H : [K| X I— |Zl of & to k such that H maps
|K,| % Iinto |L,. We have the following theorem:

Theorem 19.3. If h and k are homotopic as maps of pairs of spaces, then
h, = k, as maps of relative homology groups.

Proof. The proof of Theorem 19.2 goes through without difficulty. Both
i and j carry |K,| into |K,| X I, and so does the chain homotopy connecting i,

and j,. Then i, = j, as maps of relative homology, and the proof proceeds as
before. [

Here is another result which follows from our knowledge of the topology of
|kl X F we shall use it later on.

Theorem 19.4. If f: K — L is a simplicial approximation to the continu-
ous map h :\K| — |L|, then f is homotopic to h.

Proof. For each x in |K |, we know from Lemma 14.2 that f(x) and h(x)
lie in a single simplex of L. Therefore, the “straight-line homotopy™ given by

F(x,t) = (1 —1) f(x) + th(x)

maps |K| X Iinto |L|. If L is finite, then F is automatically continuous, because
it is continuous as a map into euclidean space, of which |L| is a subspace. To
show F continuous in general, we show that its restriction to & X I is continu-
ous, for each o € K. Since the topology of |K| X I is coherent with the sub-
spaces o X I, this will suffice.

For each x € o, let v denote the simplex of L whose interior contains & (x).
Because k(o) is compact, the collection of simplices r,, for x € o, is finite. Let
L, be the subcomplex of L consisting of these simplices and their faces. By
Lemma 14.2, the point f(x) lies in 7_. Therefore, F carries the set x X I into 7,.
Thus F maps o X I into |L}; since L, is a finite complex, its space is a subspace
of euclidean space. Hence F:o X I—|L | is continuous. Because inclusion
|L| — 1Ll is continuous, the map F : ¢ X I — || is also continuous, as desired.

a

We know that if two spaces are homeomorphic, they have isomorphic ho-
mology groups. There is a weaker relation than homeomorphism that implies
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the same result. It is the relation of homotopy equivalence, which we now
introduce.

Definition. Two spaces X and Y are said to be homotopy equivalent, or to
have the same homotopy type, if there are maps
f:X—Y and g:Y—-X

such that go f ~ iy and f o g = i;. The maps f and g are often called homo-
topy equivalences, and g is said to be a homotopy inverse to f.

Symmetry and reflexivity of this relation are trivial. Transitivity is left as
an exercise.

If X has the homotopy type of a single point, then X is said to be con-
tractible. This is equivalent to the statement that the identity map iy : X — X is
homotopic to a constant map. For example, the unit ball is contractible, because
the map F(x,t) = (1 — t)xis a homotopy between the identity and a constant.

Theorem 19.5. If f : IK| — |Ll is a homotopy equivalence, then f, is an
isomorphism. In particular, if |K| is contractible, then K is acyclic.

Proof. The proof is immediate. If g is a homotopy inverse for f, then g, is
an inverse for f,. O

Homotopy equivalences are hard to visualize in general. There is a special
kind of homotopy equivalence that is geometrically easier to understand:

Definition. Let 4 C X. A retraction of X onto A is a continuous map
r: X — A such that r(a) = a for each a & A. If there is a retraction of X onto
A, we say A is a retract of X. A deformation retraction of X onto A is a con-
tinuous map F: X X I — X such that

F(x,0) = x for x € X,
F(x,1)e A for x € X,
F(at) =aforae A
If such an F exists, then A is called a deformation retract of X.
If F is a deformation retraction of X onto A, then the map r(x) = F(x,1)

is a retraction of X onto 4. The latter fact is equivalent to the statement that
the composite

4Ll x5 4,

(where j is inclusion) equals the identity map i,. On the other hand, the map F
is a homotopy between the identity map iy and the composite

xLalx
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(and in fact each point of 4 remains fixed during the homotopy). It follows that
r and j are homotopy inverse to each other.

One can visualize a deformation retraction as a gradual collapsing of the
space X onto the subspace 4, such that each point of 4 remains fixed during the
shrinking process. This type of homotopy equivalence can thus be visualized
geometrically. It is intuitively clear that if A4 is a deformation retract of X, and
B is a deformation retract of A4, then B is a deformation retract of X. (It is also
easy to prove.)

We now consider some special cases.

Theorem 19.6. The unit sphere S” "' is a deformation retract of punc-
tured euclidean space R" — 0.

Proof. Let X = R* — 0. We define F: X X I — X by the equation
F(x,t) =1 —t)x + tx/lx].

The map F gradually shrinks each open ray emanating from the origin to the
point where it intersects the unit sphere. It is a deformation retraction of
R"—0ontoS"~ ' O

Corollary 19.7. The euclidean spaces R" and R™ are not homeomorphic
ifin# m.

Proof. Suppose that k is a homeomorphism of R” with R”™. Then # is a ho-
meomorphism of R” — 0 with R™ — p for some p € R™. The latter space is ho-
meomorphic with R — 0. It follows from the preceding theorem that "~ 'and
S™~!are homotopy equivalent. This cannot be true if m # n, for in that case
H _(S" Y=Zand H,_,(S"" ) =0 1O

Example 3. The wedge of two circles has the same homotopy type as the letter 6.
Let X be a doubly punctured elliptical region in the plane, as pictured in Figure
19.5. The sequence of arrows on the left side of this figure indicates how one can
collapse X to the wedge of two circles. The arrows on the right side indicate how to
collapse X to the letter 6. Since each of these spaces is homotopy equivalent to X,
they are homotopy equivalent to each other.

The situation that occurs in Example 3 is more general than might be
supposed. It is an interesting fact that every homotopy equivalence may be
expressed, as in this example, in terms of deformation retractions. Specifically,
there is a theorem to the effect that two spaces X and Y have the same homo-
topy type if and only if there is a space Z and imbeddings A: X — Z and
k : Y — Z such that both A(X) and k(Y) are deformation retracts of Z. (See
[Wh], [F].) This fact helps in visualizing what the notion of homotopy equiva-
lence really means, geometrically.

Homotopy equivalences are a powerful tool for computing homology
groups. Given a complex K, it is often much easier to show that its space is
homotopy equivalent to a space whose homology is known than it is to calculate
the homology of X directly. The exercises following will illustrate this fact.
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Figure 19.5

EXERCISES

|

2.

Show that, if A is a collection of spaces, then homotopy equivalence is an
equivalence relation on A.

Show that if A is a deformation retract of X, and B is a deformation retract of
A, then B is a deformation retract of X.

. Group the following spaces into homotopy equivalence classes. Assuming they

are all polytopes of complexes, calculate their homology groups.
(a) The Mdbius band

(b) The torus

(¢) The solid torus B* X S*!

(d) The torus minus one point

(¢) The torus minus two points

(f) The Kiein bottle minus a point

(g) R® with the z-axis deleted

(h) R® with the circle {x* + 3* = 1, z = 0} deleted
(i) The intersection of the spaces in (g) and (h)
(j) S?* with two linked circles deleted

(k) S* with two unlinked circles deleted.
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4. Theorem. IfK is a complex of dimension n, then |K| has covering dimension
at least n.

Proof. Let A be a finite open covering of the n-simplex o0 = v, .. . v, that
refines the open covering {Stv,, ... ,Stv,}. Let {¢,} be a partition of unity sub-
ordinate to A. For each 4, let v, be a vertex of o such that 4 C Stu,. Define
h: o — o by the rule

h(x) = Zé,(x)v,-

If no x € X belongs to more than n elements of A, then h maps ¢ into Bd 0.
Further, h maps each face of o into itself. Conclude that A:Bdo—Bdo is
homotopic to the identity, and derive a contradiction.

5. Prove Theorem 19.2 without using the fact that |K| X I is the space of a com-
plex, as follows:

(a) Let X and L be finite; let h : [K] — |L|. Show there is an ¢ > 0 such that
if k:IKl—IL| and |h(x) — k(x)| <e for all x, then h, = k,. [Hint:
Choose K’ so that A(St(v,K")) C St(w,L) for some w. If ¢ is small, this
same inclusion holds with & replaced by k.]

(b) Prove the theorem when K and L are finite.

(c) Prove the theorem in general. [Hint: Each cycle of K is carried by a finite
subcomplex of K.]

§20. REVIEW OF QUOTIENT SPACES

Here we review some standard definitions and theorems concerning quotient
spaces that we shall need.

A surjective map p : X — Y is called a quotient map provided a subset U of
Y is open if and only if the set p~'(U) is open in X. It is equivalent to require
that A4 be closed in Y if and only if p~?(A) is closed in X.

A subset C of X is saturated (with respect to p) if it equals the complete
inverse image p~'(A) of some subset 4 of Y. To say that p is a quotient map is
equivalent to saying that p is continuous and that p maps saturated open sets of
X to open sets of Y (or saturated closed sets of X to closed sets of Y).

Let p: X — Y be a surjective continuous map. If p is either a closed map or
an open map (i.e., if p maps closed sets of X to closed sets of Y, or open sets of X
to open sets of Y), then p is a quotient map. In particular, if X is compact and ¥
is Hausdorff, then p is a closed map and hence a quotient map.

First, we list some elementary facts about quotient maps, whose proofs are
straightforward and will be left to the reader.

A one-to-one quotient map is a homeomorphism.

A composite of quotient maps is a quotient map; if p: X— Y and
g:Y — Z are quotient maps,soisgop: X— Z.

A restriction of a quotient map is sometimes a quotient map: If p: X — Y
is a quotient map, and if A is a saturated subspace of X that is either open or
closed in X, then the map pl4 : 4 — p(4) is a quotient map.
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A relation between continuous maps and quotient maps is the following: If
p:X— Yis a quotient map, and if f : X — Z is a continuous map that is con-
stant on each set p~*(), then there is a unique continuous map g: Y — Z such
that g o p = f. See the following diagram; we say g is induced by f.

RN
Y—g—> Z

We define the notion of quotient space as follows: Let X* be a partition of
the space X into disjoint subsets whose union is X. Let w#: X — X* map each
point to the set containing it. If we topologize X* by declaring the subset U of
X* to be open in X* if and only if #~*(U) is open in X, then = is a quotient
map. The space X* is called a quotient space of X. We often say it is obtained
by “identifying each element of the partition to a point.”

If p: X — Y'is a quotient map, we can always “consider” Y to be a quotient
space of X by the following device: Given p, let X* denote the partition of
X into the disjoint sets p~'(y), for y € Y. Then X* is homeomorphic to Y.
We need only apply the preceding remark twice, to obtain continuous maps
g:X*—Yand h:Y— X* as in the following diagram:

These maps are readily seen to be inverse to each other.

Example 1. Let X be the subspace of R? obtained by rotating the unit circle in the
x-z plane centered at (2,0,0) about the z-axis. Using cylindrical coordinates (r,4,z)
in R?, we can express X as the set of points satisfying the equation (r — 2)* + 22 = 1.
Letting I* = I X I, we define p : I* — X by setting, for (s,2) € I?,

r — 2 = cos 2mt, z = sin 2=x¢, 8 = 2xs.

You can check that p maps I? onto X and is a closed quotient map.
By use of this map, we can consider X to be the quotient space obtained from I*
by identifying (s,0) with (s,1), and (0,7) with (1,7), for s,t € I. See Figure 20.1. This

A A 4 m

RS
Y

Figure 20.1
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is the topological version of the method by which we constructed the torus in §3 by
pasting together the edges of a rectangle.

The separation axioms do not behave well for quotient spaces. For in-
stance, a quotient space of a Hausdorff space need not be Hausdorff. All one
can say in general is the following: If p : X — Y is a quotient map, and if each
set p~'(y) is closed in X, then Y is a T,-space; that is, one-point sets are closed
in Y. This means that if X* is a partition of X into closed sets, then the quotient
space X* is a T,-space.

We will return to the matter of separation axioms and quotient spaces in a
later section (§37).

Now we consider one final question: Under what conditions is the cartesian
product of two quotient maps a quotient map? We prove two results in this
direction:

Theorem 20.1. Let p: X — Y be a quotient map. If C is a locally compact
Hausdor(f space, then

is a quotient map.

Proof. Letw = p X i.. Let A be a subset of ¥ X C such that #7'(4) is
open in X X C. We show A is open in ¥ X C. That is, given (,,¢,) in A4, we
find an open set about (y,,c,) lying in A4.

Choose x, so that p(x,) = y,; then m(x,,c) = (¥o,C0). Since 7°1(4) is
open, we can choose neighborhoods U, of x, and W of ¢, such that U, X
W C =~ (A). Because C is locally compact Hausdorff, we can choose a neigh-
borhood ¥ of ¢, so that ¥ is compact and ¥ C W. Then U, X V is a neighbor-
hood of (x,,¢,) such that ¥ is compact and

U XV Cr Y A).

In general, suppose U, is a neighborhood of x, such that U, X ¥V C =~'(4).
Now p~!p(U,) is not necessarily open in X, but it contains U;. We construct an
open set U, , , of X such that

pPU)XV C U, XV C 77 (4),

as follows: For each point x of p~*p(U;), the space {x} X V lies in 777(A4). Us-
ing compactness of ¥, we choose a neighborhood W, of x such that W, X V C
w~1'(A4). Let U;,, be the union of the open sets W_; then U, , , is the desired
open set of X. See Figure 20.2.
Finally, let U be the union of theopensets U, C U, C - - . . ThenUX V

is 2 neighborhood of (x,,c,) and U X V C 7~'(A). Furthermore, U is saturated
with respect to p, for

ve @ =UrpancUu., =
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~i

AN

Figure 20.2

Therefore p(U) is open in Y. Then

pU)XV=a(UXV)CA
is a neighborhood of (y,,¢,) lying in A, as desired. [

Corollary 20.2. Ifp:A— Band q: C— D are quotient maps, and if the
domain of p and the range of.q are locally compact Hausdorff spaces, then

PXqg:AXC—BXD
is a quotient map.
Proof. We can write p X g as the composite

i, X X i
axc2 28 wpP 2B gy p.

Since each of these maps is a quotient map, sois p X g. O

There is a close connection between coherent topologies and quotient maps,
which can be described as follows:

Definition. Suppose E is a space that is the union of disjoint subspaces E,,,
each of which is open (and closed) in E. Then we say E is the topological sum of
the spaces E,, and we write E = Z E,_. A set Uis open in E if and only if U N
E_ is open in E, for each a.

More generally, let {X_}, . ;be a family of topological spaces, which may or
may not be disjoint. Let E be the ser that is the union of the disjoint topological
spaces

E,=X, X {al,
for a € J. If we topologize E by declaring U to be open in E if and only if
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U N E,is open in E, for each o, then E is the topological sum of the disjoint
spaces E,. One has a natural map p : E — U X, which projects X, X {a} onto
X, for each «. (We sometimes abuse terminology and speak of E as the topo-
logical sum of the spaces X, in this situation.)

In this situation, one has the following result, whose proof is immediate:

Lemma 20.3. Let X be a space which is the union of certain of its sub-
spaces X,. Let E be the topological sum of the spaces X_; let p: E — X be the
natural projection. Then the topology of X is coherent with the subspaces X, if
and only if p is a quotient map. O

In this situation, we often say that X is the coherent union of the spaces X,

Theorem 20.4. If the topology of X is coherent with the subspaces X,,
and if Y is a locally compact Hausdorff space, then the topology of X X Y is
coherent with the subspaces X, X Y.

Proof. Let E =Z (X, X {a}); let p: E— X be the projection map. Be-
cause Y is locally compact Hausdorff, the map

PXiy:EXY—-XXY

is also a quotient map. Now E is the topological sum of the subspaces E, =
X, X {a}. Then E X Y is the disjoint union of its subspaces E, X Y, each of
which is open in E X Y. Therefore, E X Y is the topological sum of the spaces
E,XY= X, X {a} X Y. Since p X iy is a quotient map, the topology of
X X Y is coherent with the subspaces X, X Y. [

Corollary 20.5. The topology of K| X I is coherent with the subspaces
e X1 force K.

Proof. By definition, the topology of |K| is coherent with the subspaces o,
for o € K. Since I is locally compact Hausdorff (in fact, compact Hausdorff),
the preceding theorem applies. O

Corollary 20.6. Let w* K be a cone over the complex K. The map
x: Kl X I — lw * K| defined by

7(xt)=(10 —t)x 4+ tw

is a@ quotient map; it collapses |K| X 1 to the point w and is otherwise one-
to-one.

Proof. If ¢ =v,...v,is a simplex of K, let w=* ¢ denote the simplex
WU, ... v, 0of w* K. A set Bis closed in |w * K| if and only if its intersection with
each simplex w * ¢ is closed in that simplex. A set A4 is closed in |K| X I if and
only if its intersection with each set ¢ X Iis closed in ¢ X I. Therefore, in order
that = be a quotient map, it suffices to show that the map

TigXI—w=*g
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obtained by restricting w, is a2 quotient map. But that fact is immediate, since
#' is continuous and surjective, and the spaces involved are compact Hausdorff.
O

The preceding corollary suggests a way to define a cone over an arbitrary
topological space.

Definition. Let X be a space. We define the cone over X to be the quotient
space obtained from X X I by identifying the subset X X 1 to a point. This
point is called the vertex of the cone; the cone itself is denoted by C(X).
Formally, we form C(X) by partitioning X X I into the one-point sets {(x,z)}
for < 1, and the set X X 1, and passing to the resulting quotient space.

EXERCISES

1. Verify the results about quotient spaces stated without proof in this section.

2. Let X be the space obtained from two copies of R?, say R* X {a} and R? X {b},
by identifying (x,a) and (x,b) whenever x # 0. Then X is called the plane with
two origins.

(a) Show that each point of X has a neighborhood homeomorphic with an open
set in R%.
(b) Show that X is not Hausdorff.
3. (a) Show that if p: X — Y is an open quotient map and 4 is open in X, then
pl4 : 4— p(A4) is an open quotient map.
(b) Repeat (a) replacing “open™ by “closed.”
4. Show that if p: 4 — B and q : C — D are open quotient maps, so is p X q.

5. Let X be the coherent union of the subspaces {X_}. Show that if Y is a subspace
of X that is open or closed in X, then Y is the coherent union of its subspaces
¥ n XL

6. Let K and L be complexes. Show that if X is locally finite, then the topology of
IK| X |L] is coherent with the subspaces ¢ X 7, for o € Kand 7 € L.

*§21. APPLICATION: MAPS OF SPHERES

In this section, we give several applications of homology theory to classical
problems of geometry and topology. The theorems we prove here will be gener-
alized in the next section, when we prove the Lefschetz fixed-point theorem.

Definition. Let n = 1. Let f : $" — S” be a continuous map. If « is one of
the two generators of the infinite cyclic group H,(S"), then f,(a) = du for
some d. The integer d is independent of the choice of generator, since f,(—a) =
d(—a). It is called the degree of the map f.
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Degree has the following properties:

(1) If f =~ g, then deg f = deg g.

(2) If f extends to a continuous map k: B"*' —S", then deg f = 0.
(3) The identity map has degree 1.

(4) deg(f ©g) = (degf) - (deg g).

Property (1) follows from Theorem 19.2; while (2) follows from the fact that
f«:H,(S") — H,(S") equals the composite

H (S L B B (s,

where j is inclusion. Since B” *!is acyclic, this composite is the zero homomor-
phism. Properties (3) and (4) are immediate consequences of Theorem 18.1.

Theorem 21.1. There is no retractionr:B"*'— S".

Proof. Such a map r would be an extension of the identity map i: S" —
S”. Since i has degree 1 # 0, there is no such extension. O

Theorem 21.2 (Brouwer fixed-point theorem). Every continuous map
¢ : B*— B" has a fixed point.

Proof. If ¢ - B"— B" has no fixed point, we can define a map #: B"—
S*~1by the equation

_ x—9¢X)
b = el

since x — ¢(x) # 0. Let f: 5"~ '~ 5"~ denote the restriction of hto S”~';
then f has degree 0.

On the other hand, we show that f has degree 1, giving a contradiction.
Define a homotopy H:S"~! X I — S" ! by the equation

_u—te(u)
H@t) = o sl

The denominator is non-zero for ¢t = 1 since u # ¢(u); and it is non-zero for
0=<1t<1 because [lull =1 and lte(w)| = tlp ()| =t < 1. The map H is
a homotopy between the identity map of S"~! and the map f. Therefore,
degf=1. O

Definition. The antipodal map a: S” — S”is the map defined by the equa-
tion a(x) = —x, for all x.

In order to make further applications, we need to compute the degree of the
antipodal map. We do this here by a direct proof. A second proof is given in the
next section, and a third, in §31.
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Theorem 21.3. Let n = 1. The degree of the antipodal map a : S" — S" is
(_ l ) n+ l.

Proof. We show in fact that the reflection map
p(xlv ceesXpy l) = (X,, s Xy =Xy l)
has degree —1. It then follows that any reflection map
pi(xn ceeaXiy oo s Xp g l) = (xh s s T Xy o0y Xy 1)

has degree —1. For p, = h™' o p o h, where h is the homeomorphism of R *!
that simply exchanges x; and x, , |, so that

deg p; = (deg h™") (deg p) (deg k)
= deg(h~" o h) deg p = deg p.
Since a equals the composite p,p, . .. p, ., We have dega = (—1)"*.

Step 1. A triangulation of a space X is a complex L and a homeomor-
phism & : |L| — X. We shall construct a triangulation of S* by an n-dimensional

complex such that the reflection map p induces a simplicial map of this complex
to itself.

In general, if K is a finite complex in R¥ X 0 C RY*! let w, =
©,...,0,1)and w, = (0,...,0,—1) in R¥*! and let

S(K) =(w,*K) U (w,*K).

Then S(K) is called a suspension of K. (See the exercises of §8.) Let
r:S(K) — S(K) be the simplicial map that exchanges w, and w, and maps
each vertex of K to itself. We show that there exists a complex K of dimension
n — 1, and a triangulation

k:IS(K) — s*,

such that the following diagram commutes:

S(k)—*%- s*
rS(lK)——"——»Sl"p

Then Step 1 is proved.
Let & : |k — S*~'be any triangulation of S" ~ ! by a complex of dimension
n—1.LetyelSK)Ify = (1 — t)x + tw, for some x € |K|, define

k(y) = (V1 = £h(x),2).

If y= (1 ~t)x + tw, define

k(y) = (NT = £2h(x), —1).
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Figure 21.1

See Figure 21.1. It is easy to check that k carries |S(K)| homeomorphically
onto S”. See Exercise 3. The fact that p o k = k o r is immediate, since

r((1 —)x+tw)=(1—1)x + tw,.

Step 2. Inview of Step 1, in order to prove our theorem it suffices to show
thatdegr = —1.

Let z be an n-cycle of S(X); then z is a chain of the form
z= [w07cm] + [wl’dm],

where ¢,, and d,, are chains of K, and m = n — 1. (Here we use the bracket
notation of §8.) Assume n > 1. Since z is a cycle,

0 = 9z = ¢, — [w,dc,] + d,, — [w,0d,.].
Restricting this chain to K, we obtain the equation c,, + 4, = 0, whence
z = [wp,c] — [WisChl-
Since r simply exchanges w, and w,, we have

r#(z) = [W,,Cm] - IWo,C,,,] = -2,
as desired. A similar computation holds if n = 1. O

Theorem 21.4. If h:S"— S” has degree different from (~1)"*", then h
has a fixed point.

Proof. We shall suppose that h:S"— S” has no fixed point and prove
that h =~ a. The theorem follows. Intuitively, we construct the homotopy by
simply moving the point 2(x) to the point —x, along the shorter great circle arc
joining these two points; because h(x) and —x are not antipodal, there is a
unique such arc, so the homotopy is well-defined. Formally, we define the
homotopy H : $” X I — S”" by the equation

(1= k() + 1(=x)
HxD = 1000 + 1ol
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The proof is complete once we show that the denominator does not vanish. If
(1 — 1) h(x) = tx for some x and z, then taking norms of both sides, we con-
clude that 1 — ¢t =t = 1/2. From this it follows that #(x) = x, contrary to
hypothesis. O

Theorem 21.5. If h:S"— S" has degree different from 1, then h carries
some point x to its antipode —x.

Proof. 1If a is the antipodal map, then a - h has degree different from
(—=1)"*', so it has a fixed point x. Thus a(h(x)) = x, so —h(x) = x as
desired. O

Corollary 21.6. S” has a non-zero tangent vector field if and only if n
is odd.

Proof. If nis odd, let n = 2k — 1. Then for x € S", we define
U(X) = (= X3,%,, =X, X3, -+« y = XpoXpg = 1)-

Note that U(x) is perpendicular to x, so that U(x) is tangent to S” at x.
Conversely, suppose U(x) is a non-zero vector field defined for x € S”, such
that G(x) is tangent to S” at x. Then h(x) = 0(x)/l5(x)| is 2 map of S* into
S”". Since U(x) is perpendicular to x, for all x, we cannot have h(x) = x or
h(x) = —x. Thus h has no fixed point and » maps no point to its antipode. We
conclude that deg h = (—1)"*'and deg h = 1, so that n must be odd. O

EXERCISES

1. (a) Let X be the complex pictured in Figure 21.2, whose space is the boundary
of a square; let sd K be its first barycentric subdivision, as indicated. Let
f:sd K — K be the simplicial map specified by f(a;) = a,;, where the sub-
script 2i is reduced modulo 8 if necessary. Show that the map f has degree 2.

ag ag as ay

Figure 21.2
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(b) Consider S as the set of complex numbers of unit modulus. Show the map
h:S'— S given by h(z) = z* has degree 2. [Hint: By radial projection,
h induces a map of |K| to itself that is homotopic to the simplicial map f of
part (2).]

(c) If n is any integer, show that the map k : $' — S* given by k(z) = 2" has
degree n.

2. Using the result of Exercise 1, prove the following:

The Fundamental Theorem of Algebra. Every polynomial

2"+ a,_ 2" '+ .- - 4+az+a,

with real or complex coefficients has a zero in the complex plane.
Proof. Let S, be the circle |z} = ¢ of radius c. Suppose the given poly-
nomial has no zero in the ball |z} < ¢. Let

h:S.—R—0

be defined by h(z) =z" +a,_ 2" '+ - - - + @,

(a) Show that h, is trivial.

(b) Show that if ¢ is sufficiently large, then A is homotopic to the map k: S, —
R? — 0 given by k(2) = z". [Hint: Set F(zt) =z2"+ t{a,_,z"" '+
-+ a)l

(c) Derive a contradiction.

3. Show that the map k defined in Step 1 of Theorem 21.3 is 2 homeomorphism,
as follows:
(a) Show that the maps

p: Kl x [-1,1] = Is&)l,
q:kl x [-1,1] = 8",
given by the equations

A —=)x 4+ tw, if t=0,
p(x’t)—{(l+t)x—tw. if 1=0,

g(xt) = (V1= fh(x), 1),

are quotient maps.
(b) Show that the quotient maps p and g induce the homeomorphism k.

*§22. APPLICATION: THE LEFSCHETZ
FIXED-POINT THEOREM

The fixed-point theorems proved in the preceding section concern maps of balls
and spheres to themselves. There is a far-reaching generalization of these theo-
rems, due to Lefschetz. We shall prove it now.

First we need a few facts from algebra.
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If A = (a;) is an n X n square matrix, then the trace of A4, denoted tr 4, is
defined by the equation
tr A = Za"i.

If A and B are n X n matrices, then

tr AB = Za,-jbﬁ = tr BA.
ij

If G is a free abelian group with basis ¢,,....¢,, and if ¢:G— G is a
homomorphism, we define the trace of ¢ to be the number tr 4, where A is the
matrix of ¢ relative to the given basis. This number is independent of the choice
of basis, since the matrix of ¢ relative to another basis equals B™'4B for some
square matrix B, and tr(B~'(A4B)) = tr((4AB)B~") = tr A. The same argu-
ment shows that if i : G — G’ is an isomorphism, then tr(i o ¢ o i ™") = tr ¢.

If K is a finite complex, and if ¢ : C,(K) — C,(K) is a chain map, then
since C,(K) is free abelian of finite rank, the trace of ¢ is defined. We denote it
by tr(¢,C,(K)). The group H,(K) is not necessarily free abelian, but if T,(X)
is its torsion subgroup, then the group H,(K)/T,(K) is free abelian. Further-
more, ¢, induces a homomorphism of this group with itself. We use the nota-
tion tr(¢,.H,(K)/ T,(K)) to denote the trace of this induced homomorphism.

There is no obvious relation between these two numbers; as a result, the
following formula is rather striking.

Theorem 22.1 (Hopf trace theorem). Let K be a finite complex; let
¢ : C,(K) — C,(K) be a chain map. Then

D=1 (@G, (K)) = D (1Y (@0, H, (K)/ T,(K)).

Proof. Stepl. Let G be free abelian of finite rank, let H be a subgroup
(necessarily free abelian), and suppose that G/H is free abelian. Let ¢ :G— G
be a2 homomorphism that carries H into itself. We show that

tr(¢,G) = tr(¢',G/H) + tr(¢".H),

where ¢’ and ¢” denote the homomorphisms induced by ¢.

Let {a, + H, ... ,a, + H} be a basis for G/H and let ,, . .. ,8, be a basis
for H. If A and B are the matrices of ¢’ and ¢" relative to these respective bases,
then

#'(a + H) = > ayle; + H);

¢’ (Is,) = Zbijﬁi‘
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Now it is easy to check that e, . . . ,a,,8,, . . . .8, is a basis for G. Furthermore,
it follows from the preceding equations that

¢(aj) = Zaijai + (something inH);

i

¢(B;) = Zbijlsi-

Therefore, the matrix of ¢ relative to this basis for G has the form

A 0
c- [ B].
Obviously, tr C = tr 4 + tr B; our result follows.

Step 2. As usual, let C, denote the chain group C,(K). Let Z, denote the
p-cycles, let B, denote the p-boundaries, and let W, denote the group of weak
p-boundaries, which consists of those p-chains some multiple of which bounds.
Then

B,CW,Cz,CC,

Since ¢ is a chain map, it carries each of these groups into itself. We shall show

that the quotient groups C,/Z,and Z,/W, are free; then it will follow from Step
1 that

) tr(¢,C) = tr($,C,/Z) + tr($,Z,/W,) + tr(¢,W)).

(Here we abandon the use of primes to distinguish among the various induced
homomorphisms.) We compute each of these terms.

Step 3. Consider the group C,/Z,. The homomorphism 4,:C,— B,_,
obtained by restricting the range of 9 is surjective and has kernel equal to Z,.
Therefore, it induces an isomorphism of C,/Z, with B,_,, so C,/Z, is free.
Furthermore, because ¢ commutes with 8, it commutes with this isomorphism.
Therefore (as remarked earlier),

(ii) tr(¢,C,/Z,) = tr(¢,B,_ ).

Step 4. Consider the group Z,/W,. Consider the projection mappings
Z,—2,/B,=H,—H,T,.

Their composite is surjective and has kernel W,. Therefore, it induces an iso-
morphism

Z,/W,—H,T,

Thus Z,/W, is free. Because the projections commute with ¢, so does this iso-
morphism; therefore,

(i1i) tr(¢,Z,/W,) = tr(¢,.H,/T,).
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Step 5. Consider the group W,. We show that
(iv) tr(¢,W,) = tr(,B,).

Recall that B, is a subgroup of W,. Applying the basic theorem of free abelian
groups, we can choose a basis a, ... ,a, for W, such that for some integers
m, ...,m, = 1, the elements m,a,, . . . ,m,a, form a basis for B,. Now W,/B,

is a torsion group; therefore, k = n. We compute the trace of ¢ on W, and
B, Let
I4

¢(01,') = Z a;a;

¢ (m;a;) = Z b;(m;a;),

where the summations extend from 1 to n. Then tr(¢,W,) = Za; and
tr(¢,B,) = 2 b;;, by definition. Multiplying the first equation above by m;, we
conclude that m;a;; = b;m; for all i and j. In particular, a; = b; for all i.
Hence tr(¢,W,) = tr(¢,B,).

Step 6. To complete the proof, we substitute formulas (ii), (iii), and (iv)
into (i) to obtain the equation

tr(¢,C,) = tr(¢,B,_ ;) + tr(¢,.H,/T,) + tr(¢,B,).
If we multiply this equation by (—1)” and sum over all p, the first and last
terms cancel out in pairs, and our desired formula is proved. [
Definition. The Euler number of a finite complex X is defined, classically,
by the equation
x(K) = Z (=1)’ rank(C,(X)).

Said differently, x (K) is the alternating sum of the number of simplices of K in
each dimension.

We show the Euler number of X is a topological invariant of |K|, as follows:

Theorem 22.2. Let K be a finite complex. Let 8, = rank H,(K)/T,(K); it
is the betti number of K in dimension p. Then

x(K) = Z,(—1)8,.

Proof. 1If ¢: C,(K)— C,(K) is the identity chain map, then the matrix
of ¢ relative to any basis is the identity matrix. We conclude that tr(¢,C,) =
rank C,. Similarly, because ¢, is the identity map, tr(¢,.H,/T,) = rank
H,/T, = B,. Our formula now follows from the Hopf trace theorem. [

This theorem has a number of consequences. For instance, the fact that
x(K) = 2if |K]| is the boundary of a convex open region in R® (since then |K]| is
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homeomorphic to S?) can be used to show that there are only five such com-
plexes that are regular polyhedra. These give the five classical Platonic solids.
See the exercises.

Definition. Let K be a finite complex; let & : [K| — IK| be a continuous
map. The number

A(h) = Z(—1Y tr(h, H,(K) /T, (K))
is called the Lefschetz number of A.

Note that A (k) depends only on the homotopy class of &, by Theorem 19.2.
Furthermore, it depends only on the topological space |K |, not on the particular
complex K: If L is another complex with ILI = |k, then the homomorphism

Jx 1 Hy(L) — H,(K)

induced by the identity is an isomorphism. The fact that (), = j; ' o (hg), ©
J implies that (k;), and (Ag), have the same trace.

Theorem 22.3 (Lefschetz fixed-point theorem). Let K be a finite complex;
let h: K| — |K| be a continuous map. If A(k) # O, then h has a fixed point.

Proof. Assume that h has no fixed point. We prove that A(k) = 0.
Step 1. 'We shall assume in subsequent steps that X satisfies the condition

h(St@.K)) N StK) = 2,
for all v. Thus we must show that this assumption is justified.

To begin with, let ¢ = min Ix — h(x)l. Using the uniform continuity of ,
choose & so that whenever |x — y| < 8, we have |h(x) — h(p)l < ¢/3. Let A =
min{é,e/Z}. Then for any set 4 of diameter less than A, both 4 and h(A4) have
diameter less than ¢/2, so they are necessarily disjoint. Replace K by a subdivi-
sion of K in which the closed stars have diameter less than X. As noted earlier,
this does not affect the calculation of A (k). Then our condition holds.

Step 2. Assume that K satisfies the condition of Step 1. Now let us choose
a subdivision K’ of K such that h has a simplicial approximation f: K’ — K.

We show that if s and ¢ are simplices of K’ and K, respectively, such that s C g,
then f(s) # o.

Suppose f(s) = o. Let w be a vertex of s, and let f(w) = v, a vertex of ¢.
The fact that s C ¢ implies that w € St(v,K), so that

* k(w) € h(St(v,K)).

On the other hand, we have by the definition of simplicial approximation
h(St(w,K")) C St(f(w),K),

which implies in particular that

**) h(w) € St(v,K).
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The combination of (*) and (**) contradicts the assumption of Step 1.

Step 3. Now we compute A(h) by applying the Hopf trace theorem.

Let f: K' — K be a simplicial approximation to 4; let A : @(K) — @(K') be
the subdivision operator. Then %, is induced by the chain map ¢ = f, o A, by
definition.

We compute the trace of ¢. Let 4 be the matrix of ¢ relative to the usual
basis for C,(K), which consists of oriented p-simplices of K. Let o be a typical
basis element. The chain A (¢) is a linear combination of oriented simplices s of
K’ such that s C o. For any such simplex s, it follows from Step 2 that f(s) #
o. We conclude that the chain ¢ (o) = f,(A(¢)) is a linear combination of ori-
ented p-simplices of X different from o. The matrix 4 thus has an entry of 0 in

the row and column corresponding to ¢. It follows that all the diagonal entries
of A vanish, so thattr 4 = tr¢ = 0.

The Hopf trace theorem tells us that
A(h) = Z(-1)tr(¢,C,(K)).
Because each of the terms in this summation vanishes, A(h) =0. O

In order to apply this theorem, we need the following lemma.

Lemma 22.4. Let K be a finite complex; let h : K| — |K| be a continuous
map. If |K| is connected, then h, : H(K) — H,(K) is the identity.

Proof. Let f:K' — K be a simplicial approximation to A. If v is a vertex
of K, the subdivision operator A carries v to a 0-chain carried by the subdivision
of v, which is just v itself. Thus A(v) is a2 multiple of v. Because A preserves
augmentation, A (v) = v.

Then f,\ (v) = f,(v), which is a vertex of K. Because |K] is connected, f, (v)
is homologous to v. Therefore h, = f, o A, equals the identity on H,(K). 0O

Theorem 22.5. Let K be a finite complex; let h:|K| — |K| be a continu-
ous map. If |K\ is acyclic, then h has a fixed point.

Proof. The group H,(K) is infinite cyclic, and &, is the identity on
Hy(K). Thus tr(h,,H,(K)) = 1. Since all the higher dimensional homology
vanishes, A (k) = 1. Therefore, A has a fixed point. [

Theorem 22.6. The antipodal map of S" has degree (—1)"*'.

Proof. Let h:S"— S" be 2 map of degree d. We compute A (k). Now 4,
is the identity on O-dimensional homology. On n-dimensional homology, its
matrix is a2 one by one matrix with single entry d = degree f. Therefore,

ARy =1+ (—1)4d.

Now the antipodal map a has no fixed points, so that A(a) = 0. It follows
that the degree of ais (—~1)"*'. O



§22.

Application: The Lefschetz Fixed-Point Theorem

EXERCISES

1. Show that every map f : P*— P? has a fixed point.

2. Let K be a finite complex. Show that if & : |K| — |K/| is homotopic to a constant
map, then h has a fixed point.

3. (a) Show there is a map f of the Klein bottle S to itself that carries the curve C
indicated in Figure 22.1 homeomorphically onto the curve D, and amap g
that carries C into the shaded region E.
(b) Letfand gbeasin (a). Show that if f* ~ fand g’ = g, then f’ and g’ have
fixed points.
(c) Find a map k:S — S that has no fixed point.

Figure 22.1

4. If M is a compact smooth surface in R”, and if U(x) is a tangent vector field to
M, it is a standard theorem of differential geometry that for some ¢ > 0 there is
a continuous map

F:MX (—ee)— M
having the property that for each x,, the curve
t = F(x,,1)

passes through the point x, when 7 = 0, with velocity vector U(x,). Further-
more, if D(x) # 0 for all x, then there is a & such that F(x,1?) # x, for
o<ld<s.
(a) Using these facts, show that if M has a non-zero tangent vector field, then
x(M) =0.

(b) Determine which compact surfaces have non-zero tangent vector fields.

S. Suppose B is a finite collection of polygons in R?, each two of which intersect in
at most a common edge or a common vertex. Each of these polygons is called a

face of B; its edges are called edges of B; and its vertices are called vertices of B.
(a) Let |B| be the union of the elements of B. Show that

x (IBl) = (# faces) — (2 edges) + (¥ vertices),

where # stands for “the number of.” [Hint: Subdivide B into a simplicial
complex by starring from an interior point of each face.]
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(b) We say B is “combinatorially regular” if all the faces of B have the same

(©)

number (say k) of edges, if each edge of B belongs to exactly two faces of
B, and if each vertex of B belongs to the same number (say /) of faces of B.
The triangles making up the boundary of a tetrahedron form one such col-
lection; the squares making up the boundary of a cube form another.
Show there are only five combinatorially regular collections B such
that |B| is homeomorphic to S?. [Hint: Geometric considerations imply
that /= 3 and k = 3.]
There are many combinatorially regular collections B such that |B] is ho-
meomorphic to the torus. But there are only a limited number of possibili-
ties for k and /. What are these?



Relative Homology and the
Eilenberg-Steenrod Axioms

Until now we have concentrated mainly on studying the “absolute” simplicial
homology groups, although we have defined the relative groups and have proved
their topological invariance. Now we study the relative groups in more detail.
Their uses are many. For one thing, they arise naturally in many of the applica-
tions of topology. For another, they are involved in an essential way in express-

ing those fundamental properties of homology that are called the Eilenberg-
Steenrod axioms, as we shall see.

§23. THE EXACT HOMOLOGY SEQUENCE

One of the many ways that relative homology groups can be useful is for giving
information about the absolute homology groups. There are relationships be-
tween the relative groups H,(K,K,) and the absolute groups H,(K) and H,(K,).
For example, the vanishing of H (K.K,) and H, . ,(K.K,) implies that H,(K)
and H,(K,) are isomorphic, a fact that is not at all obvious at first glance.
Formulating this relationship in a precise and general manner is a rather subtle
problem.

In the early days of algebraic topology, the theorems proved along these
lines were often awkward and wordy. The right language for formulating them
had not been found. A remarkable algebraic idea due to Eilenberg clarified the
matter immensely. Really just a new and convenient notation, it is called an
“exact sequence” (of groups, or rings, or what have you). The usefulness of this
concept, in algebra as well as topology, is hard to overestimate. Obscure alge-
braic arguments often become beautifully transparent once they are formulated
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in terms of exact sequences. Other arguments that were difficult even for pro-

fessional algebraists, become so straightforward that they can be safely left to
the reader.

The relationship between the absolute and relative homology groups is ex-
pressed by an exact sequence called the “exact homology sequence of a pair.” In
this section, we shall study exact sequences of groups (usually, abelian groups),
and we shall define the exact homology sequence of a pair.

Definition. Consider a sequence (finite or infinite) of groups and homo-
morphisms

R S SR
This sequence is said to be exact at A, if

image ¢, = kernel ¢,.
If it is everywhere exact, it is said simply to be an exact sequence. Of course,
exactness is not defined at the first or last group of a sequence, if such exist.

We list here several basic facts about exact sequences; you should have them
at your fingertips. Proofs are left as exercises. Because the groups we consider
are abelian, we shall let O denote the trivial (one-element) group.

(1) A, 2, A, — 0 is exact if and only if ¢ is an epimorphism.

2) 0— 4, 2, A, is exact if and only if ¢ is a monomorphism.
(3) Suppose the sequence
0—a24%4,—0

is exact; such a sequence is called a short exact sequence. Then
A,/$(A,) is isomorphic to A4,; the isomorphism is induced by y. Con-
versely if ¢y:4A— B is an epimorphism with kernel K, then the
sequence

0—kLa%p—0
is exact, where {7 is inclusion.
(4) Suppose the sequence
4242 4L 4

is exact. Then the following are equivalent:
(i) o is an epimorphism.

(i1) B is a monomorphism.

(iii) ¢ is the zero homomorphism.

(5) Suppose the sequence
a2 a—a—aLla
is exact. Then so is the induced sequence

0—coka— A,—kerf—0.



§23. The Exact Homology Sequence

Definition. Consider two sequences of groups and homomorphisms having
the same index set,

.-—»A‘-—>A2-—>...,
.-—»Bl—sz-—>...

A homomorphism of the first sequence into the second is a family of homomor-
phisms «; : 4; — B; such that each square of maps

A;i— A; . 1
ai l Jai +1
B;— Bi +1
commutes. It is an isomorphism of sequences if each a; is 2n isomorphism.
For example, if 2 chain complex € is looked at as a sequence of groups C;

and homomorphisms d;, then 2 homomorphism of one such sequence € into
another D is just what we have called a chain map of € into D.

Definition. Consider 2 short exact sequence

0— 4,2 4% 4,—0

This sequence is said to split if the group ¢(A,) is a direct summand in 4,.

This means that 4, is the internal direct sum of ¢ (A,) and some other sub-
group B; the group B is not uniquely determined, of course. In this case, the
sequence becomes

0—4,2s4)0BY 4,—0,

where ¢ defines an isomorphism of 4, with ¢(A4,), and ¢ defines an isomor-
phism of B with A4,. An equivalent formulation is to state that there is an
isomorphism 8 such that the following diagram commutes:

0— 4,— 4, —A,—0
= 1 |-
00— Al—i—"A, & A,TA,--'O.
In this case, @ denotes external direct sum; / is inclusion and = is projection.

The map 6 is defined by writing 4, = ¢(4,) ® B and letting 6 equal ¢ ' on the
first summand and ¢ on the second.

Theorem 23.1. Let 0 — A, e, A, ¥, A, — 0 be exact. The following are
equivalent:

(1) The sequence splits.
(2) Thereisamap p: A, — A, such thatpeo¢ =1i,.
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(3) Thereis amap j: A,— A, such that § o j = i,
0—a,2 4 %40
p J

Proof. We show that (1) implies (2) and (3). It suffices to prove (2) and
(3) for the sequence

0—A,L 4,04,%4,—0.

And this is easy; we define p: 4, ® 4, — A, as projection, and j: 4, — A4, ® A4,
as inclusion.

(2) = (1). We show A, = ¢(A4,) ®(ker p). First, for x € 4, we can write
x = ¢p(x) + (x — ¢p(x)). The first term is in ¢(A4,) and the second is in ker p
because p(x) — p(¢p(x)) = p(x) — (pd)p(x) = 0. Second, if x € ¢$(4,) N
ker p, then x = ¢(y) for some y, whence p(x) = p¢(y) = y. Since x € ker p,
the element y vanishes, so x = ¢(y) vanishes also.

(3) = (1). We show A4, = (ker y) ®j(A4,). Since ker ¢ = im ¢, this will
suffice. First, for x € 4, we can write x = (x — jy¥(x)) + jy(x). The first term
is in ker ¢, since ¢ (x) — ()Y (x) = ¢(x) — ¥ (x) = 0; the second term is in
Jj(A,).Second, if x € (ker ¢) N j(4,), then x = j(z) for some z, whence ¥ (x) =
Yj(z) = z; since x € kery, the element z vanishes, so x = j(z) vanishes
also. [

Corollary 23.2. Let 0— A4, KA A, ¥, A;— 0 be exact. If A, is free abe-

lian, the sequence splits.

Proof. We choose a basis for 4,, and define the value of j : 4; — A4, on the
basis element e to be any element of the nonempty set ¢~ '(e). O

With these basic facts about exact sequences at our disposal, we can now
describe the exact homology sequence of a pair.
First we need to define a certain homomorphism

a H (K Ko) , - I(Kﬂ)

that is induced by the boundary operator and is called the homology boundary
homomorphism. It is constructed as follows: Given a cycle z in C,(K.K,), it is
the coset modulo C,(K,) of a chain 4 of K whose boundary is carned by K,. The
chain dd is automatlcally a cycle of K,. We define 3, {z} = {dd}, where{ }means
“homology class of ; we prove later that 9, is 2 well-defined homomorphism.
Algebraically, the construction of 9, can be described as follows: Consider
the following diagram, where i : K,— K and = : (K, @ ) — (K,K,) are inclusions:

C,(K) £C,(K.K.)

la

,-.(Ko) G, -1(K)



§23. The Exact Homology Sequence

Now i, is inclusion, and =, is projection of C,(K) onto C,(K)/C,(K,). Given a
cycle z of C,(K.K,), the chain d of C,(K) representing it is a chain such that
n,(d) = z. We take 3d, and note that since it is carried by K, it equals i;(c) for
some p — 1 chain ¢ of K,. Now c is actually a cycle; its homology class is
defined to be 3, ({z}). Thus 8, is defined by a certain “zig-zag” process: Pull
back via 7,; apply 9; pull back via i,. This description of 8, will be useful in the
next section.

Now we can state our basic theorem relating the homology of X, K,, and
(K.K)-

Definition. A long exact sequence is an exact sequence whose index set is
the set of integers. That is, it is a sequence that is infinite in both directions. It
may, however, begin or end with an infinite string of trivial groups.

Theorem 23.3 (The exact homology sequence of a pair). Let K be a com-
plex; let K, be a subcomplex. Then there is a long exact sequence

i Ee a
.. = H,(K)SH,(K)>H,(KK)=H,_(K)— - - -,

where i : K,— K and = : (K, @) — (K,K,) are inclusions, and 3, is induced by
the boundary operator 3. There is a similar exact sequence in reduced
homology:

= H,(K)~ H,(K) ~ H,(KK)— H, . ,(K)— - - -

The proof of this theorem is basically algebraic in nature. We shall formu-
late it in a purely algebraic fashion and prove it in the next section. For the
present, we apply this sequence to some specific examples.

Example 1. Let K be the complex pictured in Figure 23.1, whose polytope is a
square. Let K, be the subcomplex whose polytope is the boundary of the square. We
know from Example 3 of §9 that H,(K.K,) is infinite cyclic and is generated by the
2-chain + that is the sum of the 2-simplices, oriented counterclockwise. Further-
more, H,(K,) is infinite cyclic and is generated by the I-chain s, + s, + s, + s,,

( A
v

4 X O

7
3

Figure 23.1
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which happens to equal dv. Thus in this particular case, the boundary homo-
morphism

9y : Hy(K,K)) — Hy(K,)

is an isomorphism.

This fact can also be proved by considering the exact homology sequence of the
pair (K,K,). A portion of this sequence is

3
H,(K) — H,(K.K) = H,(K)) — H,(K).
The end groups vanish because |} is contractible; therefore 3, is an isomorphism.

Example 2. Let K be the complex pictured in Figure 23.2, whose underlying space
is an annulus. Let X, be the subcomplex of X whose polytope equals the union of the
inner and outer edges of the square. In Example 4 of §9, we computed the homology
of (K,K,). We recompute it here, using our knowledge of the homology of K and K,.
Consider the following portion of the exact sequence in reduced homology:

a i x, Fe -
0— H,(K.K) = H,(K,) = H,(K) = H,(K.K)) = H,(K,) — 0,

0— () —20Z— Z — () — Z —o.

The zeros at the ends come from the fact that |K| has the homotopy type of a circle,
so H,(K) = fl,(K) = 0. Furthermore, H,(K) is infinite cyclic. It is generated by
the cycle z, indicated in Figure 23.2 running around the outer edge of X, or by the
cycle z, running around the inner edge; these cycles are homologous. Because IK,| is
topologically the disjoint union of two circles, H,(X;) = Z @ Z and has as basis the
cosets of z, and z,, while H,(K,) = Z and is generated by {v, — v,}.

If i : K,— K is inclusion, then i, maps both {z,} and {z,} to the same generator
of H,(K). It follows that (1) i, is an epimorphism, and (2) its kernel is infinite
cyclic and is generated by {z,} — {z.}.

From the first fact, it follows that =, is the zero homomorphism, whence

3,1 H,(K.K,) — ro(Ko)

is an isomorphism. Thus H, (K,K,) is infinite cyclic and is generated by the 1-chain
&,, whose boundary is v, — v,.
From the second fact, it follows that since

9.t H;(K.K,) — ker i,

V]
€0
R ) A
1] k’"]
A /
N A
— T
.

rd

Figure 23.2
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is an isomorphism, the group H,(K,K,) is infinite cyclic, and is generated by the
chain v that is the sum of the 2-simplices of K, oriented counterclockwise. For {3y} =
{z, = 2}, and z, ~— z, generates ker i,.

Example 3. We consider the next two examples together. Let (K,K,) denote either
the cylinder and its top edge, or the Mébius band and its edge. In each case, |K,|isa
circle. Furthermore, K| has the homotopy type of a circle; the central circle C indi-
cated in Figure 23.3 is a deformation retract of |K|. Thus we know the homology of
K and K,; we compute the homology of (K,K,) from the exact homology sequence, a
portion of which is as follows:

H,(K) — H,(K.K)) — H,(K,) &, H,(K) — H,(K.K) — H,(K,),
o - M -2z - Z - (1 - 0

Everything depends on computing the homomorphism i,. Since the retraction
r: 1Kl — C is a homotopy equivalence, it suffices to compute the homomorphism
induced by the composite map r o i : |K,l — C, which collapses the edge |K,| to the
central circle C. In the case of the cylinder, this map has degree 1; while in the case
of the Mdbius band the induced homomorphism clearly equals multiplication by 2.

Thus H,(K,K,) = H,(K,K,) = 0 in the case of the cylinder. In the case of the
Maébius band,

H,(KK,) =0 and H,(KK,) = Z/2.

The central circle C represents the non-zero element of H,(K,K,) in this case. So
does the chain D, as you may prove.

D Ko
= ==

D
Figure 23.3
EXERCISES
1. Check statements (1)~(5) of this section concerning exact sequences.

2. (a) Suppose
%8¢ wma 4%2%¢

are exact. Show that
a X B, X8
Ax4 3228 p g 200 v,
is exact.
(b) Generalize to arbitrary direct products.
(c) Generalize to arbitrary direct sums.
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3. Show that if X, is acyclic, H,(K,K,) = H,(K).

4. Suppose inclusion |K,| — |K| is a homotopy equivalence. Show H,(K,K;) =0
for all p.

S. Let (K,K,) denote the Mdbius band and its edge, as in Example 3. Show that

the non-zero element of H,(K.K,) is represented by the chain D indicated in
Figure 23.3.

6. Let S denote the Klein bottle. Let 4 and C be the usual simple closed curves in

S. (See Exercise 2 of §18.) Compute the exact sequences of the pairs (S, 4) and
(8.0).

§24. THE ZIG-ZAG LEMMA

Now we prove exactness of the homology sequence of a pair. We shall reformu-
late this result as a theorem about chain complexes and prove it in that form.
First we need a definition.

Definition. Let @, D, and & be chain complexes. Let O denote the trivial
chain complex whose groups vanish in every dimension. Let ¢: @ — D and
¢ : D — & be chain maps. We say the sequence

o—edap¥e—o

is exact, or that it is a short exact sequence of chain complexes, if in each di-
mension p, the sequence

0—c,2p YE —0

is an exact sequence of groups.

For example, if K is a complex and K, is a subcomplex of K, the sequence
0—C(K,) —C(K)— C(KK)—0
is exact, because C,(K.K,) = C,(K)/C,(K,) by definition.
Lemma 24.1 (The zig-zag lemma). Suppose one is given chain complexes

€ =1{C, 3, D ={D,.ap}, and € = |E,.d;}, and chain maps ¢, ¥ such that
the sequence

o—elple—o
is exact. Then there is a long exact homology sequence
d ¢,
—rebn0%n6% @%@

where 9, is induced by the boundary operator in D.
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Proof. The proof is of a type now commonly known as “diagram-chasing.”
Master this proof; in the future we shall leave all proofs of this sort as
exercises.

We shall use the following commutative diagram:

B o

0_"Cp+1 _—’Dp+| _"’Ep+| —0

dc dp 9

] lal e

00— C _‘2..,[) _.LE —0

P P P
ac dp O
-] | .
0o—o0c, , -%p,_,YE_, —o0.

Step 1. First, we define 9,. Given a cycle e, in E, (that is, an element of

ker 3g), choose d, € D, so that Y(d,) = ¢,. (Recall ¥ is surjective.) The ele- -

ment 3,d, of D, _, lies in ker y, since Y (3,d,) = 8;¥(d,) = 3z, = 0. There-
fore, there exists an element ¢,_, in C,_, such that ¢(c,_,) = d,d,, since
ker ¢ = im ¢. This element is unique because ¢ is injective. Furthermore, ¢, -

is a cycle. For
¢(3cc, - 1) = dpd(c,- ) = a,,a,,dp = 0;
then dcc, -, = 0 because ¢ is injective. Define

dulet =1, _ 1k,
where { } means “homology class of.”

Step 2. We show 4, is a well-defined homomorphism. Notation: Let e,
and €, be two elements in the kernel of 8.: E,— E, _,. Choose d, and d, so
that ¥ (d,) = e, and ¢ (d,) = e,. Then choose ¢,_, and ¢,_, so ¢(c,-,) =
dpd,and ¢(c,_,) = 9pd,.

To show 8, well defined, we suppose ¢, and ¢, are homologous, and show
that ¢,_, and ¢, ., are homologous. So suppose €, — €, = ¢, ,. Choose

d, ., so that Y(d, . ,) = ¢, .. Then note that

Y(d,—d,—~dpd,,,) =€,— €, — 3 Wd,,,)
=e,—¢€,—dge,,, =0.

Therefore, we can choose ¢, so ¢(c,) = d, — d, — 3pd, . ,. Then

¢(6Ccp) = 6D¢(cp) == 6D(dp - d;:) e 0 = ¢(cp— | R c;- 1)*

Because ¢ is injective, dcc, = ¢, - — €, _,, as desired.
To show 4, is a homomorphism, note that y(d, + d;) = ¢, + ¢,, and
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o(c, -, +¢,-1) = d,(d, + d;). Thus d, {e, +
le

V= {c, ., + ¢, -} by defini-
uon The latter equals, of course, d,{e,} + a

e
}

Step 3. We prove exactness at H,(D). Let ¥ € H, (D). Because Y o ¢ =
0, we have ¥, ¢, = 0. Hence if v € image ¢,, then y,(y) = 0.

Conversely, let v = {4,} and suppose ¢, (v) = 0. Then y/(d,) = d.e, ., for
some e, ., ;. Choose d,, ,s0 ¥ (d,,,) =e,,,. Then

1l/(dp - ade+ l) = ‘l/(dp) - aEw(dp-ﬁ» l) = w(dp) - aEep+l =0
sod, — d5d, ., = ¢(c,) for some c,. Now ¢, is a cycle because
¢(accp) = dpp(c,) = ade —-0=0
and ¢ is injective. Furthermore,
¢t{cp} = {d)(cp)} = {dp - ade+ l} = {dp}a

so {d,} € im ¢,, as desired.

Step 4. We prove exactness at H,(§). Notation: Let a = {e,} be an ele-
ment of H,(&). Choose d,so ¥(d,) = e,; then choose ¢, _,50 ¢(c,_,) = dd,.
Then d,a = {c,_,} by definition.

If a € imy,, then a = {y(d,)}, where d, is a cycle of D. Then ¢(c,.,) =
0; whence ¢, _, = 0. Thus d,a = 0.

Conversely, suppose d,a = 0. Then ¢,_, = dcc, for some c,. We assert
that d, — ¢(c,) is a cycle, and @ = ¥,{d, — ¢(c,)}, so a € im 1//, By direct
computation,

ap(d, — ¢(C )) = 8,d, — $(dcc,) = 8pd, — ¢(c,- 1) =0,
Vuld, — () = W(d) — 0l = {g} = a

Step 5. We prove exactness at H, _,(€®). Letg € H,_,(@).1f 8 € im3,,
then g8 = {c, .}, where o(c,-1) = a,,d for some 4,, by deﬁnition. Then

6. (8) = {o(c, - Y =1a,d,} = 0.

Conversely, suppose ¢, (8) = 0. Let 8= {c,_,}; then {¢(c,_ )} =0, so
¢(c,.1) = 3pd, for some d,. Define e, = ¥(d,); then ¢, is a cycle because
age = ¥(3pd,) = ¥é(c,-,) = 0.And B = d,le,} by definition. Thus
B € ima,. D

Note that nowhere in the proof of this lemma did we assume that the chain
complexes involved were free or that they were non-negative. This lemma thus
has a much broader range of application than just to chain groups of simplicial
complexes. However, applied to the simplicial chain groups € (K,) and € (K)
and @ (K,K,), we obtain Theorem 23.3 for non-reduced homology as an imme-
diate consequence.

To obtain the theorem for reduced homology, we let & = @(K,K,), as be-
fore; but we replace @ and D by the augmented chain complexes {Ge} and {Die},
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respectively. Note that exactness and commutativity hold in dimension —1,
since inclusion C,(X,) — C,(K) preserves augmentation:

0 — Cy(K) — Cy(K) — Go(K.Ky) —0
[ ]

0 y4 - z 0o —0.

iz

Application of the zig-zag lemma now gives us Theorem 23.3 for reduced
homology.

Before considering further applications, let us extract some additional in-
formation from the proof of the zig-zag lemma. We have constructed a function
assigning to each short exact sequence of chain complexes, a long exact se-
quence of their homology groups. Now we point out that this assignment is
“natural,” in the sense that a homomorphism of short exact sequences of chain
complexes gives rise to a homomorphism of the corresponding long exact ho-
mology sequences.

Theorem 24.2. Suppose one is given the commutative diagram
0—e-2.p ¥ 60

|« | |
0 C'—D'—— 6 0
¢ ¥
where the horizontal sequences are exact sequences of chain complexes, and a,
8. v are chain maps. Then the following diagram commutes as well:

—'H(@)——H(-‘D)——-*H(@)—-*H -1(8)—

* B. * *
— H,(lZ’)—ﬂvH,(lﬂ')—xp—;-»H,g')iH,_l,c:@’) —

Proof. Commutativity of the first two squares is immediate, because com-
mutativity holds already on the chain level. Commutativity of the last square
involves examining the definitions of 4, and &’.

Given e} e H,(6), choose d,so ¥(d,) =e, and choose c,_, so
#(c,-1) = a,,d Then dudet = 1{c,_ ,} by definition, Let e, = v(e,); we wish
to show that d et = a,{c b Roughly speaking, this follows because each
step in the deﬁmuon of 9, commutes: The chain 8(d,) is a suitable “pull-back”
for e, since Y'8(d,) = (d ) = v(e,) = ¢,. And then the chain a(c,.,) is
the pull-back of 8,8(d,), since ¢ a(c -1) = Bolc,-,) = B(8pd,) = 3,8(d,).
Thus 3, {e)} = {a(c, - l)} by definition. O

Naturality of the long exact homology sequence is extremely useful. We
give one application now. It makes use of the following lemma, whose proof is
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simple “diagram-chasing.” As promised, we leave the proof to you. The lemma
itself is of great usefulness.

Lemma 24.3 (The Steenrod five-lemma). Suppose one is given a commuta-
tive diagram of abelian groups and homomorphisms:

A, A, A, A, A,
[n |5 |5 |# | %
B,— B,— B,— B,—— B,

where the horizontal sequences are exact. If f,, f,, f., and f, are isomorphisms,
sois f,. O

Lemma 24.4. Let h:(K.,K,) — (L,L,) be a simplicial map.

(a) The induced homology homomorphisms h, give a homomorphism of
the exact homology sequence of (K,K,) with that of (L,L,).

() If h,: H(K)— H,(L) and h, : H,(K,) — H;(L,) are isomorphisms
fori=pandi=p— 1, then

h,: H,(K.K)— H,(LL)

is an isomorphism.

(c) Both these results hold if absolute homology is replaced throughout
by reduced homology.

Proof. We know h, is a chain map, and the following diagram commutes:

i T
0 — C,(K)—% G, (K)—% C,(K)/C,(K)—0
[ |H |
i w
0— C,(L)— C,()—+ C,()/C(Ly—0.
Then (a) follows. To deal with the case of reduced homology, we recall that h,
is augmentation-preserving, so it gives the desired chain map of the augmented
chain complexes, provided we define h,: Z — Z as the identity on the chain
groups in dimension — 1. Thus (2) holds for reduced homology.
Result (b) follows immediately from the Five-lemma. [

The following is an immediate consequence of this lemma and the results of
Chapter 2.

Theorem 24.5. The preceding lemma holds for an arbitrary continuous
map k: (KLIK]) — (LLIL). O
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EXERCISES

. Let X be a complex; let 4 be a subcomplex of X; let B be a subcomplex of 4.

Prove the existence and naturality of the following sequence; it is called the
exact homology sequence of the triple (X,4,B):

- = H(A4,B)— H,(X,B) — H(X,A) = H,_;(4.B) = - - - -

. Prove the following:

Lemma (The serpent lemma). Given a homomorphism of short exact se-
quences of abelian groups

there is an exact sequence

0 — ker o — ker 8 — ker ¥ — cok o — cok 8 — cok y — 0.

. (a) Prove the Five-lemma.

(b) Suppose one is given a commutative diagram of abelian groups, as in the
Five-lemma. Consider the following eight hypotheses:

f:is a monomorphism, for i =1, 2, 4, 5,
f;is an epimorphism, fori =1, 2, 4, 5.

Which of these hypotheses will suffice to prove that f, is a monomorphism?
Which will suffice to prove that f; is an epimorphism?

. Show by example that one can have H;(K,) =~ H,(L,) and H,(K) =~ H,(L) for

all i, without having H (K,K,) = H;(L,L,).

. Let w= K be a cone over K. Show that

H;(w#* KK) = iIi— 1(K).

. Let K, be a subcomplex of K.

(a) If there is a retraction 7 : [K| — |K,|, show that
H,(K) = H,(K.K,) © H,(K).

(b) If the identity map i : IK| — IK| is homotopic to a map carrying K| into
IK,|, show that

H,(K,) = H,(K) ® H, , ,(KK).
(c) If the inclusion j: |K,} — |K} is homotopic to a constant, show that
H,(K.K) =H,(K)® H,_,(K).

[Hint: Show that the map j extends to a map f:Iw * K| — |K|. (See
Corollary 20.6.) Then apply Exercise 5.}

*(d) Show by example that the conclusion of {c) does not hold if one assumes
only that j, is the zero homomorphism in reduced homology.
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7. Given a complex K and a short exact sequence of abelian groups
0—=G—G —G"—0,
one has a short exact sequence of chain complexes
0— C,(K;G) — C,(K;G') — C,(K:G") — 0,

and hence a long exact sequence in homology. The zig-zag homomorphism in
this sequence is commonly denoted

Bs : H(K;G") — H, _(K;G)

and called the Bockstein homomorphism associated with the given coefficient
sequence.

(a) Compute B3, for the coefficient sequences
0—-Z—Z—Z/2—0,
0—Z/2—Z/4—Z/2—0,

when |K| equals P*.
(b) Repeat (a) when K| is the Klein bottle.

§25. MAYER-VIETORIS SEQUENCES

The homology exact sequence is one useful device for computing homology
groups. Another is the Mayer-Vietoris sequence, which we now construct. It is
another consequence of the zig-zag lemma.

Theorem 25.1. Let K be a complex; let K, and K, be subcomplexes such
that K = K, U K,. Let A= K, N\ K,. Then there is an exact sequence
- = H,(4) — H,(K,) ® H(K,)) — H(K)— H,_,(d)— - -

called the Mayer-Vietoris sequence of (K,,K,). There is a similar exact se-
quence in reduced homology if A is nonempty.

]

Proof. The proof consists of constructing a short exact sequence of chain
complexes

o—euSexyoewx)terx) —o,

and applying the zig-zag lemma.
First we need to define the chain complex in the middle. Its chain group in
dimension p is

G (K) @ C,(K)),
and its boundary operator 9’ is defined by
3 (d.e) = (3,4, 8,e),
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where 8, and 9, are the boundary operators in € (X,) and € (X,), respectively.
Second, we need to define the chain maps ¢ and . We do this as follows.
Consider the inclusion mappings in the following commutative diagram:

Define homomorphisms ¢ and ¥ by the equations

¢(c) = (iy(c), — Js (),
Y(d.e) = k,(d) + 1, (e).

It is immediate that ¢ and ¢ are chain maps.

Let us check exactness: First, note that ¢ is injective, since i, is just inclu-
sion of chains. Second, we check that y is surjective. Given d € C,(K), write d
as a sum of oriented simplices, and let d, consist of those terms of d carried by
K,. Then d — d, is carried by K,; and y(d,, d — d,) = d.

To check exactness at the middle term, note first that Y¢(c) = m,(c) —
my(c) = 0. Conversely, if Y (d,e) = 0, then d = —e, when considered as chains
of K. Since d is carried by K, and e is carried by K, they must both be carried
by K, N K, = A. Then (d,e) = (d,—d) = ¢(d), as desired.

The homology of the middle chain complex in dimension p equals

ker 8’ _ ker 9, ® ker 9,
im 3’ im 9, ® im 4,
= H,(K,) ® H,(K,).

The Mayer-Vietoris sequence now follows from the zig-zag lemma.

To obtain the Mayer-Vietoris sequence in reduced homology, we replace
the chain complexes considered earlier by the corresponding augmented chain
complexes. Let ¢,, ¢, ¢,, and € denote the augmentation maps for € (4), € (X,),
@ (K,), and @ (K), respectively. Consider the diagram

0 — Co(A)— Ci(K,) ® Co(K) — G(K)—0

l €, l 6De, l €
60— Z N 1L e 7z —0.
Commutativity and exactness hold at the bottom level if we define ¢(n) =
(n,—n) and Y (m,n) = m + n. Each map ¢,, ¢, D ¢,, and ¢ is surjective (since 4
is nonempty). Thus the homology of these respective chain complexes vanishes
in dimension —1, and in dimension O equals the respective groups H,(A),
H,(K,)® H,(K,) and H,(K). We now apply the zig-zag lemma. O

143



144 Relative Homology and the Eilenberg-Steenrod Axioms Chapter 3

Lemma 25.2. Let h: (K K,K,)— (L.L,L,) be a simplicial map, where
K=K,UK and L =L,U L,. Then h induces a homomorphism of Mayer-
Vietoris sequences.

Proof. One checks immediately that the chain maps h, induced by /& com-
mute with the chain maps ¢ and y defined in the preceding proof. Naturality
then follows from Theorem 24.2. O

The following is an immediate consequence of this lemma and the results of
Chapter 2.

Theorem 25.3. The preceding lemma holds for an arbitrary continuous
map h: (KLIKLIK) — dZLiLlILD. O

To illustrate how the Mayer-Vietoris sequence is used in practice, we shall

compute the homology of a suspension of a complex. We recall the definition
from the exercises of §8:

Definition. Let K be a complex; let w, * K and w, * K be two cones on X
whose polytopes intersect in |K| alone. Then

S(K) = (Wo*K) U (wl*K)

is a complex; it is called a suspension of K. Given K, the complex S(X) is
uniquely defined up to a simplicial isomorphism.

Theorem 25.4. If K is a complex, then for all p, there is an isomorphism
H,(S(K))— H,_,(K).

Proof. Let K,=w,*K and K, = w, * K. Then K, U K, = S(K) and
K, N K, = K. In the reduced Mayer-Vietoris sequence

H,(K,) ® H,(K)— H,(SK)— H,_,(K)— H,_,(K)® H,_,(K)

both end terms vanish, because K, and K, are cones. Therefore the middle map
is an isomorphism. O

EXERCISES

1. Let K be the union of the subcomplexes K, and K,, where |K,| and |K,| are
connected. What can you say about the homology of K in each of the following
cases?

(a) K, N K, is nonempty and acyclic.

(b) 1K, N Ikl consists of two points.

(c) K, N K, has the homology of S*, where n > 0.
(d) K, and K, are acyclic.
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2. Let K, and K, be subcomplexes of K; let L, and L, be subcomplexes of K, and
K,, respectively. Construct an exact sequence

. — H(K, N K,,L, N L) — H,(K,,L) ® H(K,,L) —
H(K,U K L,bUL)— .- ..

This sequence is called the relative Mayer-Vietoris sequence.

3. Show that if 4 is an integer, and if n = 1, there is a map h : S” — S" of degree
d. {Hint: Proceed by induction, using naturality of the Mayer-Vietoris se-
quence. The case n = 1 was considered in Exercise 1 of §21.]

4. Let ¢: C,(K) — C, . ,(S(K)) be the homomorphism defined in Exercise 1 of
§8. Show that the isomorphism of Theorem 25.4 is inverse to ¢,.

5. Given a sequence G,, . .. ,G, of finitely generated abelian groups, with G, and
G, free and G, non-trivial, show there is a finite complex X of dimension » such
that H,(K) = G;for i = 0,....,n. [Hint: See Exercise 8 of §6.]

6. We shall study the homology of X X Y in Chapter 7. For the present, prove the
following, assuming all the spaces involved are polyhedra:
(a) Show that if p € S*,

H(XX S" XX p) = H,_ (X).

{Hinz: Write S" as the union of its upper and lower hemispheres, and pro-
ceed by induction on n.]

(b) Show that if p € Y, the homology exact sequence of (X X Y, X X p}
breaks up into short exact sequences that split.

(¢) Prove that

H(XXS)=H,_,(X)®H/(X).
(d) Compute the homology of S" X S™.

145

§26. THE EILENBERG-STEENROD AXIOMS

We have defined homology groups for a particular class of spaces—namely, the
polyhedra. Historically, these were the first homology groups to be defined.
Later, various generalized definitions of homology were formulated that ap-
plied to more general spaces. These various homology theories had many fea-
tures in common, and they all gave the same results as simplicial homology
theory on the class of polyhedra.

This plethora of homology theories led Eilenberg and Steenrod to
axiomatize the notion of a homology theory. They formulated certain crucial
properties these theories have in common, and showed that these properties
characterize the homology groups completely on the class of polyhedra.

We shall not try to reproduce the axiomatic approach at this point, nor
shall we prove that the axioms characterize homology for polyhedra. For this,
the reader is referred to Eilenberg and Steenrod’s book [E-S]. We shall simply
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list the seven axioms here, together with an additional axiom that is needed
when one deals with non-compact spaces. In the next section, we verify that
simplicial homology theory satisfies the axioms.

Definition. Let A be a class of pairs (X,4) of topological spaces such
that:

(1) If (X,A) belongs to A, so do (X,X), (X,93), (4,4), and (4,2).
(2) If (X,A4) belongs to A, so does (X X I,4A X I).
(3) There is a one-point space P such that (P,@) is in A.

Then we shall call A an admissible class of spaces for a homology theory.

Definition. If A is admissible, a homology theory on A consists of three
functions:

(1) A function H, defined for each integer p and each pair (X,4) in A,
whose value is an abelian group.

(2) A function that, for each integer p, assigns to each continuous map
h:(X,A) — (Y,B) a homomorphism

(ha),: H,(X,4) — H,(Y.B).

(3) A function that, for each integer p, assigns to each pair (X,4) in A, a
homomorphism

(84),: H,(X,A) — H, _ ,(A4),
where A denotes the pair (4,9).

These functions are to satisfy the following axioms, where all pairs of spaces
are in A. As usual, we shall simplify notation and delete the dimensional sub-
scripts on k, and a,.

Axiom 1. If i is the identity, then i, is the identity.
Axiom2. (koh),=k,oh,.

Axiom 3. If f: (X,A4) — (Y,B), then the following diagram commutes:

B, —L— H,(v.B)

]a, ]a

H,_ L Dep " (8)
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Axiom 4 (Exactness axiom). The sequence

i 9 a
‘ _’HP(A) _:HP(X)_E’H;;(XV‘i)—sz— I(A)—-' et

is exact, where i : A— X and 7 : X — (X,A4) are inclusion maps.

Recall that two maps A,k : (X,4) — (Y,B) are said to be homotopic (writ-
ten h =~ k) if there is a map

F:(XXI,AXI)—(Y.B)
such that F(x,0) = h(x) and F(x,1) = k(x) for all x € X.

Axiom 5 (Homotopy axiom). If h and k are homotopic, then 2, = k,.

Axiom 6 (Excision axiom). Given (X,4), let U be an open subset of X
such that U C Int 4. If (X — U, 4 — U) is admissible, then inclusion induces
an isomorphism

H (X — U A— U) = H,(X.A).

Axiom 7 (Dimension axiom). If P is a one-point space, then H,(P) =0
for p # 0 and H,(P) = Z.

Axiom 8 (Axiom of compact support). If @ € H, (X,A), there is an admis-
sible pair (X,,4,) with X, and 4, compact, such that « is in the image of the
homomorphism H,(X,,4,) — H,(X,4) induced by inclusion.

A pair (X,,4,) with both X, and 4, compact is called a compact pair.

Note that one can modify Axiom 7 by writing H,(P) = G, where G is a
fixed abelian group. What one has then is called “homology with coefficients in
G.” We shall stick to integer coefficients for the present.

Of all the Eilenberg-Steenrod axioms, the dimension axiom seems most in-
nocuous and least interesting. But in some sense, just the opposite is true. Since
Eilenberg and Steenrod’s axioms were published, several new mathematical
theories have been discovered (invented?) that resemble homology theory.
Cobordism theories in differential topology and K-theory in vector bundie the-
ory are examples. Although these theories were invented for purposes quite
different from those for which the homology groups were invented, they share
many formal properties with homology theory. In particular, they satisfy all
the Eilenberg-Steenrod axioms except for the dimension axiom.

Such a theory is nowadays called an extraordinary homology theory, or a
generalized homology theory. It differs from ordinary homology in that a one-
point space may have non-zero homology in many dimensions.

This situation illustrates a phenomenon that occurs over and over again in
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mathematics; a theory formulated for one purpose turns out to have conse-
quences far removed from what its originators envisaged.

EXERCISES

1. Consider the following commutative diagram of abelian groups and homomor-
phisms, which is called a braid:

ANANAS
AN

¥ w

This diagram contains the following four sequences, arranged in the form of
overlapping sine curves:

E—-A—B—G—K,
E—-T1—-J—-G—C—D,
A—F—J—K—H—D,
I—-F—B—C—H.

If all four sequences are exact, this diagram is called an exact braid. Prove the
following two facts about braids:
(a) If this braid is exact, there is an isomorphism

kero ker 8
“imy im o
defined as follows: If w(j) = 0, choose f 50 p(f) = j; then define A(j) =
(N
(b) Lemma (The braid lemma). In order that a braid be exact, it suffices if
the first three of the preceding sequences are exact, and if the composite
I— F— B is zero.

2. Using only the axioms for a homology theory, prove exactness of the homology
sequence of a triple:

. —~H,(AB) % H,(X,B) > H(X.A) A H,_,(AB)— - - -
where 7 and 5 are induced by inclusion. The map 8 is the composite
a Iy
H,(X,A) = H, _,(A)=> H,_,(A,B),

where 3, is given by the axioms and i is inclusion. Assume the pairs involved
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are admissible. [Hint: Prove that H,(A4,4) = 0. Show that 7 o # = 0. Then
apply Exercise 1.]

3. Using only the axioms for a homology theory, derive the Mayer-Vietoris se-
quence, as follows:

Let X = X, U X,; let A= X, N X,. We say that (X,,X,) is an excisive
couple for the given homology theory if (X,,4) and (X,.X,) are admissible and if
inclusion (.X,,4) — (X, X;) induces a homology isomorphism.

(a) Consider the following diagram of inclusions, and the corresponding homo-
morphism of long exact homology sequences:

A— X, 2 (X,,4)

il
X,T' X —5—' (X.XD)
Given that (X,,X,) is excisive, define a sequence
0
—aw2Exenx)trxLE - ..
by letting

d(a) = (i.(a), —ju(a)),
Yxpx,) = ke (Xy) + 14(x,),
0(x) = 34 (v2)""Bs (x).

Here 9, is the boundary homomorphism in the homology exact sequence of
(X,,4). Show that this sequence is exact and is natural with respect to
homomorphisms induced by continuous maps. [Hint: The proof is a dia-
gram-chase. One begins with a homomorphism of one long exact sequence
to another, where every third homomorphism is an isomorphism.]

(b) Show that if X is the polytope of a complex K, and if X, and X, are poly-
topes of subcomplexes of K, then (X,,X;) is excisive for simplicial theory,
and this sequence is the same as the Mayer-Vietoris sequence of Theorem
25.1.

(c) Suppose (X,,4) and (X,X,) are admissible. Show that if Int X, and Int X,
cover X and if X, is closed in X, then (X,,X;) is excisive for any homology
theory satisfying the axioms.

§27. THE AXIOMS FOR SIMPLICIAL THEORY

Before showing that simplicial homology theory satisfies the Eilenberg-
Steenrod axioms, we must treat several points of theory with more care than we
have done up to now. The axioms involve homology groups that are defined on
an admissible class of spaces. Strictly speaking, we have not defined homology
groups for spaces, but only for simplicial complexes. Given a polyhedron X,
there are many different simplicial complexes whose polytopes equal X. Their
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homology groups are isomorphic to one another in a natural way, but they
are nevertheless distinct groups. Similarly, if 2: X — Y is a continuous map,
where X = |[K| and Y = |L|, we have defined an induced homomorphism
h, : H,(K) — H,(L). Of course, if X = |M| and ¥ = |N|, we also have an in-
duced homomorphism H,(M) — H,(N), which we also denote by &,. We noted
this notational ambiguity earlier.

The way out of this difficulty is the following: Given a polyhedron X, we
can consider the class of all simplicial complexes whose polytopes equal X, and
we can identify their homology groups in a natural way. The resulting groups
can be called the homology groups of the polyhedron X.

More generally, we can perform this same construction for any space that
is homeomorphic to a polyhedron. We give the details now.

Definition. Let A be a subspace of the space X. A triangulation of the pair
(X,A) is a complex K, a subcomplex K, of K, and a homeomorphism

k- (KLIK)) — (X,4).

If such a triangulation exists, we say (X,A) is a triangulable pair. If 4 is empty,
we say simply that X is a triangulable space.

Now let (X,A4) be a triangulable pair. We define the simplicial homology
H,(X,A) of this pair as follows: Consider the collection of all triangulations of
(X,A). They are of the form

r, (K JIC)H — (Xx,4),

where C, is a subcomplex of KX,.

Now there is some set-theoretic difficulty with the concept of the “set of all
triangulations of a pair,” just as there is with the “set of all sets.” We avoid such
problems by assuming that each K, lies in some fixed space E’. This is justified
by noting that if J is large enough, each K, has an isomorphic copy lying in E’.
For instance, we can let J have the cardinality of X itself!

For fixed p, consider the groups H, (K,,C,). We make sure they are disjoint
as sets by forming H,(K,,C,) X {a}. Then in the disjoint union

U,H,(K,.C,) X {a},
we introduce an equivalence relation. We define
(x,a) € H,(K,,C,) X {a}
(3, 8) € H,(K,,Cp) X {8}

to be equivalent if (h;'h,),(x) = y. And we let H,(X,A4) denote the set of
equivalence classes.

Now each equivalence class contains exactly one element from each group
H,(K,,C,) X {a}. That is, the map

H,(K,,C,) X {o} — H,(X.4)
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that carries each element to its equivalence class is bijective. We make
H,(X,A) a group by requiring this map to be an isomorphism. This group struc-
ture is unambiguous because (h;'h,), is an isomorphism for each pair of indi-
ces a, B.

A continuous map h: (X,4) — (Y,B) induces a homomorphism in homol-
ogy as follows: Take any pair of triangulations

h,: (KIC) — (X.4),
kg : (1Ll \Dgly — (¥B).

The map h induces a2 map k' : (IKJ,|C.l) — (IL|,|D;l), which in turn gives rise
to a homomorphism

k. :H,(K,,C,) — H,(Ls,Dg)

of simplicial homology groups. By passing to equivalence classes, this homo-
morphism induces a well-defined homomorphism

h, : H,(X,4) — H,(Y,B).

In a similar manner, the boundary homomorphism @, : H,(X,,C,) —
H, _,(C,) induces a boundary homomorphism

3y : H,(X,A) — H, _,(4).

We now have all the constituents for a homology theory.

First, we note that the class of triangulable pairs forms an admissible class
of spaces for a homology theory. If (X,A4) is triangulable, so are (X, X), (X, %),
(A,A), and (A4, 9). Any one-point space is triangulable. Finally, if (X,A4) is tri-
angulable, then so is (X X I, 4 X I), by Lemma 19.1.

Theorem 27.1. Simplicial homology theory on the class of triangulable
pairs satisfies the Eilenberg-Steenrod axioms.

Proof. Axioms 1-5 and 7 express familiar properties of the homology of
simplicial complexes that carry over at once to the homology of triangulable
pairs. Only Axioms 6 and 8, the excision axiom and the axiom of compact
support, require comment.

To check the axiom of compact support, it suffices to show that it holds for
simplicial complexes. Let o be an element of H,(K,K,). Let ¢ be a chain of X
representing «; its boundary is carried by K, Since ¢ is carried by a finite
subcomplex L of K, it can be considered as a cycle of (L,L,), where L, =
K, N L. If 8 is the homology class of ¢ in H,(L,L,), then j,(8) = a, where j is
inclusion of (L,L,) in (X,K,). Thus the axiom is verified.

Checking the excision axiom involves a subtlety that may not be apparent
at first sight. The problem is that even though both (X,4) and (X — U,
A — U) may be triangulable, the two triangulations may be entirely unrelated
to one another! If this is not the case, then the excision axiom follows readily
from Theorem 9.1, as we now show.
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Let U C 4 C X. Suppose there is a triangulation
ke (IKLIK) — (X,4)

of the pair (X,4) that induces a triangulation of the subspace X — U. This
means that X — U = h(|L|) for some subcomplex L of K. Let L,= L N K,;

then 4 — U = h(|L,). (It follows that U is open and A is closed.) Theorem 9.1
states that inclusion induces an isomorphism

H,(L,L) = H,(K.K,).
Thus our result is proved.
Now we prove excision in the general case. Let U C Int 4; let

h . (K,Ko) - (X7A)
k:(MM)—(X—UA-U)

be triangulations of these respective pairs of spaces. Let X, denote the closure of
X — A,and let 4, = X, N A. We assert that the pair (X,,4,) is triangulated by
both h and k. (See Figure 27.1, where the maps j, and j, denote inclusions.)

To verify this assertion, note that the space |K| — |K,| is the union of all
open simplices Int ¢ such that 0 € K and ¢ ¢ K,. Then its closure C is the poly-
tope of the subcomplex of K consisting of all simplices ¢ of X that are not in K|,
and their faces. The image of the set C under the homeomorphism k equals the
closure of X — A, which is X,. Therefore, X, is triangulated by 4. Since both X,
and A are triangulated by h, so is 4, = X, N A. Similarly, the closure of
|M| — |M,| is the polytope of a subcomplex of M, and its image under k equals
the closure of (X — U) — (4 — U) = X — A. Thus X, is triangulated by k,
and so is 4, = X, N A. (Here is where we need the fact that U C Int 4.)

( A-U
RSN ; : AV AN
AN L4 NN\
\\\\\\\\ e
X X X-U

Figure 27.1
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It follows from the special case already proved that in the diagram of
inclusions

X)L (X,4)
A J
(X-U,A4-0)

both j, and j, induce isomorphisms. Because the diagram commutes, j, is also
an isomorphism. [J

We remark that in the preceding proof we did not need the full strength of
the hypothesis of the excision axiom. We did not use the fact that UcCIntA,
nor that U is open. Thus for simplicial theory on the class of triangulable pairs,
the following stronger version of the excision axiom holds:

Theorem. 27.2 (Excision in simplicial theory). Let A be a subspace of X.
Let U be a subset of X such that U C Int A. If both pairs (X,A} and (X — U,
A — U) are triangulable, then inclusion induces an isomorphism

H(X-UA-U)=H,/(X,4). O

The axiom of compact support states, roughly speaking, that every homol-
ogy class is compactly supported. It is also true that every homology relation
between such classes is compactly supported. More precisely, one has the fol-
lowing useful result, which we shall verify directly for simplicial theory. It may
also be derived from the axioms; see the exercises.

Theorem 27.3. Let i:(X,A4,) — (X,4) be an inclusion of triangulable
pairs, where (X,,A4,) is a compact pair. If « € H,(X,,4,) and i, (a) = O, then
there are a compact triangulable pair ( X,,A,) and inclusion maps

(Xod) L (X,.4) £ (x.4)
such that j,(a) = 0.

Proof. We may assume that (X,4) is the polytope of a simplicial pair
(K,C). Because X, is compact, it is contained in the polytope of a finite sub-
complex K, of K. Then A, is contained in the polytope of C N K, = C,. The
theorem thus reduces to the case where

i:(K,,C) — (K,C)

is an inclusion of subcomplexes and X, is finite.

Let « € H,(K,,C,) and suppose that i,(a) = 0. Let ¢, be a chain of K,
representing «. Since i, (a) = {u( )} = 0, there is a cham d,,, of K such
that ¢, — d, , , is carried by C. Choose a finite subcomplex of C carrying
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¢, — 8d, . ; let C, be the union of this subcomplex and C,. Then choose a finite
subcomplex of K carrying d, . ,; let K, be the union of this subcomplex and X,
and C,. Then the homomorphism induced by the inclusion

(Ko, Co) — (K, C)

carries a to zero. O

EXERCISES

1. Theorem. Given a sequence G,, G,, ... of finitely generated abelian groups
with G, free and non-trivial, there is a complex K such that H,(K) = G, for
each i.

[Hint: See Exercise 5 of §25.]

2. Let A be either the class of triangulable pairs, or the class of all topological
pairs. Prove Theorem 27.3, with the word “triangulable” replaced throughout
by the word “admissible,” directly from the axioms.

[Hint: Show that in the triangulable case, one can assume that the trian-
gulation of (X,4) triangulates X, as well. Examine the diagram

H, (X0 A)
1 I, \
— H,(A,A) — H,(X.A)— H,(X,4) —

to find a compact 4, such that /,(e) is in the image of H,(4;,4,) —
H,(X,A,). Then inclusion (X,,4,) — (X,4,) induces 2 homomorphism carrying
a to zero. Examine the diagram

H (X,,4,)
Hy (XX, U A4) = H (X, U A, 4) — H(X.A)
to find a compact X, such that m, (a) is in the image of
3¢t Hy o (XX, U 4) — Hi(X, U 4,,4,).

Complete the proof.]

*§28. CATEGORIES AND FUNCTORS'

By now you have seen enough references to “induced homomorphisms” and
their “functorial properties,” and to the “naturality” of the way one assigns one
mathematical object to another, that you may suspect there is some common
idea underlying all this language. There is; we study it in this section. It consists

"This section will be needed when we study cohomology, in Chapter S.
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mostly of new terminology; what proofs there are, are elementary and are left to
the reader.

Definition. A category C consists of three things:
(1) A class of objects X.
(2) For every ordered pair (X,Y) of objects, a set hom (X,Y") of morphisms f.
(3) A function, called composition of morphisms,
hom(X,Y) X hom(¥,Z) — hom(X,Z),
which is defined for every triple (X,Y,Z) of objects.

The image of the pair ( f,g) under the composition operation is denoted by g o f.
The following two properties must be satisfied:

Axiom 1 (Associativity). If fe hom(W,X) and ge hom(X,Y) and
h € hom(Y,Z), thenho(go f) = (heog)of

Axiom 2 (Existence of identities). If X is an object, there is an element
1, € hom (X, X) such that

Iyof=f and goly=g

for every fe hom(W,X) and every g € hom(X,Y), where W and Y are
arbitrary.

One standard example of a category consists of topological spaces and con-
tinuous maps, with the usual composition of functions. This example illustrates
why we speak of the objects of a category as forming a class rather than a sez,
for one cannot speak of the “set of all topological spaces” or the “set of all sets”
without becoming involved in logical paradoxes. (Is the set of all sets a member
of itself?) A class is something larger than a set, to which we do not apply the
usual set-theoretic operations (such as taking the set of all subsets).

Let us note the following fact: The identity morphism 1 is unique. For
suppose

lyof=f and g=gol}

for every f € hom(W,X) and g € hom(X,Y). Then setting f = 1, and g = 1,
we have

1x°llx=1:¥ and 1x=1x°13’9
whence 1% = 1.

Definition. Let f€ hom(X,Y) and g, g’ € hom (Y, X). If go f=1,, we
call g a left inverse for f; if fo g’ = 1, we call g’ a right inverse for f.
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We note the following fact: If f has a left inverse g and a right inverse g,
they are equal. For one computes as follows:
(gef)eg =1xeg' =¢,
go(feg)=gely=¢g

whence g = g’. The map g = g’ is called an inverse to f; it is unique.

If f has an inverse, then f is called an equivalence in the category in
question.

In general, we write f: X — Y to mean f € hom(X.,Y); and we call X the
domain object of f, and ¥, the range object of f.

Definition. A (covariant) functor G from a category C to a category D is a
function assigning to each object X of C, an object G(X) of D, and to each
morphism f: X — Y of C, a morphism G(f) : G(X) — G(Y") of D. The follow-
ing two conditions must be satisfied:

G(1y) = 15y, forall X,
G(gof) =G~ G(/f).

That is, a functor must preserve composition and identities. It is immediate that
if fis an equivalence in C, then G(f) is an equivalence in D.

Example 1. We list 2 number of categories. In all these examples, composition is
either the usual composition of functions or is induced by it. Equivalences in some
of these categories are given special names; in such cases, the name is listed in pa-
rentheses.

(a) Sets and maps (bijective correspondences).
(b) Topological spaces and continuous maps (homeomorphisms).

(c) Topological spaces and homotopy classes of maps (homotopy equiv-
alences).

(d) Simplicial complexes and simplicial maps (simplicial homeomorphisms).
(e) Simplicial complexes and continuous maps of their polytopes.

(f) Simplicial complexes and homotopy classes of continuous maps.

(g) Groups and homomorphisms (isomorphisms).

(h) Chain complexes and chain maps.

(i) Chain complexes and chain-homotopy classes (chain equivalences).

(j) Short exact sequences of abelian groups and homomorphisms of such.
(k) Short exact sequences of chain complexes and homomorphisms of such.
(1) Long exact sequences of abelian groups and homomorphisms of such.

(m) Pairs (X,Y) of topological spaces and pairs (f.g) of continuous maps.
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Example 2. Now we list several examples of functors.

(a) The correspondence assigning to a pair (X,Y) of spaces, the space X X Y,
and to a pair (f,g) of continuous maps, the map f X g, is a functor from
pairs of spaces to spaces.

(b) The correspondence assigning to a space X its underlying set, and to a con-
tinuous map, the underlying set map, is a functor from spaces to sets. It is
called the forgetful functor; it “forgets” the topological structure involved.

(c) The correspondence K — @(K) and f — f, is a functor from the category
of simplicial complexes and simplicial maps to the category of chain com-
plexes and chain maps.

(d) Given a homology theory, the correspondence X — H,(X) and [h] — h, is
a functor from the category of admissible spaces and homotopy classes of
maps to the category of abelian groups and homomorphisms. (Here [k]
denotes the homotopy class of A.) This is precisely the substance of the
first two Eilenberg-Steenrod axioms and the homotopy axiom.

(¢) The zig-zag lemma assigns to each short exact sequence of chain com-
plexes, a long exact sequence of their homology groups. The “naturality”
property expressed in Theorem 24.2 is just the statement that this assign-
ment is a functor.

Definition. Let G and H be two functors from category C to category D.
A natural transformation T from G to H is a rule assigning to each object X of
C, a morphism

Ty:G(X)— H(X)

of D, such that the following diagram commutes, for all morphisms f: X — Y of
the category C:

6(X) L% H(x)
oy |aLn
[6)Zx p(yy.
If for each X, the morphism Ty is an equivalence in the category D, then T is
called a natural equivalence of functors.

Example 3. Given a homology theory, let p be fixed, and consider the following
two functors, defined on admissible pairs:

G(XA) = HyX Ay, G(f)=fs
H(XA) =H,_\(4); H(f) = (/14),.
The commutativity of the diagram
H,(XA) 2 H, ,(4)

| £ | s,
H (v 2H,_(®
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tells us that 8, is a natural transformation of the functor G to the functor H. This is
precisely the third of the Eilenberg-Steenrod axioms.

Example 4. Consider the category of pairs of spaces and pairs of maps. Let G and
H be the functors

GX,Y)=XXY, G(figd=fXg

HXY)=YXX, H(fg=gX/
Given (X.Y), let Ty, be the homeomorphism of X X Y with ¥ X X that switches
coordinates. Then T is a natural equivalence of G with H.

We have until now been dealing with what we call covariant functors.
There is also a notion of contravariant functor, which differs, roughly speaking,

only inasmuch as “all the arrows are reversed™ Formally, it is defined as
follows:

Definition. A contravariant functor G from a category C to a category D
is a rule that assigns to each object X of C, an object G(X) of D, and to each
morphism f: X — Y of C, a morphism

G(f):G(Y)—-G(X)
of D, such that G(1,) = 15, and

G(g=f) =G(f) - G(a)

A natural transformation between contravariant functors is defined in the obvi-
ous way.

In this book, we have not yet studied any contravariant functors, but we
shall in the future. Here is an example of one such, taken from linear algebra:

Example 5. 1f V is a vector space over R, consider the space .L(V.R) of linear
functionals on ¥ (linear transformations of ¥ into R). It is often called the dual
space to V. The space .L (VR) has the structure of vector space, in the obvious way.
Now if f: ¥V'— W is a linear transformation, there is a linear transformation

f*: LWR)— L(VR),

which is often calied the transpose (or adjoint) of f. It is defined as follows: if
a: W—Ris a linear functional on W, then f™ (&) : ¥— R is the linear functional

on ¥V which is the composite V I* wZR.
The assignment

V—L(WVR) and f—f"

is a contravariant functor from the category of vector spaces and linear transforma-
tions to itself.
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Categories and Functors

EXERCISES

1. Check that each class of objects and morphisms listed in Example 1 is indeed a

category, and that the equivalences are as stated. (Only (c) and (i) need any
attention.)

. Functors have appeared already in your study of mathematics, although that

terminology may not have been used. Here are some examples; recall their defi-

nitions now:

(a) Consider the category of complexes and equivalence classes of simplicial
maps, the equivalence relation being generated by the relation of contigu-
ity. Define a functor to chain complexes and chain-homotopy classes of
chain maps.

(b) Give a functor from abstract complexes to geometric complexes, called the
“geometric realization functor.” What are the maps involved?

(¢) Give functors from families of abelian groups, indexed with the fixed index
set J, to abelian groups, called “direct product” and “direct sum.”

(d) In algebra, there is a functor G — G/[G,G] called the “abelianization
functor.” Either recall it or look it up.

(e) In topology, there is a functor from completely regular spaces to compact
Hausdorff spaces, called the “Stone-Cech compactification.” Either recall
it or look it up. Don’t forget to deal with maps as well as spaces.

. Let G and H be the functors assigning to a complex X its oriented chain com-

plex and its ordered chain complex, respectively. To each simplicial map, they

assign the induced chain map.

(a) There is a natural transformation either of G to H or of H to G. Which?

(b) Show that if you consider G and H as taking values in the category of chain
complexes and chain-homotopy classes of chain maps, then both natural
transformations exist and are natural equivalences.

. Consider the category of pairs (X,Y) of triangulable spaces such that X X Yis

triangulable, and pairs of continuous maps. Define
GXY)=H,(XXY) and G(f,g) =(/Xg.;
HX)Y)=H,(X) XH,(Y) and H(fg) =/fi X g

Define a natural transformation of G to H; show it is not a natural equivalence.

. We have not yet studied a category where the morphisms are other than maps

in the usual sense or equivalence classes of maps. Here is an example, for those
who are familiar with the fundamental group of a topological space.

Let X be a fixed space. Let C be the category whose objects are the points
of X; and let hom(x,,x,) consist of path-homotopy classes [a] of paths « from
x, to x,. The composition operation

hom(x,,x;) X hom(x,,x,) — hom(x,,x,)

is induced by the usual composition of paths (8,a) — a * 8.
(a) Check that C is a category in which every morphism is an equivalence.
(Such a category is called a groupoid.)
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(b) Check that the assignment x, — 7,(X,x,) and {a] — & is a contravariant
functor from C to the category of groups and homomorphisms. (Here
a([f1) = [a@* f * a], where & is the reverse path to a.)

Note:  The reason we must let [a] represent an element of
hom (x,,x,) rather than hom(x,,x,) arises from the awkward fact that when
we compose paths we put the first path on the left, while when we compose
maps we put the first function on the right!



Singular Homology Theory

Now we are in some sense going to begin all over again. We construct a new
homology theory. As compared with simplicial theory, it is much more “patu-
ral.” For one thing, the homology groups are defined for arbitrary topological
spaces, not just for triangulable ones. For another, the homomorphism induced
by a continuous map is defined directly and its functorial properties are proved
easily; no difficult results such as the simplicial approximation theorem are
needed. The topological invariance of the singular homology groups follows
at once.

However, the singular homology groups are not immediately computable.
One must develop a good deal of singular theory before one can compute the
homology of even such a simple space as the sphere S”. Eventually, when we
develop the theory of CW complexes, we will see how singular homology can be
computed fairly readily. Alternatively, since we shall show that simplicial and
singular homology groups are isomorphic for triangulable spaces, we can al-
ways go back to simplicial theory if we want to compute something.

In this chapter, we construct the singular homology groups and prove that
they satisfy the Eilenberg-Steenrod axioms on the class of all topological
spaces. (The homotopy axiom and the excision axiom, it turns out, require some
effort.) Then we construct a specific isomorphism between the singular and
simplicial theories that will be useful later.

Finally, we give a number of applications. They include the Jordan curve
theorem, theorems about manifolds, and the computation of the homology of
real and complex projective spaces.
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§29. THE SINGULAR HOMOLOGY GROUPS

In this section we define the singular homology groups and derive their elemen-
tary properties. First, we introduce some notation.

Let R* denote the vector space E’, where J is the set of positive integers.
An element of R® is an infinite sequence of real numbers having only finitely
many non-zero components. Let A, denote the p-simplex in R™ having vertices

& = (0,0,...,0,...),
6 =(1,0,...,0,...),

& =1(00,...,1,...).

We call 4, the standard p-simplex. Note that under this definition, 4,_, is a
face of A,.

If X is a topological space, we define a singular p-simplex of X to be a
continuous map

T:4,— X

(The word “singular” is used to emphasize that T need not be an imbedding.
The map T could for instance be a constant map.)

The free abelian group generated by the singular p-simplices of X is de-
noted S,(X) and called the singular chain group of X in dimension p. By our
usual convention for free abelian groups (see §4), we shall denote an element of
S,(X) by a formal linear combination, with integer coefficients, of singular
p-simplices.

It is convenient to consider a special type of singular simplex. Given points
a,, ... ,a,in some euclidean space E’, which need not be independent, there is a
unique affine map / of A, into E’ that maps ¢; to g; fori = 0, ... ,p. It is defined
by the equation

4
I(x', o ,x’,o, .o .) = a, + Z x"(a" - a°)~

i=1

We call this map the linear singular simplex determined by q,, .. .,a,; and we
denote it by I(a,, . . . ,a,).
For example, the map /(g . . - ,¢,) is just the inclusion map of A, into R*.
Similarly, if as usual we use the notation &; to mean that the symbol v; is to
be deleted, then the map

L (O NS

is a map of A, _, into R® that carries 4,_, by a linear homeomorphism onto
the face ... € - 1644 ... €, of A,. We often consider it as a map of A, _, into
A, rather than into R®. Then if T: A, — X, we can form the composite

Tol(e .. r&,-.-,6).
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This is a singular p — 1 simplex of X, which we think of as the “jth face” of the
singular p-simplex T.

We now define a homomorphism 8:S,(X) — S, ((X). f T:A,— Xisa
singular p-simplex of X, let

P
oT = 2(—1)"Toz(e.,,...,e,.,...,e,).

i=0

Then 87 equals a formal sum of singular simplices of dimension p — 1, which
are the “faces” of T. We shall verify that 4> = O presently.

If f: X — Y is a continuous map, we define a homomorphism f, : S, (X) —
S,(Y) by defining it on singular p-simplices by the equation f,(T) = fo T.
That is, f,(T) is the composite

aLxLly.

Theorem 29.1. The homomorphism f, commutes with 3. Furthermore,
3¢ =0.

Proof. The first statement follows by direct computation:

of,(T) = z(—l)‘ (FoT) ol - s&m-r6)

14

£,6T) = 2(—1)’]0 (T o leq - - 58y - - - 16)).

i=0

To prove the second statement, we first compute 3 for linear singular simplices.
We compute:

P
3l(ay, - - - ,8,) = 2 (—1Y 1(@oy -+ -+@,) © L(€or - - - 1&r - -« 16,)

i=0
P .

= z (=1 1@y, - - ;5. - - ,a,).
i=0

(The second equality comes from the fact that a composite of linear maps is
linear. See §2.) The fact that 63(/(a,, . . . ,a,)) = 0 is now immediate; one sim-
ply takes the proof that 5* = 0 in simplicial theory (Lemma 5.3) and inserts the
letter / at appropriate places! The general result then follows from the fact that

88(T) = 83(T,;(I(eos - - - »€,)))
and § commutes with 7,. O

Definition. The family of groups S,(X) and homomorphisms 4 : S, (X) —
S, - 1(X) is called the singular chain complex of X, and is denoted $(X). The
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homology groups of this chain complex are called the singular homology groups
of X, and are denoted H,(X).

(If X is triangulable, this notation overlaps with that introduced in §27 for
the simplicial homology of a triangulable space. We shall prove later that the
simplicial and singular homology theories are naturally isomorphic, so there is
in fact no real ambiguity involved.)

The chain complex £(X) is augmented by the homomorphisme : S,(X) — Z
defined by setting ¢(T) = 1 for each singular O-simplex T:A,— X. It is im-
mediate that if T is a singular 1-simplex, then €(dT) = 0. The homology groups
of {$(X), ¢} are called the reduced singular homology groups of X, and are
denoted H,(X). If f: X — Y'is a continuous map, then f; : §,(X) — S,(¥) isan
augmentation-preserving chain map, since f,(T') is a singular O-simplex if T is.
Thus f; induces a homomorphism f, in both ordinary and reduced singular
homology.

If the reduced homology of X vanishes in all dimensions, we say that X is
acyclic (in singular homology).

Theorem 29.2. If i: X — X is the identity, then i, :H,(X) — H,(X) is
the identity. If f:X—Y and g: Y — Z, then (gof), = g¢ ° f,- The same
holds in reduced homology.

Proof. Both equations in fact hold on the chain level. For i,(T) =
ioT=T And (g f))(T) = (gof) e T=go(feT) =g (f(T). O

Corollary 29.3. If h: X— Y is a homeomorphism, then h, is an iso-
morphism. O

The reader will note how quickly we have proved that the singular homol-
ogy groups are topological invariants. This is in contrast to simplicial theory,
where it took us most of Chapter 2 to do the same thing.

Following the pattern of simplicial theory, we next compute the zero-
dimensional homology groups.

Theorem 29.4. Let X be a topological space. Then Hy(X) is free abelian.
If {X,} is the collection of path components of X, and if T, is a singular
0-simplex with image in X,, for each a, then the homology classes of the
chains T, form a basis for Hy(X).

The group H,(X) is free abelian; it vanishes if X is path connected. Other-
wise, let o, be a fixed index; then the homology classes of the chains T, — T,
for a # a,, form a basis for H,(X).

Proof. Let x_ be the point T, (A,). If T: A, — X is any singular 0-simplex
of X, then there is a path f: [0,1] — X from the point T(4,) to some point x,.
Then fis a singular 1-simplex and df = T, — T. We conclude that an arbitrary
singular 0-chain on X is homologous to a chain of the form Z n, T,.
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We show that no such 0-chain bounds. Suppose that Zn, T, = dd for some
d. Now each singular 1-simplex in the expression for d has path-connected
image, so its image lies in some one of the path components X,. Thus we can
write d = = d_, where d, consists of those terms of 4 carried by X,. Then dd,
lies in X, as well. It follows that n, T, = dd, for each a. Applying ¢ to both sides
of this equation, we conclude that n, = 0.

The computation of fl,,(X ) proceeds as in the proof of Theorem 7.2. O

Still following the pattern of simplicial theory, we compute the homology of
a cone-like space. Actually, it is more convenient here to deal with an analogous
notion, that of a “star-convex” set.

Definition. A set X in E’ is said to be star convex relative to the point w of
X, if for each x in X different from w, the line segment from x to w lies in X.

Definition. Suppose X C E’ is star convex relative to w. We define a
bracket operation on singular chains of X. Let T:A, — X be a singular p-
simplex of X. Define a singular p + 1 simplex [T,w] : A, , , — X by letting it
carry the line segment from x toe, .. ,, for x in A,, linearly onto the line segment
from T(x) to w. See Figure 29.1. We extend the definition to arbitrary p-chains
as follows: if ¢ = Z n; T; is a singular p-chain on X, let

[e,w} = Zn,(T;,w].

This operation is similar to the one we introduced in §8 for cones, except
here we have put the vertex w last instead of first.

Note that when restricted to the face A, of A, , ,, the map [T,w] equals
the map T. Note also that if T is the linear singular simplex /(a,, - - . ,2,), then
[T,w] equals the linear singular simplex /(a,, . . . ,a,,w).

—_—
T(x)
_ X
Bp
€p+1 w
(7,w]
A /‘N
p+1
T(x)

Figure 29.1
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We must show that the map [7T,w] is continuous. First, we note that
the map

T A, X T—A4 L,

defined by the equation 7 (x,f) = (1 — f)x + t¢,,; is a quotient map that
collapses A, X 1 to the vertex ¢,,, and is otherwise one-to-one. The contin-
uous map

[0 XI—X

defined by f(x,2) = (1 — )T(x) + tw is constant on A, X 1; because = is a
quotient map, it induces a continuous map of 4, , , into X. Since = maps the
line segment x X I linearly onto the line segment from x t0 ¢, . , and f maps
x X I linearly onto the line segment from T(x) to w, this induced map equals
the singular p + 1 simplex [7,w] defined previously. Thus [T, w] is continuous.

We now compute how the bracket operation and the boundary operator
interact.

Lemma 29.5. Let X be star convex with respect to w, let ¢ be a singular
p-chain of X. Then

[6e,w] + (=1)*c  if p>0,
le,wl = {e(c)rw —c if p=0,

where T, is the singular O-simplex mapping A, to w.

Proof. If Tis a singular O-simplex, then [7,w] maps the simplex A, lin-
early onto the line segment from T(A,) to w. Then 8[T,w] = T, — T. The
second formula follows.

Let p > 0. It suffices to check the formula when ¢ is a singular p-simplex
T. The formula’s plausibility when p = 1 is illustrated in Figure 29.2.

Using the definition of 9, we compute

p+1
*) Twl = S (=1)(Twl o L,
w
w
7(0) T(0)
)
(1)
[T.w) (T, w)={oT, wl+T

Figure 29.2
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where for convenience we use /; to denote the linear singular simplex
Li=1(e, - &y s6a1)

mapping 4, into A, ,. Now /,,, equals the inclusion map of 4, into 4, , ;
since the restriction of [T,w] to A, equals the map T, the last term of (*) equals
(=1y*'T.

To complete the proof, we consider the singular simplex [T,w] o /; for
i <p+ 1. Now the map /; carries A, homeomorphically onto the ith face
of A, ; it carries €, ..., t0 &, ... & _1,€ 4 1 - - - 56 4 1, TESPECtively. There-
fore the restriction of /; to A,_, = ¢...¢,_, carries this simplex by a lin-
ear map onto the simplex spanned by ¢, ..., 1,644, -.,€. (Recall that
i<p+ 1.) Thus

(**) lilAp-l = 1(60""331'"‘ .,6,).

Now we can compute [T,w] o /;:A,— X. Let x be the general point of
A,_,.Since l;: A,— A, , , is a linear map, it carries the line segment from x to
¢, linearly onto the line segment from /;(x) to ¢, , ,- Since /;(x) € 4,, the map
[T,w]: 4, ., X by definition carries this line segment linearly onto the line
segment from 7°(/;(x)) to w. Therefore, by definition,

(Twleol,=[To(14,_)wl.

Substituting this formula into (*) and using (**), we obtain the equation
P
aT,w] = Z (=1 [Tol(ey--- o8- r6)W) + (—1)P*'T
i=0

= [T w] + (—1)*'7. O

Theorem 29.6. Let X be a subspace of E’ that is star convex relative to w.
Then X is acyclic in singular homology.

Proof. To show that H,(X) = 0, let ¢ be a singular O-chain on X such
that e(c) = 0. Then by the preceding lemma,
dle,w] = e(6)T, — ¢ = —c,

s0 ¢ bounds a 1-chain.

To show H,(X) = 0 for p> 0, let z be a singular p-cycle on X. By the
preceding lemma,

alz,w] = [8z,w] + (=1 'z = (—1)"*12.
Thus z bounds a p + 1 chain. [

Corollary 29.7. Any simplex is acyclic in singular homology. 1]
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EXERCISES

1. (a) Let {X,} be the set of path components of X. Show that H,(X) =
@, ,(X,).

(b) The topologist’s sine curve is the subspace of R? consisting of all points
(x,sin 1/x) for 0 < x =< 1, and all points (0,y) for —1 < y < 1. See Fig-
ure 29.3. Compute the singular homology of this space.

2. Let X be a compact subspace of RY; let f: X — Y.
(@) Let w be the point (0,...,0,1) in R¥ X R; let C be the union of all line

segments joining points of X to w. Show that C is a quotient space of
X XL

(b) Show that if f is homotopic to a constant map, then f, is the zero homo-
morphism in reduced homology. [Hinz: Show that f extends to C.]
(c) Show that if X is contractible, then X is acyclic.

Figure 29.3

§30. THE AXIOMS FOR SINGULAR THEORY

We now introduce the relative singular homology groups. Then we show, in this
section and the next, that they satisfy the Eilenberg-Steenrod axioms on the
class of all topological pairs.

If X is a space and A4 is a subspace of X, there is a natural inclusion
S,(A4) — S,(X). The group of relative singular chains is defined by

S,(X,4) = S,(X)/S,(4).

The boundary operator 4:S,(X) — S, _ ;(X) restricts to the boundary opera-
tor on S,(A4); hence it induces a boundary operator

3:5,(X,4)— S, _ (X, 4)

on relative chains. The family of groups S,(X,A4) and homomorphisms 4 is
called the singular chain complex of the pair (X, 4) and denoted §(X, ). The
homology groups of this chain complex are called the singular homology groups
of the pair (X, 4) and are denoted H, (X, 4).

Note that the chain complex (X, A) is free; the group S (X, A) has as
basis all cosets of the form T + S,(A), where T is a singular p-simplex whose
image set does not lie in A4.

If f:(X,4) — (Y,B) is a continuous map, then the homomorphism
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J3:8,(X) — S,(Y) carries chains of 4 into chains of B, so it induces 2 homo-
morphism (also denoted f,)

Ji:8,(X,4) — S,(Y,B).
This map commutes with 9, so it in turn induces a homomorphism
Sfo 1 H(X,4) — H,(Y,B).

The following theorem is immediate:

Theorem 30.1. Ifi: (X, A) — (X, A) is the identity, then i, is the identity.
If h:(X,A) — (Y,B) and k :(Y,B) — (Z,C) are continuous, then (k o h), =
kyoh,, O

Theorem 30.2. There is a homomorphism 3, : H,(X,A) — H,_ ,(A), de-
fined for A C X and all p, such that the sequence

i T, d
- = H,(A)>H,(X) 2 H,(X,A)S3H, (- .

is exact, where i and w are inclusions. The same holds if reduced homology is
used for X and A, provided A # @.

A continuous map f : (X,A) — (Y, B) induces a homomorphism of the cor-
responding exact sequences in singular homology, either ordinary or reduced.

Proof. For the existence of 9, and the exact sequence, we apply the “zig-
zag lemma” of §24 to the short exact sequence of chain complexes

0—S,(4) > S,(X) %S, (X, 4) — 0,

where i: A— X and 7 : (X,8) — (X, A) are inclusions. The naturality of 4,
follows from Theorem 24.2, once we note that f; commutes with i, and x,. The
corresponding results for reduced homology follow by the same methods used
for simplicial theory (see §24). [

Theorem 30.3. If P is a one-point space, then H,(P) = O for p # 0 and
H(P)=Z.

Proof. This follows from Theorem 29.6, once one notes that a one-point
space in R" is star convex! For a2 more direct proof, we compute the chain com-
plex §(P). There is exactly one singular simplex T,: A, — P in each non-nega-
tive dimension, so S,(P) is infinite cyclic for p = 0. Each of the “faces” of T,

T,ool(e,---r&--.,6),

equals the singular simplex 7, _,. Therefore, 4T, = 0 if p is odd (the terms
cancel in pairs), and 3T, = T, _ , if p is even (since there is one term left over).
The chain complex $(P) is thus of the form

Su(P) =Sy 1(P)— - - - = 85(P) = Se(P) — 0

Z — Z 25...——} Z —0" Z _"0-
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In dimension 2k — 1, every chain is a boundary; while in dimension 2k, for
k > 0, no chain is a cycle. In dimension 0, every chain is a cycle and no chain is
a boundary, so the homology is infinite cyclic. O

Theorem 30.4. Given a € H,(X,A), there is a compact pair (X,,A4,) C
(X, A), such that a is in the image of the homomorphism induced by inclusion

iy : H,(X,, 4,) = H,(X, A).

Proof. 1f T:A,— X is a singular simplex, its minimal carrier is defined
to be the image set 7(4,). The minimal carrier of a singular p-chain 2 n, T,
(where each n; # 0) is the union of the minimal carriers of the T;; since the sum
is finite, this set is compact. Let ¢, be a chain in S,(X) whose coset modulo
S,(A) represents «; then dc, is carried by A. Let X, be the minimal carrier of ¢
and let A4, be the minimal carrier of dc,. Then ¢, can be taken to represent a

homology class 8 in H,(X,,4,); and i, (8) = a. O

The preceding theorem shows that singular theory satisfies the compact
support axiom. There is an addendum to this theorem, which we prove here. (It
can also be derived directly from the axioms; see the exercises of §27.)

Theorem 30.5. Let i: (X,,A4,) — (X,A) be inclusion, where (X,,A4,) is a
compact pair. If a € H,(X,,A,) and i,(e) = O, then there are a compact pair
(X,,A4,) and inclusions

j k
(X Ay) L (X, 4,) = (X, A)
such that j,(a) = 0.

Proof. Let c,be a singular p-chain of X, representing «; then dc, is carried
by A,. By hypothesis, there is a chain 4, , , of X such that ¢, — 84, , , is carried
by A. Let X, be the union of X, and the minimal carrier of d, , ,; let 4, be the
union of A4, and the minimal carrier of ¢, — 8d,,,. O

Thus far everything has been relatively easy; we have verified all but the
homotopy and excision axioms. These two require more work. We verify the ho-
motopy axiom now.

In outline, the proof is similar to the proof of the homotopy axiom for sim-
plicial theory (Theorem 19.2). We consider the inclusion maps i, j: X — X X I
defined by

i(x) = (x,0) and j(x) = (x,1),

and we construct a chain homotopy D between i, and j,. If F is a homotopy
between f and g, then F, o D is a chain homotopy between f; and g,, and the
theorem follows. To construct D in simplicial theory, we used acyclic carriers;
here we need something more general. It is a special case of what we shall later
call the “method of acyclic models.”

It is plausible that a chain homotopy D between i, and j, should exist. For
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X X X1 Y
Figure 30.1

example, if T is the singular 1-simplex pictured in Figure 30.1, and if 0T =
T, — T,, we can take DT, and DT, to be the “vertical” singular 1-simplices
pictured. Then we can take DT to be a 2-chain that covers the shaded region in
the figure, having as boundary j(T) — DT, — i(T) + DT,.

We state the existence of D as a separate lemma:

Lemma 30.6. There exists, for each space X and each non-negative inte-
ger p, a homomorphism

Dy:S,(X) =S, (X XI)

having the following properties:
(@) If T:A,— X is a singular simplex, then

aDxT + DydT = j(T) — i(T).

Here the map i: X — X X I carries x to (x,0); and the map j: X — X X I
carries x to (x,1).

(b) Dy is natural; that is, if f: X — Y is a continuous map, then the
Sfollowing diagram commutes:

D
S,(X)=58,,,(Xx X I)
| o
Sy(Y)—Y’Sp-L I(YX I)'
Proof. We proceed by induction on p. The case p = 0 is easy. Given

T:A,— X, let x, denote the point T(A,). Define DyT:A,— X X I by the
equation

DyT(1,0,...) = (x,0) for o=<:=<1

(Recall that A, = ¢, consists of all points (1,0,...) of R® with 0 <1 =<1))
Properties (a) and (b) follow at once.
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Now suppose D, is defined in dimensions less than p, for all X, satisfying
(a) and (b). We define Dy T in dimension p, by first defining it in the case
where X = A, and T equals i,, the identity map of A, with itself. This is the
crux of the technique; we deal first with a very special space, called the “model
space,” and a very special singular simplex on that space.

Leti, j:A,— A, X I map x to (x,0) and (x,1), respectively. Let c, be the
singular chain on A, X I defined by the equation

¢ = Jyli) — i,(i,) — Dy (95,).
(Note that the last term is well-defined, by the induction hypothesis; i, is a
singular simplex on A,, so i, belongs to S,(A,) and 9i, belongs to S, _(4,).)
Now ¢, is a cycle, for using the induction hypothesis, we have
dc, = 0j,i,) — 0iy(i,) — [Jy(0i,) — i,(3i,) — D, 94},

and this chain vanishes. Since A, X I is convex, it is acyclic (by Theorem 29.6).
Therefore, we can choose an element of S, , ,(4, X I) whose boundary equals
¢c,. We denote this element by DA’(iP); then formula (a) holds because

aDA' (ip) = Cp.

Now, given an arbitrary space X and an arbitrary singular p-simplex
T:A,— X, we define

DyT = (T X i;)y(D4,1,)-

See Figure 30.2. Intuitively, DAPz‘, is a singular p + 1 chain filling up the entire
prism A, X I; its boundary is, roughly speaking, the boundary of the prism. The
map (T X i;), carries this chain over to a singular chain on X X L

Checking (a) and (b) is now straightforward. To check (a), we compute

*) 0Dy T = (T X ip)y9D, i,
= (T X i)y Uy (ip) — B(i,) — Dy, 81,)
= Jjf(T) — iT) — (T X i;)yDy (31)).

CHD

A ApX{ X XTI

TXi

\:
"

Figure 30.2
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Now we use naturality. By the induction hypothesis, we have commutativity in
the diagram:

D,
S, -1(8,) =2 5,8, X 1)
T#l l(T X i)y
S0 245, % D).
Therefore, the last term of (*) equals
—DyT,(3i,) = —Dy3T,(i,) = —D,dT,

as desired.
Checking (b) is easier. If f: X— Y, note that (fe T) X i, = (fXi)e
(T X ij). Now

Dy(f(T)) = Dy(foT) = ((foT) X ipyDy, (),
by definition. This in turn equals

(fX il)/;(T X il)#DAp(ip) = (fx iz)#DxT- O

Note that in the proof just given, we gave a direct construction for D, in the
case p = 0. Only in the inductive step did we use the “model space” A,. Here is
a proof for the case p = 0 that looks more like the inductive step; this is the
proof we shall later generalize:

Let p = 0. We define D, T first in the case where X = A,, and T equals i,,
the identity map of A, with itself. We want the formula

aDA,, () = j# (i) — ;#(io)

to hold. Note that the right side of this formula is a 0-chain carried by A, X I,
and ¢ of it is zero. Since the space A, X I is convex, it is acyclic. Therefore, we
can choose D, i, to be an element of S,(A, X ) whose boundary is f,, (i) —
i;(i,). Then for general X and T, we define

DyT = (T X i), Dy, o

Properties (a) and (b) are proved just as they were in the inductive step.

Theorem 30.7. If f, g:(X,A4) — (Y,B) are homotopic, then f, = g,. The
same holds in reduced homology if A=B = &.

Proof. Let F:(X X I,AXI)—(Y,B) be the homotopy between
f, g:(X,A)— (Y¥.,B). Let i, j: (X,4) = (X X I,A X I) be given by i(x) =
(x,0) and j(x) = (x,1). Let Dy : S,(X) — S, . , (X X I) be the chain homotopy
of the preceding lemma. Naturality of D, with respect to inclusion 4 — X
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shows that the restriction of Dy to S,(4) equals D,. Thus Dy carries S,(A4) into
S, +1(A4 X I), and thus induces a chain homotopy
Dy,:5,(X,4)— S, ., (XX L4 X]I)
on the relative level. Formula (a) of Lemma 30.6 holds because D, , is induced
by Dy. Define D to be the composite of Dy , and the homomorphism
Fy:8S,, (XX LAXI)—S,,,(Y,B).
Then we compute
4D = 3F,Dy , = F,3Dy ,
= Fy(jy — iy — Dy ,9)
= (F"j)# —(Fo i)// — FyDy 40
=fi—~g—Ds O

Definition. Let f: (X,A4) — (Y,B). If there is a map g:(Y,B) — (X, 4)
such that fo g and g o f are homotopic to the appropriate identities as maps of
pairs, we call f a homotopy equivalence, and we call g a homotopy inverse for f.

Theorem 30.8. Let f: (X,A4) — (Y,B).

(a) If’f is a homotopy equivalence, then f, is an isomorphism in relative
homology.

(b) More generally, if f:X— Y and f|A: A— B are homotopy equiva-
lences, then f, is an isomorphism in relative homology.

Proof. If fis a homotopy equivalence, it is immediate that £, is an isomor-
phism. To prove (b), we examine the long exact homology sequences of (X, A)
and of (Y, B), and the homomorphism f, carrying the one exact sequence to the
other. The hypotheses of the theorem tell us that

fo:H,X)—H,Y) and (fl4),:H,(4)— H,(B)

are isomorphisms. The theorem then follows from the Five-lemma. [J

If f: (X,A) — (Y,B) is a homotopy equivalence, then so are f : X — Y and
flA: A— B. The converse does not hold, however, as the following exam-
ple shows.

Example 1. Consider the inclusion map j: (B", "~ ') — (R", R" — 0). Since B"
is a deformation retract of R*, and S” ! is a deformation retract of R* — 0, the
map j, is an isomorphism in relative homology. Suppose there existed a map
g:(R", R" — 0) — (B",S" ") that served as a homotopy inverse for j. Then since 0
is 2 limit point of R* — 0, the map g necessarily carries 0 into S” ~'. Hence

goj:(Ba,Sn-l)_,(Bn,S--l)



§31. Excision in Singular Homology 175

carries all of B" into 8" ~ !, so it induces the trivial homomorphism in homology. On
the other hand, this map is by hypothesis homotopic to the identity, so it induces the
identity homomorphism of H,(B", $" " '). Since this group is non-trivial (as we shall
prove shortly), we have a contradiction.

EXERCISES

1. Construct the exact sequence of a triple in singular homology. (See Exercise 2
of §26.)
2. Show that if f: X — Y is homotopic to a constant, then f, is the zero homo-

morphism in reduced homology. Conclude that if X is contractible, then X is
acyclic in singular homology.

3. Suppose inclusion j: 4 — X is a homotopy equivalence. Show H,(X,4) = 0.

4. Give an example in which H,(X, 4) s H,(Y,B), although X has the homotopy
type of Y and 4 has the homotopy type of B. Compare with Theorem 30.8.

5. In the proof of Lemma 30.6, one has some freedom in choosing the chain D, i,
Show that the formula

P
D, i, = Z(—l)‘l((e.,,O), (€00 (1), - - - (6,1))

gives a p -+ 1 chain on A, X I that satisfies the requirements of the lemma.
Draw a picture when p =1and p = 2.

6. Show that if f : (X, 4) — (Y, B) is a homotopy equivalence, then both f: X — Y
and f{4: 4 — B are homotopy equivalences.

7. Consider the category C whose objects are chain complexes; a morphism of C
(of degree d), mapping @ to €’, is a family of homomorphisms ¢,: C, —

C, + 4 Consider the following functors from the topological category to C:

G(X) = $(X); G(N) =Sp
HX) =8XX1I1); H(f)= (X

Show that the chain homotopy Dy of Lemma 30.6 is a natural transformation
of Gto H.

§31. EXCISION IN SINGULAR HOMOLOGY

In this section, we verify the excision axiom for singular homology. The tech-
niques involved in the proof will be useful later in other situations.

One of the facts we proved about simplicial complexes was that we could
chop up a finite complex barycentrically into simplices that were as small as
desired. We need a similar result for singular chains. To be precise, suppose one
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is given a space X and a collection A of subsets of X whose interiors cover X. A
singular simplex of X is said to be A-small if its image set lies in an element
of A. Given a singular chain on X, we show how to “chop it up” so that all
its simplices are A-small. Not surprisingly, what we do is to introduce some-

thing like barycentric subdivision in order to accomplish this. We give the
details now.

Definition. Let X be a topological space. We define a homomorphism
sdy : S,(X) — S,(X) by induction. If T:4,— X is a singular O-simplex, we
define sd, T = T. Now suppose sdy is defined in dimensions less than p. If

i,:A,— A, is the identity map, let A, denote the barycenter of A, and define
(using the bracket operation of §29),

sdy i, = (— 1) [sd, (95,), Al

The definition makes sense since A, is star convex relative to Ap. Then if
T:A,— X is any singular p-simplex on X, we define

sdyT = T,(sd, i,).

See Figure 31.1. It is called the barycentric subdivision operator in singular
theory.

T

|

A

T
&
sdépip

Figure 31.1

Lemma 31.1. The homomorphism sdy is an augmentation-preserving
chain map, and it is natural in the sense that for any continuous map f:
X — Y, we have

f;°sdx=sdy°f;-



§31. Excision in Singular Homology

Proof. The map sdy preserves augmentation because it is the identity in
dimension 0. Naturality holds in dimension O for the same reason. Naturality
holds in positive dimensions by direct computation:

Sfi(sdx T) = £y Ty(sd, 1)) = (f o T),(sd, 1)
= sdy(fo T) = sdy(f,(T)).
Henceforth, we shall normally omit the subscript on the operator sdy, relying on
the context to make the meaning clear.

To check that sd is a chain map, we proceed by induction on p. The fact
that sd o 8 = 9 o sd in dimension O is trivial. Assuming the result true in dimen-
sions less than p, we apply Lemma 29.5 to compute

dsdi, = (—1)? a[sd ai, A,]

_ (=1 losd i, A + sd di, if p>1,

T —e(sddi)T, +sdoi, if p=1,

where T, is the O-simplex whose image point is A,. Now if p> 1, we have
dsd di, =sd 99i, =0 by the induction hypothesis. If p =1, we have

¢(sd 9i,) = €(di,) = 0, because sd preserves augmentation. Hence in either
case, dsd i, = sd 3i,. In general, we compute

dsd T = 3T, (sd i) by definition,
= T,(9sd i) because T, is a chain map,
= T,(sd di,) by the formula just proved,
= sd T,(di,) because sd is natural,
= sd 3(T,(i,)) because T, is a chain map,
=sd 7. O

Lemma 31.2. Let T:A,— o be a linear homeomorphism of A, with the
p-simplex o. Then each term of sd T is a linear homeomorphism of A, with a
simplex in the first barycentric subdivision of o.

Proof. The lemma is trivial for p = 0; suppose it is true in dimensions less
than p. Consider first the identity linear homeomorphism i,: A, — A,. Now

sdi, = [sd 8i,,4,].

Each term in 9i, is a linear homeomorphism of A, _, with a simplex in Bd A,.
By the induction hypothesis, sd (9i,) = Z + T, where T is a linear homeomor-
phism of A,_, with a simplex §,...35,in the first barycentric subdivision of
Bd A,. Then [T,,A] is by deﬁmtlon a lmear homeomorphism of A, with the
smplex A,s, whxch belongs to the first barycentric subdmsxon of A,.
Now consider a general linear homeomorphism 7: A, — ¢. Note that T
defines a linear isomorphism of the first barycentric subdivision of A, with the
first barycentric subdivision of o, because it carries the barycenter of A, to the
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barycenter of 0. Now sd T = T,(sd,); since the composite of linear homeo-
morphisms is a linear homeomorphism, each term in sd T is a linear homeomor-
phism of A, with a simplex in the first barycentric subdivision of 0. [

Theorem 31.3. Let A be a collection of subsets of X whose interiors cover
X. Given T: A, — X, there is an m such that each term of sd™ T is A-small.

Proof. It follows from the preceding lemma that if L is a linear homeo-
morphism of A, with the p-simplex o, then each term of sd” L is a linear homeo-
morphism of A, with a simplex in the mth barycentric subdivision of .

Let us cover A, by the open sets T~ '(Int 4), for 4 € A. Let X be a
Lebesgue number for this open cover. Choose m so that each simplex in the mth
barycentric subdivision of A, has diameter less than A. By the preceding remark,
each term of sd™i, is a linear singular simplex on A, whose image set has
diameter less than A. Then each term of sd™ T = T,(sd™i,) is a singular simplex
on X whose image set lies in an element of A. O

Having shown how to chop up singular chains so they are A-small, we now
show that these A-small singular chains suffice to generate the homology of X.
First, we need a lemma.

Lemma 31.4. Let m be given. For each space X, there is a homomorphism
Dy:8,(X) =S, . 1(X) such that for each singular p-simplex T of X,

™* dDyT + DydT = sd"T — T.
Furthermore, Dy is natural. That is, if f : X — Y, then f; c Dy = Dy o f,.

Proof. If T:A,— X is a singular O-simplex, define Dy T = 0. Formula
(*) and naturality follow trivially. Now let p > 0. Suppose D, is defined, satis-
fying (*) and naturality, in dimensions less than p. We proceed by a method
similar to that used in the proof of Lemma 30.6, which will be formalized in the
next section as the “method of acyclic models.”

We first define Dy T in the special case X = A, and T = i,, the identity
map of A, with itself. Consider the singular p-chain

¢, = sd"i, — i, — D, (3i,).

This is by definition a singular p-chain on 4,. It is a cycle, by the usual compu-
tation (using the hypothesis that (*) holds in dimensions less than p). Since
A is acyclic in singular homology, we can choose D, z to be an element of
S, +1(4,) whose boundary equals c,. Then (*) holds for X A, and T =,
vaen a general singular p-s1mplex T:A,— X, we define

DyT = T#(DA,(IP))-
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Formula (*) holds for Dy by the usual direct computation:
0D T = T, (3D, (i,))
= T,(sd™i, — i, — DA’(ai,))
= sd"T,(i,) — T,(i,) — DxT,(di,)
=sd™T — T — D,9T,

where the next to last equality uses naturality of Dy for the p — 1 chain 4i,.
Naturality of Dy in dimension p follows directly from the definition. [

Note that the naturality of sd™ and D, shows that if A4 is a subspace of X,
then sd™ and Dy carry S,(4) into S,(A) and S, , ,(4), respectively. Thus they
induce a chain map and a chain homotopy, respectively, on the relative chain
complex §(X,A) as well.

Definition. Let X be a space; let A be a covering of X. Let S;'(X) denote
the subgroup of S, (X) generated by the A-small singular simplices. Let - (X)
denote the chain complex whose chain groups are the groups S (X). It is a
subchain complex of §(X), for if the image set of T lies in the element A of A,
so does the image set of each term of 7.

Note that each singular 0-chain is automatically A-small; hence S (X) =
S,(X), and ¢ defines an augmentation for §*(X). It follows from the preceding
remark that both sd™ and Dy carry §*(X) into itself for if the image set of T
lies in A, so does the image set of each term in sd"T and D,T.

Theorem 31.5. Let X be a space; let A be a collection of subsets of X
whose interiors cover X. Then the inclusion map §*(X) — $(X) induces an
isomorphism in homology, both ordinary and reduced.

Proof. The obvious way to proceed is to attempt to define a chain map
A $(X) — §(X) that is a chain-homotopy inverse for the inclusion map. This
is not as easy as it looks. For any particular singular chain, there is an m such
that the map sd™ will work, but as the singular chain changes, one may have to
take m larger and larger. We avoid this difficulty by using a different trick (or
method, if you prefer).

Consider the short exact sequence of chain complexes

0 — SH(X) = S,(X) — S,(X)/SX(X) — 0.

1t gives rise to a long exact sequence in homology (either ordinary or reduced).
To prove our theorem, it will suffice to show that the homology of the chain
complex {S, (X)/SH(X), d} vanishes in every dimension. This we can do. We
need only prove the following:

Suppose ¢, is an element of S,(X) whose boundary belongs to S;_ ,(X).
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Then there is an element d,, , of S, . ,(X) such that c, + 4d, ., belongs
to S}(X).

Note that ¢, is a finite formal linear combination of singular p-simplices. In
view of Theorem 31.3, we can choose m so that each singular simplex appearing
in the expression for sd”c, is A-small. Once m is chosen, let Dy be the chain

homotopy of Lemma 31.4. We show that ¢, + 3Dyc, belongs to S;*(X). Then
we are finished.

We know that
dDyc, + Dydc, = sd"c, — c,,
or
¢, + 8Dyc, = sd™c, — Dydc,.

The chain sd”¢, is in S;!(X), by choice of m. And since dc, belongs to S;'_ (X)),
the chain Dydc, belongs to S;'(X), as noted earlier. [

Now there does exist a chain map
A SX) — (X))

that is a chain-homotopy inverse for the inclusion map. A specific formula for
), involving the chain maps sd™, is given in [V], p. 207. We shall derive the
existence of A shortly from a more general result. (See the exercises of §46.)

Corollary 31.6. Let X and A be as in the preceding theorem. If B C X,
let S;'(B) be generated by those singular simplices T :A,— B whose image
sets lie in elements of A. Let S} (X,B) denote S;'(X)/S; (B). Then inclusion
S;'(X,B) — S,(X, B) induces a homology isomorphism.

Proof. The inclusions §*(B) — §(B) and §*(X) — $(X) give rise to a
homomorphism of the long exact homology sequence derived from

0—S8B)—SX)—$(X,B)—0
with the one derived from
0— §*(B) — $*(X) — $*(X,B) — 0.

Since inclusion induces an isomorphism of the absolute homology groups of
these respective sequences, the Five-lemma implies that it induces an isomor-
phism of the relative groups as well. []

Theorem 31.7 (Excision for singular theory). Let A C X. If U is a subset
of X such that U C Int A, then inclusion

J:( X=UA-=U)—(XA)

induces an isomorphism in singular homology.
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Proof. Let A denote the collection {X — U,A4}. Now X — U contains the
open set X — U. Since U C Int 4, the interiors of the sets X — U and 4 cover
X. Consider the homomorphisms

S, (X —-U) _ SH(X) _ S, (X)

S,(4—-U) SH4) S,(4)
induced by inclusion. The second of these homomorphisms induces a homology
isomorphism, by the preceding corollary. We show that the first is an isomor-

phism already on the chain level, and the proof is complete.
Note first that the map

¢ :S,(X — U) — S (X)/S;(4)

induced by inclusion is surjective. For if ¢, is a chain of S;'(X), then each term
of ¢, has image set lying in either X — U or in 4. When we form the coset
¢, + S;'(A) we can discard those terms lying in 4. Thus ¢ is surjective. The
kernel of ¢ is

S, X-U)NSHA=S,(X-U)N 4) =S,(4-),

as desired. O

Note that this theorem is slightly stronger than the excision axiom proper
(see §26); in singular theory we do not need to assume U is an open subset of X.

As an application, we compute the singular homology of the ball and the
sphere.

Theorem 31.8. Let n= 0. The group H,(B",S"""') is infinite cyclic for
i = n and vanishes otherwise. The group H,(S") is infinite cyclic for i = n and
vanishes otherwise. The homomorphism of H,(S") with itself induced by the
reflection map

Pr(XyXas - o5 X u 1) = (=X X5 - -2 5 X0 4 1)
equals multiplication by —1.

Proof. We verify the theorem for n = 0. It is trivial that H,(B° @) is
infinite cyclic for p = 0 and vanishes otherwise, since B° is a single point.

It is similarly easy to see that H,(S°) = 0 for p # 0, since S° consists of
two points a and b. In dimension 0, the singular chain group of S° is generated
by the constant simplices T, and T,. The boundary operator 4 :S,({a,b}) —
S, ({a,b}) is trivial, because any singular 1-simplex on {a,b} is constant. It fol-
lows that H,(S°) is infinite cyclic, and is generated by T, — T,. As a result, the
reflection map, which exchanges a and b, induces the homomorphism of H,(S*)
that equals multiplication by —1.

Suppose the theorem is true in dimension » — 1, where n = 1. It follows
from the long exact homology sequence of (B*, S" ') that

H(B"S" )= H,_,(S"""),
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5" ‘
Figure 31.2

since B” is contractible. Thus H;(B", S" ") is infinite cyclic for i = n and
vanishes otherwise.

To compute H;(S"), consider the following homomorphisms,

HAEL.S ) 20 i, (57 )

R

H(S" — q,E* — q)
e
H/(S") =% H,(S",E")

where i, j, k are inclusions, and g = (0, ...,0,—1) is the “south pole” of S™.
Recall that E% and E" are the upper and lower hemispheres of S*, respectively,
and S*~' = E} N E" is the “equator” of S". See Figure 31.2. Now both E}
and E" are n-balls; in fact, the projection of R** ' onto R* X O carries E, and
E” homeomorphically onto B”. (It also carries EZ — g onto B* — 0.) In par-
ticular, E" is contractible, so the long exact homology sequence of (S*,E%)
shows that i, is an isomorphism. The excision property shows that j, is an iso-
morphism, since ¢ € Int E” . The map k, is an isomorphism because $*~'is a
deformation retract of EZ — g, and E% is a deformation retract of S" — g.
(Since the pair (E* — ¢, S" ') is homeomorphic to the pair (B* — 0,S"""),
there is a deformation retraction F, of E* — g onto S*~!. It extends to a de-
formation retraction of $° — g onto E%, by letting F, equal the identity on
E", for each 1.) The fact that 3, is an isomorphism follows from the contract-
ibility of E%.

It follows from the induction hypothesis that H,(S") is infinite cyclic for
i = n and vanishes otherwise.

Now the reflection map p, induces a homomorphism of the preceding dia-
gram with itself, since it maps each of p, E%, E%, and S” into itself. By the
induction hypothesis, the homomorphism induced by p, equals multiplication by
—1on A, _,(S"~"); therefore, it equals the same on H(S". O

Corollary 31.9. If a:S"— S" is the antipodal map a(x) = —x, then a,
equals multiplication by (—1)"*'. O
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EXERCISE

1. Express the naturality provisions in Lemmas 31.1 and 31.4 by stating that sd
and D, are natural transformations of certain functors.

*§32. ACYCLIC MODELS!

In the two preceding sections, we constructed certain natural chain homotopies
Dy. The method was to define D, first for a particular singular simplex i, on a
particular space A,. To do this, we needed the acyclicity of another space, either
of A, X I (in §30) or of A, itself (in §31). This part of the construction involved
an arbitrary choice; everything thereafter was forced by naturality. The resem-
blance to earlier constructions involving acyclic carriers was strong, but never-
theless there were differences.

Now we formalize this method for later use. We state here a theorem, suffi-
ciently strong for our purposes, that we shall call the acyclic model theorem. Its
formulation is sufficiently abstract to bother some readers. It may help you
keep your feet on the ground (even if your head is in the clouds of abstraction)
if you reread the proofs of Lemmas 30.6 and 31.4 before tackling this theorem
and its proof.

Throughout this section, let C denote an arbitrary category with objects
X.Y,...and morphisms f, g, ... and let A denote the category of augmented
chain complexes and chain maps of such. We will be dealing with functors
from C to A.

For most of the applications we have in mind, C will be either the topolog-
ical category (whose objects are topological spaces and whose morphisms are
continuous maps) or the category of pairs of spaces and pairs of continuous
maps. So you may think only of those categories if you like.

Definition. Let G be a functor from C to A; given an object X of C, let
G,(X) denote the p-dimensional group of the augmented chain complex G(X).
Let M be a collection of objects of C (called models, or model objects). We say
that G is acyclic relative to the collection M if G(X) is acyclic for each X € M.
We say G is free relative to the collection M if for each p = 0, there are:

(1) An index set J,.

(2) An indexed family {M,}, . ,, of objects of M.

(3) An indexed family {i_}, . s, Where i, & G,(M.,) for each a.
The following condition is to hold: Given X, the elements

G(f) (L) € G,(X)

"In this section, we assume familiarity with §28, Categories and Functors. The results of this
section will be used when we prove the Eilenberg-Zilber theorem, in §59.
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are to be distinct and form a basis for G,(X), as f ranges over all elements of
hom (M,,X), and « ranges over J,.

Example 1. Consider the singular chain complex functor, from the topological
category to A. Let J be the collection {A,|p = 0,1,...}. This functor is acyclic
relative to M. We show it is free relative to : for each p, let the index set J, have
only one element; let the corresponding family consist of A, alone; and let the corre-
sponding element of S,(A,) be the identity singular simplex i,. It is immediate that,

as T ranges over all continuous maps A, — X, the elements T,(i,) = T form a basis
for S,(X).

Example 2. Consider the following functor G, defined on the category of topologi-
cal pairs:

XY)=8XXY) and (figd—(fX @y

Let # = {(4,,4,) |p.g = 0,1,...}. Then G is acyclic relative to A1, since A, X 4,
is contractible. We show G is free relative to JM: For each index p, let J, consist of a
single element; let the corresponding family consist of (A,,4,) alone; and let the
corresponding element of S,(A, X A,) be the diagonal map d,(x) = (x,x). As f
and g range over all maps from A into X and Y, respectively, (f X g),(d,) ranges
over all maps A, — X X Y—that is, over a basis for S,(X X Y).

Example 3. Let G be the functor
X—=8&XXI) and [f—(fXi),

Let M = {A,|p = 0,1,...}. Then Gis acyclic relative to /M. It is also true that G is
free relative to 4, but the proof is not obvious. Let J, be the set of all continuous
functions a: A, — I. Let the family M. 5, be defined by setting M, = A, for
each a. For each «, let i, € S,(M, X I) be the singular simplex

:d, =8, X T
defined by
i, (x) = (x, a(x)).

As f ranges over all maps of A, into X, and a ranges over the set J,, the element
(f X i), (i,) ranges over a basis for S, (X X I).

Note that if G is free relative to a collection J, then it is automatically free
relative to any larger collection, while if it is acyclic relative to 4, it is auto-
matically acyclic relative to any smaller collection. Therefore, if we wish G to
be both free and acyclic relative to M, we must choose M to be just the right
size, neither too large or too small.

Theorem 32.1 (Acyclic model theorem). Let G and G' be functors from the
category C to the category A of augmented chain complexes and chain maps.
Let M be a collection of objects of C.

If G is free relative to M, and G' is acyclic relative to M, then the follow-
ing hold:
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(a) There is a natural transformation Ty of G to G'.
(b) Given two natural transformations Ty, Ty of G to G', there is a natu-
ral chain homotopy Dy between them.

“Naturality” means the following: For each object X of C,
Ty : G, (X)— G,(X) and Dy:G,(X)—G, . (X).
Naturality of T, and Dy means that for each f € hom(X,Y), we have

G'(f) e Tx=Ty° G(f),
G'(f) e Dy = Dy~ G(f).

The proof of Theorem 32.1 is left to the reader!

Actually, this is not as unkind as it might seem. One cannot in fact under-
stand a proof at this level of abstraction simply by reading it. The only way to
understand it is to write out the details oneself. If you have labored through the
acyclic carrier theorem, and have followed the constructions of Dy in the pre-
ceding sections, you should be able to write down the proof of (b). After that,
the proof of (a) should not be too difficult.

An immediate corollary is the following.

Theorem 32.2. Let C be a category; let G and G' be functors from C to A.
If G and G’ are free and acyclic relative to the collection M of objects of C,
then there is a natural transformation T, : G(X) — G'(X); any such transfor-
mation is a chain equivalence.

Proof. We apply the preceding theorem four times. Because G is free and
G’ is acyclic, Ty exists. Because G’ is free and G is acyclic, there is a natural
transformation Sy of G’ to G. Now S, o T and the identity transformation are
two natural transformations of G to G; because G is free and acyclic, there is a
natural chain homotopy of S, o Ty to the identity. Similarly, because G’ is free
and acyclic, there is a natural chain homotopy of Ty o Sy to the identity. O

EXERCISES

1. Prove the acyclic model theorem.
2. Consider the following functors:

G: X— 8$X) and f—f,
G: X—-8SXX] and S= (X i),

(a) Show that the maps Ty, Tx:S,(X) — S,(X X I) defined by Tx(T) =
iy(T) and Tx(T) = j,(T) are natural transformations. Derive Lemma 30.6
as a consequence of the acyclic model theorem.

(b) Derive Lemma 31.4 from the acyclic model theorem by showing that sd™
and (iy), are natural transformations of the functor G to itself.
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3. Let K and L be simplicial complexes; suppose ® is an acyclic carrier from
Kto L.

Consider the category C whose objects are subcomplexes of K and whose
morphisms are inclusion maps j of subcomplexes of K. If K, is a subcomplex of
K, let ®(K,) be the union of the subcomplexes & (s) of L, as ¢ ranges over all
simplices of K.

(a) If K, and K, are subcomplexes of K, and j: K, — K, is inclusion, consider
the functors from C to A given by

G:K,— C(K,) and  j—j,
G': K,— C(®(K,)) and j—1,
where [: ®(K,) — ®(K,) is the inclusion map. Show that G and G’ are
indeed functors.
(b) Derive the acyclic carrier theorem (geometric version) from the acyclic

model theorem. [Hint: Let M consist of those subcomplexes of K whose
polytopes are simplices of K.]

§33. MAYER-VIETORIS SEQUENCES

If X is the union of two subspaces X, and X,, under suitable hypotheses there is
an exact sequence relating the homology of X with that of X, and X;. It is called
the Mayer-Vietoris sequence of the pair X,, X;. We constructed such a sequence
in simplicial theory under the assumption that X, and X, were polytopes of sub-
complexes of a complex. In singular theory, we need an analogous condition:

Definition. Let X = X, U X,. Let £(X,) + §(X;) denote the chain com-
plex §*(X), where A = {X,, X,}. Its pth chain group is the sum S,(X,) +
S,(X,), which is not a direct sum unless X, and X, are disjoint. We say {X,, X,}
is an excisive couple if the inclusion

§X) + $(X,) — $X)
induces an isomorphism in homology.
For singular homology, this definition is equivalent to the one given in the
exercises of §26. Proof is left to the reader (see Exercise 2).

In view of Theorem 31.5, one situation in which {X,, X,} is excisive occurs
when the sets Int X, and Int X, cover X.

Theorem 33.1. Let X = X, U X, suppose {X,, X} is an excisive couple.
Let A = X, N X,. Then there is an exact sequence

—HWEEx) e &) BHX) —H,_ () — -
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called the Mayer-Vietoris sequence of {X,, X,}. The homomorphisms are de-
fined by

¢:(a) = (i*(a)’ —Js (a)),
‘l’*(xvxz) =k, (xl) + It(x2)7
where the maps

i

A4 — X,
i
X, — X

are inclusions. A similar sequence exists in reduced homology if A is nonempty.
Both sequences are natural with respect to homomorphisms induced by con-
tinuous maps.

Proof. We define a short exact sequence of chain complexes
™ 0—5,(4) 2 5,x) 5,) L 5,(X) + 5,(6) ~0
by the equations

#(c) = (iy(c), —jz(c))s
\[/(C,, cz) = k#(cl) + I#(cz)~

The map ¢ is injective, while ¢ is surjective and its kernel consists of all chains
of the form (¢, —c), where ¢ € S,(X,) and —c € §S,(X;). Exactness follows. We
obtain from the zig-zag lemma a long exact sequence in homology. Since the
hypotheses of the theorem guarantee that

(**) H,($(X,) + $(X.)) = H,(X),

the proof is complete. Exactness of the Mayer-Vietoris sequence in reduced ho-
mology when 4 # & follows by a similar argument.

Now suppose f: (X,X,,X;) — (Y,Y,,Y,) is a continuous map; where X =
X,U X, and Y = Y, U Y; and both {X,,X,} and {Y,,Y,} are excisive couples.
Since f, commutes with inclusions, it commutes with the chain maps ¢ and ¢.
Thus f, gives a homomorphism of short exact sequences of chain complexes, so
that f, is a homomorphism of the corresponding homology sequences. Finally,
we note that the isomorphism (**) commutes with f,, since it is induced by in-
clusion. The naturality of the Mayer-Vietoris sequence follows. O

The Mayer-Vietoris sequence has many applications. We give one here, as
an illustration. We shall not, however, have occasion to use this result later in
the book.

Recall that if K is a complex and if w, * K and w, * K are cones on K whose
polytopes intersect in |K| alone, then their union is a complex denoted S (K) and
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called a suspension of K. (See §25.) It is easy to show that the map
x: K| X [=1,11 = IS (K)|
defined by

A =x 4w, if 120,
(%1 = {(1 +)x—tw, if t=<0,

is a quotient map that collapses |K| X 1 to the point w,, and |K| X (—1) tow,,
and is otherwise one-to-one. The proof is similar to the corresponding result for
cones (see Corollary 20.6). This fact motivates the definition of suspension for
an arbitrary topological space.

Definition. Let X be a space. We define the suspension of X to be the
quotient space of X X [—1,1] obtained by identifying the subset X X 1 to a
point, and the subset X X (—1) to a point. It is denoted S(X).

Just as in the case of simplicial theory, one can compute the homology of a
suspension by using a Mayer-Vietoris sequence. One has the following theorem:
Theorem 33.2. Let X be a space. There is for all p an isomorphism
fip(S(X)) - I.Ip - I(X)‘

Proof. Let w:X X [—1,1] = S(X) be the quotient map. Let v =
#(X X 1) and w= 7 (X X (—1)); these points are called the “suspension
points.” Let X, = S(X) — w and X, = S(X) — v; since both X, and X, are
open in S (X), the pair {X,, X,} is excisive. We show that X, and X, are acyclic.
The Mayer-Vietoris sequence then implies that there is an isomorphism

H,(S(X))— H,_,(X, N X,).

We also show there is a homotopy equivalence of X; N X, with X, so there is an
isomorphism

i{p-—l(Xl n Xz)-—)ilp-l(X)'

The theorem follows.
Now X X (—1,1] is open in X X [—1,1] and is saturated with respect to
«. Therefore, the restricted map

XX (—1,1]— X,
is a quotient map. Now X X 1 is a deformation retract of X X (—1,1]; the map
F: XX (LI XI— XX (-11]
defined by
F(x,5,0) = (x,(1 = s+ 1)
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is the desired deformation retraction. Since the map =’ o F in the following
diagram

XX (=1,1] X I-E2 x % (=11

r’Xi,l lr’
x,x1 S x

is constant on X X 1 X I, it induces a continuous map G that is a deformation
retraction of X, to the point v. (Here we use the fact that =" X i, is a quotient
map, which follows from Theorem 20.1.) Thus X, is acyclic.

A similar proof shows that X, is acyclic. Finally, we note that the re-
stricted map

XX (L) =X NX,

is a2 one-to-one quotient map, and hence a homeomorphism. Since X X 0 is a
deformation retract of X X (—1,1), there is a homotopy equivalence of X with
Xxnx, O

EXERCISES

1. Consider the closed topologist’s sine curve X, pictured in Figure 33.1. It is the
union of the topologist’s sine curve Y (defined in the exercises of §29) and an
arc that intersects Y only in the points (0,—1) and (1,sin 1). Compute the sin-
gular homology of X, using a suitable Mayer-Vietoris sequence.

Figure 33.1

2. Show that {X,, X,} is an excisive couple in singular theory if and only if in-
clusion (X,, X; N X;) — (X,X,) induces an isomorphism in singular homology.
[Hint: Construct an exact sequence

0— (X)) — $(X,) + $(X,) — $(X)/S$X, N X;) — 0.

Compare its derived homology sequence with the homology sequence of
SX.X,).)

3. Show that $" =~ S(S" ') for n = 1. Use this fact to compute the singular
homology of S”.

189
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4. State and prove a relative version of the Mayer-Vietoris sequence in singular
homology, where the middle group is H,(X,,B,) © H,(X,,B,), assuming {X,,X,}
and {B,,B,} are excisive. [Hint: Include the sequence

0—&(B, N B,) — $(B,) ®$(B,) — $(B,) + §(B,) — 0

into the sequence (*) of the proof of Theorem 33.1 and use the serpent lemma.]

5. Let X = X, U X, and 4 = X, N X,. Suppose X, and X, are closed in X, and 4
is a deformation retract of an open set U of X,. Show that X, is a deformation
retract of U U X,; conclude that {X,,X,} is an excisive couple.

§34. THE ISOMORPHISM BETWEEN SIMPLICIAL
AND SINGULAR HOMOLOGY

In this section, we show that if K is a simplicial complex, the simplicial homol-
ogy groups of K are isomorphic with the singular homology groups of |K|. In
fact, we show that the isomorphism commutes with induced homomorphisms
and with the boundary homomorphism d,, so it is an isomorphism between the
two homology theories.

The proof involves a notion we introduced in §13, that of the ordered chain
complex {C,’, (K),8'} of a simplicial complex K. We proved there that the homol-
ogy groups of this chain complex, called the ordered homology groups of KX, are
isomorphic to the usual (oriented) homology groups of K. In this section, we
show that the ordered homology groups of X are in turn isomorphic with the
singular homology groups of |K|, thus showing that simplicial and singular ho-
mology agree for polyhedra.

Recall that an ordered p-simplex of K is a p + 1 tuple (v,, .- .,v,) of
vertices of K (not necessarily distinct) that span a simplex of K, and the group
C,(K) is the free abelian group generated by the ordered p-simplices. Also
recall that

3o+ -30,) =Z(—1) Wy - - - 5By - - - ,U))

and that ¢ (v) = 1 for each vertex v. We now construct a chain map carrying
C,(K) to S,(IK|) and prove that it induces an isomorphism in homology.

Definition. Define 8: C,(K) — S,(IK]) by the equation

8((v, - - -,0p)) = 1V, - - - ,1,).
Then 8 assigns, to the ordered simplex (v, . - . ,0,) of K, the linear singular sim-

plex mapping 4, into |K| and carrying ¢; to v; for i = 0, .., p.

It is immediate from the definitions that # is a chain map and that it
preserves augmentation. If K, is a subcomplex of K, then § commutes with
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inclusion, so it maps C,(K,) into S,(|K,|), and thus induces a chain map
6: C‘,:(K,Ko) - Sp(lKlleol)'

To show 6, is an isomorphism, the following lemma will be useful:

Lemma 34.1. Let y: € — €' be a chain map of augmented chain com-
plexes. Then , is an isomorphism in reduced homology if and only if it is an
isomorphism in ordinary homology.

Proof. We recall the proof that H (@) = H,(€) ®Z. (See the exercises
of §7.) Begin with the exact sequences

0 ker € C,—<1z 0
IR
0 ker ¢’ C,<-Z 0.

Choose j:Z — C, so that jo e is the identity. Define j': Z — C; by setting
Jj' =¥ o j. Then j and j' split the two sequences, so

C,=kere®imj and Co=kere ®imj'.

Note that ¢ defines an isomorphism of im j with im j'. Now

ke N , kere ..
H,,(@)::Tcrfexmj and Hy (@)= a’Ce,’ ®im j'.
It follows that y, : H,(€) — H,(€’) is an isomorphism if and only if ¢ induces
an isomorphism of ker ¢/dC, with ker ¢'/6’C;. O

Lemma 34.2. Let K, be a subcomplex of K. For all p, the chain map 8
induces isomorphisms

(1) o,: H,(€'(k)) — H,(K),

(2) 6,:H,(¢'(K))— H,(K),

(3) 0,:H,(C'(K,K,)) — H,(IK|,1K,|).

Proof. We assume K, # K, since otherwise (3) is trivial.

Step 1. We prove the theorem first when X is finite, by induction on the
number of simplices in K. If n =1, then K consists of a single vertex v. In
each dimension p, there is exactly one ordered p-simplex (v, ...,v) of KX, and
exactly one singular p-simplex 7:4,— v of |K|. Furthermore, 8(v,...,v) =
I(v,...,v) = T. Then 8: €'(K) — $(IK|) is an isomorphism already on the
chain level. Hence (1), (2), and (3) hold.

Now suppose the lemma holds for any complex having fewer than n
simplices. Let K have n simplices. We note that it suffices to prove (1) for XK.
For then (2) follows by Lemma 34.1. And since 6, : H,(€"'(K,)) — H,(IK,]) is
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an isomorphism by the induction hypothesis, (3) follows from the long exact
homology sequences and the Five-lemma.

To prove (1), let o be a simplex of K of maximal dimension. Then ¢ is not a
face of any other simplex, so that the collection of all simplices of K different
from o is a subcomplex K, of K having n — 1 simplices. Let = denote the com-
plex consisting of ¢ and its faces; let Bd = be the collection of proper faces of .
Consider the following commutative diagram, where 7 and j are inclusions:

HEw®) 2= Bk

e,
H(C'(K2) —> H,(Kl0)
P2 A
H,(€'(K,,Bd 2)) ., H,(IK,|,Bd o).

(If dimo = 0, then BdZ and Bd o are empty.) It follows from the induction
hypothesis that the map 6, on the bottom line of the diagram is an isomor-
phism. We shall show that the vertical maps are isomorphisms; it then follows
that the map 4, on the top line is an isomorphism and the proof is complete.

First we consider the homomorphisms i,. Because o is acyclic in singular ho-
mology, the long exact homology sequence of (|K|,s) shows that the right-hand
map i, is an isomorphism. The same argument applies to the map i, in ordered
simplicial homology, since Z is acyclic in ordered homology, by Lemma 13.5.

The map j, is an isomorphism in ordered simplicial homology, because j, is
an isomorphism already on the chain level; the inclusion map

e'(K,) — €'(K) — €'(K)/€'(2)

is surjective and carries to zero precisely those chains carried by K, N 2 =
Bd =. (In fact, j is just an excision map.)

It is tempting to assert that j is also an excision map for singular homology,
so j, is an isomorphism. But this is not true. The domain of j is formed by
“excising away” from |K| and o the set U = Int ¢. Since U = o, Theorem 31.7
does not apply; we are excising away something too large. We can however ex-
cise something smaller—namely, the barycenter ¢ of . This we now do.

Consider the diagram

H,(Kl,0)
I
Js H,(K| — 6,0 — &)
/%
H,(K.,Bd o)

where k and / are inclusions. The map / is an acceptable excision map, since ¢ is
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closed and is contained in Int 6. (Note that Int ¢ is open in |K}, because |K,| is
closed. Therefore, the interior of ¢ in [K|, in the sense of point-set topology,
equals the “open simplex” Int 6.) Therefore, /, is an isomorphism. Why is k, an
isomorphism? If dim o = 0, then ¢ — & and Bd ¢ are empty, and |K| — o =
IK,]; the map k is the identity in this case. If dim o > 0, then we use the fact
that Bd ¢ is a deformation retract of o — 4. This deformation retraction extends
to a deformation retraction F, of |K| — & onto |K,|, by letting F, equal the iden-
tity on |K,|. See Figure 34.1. We conclude from Theorem 30.8 that k, is an
isomorphism. Then j, is an isomorphism in singular homology, as desired.

Step 2. Having proved the theorem when X is finite, we prove it in gen-
eral. As before, it suffices to prove (1) for all K. For then (2) follows from the
preceding lemma; and (3) follows from (2) and the Five-lemma.

First, we show 8, is surjective. Given {z} € H, ,(IK1), there is a compact sub-
set A of |K| such that the chain z is carried by 4. Let L be a finite subcomplex
of K such that A is contained in |L|. Consider the commutative diagram

B, (D) —2 &, (L)

iy 1 [1;
0*

H,(€'(K)) — H,(K])

where the vertical maps are induced by inclusion. Then {z} lies in the image of
Jjx- The map 8, on the top line is an isomorphism by Step 2. Hence {z} lies in the
image of the map 6, on the bottom line.

We show 6, has trivial kernel. Suppose {z} € H,(€'(K)) and 0, ({z}) = 0.
Then 0(z) = ad for some singular p + 1 chain d of TK |. The chain d is carried
by a compact subset of |K|; choose a finite subcomplex L of K such that z is
carried by L and d is carried by |Z|. Consider the same commutative diagram as
before. Let o denote the homology class of z in H »(C'(L))- Because 0(z) = 4d,
where d is carried by |Z|, 8, : H,(€'(L)) — H,(IL|) carries « to zero. Because
this map is an isomorphism, a = 0. Hence {z} = i, (a) =0 as well. O

Figure 34.1
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The argument given in Step 2 is of the general kind known as a “direct
limit argument.” It is a standard way of carrying over results that hold for the
homology of finite complexes, to complexes in general.

We now combine the results of §13 on ordered homology with the lemma
just proved.

Definition. Let K be a complex. We define
7: C(K) — $(KI)

as follows: Choose a partial ordering of the vertices of K that induces a linear
ordering on the vertices of each simplex of K. Orient the simplices of K by using
this ordering, and define

(e, - . ..0, 1) = 1(vy, . . . ,0,),

where v, < - - - <, in the given ordering. It is immediate that 7 is a chain
map, that it preserves augmentation, and that it commutes with inclusions.
Thus it induces a chain map on the relative level as well.

In fact, 7 is just the composite
0
ex) 2 eky L s(kl,

where 8 is the chain map of the preceding lemma, and ¢ is the chain equivalence
of Theorem 13.6. Since both ¢ and 6 induce homology isomorphisms, so does 7.
This result holds for relative homology and reduced homology as well. Although
71 depends on the chosen ordering of vertices of K, the homomorphism 7, does
not. For 5, = 8, = ¢,, where 6 obviously does not depend on the ordering, and
¢, does not depend on the ordering, by Theorem 13.6.

Finally, we note that since the chain map n commutes with inclusions, the
naturality of the zig-zag lemma implies that 7, commutes with d,.

We summarize these facts as follows.

Theorem 34.3. The map 1, is a well-defined isomorphism of simplicial
with singular homology that commutes with the boundary homomorphism é,.
a

Furthermore, one has the following naturality result.

Theorem 34.4. The isomorphism 7, commutes with homomorphisms in-
duced by simplicial maps.

Proof. Let f:(K,K,) — (L,L,) be a simplicial map. We have already
proven that f, commutes with ¢,. (See Theorem 13.7.) We show it commutes
with 6,. In fact, f, commutes with 8 on the chain level.
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Recall that in ordered homology, thie ¢haiii map induced by fis defined by
the equation

fﬂ'((wo, R ,Wp)) = (f(Wo), .o ’f(wp))9

where (w,, ... ,w,) is an ordered p-simplex of K. We compute directly
.f#o((wm v ,Wp)) =f° I(WO’ .. swp)~

This map equals the linear map of A, into |K| that carries ¢, to w, for each i,
followed by the map f, which carries the simplex spanned by w,, . ..,w, onto a
simplex of L. Since the composite of linear maps is linear, this map equals

I(f(Wo), - - .. f (W) = 8((f(Wo), - ... (W,)))
= 8f;((Woy - .., w,)). O

It is possible to define the homomorphism of simplicial homology induced
by a continuous map h as the composite 5;' o h, o 7,, where h, denotes the
induced homomorphism in singular homology. This would give us the same
homomorphism of simplicial homology as we defined in Chapter 2 by use of
simplicial approximations. We prove this result as follows:

Theorem 34.5. The isomorphism 1, commutes with homomorphisms in-
duced by continuous maps.

Proof. Let
h: (IKLIK) — (LLIL,)

be a continuous map. Let
[ (K", Kg) — (L, L) and g:(K,K;) — (K,K,)

be simplicial approximations to k and to the identity, respectively. In simplicial
homology, we have

h: =fao (g*)—l’

by definition. Now in singular homology, the map g, equals the identity isomor-
phism, because g is homotopic to the identity map (Theorem 19.4). Similarly,
f+ = h, in singular homology, because fis homotopic to 4. Thus in singular ho-
mology, we also have the equation h, = f, o (g,)"".

Our theorem now follows by applying the preceding theorem to the maps
fandg. O

Although we have proven that the chain map 5 induces an isomorphism in
homology, we have not found a chain-homotopy inverse A for 5. The fact that
such a A exists is a consequence of results we shall prove later. (See the exer-
cises of §46.) A specific formula for A can be derived using the theory of “regu-
lar neighborhoods.” (See [E-S].)

195



196 Singular Homotogy Theory Chapter 4

EXERCISE

1. Show that if X, and K, are subcomplexes of a complex K, then {|K},|K;|} is an
excisive couple in singular homology.

*§35. APPLICATION: LOCAL HOMOLOGY GROUPS
AND MANIFOLDS!

In this section, we define the local homology groups of a space X at a point x of
X, and we use these groups to prove several non-trivial facts about manifolds.
Throughout this section, let X denote a Hausdorff space.

Definition. If X is a space and if x € X, then the local homology groups of
X at x are the singular homology groups

H, (X, X — x).

The reason for the term “local” comes from the following lemma.

Lemma 35.1. Let A C X. If A contains a neighborhood of the point x,
then

H,(X,X — x) = H,(4, A — x).

Therefore, if x € X and y € Y have neighborhoods U, V, respectively, such
that (U,x) = (V,y), then the local homology groups of X at x and of Y at y are
isomorphic.

Proof. Let U denote the set X — A. Because A contains a neighborhood
of x,

UcC X-—x=Int(X— x).
It follows from the excision property that
HXX-x)=HX-UX-x—-U)=H(4,4—-x). O
Let us compute some local homology groups.

Example 1. If x € R, we show that H;(R",R” — x) is infinite cyclic for i = m
and vanishes otherwise.
Let B denote a ball centered at x. By the preceding lemma,

H,R",R™ — x) = H,(B,B — x) = H(B",B" — 0).

*This section will be assumed in Chapter 8. It is aiso used in treating one of the examples
in §38.
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Now S™ ~ ! is a deformation retract of B™ — 0. See Figure 35.1; the formula for the
deformation is given in the proof of Theorem 19.6. Therefore,

H,(B",B™ — 0) = H,(B",S""").
This group is infinite cyclic for i = m and vanishes otherwise.
Example 2. Let H™ denote euclidean half-space
H” = {(x,,...,x,) | x,, =0}

Let Bd H™ denote the set R™ ™' X 0. If x € Bd H™, then the group H;(H", H" — x)
vanishes for all i. If x € H” and x ¢ Bd H", then this group is infinite cyclic for
i = m and vanishes otherwise. We prove these facts as follows.

If x ¢ Bd H", this result follows from the preceding example, once we note
that x has a neighborhood that is an open set of R™. So suppose x € Bd H™; we can
assume without loss of generality that x = 0. Let B” be the unit ball in R™, centered
at 0. The set B" N H™ contains a neighborhood of @ in H™. Letting D™ denote the
half-ball B” N H™, we have

H,(H", H™ ~ 0) = H,(D", D" — 0).

See Figure 35.2. Now there is a deformation retraction of B” — 0 onto S™~'. It
restricts to a deformation retraction of the punctured half-ball D™ — 0 onto the set

S™" 'NH"=< ET" .
Therefore,
H/(D", D™ — 0) = H,(D", E"" ).

Now D™ is acyclic, being a convex set in R™; and E7 ~ ! is acyclic, being homeomor-
phic to B™ ~'. The long exact homology sequence shows that their relative homol-
ogy vanishes.

Sm—l

S§m-ln Hm = gl

Bm BmnN Hm = pm

Figure 35.1 Figure 35.2

Definition. A nonempty Hausdorff space X is called an m-manifold if each
point of X has a neighborhood homeomorphic with an open subset of euclidean
space R™. It is called an m-manifold with boundary if each point has a neighbor-
hood homeomorphic with an open set of euclidean half-space H™.

Note that an m-manifold is automatically an m-manifold with boundary.
For if x has a neighborhood homeomorphic with an open set in R™, it has a
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neighborhood U homeomorphic with an open ball in R™. Then U is homeomor-
phic with the open unit ball in R™ centered at (0, . . . ,0,1), which is an open set
of H™.

One often includes in the definition the requirement that X have a countable
basis, or at least that X be metrizable. We shall not make either assumption.

Manifolds and manifolds with boundary are among the most familiar and
important of geometric objects; they are the main objects of study in differen-
tial geometry and differential topology.

If X is a manifold with boundary and if 4 : U — V is a homeomorphism of
an open set Uin X onto an open set ¥V in H”, then 4 is called a coordinate patch
on X. A point x of X may be mapped by 4 either into the open upper half space
R™ ' X R, of H™, or onto the “edge” R™~' X 0. The local homology groups
distinguish between these two possibilities. For it follows from Example 2 that
if x is mapped into the open upper half space of H”, then H,(X,X — x) is infi-
nite cyclic, while if x is mapped into Bd H™, then H, (X,X — Xx) vanishes. This
fact leads to the following definition:

Definition. Let X be an m-manifold with boundary. If the point x of X
maps to a point of Bd H” under one coordinate patch about x, it maps to a point
of Bd H™ under every such coordinate patch. Such a point is called a boundary
point of X. The set of all such points x is called the boundary of X, and is de-
noted Bd X. The space X — Bd X is called the interior of X and denoted Int X.

Note that there is nothing in the definition requiring that X have any
boundary points. If it does not, then Bd X is empty, and X is an m-manifold.
While Bd X may be empty, the set Int X cannot be. For if h: U—V is a
coordinate patch about a point x of X, then ¥ is open in H” and hence contains
at least one point of the open upper half space. The corresponding point y of X
lies in Int X by definition.

We remark that the space H™ is itself an m-manifold with boundary, and
its boundary is precisely the set R” ~' X 0, which we have already denoted by
Bd H™. Similarly, R™ is itself an m-manifold.

Definition. Let X be an m-manifold with boundary. It follows from Ex-
ample 2 that m is uniquely determined by X, for it is the unique integer such
that the group H,,(X,X — x) is non-trivial for at least one x in X. The number
m is called (obviously) the dimension of the manifold with boundary X.

Example 3. The unit ball B” in R" is an n-manifold with boundary, and Bd B" =
S$7~'. We prove this fact as follows.

If p e B" — S" ", then the set of all x with [[x}] < 1 is an open set of R”; thus
there is a coordinate patch about p. Now let p € $”~'; we find a coordinate patch
about p. Some coordinate of p is non-zero; suppose for convenience that p, < 0.
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Figure 35.3

Let U be the open set in B” consisting of all points x of B" with x, < 0. Define
h : U — H" by the equation

h(x) = (xh cee s Xy s Xy +f(x))v

where f(x) = {1 — x? — . . - — x%_,]". Then you can check that & is 2 homeo-
morphism of U onto the open set ¥ of H™ consisting of all points y with |yl <1
and y, = 0; and it carries p to a point of Bd H". See Figure 35.3.

Example 4. Let ¢ be an n-simplex. Then ¢ is an n-manifold with boundary, be-
cause there is 2 homeomorphism of ¢ with B”. This homeomorphism carries the
union Y of the proper faces of o onto S*~'. Thus the set Y, which we have been
denoting by Bd o, is just the boundary of ¢ when it is considered as an 7-manifold
with boundary! And the set o — Y, which we have been denoting by Int ¢, is just the
interior of o as 2 manifold with boundary.

There is a certain overlapping of terminology here, which we should clarify.
In general topology, if A4 is a subset of a space X, then the interior of A, denoted
Int A, is the union of all open sets of X contained in A. And the boundary of A,
denoted Bd A, is the set 4 N X — A. In the special case where A4 is an open set
of X, it turns out that Bd 4 = 4 — 4. We have used this terminology from
general topology earlier in this book. For instance, the notion Bd U/ appeared in
Lemma 1.1; and the notion Int 4 was used in formulating the excision axiom.

The concepts of boundary and interior for a manifold with boundary are
entirely different; it is unfortunate that the same terminology is commonly used
in two different ways. Some authors use 3.X to denote the boundary of a mani-
fold with boundary. But that can lead to difficulty when one wishes to distin-
guish the boundary of the space ¢ from the simplicial chain d¢! We will simply
endure the ambiguity, relying on the context to make the meaning clear.

It happens that for the subset B" of the topological space R”, its boundary in
the sense of general topology is the same as its boundary in the sense of mani-
folds with boundary. The same remark applies to the subspace H* of R". But
these cases are the exception rather than the rule.

Now we prove a result about triangulations of manifolds.

Lemma 35.2. Let s be a simplex of the complex K. If x and y are points
of Int s, then the local homology groups of |K| at x and at y are isomorphic.
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Proof. It suffices to prove the theorem when x = §, the barycenter of s.
Let sd K be the first barycentric subdivision of K. Let K’ be a subdivision of K
defined exactly as sd K was, except that y is used instead of § when “starring”
the subdivision of Bd s from an interior point of s. There is a linear isomorphism
of sd K with K’ that carries § to y, and carries each remaining vertex of sd K to
itself. Then the pair (|K],|K| — 3) is homeomorphic with the pair (|K|,|K| — y).

O

Recall that a homeomorphism A : |K| — M is called a triangulation of M.
It is not known whether an arbitrary manifold with boundary has a triangulation.

Theorem 35.3. Let M be an m-manifold with boundary; suppose K is a
complex and h : |K| — M is a homeomorphism. Then h~'(Bd M) is the poly-
tope of a subcomplex of K.

Proof. 1If an open simplex Int s of K intersects the set A~'(Bd M), it lies
in this set, by the preceding lemma; since this set is closed, it must contain s.
]

Now we give a final application of local homology groups. We show that
the dimension of a finite-dimensional simplicial complex X is a topological in-
variant of |K|. (A different proof, using the notion of “covering dimension,” was
outlined in the exercises of §16 and §19.)

Recall that if v is a vertex of K, then St v is the union of the interiors of all
simplices that have v as a vertex, and Lkv = Stv — Stv.

Lemma 35.4. Let v be a vertex of the simplicial complex K. Then
H,(kl,IKl — v) = H,(Stv, Lkv).

Proof. The set St v contains a neighborhood of v; therefore, it follows
from Lemma 35.1 that

H,(K|,IK| — v) = H;Stv,Stv — v).

Let L denote the subcomplex of K whose polytope is Lk v. Then St is the
polytope of the cone v * L, by definition. See Figure 35.4. The following lemma
implies that Lk v is a deformation retract of St v — v; then our proof is com-
plete. O

Lkv=|L|
/

Figure 35.4
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Lemma 35.5. Let v * L be a cone over L. Then |L| is a deformation retract
oflv* Ll —v.

Proof. Consider the quotient map
m: L X I—lv=*Ll
defined by 7 (x,t) = (1 — £)x + tv. (See Corollary 20.6.) Since [L| X [0,1) is
open in |L| X I and is saturated with respect to =, the restriction of ,
x' :|Ll X [0,1) = lv* Ll — v,

is a quotient map; being one-to-one, it is a homeomorphism. Since |L| X 0 is
a deformation retract of |L| X [0,1), the space |L}| is a deformation retract of
vsLl—v. O

Theorem 35.6. Let K be a complex of dimension n; let X = |K|. For
p > n the local homology groups H,(X,X — x) vanish, while for p = n at
least one of the groups H,(X,X — X) is non-trivial.

Proof. Let o be an n-simplex of K. Then o is a face of no other simplex of
K, so the set Int ¢ is in fact an open set of |K]|. (Its complement is the union of
all simplices of K different from ¢.) If x is the barycenter & of o, it follows from
Lemma 35.1 that

H,(X,X — x) = H,(0,0 — 5)
= H,(B",B" - 0).
By Example 1, this group is infinite cyclic.
Now let x be an arbitrary point of X. We wish to show that
H,(X,X — x) = 0 for p > n. In view of Lemma 35.2, it suffices to consider the

case where x is the barycenter of a simplex of K. Then x is a vertex of the com-
plex L = sd X, and Lemma 35.4 applies. We have

H,(X,X ~ x) = H,(St(x,L), Lk(x,L)).

Since L is a complex of dimension n, St(x,L) is the polytope of a complex of
dimension at most n. Therefore, this group vanishes in simplicial homology for
P > n, so it vanishes in singular homology as well. O

EXERCISES
1. Check the details of Example 3.

2. Show that if M and N are manifolds with boundary of dimensions m and =,
respectively, then M X N is a manifold with boundary of dimension m + n,
and

Bd(M X N) = (M X (Bd N)) U ((Bd M) X N).
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3. A space X is bomogeneous if given x and y, there is a homeomorphism of X with
itself carrying x to y. Show that a connected manifold is homogeneous. [Hint:
Define x ~ y if there is such a homeomorphism; show the equivalence classes
are open.]

4. Let M be an m-manifold with boundary; suppose / : |[K| — M is a triangulation
of M.
(a) Show that if v is a vertex of K, then Lk v is 2 homology m — 1 sphere or
ball, according as hA(x) € Int M or h(x) € Bd M.

(b) Show that every simplex of K either has dimension m or is the face of a
simplex of dimension m.

(c) Show that an m — 1 simplex s of K is a face of precisely one m-simplex of
Kif s C h"'(Bd M), and it is a face of precisely two m-simplices of K
otherwise.

5. A solid torus is a space homeomorphic to S* X B? it is a 3-manifold with
boundary whose boundary is homeomorphic to the torus. Use the fact that $? is

homeomorphic to Bd(B? X B?) to write S* as the union of two solid tori T,, T,

that intersect in their common boundary. Compute the Mayer-Vietoris se-
quence of T, T,.

*§36. APPLICATION: THE JORDAN
CURVE THEOREM

Using the basic properties of singular homology, we now prove several classical
theorems of topology, including the generalized Jordan curve theorem and the
Brouwer theorem on invariance of domain.

Definition. If A4 is a subspace of X, we say that A4 separates X if the space
X — A is not connected.

We are going to be concerned with the case where X is R® or S”, and A is
closed in X. Since X — A is then locally path connected, its components and
path components are identical. In particular, the group Hy(X — A) vanishes if
and only if X — A is connected, and in general its rank is one less than the num-
ber of components of X — 4. We shall use this fact freely in what follows.

Definition. A space homeomorphic to the unit k-ball B* is called a k-cell.

Theorem 36.1. Let B be a k-cell in S”. Then S* — B is acyclic. In particu-
lar, B does not separate S”.

Proof. Let n be fixed. We proceed by induction on k. First take the case
k = 0. Then B is a single point. The space S” — B is a single point if n = 0,
while if » > 0, it is homeomorphic to R™. In either case, " — B is acyclic.
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We now suppose the theorem holds for a k — 1 cell in S”. Let B be a k-cell
in S let A : I* — B be a homeomorphism.

Step 1. Let B, and B, be the two k-cells
B, = h(I*~' % [0,%5]) and B, = h(I*" " X [%,1])

in §*. Let C be the k — 1 cell A(I*~' X (%)) in S”. See Figure 36.1. We show
that if « is a non-zero element of H,(S" — B), then its image is non-zero under
at least one of the homomorphisms induced by the inclusion mappings

i:(S"—B)—(S"—B) and j:(S"— B)— (S"—B,).

To prove this fact, let X = S" — C. By the induction hypothesis, X is acy-
clic. We write X as the union of the two subspaces
X,=S"— B, and X,=S8"- B,

Since X, and X, are open in S”, they are open in X; so we have an exact Mayer-
Vietoris sequence
B, (X) = H(4) — H(X) ® H(X,) — H:(X),

where 4 = X, N X, = §” — B. Since X is acyclic, the map in the middle is an
isomorphism. By Theorem 33.1, it carries a € H;(A) to (i, (), —j,(a)).
Therefore, at least one of the elements i, () and j, («) is non-trivial.

B}
N
Figure 36.1

Step 2. We suppose there exists a non-zero element a in H ;(S" — B) and
derive a contradiction. Let B, and B, be as in Step 1. Then the image of « in
either H,(S” — B,) or H,(S” — B,) is non-zero. Suppose the former. Then write
B, as the union of the k-cells

B,=h(I*""Xx [0%]) and B, =h(I*"'X [%%]).
Applying Step 1 again, we conclude that the image of « in either H/(S"~ B,)
or H;(S" — B,,) is non-zero.

Continuing similarly, we obtain a sequence of closed intervals [a,,b,] D

[a;,b,] O - - -, each half the length of the preceding one; furthermore (letting
D,, denote the k-cell

D, =h(I""' X [an,b,]))
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for convenience) the image of « in H,(S" — D,,) is non-zero for all m. Let e be
the unique point in the intersection of the intervals [a,.b,]; then the set E =
h(I*~*' X {e}) is 2 k — 1 cell in S” that equals the intersection of the nested
sequence of k-cells D, D D, D - - - . By the induction hypothesis, the group
H;(S" — E) vanishes. In particular, the image of « in this group vanishes. By
Theorem 30.5, there is a compact subset 4 of S” — E such that the image of «
in I?i (A) vanishes. Since S, — E is the union of the open sets
s*—-D,CS*"—D,C .-,

the set A lies in one of them, say in S” — D,,. But this means that the image of
«a in H;(S” — D,,) vanishes, contrary to construction. [

Theorem 36.2. Letn> k=0. Let h: S* — S" be an imbedding. Then

Z ifii=n—k-—1,

fi" (8" — h(S) = {0 otherwise.

Proof. Let n be fixed. We prove the theorem by induction on k. First take
the case k = 0. Then k(S°) consists of two points p and g. Since S" — p — ¢ =~
R" — 0,and R* — 0 has the homotopy type of S” ~ !, we see that H;(S" — p — q)
is infinite cyclic for i = n — 1 and vanishes otherwise.

Now suppose the theorem is true in dimension k — 1. Let k: S* — S" be an
imbedding. We construct a certain Mayer-Vietoris sequence. Let X, and X, be
the following open sets of S*

X,=S" — h(E%) and X, =S"— h(E-).
See Figure 36.2. Then let
X=X UX,=8"—h(S"),
A=XNX,=S"— h(S").
Since X, and X, are open in X, we have a Mayer-Vietoris sequence

H ., (X)®H, (X)) —H ., (X)— H(4)— H(X)® H(X,).

h(EY)

e rst)
nEX)

h(S*)

Figure 36.2
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Both X, and X, are acyclic by the preceding theorem; therefore, the middle map
is an isomorphism. That is,

H; (8" — h(S*™ ") = H,(S" — h(S"))

for all i. By the induction assumption the group on the left is infinite cyclic
fori + 1 = n — (k — 1) — 1 and vanishes otherwise. Hence the group on the
right is infinite cyclic for i = n — k — 1 and vanishes otherwise. [

Theorem 36.3 (The generalized Jordan curve theorem). Let n> 0. Let C
be a subset of S* homeomorphic to the n — | sphere. Then S" — C has pre-
cisely two components, of which C is the common (topological) boundary.

Proof. Applying the preceding theorem to the case k = rn — 1, we see
that H,(S” — C) = Z. Thus S” — C has precisely two path components (which
are the same as its components, as noted earlier). Let W, and W, be these path
components; because S” is locally path connected, they are open in S”. Then the
(topological) boundary of W, is the set W, — W,. We need to show that

W,—W,=C=W,—W,.

It suffices to prove the first of these equations. Since W, is open, no point of W,
is a limit point of W,; therefore W, — W, C C. We show that C C W, — W,,
whence equality holds.

Given x € C and given a neighborhood U of x, we show that U intersects
the closed set W, — W,. This will suffice. Since C is homeomorphic to S" ~*, we
can write C as the union of two n — 1 cells, C, and C,, such that C, is small
enough to lie in U. Figure 36.3 illustrates the case n = 2.

693

Figure 36.3
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Now C, does not separate S”, so we can choose a path « in S* — C, joining
a point p of W, to a point ¢ of W,. Now « must contain a point of W, — W,,
since otherwise o would lie in the union of the disjoint open sets W, and S" —
W, and contain a point of each of them, contrary to the fact that the image set
of « is connected. Let y be a point of W, — W, lying on the path «; then y lies in
C. Since it cannot lie in C,, it must lie in C, and hence in U. Then U intersects
W, — W, in the point y, as desired. [

We remark that, under the hypotheses of this theorem, it seems likely that
if W, and W, are the components of S” — C, where C is an n — 1 sphere, then
the sets W, and W, should be n-cells. But actually this is not true. It is not even
true in general that W, and W, are open balls. There is a famous imbedding of
S?in 83, called the Alexander horned sphere, for which one of the sets W, is not
even simply connected! (See [H-Y], p. 176.)

What can one prove about the sets W,? In the case » = 2, the answer has
been known for a long time. If C is a simple closed curve in S?, then C separates
S?into two components W, and W,, and both W, and W, are 2-cells. This result
is called the Schoenflies Theorem. A proof may be found in [N].

More recently (1960), results have been proved in higher dimensions, assum-
ing additional hypotheses about the imbedding. Suppose the map h:S"~ ' —
S" can be “collared,” which means there is an imbedding H:S" "' X I— S*
such that H(x,'2) = h(x) for each x. (This hypothesis is satisfied, for instance,
if h is differentiable with Jacobian of maximal rank.) In this case both W, and
W, are n-cells; this result is known as the Brown-Mazur Theorem [B].

Classically, the Jordan curve theorem is usually stated for spheres imbed-
ded in R” rather than in S”. We prove that version of the theorem now.

Corollary 36.4. ILet n> 1. Let C be a subset of R homeomorphic to
S*=1. Then R* — C has precisely two components, of which C is the common
boundary.

Proof. Step 1. We show first that if U is a connected open set in S”,
where n > 1, no point of U separates U.

Let p € U and suppose U — p is not connected. We derive a contradiction.
Choose an open e-ball B, centered at p and lying in U. Then B, — p is connected,
being homeomorphic to R* — 0; hence B, — p lies entirely in one of the compo-
nents C of U — p. Let D be the union of the other components of U — p. Now p
is not a limit point of D, since B, is a neighborhood of p disjoint from D. Hence
the two sets C U {p} and D form a separation of U, contrary to hypothesis.

Step 2. We prove the theorem. Without loss of generality, we can replace
R" in the statement of the theorem by S* — p, where p is the north pole of S”.
Now S — C has two components W, and W,. Suppose p € W,. By the result of
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Step 1, W, — p is connected. Then W, — p and W, are the components of
S$" — p — C, and C equals the boundary of W, and W, — p. O

Theorem 36.5 (Invariance of domain). Let U be open inR”; let f: U —R"
be continuous and injective. Then f(U) is open in R" and f is an imbedding.

Proof. Without loss of generality, we can replace R" by S”.

Step 1. Given a point y of f(U), we show that f(U) contains a neighbor-
hood of y. This proves that f(U) is open in S”.

Let x be the point of U such that f(x) = y. Choose _an open ball B, of
radius ¢, centered at x, whose closure lies in U. Let S, = B, — B,. See Figure
36.4. Now the set f(S,) is homeomorphic to $” ~ !; therefore, f(S,) separates S”
into two components W, and W,, each open in S*. The set f(B,) is connected
and disjoint from f(S,). Therefore, it lies in either W, or W,; suppose it lies in
W,. Now it must equal all of W,, for otherwise the set

S,—f(B) —f(S)=5"~f(B)

would consist of all of W, along with points of W, as well, contradicting the fact
that the cell f(B,) does not separate S”. Therefore, f(B,) = W,. We conclude
that f(U) contains the neighborhood W, of y, as desired.

Step 2. Inview of Step 1, fcarries any set open in U to a set that is open
in $* and hence open in f (U). Thus fis a homeomorphism of U with f(U). O

W,

f(S¢)

Figure 36.4

The theorem on invariance of domain is much easier to prove if one as-
sumes that f is continuously differentiable with non-singular Jacobian. In this
case the theorem follows from the inverse function theorem of analysis. The
true profundity of invariance of domain is that it has nothing to do with dif-
ferentiability or Jacobians, but depends only on continuity and injectivity of the
map f.

Similarly, the Jordan curve theorem is much easier to prove in the case that
the imbedding f: S” ~ ' — R” is a simplicial map (of some complex whose space
is homeomorphic to S"~ '), or a differentiable map with Jacobian of maximal
rank. The true difficuities appear only when one assumes no more than continu-
ity and injectivity.

207



208 Singular Homology Theory Chapter 4

EXERCISES

1. Let M be an m-manifold with boundary, as defined in the preceding section.
Use invariance of domain to prove the following.
(a) Show that if a point x of M maps to a point of R” "' X 0 under one
coordinate patch about x, it does so under every such coordinate patch.
(b) Let U be open in R™ and let ¥ be open in R”. Show that if U and V are
homeomorphic, then m = n.
(c) Show that the number m is uniquely determined by M.

2. (a) Let Y be the topologist’s sine curve (see the exercises of §29). Show that if
h:Y — S"is an imbedding, then $* — A(Y) is acyclic.
(b) Let X be the closed topologist’s sine curve (see the exercises of §33). Show
that if k : X — S” is an imbedding, then H,(S* — k(X)) is infinite cyclic if
i = n — 2, and vanishes otherwise.
(c) Show that if & : X — S?is an imbedding, then S? — h(X) has precisely two
components, of which #(X) is the common boundary.

3. (a) Consider S® as R® with a point at infinity adjoined. Let A4, B,, B,, and B, be
the simple closed curves in S* pictured in Figure 36.5. The map
Hl(Bi) - HI(S’ - A)

induced by inclusion is a homomorphism of infinite cyclic groups, so it
equals multiplication by d;, where d; is well-defined up to sign. The integer
d; measures how many times B; links A. What is it in each case? Similarly,
determine the integer corresponding to the homomorphism

H\(4) = H,(S* - B)

induced by inclusion. Can you formulate a conjecture?
(b) Let 4 consist of two points of S?, and let B, and B, be two simple closed
curves in S, as pictured in Figure 36.6. What are the homomorphisms
Hy(A)—H(S*—B) and  H(B)— H(S*— 4)

induced by inclusion? Formulate a conjecture.

(c) Formulate a conjecture concerning disjoint imbeddings of S” and S” in
Sp +q+ I.

We shall return to this conjecture later on, after we prove the
Alexander duality theorem. (See the exercises of §72.)

ae~ G

Figure 36.5 Figure 36.6
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§37. MORE ON QUOTIENT SPACES

We reviewed some aspects of the theory of quotient spaces in §20. We now dis-
cuss the topic further; in particular, we consider separation axioms for quotient
spaces.

We have already noted that the separation axioms do not behave well for
quotient spaces. In general, it is difficult to ensure that a quotient space satisfies
any stronger separation axiom than the 7,-axiom. Even the Hausdorff axiom is
often hard to verify. We give here three situations in which we can be sure that
the quotient space is Hausdorff (in fact, normal).

Theorem 37.1. Let p: X — Y be a quotient map. If p is a closed map, and
if X is normal, then Y is normal.

Proof. 1If x is a point of X, then x is closed in X, so the one-point set p(x)
is closed in Y (because p is a closed map). Thus Y is a T,-space.

Let 4 and B be disjoint closed sets in Y. Then p~'(A4) and p~!(B) are dis-
joint closed sets in X. Choose disjoint open sets U and ¥ in X about p~*(A4) and
p~'(B), respectively. The sets p(U) and p(¥) need not be disjoint nor open in
Y. See Figure 37.1. However, the sets C = X — Uand D = X — V are closed
in X, so p(C) and p(D) are closed in Y. The sets Y — p(C) and Y — p(D) are
then disjoint open sets about 4 and B, respectively.

To show these sets are disjoint, we begin by noting that U N\ V = @ . Tak-
ing complements, we have

CUD=X-DH)UX-V)=2X
Then p(C) U p(D) = Y, taking complements again,
(Y — p(C)) N (Y — p(D)) = o,

as desired.
To show these sets contain .4 and B, respectively, note first that because C

I )
()

e
]

-

'S
A
T

-]

Figure 37.1
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is disjoint from p~'(4), the set p(C) is disjoint from 4. Thus p(C) C Y — 4;
taking complements, we have ¥ — p(C) D A. Similarly, Y — p(D) contains B.
]

If X* is a partition of X into closed sets, and if the quotient map p: X —
X* is closed, then X™* is called, classically, an upper semicontinuous decomposi-
tion of X. Specifically, this means that for each closed set 4 of X, the set
P~ 'p(A), which is called the saturation of A4, is also closed in X. In such a case,
normality of X implies normality of X*.

Definition. Let X'and Y be disjoint topological spaces; let 4 be a closed sub-
set of X; let f : 4 — Y be a continuous map. We define a certain quotient space

as follows: Topologize X U Y as the topological sum. Form a quotient space by
identifying each set

lture

for y € Y, to a point. That is, partition X U Y into these sets, along with the
one-point sets {x}, for x € X — 4. We denote this quotient space by X U /Y,
and call it the adjunction space determined by f. See Figure 37.2.

e

T 1

Xupy
Figure 37.2

Let p: X U Y — X U,Y be the quotient map. We show first that p defines
a homeomorphism of Y with a closed subspace of X U,Y. Obviously plYis
continuous and injective. Furthermore, if C is closed in Y, then f ~'(C) is closed
in X, because f : 4 — Y is continuous and A4 is closed in X. It follows that

p~'p(C) =CU 1)

is closed in X U Y. Then p(C) is closed in X U, Y by definition of the quotient
topology. Thus p| ¥ carries ¥ homeomorphically onto the closed subspace p(Y')
of X U, Y. We normally abuse notation and identify ¥ with p(Y).

Now if X and Y are T,-spaces, then X U, Y is also a T;-space, since each of
the equivalence classes is closed in X U Y. The preceding theorem does not ap-
ply to give us further separation properties, for p is not in general a closed map.
However, we can still prove the following.

Theorem 37.2. If X and Y are normal, then the adjunction space X U,Y
is normal.
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Proof. As usual, A is closed in X and f : 4 — Y is continuous. Let B and
C be disjoint closed sets in X U, Y. Let

By=p'BYNX; Cy=p ' (O)NX
B,=p'B)NY; Cy=p'(C)NY.

See Figure 37.3. By the Urysohn lemma, we can choose a continuous function
g:Y—[0,1] that maps By to 0 and C, to 1. Then the function g o f : 4 — [0,1]
equals Oon 4 N By and 1 on A N C,. We define a function

h:AU BXU Cx"_’ [0,1]

by letting it equal g o fon A4, and 0 on By, and 1 on Cy. Since A, By, and Cy are
closed in X, the map h is continuous. By the Tietze theorem, we can now extend
h to a continuous function k defined on all of X.

The function X U Y — [0,1] that equals k on X and g on Y is continuous.
It is constant on each equivalence class, because k(f~'(y)) =g(y) if y €
f(A). Therefore, it induces a continuous map of X U, Y into [0,1] that equals 0
onBandequalslonC. O

By A Cy

% . X
¥ , \ f
C
{ 1 Y ; ’
Y

By ' gay Gy f
@)
!

Figure 37.3

We have already defined what it means for the topology of a given space X
to be coherent with a collection of subspaces of X. We wish to deal with the
separation axioms in this context.

First, we extend the notion of coherent topology slightly. We suppose that
we have a collection of topological spaces {X,} whose union X has no topology.
We seek to find conditions under which there exists a topology on X, of which
the X, are subspaces, such that this topology is coherent with the subspaces X,.

{ }Lemma 37.3. Let X be a set which is the union of the topological spaces
X,

(a) If there is a topological space X; having X as its underlying set, and
each X, is a subspace of X, then X has a topology, of which the X, are sub-
spaces, that is coherent with the X,. This topology is in general finer than the
topology of X;.

(b) If for each pair o, B of indices, the set X, N X, is closed in both X, and
X, and inherits the same subspace topology from each of them, then X has
a topology coherent with the subspaces X,. Each X, is a closed set in this
topology.

211
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Proof. (a) Let us define a topological space X whose underlying set is X
by declaring a set A to be closed in X if and only if its intersection with each X,
is a closed set of X,. The collection of such sets contains arbitrary intersections
and finite unions of its elements, so it does define a topology on the set X.

If A is closed in X7, then because X, is a subspace of X;, the set 4 N X, is
closed in X, for each «. It follows that A is closed in X. Thus the topology of
X, is finer than that of X.

We show that each X, is a subspace of X; it then follows from its defini-
tion that X, is coherent with the subspaces X,. For this purpose, we show that
the collection of closed sets of X, equals the collection of sets of the form 4 N
X,, where A is closed in X.. First, note that if 4 is closed in X, then 4 N X, is
closed in X, by definition of X,.. Conversely, suppose B is closed in X,. Because
X, is a subspace of X, we have B = 4 N X, for some set A4 closed in X;. Be-
cause the topology of X, is finer than that of X, the set A is also closed in X.
Thus B = 4 N X, for some A closed in X, as desired.

(b) As before, we define a topology X on the set X by declaring 4 to be
closed in X if 4 N X, is closed in X, for each a.

We show that each X, is a subspace of X; it then follows immediately that
X is coherent with the subspaces X,. As before, we show that the collection of
closed sets of X, equals the collection of sets of the form 4 N X, where A is
closed in X.. First, if A4 is closed in X, then 4 N X, is closed in X, by defini-
tion of X.. Conversely, suppose B is a closed set of X,. Let § be any index.
Because X, N Xj is a closed set in X, the set

BNX,=BN (X, N X,)

is a closed set of X,. Because X, N X; is a subspace of X, it is also a closed set
in X, N X;; because X, N Xj is a closed subspace of Xj, it is a closed set in Xj,.
Since 8 is arbitrary, B is by definition a closed set of X.. Thus B= B N X,
where B is closed in X, as desired.

Incidentally, we have shown that every closed set of X, is also closed in X,.
In particular, X, is itself closed in X.. 0O

Example 1. Let K be a complex in E’. Since E’ is a space, |K| has a topology in-
herited from E’; each simplex ¢ of K is a subspace in this topology. By (a) of the
preceding theorem, |K| has a topology coherent with the subspaces ¢, which is in
general finer than the topology |K| inherits from E’. This is a fact we proved di-
rectly in §2.

Suppose X is a space whose topology is coherent with its subspaces X,. In
general, even if each of the spaces X, has nice separation properties, X need not
have these properties. In the special case of a countable union of closed sub-
spaces, however, one can prove the following.

Theorem 37.4. Let X be a space that is the countable union of certain
closed subspaces X,. Suppose the topology of X is coherent with the spaces X,.
Then if each X; is normal, so is X.
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Proof. If pis a point of X, then {p} N X is closed in X; for each i, so {p} is
closed in X. Thus X is a T,-space.

Let A and B be disjoint closed sets in X. Define Y, = 4 U B, and for
n > 0, define

Y,=X,U.--UX,UAUB.

We define a continuous function f, : ¥, — I by letting f, equal 0 on 4 and 1 on
B. In general, suppose we are given a continuous function f, : Y, — I. The space
X, . isnormaland Y, N X, . , is closed in X, . ,; we use the Tietze theorem to
extend the function £,| (¥, N X, . ,) toa continuous function g: X, ., , — I. Be-
cause Y, and X, ., are closed subsets of Y, . ,, the functions f, and g com-
bine to define a continuous function f, . ,: Y, , , — I that extends f,. The func-
tions £, in turn combine to define a function f : X — I that equals 0 on 4 and 1
on B. Because X has the topology coherent with the subspaces X,, the map fis
continuous. O

EXERCISES

1. Let X be a set which is the union of the topological spaces {X,}. Suppose that

each set X, N X, inherits the same topology from each of X, and X;.

(a) Show that if X, N X, is open in both X, and X}, for each pair «,8, then
there is a topology on X of which the X, are subspaces.

(b) Show that in general there is no topology on X of which each X is a sub-
space. {Hint: Let A4, B, and C be three disjoint subsets of R, each of which
is dense in R. Let 4, B, X, =R — A4, and X, = R — B be topologized as
subspaces of R; let X; = 4 U B be topologized as the topological sum of 4
and B. Let X = X, U X, U X,. Compute A.]

2. Recall that if J = Z, we denote the space E’ by R=. Each space R* X 0 is a
subspace of R®. Show that the function f : R* — R given by

«©

f@) = Yix

i=1

is not continuous in the usual (metric) topology of R®, but is continuous in the
topology coherent with the subspaces R* X 0.

3. Let X be a space. Let X, denote the set X in the topology coherent with the

collection of compact subspaces of X.

(a) Show that a subset B of X is compact in the topology it inherits from X if
and only if it is compact in the topology it inherits from X.. [Hinz: Show
also that these two distinct subspace topologies on the set B are in fact the
same topology.

(b) A space is said to be compactly generated if its topology is coherent with
the collection of its compact subspaces. Show that X, is compactly gener-
ated. Conclude that (X)c = Xc.

(c) Show that inclusion X — X induces an isomorphism in singular homology.
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(d) In general, let X X Y denote the compactly generated topology (X X Y).
derived from X X Y. Show that if K and L are complexes, then the topol-
ogy of [K| X L] is coherent with the subspaces ¢ X 7, forc € K and 7
L. Compare Exercise 6 of §20. [Hint: If D C X X Y is compact, then
DC AXBCXXY,where 4 and B are compact.}

4. Show that Theorem 37.4 does not hold for uncountable collections. [Hint: Let
X be an uncountable well-ordered set with a smallest element 0 and a largest
element ©, such that [0,a] is countable for each « < Q. Then [0,2) X [0,0] is
not normal. See {Mu], p. 201, or [K], p. 131.]

§38. CW COMPLEXES

We have stated that one of the advantages of simplicial homology theory is its
effective computability. But in fact this statement is somewhat misleading. The
amount of labor involved in a straightforward calculation in all but the simplest
cases is too large to carry out in practice. Even when we calculated the homol-
ogy of such simple spaces as the torus and the Klein bottle, in §6, we did not
proceed straightforwardly. Instead, we used geometric arguments (of a rather
ad hoc nature) to reduce the computations to simpler ones.

We now refine these ad hoc techniques into a systematic method for comput-
ing homology groups. This method will apply not only to simplicial homology,
but to singular homology as well. We introduce in this section a notion of com-
plex more general than that of simplicial complex. It was invented by J. H. C.
Whitehead, and is called a “CW complex.” In the next section, we show how to
assign to each CW complex a certain chain complex, called its “cellular chain
complex,” which can be used to compute the homology of the underlying space.
This chain complex is much simpler and easier to deal with than the singular or
simplicial chain complexes. In a final section, we apply these methods to com-
pute, among other things, the homology of real and complex projective spaces.

Definition. Recall that a space is called a cell of dimension m if it is homeo-
morphic with B™. It is called an open cell of dimension m if it is homeomorphic
with Int B™. In each case the integer m is uniquely determined by the space in
question.

Definition. A CW complex is a space X and a collection of disjoint open
cells e, whose union is X such that:

(1) X is Hausdorff.

(2) For each open m-cell e, of the collection, there exists a continuous map
f.: B™— X that maps Int B” homeomorphically onto e, and carries
Bd B™ into a finite union of open cells, each of dimension less than m.

(3) A set Ais closed in X if 4 N &, is closed in €, for each a.

The finiteness part of condition (2) was called “closure-finiteness” by
J. H. C. Whitehead. Condition (3) expresses the fact that X has what he called
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the “weak topology” relative to the collection {2,}. These terms are the origin of
the letters C and W in the phrase “CW complex.”

We commonly denote €, — e, by é,. We remark that conditions (1) and (2)
imply that f, carries B™ onto é, and Bd B” onto ¢,: Because f, is continuous, it
carries B™, which is the closure of Int B™, into the closure of £, (Int B™), which
is &,. Because f,(B™) is compact, it is closed (since X is Hausdorff); because it
contains e,, it must contain &,. Thusf,(B™) = é,. Finally, because f,(Bd B™) is
disjoint from e,, it must equal e,.

We remark also that the converse of (3) holds trivially; if A4 is closed in X,
then 4 N &, is closed in &, for each a.

The map f, is called a “characteristic map” for the open cell e,. Note that
the maps f, are not uniquely specified in the definition of a CW complex. Only
the space X and the collection |e,} are specified. We customarily abuse notation
and use the symbol X to refer both to the CW complex and to the underly-
ing space.

A finite CW complex X is a CW complex for which the collection of open
cells is finite. If X has only finitely many open cells, then the finiteness part of
(2) is automatic, and condition (3) is implied by the other conditions: If the set
A N g is closed in &, it is closed in X; then since A is a finite union of such sets,
A is also closed in X.

A finite CW complex is of course compact. Conversely, any compact subset
A of a CW complex X can intersect only finitely many open cells of X; we leave
the proof to the exercises. One needs the finiteness part of condition (2) in
the proof.

The following lemma is an immediate consequence of our general results
about coherent topologies (see §20).

Lemma 38.1. Let X be a CW complex with open cells e,. A function
f:X— Y is continuous if and only if f| &, is continuous for each o.. A func-
tion F: X X I—Y is continuous if and only if F|(&, X I) is continuous for
eacha. O

Example 1. Consider the torus as a quotient space of a rectangle, as usual. See
Figure 38.1. We can express T as a CW complex having 2 single open 2-cell (the
image under = of the interior of the rectangle), two open 1-cells (the images of
the open edges), and one O-cell (the image of the vertices). Conditions (1)—(3) hold
at once.

v A
B4 g ——
T
v A v

Figure 38.1



216 Singuiar Homology Theory Chapter 4

Similarly, one can express the Klein bottle as a CW complex having the same
number of cells in each dimension as the torus. The projective plane can be ex-
pressed as a CW complex having one open cell in each dimension 0, 1, 2.

More generally, the discussion in the exercises of §6 shows how one can express
the n-fold connected sum T # - - . # T (or P*# - - . # P? respectively) as a CW
complex having one open cell in dimension 2, one cell in dimension 0, and 27 (or n,
respectively) open cells in dimension 1.

Similarly, the k-fold dunce cap can be expressed as a CW complex with one
open cell in each dimension 0, 1, 2.

Example 2. The quotient space formed from B” by collapsing Bd B" to a point is
homeomorphic to S*. (We leave the proof to you.) Therefore, S” can be expressed as

a CW complex having one open n-cell and one O-cell, and ro other cells at all. See
Figure 38.2.

Figure 38.2

Example 3. Condition (2) does not require that f,(Bd B™) = e, equal the union of
a collection of open cells of lower dimension. For example, the space X pictured in
Figure 38.3 is a CW complex having one open cell in each dimension 0, 1, 2; if e, is
the open 2-cell, then &, lies in, but does not equal, the union of open cells of lower
dimensions.

Example 4. 1et K and L be simplicial complexes; suppose X is locally finite. The
space X = |K| X |L| can be expressed as a CW complex by taking the sets (Int ¢) X
(Int 1) as its cells, for ¢ € K and r € L. In this case the characteristic maps

f,:B"—aoXT

can be taken to be homeomorphisms. Furthermore, in this case Bd (¢ X 1) equals a
union of open cells of lower dimension. Condition (3) is a consequence of Exercise 6
of §20; it depends on the local finiteness of K. Thus |K| X |L| is a special kind of
CW complex. We give the formal definition now.

A CW complex X for which the maps f, can be taken to be homeomorphisms,
and for which each set €, equals the union of finitely many open cells of X, is called
a regular cell complex. A regular cell complex X can always be triangulated so each
closed cell of X is the polytope of a subcomplex. The proof is similar to the one we
gave for |K| X I.

Example 5. Many of the constructions used in topology for forming new spaces
from old ones, when applied to CW complexes, give rise to CW complexes. The
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Figure 38.3

product X X Y of two CW complexes, for instance, is a CW complex, provided Y'is
locally compact. Similarly, adjunction spaces can often be made into CW com-
plexes. If A4 is a subcomplex of X, a cellular map f: A— Y is a map carrying each
p-cell of A into the union of the open celis of ¥ of dimension at most p. In this case,
one can show that the adjunction space X U Y is a CW complex.

Definition. Let X be a CW complex. Let Y be a subspace of X that equals
a union of open cells of X. Suppose that for each open cell e, of X contained in
Y, its closure is also contained in Y. Then we shall show that Y'is a closed set in
X, and that Yis a CW complex in its own right. It is called a subcomplex of X.
In particular, the subspace X” of X that is the union of the open celis of X of
dimension at most p satisfies these conditions. It is thus a subcomplex of X,
which is called the p-skeleton of X.

Clearly, Y is Hausdorff. If ¢, is an open m-cell of X contained in Y, then its
characteristic map £, : B™ — X carries B™ onto &,, which is contained in Y by
hypothesis. The open cells of X that intersect f,(Bd B™) = e, must lie in Y;
thus f, carries Bd B” into the union of finitely many open cells of Y. It only
remains to show that ¥ has the topology specified by (3).

Let B C Y; suppose B N &, is closed in &, for eache_containedin Y. If ¢; is
a cell of X not contained in Y, then ¢; is disjoint from Y. Hence Y N &, C ¢&,, so
Y N &; lies in the union of finitely many open cells of Y, say ¢,,. . .,e,. Then

BNé=[BNE)U.--UBNE)]NE.

By hypothesis, B M &; is closed in &; and hence in X. Therefore, B N & is closed
in X, and in particular is closed in &;. Since g is arbitrary, it follows that B is
closed in X, and in particular, is closed in Y, as desired.

It follows that ¥ has the topology specified by condition (3). It also fol-
lows that if Bis closed in Y, then B is closed in X. In particular, Y itself is closed
in X.

The finiteness part of condition (2) is crucial for what we have just proved,
as the following example shows.

Example 6. Let X be a 2-simplex ¢ in the plane, in its usual topology. Break X up
into a single open 2-cell Int ¢, and infinitely many open 1-cells and O-cells, as indi-
cated in Figure 38.4. Then X satisfies all the conditions for a CW complex except

217
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the finiteness part of (2). (Condition (3) is trivial, since the closure of Int o equals
X.) Let Y be the union of the 1-cells and 0-cells of X, topologized by declaring C to
be closed in Y'if C N &, is closed in &, for each 1-cell and O-cell e,. Then Y is a CW

complex, but it is not a subspace of X. For the subspace Bd & of X is compact, and ¥
is not.

Figure 38.4

Definition. If 2 CW complex X can be triangulated by a complex X in
such a way that each skeleton X” of X is triangulated by a subcomplex of X of
dimension at most p, then we say that X is a triangulable CW complex.’

Each of the CW complexes mentioned in the earlier examples is a triangu-
lable CW complex. We now give an example of one that is not. The proof uses
results about local homology groups from §35.

Example 7. Let A be a subspace of R that is the union of a square and a trian-
gle, such that one of the edges of the triangle coincides with the diagonal D of the
square. See Figure 38.5. Then A is the space of a complex consisting of three trian-
gles with an edge in common. Now draw a wiggly 1-cell C in the square, intersect-
ing the diagonal in an infinite, totally disconnected set. (An x sin(1/x) curve will
do.) Take the 3-ball B* and attach it to 4 by a map f : Bd B> — C that maps each
great circle arc in S? from the south pole to the north pole homeomorphically onto
the I-cell C. The resulting adjunction space X is easily seen to be a CW complex;
one takes the open simplices of 4 as the open cells of dimensions 0, 1, and 2, and
Int B3 as the open 3-cell ¢,. We show that the space X cannot be triangulated; hence
in particular, it is not triangulable as a CW complex.
Suppose ki : |K| — X is a triangulation. First we write X as the disjoint union

X=(A—-C)UCUe,

Now if x € e,, then H,(X,X — x) is infinite cyclic, because x has a neighbor-
hood homeomorphic to an open 3-ball. On the other hand, if x € 4 — C, then
H,(X,X — x) vanishes, because x has a neighborhood lying entirely in the 2-
dimensional complex 4. (See Lemma 35.6.) It follows from Lemma 35.2 that if
¢ is a simplex of X, then % (Int ¢) cannot intersect both 4 — C and e,. It follows that
k(o) lies either in A4 or in &,. Thus 4 and &, are triangulated by %, and thus so is
ANg=_C.

*The dimensional condition is in fact redundant. See Exercise 2.
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Figure 38.5

On the other hand, similar reasoning shows that D is triangulated by A:
Consider the local homology groups H;(A4,4 — x) of A. At each point x interior
to D, H,(A,A— x) =Z®Z. (For A can be expressed as a cone with vertex x
and base homeomorphic to a “f curve”; by the long exact homology se-
quence, Hy(A4,4 — x) == H,(6) = Z® Z.) At each point x of 4 not in D, either
H,(A,A — x) = Z (if x is interior to one of the triangles) or H,(4,4 — x) = 0.
We conclude that if #(Int o) intersects the interior of D, then it lies in D. Then D is
triangulated by A.

It follows that C N D is triangulated by A. This is impossible, since C N D has
infinitely many components and X is a finite complex.

It is often helpful to view a CW complex as a space built up from a collec-
tion of closed balls by forming appropriate quotient spaces, or to construct a
CW complex in this way, as we did in the preceding example. The following two
theorems show how this is done.

The dimension of a CW complex X is the largest dimension of a cell of X, if
such exists; otherwise it is said to be infinite.

Theorem 38.2. (a) Suppose X is a CW complex of dimension p. Then X
is homeomorphic to an adjunction space formed from X* - ' and a topological
sum Z B, of closed p-balls, by means of a continuous map g:ZBd B, — X? ~ !,
It follows that X is normal.

(b) Conversely, let Y be a CW complex of dimension at most p — 1, let
Z B, be a topological sum of closed p-balls, and let g:Z Bd B, — Y be a con-
tinuous map. Then the adjunction space X formed from Y and Z B, by means
of g is a CW complex, and Y is its p — 1 skeleton.

Proof. (a) For each cell e, of X of dimension p, one is given the charac-
teristic map f,: B —¢,. Let B, = B? X {a}, and let Z B, be the topological
sum of these disjoint p-balls. Form the topological sum

E=Xr"'U (ZB),
and define = : E — X by letting = equal inclusion on X? ~! and the composite

B =B Xl — B 5= x

on B,. To prove (a), it will suffice to show that = is a quotient map.
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Obviously = is continuous and surjective. Suppose C is a subset of X and
77 1(C) is closed in E. Then:

Q) = (C)NXP~"'=CNXP~'isclosed in X? ~ 1.
(2) #7'(C) N B, is closed in B, for each a.

The first condition implies that C N &; is closed in & whenever dim e; < p.
Since B, is compact and = is continuous, the second condition implies that
x(x~'(C) N B,) = C N &, is compact. Since X is Hausdorff, C N &, is closed
in X and hence closed in &,, whenever dim e, = p. Thus C is closed in X, so = is
a quotient map, as desired.

Normality of X follows from Theorem 37.2; one proceeds by induction
on p.

(b) Let f: Y U (Z B,) — X be the hypothesized quotient map. Now Y is
normal, by part (a), and = B, is normal. It follows from Theorem 37.2 that X is
normal (and in particular, Hausdorff). As usual, we consider Y to be a sub-
space of the adjunction space X; then f equals inclusion on Y, and f equals g on
Z Bd B,. We define the open cells of X to be the cells {e,} of ¥ (having dimen-
sion less than p), and the cells ¢, = f(Int B,), (having dimension p). Since
Int B_ is open in the topological sum ¥ U (Z B,), and it is saturated relative to
f, the restriction of f to Int B, is a quotient map. Being one-to-one, it is a ho-
meomorphism. Thus f maps Int B, homeomorphically onto e,, so e, is an open
p-cell, as desired.

We check condition (2) for a CW complex. We have already noted that the
map f, = f|B, maps Int B, homeomorphically onto the set e,. By construction,
f, maps Bd B, into Y, which is the union of cells of dimension less than p.
Because Bd B, is compact, the set f(Bd B,) is 2 compact subset of Y; because ¥
is a CW complex, it intersects only finitely many open cells of ¥. Thus condi-
tion (2) is satisfied.

Condition (3) follows readily. Suppose Cis a subset of Xand C N ¢, is closed
in &, for each open cell e,. We show f~!(C) is closed in ¥ U (Z B,); from this
it follows that C is closed in X.

First note that f*(C) N ¥ = C N Y; because C N &; is closed in &, for
each cell of dimension less than p, C N Y is closed in Y. Similarly,

SO NB,=fCNE)NB,.

We use here the fact that f(B,) = &,. Now C N &, is closed in &, by hypothesis,
and hence closed in X. We apply continuity of f to see that f ~'(C N g,) N B, is
closed in B,. Thus £ ~'(C) is closed, as desired. O

Theorem 38.3. (a) Let X be a CW complex. Then X? is a closed subspace
of X?*' for each p, and X is the coherent union of the spaces X°C
X' C . . .. It follows that X is normal.

(b) Conversely, suppose X, is a CW complex for each p, and X, equals the
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p-skeleton of X, , , for each p. If X is the coherent union of the spaces X, then
X is a CW complex having X, as its p-skeleton.

Proof. (a) Suppose C N X7 is closed in X? for each p. Then C N e, is
closed in &, for each cell ¢, of dimension at most p. Since p is arbitrary, we con-
clude that C is closed in X. Thus X has the topology coherent with the subspaces
X*. Normality follows from Theorem 37.4.

(b) If p < g, then X, N X, = X, is a closed subspace of both X, and X,.
Therefore by (b) of Lemma 37.3, there is a topology on X coherent with the
subspaces X, and each X, is closed in X. By the preceding theorem, each space
X, is normal; therefore, by Theorem 37.4, X is normal (and in particular, Haus-
dorff). Condition (2) for a CW complex is trivial. We check condition (3).
Suppose C N &, is closed in &, for each cell e,. Then C N X, is closed in X, be-
cause X, is a CW complex. Then C is closed in X because the topology of X is
coherent with the spaces X,. [

Sometimes one begins with a space X and seeks to give it the structure of
CW complex. This we did in Examples 1-3. On the other hand, sometimes one
seeks to construct new spaces that are CW complexes by the process of pasting
balls together. This is what we did in Example 7. The general construction is
described in the two theorems we just proved. This construction significantly
enlarges the class of spaces about which algebraic topology has something
interesting to say.

EXERCISES

1. Let X be a CW complex; let 4 be a compact subset of X.
(a) Show that A intersects only finitely many open cells of X. Where do you
use “closure-finiteness” in the proof?
(b) Show that A lies in a finite subcomplex of X.

2. Let X be a CW complex. Suppose k:|K|— X is a triangulation of X that
induces a triangulation of each skeleton X?.
(2) Show that h induces a triangulation of each set &,.
(b) Show that if K, is the subcomplex of K triangulating X?, then K, has di-
mension at most p. [Hint: Use local homology groups.]

3. Let X be a CW complex. Show that the topology of X is compactly generated.
(See Exercise 3 of §37.)

4. Let X and Y be CW complexes. Then X X Y is the union of open cells e, X e,
for e, a cell of X and ¢; a cell of Y.
(a) Show that if ¥ is locally compact, then X X Y is a CW complex.
(b) Show that X XY is a CW complex in general. (See Exercise 3 of §37.)

5. Verify that a regular cell complex can be triangulated so that each closed cell is
the polytope of a subcomplex.
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§39. THE HOMOLOGY OF CW COMPLEXES

We now show how to compute the singular homology of a CW complex.

Throughout this section, X will denote a CW complex with open cells e,
and characteristic maps f,. The symbol H, will denote singular homology in
general, but if it happens that X'is a triangulable CW complex, then H, can also
be taken to denote simplicial homology, since there is a natural isomorphism
between singular and simplicial theory.

Definition. If X is a CW complex, let
D,(X) = H,(X?,.X?"").
Let ¢: D,(X) — D,_ ,(X) be defined to be the composite

F) .
Hp(Xp7XP- l) _?’Hp— l(XP- l) l!'Hp- I(Xp- er’- 2),

where j is inclusion. The fact that * = O follows from the fact that

j a
H_- 22y x-S E -y

is exact. The chain complex D(X) = {D,(X),d} is called the cellular chain com-
plex of X.

Example 1. Consider the case where X is the space of a simplicial complex K, and
the open cells of X are the open simplices of K. Let H, denote ordinary simplicial
homology. We compute H,(X?,X*~'). The simplicial chain group C,(K”,K? " ")
vanishes if i # p, and it equals the chain group C,(K") = C,(X) when i = p.
Therefore,

H,(X*,.X?~ ") = H,(K",K?"") = C,(K).

Furthermore, the boundary operator in the cellular chain complex is just the ordi-
nary simplicial boundary operator of K. It follows that in this case at least, the cel-
lular chain complex can be used to compute the homology of X.

Our goal is to prove in general that if X'isa CW complex, the cellular chain
complex D(X) behaves very much like the simplicial chain complex @(X). In
particular, we show that the group D, (X) is free abelian with a basis consist-
ing of, roughly speaking, the oriented p-cells. And we show the chain complex
D(X) can be used to compute the singular homology of X.

We begin with a sequence of lemmas.

Lemma 39.1. Given an open p-cell e, of X, any characteristic map for e,,
o1 (B8P — (@ne),

induces an isomorphism in relative homology.
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BP

Figure 39.1

Proof. If p =0, the result is trivial. Let p > 0. The point 0 is the center
of B?; let &, denote f,(0). Note that because f, is a quotient map, so is its
restriction

fo: (BT =0)— (@, —¢)

to the saturated open set B — 0. Now S? ~ ! is a deformation retract of B? — 0;
this deformation retraction induces, via the quotient map

fIX i (BP—0) X I— @, — &) X I,

a deformation retraction of & — &, onto é,. See Figure 39.1.

It follows that the horizontal inclusion maps on the left side of the following
diagram,

(B?,S?~ 'y — (B?,B* — 0) — (Int B’,Int B> — 0)
|~ | % |
(éa’éa) - (éanéa - éa) - (eavea - éa)
induce isomorphisms in homology, by Theorem 30.8. Since the horizontal inclu-
sion maps on the right side of the diagram are excision maps, they also induce
homology isomorphisms. (On the top line, one excises S* ~ *; on the second line,
one excises e,.) Now the map f, : Int B — e, is a homeomorphism that carries

0 to &,. Therefore, the vertical map f, at the right of the diagram induces a ho-
mology isomorphism. Our result follows. O

Lemma 39.2. Let the map
f:XP"'UZB, —X?

express X" as the adjunction space obtained from X* - ' and a topological sum

of p-balls= B,viaamap g:=S,— X* "', where S, = Bd B,. Then f induces a
homology isomorphism

H,(ZB,=S,) = H.(X*X""").

223
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Proof. The proof is similar to that of the preceding lemma. The restric-
tion f* of f to the space

Xr~1UZ(B, - 0,),

where 0, is the center of B, is a quotient map. Furthermore, there is a deforma-
tion retraction of this space onto X7~ ' U £ S,. This deformation induces, via
the quotient map f’ X i;, a deformation retraction of X? — U &, onto X? !,
where &, = f(0,). One has the following diagram:

ZB,zS,) —»(ZB,,Z(B,—0,)) — (ZInt B_,=((Int B,) — 0_))
I l/ l/
(Xp’Xp- l) - (Xp,Xp - U éc) — (U €4y U (ea - éa))

The map f on the right is a homeomorphism, being a one-to-one quotient map.
The horizontal maps are inclusions, and they induce homology isomorphisms
for the same reasons as before. [

Theorem 39.3. The group H.(X?,X? ') vanishes for i # p, and is free
abelian for i = p. If ~v generates H,(B*,S” '), then the elements (f,),(v)
Jorm a basis for H,(X?,X? ~'), as f, ranges over a set of characteristic maps
Jor the p-cells of X.

Proof. The preceding lemma tells us that
H,X*X*"'Y= H/(ZB,ZS,),

where 2 B, is a topological sum of p-balls and S, = Bd B,. Because the sets
B, are disjoint open sets in T B,, this group is isomorphic to the direct sum
® H,(B,,S,). The theorem follows. O

Definition. Given a triple X D 4 D B of spaces, one has a short exact se-
quence of chain complexes

0 S _S,(X)_ 5,x)
S,(B) S,B) S,(4)

It gives rise to the following sequence, which is called the exact homology
sequence of a triple:

-—H(A4,B)— H(X,B)—> H,(X,A) — H,_,(4,B)— - - -.

This sequence was mentioned earlier in the exercises. As usual, a continu-
ous map f : (X,4,B) — (Y,C,D) induces a homomorphism of the correspond-
ing exact homology sequences.

In the case (X, 4,B) = (X?,X? "', X?"?), the boundary operator 9, in the
above sequence equals the boundary operator ¢ of the cellular chain complex
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D(X). This follows from the fact that §, commutes with the homomorphism j,
induced by inclusion:

d
—H,(X*X*" )= H,_,(X*"',2) —

|

_’Hp(vaXp- l) ——‘Hy— I(XP— 19XP - 2) -

Using this fact, we now prove that the cellular chain complex of X can be
used to compute the homology of X. For later purposes, we are going to prove
this theorem in a somewhat more general form. We shall assume that we have a
space X that is written as the union of a sequence of subspaces

XoCXlCXzC"'.

Then we form the chain complex whose p-dimensional chain group is
H,(X,,X, _,) and whose boundary operator is the boundary homomorphism in
the exact sequence of the triple (X,,X, _,,X, _,). We shall show that under
suitable hypotheses (which are satisfied in the case of a CW complex) this
chain complex gives the homology of X.

Definition. If X is a space, a filtration of X is a sequence X, C X, C - - -
of subspaces of X whose union is X. A space X together with a filtration of X
is called a filtered space. If X and Y are filtered spaces, a continuous map
S :X— Y such that f(X,) C Y, for all p is said to be filtration-preserving.

Theorem 39.4. Let X be filtered by the subspaces X, C X, C - - - ; let
X; = @ fori <O0. Assume that H(X,,X, _,) = 0 for i # p. Suppose also that
given any compact set Cin X, there is an n such that C C X,. Let D(X) be the
chain complex defined by setting D,(X) = H,(X,,X, _,) and letting the bound-
ary operator be the boundary homomorphism 9, in the exact sequence of a
triple. Then there is an isomorphism

\: H (D(X)) — H,(X).

It is natural with respect to homomorphisms induced by filtration-preserving
continuous maps.

Proof. As motivation for the proof, let us consider the situation of Exam-
ple 1, where X, is the p-skeleton K'» of a simplicial complex and H, denotes
simplicial homology. Then D(X) = @(K) in this case, and the theorem holds.
It is also true in this case that

Hy(K) = Hy(K** ,K~%),

because only chains of dimensions p + 1, p, and p — 1 are used in defining
H,(K). We shall show in Steps 1 and 2 that an analogous result holds in the
present situation.
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Step 1. We show that the homomorphism
it : Hp(Xp + l) - Hp(X)

induced by inclusion is an isomorphism. For this purpose, we first note that the
homomorphisms

Hp(Xp+l)-_’Hp(Xp+2)-_'HP(XP"‘:’)—' T

induced by inclusion are isomorphisms. This follows by examining the exact
sequence

Hp+l(Xp+i+lep+i)-_'Hp(Xp-l»i)-_’Hp(Xp+i+l)-_’Hp(Xp+i+bXp+i)

and noting that both end groups vanish if i = 1, by hypothesis.
Our result now follows from the compact support properties of homology.
To show that i, is surjective, let 8 be an element of H,(X). Choose a compact
set C in X such that 8 is in the image of H,(C) — H,(X) under the homomor-
phism induced by inclusion. Since C is compact, C C X, , , for some k. Then 8
is the image of an element of H,(X, ., ,) in the diagram
Hp(Xp + l) - Hp(Xp + k) - Hp(X)'

Because the first of these homomorphisms is an isomorphism, 8 is the image of
an element of H,(X, . ;), as desired.

To show that i, has kernel 0, suppose 8 € H,(X,.,) maps to zero in
H,(X). There is a compact set C such that 8 maps to zero in H,(C). Again, C
lies in X, , , for some k. Then

Hp(Xp+ l) -_’Hp(Xp-l»k)

carries 8 to zero; because this map is an isomorphism, 8 = 0.

Step 2. We show that the homomorphism
jt : Hp(Xp+ I) - Hp(Xp + th - 2)

induced by inclusion is an isomorphism.
This result will follow once we show that the homomorphisms

Hp(Xp+ 1» Q) - Hp(Xp + I:Xo) e e -_’Hp(Xp + I:Xp - 2)

induced by inclusion are isomorphisms. To prove this fact, consider the exact
sequence of the triple (X, , ,,X;,X; _,):

Hp(Xiin - l) - Hp(Xp + lei - I) - Hp(Xp + I!Xi) - Hp - l(Xi!Xi - l)’

Both end groups vanish for i < p — 2, by hypothesis; therefore, the middle
homomorphism is an isomorphism.

Step 3. We now prove the theorem. Given a quadruple XD A D BD C
of spaces, one has four “exact sequences of a triple” associated with this qua-
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druple. They are most conveniently arranged in the form of four overlapping
sine curves. We shall consider the special case

(X,4,B,C) = (X, . 1, X,, X, _ 1, X, _ ).

In this case, the groups in the upper left and right corners of the diagram,
H,(B,C) and H,(X,A), vanish, by hypothesis.

TN TN

0= H,(B,C) H,(X,C) H,(X,4) =0
I/ \ /
H,(4,C) H,(X,B)
a; y / \
Hp-l-!(X’A)/ a Hp(A9B) al Hp—l(B’C)A
N~ N~

Now k, carries H,(4,C) isomorphically onto ker d,. Furthermore, the
map I, o k. carries ker 9, onto H,(X,C) (because I, is surjective); its kernel
is just im 4, (because the kernel of I, equals im 7). Thus /, o k7' induces an
isomorphism

ker g,

im a* =H’(X,C) = H'(X’+|,X’-2).

(A more general result concerning this diagram was given in Exercise 1 of §26.)
Combining this result with those of Steps 1 and 2, we obtain our desired
isomorphism

H,(X) = Hy(X, ) & Hy (X, 4 1, X, ;) = X0
im d,
The latter group equals H,(D(X)).
Naturality of the isomorphism is easy to check. If f: X — Y preserves fil-
trations, the first two of the preceding isomorphisms obviously commute with
[+ Furthermore, f, carries the diagram of Step 3 for X into the correspond-

ing diagram for Y. It follows that the third isomorphism commutes with f, as
well. O

We now prove an addendum to this theorem in the case where X is
triangulable.

Theorem 39.5. Let X be filtered by the subspaces X, C X, C - - - ; sup-
pose that X is the space of a simplicial complex K, and each subspace X, is the
space of a subcomplex of K of dimension at most p. Let H; denote simplicial
homology. Suppose H,(X,,X,_,) = 0 for i # p. Then H,(X,,X, _,) equals a
subgroup of C,(K), and the isomorphism \ of the preceding theorem is in-
duced by inclusion.
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Indeed, H,(X,,X, _,) is the subgroup of C,(K) consisting of all p-chains

of K carried by X, whose boundaries are carried by X, _ .

Proof. Any compact set in X lies in a finite subcomplex of K, so it lies in
X; for some i. Therefore, the hypotheses of the preceding theorem are satisfied.
Since X, contains no p + 1 simplices, the homology group H,(X,,X, . ,) equals
the group of relative p-cycles, which is the kernel of the homomorphism

Cp(Xp) i Cp - I(Xp)
Cp(X -1) Cp—l(Xp—l) ’

Because X, _, contains no p-simplices, the denominator on the left side van-

ishes. Thus H,(X,.X, _,) equals the group of simplicial p-chains of K carried
by X, whose boundaries are carried by X, _ ;.

We must check that the isomorphism A of the preceding theorem is induced
by inclusion. Examining the preceding proof, we see that X is obtained by tak-
ing an element of ker 3, and mapping it into H,(X) according to the following
diagram:

l j i,
H(X, X, .2) = H(X, . X, _2) "2~ H,(X, .,) == H,(X).

= ‘lk*

ker a9,
Since each map is induced by inclusion, our theorem follows. O

We now see how strong the analogy is between the homology of simplicial
complexes and the homology of CW complexes. Let us introduce some termi-
nology that will make the analogy even stronger.

For each open p-cell e, of the CW complex X, the group H,(2,,¢,) is infi-
nite cyclic. The two generators of this group will be called the two orientations
of e,. An oriented p-cell of X is an open p-cell ¢, together with an orientation
of e,.

The cellular chain group D,(X) = H,(X*,X?"') is a free abelian group.
One obtains a basis for it by orienting each open p-cell e, of X and passing to
the corresponding element of H,(X?,X?~'). [That is, by taking the image of
the orientation under the homomorphism induced by inclusion

H,(@,,e,) — H, (X", X"~ 1).]

The homology of the chain complex D(X) is isomorphic, by our theorem, with
the singular homology of X.

In the special case where X is a triangulable CW complex triangulated by a
complex K, and H, denotes simplicial homology, we interpret these comments
as follows: The fact that X? and X? ~! are subcomplexes of K implies that each
open p-cell e_ is a union of open simplices of K, so that &, is the polytope of a
subcomplex of K. The group H,(€,,e,) equals the group of p-chains carried by
&_whose boundaries are carried by e,. This group is infinite cyclic; either gener-
ator of this group is called a fundamental cycle for (¢, e,).
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The cellular chain group D,(X) equals the group of all simplicial p-chains
of X carried by X? whose boundaries are carried by X? ~'. Any such p-chain
can be written uniquely as a finite linear combination of fundamental cycles for
those pairs (€,,e,) for which dime, = p.

Let us interpret these results in some familiar situations.

A €
X
B g
Y8 _
N ei el
% L
A
By £
B
A L
Figure 39.2

Example 2. Let X denote either the torus or the Klein bottle, expressed as a
quotient space of the rectangle L in the usual way. See Figure 39.2.

Then X is a triangulable CW complex, having one open 2-cell e,, two open
1-cells e, and &, (which are the images of 4 and B, respectively), and one 0-cell e,.
Then

D(X)=2Z, D(X)=Z®Z Dy(X)=Z.

Let us find specific generators for these chain groups. The 2-chain d of L that is the
sum of all the 2-simplices of L, oriented counterclockwise, is by inspection a cycle
of (L, Bd L). Because d is a multiple of no other cycle, it is a fundamental cycle for
(L, Bd L). By Lemma 39.1, v = g,(d) is a fundamental cycle for (&,,¢,).

Let ¢, be the sum of the 1-simplices along the top of L, oriented as indicated in
Figure 39.3. Let ¢, ¢,, and ¢, denote chains along the other edges of L, as indicated.
Now.w, = g,(c,) is a2 fundamental cycle for (2,,¢,). So is g,(c,), of course. Simi-
larly, z, = g,(c,) is a fundamental cycle for (&}, €}), as is g,(c,)-

vy 31 173
td > g 7

\ N

L 4

€2  ca
4 p

p—

v2 3 v3

Figure 39.3
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In terms of these basis elements, it is easy to compute the boundary operator in
the cellular chain complex D(X). We first compute d in the complex L as follows:
dc, =v,— v, dc, = v, — Uy,
0d=—c,+ ¢+ ¢;— ¢,

Applying g,, we see that 9w, = g,(d¢,) = 0 and 9z, = g,(dc,) = O for both the to-
rus and the Klein bottle. In the case of the torus, dy = g,(6d) = 0 because
g(c)) = g,(c,) and gy(c;) = g,(c,). In the case of the Klein bottle,
dy = g,(8d) = 2g,(c,) = 2z,
because gy(c,) = g4(¢,) and gy(c;) = —g,(c)-
Thus the homology of the cellular chain complex D(X) when X is the torus is
H{(X)=2Z, HX)=Z2Z81Z, H,X)=2Z,
while in the case of the Klein bottle it is
H,(X) =0, HX)=Z81Z/2 HX)=1Z.

Of course, we have carried out these same computations before. But now their
justification comes from our general theorems about CW complexes, rather than
from the ad hoc arguments we used back in §6. It is in this sense that our results

about CW complexes make systematic the ad hoc computational methods we stud-
ied there.

Example 3. Let S” be an n-sphere. Assume n > 1 for convenience. We can make
S* into a CW complex having one open cell in dimension # and one cell in dimen-
sion 0. It follows that the cellular chain complex of S” is infinite cyclic in dimen-
sions n and O, and vanishes otherwise. Therefore, H,(S") = Z and H,(S*) = Z,
while H;(S") = O for i # 0, n. A similar computation applies when n = 1.

EXERCISES
1. Recompute the homology of the n-fold connected sums
T#...#T and Pig...uxp?

by expressing them as triangulable CW complexes and finding the correspond-
ing cellular chain complexes.

2. Let A4 be a closed subset of X; suppose A is a deformation retract of an open set

in X. If X/A is the space obtained by collapsing A to a point, show that
H,(X.4) = H,(X/ A4).
[Hint: Examine the proof of Lemma 39.1.]

3. Let X be a CW complex; let 4 be a subcomplex. Show that inclusion induces
a monomorphism D,(4) — D,(X). The quotient D,(X)/D,(4) is denoted
D,(X,A4).

(a) Show that if X is a triangulable CW complex, D(X,4) can be used to com-
pute the simplicial homology of (X,A). [Hint: Use the long exact se-
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quences to show that inclusion D,(X,4) — C,(X,4) induces 2 homology
isomorphism.]

(b) Show that in general, D(X, A4) can be used to compute the singular homol-
ogy of (X,A4). [Hint: Show that D(X, A) is isomorphic to the chain com-
plex whose pth chain group is H,(X* U 4, X?~ ' U A) and whose bound-
ary operator comes from the exact sequence of a triple. Let X, = X? U 4
for all integers p. Repeat the proof of Theorem 39.4, replacing H;(X,) by
H(X,,4) and H,(X) by H;(X,A4).]

*4. Theorem. Let @ = {C,,3} be a non-negative free chain complex such that
H,(@) is free and non-trivial. Then there is a CW complex X whose cellular
chain complex is isomorphic to €.

Proof. (a) Show thatif n = 1, given an n-simplex ¢ and 2 homomorphism

¢: H, (s, Bd o) — H,(S",x,),

¢ is the homomorphism induced by some continuous map. (See Exercise 3
of §25.)

(b) Show that if X is a CW complex consisting of a collection of n-spheres
with a point p in common (n > 0), and if a € H,(X,p), there is a map
f:(S",x,) — (X,p) whose induced homomorphism carries a generator of
H, (S",x,) to a.

(c) Show that for p > 0 one can write C, = U, ® Z,, where Z, is the group of
p-cycles, and for p = 0 one can write C, = U, ® 4, where A4 is non-trivial.

(d) Complete the proof.

5. Let G,, G,, ... be a sequence of abelian groups with G, free and non-trivial.
Assuming Exercise 4, show that there is a CW complex X such that H,;(X) =
G; for all i.
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*§40. APPLICATION: PROJECTIVE SPACES
AND LENS SPACES!

We now apply the theory of CW complexes to compute the homology of certain
spaces that are of particular importance in topology and geometry—the projec-
tive spaces. We also study those classical 3-manifolds called the lens spaces.

Definition. Let us introduce an equivalence relation on the n-sphere S* by
defining x ~ —x for each x € S”. The resulting quotient space is called (real)
projective n-space and denoted P”.

The quotient map p : $” — P” is a closed map. For if 4 is closed in S”, then
the saturation p~!(p(A4)) of 4 equals the set 4 U a(A4), where a:S"— S" is
the antipodal map. Because g is a homeomorphism, 4 U a(A4) is closed in S*,
so (by definition of quotient space) the set p(A4) is closed in P”.

Therefore, P” is Hausdorff (in fact, normal).

*The results of this section will be used when we compute the cohomology rings of these
spaces, in §68 and §69.
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If we consider R” to be the set of all real sequences (x,,x,, . ..) such that
x;= Ofori>n,then R" CR** ' Asaresult, S~ ' C S" in fact, S" "' is the
intersection of S* with the plane x, , ; = 0. Now the equivalence relation x ~
—x is the same in S"~! as it is in S*; therefore, P~ ' C P”. In fact, P*~'is
a closed subspace of P". For if C is a subset of P~ ', then p~*(C) is closed in
S"~'if and only if it is closed in S". Hence C is closed in P” ~ ! if and only if it
is closed in P".

Theorem 40.1. The space P" is a CW complex having one cell in each di-
mension 0 < j < n; its j-skeleton is P’.

Proof. The space P° is obtained from the 2-point space S° by identifying
these two points. Thus P° consists of a single point.

We proceed by induction. Suppose we restrict the map p:S" — P" to the
closed upper hemisphere E”, of S". Because S” is compact and P" is Hausdorff,
the map p' = p| E” is a quotient map; and it maps E% onto P" because each
equivalence class {x, —x} contains at least one point of E%. Its restriction to the
open upper hemisphere Int E7 is also a quotient map; being one-to-one, it is a
homeomorphism of Int E%, with P* — P"~'. Thus P" — P" " 'is an open n-cell.
Callit e,.

Now the map p’ carries Bd E5 = S" ' onto P" ™!, which by the induction
hypothesis is the union of finitely many open cells of dimensions less than n.
Thus when we identify E7, with B", the map p’ becomes a characteristic map for
e,. It follows that P" is a CW complex with one open cell in each dimension
O<j=n 0O

Note that P, having one open 1-cell and one 0-cell, is homeomorphic to S".

Definition. Consider the increasing sequence P° C P* C . - - of projec-
tive spaces. Their coherent union is denoted by P, and called infinite-dimen-
sional (real) projective space. It follows from Theorem 38.3(b) that P* isa CW
complex having one open cell in each dimension j = 0; and its n-skeleton is P”.

Now we perform an analogous construction with complex numbers replac-
ing real numbers. Let C” be the space of all complex sequences z = (z,,2,,. . .)
such that z; = O for i > n. Then C" C C**! for all n. There is an obvious
homeomorphism p : C"* ' — R**2, which we call the “realification operator,”
defined by

(24,22, .- ) = (Re z,,Im z,,Re z,,Im z,, . . ),

where Re z; and Im z; are the real and imaginary parts of z;, respectively. Let
us define

lzl = lo @) = [Z(Rez) + (Imz))]* = [2z:2]",

where ; is the complex conjugate of z;. The subspace of C" * ' consisting of all
points z with |z} = 1 is called the complex n-sphere. It corresponds to the sphere
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S * ! under the operator p, so we use the symbol " *! to denote it, whether
we consider it in C"*' or in R¥* 2.

Definition. Let us introduce an equivalence relation in the complex n-
sphere S *! C C"* ! by defining

(ZysevesZga1s0sen ) ~ (AZyy - o AZ 0 050,-4 )

for each complex number A with [\| = 1. The resulting quotient space is called
complex projective n-space and is denoted CP".

The quotient map p:S**'— CP”" is a closed map. For if 4 is a closed
setin S** 1, then p~'p(A) is the image of S* X A4 under the scalar multiplica-
tion map (A,z) — Az. Since this map is continuous and S* X A4 is compact, its
image is compact and therefore closed in $*** . Then p(4) is closed in CP", by
definition.

It follows that CP" is Hausdorff (in fact, normal).

As in the real case, C* C C"*! for all n, so that $*~' C §** . Then,
passing to quotient spaces, we have CP” ! CCP”. In fact, CP" "' is a closed
subspace of CP", by the same argument as before.

Said differently, the elements of CP* are equivalence classes of sequences
(2,,2,, - . .) of complex numbers such that z; = 0 for i > n + 1. If one sequence
in an equivalence class satisfies the equation z, , , = 0, so does every member of
the equivalence class; and the class in question belongs to CP" ~ ', by definition.

Theorem 40.2. The space CP" is a CW complex of dimension 2n. It has
one open cell in each even dimension 2j for 0 < 2j < 2n, and CP’ is its 2j-
skeleton.

Proof. The space CP° is a single point. In general, we show that CP" —
CP" "' is an open 2n-cell, which we denote by e,,. Consider the subset of $***?
consisting of all points z = (z,,...,z,,,,0,...) with z,, , real. Under the op-
erator p, this corresponds to the set of all points of R* ** of the form

(xhyb ... 9xnsymxn + |90’0, .. -)

having euclidean norm 1. This is just the unit sphere S* in R**; it is the
equator of S * . If we further restrict the set by requiring z, , , to be real and
non-negative, then x, , , = 0 and we obtain the upper hemisphere E* of this
equator sphere. The restriction p’ of p to E¥ is of course a quotient map, be-
cause the domain is compact and the range is Hausdorff. The boundary of E*
is the sphere S ~ ! obtained by setting z, , , = 0; the map p’ carries $** = ! onto
CP"~'. We shall show that p’ maps Int E¥ bijectively onto e,, = CP* —
CP""'; then since it is a one-to-one quotient map, it is a2 homeomorphism. It
follows that e,, is an open 2n-cell, and that p’ is a characteristic map for e,,.
The map p' :Int E¥ — e,, is surjective. Given a point of e,, = CP" —
CP""', it equals p(z) for some point z=(2,...,2,41,0,...) of

233
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§¥*1— §%-1 Then |z = 1 and z,,, # 0. Write z,, , = re”, where r > 0.
Let A\ = e~ %; then

Az=(\z,,...,7z,,0,0,...) € Int E*.

Now A\l = 1, so p(Az) = p(z). Thus p(z) € p(Int E*).

The map p' : Int E¥ — e,, is injective. Suppose p(z) = p(w), where z and
ware in Int E?. Then w = Az, so in particular w, , , = Az, . ;. Since w, , , and
z, .+, are real and positive, so is A. Since |A] = 1, we conclude that X = 1. Thus
w =z, as desired. O

We have noted that CP* is a single point. The space CP! is obtained by at-
taching a 2-cell to CP°; therefore, CP! is homeomorphic to S2.

Definition. Consider the increasing sequence of spaces CP® C CP! C
- - .. Their coherent union is denoted CP* and called infinite-dimensional
complex projective space. By Theorem 38.3, it is a CW complex with one cell in
each non-negative even dimension, and CP” is its 2n-skeleton.

The homology of complex projective space is exceedingly easy to compute:

Theorem 40.3. The group H,(CP") is infinite cyclic if. i is even and
0 < i < 2n; it vanishes otherwise. The group H;(CP%) is infinite cyclic if.i is
even and i = 0; it vanishes otherwise.

Proof. The cellular chain group D;(CP") is infinite cyclic if { is even and
0 < i < 2n; otherwise, it vanishes. Therefore, every chain of this chain complex
is a cycle, and no chain bounds. A similar computation applies to CP=. [

The computations for P* require more work. The cellular chain group
D, (P") is infinite cyclic for 0 < k < n; we shall compute the boundary opera-
tor in the cellular chain complex. Since the open k-cell e, of P* equals P* —
P*-1 and e, = P*~', we have D,(P") = H (P, P*~"). Thus we must com-
pute the boundary operator

ds: Hyy ((P** 1, PY) — H (P P* 7).

First, we prove a lemma.

Lemma 40.4. Let p:S"— P" be the quotient map (n = 1). Let j: P"—
(P",P" ") be inclusion. The composite homomorphism
22 b Py 2 B P
is zero if n is even, and multiplication by 2 if n is odd.

Chain-level prodf. We assume that S” is triangulated so that the antipo-
dal map a: S® — S” is simplicial, and that P" is triangulated so that p : $” — P”"
is simplicial. (See Lemma 40.7 following.) We use simplicial homology. Let ¢,
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be a fundamental cycle for (E%,S" ~'). Then p,(c,) is a fundamental cycle for
(P",P"~ '), by Theorem 39.1.
Consider the following chain of S”:

Yo = 6+ (=1)""Tay(c,).
It is a cycle, for its boundary is
37, = 3¢, + (—1)" " 'ay(3c,)
=8¢, + (—1)""13c, = 0.

This equation follows from the fact that a: S" ™' — S” ™! has degree (—1)", so
that a,, mapping the n — 1 cycle group of S" ~ ! to itself, equals multiplication
by (—1)". Furthermore, v, is a multiple of no other cycle of S*, for its restric-
tion to E% is c,, which is a fundamental cycle for (E3,S"~'). Thus v, is a
fundamental cycle for S”.

Finally, we compute

pﬂ(’Yn) = P#(Cn + (_ 1)" - la#(cn))'
Since p o« a = p, we conclude that
P(v.) = 1+ (_1)"_1117#(05)-
Since v, is a fundamental cycle for S” and p,(c,) is a fundamental cycle for
(P, P"~ 1), the lemma follows.

Homology-level proaof. This proof is similar to the preceding one, except
that the computations are carried out on the homology level rather than the chain
level. It may seem more complicated, but the ideas are basically the same.

Step 1. Consider the diagram
ae€ H,(E,,S"™ Y
|
n k* -1 a* -1
H,(S$*)— H,/(§",§"" ") —H,_,(§""")
N Ep
m, l l‘ a, (alS" )*
H,(S"E%)

where i, k, I, m are inclusions and a is the antipodal map. Let « be a generator
of H,(E",S"~"). Consider the element

y=i,(a) + (=" ‘a,i,(a)

of H,(S",S"~ ). We show there is a generator 8 of H,(S") such that k,(8) = «.
First, we show that v = k,(8) for some 8. Note that

3y = 041 (@) + (—1)" " 1(alS" 1), (3,1, ()

because 3, is natural. This homology class vanishes, because (alS"~ '), equals
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multiplication by (— 1)”. By horizontal exactness, there exists some 8 € H,(S™)
such that k,(8) = +.

Second, we show that 8 generates H,(S"). Now m, is an isomorphism, by
the long exact reduced homology sequence. (Recall n = 1.) Therefore, it suf-

fices to show that m (8) generates H,(S",E” ). Since m,(B8) = I, (y), we shall
compute

l, (v) = Itit (@ + (=1~ ‘I,a*i,(a).

For this purpose, we note first that /i, () generates H,(S",E" ), because
the inclusion map / - i induces a homology isomorphism. (See the proof of The-
orem 31.8.) Then we note that /,a,i, (a) is trivial; this fact is a consequence of
the following commutative diagram, where the unlabelied maps are inclusions.

(&5 Lo (sn, 577
l alE'; l a
(E2,8"" 1) — (5",5"" )
| |
(E*,E") — (S%E)
It follows that /, (v) generates H,(S" E>), as desired.

Step 2. We prove the lemma. Consider the following commutative
diagram:

a€ H,(E,,S""Y)
iy
k* -1 a* n Qn—1
B e H,(S")— H,(S"8""") — H,(S".8"")

lpt lpa /:

H(P") —— H(P.P7Y)

Choose generators « and § as in Step 1. We wish to compute j, p, (8). The map
poi:(ELS" )= (PP 7Y
is a characteristic map for the n-cell of the CW complex P, so it induces

an isomorphism in homology. Thus p,i,(a) is a generator of H,(P",P"~").
We compute

JuPs(B) = Peke(B) = po(iy(a) + (=" ‘a:i*(a))
=[1+ (=1~ ‘]p*ia(a)~
Here we use the fact that p - a = p. The lemma follows. [
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Theorem 40.5. The homomorphism
3y H, . (P"* ,Py— H (PP ")
is zero if.n is even, and carries a generator to twice a generator if n is odd.
Proof. The map p': (E%*',S") — (P"*',P") is a characteristic map for

the open n + 1 cell of P"*; therefore, it induces a homology isomorphism.
Consider the commutative diagram

H,, (EY*',S%) —2 H,(S")

= lp’* l Ps
H,, (PP 22 H (P") 22 B, (Pn. P )
The map 9, at the top of the diagram is an isomorphism, by the long exact re-

duced homology sequence of (E"*',S"). By the preceding lemma, (j o p), is
zero if n is even, and multiplication by 2 if n is odd. The theorem follows. O

Theorem 40.6. The homology of projective space is as follows:

Z/2 ifiisoddand0 <i<2n+ 1,
H‘.(Phd-l): VA lfi=2n+1,
0 otherwise.
H.(PY) = Z/2 lfnso¢.1dand0<l<2n,
0 otherwise.
H.(P~) = Z/2 if"iSOfidand0<i,
0 otherwise.

Proof. The cellular chain group D;(P®) is infinite cyclic for i = 0, and
the augmented chain complex has the form

0 1
-—*Dz,(P“)-"Dz,-l(P“) + = Dy(P*) = Z.

There are no cycles in even dimensions; while in odd dlmenslons every element
is a cycle and even multiples of the generator bound. Thus H,(P*) is of order 2
if i is positive and odd, and vanishes otherwise.

The computations for P** and P> *! are similar. [J

Now we prove the lemma we used in the preceding chain-level proof.
Lemma 40.7. The spaces S" and P" may be triangulated so that the an-
tipodal map a:S" — S” and the projection map p : 8" — P" are simplicial.

Proof. Step1. We show first there is a complex L in R* * ! such that each
reflection map

;0 oo Xy X i) = (X=X X )
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induces a linear isomorphism of L with itself; and we show there is a triangula-
tion k : |[L| — S” that commutes with each map p;.

The result is trivial for n = 0. Assume K is a complex in R” and 4 : |[K| —
S*~1!is a triangulation satisfying our hypotheses. Let w, = (0, ...,0,1) and
w,=(0,...,0,—1)inR"*" Let L = (w,* K) U (w, * K). Then p, induces a
linear isomorphism of L with itself, for i = 1,...,n 4+ 1. The triangulation
defined by

k(y) = (V1 = h(x),1)
ify=({1 —t)x + tw,, and

k(y) = (V1 = h(x), —1)

if y = (1 — t)x + tw,, commutes with each p,. (This is the same triangulation
we used in the proof of Theorem 21.3.)

Step 2. Let k :|L| — S” be the triangulation of Step 1. The antipodal map
commutes with k, and induces a linear isomorphism of L with itself. It also
induces a linear isomorphism of sd" L with itself, for any fixed N.

Let us choose NV large enough that for any vertex v of sd" L, the closed stars
of v and a(v) are disjoint. Then we can use the “vertex-labelling” device of §3
to construct a complex whose underlying space is homeomorphic to P": Let us
label the vertices of sd" L, giving v and a(v) the same label for each vertex v.
Let g : |sd” L| — | M| be the quotient map obtained from this labelling. Then the
map g will identify x with a(x) for each x € |L|, and will identify x with no
other point of |L|. Because the homeomorphism k commutes with g, it induces a
homeomorphism of |M| with P" that is our desired triangulation of P*. [J

As a further application of these techniques, we now define a certain class
of 3-dimensional manifolds called the lens spaces and compute their homology.
It is of interest that they form one of the few classes of spaces that have been
completely classified up to homeomorphism and up to homotopy type. We dis-
cuss this classification later.

Definition. Let n and k be relatively prime positive integers. We construct
the lens space L(n,k) as a quotient space of the ball B* as follows: Write the
general point of B® in the form (z,7), where z is complex, ¢ is real, and |z} +
£ < 1. Let X = exp(2wi/n). Define f : S* — S* by the equation

f(x) = Nz, —1).

Let us identify each point x = (z,?) of the lowe: hemisphere E2 of S* = Bd B*
with the point f(x) of the upper hemisphere E%. The resulting quotient space is
called the lens space L(n,k).

Note that the map z — Az of C to itself is just rotation through the angle
2z /n. Thus f equals a rotation of S? about the z-axis through the angle & =
2xk/n, followed by reflection in the xy-plane. See Figure 40.1.
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fx)y= (Wfz,-1)

Figure 40.1

Let p: B*— L(n,k) be the quotient map. Each point of Int B* is identified
only with itself under p, and each point of Int E2 is identified with a point of
Int E%. However, since a point (z,0) of the equator in S? belongs to both E
and E2, its equivalence class contains n points—namely, the points

(A\*z,0),(\*z,0), . ..,(A*z,0) = (z,0).
Because k and n are relatively prime, these points are distinct and constitute a
permutation of the points
(Az,0),(3*2,0), .. . ,(A"2,0) = (2,0),

which are evenly spaced about the equator S*.

Theorem 40.8. The space L(n,k) is a CW complex with one cell in each
dimension 0, 1, 2, 3.

Proof. We first show that the quotient map p is closed, so that L(n, k) is
Hausdorff (in fact, normal). Let 4 be closed in B®. The saturation p~!p(A4) of
A is the union of the set 4, the following subsets of S*:

S(EENA) and f7'(EL N A),
and the following subsets of S*:

fANSYH, 2 4anSY),...,. " 4N SY).

All these sets are compact, so they are closed in B and so is their union. Since
D~'p(A) is closed, so is p(A4). Thus p is a closed map.

We give L(n,k) the structure of CW complex as follows: First, choose a
particular point a on the equator, say a = (1,0); let p(a) be the 0-cell ¢, of
L(n,k).

Let A denote the smaller arc of S* running from a to b = ()\,0). Now p|4
is a quotient map, since A4 is compact and L(n,k) is Hausdorff; it identifies a
and b, but is one-to-one on Int A. Thus p(Int A) is an open 1-cell; we take it to
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Figure 40.2

be the open 1-cell e, of L(n,k). The map plA is a characteristic map for e,.
Note that the points of p~'p(a) break the circle S up into n open arcs, each of
which is mapped homeomorphically by p onto e,. See Figure 40.2.

For similar reasons, the map p|E% is a quotient map; the set p(Int E2) is
an open 2-cell that we take to be the open 2-cell ¢, of L(n,k); and p|E’_ isa
characteristic map for e,. Finally, the set p (Int B®) is the open 3-cell e,; and p is
its characteristic map.

Note that p(S') equals the 1l-skeleton of L(n,k), and p(S?) equals the
2-skeleton. [0

Now we compute the homology of this lens space.

Theorem 40.9. If X = L(n,k), then the cellular chain complex of X has
the form

0
D,(x)2 D, 2 b,(x) 2 D,(0),
where each group D;(X) is infinite cyclic. Therefore,
HX)=1Z, H,(X) =0, H(X)=Z/n, HX)=1Z

Thus the lens spaces L(n,k) and L(m,l) cannot be homeomorphic, or even
have the same homotopy type, unless n = m.

Proof. Now B® and L(n,k) may be triangulated so that the rotation-
reflection map f and the quotient map p are simplicial. We leave the proof as
an exercise.

Let A be the arc of S* having end points a = (1,0) and & = (A,0), as be-
fore. Let ¢, be a cycle generating H,(A,Bd A); let ¢, be a cycle generating
H,(E*,S'); and let c, be a cycle generating H, (B2,S?); their signs will be chosen
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shortly. The chains p,(c,), p,;(c,), and p,(c,) generate the chain groups D,(X),
D,(X), and D,(X), respectively.

Choose the sign of ¢, so that dc, = b — a. Then we shall show that the chain
*) Z, =0 +ff/(c1) +f,,2(c,) + .- +f#, - I(cl)

generates H,(S"). Once this fact is proved, we note that since dc, also gener-
ates H,(S*), we can choose the sign of ¢, so that dc, = z,. We then show that
the chain

** z, =6 — fi(&)

generates H,(S?). Given this fact, we choose the sign of ¢, so that dc, = z,.

First, we consider z,. Let g:S'— S' be the map g(z,0) = (A\z,0); it
equals rotation through angle 2x/n. Rearranging terms in the expression for z,,
we have

=0+ g+ - +g )
Now dc, = g,(a) — a. Therefore,
9z, = [gy(@) — al + [g}(@) — @] + - - - + [£(0) — &~ '(@)]
=0.

Thus z, is a cycle. Because its restriction to A equals ¢,, which is a fundamental
cycle for H,(A4,Bd A), it is a fundamental cycle for S*. Thus z, generates
H,(SY).
Now let us consider z,. To show z, is a cycle, we compute
0z, = d¢; — £,(3¢;) = z, — fy(z,) = 0,

for by direct computation with formula (*), we have f,(z,) = z,. Because the
restriction of z, to E2 is a fundamental cycle for (£2,S"), the chain z, is a
fundamental cycle for S? so it generates H,(S?).

Now we are ready to compute the boundary operators in the cellular chain
complex of X. First,

dpy(c)) = py(b) — py(a) = 0,
so the boundary operator D, (X) — D,(X) is trivial. Second,
opy(c;) = py(z,) = J A +file) + - -+ 07 '(c)
= np#(cl)a

because p(f7(x)) = p(x) for all x in S* and all j. Thus the map D,(X) —
D,(X) is multiplication by n. Third,

opy (c;) = py (z;) = Py (c, _.f#(cz)) =0,
because p(f(x)) = p(x) for x in E%. Thus D,(X) — D,(X) is trivial. O
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EXERCISES

1. Show that P* is homeomorphic to the quotient space of B* obtained by identify-
ing x with —x for each x € S" %

2. (a)
(b)

Show P” is an n-manifold and CP” is a 2n-manifold.

Show more generally that if a finite-dimensional CW complex is homoge-
neous, 1t is a manifold.

3. Let A be a regular n-sided polygonal region in the plane; let B be the suspension
of A4. Describe L(n,k) as a quotient space of B; conclude that B* and L(n,k)
can be triangulated so the quotient map is simplicial.

4. Theorem. L(nk) is homeomorphic to L(n,l) if either

(b)

(c)

k= %] (mod n) or kl= =1 (mod n).

Proof. (a) Prove the case k = —/ (mod n) by considering the reflection
map (z,t) — (z,—1) in B>
Let 1 < k < n, for convenience. Consider n disjoint 3-simplices

a,b,c,d,, a,b,c.d,, ..., a,b,c,d,,

indexed with the elements of Z/n. See Figure 40.3. Show that L(n,k) can
be obtained from these simplices by first pasting

a;bd; to @, 1bii1Ciuns

for each i in Z/n, by a linear homeomorphism that preserves the order of
vertices, and then pasting

cidib; 10 Ciaidiyilivis

again by a linear homeomorphism that preserves the order of the vertices.

ay as

Figure 40.3

Rewrite the simplices of (b) in the order
a.bicdy, aubucudy, - -y GubuCodu-

See Figure 40.4. Carry out the second pasting operating of (b), and then
carry out the first pasting operation of (b). Show this gives a description of
L(n,I), where [ is the integer between 1 and n such that k/ = 1 (mod n).
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Cr Ca

@ by ay bap e

Figure 40.4

(d) Prove the theorem.

. Show that L(n,k) is a compact 3-manifold.

We note that the converse of the theorem stated in Exercise 4 holds, but
the proof is very difficult.

In the 1930’s R. Reidemeister defined a number associated with a simpli-
cial complex, called its torsion. This number is a combinatorial invariant,
which means that two complexes that have isomorphic subdivisions necessarily
have the same torsion. By computing the torsion for lens spaces, Reidemeister
showed that if the simplicial complexes L(n,k) and L(n,l) have isomorphic
subdivisions, then either k = £/ or kl = x1 (mod n).

To complete the proof of the converse, it remained for E. E. Moise (in the
1950’s) to prove that two triangulated 3-manifolds that are homeomorphic nec-
essarily have subdivisions that are isomorphic.

The homeomorphism classification of lens spaces is thus known. We shall
discuss their homotopy-type classification in a later chapter.
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Cohomology

With each topological space X, we have associated a sequence of abelian groups
called its homology groups. Now we associate with X another sequence of abe-
lian groups, called its cohomology groups. These groups were not defined until
long after the homology groups. The reason is not hard to understand, for they
are geometrically much less natural than the homology groups. Their origins lie
in algebra rather than geometry; in a certain algebraic sense (to be made pre-
cise), they are “dual” to the homology groups. In the past, topologists have used
such terms as “pseudo-cycle” for representatives of these group elements, im-
plying a certain skepticism as to their legitimacy as objects of study. However,
it eventually became clear that these groups are both important in theory and
useful in practice.

The duality theorems for manifolds, the connections between topology and
differential geometry (de Rham’s theorem) and between topology and analysis
(cohomology with sheaf coefficients)—all these results are formulated in terms
of cohomology. Even such purely topological problems as classifying spaces up
to homeomorphism, or maps up to homotopy, are problems about which coho-
mology has a good deal to say. We will return to some of these problems later.

Throughout, we shall assume familiarity with the language of categories
and functors (§28).

§41. THE HOM FUNCTOR

Associated with any pair of abelian groups 4, G is a third abelian group, the
group Hom(A,G) of all homomorphisms of 4 into G. This group will be in-
volved in an essential way in the definition of the cohomology groups. In this
section we study some of its properties.



246 Cohomology Chapter 5

Definition. If 4 and G are abelian groups, then the set Hom(4,G) of all
homomorphisms of 4 into G becomes an abelian group if we add two homomor-
phisms by adding their values in G.

That is, for @ € 4 we define (¢ + ¥)(a) = ¢(a) + ¥ (a). The map ¢ + ¢
is 2 homomorphism, because (¢ + ¢)(0) = 0 and

(6 +¥)(a+b)=¢(a+b)+¥(a+D)
= ¢(a) + ¥(a) + ¢(b) + ¥ (b)
= (¢ +¥)(a) + (¢ + ¥) (D).

The identity element of Hom(A,G) is the function mapping A4 to the identity
element of G. The inverse of the homomorphism ¢ is the homomorphism that
maps a to —¢(a), for each a € A.

Example 1. Hom(Z,G) is isomorphic with the group G itself; the isomorphism
assigns to the homomorphism ¢ : Z — G, the element ¢(1).

More generally, if A4 is a free abelian group of finite rank with basis e,, . . . ,e,,
then Hom(A4,G) is isomorphic with the direct sum G® . . . ®G of n copies
of G. The isomorphism assigns to the homomorphism ¢: 4 — G, the n-tuple
(¢(e,), ... ,¢(e,)). Note that this isomorphism is not “natural,” but depends on
the choice of a basis for 4. Note also that it depends on the finiteness of the rank
of A. If A is free abelian with non-finite basis {e_},.,, then the correspondence
¢ — (#(e,)), . s carries ¢ not to an element of the direct sum D, . ,G, of copies of
G, but rather to an element of the direct product Il _ ,G,. (See §4 for definitions.)

We will state these facts formally as a theorem later on.

Definition. A homomorphism f : 4 — B gives rise to 2 dual homomorphism

Hom(A4,G) J- Hom(B,G)

going in the reverse direction. The map f assigns to the homomorphism
¢ : B~ G, the composite

A

alsls

That is, f(¢) = ¢ o f.

The map f is a homomorphism, since £(0) = 0 and
[fl¢ + ¥]1(@) = (¢ + V) ([(@) = ¢(f(a)) + ¥(f(a))
= [/($1(a) + [ (a).
Note that for fixed G, the assignment
A~ Hom(A,G) and f— f

defines a contravariant functor from the category of abelian groups and homo-
morphisms to itself. For if i,: A— A is the identity homomorphism, then
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i,(¢) = ¢poi, =, s0 i, is the identity map of Hom(4,G). Furthermore, if
the left diagram following commutes, so does the right diagram:

A——» C Hom (A4,G) Hom(C,G)

f\ /e AN /2
Hom(B,G)
For iz<¢)=¢oh=¢o(gof>; while f(3(¢)) = f(dog) = (bog)of, by

definition.
We list some consequences of this fact:

Theorem 41.1.  Let f be a homomorphism; let fbe the dual homomorphism.
(a) If fis an isomorphism, so is f.

(b) If f is the zero homomorphism, so is 1

(c) If f is surjective, then f is injective. That is, exactness of

BLC-—'O

implies exactness of

Hom(B,G) i Hom(C,G) — 0.

Proof. (a) and (b) are immediate. To prove (c), suppose f is surjective.
Let Yy € Hom(C,G) and suppose f(y) =0 =y o f Then ¢(f(b)) =0 for
every b € B. As b ranges over B, the element f(b) ranges over all elements
of C. Thus y(c) =0 foreveryce C. O

More generally, we have the following result concerning the dual of an
exact sequence.

Theorem 41.2. If the sequence

4L B8 c—0

is exact, then the dual sequence

Hom (4,G) £ Hom (B,G) € Hom(C,G) — 0

is exact. Furthermore, if f is injective and the first sequence splits, then f is
surjective and the second sequence splits.

Proof. Injectivity of g follows from the preceding theorem. We check
exactness at Hom(B,G). Because h = g o f is the zero homomorphism, so is
h = fo 3. On the other hand, supposmg f@) =0, we show ¢ = 3(¢) for
some ¢ € Hom(C,G). Since f(¥) = ¢ o f is the zero homomorphism, ¥ van-
ishes on the group f(A4). Thus ¢ induces 2 homomorphism ¢’ : B/f(4) — G.
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Exactness of the original sequence implies that g induces an isomorphism
g' 1 B/f(A) — C, as in the following diagram:

¢6—Y-p—&8 .c
ANV
B/f(A4)
The map ¢ = ¥ o (g')”' is a homomorphism of C into G, and as desired,
g(@)=0og=y o(g) 'og=y.

Suppose now that f maps A injectively onto a direct summand in B. Let
: B — A be a homomorphism such that = o f = i,. Then fo#isthe identity of

Hom(A G), so f is surjective and # : Hom (A4,G) — Hom (B,G) splits the dual
sequence. O

We remark that, in general, exactness of a short exact sequence does not
imply exactness of the dual sequence. For instance, if f : Z — Z equals multipli-
cation by 2, then the sequence

0~zLz—z2~0

is exact. But fis not surjective. Indeed, if ¢ € Hom(Z,Z), then f(¢) = ¢ o f is
a homomorphism that maps Z into the set of even integers. Thus the image of f
is not all of Hom(Z,Z).

We have considered Hom as a functor of the first variable alone. But it
may also be considered as a functor of both variables. In this case, it has a
mixed variance; it is contravariant in the first variable and covariant in the
second. We formalize this statement as follows:

Definition. Given homomorphisms a: 4 — A4’ and 8: G' — G, we define
a map

Hom(a,B8) : Hom (4',G’) — Hom(4,G)

by letting it map the homomorphism ¢': A4’ — G’ to the homomorphism
Bogp ca:A—G.

You can check that Hom(e,B) is indeed a homomorphism. Functoriality fol-
lows: The map Hom (i,.i;) is the identity. Andifa' : 4’ — 4" and ' : G" — G/,
then

Hom(a' ¢ a, 8 ¢ ') = Hom(a,8) - Hom(a',8')
by definition. (Both sides carry ¢” : 4" — G" to o S ¢ " o &' c )

In this notation, the “dual homomorphism” & obtamed when we consider
Hom as a functor of the first variable alone is just the map Hom (a,i¢).
One can also consider Hom as a functor of the second variable alone; this

case we leave to the exercises.
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Now we prove some properties of the Hom functor.

Theorem 41.3. (a) One has the following isomorphisms:
Hom (D, . ;4,.G) = I, ., Hom(A4,,G),
Hom (A1, _,G,) =1I,., Hom(A4,G,).

(b) There is a natural isomorphism of Hom(Z,G) with G. If f:Z—Z
equals multiplication by m, then so does f.

(¢) Hom(Z/m,G) = ker(G2 G).

Proof. Property (a) follows immediately from standard facts of algebra
concerning homomorphisms of products. The proof of (b) is also direct; the
homomorphism A : Hom(Z,G) — G assigns to the homomorphism ¢:Z— G
the value of ¢ at 1. That is, A (¢) = ¢(1). Since ¢ is entirely determined by its
value at 1, and since this value can be chosen arbitrarily, A is an isomorphism of
Hom(Z,G) with G.

Let f : Z — Z be multiplication by m. Then

F@)(x) = o(f(x)) = ¢(mx) = me(x),

50 f(#) = m¢. Thus f equals multiplication by m in Hom(Z,G). Under the iso-
morphism A of Hom (Z,G) with G, the map f in turn corresponds to multiplica-
tion by m in G.

Now we prove (¢). Begin with the exact sequence

0—22Z—-2Z/m—o.
Then the sequence
Hom (Z,G) & Hom(Z,G) — Hom (Z/m,G) — 0
is exact, and (c) follows. I

We remark that the isomorphisms given in (a) of this theorem are “natu-
ral.” Specifically, suppose one is given homomorphisms ¢,:A4,— B, and
¢ : H— G. Then it follows immediately from the definition of the isomorphism
that the diagram

Hom (©A4,,G) = I Hom(A4,,6)
Hom (®9,.4) | | 1 Hom(¢,9)
Hom (®B,,H) = Il Hom(B,,H)

commutes. A similar comment applies to the other isomorphism in (a).

The preceding theorem enables us to compute Hom(A4,G) whenever 4
is finitely generated, for Hom(A4,G) equals a direct sum of terms of the form
Hom (Z,G) and Hom(Z/m,G), which we compute by applying the rules

Hom(Z,G) =G, Hom(Z/m,G) = ker(G G).
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When G is also finitely generated, these groups can be written as direct sums of
cyclic groups. One needs the foliowing lemma, whose proof is left to the exercises.

Lemma 41.4. There is an exact sequence

0—2/d—Z/n2Z/n—2/d—0,
where d = ged(m,n). O

EXERCISES

1. Show that if T is the torsion subgroup of G, then Hom(G,Z) = Hom(G/T,Z).

2. Let G be fixed. Consider the following functor from the category of abelian groups
to itself:

A — Hom(G,A) and  f— Hom(izf).
(a) Show that this functor preserves exactness of
0—A4—B—C.
(b) Show that this functor preserves split short exact sequences.

3. (a) Show that the kernel of Z/n™ Z/n is generated by {n/d}, where d =
ged(m,n).
(b) Show that a quotient of a cyclic group is cyclic.
(c) Prove Lemma 41.4.

4. The abelian group G is said to be divisible if for each x € G and each positive
integer n, there exists y € G such that ny = x. For instance, the rationals form a
divisible group under addition.

Theorem. Let G be divisible. Then if

0—A4—B—C—0
is exact, so is
0 — Hom(A4,G) — Hom(B,G) — Hom(C,G) — 0.

Proof. It suffices to show that if 4 C B and ¢: 4— G is a homomor-

phism, then ¢ extends to a homomorphism ¥ : B — G.

(a) Prove this fact when B is generated by the elements of 4 and a single addi-
tional element b.

(b) Let B be a collection of subgroups of B that is simply ordered by inclusion.
Let {y, | H € B} be a collection of homomorphisms, where ¥, maps H into
G for each H, such that any two agree on the common part of their domains.
Show that the union of the elements of B is a subgroup of B, and these ho-
momorphisms extend to a homomorphism of this union into G.

(¢) Use a Zorn’s lemma argument to complete the proof.

5. Let R be a commutative ring with unity element 1. Let 4 and B be R-modules.
(See §48 if you've forgotten the definitions.)
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(a) Let Homg(A,B) denote the set of all R-module homomorphisms of 4 into B.
Show it has the structure of R-module in a natural way. Show that if f,g are
R-module homomorphisms, so is Hom( £,g).

(b) State and prove the analogues of Theorems 41.2 and 41.3 for R-modules.

(c) Consider the special case where Ris a field F. Then 4 and B are vector spaces
over F, and s0 is Hom;(4,B). Show that in this case every exact sequence
splits, so the functor Hom, preserves exact sequences.
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§42. SIMPLICIAL COHOMOLOGY GROUPS

In this section, we define the cohomology groups of a simplicial complex, and
we compute some elementary examples.

Definition. Let K be a simplicial complex; let G be an abelian group. The
group of p-dimensional cochains of X, with coefficients in G, is the group

C?(K; G) = Hom(C,(KX),G).

The coboundary operator & is defined to be the dual of the boundary operator
8:C, ., (K)— C,(K). Thus

Cr*Y(K; G) L (K5 6),

50 that § raises dimension by one. We define Z?(K; G) to be the kernel of this
homomorphism, B** ! (K; G) to be its image, and (noting that §* = 0 because
#=0),

H*(K; G) = Z*(K; G)/B*(K; G).

These groups are called the group of cocycles, the group of coboundaries, and
the cohomology group, respectively, of K with coefficients in G. We omit G
from the notation when G equals the group of integers.

If ¢’ is a p-dimensional cochain, and ¢, is 2 p-dimensional chain, we com-
monly use the notation {c’c,) to denote the value of ¢* on c,, rather than the

more familiar functional notation ¢?(c,). In this notation, the definition of the
coboundary operator becomes

(60’,(1, + 1) = (cP,adP + |>-

The definition of cohomology is, as promised, highly algebraic in nature. Is
it at all possible to picture the groups involved geometrically? The answer is a
qualified “yes,” as we now observe.

Recal] that the group C,(K) of p-chains is free abelian; it has a standard
basis obtained by orienting the p-simplices of K arbitrarily and using the corre-
sponding elementary chains as a basis. Let {5, }, . , be this collection of oriented
simplices. Then the elements of C,(K)) are represented as finite linear combina-
tions Z n.0, of the elementary chains 5,. Now an element ¢? of Hom(C,(K),G)
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is determined by its value g, on each basis element o, and these values may be
assigned arbitrarily. There is, however, no requirement that ¢? vanish on all but
finitely many o,.

Suppose we let ¢¥* denote the elementary cochain, with Z coefficients,
whose value is 1 on the basis element ¢, and 0 on all other basis elements. Then
if g € G, we let go¥ denote the cochain whose value is g on o, and O on all other

basis elements. Using this notation, we often represent ¢” by the (possibly infi-
nite) formal sum

=2 g

Why is this representation of ¢ reasonable? We justify it as follows.

Suppose we let C, denote the infinite cyclic subgroup of C,(X) generated
by ¢,. Then C,(K) = ©,C,, and as noted earlier,

*) C?(K; G) = Hom(®,C,,G) = I1, Hom (C,,G);

the latter group is a direct product of copies of G. Under the isomorphism (*),
the cochain ¢’ corresponds to the element (g,0¥), ., of the direct product. In-
stead of using “tuple” notation to represent this element of the direct product,
we shall use formal sum notation.

This notation is especially convenient when it comes to computing the co-
boundary operator 8. We claim that if ¢ = 2 g o¥, then

**) dc? = 2 g,(607),

just as if we had an honest sum rather than formal one. To verify this equation,
let us orient each p + 1 simplex 7 and show that the right side makes sense and
that both sides agree, when evaluated on 7. Suppose

p+1
61’ = E é;d’a'_,
i=0

where ¢, = *1 for each i. Then
p+1
8ch,7) = (P, a7y = > edcho,)
2
p+1

-3 .
i=0

Furthermore,

(g.(80%),7) = g,(802,7) = g,{0%,07)

€8, fa=a;fori=0,...p+1,
o otherwise.

Thus éc? and 2 g, (8¢*) have the same value on 7, so (**) holds.
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By (**), in order to compute &c’, it suffices to compute d¢* for each ori-
ented p-simplex o. That we can compute by using the formula

do* = T ¢ 1*

1)
where the summation extends over all p + 1 simplices 7; having ¢ as a face, and
¢, = *1 is the sign with which ¢ appears in the expression for d7;. One verifies
this formula by simply evaluating both sides on the general p 4 1 simplex 7.
Now let us apply these facts to some examples. We make only a few com-
putations here, reserving the general problem of computing cohomology groups
until a later section.

Example 1. Consider the complex K pictured in Figure 42.1. Let us compute the
coboundaries of a few cochains. Let {v;} denote the set of vertices; let {e;} denote the
edges, oriented as indicated; let {s;} denote the 2-simplices, oriented as indicated.
We compute deJ; it has value 1 on o, and value — 1 on a,, because e, appears in do,
and do, with signs +1 and —1, respectively. Thus

ée = of — of.
A similar remark shows that
v =ef + ef — e?.

Are there any cocycles in this complex? Yes, both o and ¢ are cocycles, for the
trivial reason that K has no 3-simplices. Each of them is a coboundary, since

def = —af and def = —of.
The 1-dimensional cochain
ct=ef +ef —eF

is also a cocycle, as you can check; it happens to be a coboundary, since it equals
S(v¥ + v¥). Similarly, you can check that the 0-cochain

¢ = v + vf + vF + v¥

is a cocycle; it cannot be a coboundary because there are no cochains of dimen-
sion —1.

Vo €] vy
[
\j €s
€g €3
N
Y3 €3 Va

Figure 42.1
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Example 2. Consider the torus, in a slightly simplified version of the triangulation
considered earlier. See Figure 42.2. Consider the l-cochain 2! == ¢ + . . . + e¥
pictured in the figure. It is a cocycle, as you can check, and so is the cochain
d' = e}¥ + . . . + e}. They happen to be cohomologous, since 6(c* + h* + j*) =
z' — d'. (Here h and j lie on the vertical line through c.)

This example illustrates the fact that while we can think of a 1-cycle as being a
closed curve, the best way to think of a l-cocycle is as a picket fence!

Later weshall compute the cohomology of the torus T and show that the co-
cycle z' represents one of the generators of H*(T). (See §47.)

Example 3. Consider the complex K pictured in Figure 42.3. We compute its
cohomology groups. The general 0-cochain is a sum of the form ¢® = Z nv}. Since
{0c’e;) = {c*de;), we see that d¢° has value n, — n, on ¢, value n, — n, on e,, and so
on. If ¢’ is a cocycle, then necessarily n, = n, = n, = n,, so ¢° is of the form nZ v¥.
We conclude that H°(K) = Z, and is generated by 2 v}.

Now let ¢! be a 1-cochain; it is a cocycle, trivially. We show that ¢! is cohomol-
ogous to some multiple of e}. It suffices to show that e is cohomologous to ef for
each i, and this can be done directly. For instance, e} is cohomologous to e} because
d(v¥ + v¥) = ef — e¥. A similar remark applies to the other e;.

Furthermore, no multiple of e¥ is a coboundary: For let z be the cycle e, +
e, + e, + e,. Then for any O-cochain ¢°, we have {§¢°,z) = (¢°,6z) = 0. But(nef,z) =
n; thus ne¥ is not a coboundary unless n = 0.

We conclude that H'(K) = Z and is generated by ef. It is also generated by
e}, by eF, and by ¢f.

Note that this same argument applies if X is a general n-gon instead of a 4-gon.

Vi ey Vs
€y €2
K
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Figure 42.3
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Example 4. In the preceding example, the homology and cohomology groups of K
are equal. Lest you think this always occurs, consider the following example.

Let S denote the Klein bottle, represented by the labelied rectangle of Figure
42.4. We show that H*(S) is nontrivial, whereas we know that H,(S) = 0. Orient
the 2-simplices of L counterclockwise. Use the induced orientation of the 2-sim-
plices of S, and let vy denote their sum. Now v is not a cycle, because dy = 2z,
where z, = [a,d] + [d,e] + [e,a].

Let o denote a single oriented 2-simplex of S, as pictured. Then ¢* is a cocycle
of S, because S has no 3-simplices. Furthermore, ¢* is not a coboundary. For if ¢! is
an arbitrary 1-cochain, then {(5c',vy) = {(c',6v) = 2{c',z,), which is an even integer,
while {¢*,9) = 1. Thus o* represents a non-trivial element of H*(S).

Now in fact o* represents an element of order 2 in H*(S). You can check
that the coboundary of the l-cochain (ef + - - - + e¥) pictured in the figure
equals 20*.

Now we consider the zero-dimensional cohomology groups, and com-
pute them.

Theorem 42.1. Let K be a complex. Then H°(K; G) equals the group of
all O-cochains ¢® such that {c°,v) = {c°,w) whenever v and w belong to the same
component of \K|.

In particular, if \K| is connected, then H*(K) = Z and is generated by the
cochain whose value is 1 on each vertex of K.

Proof. Note that H°(K; G) equals the group of 0-cocycles, because there
are no coboundaries in dimension 0. If v and w belong to the same component of
|K|, then there is a 1-chain ¢, of K such that dc, = v — w. Then for any cocycle
¢°, we must have

0 = (5c°c,) = (c°dc,) = () — {c°w).

Conversely, let ¢° be a cochain such that (c’,0} — (c’,w) = O whenever v and w
lie in the same component of |K|. Then for each oriented 1-simplex o of X,

6c%0) = (c*d0) = 0.
We conclude that 6¢® = 0. The theorem follows. O
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The preceding theorem shows that in general H*(X) is isomorphic to a di-
rect product of infinite cyclic groups, one for each component of {K|. The group
H,(K), on the other hand, is isomorphic to the direct sum of this collection of
groups. This is another case where homology and cohomology groups differ.

Definition. Given a complex K, we dualize the standard augmentation

a® e <z,

and obtain a homomorphism g,

5 -~
CH(K; G) —C°(K; G) <G,

called a coaugmentation. It is injective, and §, o € = 0. We define the reduced
cohomology of K by setting H(K; G) = H'(X; G) if ¢ > 0, and

H°(K; G) = ker §,/im .
Theorem 42.2. If |K] is connected, then fI"(K; G) = 0. More generally,
for any complex K,
H'(K;G) = H'(K;G) ® G.
Proof. If IK| is connected, then H,(K) vanishes, so C,(K) — C,(K) —
Z — 0 is exact. It follows that
C'(K;G)—C(K;G)—G—0

is exact, so H°(K; G) vanishes. The rest of the theorem we leave as an exercise.
O

EXERCISES

1. Consider the complex K of Example 1. Find a basis for the cocycle group in each
dimension. Show that the cohomology of K vanishes in positive dimensions.

2. Check the computations of Examples 2, 3, and 4.
3. (a) Suppose one is given homomorphisms
ctctz
where ¢ o ¢ = 0 and ¢ is an epimorphism. Consider the dual sequence
Hom(C,,G) & Hom (C,,G) < Hom(Z,G).

Show that im ¢ is a direct summand in Hom (C,,G) and hence in ker é.
[Hint: See the exercises of §7.]
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(b) Conclude that
ker &; = 15—“-?- ®G,
imé
so that in particular,

H(K; G) = H(K;G) ®G.

4. Let K be the complex whose space is the real line and whose vertices are the inte-
gers. Let o, = [n,n + 1]. Show that H'(K) = 0 by finding a specific cochain
whose coboundary is

@

Z a;o¥.

i= -

*5. Let K be a finite complex.
(a) Use the theorem on standard bases for chain complexes (§11) to express
H?(K) in terms of the betti numbers and torsion coefficients of K.
(b) Express H?(K;G) in terms of the betti numbers and torsion coefficients of K;

the answer will involve the groups G, G/mG, and ker(G 7 6).
(c) Compute H?(X; G) if X is the torus, Klein bottle, or projective plane.
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§43. RELATIVE COHOMOLOGY

Continuing our discussion of simplicial cohomology, we define the relative co-
homology groups. We also consider the homomorphism induced by a simplicial
map, and the long exact sequence in cohomology. In some respects, relative co-
homology is similar to relative homology; in other respects it is rather different,
as we shall see.

Definition. Let K be a complex; let K, be a subcomplex of K; let G be

an abelian group. We define the group of relative cochains in dimension p by
the equation

C*(K,K,; G) = Hom(C,(K.K,),G).

The relative coboundary operator & is defined as the dual of the relative bound-
ary operator. We define Z’(K,K,; G) to be the kernel of the homomorphism

8:C*(K . K,;G)— C?* Y (K,K,; G),
B’ *1(K,K,; G) to be its image, and
H*(K,K,; G) = Z*(K,K,; G)/B*(K,K,; G).

These groups are called the group of relative cocycles, the group of relative
coboundaries, and the relative cohomology group, respectively.
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We have an idea of how to picture cochains and cocycles. How shall we
picture a relative cochain or cocycle? Here the situation is rather different from
the situation in homology. We explain the difference as follows:

For chains, we had an exact sequence

- j
0— C,(K,) - C,(K) = C,(K,K;) — 0,

where C,(K;) is a subgroup of C,(K), and C,(K,K,) is their quotient. The
sequence splits because the relative chain group is free. Therefore, the sequence

0 — C?(K,; G) - C?(K: G) L C*(K,K,; G) — 0

is exact and splits. This leads to the following surprising fact:

It is natural to conmsider C?(K,K,; G) as a subgroup of C?(K;G), and
C?(Ky; G) as a quotient group of C?(K; G).

Let us examine this situation more closely. A relative cochain is a homo-
morphism mapping C,(K,K;) into G. The group of such homomorphisms cor-
responds precisely to the group of all homomorphisms of C,(K) into G that
vanish on the subgroup C,(K,). This is just a subgroup of the group of all
homomorphisms of C,(K) into G. Thus C?(K,K,; G) can be naturally consid-
ered to be the subgroup of C?(K; G) consisting of those cochains that vanish on
every oriented simplex of K,. In some sense, C?(X,K,; G) is the group of those
cochains of K that are “carried by” K — K,. The coboundary operator maps
this subgroup of C?(K; G) into itself: Suppose ¢? vanishes on every simplex of
K, If ris a p + 1 simplex of K, then 37 is carried by X, so

dc?, 7y = {c?,37) = 0.

Thus the map j can be interpreted as an inclusion map. To interpret i, we
note that it carries the cochain ¢’ of K to the cochain ¢ o i, which is just the
restriction of ¢? to C,(K,). We summarize these results as follows:

If we begin with the sequence

0—C, (k) L c,(x) L ¢, (k.K) —0,

the dual of the projection map j is an inclusion map j. and the dual of the
inclusion map i is a restriction map i.

Let us now consider the homomorphism of cohomology induced by a sim-
plicial map.

Recall that if £ : (K,K,) — (L,L,) is a simplicial map, then one has a corre-
sponding chain map

fy: C,(K.Ky) = Cy(LL).

The dual of f, maps cochains to cochains; we usually denote it by f*. Because f;
commutes with 8, the map f* commutes with 8, since the dual of the equation
fy 8 = 3 o f, is the equation & o f* = f* o 5. Hence f* carries cocycles to co-
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cycles and coboundaries to coboundaries. It is called a cochain map; it induces a
homomorphism of cohomology groups,

*
H’(K,K,; G) — H*(L,Ly; G).

Functoriality holds, even on the cochain level. For if i is the identity, then i, is
the identity and so is i*. Similarly, the equation (g o f), = g, ° f; gives, when
dualized, the equation (g o /) = f* - g*.

Just as in the case of homology, one has a long exact sequence in cohomol-
ogy involving the relative groups. But again, there are a few differences.

Theorem 43.1. Let K be a complex; let K, be a subcomplex. There exists
an exact sequence

*
- — H?(K,; G) — H*(K; G) — H?(K,K; G) “S_H'I,—I(Ko; G)—- -

A similar sequence exists in reduced cohomology if K, is not empty. A simpli-
cial map f : (K,K,) — (L,L,) induces a homomorphism of long exact cohomol-
ogy sequences.

Proof. This theorem follows from applying the zig-zag lemma to the
diagram

0— C?*1(Ky; G) ——C* 1 (K; G)—L= €7 * 1 (K, Ky G) — O

lo s . s

0— C(KiG) —— C'(K;6) —~ C'(K.Ki;G) — 0.
Since i and j commute with 9, the dual maps i and j commute with 3. The
fact that 0* raises dimension by 1 follows from the proof of the zig-zag lemma.
(If you turn the page upside down, the arrows look like those in the proof of
the lemma.)

The sequence in reduced cohomology is derived similarly, once one adjoins
the sequence

0 ——C(Ky; G) ——C(K; G)—C(K.K,; G)— O
R
00— G -—_ G — 0 — 0

at the bottom of the diagram. Since ¢ is injective, no nontrivial cohomology
groups appear in dimension —1. O

Now let us compute cohomology groups in a few examples, using this
sequence.

Example 1. Consider the case of a square K modulo its boundary K,, as pictured
in Figure 43.1. We treat the group of relative cochains as those cochains of K that
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are carried by K - K. Both ¢} and o} are such cochains, and each is a cocycle
(trivially). There is only one cochain e in dimension 1 carried by K — K,; its co-
boundary is

de¥ = o¥ — 2.
Thus the group H*(K,K,) is infinite cyclic, and is generated by the cohomology
class {o?} = {af}.

The group H'(K,K,) vanishes because the only 1-cochain carried by K — K, is
not a cocycle. The group H°(K,K,) vanishes because there are no 0-cochains carried
by K — K,.

Now consider the exact sequence

H*(K,) — H*(K) — H*K.K,) — H'(K,) — H'(K) — H'(K,K,)

0 — ) — z £z — @~ o

We just computed the cohomology of (K,K,), and we found the cohomology of X, in
Example 3 of §42. What is §*? The group H'(K,) is generated by the cocycle ef.
To compute 3* {e¥}, we first “pull e¥ back” to K (considering it as a cochain of K)
taking its coboundary def in K, and then considering the result as a cocycle of X
modulo K,. By direct computation, de¥ = —a¥ as cochains of K. Since o¥ generates
H*(K,K,), as just proved, it follows that 4* is an isomorphism.

Therefore, both the unkmown groups in this exact cohomology sequence
must vanish.

Example 2. Consider the Mobius band M modulo its edge E, as pictured in Figure
43.2. We calculate the cohomology of (M,E) and of M.

Vo eq vy v, V3

>

N

33 &

29 4

€y 4 A —>
ez €4 [£3
&) D) ) M
3 Ve Vs Yo

Figure 43.2
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Each of the cochains oF is a cocycle (trivially), so they form a basis for
the group Z*(M,E) of relative 2-cocycles. Similarly, ef, . . . ,ef form a basis for the
group C'(M,E) of relative 1-cochains. (The other l-simplices of M lie in the edge
E.) It is convenient to replace these bases for Z*(M,E) and C'(M,E) by different
bases. Let us take

* 3 b
of, of —of, of —o}, of —ol, of —of, of —o
as a basis for Z*(M,E), and
ef, e, e, e, e, e+ ---+¢

as a basis for C* (M, E). Then we can calculate H*(M,E) readily. We see that ée¥ =
ofF —o¥,,for i=1,...,5 and (e} + - - - + €f) = 2¢}. Thus H*(M,E) =
Z/2 and is generated by o

The group H* (M,E) vanishes, for there are no relative 1-cocycles: This follows
from the fact that § carries our chosen basis for C'(M,E) to a basis for a subgroup
of C*(M,E). (You can also prove directly that n,ef + - - - + ngef is a cocycle only
if n; = O for all i.)

Consider now the exact sequence

HY(E) — H*(M) — H*(M.E) — H'(E) — H'(M) — H'(M,E)

6*
0 — () — 2Z/2 — Z — (I ~ O
We have just computed H*(M,E); the proof that H'(E) is infinite cyclic is easy,
since E is a 6-gon. (See Example 3 of §42.) Let us compute 5*. The group H*!(E) is
generated by eF, where ¢, is any oriented 1-simplex of E. Choose e, as indicated in
Figure 43.2. Then by direct computation §*ef = —o¥; so 5* is surjective. It follows
at once that H*(M) = 0 and H'(M) = Z.

EXERCISES

1. Let M denote the Mdbius band, as in Example 2. Find a cocycle generating
HY(M).
2. Consider the cylinder C modulo one edge E.
(a) Compute H'(C,E).
(b) Use the long exact cohomology sequence of the pair (C,E) to compute
H(C).
Relative pseudo n-manifolds
A simplicial pair (K,K,) is called a relative pseudo n-manifold if:
(i) The closure of |k} — |K,| equals a union of n-simplices.
(ii) Each n — 1 simplex of X not in K, is a face of exactly two n-simplices
of K.

(iii) Given two n-simplices g, 6’ of K not in K,, there is a sequence of n-
simplices of K not in K,

!
=G 0yy e 0 = O

such that o; N o; .4 is an # — 1 simplex not in X,, for each i.
If K, = &, we call X simply a pseudo n-manifold.
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3. Which of the following spaces are pseudo manifolds in their familiar trian-
gulations?
() &
(b) §*
(c) The letter 6.
(d) The union of S? and a circle that intersects S* in one point.
(¢) The union of two copies of S* with a point in common.
(f) S* with the north and south poles identified.

4. Show that the compact 2-manifolds, in their usual triangulations, are pseudo
manifolds. (We will see later that any connected, triangulated n-manifold is a
pseudo n-manifold.)

8. Let (K,K,) be a relative pseudo n-manifold.

(a) Given ¢ # ¢', neither in K,, show there exists a sequence

G =040y, ...,0, =0

as in (iii) with no repetitions.

In this situation, once ¢ is oriented, there are unique orientations of
each o; such that ds; _ , + do; has coefficient 0 on 5, _, N o, for each i. The
resulting orientation of o, = ¢’ is said to be induced by the given orientation
of g, relative to the given sequence.

(b) Let o be fixed and oriented. If for every ¢’ # o, the orientation of ¢’ induced
by that of ¢ is independent of the sequence joining them, then (X,K,) is said
to be orientable. Otherwise, (X,K,) is said to be non-orientable. Show that if
K is finite,

H(K.K)=2Z and H"(KK,)=Z if (K,K,) is orientable,
H,(K.K)=0 and H"(KK,)=Z/2 if (KK,)isnon-orientable.

[Hint: If v is the sum of all the n-simplices of K not in K,, oriented arbi-
trarily, then for each relative # — 1 cochain ¢” ~ ', the number (3¢~ ',v) is
even. Therefore, o* does not cobound.}

(c) Conclude that in the finite case at least, orientability is independent of the
choice of ¢, and in fact depends only on the topological pair (IK|,|K.}), not on
the particular triangulation involved.

(d) Show that if K is finite,

H,(K.KyZ/2) = Z/2 = H"(K.Ks; Z[2).

§44. COHOMOLOGY THEORY

Now that we have some feeling for what the simplicial cohomology groups look
like, let us deal with cohomology theory more generally. We construct both the
simplicial and the singular cohomology theories, we show they are naturally iso-
morphic for triangulable spaces, and we verify the cohomology versions of the
Eilenberg-Steenrod axioms.

First, let us work on the level of chain complexes.
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The cohomology of a chain complex

Let @ = {c,,a} be a chain complex; let G be an abelian group. We define
the p-dimensional cochain group of G, with coefficients in G, by the equation

C?(6; G) = Hom(C,,G).

We define the coboundary operator & to be the dual of the boundary operator; it
follows that & = 0. The family of groups and homomorphisms {C?(@; G),3} is
called the cochain complex of @ with coefficients in G. As usual, the kernel of
the homomorphism

8:C?(€; G) — C?*1(@; G)

is denoted Z*?(@; G), its image is denoted B’ *'(@; G), and the cohomology
group of € in dimension p, with coefficients in G, is defined by the equation

H’(G; G) = Z?(€; G)/B*?(@; G).
If {@,¢} is an augmented chain complex, then one has a corresponding co-
chain complex
6, s
. = CY(@; G) — C°(€; G) < Hom(Z,G),

where & is injective. We define the reduced cohomology groups of € by setting
H(@; G) = H*(@;G) if ¢ > 0, and

H*(@; G) = ker 8, /im&.

It is easy to see that if H,(€) vanishes, then H*(@; G) vanishes as well, for
exactness of C, — C,— Z — 0 implies exactness of the dual sequence. In gen-
eral (see the exercises of §42), we have the equation

H(@;G) = H°(6;G)®G.

Definition. Suppose € = {C,,8} and @' = {C,,8'} are chain complexes.
Suppose ¢: @ — €’ is a chain map, so that &' o ¢ = ¢ o 3. Then the dual
homomorphism

cr;6) 2 cre; 6)
commutes with §; such a homomorphism is called a cochain map. It carries
cocycles to cocycles, and coboundaries to coboundaries, so it induces a homo-
morphism of cohomology groups,

¢*
H?(C; G) — H*(€"; G)
The assignment
@ — H?(G; G) and ¢ — ¢*

satisfies the usual functorial properties; in fact, they hold already on the chain
level.
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If {G,e} and {@',¢'} are augmented chain complexes and if¢:@— € isan
augmentation-preserving chain map, then ¢’ o ¢ = ¢, 50 that ¢ « € = €. In this
case, ¢ induces a homomorphism of reduced as well as ordinary cohomology.

Suppose now that ¢,y : @ — @' are chain maps, and that D is a chain
homotopy between them, so that

D3 + 3D =¢ — 4.

Then D : C?*+'(€'; G) — C?(C; G) is a homomorphism satisfying the equation
oD + by = 3 — ¥.

It is said to be a cochain homotopy between ¢ and ¢. If such a D exists, it fol-

lows at once that the induced cohomology homomorphisms ¢* and ¢* are
equal. For given any cocycle z?, we have

$(z") — §(2*) = 6Dz* + 0.
This observation has the following consequence:

Theorem 44.1. Let €@ and @' be chain complexes; let ¢ :€ — €' be a
chain equivalence. Then ¢, and ¢* are isomorphisms of homology and coho-
mology, respectively. If @ and @' are augmented and ¢ is augmentation-pre-

serving, then ¢, and ¢* are isomorphisms of reduced homology and cohomol-
ogy, respectively.

Proof. Since ¢ is a chain equivalence, there is a chain map ¢: €' — €
such that ¢ o { and ¢ o ¢ are chain homotopic to identity maps. Then ¥ o and
é o ¥ are cochain homotopic to identity maps, so Y* o ¢* and ¢* - y* equal the
identity maps of H?(€') and H” (@), respectively.

The same argument holds for reduced cohomology. O

Finally, suppose
0—e2p¥eg—o

is a short exact sequence of chain complexes that splits in each dimension.
(This occurs, for example, when & is free.) Then the dual sequence

0—cr@. 62 cr ;6 L crs;6) —o

is exact. Applying the zig-zag lemma, we have a long exact sequence in co-
homology,

. . — H?(G; G) H’(fD G)ip — H*(¢&; G) H"’(@ G) — .
where §* is induced in the usual manner by the coboundary operator. This
sequence is natural in the sense that if f is a homomorphism of short exact
sequences of chain complexes, then fis a homomorphism of the dual sequences,

and f* is a homomorphism of the corresponding long exact cohomology
sequences.

M



§44. Cohomology Theory

The axioms for cohomology

Now we state the cohomology versions of the Eilenberg-Steenrod axioms.
Given an admissible class .A of pairs of spaces (X,4) and an abelian group
G, a cohomolegy theory on A with coefficients in G consists of the following:

(1) A function defined for each integer p and each pair (X,A4) in A, whose
value is an abelian group H?(X, 4; G).

(2) A function that assigns to each continuous map & : (X,4) — (¥,B) and
each integer p, a homomorphism
t 3
HX,4,6) E 17 (V.. 6).
(3) A function that assigns to each pair (X,4) in A and each integer p, a
homomorphism
*
B x46) Z (4 6).
The following axioms are to be satisfied:
Axiom 1. If i is the identity, then i* is the identity.
Axiom 2. (ko h)* = h* o k*.
Axiom 3. §* is a natural transformation of functors.

Axiom 4. The following sequence is exact, where i and j are inclusions:

i* J* o*
- — H?(4; G) — H?(X;G)— H?(X,4;G) — H? " '(4;G) — - - ..
Axiom 5. If h =~ k, then h* = k*.

Axiom 6. Given (X,A4), let U be an open set in X such that U C Int 4.
If (X — U, 4 — U) is admissible, then inclusion j induces a cohomology iso-

morphism
;¥
H(X - U,4~-U6L irx406).
Axiom 7. If P is a one-point space, then H?(P; G) = 0 for p % 0 and
H(P,G)=G.

The axiom of compact support has no counterpart in cohomology theory.

Singular cohomology theory

Now we consider singular theory and show it satisfies the axioms.
The singular cohomology groups of a topological pair (X, A), with coeffi-
cients in the abelian group G, are defined by the equation

H?(X,4;G) = H*($(X,4); G),
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where &§(X,A) is the singular chain complex of (X,4). As usual, we delete 4
from the notation if 4 = &, and we delete G if it equals the group of integers.
The reduced cohomology groups are defined by the equation

H*(X;G) = H($(X); G),
relative to the standard augmentation for $(X).
Given a continuous map 4 : (X,4) — (Y,B), there is a chain map
hy.S,(X,4) — S,(Y,B),

defined by h,(T) = h o T. We customarily denote the dual cochain map by A*.
It induces a homomorphism

*
B (X,4;G) & He (v,B, ).

(The same holds in reduced cohomology if 4 and B are empty, since A, is aug-
mentation-preserving.) The functorial properties (Axioms 1 and 2) hold even on
the cochain level. The short exact sequence of chain complexes

0—S,(4) = S,(X) = S,(X,4) — 0

splits because S,(X,A) is free. Therefore, the zig-zag lemma gives us an exact
sequence

*
. = HY(4;G) — B (X G) — B (X, A O) S HP - (4,G) — - . .

A continuous map 4 : (X,4) — (Y,B) induces a homomorphism of long exact
cohomology sequences, by the naturality property of the zig-zag lemma. (A
similar result holds for reduced cohomology if A is non-empty.) Thus Axioms
3 and 4 hold.

If A, k : (X,A) — (Y,B) are homotopic, then 2, and k, are chain homotopic,
as we proved in Theorem 30.7. Then %4* and k* are cochain homotopic, so that
h* = k*.

To compute the cohomology of a 1-point space P, we recall (see Theorem
30.3) that the singular chain complex of P has the form

Zz82%207 .0
The cochain complex of P then has the form
EgleEglg—o.

It follows that H'(P; G) is isomorphic to G if i = 0, and vanishes otherwise.

Finally, we come to the excision property of singular cohomology. Here is a
point where the arguments we gave for homology do not go through automati-
cally for cohomology. Suppose

i X-U,A4-U)—(XA4)

is an excision map. If we had showed that j, is a chain equivalence, then there
would be no difficulty, for j* would be a cochain equivalence, and it would fol-
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low that j* is an isomorphism. But we proved only the weaker result that j, is
an isomorphism. (See Theorem 31.7.) So we have some work to do to carry this
result over to cohomology.

What we need is the following fact, which will be proved in the next section:

Let @ and D be free chain complexes; let ¢ : © — D be a chain map that
induces a homology isomorphism in all dimensions. Then ¢ induces a coho-
mology isomorphism in all dimensions, for all coefficient groups G.

The excision property of singular cohomology is an immediate consequence:
Given U C A4 C X, with U C Int A, consider the inclusion map

ji(X = U, A= U)— (X,A).

Since the chain complexes involved are free, and since j, induces an isomor-
phism in homology, it induces an isomorphism in cohomology as well.

Note that singular cohomology, like singular homology, satisfies an exci-
sion property slightly stronger than that stated in the axiom. One needs to have
U C Int A, but one does not need U to be open, in order for excision to hold.

Simplicial cohomology theory

We have already dealt with some aspects of simplicial cohomology. We
have defined the cohomology groups of a simplicial pair (X,K,), and have showed
how a simplicial map f induces a homomorphism of these groups. Just as with
homology, showing that an arbitrary continuous map induces 2 homomorphism
requires a bit of work.

The construction follows the pattern of §14-§18. First, we recall that if f
and g are two simplicial approximations to the same continuous map, then they
are contiguous, so the corresponding chain maps f, and g, are chain homotopic.
It follows that f* and g* are cochain homotopic, so the cohomology homo-
morphisms f* and g* are equal. Furthermore, if K’ is a subdivision of K, and if
g:(K',K;) — (K,K,) is a simplicial approximation to the identity, then g, is a
chain equivalence, so that g is a cochain equivalence, and g* is an isomorphism.

One then defines the homomorphism induced by the continuous map
h: (K)LIKD) — (ILLIL,)) as follows: Choose a subdivision K of K so that k has a
simplicial approximation f: (K’,K;) — (L,L,). Choose g: (K',K;) — (K, K,) to
be a simplicial approximation to the identity. Finally, define

h* = (g*)-l ° f*-

To verify that h* is independent of the choices involved, and to check
its functorial properties, involves arguments very similar to those given in §18,
when we verified the corresponding properties for the homomorphism A,. In
fact, one can use exactly the same diagrams as appear in that section, simply
reversing the arrows for all the induced homomorphisms! We leave the details
10 you.

Verifying the Eilenberg-Steenrod axioms is now straightforward. The exis-
tence of the long exact cohomology sequence we have already noted. Naturality
of the sequence reduces to proving naturality in the case of a simplicial map,
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which we have already done. The homotopy axiom, the simplicial version of the
excision axiom, and the dimension axiom follow just as they did in the case of
singular cohomology. Nothing new of interest occurs.

The topological invariance, indeed the homotopy-type invariance, of the
simplicial cohomology groups follows at once.

The isomorphism between simplicial
and singular cohomology

Let X be a simplicial complex. We defined in §34 a chain map
7: €(K) — S(KI)

that induces an isomorphism in homology. Although it depends on a choice of a
partial ordering for the vertices of K, the induced homomorphism 7, does not.
Because 7 commutes with inclusions of subcomplexes, it induces a homomor-

phism on the relative groups, which is an isomorphism as well. We now show
the same result holds for cohomology.

Theorem 44.2. Let (K.K,) be a simplicial pair. Then 7 induces a coho-
mology isomorphism

H (E(K.K); G) L HP(SUKIIK,I); G)

that is independent of the choice of partial ordering of the vertices of K. It
commutes with §* and with homomorphisms induced by continuous maps.

Proof. The chain map 7 carries the oriented simplex [v,, . ..,v,] of K to
the linear singular simplex /(v,, . . .,v,) of K, provided v, < . . - <u,in the
chosen ordering. Because the chain complexes involved are free and 5 induces a
homology isomorphism, it induces a cohomology isomorphism as well. Further-
more, because 7 commutes with inclusions, it induces a homomorphism of rela-
tive cohomology. This homomorphism commutes with the coboundary operator
6*, by the naturality of the zig-zag lemma; therefore, it is an isomorphism in
relative cohomology, by the Five-lemma.

To prove the rest of the theorem, we must examine the definition of » more
closely. The map n was defined as the composite

c, &) L i) L s, kD,

where ¢([v,, - . - ,v,]) equals the ordered simplex (v,, - - . ,0,) if v, < - - - <,
in the chosen ordering, and

O((Wes - - - Wp)) = L(We, . . ., W,).
In §13, we defined a chain-homotopy inverse to ¢ by the equation

) = [We, .. .,w,] if the w; are distinct
¥ (O - W,)) = 0 otherwise.
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The maps y and 6 do not depend on the ordering, although ¢ does. The fact that
7* is independent of the ordering follows from the equation n* = (y*)~' o 6*.

To show * commutes with induced homomorphisms, we first consider the
case of a simplicial map f. We showed in proving Theorem 13.7 that f, com-
mutes with y, and we showed in proving Theorem 34.4 that f, commutes with 6.
It follows that f* commutes with the duals of ¥ and 6, so that f* commutes with
n*. To extend this result to arbitrary continuous maps, one follows the pattern
of Theorem 34.5. O

EXERCISES
1. If X is a path-connected space, show H°(X) = Z. Find 2 generating cocycle.

2. State and prove a Mayer-Vietoris theorem in simplicial cohomology. Can you
prove it for arbitrary coefficients?

3. (2) Let 4,, A, C X. Show that if {4,,4,} is an excisive couple, then inclusion
$(4,) + 8(4,) — (4, VU 4)

induces an isomorphism in cohomology as well as homology.
(b) State and prove a Mayer-Vietoris theorem in singular cohomology.

Simplicial cohomology with compact support.
Let K be a complex. Let C2(K; G) denote the group of homomorphisms of
C,(K) into G that vanish on all but finitely many oriented simplices of K.
These homomorphisms are called cochains with compact support.

4. (2) Show that if K is locally finite, then 8 maps C? to C?*'. The resulting
cohomology groups are denoted H?(K; G) and called the cohomology groups
with compact support.

(b) If K is the complex whose space is R and whose vertices are the integers,
show that H!(K) = Z and H%(K) = 0.
(c¢) Show that if |K| is connected and non-compact, then H%(K) = 0.

5. A map h: X — Y is said to be proper if for each compact subset D of Y, the set
h~'(D) is a compact subset of X. A proper homotopy is 2 homotopy that is itself
a proper map.
(2) Show that the assignment

K— H*(K; G) and h— h*

defines 2 functor from the category of locally finite simplicial complexes and
proper continuous maps of their polytopes to abelian groups and homomor-
phisms. [Hint: If h is proper, so is any simplicial approximation to h. If f
and g are contiguous and proper, and D is the chain homotopy between them,
show that D carries finite cochains to finite cochains. If A : @(K) — @(K') is
the subdivision operator and if g: X' — K is a simplicial approximation to
the identity, show that the duals of A and g, carry finite cochains to finite
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cochains. Prove the same for the dual of the chain homotopy between A o g,
and the identity.]
(b) Show that if

h k:1K|— L]

are properly homotopic, then #* = k* as homomorphisms of cohomology
with compact support. [Hint: Show that if D is the chain homotopy con-

structed in proving Theorem 19.2, then D carries finite cochains to finite
cochains.]

(c) Extend the results of (a) and (b) to relative cohomology. Does there exist a
long exact sequence of cohomology with compact support? If so, is it natural
with respect to induced homomorphisms?

(d) Is there an excision theorem for cohomology with compact support?

*6. Repeat Exercise 5 for the homology groups based on infinite chains, which were
introduced in the Exercises of §5.

§45. THE COHOMOLOGY OF
FREE CHAIN COMPLEXES

Until now, we have computed the cohomology groups only for a few simple
spaces. We wish to compute them more generally. We shall prove that for a
CW complex X, the cellular chain complex D(X), which we know can be used
to compute the homology of X, can be used to compute the cohomology as well.
This we shall prove in §47. The proof depends on two theorems about free chain
complexes, which we prove in this section.

The first theorem states that for free chain complexes € and 2, any homo-
morphism H,(€) — H,(D) of homology groups is induced by a chain map ¢.
And the second states that if a chain map ¢ : @ — D of free chain complexes
induces an isomorphism in homology, it induces an isomorphism in cohomology
as well. An independent proof of this second theorem will be given in Chapter 7,
so you can simply assume this theorem for the time being if you wish.

Definition. A short exact sequence of abelian groups,
0—A—B—C—0,

where 4 and B are free, is called a free resolution of C. Any abelian group C has
a free resolution; one can take B to be the free abelian group generated by the
elements of C, and take A to be the kernel of the natural projection B — C. This
gives what is called the canonical free resolution of C.
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Free resolutions have the following useful property: Suppose one is given
the diagram

0—a-2t.3 ¥ . c—0

E
0 A ¢ B’ ¥ (oY 0
where the horizontal sequences are exact and 4 and B are free. In this situation,
there exist homomorphisms ¢ : 4 — A4’ and §: B — B' that make this diagram
commute.

The proof is easy. Choose a basis for B; if b is a basis element, let 8 map b
into any element of the set (') ' (y(¥())); this set is non-empty because y/ is
surjective. A bit of diagram-chasing shows that 8 carries im ¢ into im ¢'; be-
cause ¢’ is a2 monomorphism, 8 induces a homomorphism «: 4 — A'.

Now we prove the first of our basic theorems.

Theorem 45.1. Let € and @' be free chain complexes. If v: H,(€) —
H,(C') is a homomorphism defined for all p, then there is a chain map
¢ : C — @' that induces ~.

Indeed, if B: Z,— Z, is any homomorphism of cycle groups inducing =,
then 8 extends to a chain map ¢.

Proof. Let Z,denote the p-cycles, and B,, the p-boundaries, in the chain
complex €. Similarly, let Z; and B, be the p-cycles and p-boundaries of €'.
Since these groups are free abelian, there exist, for all p, homomorphisms «, 8
making the following diagram commute:

0 — B,——Z,— H,(€) — 0
|« [s |~
0 — B,——Z,— H,(€')— 0.

We seek to extend § to a chain map ¢ of C, into C,. For that purpose, con-
sider the short exact sequences '

3
0—2,—C,~——B,_,—0

P

8| e | =
+ 3.’,
0 ——Z,—C,—=B,_,— 0.

Because B, _,and B, _, are free, the sequences split. Choose subgroups U, and
U, so that

C,=2,0U, and C,=2Z,0U.

Then 8,:U,— B, ., and 4, : U, — B, _ , are isomorphisms. We define ¢: C, —
C, by letting it equal §:Z,— Z; on the summand Z,, and the map U, — U,
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induced by a on the summand U,. Then the first square commutes, automati-
cally. The second square commutes for any element of U,, by definition. And it
commutes for any element of Z, by exactness, for

a(8z) =a(0) =0 and  4¢(z,) = 3(B(z,)) = 0.
Thus it commutes for any element of C,.
Now we show that ¢ is a chain map. Consider the diagram

G B,_, Z, G-

4

o, I« 1o e

C,—~B,_,—Z, . ,—C,

p -1

where the unlabelied maps are inclusions. The middle square commutes by defi-
nition of & and f; the two end squares commute as we have just proved. Thus ¢
is a chain map.

The fact that ¢ induces the original homology homomorphism - follows from
the definition of 8. O

Corollary 45.2. Suppose {@, ¢} and (€', ¢'} are free augmented chain com-
plexes. If v : H (@) — H,(C") is a homomorphism defined for all p, then ~ is
induced by an augmentation-preserving chain map ¢ : € — €'.

Proof. Consider the augmented chain complexes obtained from € and €’;
they have Z as their (—1)-dimensional groups and ¢, ¢', respectively, as the
boundary operators from dimension 0 to dimension —1. We define 8 to equal
the identity in dimension —1 (where the homology vanishes), and to be any
homomorphism of cycle groups inducing < in other dimensions. The preced-
ing theorem applies; the resulting chain map ¢ will automatically preserve
augmentation. O

Now we prove the second of our basic theorems. We begin by considering a
special case.

Lemma 45.3. Let

0—e2p—g—0

be an exact sequence of free chain complexes. If ¢ induces homology isomor-
phisms in all dimensions, it induces cohomology isomorphisms as well.

Proof. The existence of the long exact sequence in homology and the fact
that ¢, is an isomorphism imply that H,(&) = 0 for all p. To prove that ¢* is
an isomorphism, it suffices to show that H”(&; G) = O for all p.

Let B, C Z, C E,denote boundaries, cycles, and chains of &, respectively,
in dimension p. The short exact sequence

3
0—Z,—~E,—B,_,—0
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splits because B, _ , is free. Furthermore, Z, = B, because the homology of &
vanishes. Therefore, we can write E, = B, ® U,, where d maps B, to zero and
carries U, isomorphically onto B, _,. Now

Hom(E,,G) = Hom(8,,G) ® Hom(U,.G).

You can check that & induces a homomorphism that carries Hom(B,,G)
isomorphically onto Hom(U, . ,,G) and carries Hom(U,,G) to zero. Then
Hom(U,,G) represents the cocycle group of & and it equals the image of 4.
Thus H?(6;G)=0. O

This special case of our theorem is all we actually used in the preceding
section. Later, however, we shall need the general version. The general case is
reduced to the special case by means of the following lemma.

Lemma 454. Let @ and D be free chain complexes; let ¢: € — D be
a chain map. There is a free chain complex 2 and injective chain maps
i:@— D and j: D — D such that j induces homology isomorphisms in all
dimensions, and the diagram

)
i\ ‘l Jj
ﬂr
commutes up to chain homotopy. Furthermore, the quotients 9'/imi and
D'/im j are free.

Proof. The definition of D’ is one we shall simply “pull out of a hat.”
Later, we shall explain its geometric motivation. It is sometimes called the
“algebraic mapping cylinder” of ¢.

Define 2’ to be the chain complex whose chain group in dimension p is
given by

D,=C,®D,®C,_,.
Let the boundary operator in D' be defined by the equations
9" (c,,0,0) = (3c,,0,0),
9'(0.4,,0) = (0,44,,0),
a’ (O,O,Cp 1) =(=c,_ I’¢(Cp - 1)’—6"} -1

You can check without difficulty that 3’ o 3’ = 0. It is clear from the defini-
tions that the natural inclusions i : C,— D, and j: D,— D, are chain maps.
It is also clear that D, and the quotients D,/im i and D,/im j are free.

We define a chain homotopy D: C,— D, , , by the equation

D(c,) = (0,0,c,).
You can check that it satisfies the equation

D +Dd=jod—Ii.

273
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Finally, we show that j induces an isomorphism in homology. For that pur-
pose, it suffices to show that the homology of the chain complex D'/ D vanishes.
The pth chain group of 2'/D is isomorphic to C,® C, _,, and the induced
boundary operator 3" is given by the equation

0" (¢ps€p 1) = (8¢, — ¢, _y, —8c, ).

If (¢,,c,- 1) is a cycle of this chain complex, then it follows in particular that
dc, — ¢, -y = 0. We compute directly

(CP,CP - l) = (cp,acp) = —a”(o,cp).
Thus (¢,.c,-,) is a boundary. O

Theorem 45.5. Let € and D be free chain complexes; let ¢ : @ — D be
a chain map. If ¢ induces homology isomorphisms in all dimensions, then ¢
induces cohomology isomorphisms in all dimensions.

Proof. Given ¢, let i:@— D' and j: D — D’ be as in the preceding
lemma. One has exact sequences of free chain complexes

0—eLo—2/6—o,

o—2Lo—2/0—0

The map j induces a homology isomorphism by the preceding lemma, while i
induces a homology isomorphism because both j and ¢ do and i is chain homo-
topic to j o ¢. Therefore, by Lemma 45.3, i and j induce cohomology isomor-
phisms i* and j*, respectively, in all dimensions. Since i is chain homotopic
to jo ¢, we have i* = ¢* o j*; therefore, ¢* is a cohomology isomorphism
aswell. 0O

Corollary 45.6. Let @ and D be free chain complexes. If H,(€) = H,(D)
for all p, then H?(@; G) = H?(D;G) forallpand G. O

Remark. Let us explain the geometric motivation underlying the definition of the
chain complex D',

In homotopy theory, there is a standard construction for, roughly speaking,
replacing an arbitrary continous map k: X — Y by an imbedding of X in a space
that is homotopy equivalent to Y. More precisely, there is a space ¥’ and imbed-
dings i and j such that the diagram

x-toy

A\p
YI
commutes up to homotopy, and such that j is 2 homotopy equivalence. It follows at

once that k is a homotopy equivalence if and only if i is. In this way problems
concerning the map  are reduced to problems concerning the imbedding i.
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This construction is called the mapping cylinder construction. We describe it
here, and explain how the chain complex 2D’ is an algebraic analogue.

Given h: X — Y, let us form a quotient space from the disjoint union of X X 7
and Y by identifying each point (x,0) of X X 0 with the point h(x) of ¥. The
resuiting adjunction space Y is called the mapping cylinder of k. We picture it as
looking something like a “top hat.” See Figure 45.1.

Let #: (XX I) U Y—Y' be the quotient map. The restriction of = to ¥
defines an imbedding j of Yin Y”, and the map i(x) = = (x,1) defines an imbedding
of X in Y’. Clearly j(Y) is a deformation retract of Y”; one just “pushes down the
top hat” onto j(¥). Just as clearly, the map i: X — ¥ is homotopic to the map
J o h; again, one just “pushes i(X) down.”

We seek to imitate this construction algebraically. So let us suppose for conve-
nience that ¥” is triangulated in such a way that i(X) and j(Y) are subcomplexes,
and so is each set v{(c X I), for ¢ € X. Let us identify X with i(X), and Y, with
j(Y), for simplicity of notation. Now &(X) plays the role of the chain complex
@, and @(Y) plays the role of D, and @(Y’) plays the role of D'. The map
hy: @(X) — O(Y) plays the role of the chain map ¢.

What does the chain complex D’ look like algebraically? Suppose we break Y’
up into the cells of a CW complex. The open p-cells will consist of the open p-
simplices Int o, of X, the open p-simplices Int 7, of Y, and the open cells of the form
#z(Int g, _, X IntI) that lie “between” X and Y. Then the pth chain group of ¥ is
essentially just

C,(X) 8 C,(Y)®C,_,(X),

since the group of “in between” cells is isomorphic to C,_,(X). How does the
boundary operator of Y’ act on these chains? Clearly it acts just like 3, in X, and
like 3y in ¥. What does it do to a cell of the third kind? In the space X X I, it is
easy to see that

e XIN=0X0—-06X1=x (o) X1

(One has to be careful with signs.) When X X 0 is pasted onto Y via A, this for-
mula becomes

d(Inte X IntI) = hy(o) — o = (d0) X I.

XX17

Figure 45.1
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Finally, when we identify the p-chains of Y with the group C,(X)® C,(Y)®
C, _ 1(X), this formula becomes
8'(0,0,0,_,) = (—a,_1,hy(0,_,), £ 30, _,).

(The last sign must in fact be —, in order that 4’ c @’ = 0.) By now it should be

quite clear what the connection is between the algebraic and topological map-
ping cylinders!

Let us give one application of this theorem. It is a formula that relates
cohomology with homology. It will be generalized in Chapter 7.
Definition. If @ = {C,,d} is a chain complex, there is a map
Hom((C,,G) X C,— G

which carries the pair (c?,c,) to the element {c’,c,) of G. It is bilinear, and is
called the “evaluation map.” It induces a bilinear map

H?(€; G) X H,(€) — G,
which we call the Kronecker index. We denote the image of «” and 8, under the
map also by (2,8,).
It is easy to see that the Kronecker index is well-defined, since
(22 + 8d” " '2,) = (2%,z,) + (d" " ',8z,)
and
(28,2, + 8d, . ,) = (zF,2,) + (0z°,d, . ;).

The final terms vanish if z” is a cocycle and z, is a cycle.

Definition. It is convenient to define the Kronecker map
« : H?(@; G) — Hom (H,(€),G)
as the map that sends « to the homomorphism (&, ). Formally, we define
(ka”) (B,) = (a”.B,).

The map « is a homomorphism because Kronecker index is linear in the first
variable. We leave it to you to check that « is “natural.” (See Exercise 2.)

The following lemma is elementary; its proof makes no use of the theorems
of this section.

Lemma 45.7. Let @ be a free chain complex. Then there is a natural
exact sequence

0 — Hom(H, (€),G) £ H?(®; G) — ker x — 0.
It splits, but not naturally.
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Proof. We shall construct a homomorphism
A* : Hom (H,(@),G) — H*(€; G)

such that « o A* is the identity. It follows that « is surjective and that the se-
quence splits.

Let B,, Z,, and C, denote boundaries, cycles, and chains, respectively, in €.
We begin with the projection homomorphism

x:Z,— Z,/B, = H,(®).

The exact sequence 0 — Z,— C,— B, _, — 0 shows that Z, is a direct sum-
mand in C,. Therefore, 7 extends to a homomorphism X : C, — H,(@). Define a
chain complex & by letting E, = H,(€) and letting all boundary operators in &
vanish. Then

H,(6) =E,= H,(0),
H?(&; G) = Hom (E,,G) = Hom(H,(€),G).

Because the boundary operators in & vanish, the map A : @ — & is a chain map.
For Mdc, 1) = {dc, + ,} = 0. The induced homomorphism in homology

A\ H,(C)— H,(6) = H,(C)
is the identity map (and hence an isomorphism). For if z,is a p-cycle,
A (zh) = Az,) =7(z,) = {zp}.
The induced homomorphism in cohomology

H?(€; G) X B (6; G) = Hom(H, (€),6)

is not in general an isomorphism.
Now the composite « o A* is the identity map of Hom (H,(€),G), for if
{z,} € H,(€) and v € Hom(H,(€),G), then

AWMUz = A*().lzh = R(v).z,)
=Mz =v(z,h. O

Theorem 45.8. Let € be a free chain complex. If H,(€@) is free for all p,
then « is an isomorphism for all p.

Proof. Let A:@ — & be as in the preceding lemma. Since the homology
of @ is free, & is a free chain complex and Theorem 45.5 applies. Since the
chain map X : € — & induces homology isomorphisms X, in all dimensions, A\*
is an isomorphism. The fact that « o \* is the identity implies that « is an iso-
morphism as well. O

This theorem says that if the homology of @ is free in all dimensions, then
the cohomology group H?(@; G) can be considered in a natural way to be the
dual group Hom(H,(€),G) of the homology group H,(€). We will generalize
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this theorem in Chapter 7; all one in fact needs is for the single group H, _ ,(®)
to be free.

EXERCISES

1.

2.

Check that the operator 3’ defined in the proof of Lemma 45.4 satisfies
3.9 =0

(a) Show that the Kronecker map « is natural with respect to homomorphisms
induced by chain maps. That is, show that if ¢ : @ — D is a chain map, the
following diagram commutes:

Hom (H,(€),G) —— H?(C; G)
] s I ¢*
Hom(H,(D),G) ——H?(D; G).

(b) Naturality of the Kronecker index itself is a bit awkward to formulate, since
it is covariant in one variable and contravariant in the other. Let ¢: @ — D
be a chain map; show that if & € H?(D; G) and 8 € H,(€), then

9* (a).B) = (.04 (B))-

. Let X and Y be spaces such that H,(X), H"(X), H,(Y), and H*(Y) are infinite

cyclic. Let f : X — Y be a continuous map. Show that if
So : H(X) = H(Y)
equals multiplication by d, then (up to sign) so does
S[*:H (Y)— H"(X).

{Hint: Show « is an isomorphism.]

. Since arbitrary choices are made in the definition of the homomorphism A : C, —

H,(@) in the proof of Lemma 45.7, one would not expect the splitting homo-
morphism

A* : Hom (H,(€),G) — H? (€; G)

to be natural. Show that it is in fact not natural, as follows:
(a) Find free chain complexes €, D and a chain map ¢ : € — D such that for no
choices of \ does the following diagram commute:

Hom (#,(€),6) = H? (€; G)
N
Hom (H,(D).6) - H? (2; G).

*(b) Find spaces X and Y and a continuous map f: X — Y, such that setting
€ = $(X), D = $(Y), and ¢ = f, realizes the situation of (a).
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*§46. CHAIN EQUIVALENCES IN
FREE CHAIN COMPLEXES'

We now prove a second version of Theorem 45.5. Again we assume we are given
a chain map ¢ : @ — D of free chain complexes that induces homology isomor-
phisms in all dimensions. We show that if € and D satisfy the (fairly mild)
additional condition that both vanish below a certain dimension, then it follows
not just that ¢* is an isomorphism, but that the chain map ¢ is itself a chain
equivalence. The proof involves the “algebraic mapping cylinder” we con-
structed in the last section.

First we need an elementary lemma, which for later use is stated in slightly
greater generality than we presently need.

Lemma 46.1. Let & and F be non-negative chain complexes. Suppose
E,is free for p> 0 and H,(¥) = 0 for p> 0. Then any two chain maps
f, g:6 — F that agree in dimension 0 are chain homotopic.

Proof. Define D: E,— F, to be zero. Then the equation éD + Dd =
g — f holds in dimension 0, because g = fin dimension 0. Suppose D is defined
in dimension p — 1, where p > 0. Choose a basis for E,. If e is a basis element,
then g(e) — f(e) — D(3e) is well-defined, and it is a cycle (by the usual com-
putation). Define D(e) to be an element of F, , , whose boundary equals this
cycle. O

As you might suspect, one can with care derive this result from the acyclic
carrier theorem. It isn’t worth the effort.

Theorem 46.2. Let @ and D be free chain complexes that vanish below a
certain dimension; let ¢ : € — D be a chain map. If.¢ induces homology iso-
morphisms in all dimensions, then ¢ is a chain equivalence.

Proof. We return to the chain complex D' defined in the proof of Lemma
45.4. The inclusion mapping

i:C,—D,=C,®D,®C,_,

is chain homotopic to j o ¢, where j: D, — D, is inclusion. Since j and ¢ induce
homology isomorphisms, so does i. It follows that the chain complex & = D'/€
has vanishing homology in all dimensions. Now

E,=D,®&C,_,.
The induced boundary operator satisfies the formula
8(d,hc, - 1) = (8d, + (¢, - 1), —dc, _ ).

"We shall use the results of this section in §56 and §60 in proving the naturality of certain
exact sequences.
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We apply the preceding lemma to the chain complex & and any two chain
maps f, g from & to itself. The chain complex & vanishes below a certain
dimension (since @ and D do); we may as well take this dimension to be di-
mension 1. We know that E, is free and H,(6) = 0, for all p. Since any two
chain maps f, g: 6 — & agree (trivially) in dimension 0, they are chain homo-
topic. In particular, there is a chain homotopy between the identity map and the

zero chain map. That is, there is a homomorphism D: E,— E, , , satisfying
the equation

dD + Dd = identity.

Hidden in this formula are all the chain maps and chain homotopies we need.

Recalling that £, = D,® C,_,, we define homomorphisms 6, ¥, A, u by
the equations

D(d,0) = 0@)¥(d,)  €D,.,®C,
D(O,CP_ l) = (A(Cp- l)”‘(cp - I)) € Dp+ 1 o Cp'
Then we compute like mad! First we compute
Di(d,,0) = (6(dd,)¥(34,)),
Adding these two equations, we obtain the equations
d,=6(3d,) + 36(d,) + &¥(d,),
0 = ¥(2d,) — 30(d,).

The second equation says that ¢ : D,— C, is a chain map, and the first says

that 8: D, — D, ., is a chain homotopy between ¢ o { and the identity. Second,
we compute

D(0.c, 1) = D($(c,-1),0) — D(0,3c, - )
= (6(c, - )¥d(c, - 1)) — (A (3¢, - 1).u(dc, - 1)),
aD(O0,c, - 1) = SN (C, - )n(cy- 1))
= (e - 1) + Bulc, - 1) —3u(c, ).
Adding the second coordinates of these equations, we obtain the equation
Cpor = ¥8(c, - 1) — 1(3c, - 1) — dulc,-y),

which says that u is a chain homotopy between ¢ o ¢ and the identity.
Thus our theorem is proved. O

EXERCISES

1. Let X be a space; let A be a collection of subsets of X whose interiors cover X.
Show that inclusion

i §YX) — $(X)

is a chain equivalence.
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2. Let : @(K) — $(IK]) be the chain map of §34, which induces an isomorphism
of simplicial with singular homology. Show 7 is a chain equivalence.
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§47. THE COHOMOLOGY OF CW COMPLEXES

Now we can compute the cohomology groups of some familiar spaces, and can
find specific cocycles that generate these groups. The basic theorem we shall
use in carrying out these computations is the following:

Theorem 47.1. Let X be a CW complex; let D(X) be its cellular chain
complex. Then

H?(D(X);G) =< H?(X;G)

for all p and G. If X is a triangulable CW complex, triangulated by a complex
K, then the isomorphism is induced by inclusion D(X) — € (K).

Proof. Both D(X) and §(X) are free chain complexes. Since their homol-
ogy groups are isomorphic, so are their cohomology groups, by Corollary 45.6.
In the case where X is triangulable, the inclusion map i : D(X) — @(K) induces
the homology isomorphism in question. (See Theorem 39.5.) Then i induces a
cohomology isomorphism as well. []

Corollary 47.2. Let n> Q. Then
H (S"G)=Gfori=0andi=n,
H (B"S""%G)=G fori=n.
These cohomology groups vanish for other values of i.

Proof. The first statement follows from the fact that the cellular chain
complex of S$”" is infinite cyclic in dimensions 0 and » and vanishes otherwise,
and all the boundary operators vanish. The second then follows from the long
exact sequence in reduced cohomology, using the fact that the reduced coho-
mology of B” vanishes, since it is contractible. [J

Example 1. Let X denote either the torus T or the Klein bottle S, expressed as a
CW complex having one open cell in dimension 2, two in dimension 1, and one in
dimension 0. We computed the cellular chain complex of X, in Example 2 of §39, to
be of the form

9, 9
= 0—~Z—Z2Z86Z—Z—0.

Let v generate D,(X); let w, and z, be a basis for D,(X). We know 4, and 8, vanish
in the case of the torus. Passing to the dual sequence, we compute

HYT;G) =G, HY (T:G)=G®G, H'(T,G) =G.
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In the case of the Klein bottle, we know that 3, vanishes, and that we can
choose w, and z, so that d;y = 2z,. The dual sequence is of the form

5 8
+—0—G—GO®G—G—0.

Here Hom(D,(S),G) = G ® G, where the first summand represents those homo-
morphisms ¢ : D,(S) — G that vanish on z,, and the second represents those ho-
momorphisms ¢ : D,(S) — G that vanish on w,. Because 4, is trivial, so is its dual 5,.
We compute 8, as follows:

8:0,7) = {$,0,7) = 2(p,2) = O,
8.0,y = W, 8,v) = 2, 2,).

Thus 3, carries the first summand to zero, and equals muitiplication by 2 on the sec-
ond summand. We conclude that

H(S;G) = G/2G, H'(S;G):Geker(G—z" G), H'(S;6G) = G.
In particular,
H(S)=1Z/2, H'(S)=1Z, H'(S) = Z.

The computations given in the preceding example are typical. Once one has
the cellular chain complex D(X), computing the cohomology groups is not hard.

However, there is an associated problem that is more difficult—namely,
the problem of finding specific simplicial cocycles that generate these groups.
In the next section, when we study cup products, we shall need to have such co-
cycles at hand. How can one find them?

In the case of homology, finding simplicial cycles of X that generate the
homology is not difficult. Let us represent T and S as quotient spaces of the rect-
angle L, as pictured in Figure 47.1. The chain 4 of L that is the sum of all the
2-simplices of L, oriented counterclockwise, is a fundamental cycle for (L, Bd L),
so its image v = g,(d) generates the cellular chain group D,(X). Similarly,
the chains

w, = [a,b] + [b,c] + [c,a],
z, = [a,d] + [d,e] + [e.a],

are a basis for the cellular chain group D,(X). As we know, these chains are
cycles representing certain elements of the homology of D (X). Now because
the isomorphism H;(D(X)) = H;(X) is induced by inclusion i : D(X) — €(X),
these same chains, considered now as chains in @(X), represent elements of the
simplicial homology of X.

However, cohomology is not so easy. What happens in this case? We can of
course find generators for the cohomology of the cellular chain complex D(X):
The homomorphism A : D,(X) — Z that maps the fundamental cycle v to 1
generates Hom (D,(X),Z) = Z. And the homomorphisms ¢, : D,(X) — Z de-
fined by

(¢swl) = 1 and (¢’zl) = 0’
Ww)=0 and (z)=1,
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Figure 47.1

are a basis for the group Hom(D,(X),Z) == Z & Z. For the torus,  vanishes, so
A generates H*(D(T)) and ¢ and ¢ represent a basis for H'(D(T)). For the
Klein bottle, we have 6¢ = 0 and 8§ = 2X, so A represents the non-zero element
of H*(D(S)) = Z/2 and ¢ represents a generator of H'(D(S)) = Z.

However, unlike the situation in homology, the homomorphisms A and ¢
and ¢ cannot be “considered” as cocycles of the simplicial complex X. For the
inclusion map i:D,(X) — C,(X) induces a homomorphism in the opposite
direction

Hom (D,,(X),Z)«—E— Hom(C,(X),Z).

This homomorphism is a restriction map. To find cocycles of the simplicial com-
plex X that generate the simplicial cohomology of X, we must pull A, ¢, and ¢
back to cocycles

22 C(X) ~ Z,
wly zl : CI(X) - Z,

whose restrictions to the subgroups D,(X) and D,(X), equal A, ¢, and v,
respectively.

There is no general procedure for finding such cocycles. But in the present
case, since we know that a cocycle is supposed to look like a “picket fence,” we
can find the desired cocycles without too much difficulty, as we now show.

Example 2. Generators for the cohomology of the torus. We represent T as a quo-
tient space of the rectangle, as in the preceding example. Let w, and z, be as in that
example. The cochains w* and z! pictured in Figure 47.2 are cocycles of T, by direct
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computation. Furthermore, when evaluated on the cycles w, and z, that generate
D,(X), we have

wWiw) =1 and W,z)=0,
<ZI,W1> =0 and <zl;z|> = 1.

Thus w* is a “pull-back” of ¢, and z' is a pull-back of . Therefore, they represent a
basis for H'(T).

Similarly, if ¢ is any 2-simplex of T, oriented counterclockwise, then ¢* is a
cocycle of 7. Because {¢*%v) = 1, the restriction of ¢* to the subgroup D,(X) of
C,(X) equals A, so o* is a pull-back of A. Thus ¢* represents a generator of H*(T).
(More generally, if all 2-simplices of T are oriented counterclockwise, then the co-
chain Zn,¢} of T is a pull-back of A if and only if Zn, = 1.)

Example 3. Generators for the cohomology of the Klein bottle, with integer coef-
ficients. We follow the pattern of the preceding example. Switch the labels d and e
on the right side of the rectangles in Figure 47.2 so they represent the Klein bottle.
Then w! still represents a cocycle; it generates H'(S). And the cochain o* repre-
sents the non-zero element of H*(S). (More generally, the cochain Zn;¢¥ represents
the non-zero element of H2(S) if and only if Zn, is odd.)

Example 4. Generators for the cohomology of the Klein bottle, with Z[2 coeffi-
cients. The cohomology groups are given by

H(S;Z/2) =Z/2, H'(S;Z/2)=Z/20Z/2, H(S;Z/2)=Z/2

The pattern of the preceding argument applies to show that the cochains w* and z*
of Figure 47.2 generate the 1-dimensional cohomology. (You can erase the arrows if
you like, since 1 = —1 in the group Z/2. Thus there is no problem in making z* a
cocycle.) The cochain ¢* (or more generally 6} + - - - + of, where k is odd), gen-
erates H*(S; Z/2).

Example 5. The cohomology of P* with Z[2 coefficients. One has
HI(PHZ/2)=127/2 for i=0,1,2

If ¢ is a 2-simplex, the cochain ¢* generates the 2-dimensional group. And the co-
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d ¢ b a

Figure 47.3

cycle pictured in Figure 47.3 generates H'(P* Z/2), for its value is 1 on the cycle
[a,b] + [b,c] + [c,d] + [d.e] + [e.f] + [f.al
that generates D, (X).

EXERCISES

1. Compute the cohomology of P* and P> with integer coefficients, with Z/2
coefficients, and with rational coefficients.

2. Compute the cohomology of CP* and CP®.

3. Compute H' (T # T). Find simplicial cocycles that generate the cohomology, if
T # T is triangulated as indicated in the exercises of §6.

4. Compute the cohomology of P* # P* # P* # P?, with Z /2 coefficients. Find sim-
plicial cocycles that generate the cohomology.

5. Compute the cohomology of the Kiein bottle S with Z/6 coefficients; find rep-
resentative cocycles as in Examples 3 and 4.

6. Compute the cohomology of the 5-fold dunce cap X with Z and Z/5 coeffi-

cients. (See Exercise 6 of §6.) Triangulate X and find cocycles that generate
the cohomology.

7. Compute the cohomology of the lens space L(#n,k) with Z and Z/n coefficients.
8. Triangulate S? and the torus T let f: T — S? be a simplicial map. Show that if
Jo : Hy(T) — H,(S?) equals multiplication by d, so does f* : H*(S*) — H*(T),

by comparing the values of f, and f* on generators. Compare with Exercise 3
of §45.
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§48. CUP PRODUCTS

The results of §45 tell us that, if the homology groups fail to distinguish be-
tween two spaces, then the cohomology groups will fail as well. One might be
tempted to ask, “Why bother with cohomology? What possible use can it be?”

There are several answers to this question. One answer is that cohomology
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appears naturally when one studies the problem of classifying, up to homotopy,
maps of one space into another. Another is that cohomology is involved when
one integrates differential forms on manifolds. Still another answer is the one
given in this section. We show that the cohomology groups have an additional
algebraic structure—that of a ring—and that this ring will distinguish between
spaces when the groups themselves will not.

We shall define the ring structure of cohomology by giving a specific co-
chain formula for the multiplication operation. Historically, this is how the
ring structure was first obtained. The formula was discovered about 1936 by
Alexander, Cech, and Whitney. At the time, it seemed very mysterious; its geo-
metric meaning was not at all clear. Furthermore, it was very puzzling why
there was a multiplication operation in cohomology but not in homology.

In the case of a compact orientable manifold, it had been known for some
time that its homology had a ring structure. The multiplication operation in this
ring was called the intersection product, and had a clear geometric meaning.
But all attempts to generalize this multiplication to more general spaces failed.
It was not until 1942, when Lefschetz gave a new definition of the multipli-
cation operation in cohomology, did it become clear why, for general spaces,
there exists a cohomology ring but not a homology ring. It also became clear
about the same time what the relation was between the homology and cohomol-
ogy rings when both were defined; the Poincaré duality theorem showed that
the two rings were isomorphic. We shall return to these matters later. (See §61
and §69.)

Review of rings, modules, and fields

We begin by reviewing some basic facts from algebra concerning rings and
modules.

A ring R is an abelian group, written additively, with a multiplication oper-
ation satisfying two axioms:

(1) (Associativity) a-(8-v)=(a-B) - 7.

(2) (Distributivity) a- (B +v)=a-B+a-7;

(@+B)-y=a-vy+B8-7

If -8 =28- afor all ap, then R is said to be commutative. If there is an
element 1 in Rsuchthate - 1 = 1 . a = aforall o, then 1 is called a unity ele-
ment in R. If R has a unity element, this element is easily seen to be unique; fur-
thermore, one has (—1) -a@a = —aand 0 . a = O for all e.

If R is a commutative ring with unity, and if R satisfies the additional con-

dition that for every e # 0, there is a § such that « - 8 = 1, then R is called
a field.

Example 1. Examples of rings include, among many others, the following:

(i) The integers Z.

(ii) The set Z/n of integers modulo n.
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(iii) The set of n X n matrices with integer entries.
(iv) The set of polynomials with integer coefficients.
Examples of fields include:
(v) Z/p, where p is prime.
(vi) The rationals Q.
(vii) The real numbers R.

(viii) The compiex numbers C.

In each case, the multiplication operation is the usual one.

Now suppose 4 is an additive group and R is a commutative ring with
unity. We say A4 has the structure of module over R if there is a binary oper-
ation R X A — A (written as scalar multiplication) such that for a,8 €R and
.a,b € A, we have:

(1) a(a + b) = aa + ab.

2) (a + B)a = aa + Ba.

(3) a(Ba) = (a - B)a.

4) la=a

If Aand B are R-modules, a module homomorphism is a homomorphism ¢ : 4 —
B such that ¢ (aa) = a¢(a) for @« € R and a € A. The kernel and the cokernel
of such a homomorphism have natural R-module structures. In the special case
where R is a field F, we call 4 a vector space over F, and we call the homomor-
phism ¢ a linear transformation.

We shall not have much occasion to deal with modules in this book. Our
primary concern will be with rings and vector spaces.

Example 2. Given R, it can always be considered as an R-module over itself. More
generally, the cartesian product R” becomes an R-module if we define

a(By,..-.8.) = (aBy .. .,aB,).

Example 3. If G is an abelian group, then G has a natural structure of Z-module,
obtained by defining ng to be the n-fold sum g + - - - + g, as usual.
Cup products

Throughout this section and the next, we shall let R denote a commutative
ring with unity element 1.

Definition. Let X be a topological space. Let S*(X; R) = Hom(S,(X),R)

denote the group of singular p-cochains of X, with coefficients in R. We define
a map

S?(X; R) X SU(X;R) = 8?*1(X; R)

287
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by the following equation: If T: A, . , — X'is a singular p + g simplex, let
€? 0t T)=AcP,Tol(e,...,6)) ),Tolle,..

co p & q))-
The cochain ¢? U ¢? is called the cup product of the cochains ¢ and ¢*.

Recall that I(w,,..,w,) is the linear singular simplex mapping ¢ into
w; for i=0,...,p. The map T o l(s,...,¢) is just the restriction of T to
the “front p-face” A, of A, , . it is a singular p-simplex on X. Similarly,
Tol(e,---,64,) is, roughly speaking, the restriction of T to the “back g-
face” of A, , ; it is a singular g-simplex on X. The multiplication indicated on
the right side of this equation is multiplication in the ring R, of course.

What, if anything, this mysterious formula means remains to be seen.

Theorem 48.1. Cup product of cochains is bilinear and associative. The
cochain z° whose value is 1 on each singular 0-simplex acts as a unity element.
Furthermore, the following coboundary formula holds:

* 6(c? L ¢ = (6c?) L T+ (—1)Pc? L (6c9).

Proof. Bilinearity is immediate, since two cochains are added by adding
their values, and multiplication in R is distributive. Associativity is also imme-
diate; the valueof (¢ L ¢*) L ¢"on T: 4, ., ,— X equals the product of

(e, T ol(en .. )
<cq, T hd I(ep, A ‘Jep + q)>, a‘nd
(€ Tol(egug - -16aqer))
The value of ¢ L (¢? uc”) on T equals the same. The fact that ¢cfuL 2° =
2° U ¢? = ¢’ follows directly from the definition.
To check the coboundary formula, we compute the value of both sides of
(*) on T:A,— X, where we let r = p + g + 1 for convenience. The cochains

(6¢?) L ¢? and (—1)?¢”? U (6c?), evaluated on T, equal the two following ex-
pressions, respectively:

p+1

z(—-l)‘(c",To | TCRU SUSURPIIN SR LY (8 [ CRRUIIN'S )
i=0
and

(1P (m1F AT o lean o)) - T o Ly - 56))
i=p

If we add these expressions, the last term of the first expression cancels the
first term of the second expression; what remains is precisely the formula for
P LwcneT). O



§48. Cup Products

Theorem 48.2. The cochain cup product induces an operation

H?(X: R) X H'(X;R)= H?**(X; R)

that is bilinear and associative. The cohomology class {z°} acts as a unity
element.

Proof. If zF and z? are cocycles, then their cup product is a cocycle as
well, since

0z uzf) =8z2 Uz + (—1)z° UEz? = 0.

The cohomology class of this product depends only on the cohomology classes
of zf and z4 since

(ZZ+od* Y uzi=2 Uz + 6(d ! LI
and

2O+ =220+ (—1)P8(zP wd?™Y). O

Theorem 48.3. If h:X— Y is a continuous map, then h* preserves cup
products.

Proof. In fact, the cochain map A* preserves cup products of cochains. For
by definition, the value of #*(c” U ¢%) on T equals the value of ¢? L ¢? on
h o T, which is

(P hoeTolle,... ,ep)) AcLhoTo l(ep, ey p.“,)),

and the value of A*(c?) U h*(c?) on T equals the same. [

Definition. Let H* (X; R) denote the external direct sum @ H'(X; R). The
cup product operation makes this group into a ring with a unity element. It is
called the cohomology ring of X with coefficients in R.

If h: X — Y is a continuous map, then A* is a ring homomorphism. There-
fore, a homotopy equivalence induces a ring isomorphism. It follows that the co-
homology ring is a topological invariant, in fact, a homotopy-type invariant.

Commutativity

We have not yet discussed whether or not the cohomology ring is commuta-
tive. In fact it is not, in general. Instead, it has a property commonly called anti-
commutativity. Specifically, if a? € H?(X; R) and 8? € H'(X; R), then

a? U BT = (—1)MB% LU a’.

We shall not prove this formula now, for the proof will become much easier
when we give an alternate definition of the cup product operation later on.

289
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In the next section, we shall compute the cohomology ring in several spe-
cific cases. But first, let us introduce several generalized versions of our cup
product operation.

Cup products with general coefficients

Let G be an arbitrary abelian group. Then we note that the cup product
formula makes sense if we interpret it as a function

S7(X) X S(X; G) = SP*9(X; G).

In this case, c¢” is a cochain with integral values, ¢ is a cochain with values in G,
and the multiplication on the right side of the formula is the usual product oper-
ation sending (n,g) to ng. Bilinearity is immediate. Associativity holds when it
makes sense—that is, when it involves a map

SP(X) X SIX) X S'(X;G) =SP4 "(X; G).

The cochain z° whose value is 1 on each O-simplex T acts as a left unity ele-

ment. The proof of the coboundary formula is unchanged, as is the proof that

the homomorphism ~* induced by a continuous map preserves cup products.
Therefore, we have a weli-defined cup product operation

H*(X) X H'(X;G) = H* **(X; G).

The most general cup product operation usually considered begins with
a bilinear map a: G X G’ — G”, called a “coefficient pairing”™; using this map
to replace the multiplication operation in the cochain formula, one has a well-
defined cup product

H?(X;G) X H(X; G') = H"*%(X; G").
We shall not need this degree of generality.

Relative cup products

Sometimes, one wishes to define a cup product operation on relative coho-
mology groups. One can use the same cup product formula as before. The rela-
tive cup products we shall need are the following:

H?(X,A; R) X H'(X; R) — H?*(X,A; R),
H?(X,A; R) X H'(X,A; R) — H?*(X,A; R).

(The second of these is in fact just a restriction of the first.) The existence of
these cup products is easy to demonstrate. For if ¢?:S,(X) — R vanishes on
all singular p-simplices carried by A4, then ¢? U c? automatically vanishes on all
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p + g simplices carried by 4. The coboundary formula holds just as before, so
one has an induced operation on the cohomology level. Bilinearity and associa-
tivity are immediate, as is the fact that the homomorphism induced by a contin-
uous map preserves cup products. The class {z°} € H°(X;R) acts as a right
unity element for the first of these operations.

The most general relative cup product operation is a bilinear map

H?(X,A4;, R) X H*(X,B; R) — H?*1(X,4 U B; R).

It is defined whenever {A4,B} is an excisive couple. See the exercises.

EXERCISES

1. Let 4 be a path component of X; let B be the union of the remaining path com-
ponents of X; assume B # &. Let ¢® be the cochain whose value is | on each
T:A,— Aand 0 on each T:A, — B. Show ¢ is a cocycle, and describe {c°} U
@7 for a general cohomology class §*.

2. Let ACX; let i: A— X be inclusion. Let 7 € H/(X; R); let nlA denote
i*(n) € H1(A; R). Show that the following diagram commutes:

H 'YX, 4 R) —— H'(4R) «—— H'(X;R) —— H’(X,A;R)

lun lU(nlA) J'un lun
H?*7% (X, 4; R) —— H?*4(4; R) —— H?* 9(X; R) —— H’ *1(X, 4; R)

What happens if you replace « % with n U throughout?

3. Show that if {4, B} is an excisive couple, then the cup product formula induces a
bilinear map

H?(X,4; R) X HY(X,B; R) — H?**(X,A U B; R).
Interpret associativity in this case.

4, (2) If G is an abelian group, show that the group Hom (G, R) can be given the
structure of R-module by defining {(@¢,g) = a - (8,2 if ¢ € Hom(G,R)
and « € Rand g € G. Show that if f: G — G' is a homomorphism, then f
is an R-module homomorphism.

(b) GiveS?(X; R) = Hom(S,(X),R) the structure of R-module as in (a). Show
that é is an R-module homomorphism, so that H”(X; R) has the structure
of R-module.

(c) Show that if h: X— Y is a continuous map, 4* is an R-module homo-
morphism.

(d) Show that cup product, as a function of each variable separately, is an R-
module homomorphism. (This means that H*(X; R) is what is sometimes
called a ring with operators R. In the special case where R is a field F, it is
called an algebra over F.)
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§49. COHOMOLOGY RINGS OF SURFACES

There is no general method for computing the singular cohomology ring of X,
even if X is a CW complex. The reason is not hard to find: It turns out that the
cellular chain complex of X does not determine the cohomology ring of X. That
is, two CW complexes can have isomorphic cellular chain complexes without
having isomorphic cohomology rings!

Therefore, to compute cup products, we turn to simplicial cohomology. In
this section, we define a simplicial cup product formula that corresponds to the
previous formula for singular cochains under the standard isomorphism of sim-

plicial with singular theory. Then we use this formula to compute a number of
examples.

Definition. Given a complex K, choose a partial ordering of the vertices of
K that linearly orders the vertices of each simplex of K. Define

C*(K; R) X C*(K;R)= C?**(K; R)
by the formula

(e U % ves -+ 50,4 g]) = (5 [0y - - 50, D) - (e U, - 50, 4 ,])

ifvy<-...<u,,,in the given ordering.
The similarity of this formula to the corresponding formula in singular the-
ory is striking.

Theorem 49.1. Given an ordering of the vertices of. K, the corresponding
simplicial cup product is bilinear and associative. The cochain z° whose value
is 1 on each vertex of K acts as a unity element. The coboundary formula (*)
of Theorem 48.1 holds. If n: C,(K) — S,(IK|) is the chain map of §34, deter-
mined by the given ordering, then its dual % carries singular cup product to
simplicial cup product.

Proof. The proofs are straightforward. Only the coboundary formula re-
quires comment. One can prove it by the same computations we used in proving
Theorem 48.1; only slight changes of notation are needed. Alternatively, one
can use the fact that since n carries basis elements to basis elements, 7 is injec-
tive and its image is a direct summand in S,(IK ]). Hence its dual # is surjective.
Given simplicial cochains ¢? and ¢?, they can thus be pulled back to singular co-
chains of |K|, say & and &7. We know the coboundary formula holds in singular
theory for & u &%. Since # preserves both cup products and coboundaries, the
same coboundary formula must hold in simplicial theory for ¢ L ¢? O

Theorem 49.2. The simplicial cup product induces an operation

H*(K; R) X H*(K; R)* H? *%(K; R)
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that is bilinear and associative. It is independent of the ordering of vertices of
K. The cohomology class {z*} acts as unity element. If b : |K| — |L| is a contin-
uous map, then h* preserves cup products.

Proof. The existence of U follows from the coboundary formula as be-
fore. The chain map 7 induces an isomorphism 7* of singular with simplicial co-
homology that preserves cup products. Since n* is independent of the chosen
ordering in K, so is the cup product in simplicial cohomology.

Because A* preserves cup products in singular cohomology, and 7* com-
mutes with A*, the homomorphism h* in simplicial theory necessarily preserves
cup products. [J

Note that in general, if f: K — L is a simplicial map, the cochain map f*
need not preserve cup products on the cochain level. For the simplicial cup
product is defined using a particular ordering of the vertices, and the simplicial
map f need not preserve the ordering of vertices in K and L. This would be a se-
rious problem if one wanted to work entirely within oriented simplicial theory;
it would be difficult to prove naturality of the cohomology cup product.

We remark that the more general cup products

H?(K) X H'(K; G) = H**(K; G)

and

H?(K,A;R) X H'(K,B; R) = H?**(K,A U B, R)

exist in simplicial theory just as they do in singular theory. The relative cup
product is in fact easier to define in simplicial than in singular theory, for if c?
vanishes on C,(A) and ¢? vanishes on C,(B), then ¢’ U ¢? automatically van-
ishes on C,(4 U B), because simplex of 4 U B must lie in either 4 or B. (Of
course, {4,B} is excisive in this case, so that singular cup product is defined as
well. See the exercises of §34.)

Now let us compute some examples. First, we need some terminology.

Definition. Since the cohomology ring has a unity element in dimension 0,
multiplication by this element is never trivial. It can happen, however, that ev-
ery product of positive-dimensional cohomology classes vanishes. In that case,
we say that the cohomology ring is the trivial ring.

Here are some cohomology rings that are not trivial.

Example 1. Consider the torus 7. Let w! and z' denote the cocycles pictured in
Figure 49.1. We know that « = {w'} and 8 = {z'} generate H'(T). If we orient
each 2-simplex counterclockwise, then A = {o*} generates H*(T) = Z, where ¢ is
any oriented 2-simplex of 7. In general, if o,, . . . ,0, are oriented 2-simplices of T,
the cochain Sno¥ is cohomologous to (n;)o*.

Order the vertices of T alphabetically. Using this ordering, we compute the
value of w' U z' on each oriented 2-simplex ¢. Note that (W' U z',6) = O unless a
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a b N c a a b [4 a
7
8 h g h
d > d d d
Y N N
€ > e e ” T e
1 ] : 1
7 |
a b 7 c a a b c / a
— 4,1
a={w'} ;3={zl}
Figure 49.1

face of ¢ is in the carrier of w! and a face is in the carrier of z*. Thus the only possi-
ble non-zero values occur when ¢ is one of the simplices ghi or hij. We compute

(wl o zla [g9h,i]) = (Wl,[g,hh . (zl, [h,i]) = 1 - 1 = 19
W U z\ ki D = WA TR - (206 D = (1) - 0= 0.
Thus w' U z' = [g,h,i}*. Now the orientation of [g,h,i] is clockwise. Therefore,

in terms of our standard generators, « U § = —A.
A similar computation shows that

(z* v w,[ghil=0.(-1)=0,
(2 u whihijl=1-1=1,

so that z! U w! = [A,i,j]*. Thus 8 w a = A. (This is exactly what anticommuta-
tivity would have led us to expect.)

A similar direct computation shows that @ U a = 0and 8 U 8 = 0. Alterna-
tively, we note that w' is cohomologous to the cochain y*' pictured in Figure 49.2.
Sincc no 2-simplex has one face in the carrier of w* and another face in the carrier
of y!, necessarily w* U y' = 0. Hence a U a = 0. A similar argument shows that

BuwpB=0.
Another alternative computation comes by noting that anticommutativity im-
plies that « U @ = —(a U «). Since H*(T) has no elements of order 2, a U «

must vanish. A similar remark applies to 8 w 8.

a b [4 a
d d
4 e

a b C le

Figure 49.2
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We can specify the ring structure of H*(T) by writing its multiplication table
in terms of generators for H* (7). This table becomes (omitting the unity element)

() | « 8 A
« 0 —A 0
8 A 0 0
A 0 0 0

where the last row and column vanish for dimensional reasons.

a b c a a b [4 a
4 h g h
d e d e
e d e , - d
i j i 7 ,
a b ‘& ¢ a a b c / a
a={w) s=te")
Figure 49.3

Example 2. Consider now the Klein bottle S. Let us compute the cohomology ring
with Z/2 coefficients. We know that H'(S; Z/2) is generated by the cocycles w
and z! pictured in Figure 49.3. Furthermore, H*(S; Z/2) is generated by ¢*, for any
2-simplex o. (We omit orientations, since 1 = —1in Z/2.) Let a = {w'} and 8 =
{z!} and A = {o*}. Some of the computations we carried out in Example 1 apply
without change, provided we reduce the coefficients modulo 2. In particular,

w' L 2! = [g,h,i]* and

wxuy1=0,

where y! is the cochain pictured in Figure 49.2 (without the arrows). We conclude
thatau f=Aandau a=0.

Computing z' U z' must be done directly, since we cannot “pulli it off itself” as
we did with w'. (Why?) The cochain 2! U 2! has value 1 on [d,e,g], on [e,g,i], and
on [d,e,j}; and it vanishes on all other 2-simplices. Thus it is cohomologous to
3¢* = ¢*. We conclude that 8 U 8 = A.

The multiplication table for H*(S;Z/2) thus has the form

v | « B8 A
a 0 A 0
B8 A A 0
A 0 0 0

Example 3. Consider the connected sum P*3# P2, We compute its cohomology
ring with Z /2 coefficients. Let us express P?# P* as a CW complex X having one
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Figure 494

cell in dimension 0, one cell in dimension 2, and two cells in dimension 1. See Figure
49.4. Fundamental cycles for the 1-cells of X are

w! = {a,b] + [b,c] + {c,a) and z, = [a,d) + [d,e] + {e,a].

A fundamental cycle v for the 2-cell is the sum of all the 2-simplices, oriented coun-
terclockwise. By direct computation, dw, = 8z, = 0, and 3y = —2w, — 2z,. When
we pass to the dual (cochain) complex Hom (D(X),Z/2), all coboundary operators
vanish (since we are using Z/2 coefficients). Thus in singular cohomology, we have

H\(P*#P4Z/2) =Z]28Z)2,
H*(P*#P4Z)2) =Z/2.

Passing now to simplicial cohomology, we see that the cocycles w' and z! pic-
tured in the figure, when restricted to D, (X), serve as a basis for Hom (D, (X),Z/2),
since

(whw) =1 and whz) =0,
(Z‘vw)) = 0 ) and <ZI’Z‘) == l.

The classes & = {w'} and € = {z'} thus generate H', and A = {¢*} generates H*
(where ¢ is any 2-simplex). Direct computation shows that

wouzl=0

wt o w' = [a,c,j}*,

' U 2 = [a,6,g]*.
Thus H* (P? # P* Z/2) has the multiplication table

v | ¢ € A
é A 0 0
€ 0 A 0
A 0 0 0

But we know that P* # P* is homeomorphic to the Klein bottle S. (See Figure
6.9.) Thus their cohomology rings are isomorphic, even though this multiplication
table is quite unlike the one we computed in Example 2. We leave it to you to con-
struct an isomorphism between these two rings.
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This example illustrates the following important fact: One cannot, in general,
by examining the multiplication tables of two rings, determine at once whether or
not the rings are isomorphic.

Example 4. Consider the space X pictured in Figure 49.5; it is the union of two
topological circles and a topological 2-sphere with a point in common. It is called
the wedge product S* V S* V §% The space X can be expressed as a CW complex
with one cell in dimension 0, one cell in dimension 2, and two cells in dimension 1.
When we write fundamental cycles

w, = [a,b] + [b,c] + [¢,a],
z, = [a,d] + [d,e] + [e,a],
z, = dla,f,g,h],

for these cells, we see that the boundary operators in the cellular chain complex all
vanish. Therefore, the cellular chain complex D(X) of X is isomorphic to the cel-
lular chain complex D(T) of the torus T.

1t follows that the homology groups and cohomology groups of X are isomor-
phic to those of T. However, their cohomology rings are not isomorphic. For it is
easy to see that the cohomology ring of X is trivial. Consider the cocycles

w! = [b,c]* and 2t = [d,e]*.

Since the cycles w, and z, are a basis for the chain group D, (X), the cocycles w* and
z' give the dual basis for the cochain group Hom(D,(X), Z). All the cup products
w!' U 2! and w' U w! and 2! U 2! vanish, because no 2-simplex has a face in the
carriers of either w! or z!.

Figure 49.5

The preceding examples will, I hope, convince you that cup products are
as a rule easy to compute. The difficulty is that one must go down to the

simplicial level and find specific representative cocycles, in order to use the cup
product formula.

As a consequence, any theorem that tells us something about cup products

in general is likely to be a useful theorem. We shall prove two such theorems in
later chapters. One will tell us something about the cohomology ring of a prod-
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uct space X X Y. The other will give us information about the cohomology ring
of a manifold, which will in particular enable us to compute the cohomology
rings of the projective spaces.

EXERCISES

Throughout, let T denote the torus, and let S denote the Klein bottle.

1. Let f:S*— T be continuous. Show that f*: H*(T) — H?*(S?) is trivial, and
conclude that f, : H,(S*) — H,(T) is trivial. What can you say about a contin-
uous map g: T — S§*?

2. If f: X —Y, show that

f* HY(Y;Z/2)— H¥(X;Z/2)
is trivial in the following cases:
(@) X=S*and Y=3S.
(b) X=SandY=T.
(c) X=Tand Y =3S.

3. Give multiplication tables for the following cohomology rings:

(@ H¥(T# - - - #T).
(b) H*(P% Z/2).
(c) H*(P*# . . - # P} Z/2).

4. Define an isomorphism between the rings of Examples 2 and 3.

5. Consider the cohomology rings of the Klein bottle S and the space P* VV S'.
(a) Show that these rings are isomorphic with integer coefficients.

(b) Show that these rings are not isomorphic with Z/2 coefficients. [Note: It
does not suffice to show that they have different multiplication tables!]

6. Compute the cohomology ring of the 3-fold dunce cap with Z/3 coefficients.

7. () Let (M,E) denote the Mdbius band and its edge. Compute the cup product
operations

H*(M,E;Z/2) X H*(M;Z/2) — H*(M,E; Z/2),
H*(M,E;Z/2) X H*(M,E;Z/2) — H*(M,E;Z/2).
(b) Repeat (2) when M is the cylinder S* X Jand £ =S X Bd I.

8. Let A4 be the union of two once-linked circles in S?; let B be the union of two
unlinked circles, as in Figure 49.6. Show that the cohomology groups of $* — 4
and S* — B are isomorphic, but the cohomology rings are not.

O 0

Figure 49.6



Homology with Coefficients

Having studied cohomology with arbitrary coefficients, we now return to a sub-
ject introduced briefly for simplicial theory in Chapter 1—homology with arbi-
trary coefficients.

First, we introduce an algebraic functor called the tensor product, and study
its properties. It plays a role in homology theory similar to that played by the
Hom functor for cohomology. Then we study homology with arbitrary coeffi-
cients in general.

§50. TENSOR PRODUCTS

If 4 and B are abelian groups, then their Cartesian product 4 X B is of course
an abelian group, and one often considers homomorphisms of the group 4 X B
into an abelian group C. However, one sometimes wishes rather to consider
functions from 4 X B to C that are bilinear, that is, functions that are homo-
morphisms when considered as functions of each variable separately. In this
section, we define an abelian group called the rensor product of A and B and
denoted by 4 ® B. It has the property that bilinear functions from 4 X Bto C
can naturally be considered as homomorphisms from A® B to C, and con-
versely. By this means the study of bilinear functions is reduced to something
familiar, the study of homomorphisms.
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Definition. Let .4 and B be abelian groups. Let F(A4,B) be the free abelian

group generated by the set 4 X B. Let R(A4,B) be the subgroup generated by
all elements of the form

(a + a',b) — (a,b) — (a',b),

(a.b + b') — (a,b) — (a,b),
for a,a' € A and b, b’ € B. We define

A® B = F(A,B)/R(A,B),

and call it the tensor product of 4 and B. The coset of the pair (a,b) is denoted
by a®b.

Now any function f from the set 4 X B to the abelian group C determines
a unique homomorphism of F(A,B) into C, since the elements of 4 X B are the
basis elements for F(A4,B). This function f is bilinear if and only if it maps the
subgroup R (A,B) to zero. Thus every homomorphism of 4 ® B into C gives rise
to a bilinear function from 4 X B into C, and conversely.

Note that any element of F(A,B) is a finite linear combination of pairs

(a,b), so any element of 4 ® B is a finite linear combination of elements of the
form a® b.

NOTE WELL: The element a ® b is not the typical element of 4® B, but
rather a typical generator.
We have the following relations in 4 ® B:

(a+d)®b=a®b+ a ®b,
a®b+b)=a®b+a®b,
by definition. It is immediate that 0 ® b = 0, since
a®b=(0+a)@®b=0b +a®bd.
Similarly, a® 0 = 0 for all a. It follows that
(—a)®b=—(a®b) =a®(-b),

since adding a ® b to each expression gives zero. An immediate consequence is
the relation

(na) ®b =n(a®b) = a® (nd),

when # is an arbitrary integer.

Definition. Let f: A — A4’ and g: B— B’ be homomorphisms. There is a
unique homomorphism

f®g:A®B— A ®B’

such that (f® g) (@ ® b) = f(a) ® g(b) for all g, b; it is called the tensor prod-
uct of fand g.
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This fact is an immediate consequence of the fact that the function from
A X Binto A' ® B’ carrying (a,b) to f(a) ® g(b) is bilinear, as you can check.
We also leave it to you to check the following:

Lemma 50.1. The function mapping (A,B) to A® Band (f,g) to f®gis
a covariant functor from the category of pairs of abelian groups and homo-
morphisms to the category of abelian groups and homomorphisms. [

Later we will show how to compute tensor products. For the present, we
merely note the following:

Theorem 50.2. There is an isomorphism
296G =G
that maps n® g to ng; it is natural with respect to homomorphisms of G.

Proof. The function mapping Z X G to G that sends (n,g) to ng is bilin-
ear, so it induces a homomorphism ¢ : Z ® G — G sending n® g to ng.

Let ¢ : G — Z ® G be defined by the equation y(g) = 1 ®g; then ¢ is a
homomorphism. For g € G, we have

WE)=0(10g) =g;
while on a typical generator n ® g of Z ® G, we have
Vp(n®g) =Y(ng) =1®(ng) =n®g.
Thus ¢ is an inverse for ¢.
Naturality is a consequence of the commutativity of the diagram
Z86-=-G
L8f| |1
ZeH-SH. O
We now derive some general properties of tensor products.
First, let us note a common fallacy. Suppose A4’ is a subgroup of 4, and B’
is a subgroup of B. Then it is tempting to assume that 4' ® B’ can be consid-

ered as a subgroup of 4 ® B. But this is not in general correct. The inclusion
mappings i : ' — A4 and j : B’ — B do give rise to a homomorphism

i®j:A®B"'—A®B,

but this homomorphism is not in general injective. For example, the integers Z
are a subgroup of the additive group of rationals Q. But Z ® Z/2 is a non-trivial
group, and Q ® Z/2 is trivial, for in Q® Z/2,

a®b=(a/2)®2b=(a/2)®0=0.
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Although tensor products of injective maps are not in general injective,
tensor product of surjective maps are always surjective. This is the substance of
the following lemma:

Lemma 50.3. Suppose the homomorphisms ¢:B— C and ¢' : B' — C’
are surjective. Then

¢®¢':BOB' — COC’

is surjective, and its kernel is the subgroup of B® B’ generated by all elements
of the form b® b’ for which b € ker ¢ or b’ € ker ¢'.

Proof. Let G denote the subgroup of B® B’ generated by these elements
b®b'. Clearly ¢ ® ¢’ maps G to zero, so it induces a homomorphism

$:(B®B')/G— C®C'.

We show that ® is an isomorphism by defining an inverse ¥ for &.
We begin by defining a function

Y:CX C' — (B®B')/G

by the rule ¥(¢,c’) = b® b’ + G, where b is chosen so that ¢(b) = cand &' is
chosen so that ¢'(b') = ¢’. We show that ¢ is well-defined. Suppose ¢(b,) = ¢
and ¢'(b;) = ¢’. Then

b®Y — b,®b, = ((b — b)) ®b') + (b, ® (b’ — by)).

This element lies in G because b — b, € ker ¢ and b’ — b € ker ¢'. Thus ¢
is well-defined. It follows from its definition that ¢ is bilinear, so it induces a
homomorphism

v:C®C'— (B®B')/G.
It is straightforward to check that ® o ¥ and ¥ o & are identity maps. I

Just as we did with the case of the Hom functor, we consider what “tensor-
ing” does to an exact sequence.

Theorem 50.4. Suppose the sequence

42t c—o

is exact. Then the sequence

406224306 ¥ %% coc—0

is exact. If ¢ is injective and the first sequence splits, then ¢ ® i is injective
and the second sequence splits.

Proof. The preceding lemma implies that ¥ ® i is surjective, and that its
kernel is the subgroup D of B ® G generated by all elements of the form b ® g
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for b € ker . The image of ¢ ® i is the subgroup E generated by all elements
of the form ¢(a) ® g. Since image ¢ = kernel y, we have D = E.

Suppose ¢ is injective and the sequence splits. Let p: B— A4 be a homo-
morphism such that p o ¢ = i,. Then

(P®ig) e (¢®ig) =1, ®ig=ise0

s0 ¢ ® i is injective and p ® i, splits the tensored sequence. [J

Corollary 50.5. There is a natural isomorphism
Z/m®G = G/mG.

Proof. We take the exact sequence

0~2%2-2Z/m—0

and tensor it with G, obtaining the exact sequence

286™"%% 206—-2/me®G—0.

Applying Theorem 50.2, we have the exact sequence

GBG—-2Z/meG—0.
The corollary follows. [

Now we prove some additional properties of tensor products.

Theorem 50.6. One has the following natural isomorphisms:
(2) ARB=B® A.

() (®A4,)®B = ©(4,®B),
A®(®B) = B(4®B).

(c) A®(B®C) = (4®B)®C.

Proof. We construct the isomorphisms, and leave naturality for you to
check.

(a) The map A X B— B X A sending (a,b) to (b,a) induces an isomor-
phism of F(A4,B) with F(B,A) that carries R(A4,B) onto R(B,A4).
(b) We apply Lemma 4.1. By hypothesis, there are homomorphisms

Jp:A;— DA, and m:DA4,— 4
such that =, o j_is trivial if @ # 8 and equals the identity if a = 8. Let
fi=Js®ip: A,®B— (D A)®B,
g =1309ip: (®A4)®B — 4,®B.

Then g; o £, is trivial if & # B and equals the identity if @ = 8. Now (©4,) ® B
is generated by elements of the form a ® b, where a € ©.4_and b € B. Since a

303
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is, in turn, equal to a finite sum of elements of the form j (a ), we see that
(DA4,) ® B is generated by the groups f,(4, ® B). The existence of the first iso-
morphism of (b) follows from Lemma 4.1.

The second isomorphism of (b) follows by commutativity.

(c) To define a homomorphism mapping the tensor product 4 ® (B® C)
into an abelian group G, we must define a bilinear function f on the set 4 X
(B® C). In order that f be linear in the second variable, it must for fixed
a € A, come from a bilinear map of the set 2 X B X C into G. We conclude
that a map f of the set 4 X B X C into G defines 2 homomorphism of 4 ®
(B ® C) into G precisely if it is linear in each of the three variables separately.
Such a function is calied a2 multilinear function. A similar argument shows that
homomorphisms of (4 ® B) ® C into G are obtained in exactly the same way.

Now consider the functions

f(abe) =a®(b®o),
g(a,b,C) = (a ® b) ®ec.

These are muitilinear functions from 4 X BX C to A®(B®C) and
(4 ® B) ® C, respectively. They induce homomorphisms

ueBecELiereocyEeBec,

respectively. Both F o G and G o F act as identity maps on generators of these
groups, so they are identity maps. [

Corollary 50.7. If
0—A4—B—C—0
is exact and G is torsion-free, then
0—AQG—B®G—C®G—0
is exact.

Proof. Step 1. We show first that the theorem holds if G is free. The se-
quence

*) 0—A®Z—-B®Z—CO®Z—0
is exact because D ® Z is naturally isomorphic to D for all D. Therefore,
0—4AG—B®G—C®G—0

is exact; for by the preceding theorem this sequence is isomorphic to a direct
sum of sequences of type (*), and direct sums of exact sequences are exact.

Step 2. We prove the following fact: Leta,,...,a, € Aand b,,... b, €
B. Suppose the element Z a; ® b; of 4 ® B vanishes. Then there are finitely gen-
erated subgroups A, and B, of 4 and B containing {a,, . .. ,a,} and {b,,...,5,),
respectively, such that the sum = a; ® b; vanishes when considered as an ele-
ment of 4, B,.
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Recall that 4 ® B equals the quotient of F(4,B) by a certain relations sub-
group R(A,B). The equation Z a;® b, = 0 means that the element Z(a;,b;) of
F(A,B) lies in R(A4,B). That is, it can be written as a finite linear combination
of terms of the form

(a + a',b) — (a,b) — (a',b)
and
(a,b + b') — (a,b) — (ad").

Let A, denote the subgroup of 4 generated by the first components of these
finitely many terms, along with a,, . . . ,a,. Let B, denote the subgroup of B gen-
erated by the second components of these terms, along with b,,...,b,. Then
when we consider the formal sum =(q;,b;) as an element of F(A4,,B,), it lies in
the relations subgroup used in defining 4, ® B,. Thus the sum Z a; ® b, vanishes
when considered as an element of 4, ® B,.

Step 3. Now we complete the proof. Suppose
0—42p¥c—o

is exact and G is torsion-free. We wish to show that ¢ ® i; is injective. The
typical element of 4 ® G is a finite sum X a; ® g;. Suppose it lies in the kernel of
¢®i;. Then Z ¢(a;) ® g; vanishes in B® G. Choose finitely generated sub-
groups B,, G, of B, G, respectively, such that this sum vanishes when considered
as an element of B, ® G,. Applying the map B, ® G, — B ® G, induced by inclu-
sion, we see that it vanishes when considered as an element of B ® G,.

Now G, is torsion-free, being a subgroup of G; therefore, since G, is finitely
generated, it is free. As a consequence, the sequence

0—-4®G,—B®G,—C®G,—0

is exact. We conclude that Z g, ® g; must vanish when it is considered as an
element of A ® G,. Applying the map 4 ® G,— 4 ® G induced by inclusion,
we see that it also vanishes when considered as an element of A® G. O

The theorems we have proved enable us to compute the group 4 ® B when
A is finitely generated. For ® commutes with direct sums, and we have the rules

Z3G =G, Z/m®G = G/mG.

In particular, tensor products of free abelian groups are free abelian. For later
use, we state this fact formally as follows:

Theorem 50.8. If A is free abelian with basis {a;} and B is free abelian
with basis {bj}, then A ® B is free abelian with basis {a, ® bj}.

Proof. Let {a;) and (b;} denote the infinite cyclic subgroups of 4 and B
generated by a; and b;, respectively. Then

A=®@) and B=90)
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It follows that 4 ® B = @ ((a,) ® (b;)). Now Z®Z is infinite cyclic and is
generated by 1 ® 1; likewise, (a,) ® (b;) is infinite cyclic and is generated by
a; ® b;. The theorem follows. [J

Tensor products of modules

Let R be a commutative ring with unity element, as usual. If 4 and B are
modules over R, then (as we mentioned in the exercises of §41) the group
Homg(A4,B) of all module homomorphisms of 4 into B has the structure of R-
module. An analogous situation obtains for the tensor product functor. We shall
in fact be interested only in the special case where R is a field. But we may as
well consider the general case for the time being.

Let 4 and B be modules over the ring R. As before, let F(A4,B) be the free

abelian group generated by the set 4 X B. But now let R(A,B) be the subgroup
generated by elements of the form

(a + a',b) — (a,b) — (a',b),

(@b + b') — (a,b) — (ab),

(aa,b) — (a,ab), for a e R
Then F(A4,B)/R(A,B) has the structure of module over R: Given a, we define a
map of F(A,B) to itself by the rule «(a,b) = (aa,b). This map carries R(4,B)

into itself. For instance, when we apply « to the first of the listed generators for
R(A,B), we have

(a(a + a'),b) — (aa,b) — (aa',b)
= (aa + ad',b) — (aa,b) — (ad',b).

The latter element is in R(A4,B) by definition. A similar remark applies to the
second of the listed generators. For the third, we have

B(aa,b) - 6(aaab) = (ﬁ(aa)’b) - (Basab)
= (a(Ba),b) — (Ba,ab),
which is in R(A,B) by definition.
Thus we have an induced operation on the quotient F/R. The module prop-
erties are easy to verify. We shall denote the resulting module by 4 ®; B, and
call it the tensor product of A and B over the ring R. The coset of (a,b) will be

denoted a ® b, as before. Besides the usual relations in 4 ® B, one also has in
A ®, B the relation

a(a®b) = (xa) ® b = a ® (abd).
Now let us consider a set map f : 4 X B— C that is a module homomor-

phism in each variable separately. Since it maps R(4,B) to zero, it induces a
homomorphism

g:A®,B—-C,

which is actually a2 module homomorphism, as you can check.
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Note that 4 ®; B is “smaller” than 4 ® B; in fact, it is isomorphic to the
quotient group of 4 ® B by the subgroup generated by all terms of the form
(aa) ® b — a ® (ab). This is analogous to the situation for the Hom functor,
where Homy(A,B) is a subgroup of Hom(A4,B).

If f:4A— A and g: B— B’ are module homomorphisms, then there is a
module homomorphism

f@g:A@RB—"A'®RB'

mapping a® b to f(a) ® g(b) for all a, b, for the map sending (ab) to
f(a) ® g(b) is a module homomorphism in each variable separately.

The theorems of this section generalize to the tensor product of modules.
Proofs are left as exercises.

EXERCISES

1. Let G be an abelian group with torsion subgroup 7. Let H be a divisible group.
Show that G® H = (G/T)® H. [Note: T is not necessarily a direct sum-
mand in G!]

2. Show that the additive group Q is torsion-free but not free. [Hint: Compute
Q®Z/2)

3. Show that if 4 and B are Z-modules, then
A®,B=A®B.
4. Let 4 be an R-module. Show that there is an R-module isomorphism
R@®rA = A

5. Prove the analogues of Theorems 50.4 and 50.6 for ®;.

6. Let 4, B, and C be vector spaces over a field F.
(a) Show that ®; preserves exact sequences of vector spaces. [Hint: Every
such sequence splits.]
(b) If 4 and B have vector space bases {a;} and {b}), respectively, show that
{a;® b} is a vector space basis for 4 ®; B.

7. If A and B are vector spaces over Q, show that

A®,B=A®B.
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We now use the tensor product functor to define homology groups with arbi-
trary coefficients in general. The treatment will follow the pattern of §44,
where we dealt with cohomology theory with arbitrary coefficients.

First, we work on the level of chain complexes. Then we specialize to singu-
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lar theory, and finally to simplicial theory, at which point we show that the defi-
nition of homology with arbitrary coefficients we use here is equivalent to the
one given in §10.

Homology of a chain complex

Let G be an abelian group. Let € = {C,,} be a chain complex. We denote
the pth homology group of the chain complex @® G = {C,® G,0 ®ig} by
H,(€; G), and call it the pth homology group of € with coefficients in G.

If {@.¢} is an augmented chain complex, then one has the corresponding
chain complex obtained from @ ® G by adjoining the group Z® G = G in di-
mension —1, and using € ® i; as the boundary operator from dimension 0 to
dimension —1. Its homology groups are denoted H AC; G) and are called the
reduced homology groups of € with coefficients in G. If H,(@) vanishes, so does

Hy(@; G), since exactness of C, — C,— Z — 0 implies exactness of

G®G—(C®G—ZOG—0.
In general, we have the equation
H|(@; G) = H,(C; G) ®G.

Note that if G is the group of integers, then € ® G is naturally isomorphic
with @. Thus the usual homology of € can be thought of as “homology with
coefficients in Z.”

If $:@ — D is a chain map, then sois ¢ ®i;: C® G— D ®G. The in-
duced homology homomorphism is for convenience denoted by

& : H(C; G) — H,(D; G),

rather than by (¢ ® i;),. If @ and D are augmented and ¢ is augmentation-
preserving, then ¢ ® i; induces a homomorphism of reduced as well as ordinary
homology.

If ¢, ¥ : @ — @' are chain maps, and if D is a chain homotopy between
them, then D® i; is a chain homotopy between ¢ ® i and ¥ ® i¢. It follows
that if ¢ and ¢ are chain homotopic, then ¢, and ¥, are equal as homomor-
phisms of homology with arbitrary coefficients. It also foliows that if ¢ is a
chain equivalence, so is ¢ ® i¢.

Finally, suppose one has a short exact sequence

0—@—D—E—0
of chain complexes that splits in each dimension. Then the tensored sequence
0—-C,®6—-D,®G—E,®G—0
is exact. Applying the zig-zag lemma, one has a long exact sequence
é
. — H/(C; G) = H,(D; G) — H,(6;G) = H,_(6;G) —

where 4, is induced by 9 ® i;. This sequence is natural with respect to homo-
morphisms induced by chain maps.
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Singular homology

We define the singular homology groups of a topological pair (X,4), with
coefficients in G, by the equation

H/(X,4; G) = H(S(X,4); G).

As usual, we delete 4 from the notation if 4 is empty. We define reduced ho-
mology groups by the equation

H(X; G) = H,(I8(X).¢}; G),

where ¢ is the usual augmentation for §(X).

Since S,(X,4) is free abelian, the group S,(X,4) ® G is a direct sum of
copies of G. Indeed, if {T,} is the family consisting of those singular p-simplices
of X whose image sets do not lie in 4, then the cosets modulo S,(A4) of the
singular simplices T, form a basis for S,(X,4). Therefore each element of
S,(X,4) ® G can be represented uniquely by a finite sum = T, ® g,.. This is our
usual way of representing a singular p-chain with coefficients in G. The minimal
carrier of such a chain is the union of the sets 7,(A,), where the union is taken
over those a for which g, # 0. It is of course a compact set.

A continuous map % : (X,4) — (Y,B) gives rise to a chain map

h,®ic:S(X,A)®G— S(Y,B)®G.

We sometimes denote this map simply by A, and the induced homology homo-
morphism by 4,. Functoriality is immediate; it holds in fact on the chain level.
The short exact sequence of chain complexes

0 — S,(4) = S,(X) — S,(X,4) — 0

splits because S,(X,4) is free. Therefore, one has a long exact homology se-
quence with coefficients in G; it is natural with respect to homomorphisms
induced by continuous maps.

If the maps h.k : (X,4) — (Y,B) are homotopic, then by the proof of Theo-
rem 30.7 there is a chain homotopy between #, and k;. Then #,® i; and k,®
i are chain homotopic, so k, and k, are equal as maps of homology with coeffi-
cients in G.

Direct consideration of the singular chain complex of a one-point space P
leads to the result that H(P; G) = O for i # 0 and H,(P; G) = G.

The “compact support property” of singular homology carries over at once
to the same property for singular homology with arbitrary coefficients.

The only property of singular homology that requires some care is the
excision property.

__ Let (X,4) be a topological pair, and let U be a subset of X such that
U C Int 4. We know that inclusion

J:X=UA-U)—(X4)

induces an isomorphism in ordinary homology. We wish to show it induces an
isomorphism in homology with arbitrary coefficients as well.
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One way of doing this is to use Theorem 46.2, which implies that j, is a
chain equivalence. (Note that the chain complexes involved are free and vanish
below a certain dimension.) Alternatively, one can prove the following, which is
an analogue of Theorem 45.5.

Theorem 51.1. Let € and D be free chain complexes. If the chain map

¢: @ — D induces homology isomorphisms in all dimensions, so does the
chain map

P®i;:COG— DRG.

Proof. Step 1. We first consider the case where we have a short exact
sequence

0—mC—D—-E—-0

of free chain complexes. We know that H,(6) = 0 for all p, and we wish to
prove that H,(&; G) = O for all p. As in the proof of Lemma 45.3, we can write
E, = B,®U,, where § maps B, to zero and carries U, isomorphically onto
B Then

-1
E,®G = (B,®G)®(U,®0C),

and d®i; maps B,® G to zero and carries U,® G isomorphically onto
B,_,®G. It follows that H(&; G) = O for all p.

Step 2. The general case now follows from Lemma 45.4. Given
¢ : @ — D, there is a chain complex D’ and injective chain maps i : @ — D’ and
Jj:D— D’ such that j induces homology isomorphisms in all dimensions and
J o ¢ is chain homotopic to i. Furthermore, D' and D’'/imi and D’'/im j are
free. If ¢, is an isomorphism in ordinary homology, so is i, = j, ¢ ¢,. Then by
Step 1, both i and j induce isomorphisms of homology with arbitrary coeffi-
cients. Hence ¢ does the same. [1

Simplicial homology

Let (X,K,) be a simplicial pair; let G be an abelian group. We define the
simplicial homology of (X,K,) with coefficients in G by the equation

H/(KK;; G) = H(C(K.K,); G).
We define the reduced groups by the equation
H/K; G) = H({C(K).¢; G),

where € is the usual augmentation for €(X).

Now the group C,(K,K,) ® G is the direct sum of copies of G, one for each
p-simplex of K not in X,. Indeed, if we orient the p-simplices o, of K not in K,
arbitrarily, then each element of C,(K,K,) ® G can be represented uniquely by a
finite sum X o, ® g,. Its boundary is then represented by Z (d0,) ® g,.
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The connection with the definition we gave in §10 of homology with arbi-
trary coefficients is now clear. In that section, we represented a simplicial p-
chain ¢, with coefficients in G by 2 finite formal sum ¢, = Zg.g,, and its bound-
ary was defined by the formula

dc, = Zg,(dc,).

It follows that the chain complex @(X; G) defined in §10 is isomorphic to the
chain complex @(K) ® G. Henceforth, we shall use the latter chain complex in
dealing with simplicial homology with arbitrary coefficients.

The existence of induced homomorphisms and the long exact homology
sequence, and the verification of the Eilenberg-Steenrod axioms, is so straight-
forward that we omit the details. The argument follows the pattern given in §44
for simplicial cohomology.

The isomorphism between simplicial
and singular theory

We have the chain map of §34,
71 : CP(K’Ko) - Sp(lKLlKol)a

which induces an isomorphism in ordinary homology. It follows from Theorem
51.1 that it induces an isomorphism in homology with arbitrary coefficients
as well. The fact that it is independent of the ordering of vertices used in defin-
ing 5, and the fact that it commutes with the boundary homomorphism d, and
with homomorphisms induced by continuous maps, follow as in the proof of
Theorem 44.2.

The homology of CW complexes

If X is a CW complex with cellular chain complex D(X), we know that
H,(D(X)) = H,(X) for all p. It follows from Theorem 45.1 that there is a
chain map inducing this isomorphism; it then follows from Theorem 51.1 that

H(D(X) ® G) = H,X; G).

Thus the cellular chain complex of X can be used to compute homology with
arbitrary coefficients. If X is a triangulable CW complex, then the chain map
inducing this isomorphism is the inclusion map

J 1 D(X) — C(X).

EXERCISES
1. If {@,¢} is an augmented chain complex, show that
H{(@;G) = H,(C;G)®G.
[Hinz: The sequence 0 — ker ¢ — C, — Z — 0 splits.]
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2. Use the cellular chain complexes to compute the homology, with general coeffi-
cients G, of T # T and P* # P*# P* and P" and the k-fold dunce cap.

3. Theorem. Let @ be a free chain complex. Then there is a natural exact se-
quence

0—H(€)®GL H(E®G) —cokp—0,
where ¢ is induced by inclusion. The sequence splits, but not naturally. If
H{Q@) is free for all i, then ¢ is an isomorphism.
[Note: This lemma is the analogue for homology of Lemma 45.7 and
Theorem 45.8. It will be generalized in the next chapter.]
4. Let R be a commutative ring with unity; let € be a chain complex. Show that
C, ® R can be given the structure of R-module by defining
a(c,®B) =, ®(af)

for a8 € R. Show that H,(€; R) has the structure of R-module, and that chain
maps induce R-module homomorphisms. Show that 3, is an R-module homo-
morphism.



Homological Algebra

We have already seen, in Chapter 5, that two spaces with isomorphic homology
groups have isomorphic cohomology groups as well. This fact leads one to sus-
pect that the cohomology groups of a space are in some way determined by the
homology groups. In this chapter this suspicion is confirmed. We show precisely
how the cohomology groups (with arbitrary coefficients) are determined by the
homology groups (with integer coefficients). The theorem involved is called the
Universal Coefficient Theorem for Cohomology. Its statement involves not only
the “Hom” functor, which we have aiready studied, but also a new functor,
called “Ext,” which we shall introduce.

Similarly, we know that if two spaces have isomorphic integral homology
groups, then the same is true for homology with arbitrary coefficients. Just as
with the cohomology groups, it turns out that the homology groups with arbi-
trary coefficients are determined by the homology groups with integer coeffi-
cients, The theorem involved is called the Universal Coefficient Theorem for
Homology. It involves not only the tensor product functor, but also a new func-
tor, called the “torsion product,” which we shall introduce.

These functors form part of a general subject called Homological Algebra.
Although its origins are topological in nature, it has come to have an indepen-
dent existence nowadays within the field of algebra, having applications to
many problems that are purely algebraic. Our interest in it is confined to its
connections with topology.

These functors also play a role when one comes to study the homology of a
product space X X Y. It turns out that the homology of X X Y is determined
by the homology of X and of Y. The relationship is expressed in the form of an

exact sequence called the Kiinneth sequence. It involves the tensor and torsion
product functors.
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There is a similar sequence for cohomology that holds if the homology is
finitely generated. It has applications to cup products in general, and to com-
puting the cohomology ring of X X Y in particular.

THE EXT FUNCTOR

Associated with the functor Hom(4,B) is another functor of two variables,
called Ext(A,B). Like the Hom functor, it is contravariant in the first variable
and covariant in the second. This means that, given homomorphisms v: 4 — 4’
and & : B’ — B, there is 2 homomorphism

Ext(~,8) : Ext(4',B’) — Ext(A,B),

and the usual functorial properties hold.
Defining this functor involves some preliminary work. But its crucial prop-
erty is easy to remember; we express it in the form of a theorem.

Theorem 52.1. There is a function that assigns, to each free resolution
0—REF¥L 4—0
of the abelian group A, and to each abelian group B, an exact sequence
0 — Ext(4,B) = Hom (R,B) & Hom (F,B) & Hom (4,B) — 0.
This function is natural, in the sense that a homomorphism
0 R F A 0

|« & |

0 R F' A 0

of free resolutions and a homomorphism & : B' — B of abelian groups gives
rise to a homomorphism of exact sequences:

0 — Ext(4,B) — Hom(R,B) —— Hom(F,B) —— Hom(A4,B) —0
Ext(vs)|  Hom(@#]  Hom@s)|  Hom(v)
0+——Ext(A4',B") ——Hom(R',B') —— Hom (F',B") «——Hom (A4',B") «——0.
We shall prove this theorem shortly. It will then be used to derive the other

properties of the Ext functor, and to compute it.
Now we define the Ext functor. We begin with a lemma.
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Lemma 52.2. Suppose one is given a homomorphism

0— R F—4—20

l= [¢ |
0 R ——F' A 0
¢
of free resolutions of A and A, respectively, and a homomorphism §: B' — B.
Then there is a unique homomorphism ¢ making the following diagram of
exact sequences commute:

0—— cok —— Hom (R,B) ~2— Hom (F,B) —— Hom(4,8) — 0

]e ]Hom (t.8) ]Hom (8,5) ]Hom (1,9)
0+— cok¢’ ——Hom(R',B’) THom (F'.B'y ——Hom(A4',B’") — 0.

The homomorphism ¢ is independent of the choice of o and .

Proof. Functoriality of Hom shows that the two right squares of the pre-
ceding diagram commute. Therefore, Hom (,5) induces a homomorphism ¢ of
cokernels.

We show e is independent of the choice of « and 8. Suppose {&', 8, v} is
another homomorphism of the two given free resolutions. Consider the free
resolution of 4 as a chain complex A, indexed so that A is the 0-dimensional
group. Do the same for 4, obtaining a chain complex A’. Then {a, 8, ¥} and
{, B, v} are chain maps of A to A’'. By exactness, the homology groups of A
and A’ vanish. The cohomology groups need not vanish; indeed, the group
cok ¢ is just the 2-dimensional cohomology group H?(A; B), and cok ¢’ =
H*(A'; B'). The map e is just the cohomology homomorphism induced by the
chain map {e, 8, vl.

Now the hypotheses of Lemma 46.1 are satisfied by the chain complexes A
and A'. Therefore there is a chain homotopy D between the chain map {a, 8, v}
and the chain map {&', 8, v}. Then Hom(D,8) is a cochain homotopy between
the corresponding cochain maps; it follows that they induce the same homomor-
phism e of 2-dimensional cohomology groups. [

Definition. The homomorphism ¢ constructed in the preceding lemma is
said to be induced by v and §, since it depends only on the homomorphisms y
and § and the free resolutions involved.

We show that a version of functoriality holds. First, we show that compos-
ites behave correctly. Let a, 8, v, §, ¢ be as in the lemma; and suppose

0 R F' A 0

|« |7 |7

0 R’ F A" 0
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is another homomorphism of free resolutions, with & : B” — B’ another homo-

morphism of abelian groups. Let ¢ be the homomorphism induced by v’ and §'.
The fact that

Hom(«,5) - Hom(v',6') = Hom(y' « v,6 0 §')
and the similar equations for a, ' and B, 8, imply that ¢ o ¢ is the homomor-
phism induced by v’ <y and 6 ¢ §'.
Second, we show that if i, and i, are identity maps, then the homomor-
phism ¢ they induce is an isomorphism. Certainly this is true in the situation

where the two free resolutions are the same, since « and 8 can then be chosen to
be identity maps, so that ¢ is the identity. But it is also true in the situation

0— R-2. F—a—00

15 I

0 R F' A 0,

as we now prove. Let ¢: cok ¢’ — cok ¢ be the map induced by (i,,i;), relative
to these free resolutions. Choose o’ and 8’ making the following diagram com-
mute:

0— R-2. P 4—0

o, 1 I

0— R F—a—0.

(Here we use the fact that F' is free.) Let ¢ : cok ¢ — cok ¢' be the map in-
duced by (i,,ig) relative to these free resolutions. By the previous remarks, both
composites ¢ o ¢ and ¢ o € equal identity maps. Thus ¢ is an isomorphism.

It follows from these comments that, given 4 and B, if one chooses any free
resolution of A4, the group cok ¢ will be independent (up to isomorphism) of the
choice. This fact leads us to the following definition of a “canonical version™ of
cok ¢, which we shall call Ext (4,B).

Definition. If A is an abelian group, let F(A4) denote the free abelian
group generated by the elements of A4, and let R(A) be the kernel of the natural
projection F(A) — A. The sequence

0—R(A) L F4)—~Aa—0
is called the canonical free resolution of 4. (See §45.) The group
cok ¢ = Hom (R (4),B)/® (Hom (F(A),B))
is denoted Ext(A4,B). If y: A— A’ and 6 : B' — B are homomorphisms, we ex-
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tend v to 2 homomorphism of the canonical free resolution of 4 with that of 4', -

and define
Ext(v,9) : Ext(A4',B') — Ext(A4,B)
to be the homomorphism induced by v and & relative to these free resolutions.
The previous remark shows that Ext is a functor of two variables, contra-
variant in the first variable and covariant in the second.
The group Ext(4,B) is sometimes called the group of extensions of B by A;

for an explanation of this terminology, see [MacL].
Now we prove our basic theorem.

Proof of Theorem 52.1. The exact sequence

0—REF—4—0
gives rise to the exact sequence
0 «— cok ¢ — Hom (R,B) — Hom (F,B) — Hom(4,B) — 0.

In view of the preceding remarks, there is an isomorphism of cok ¢ with
Ext (A,B) that is induced by (i,,i;). We use this isomorphism to replace cok ¢
by Ext(A,B) in this exact sequence.

It remains to check naturality. Let «, 8, v define a homomorphism of free
resolutions of 4 and A’, respectively, as in the statement of the theorem; let
3 : B' — B. Consider the following diagram:

0— R -2 FU)— a4—0
iA
0—R -2 470

B, 12

0—R— F ——A4'—0
0— RA)—/— FA)— 4 —0.
There are homomorphisms
~ & ~ & ~ & ~
cok ¢, —= cok ¢,—= cok ¢, — cok ¢,
induced by (i,,iz,) and (v,8) and (i,,iz), respectively. Both ¢, and ¢, are iso-
morphisms. The composite ¢, ¢ ¢, o ¢, is, by functoriality, the unique homomor-

phism induced by

(ig ovoigigodoipg) = (v.0),
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relative to the canonical free resolutions, so it must equal Ext(v,5). Therefore,
the diagram

Ext(4,B) «——cok, —— Hom(R.B)
Ext (v,8) I e,] ] Hom («,5)
Ext(4',B")—— cok é, ——Hom (R',B')

commutes, and the proof is complete. 0O

We now prove further properties of the Ext functor.

Theorem 52.3. (a) There are natural isomorphisms
Ext(®4,,B) = I Ext(4_,B),
Ext(A4,11B,) = 11 Ext(A4,B,).

(b) Ext(A4,B) = 0 if A isfree.
(c) Given B, there is an exact sequence

0 — Ext(Z/m,B) — B B — Hom(Z/m,B) — 0.

Proof. In the proof, we shall use the fact that direct sums and direct prod-
ucts of exact sequences are exact, and the fact that a direct sum (but not a
direct product) of free abelian groups is free abelian.

(@) Let0— R, — F,— A,— 0 be a free resolution of 4,; then 0 —
@R, — OF, — DA, — 0 is a free resolution of ©4,. Both the sequences

0 — Ext(4_,B) ~ Hom(R,,B) — Hom(F,,B) — Hom(A,B) — 0,
0 — Ext(®4,_,B) — Hom(®R,,B) — Hom(DF_,B) — Hom(D4,,B) — 0,

are exact, by Theorem 52.1. The direct product of sequences of the first type
gives a sequence that is naturally isomorphic with the second sequence in its
three right-hand terms. Therefore, there is an isomorphism between the left-
hand terms as well. This isomorphism Ext(©A4,,B) — I1 Ext(4,,B) is in fact
natural, by a standard argument.

Similarly, if 0 — R — F — A4 — 0 is a free resolution of 4, then the
sequences

0 — Ext(A4,B,) — Hom(R,B,) — Hom(F,B,) — Hom(A4,B,) — 0,
0 — Ext(4,11B,) — Hom(RI1B,) — Hom(F,IIB,) — Hom(4,I1B,) — 0,

are exact. Since the direct product of sequences of the first type agrees with the
second in the three right-hand terms (the isomorphisms in question being natu-
ral), these sequences agree in the left-hand group as well. Again, the isomor-
phism is natural.
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To check (b), we recall that a free resolution of A4 splits if A4 is free. Then
the dual sequence is exact, so Ext(A4,B) vanishes.
To prove (c), one begins with the free resolution
0—-2%2—-2/m—0.
Applying Theorem 52.1, one obtains the exact sequence
0 — Ext(Z/m,B) — Hom (Z,B) & Hom (Z,B) — Hom (Z/m,B) — 0,
from which (c) follows.

This theorem enables us to compute Ext(4,B) when A4 is finitely generated.
For Ext commutes with finite direct sums, and one has the rules

Ext(Z,G) = 0, Ext(Z/m,G) = G/mG.

EXERCISES

1. Show that if B is divisible, then Ext(4,B) = 0.
2. Compute Hom (A4,B) and Ext(A4,B) if

A=ZOZ/2DZ/40Z/6, B=ZOZ®Z/90Z/12.

3. Let S! denote the additive group R/Z. It is isomorphic to the multiplicative
group of complex numbers of unit modulus and is often called the circle group.
(a) If A is finitely generated, compute Hom (A4,G) and Ext(A4,G) in terms of

the betti number and torsion coefficients of A, if G = S*.
(b) Repeat (2) with G = Q.

4. If we “Hom"” a short exact sequence with a group G (either on the left or the
right), the resulting sequence may fail to be exact. The Ext functor measures in
some sense the extent to which exactness fails. One has the following theorem:

Theorem. There are functors assigning to each short exact sequence of
abelian groups

0—A4A—B—C—0,
and each abelian group G, two exact sequences:
0 — Ext(A,G) — Ext(B,G) — Ext(C,G) —
Hom (A,G) — Hom(B,G) ~~ Hom (C,G) — 0,
0 — Hom(G,A4) — Hom(G,B) — Hom (G,C) —
Ext(G,4) — Ext(G,B) — Ext(G,C) — 0.

Proof. (a) To obtain the second sequence let 0 = R— F~ G — 0 bea
free resolution of G, and apply the serpent lemma to the diagram

0—— Hom(F,4) — Hom (F,B) — Hom (F,C) —0

| | l

0—— Hom(R,4) — Hom(R,B) — Hom(R,C) ——0.
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(b) Given an abelian group G, show there is an exact sequence
0—-G—H—K—0

where H and K are divisible. Such an exact sequence is sometimes called an
injective resolution of G. [Hintz: 1t suffices to find H, since a quotient of a
divisible group is divisible. Write G = F/R, where F is free, and construct
a monomorphism of F into a direct sum of copies of Q.]

(c) Show there is a functor assigning to each injective resolution 0 — G —
H— K= 0 of G, and each abelian group 4, an exact sequence

0 — Hom(4,G) — Hom(A4,H) — Hom (4,K) — Ext(4,G) — 0.

(d) Use the serpent lemma to derive the first sequence of the theorem.

§53. THE UNIVERSAL COEFFICIENT
THEOREM FOR COHOMOLOGY

We now show how the homology groups of a space determine the cohomology
groups. The answer is expressed in the form of a short exact sequence involving
the groups H” and H,and H, _,, and the functors Hom and Ext.

We already know that if @ is a free chain complex, there is a natural exact
sequence

0 — Hom(H,(€),G) * H?(C; G) —kerx — 0.
(See Lemma 45.7.) We now identify the group ker «, and show it depends only
on the groups H, . ,(€) and G.

Theorem 53.1 (The universal coefficient theorem for cohomology). Let €
be a free chain complex; let G be an abelian group. There is an exact sequence

0 — Hom(H,(€),G) £ H?(€; G) — Ext(H, . ,(€),G) — 0

that is natural with respect to homomorphisms induced by chain maps. It
splits, but not naturally.

Proof. Stepl. Let C,, Z,, and B, denote the groups of p-chains, p-
cycles, and p-boundaries of €, respectively. Consider the exact sequence

;9
1 0
0—-z,4¢c,=B,_,—0.

It splits because B, _, is free. Define a chain complex Z by letting its p-dimen-
sional group be Z, and by letting its boundary operator be the restriction of 4.
Then all boundary operators in Z vanish. Similarly, define a chain complex D
by letting D, = B, _, and by letting its boundary operator be the restriction of
3; all boundary operators in D vanish.
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We then have a (split) short exact sequence of chain complexes

i ad
0—2,-C,—D,—0.
The map i is a chain map by definition, and the map 4, is a chain map trivially
(since 3 o § = 0).
Applying the Hom functor, we obtain a short exact sequence of cochain

complexes and hence a long exact cohomology sequence, of which we consider
five terms:

® @0 Lmz ol re e o6 ez,

To avoid confusion, we use 8 instead of 6* to denote the zig-zag homomor-
phism.

Step 2. We now identify the terms of this sequence and the homomor-
phism 8. Since the chain complex D has trivial boundary operators, so does the
corresponding cochain complex. Therefore, the group H? * '(D; G) equals the
cochain group Hom(D, . ;,G) = Hom(B,,G). For similar reasons, H*(Z; G) =
Hom(Z,,G).

Thus 8 is a map

Hom(8,,G) £ Hom(Z,,G).

We show that it is just the dual _;', of the inclusion map j,: B, — Z,.
One obtains the zig-zag homomorphism g by following through the diagram
3
Hom(C, , ;,G) ——Hom (B,.G)
—_—
Hom(Z,,G) —— Hom(C,,G)
from left to right, as follows: Let f be an element of Hom (Z,,G). Note that
8f = 0, because all coboundary operations in Z vanish. Pull f back via i to an
element g of Hom(C,,G). (That is, extend fto a homomorphism g: C,— G.)

Form ég, and pull it back via a to an element of Hom(B,,G) We show that

j,( S) is such a pull-back of ég; that is, we show that 8,j,(f) = dg. Then our
result is proved.

We compute
(88:C, « 1) = (g,0¢, « 1) = {fi8¢, . \),
the last equation holding because dc, , , is in Z,. Similarly,
@BoJp (S €pun) =1, Jp(36C, « 1)) = £:36, 11)-

Step 3. We now prove the theorem. The five-term exact sequence (*)
gives rise to the short exact sequence

(**) 0 — ker j, — H?(@;G) — cok j, ., — 0.

321
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We need only to identify the kernel and the cokernel of the map

-~

Hom(B, G) f Hom(Z 20).

Now the sequence

0—B8% z Z g @—0

is a free resolution of H,(€). Therefore, the sequence

(***) 0 — Ext(H,(€),G) — Hom(B,,G) £
Hom(Z,,G) & Hom (H,(€),G) — 0

is exact. The kernel and cokernel of ]‘, are now apparent. The existence of the
exact sequence of our theorem is thus established.

Step 4. We check naturality of the sequence. Let ¢ : @ — €@’ be a chain
map; let Z,, B,, and C, be the cycles, boundaries, and chains of €', respec-
tively. The chain maps

0— z,- ¢, B, ,—0

4

e, Lo, o

0— Z,~~C,—>B,_,—0

define a homomorphism of short exact sequences, for ¢ commutes with i be-
cause i is inclusion, and ¢ commutes with §, because ¢ is a chain map. It follows
that ¢ induces a homomorphism to the five-term exact sequence (*) from the cor-
responding sequence for ¢’, and hence induces a homomorphism to the short
exact sequence (**) from the corresponding sequence for €. It remains only to
comment that the exact sequence (***) is natural with respect to homomor-
phisms induced by chain maps, so the isomorphisms of ker j, and cok J,- .
with the appropriate Hom and Ext groups are natural as well.

Step 5. To complete the proof, we show that the homomorphism
Hom(H,(€),G) — H?(C; G)

of our exact sequence equals the Kronecker map «. Then the splitting of the se-
quence is a consequence of Lemma 45.7.

The homomorphism in our exact sequence equals the composite (#) ™' o i*
of the following diagram:

-~ 7%
Hom(Z,,G) D ker j, —— H*(€; G)
7= K

Hom (H,(€@),G)

where J,, is the dual of the inclusion map j,: B,— Z,, where i* is induced by
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inclusion i : Z,— C,, and where # is the dual of projection = :Z, — H,(C).
We need to show that the diagram commutes.
Let {z?} be an element of H?(@; G); we show that

#x({2fh) = i*({27h) = i(z"),
and the proof is complete. Let z,¢ Z,; we compute
F({2?)] (z,) = k({2?H) (x (z,)) = d=z*Liz,D
= (2f,z,) = (2%i(z))) = (f(z’),zp). O

Corollary 5§3.2. Let (X,A) be a topological pair. There is an exact se-
quence

0 — Hom(H,(X,A),G) — H?(X,4; G) — Ext(H, _(X,4),G) — 0,

which is natural with respect to homomorphisms induced by continuous maps.
It splits, but not naturally. O

Corollary 53.3. Let @ and D be free chain complexes; let ¢ : € — D be a
chain map. If ¢, : H,(€) — H,;(D) is anisomorphism fori = pandi =p — 1,
then

¢*
H?(@; G) — H?(D; G)
is an isomorphism.

Proof. Apply naturality of the universal coefficient sequence and the Five-
lemma. 0O

This corollary provides an alternate proof of Theorem 45.5. It in fact proves
something more than stated in that theorem, since we do not need to assume
that ¢, is an isomorphism in all dimensions.

The universal coefficient theorem
with field coefficients

There is a second version of the universal coefficient theorem that is often
useful. It concerns the case where the coefficient group is a field F. It relates
cohomology with homology if both are taken with coefficients in F.

We have already remarked that if @ is a chain complex and F is a field,
then both

Hom(C,,F) and C,®F

have, in a natural way, the structure of vector space over F. Given a € F, and
¢’ € Hom(C,,F), and ¢, € C,, one defines

(acpy cp) = - (CP,CP),

a(c,®B) = ¢, ® (af).
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(See the exercises of §48 and §51.) Both & and 9 are vector space homomor-
phisms (linear transformations), so that

H?(@; F) and H,(C;F)

also have the structure of vector space over F. We show that they are in fact
dual as vector spaces.

We recall that if 4 and B are vector spaces over F, then Hom;(A4,B) is
also a vector space over F; it is the set of linear transformations of 4 into B. If
f:A— A and g: B' — B are linear transformations, then Hom (f,g) is also a
linear transformation. (See the exercises of §41.)

We wish to reprove the universal coefficient theorem for cohomology in this

context. One difficulty is that we have several possible contenders for the title of
the space of cochains-—namely,

Hom(C,F), Hom(C,®F,F), Hom,(C,®F,F).

By definition, the first of these gives the cohomology H?(@; F) of @ with coeffi-
cients in F. We shall show that the third does, as well.

Lemma 53.4. Let @ be a chain complex. Let
w: Hom(C,,F) — Hom/(C,® F, F)
be defined by the equation
Ww(f),®a) ={fic,) - @,

where f € Hom(C,,F), and c, € C,, and a € F. Then w is a vector space iso-
morphism that commutes with é.

Proof. Strictly speaking, we use the preceding formula to define w(f) as
a function on the cartesian product C, X F, and note that it is bilinear. To
check that w(f) is a linear transformation, we compute

(w(f) alc,®B)) = (w(f), ,®af) = (fic,) - (aB)
=a-((fi5,) - B) =a-{(w(f),c,®B).

The map w is injective. Suppose w(f) is the zero linear transformation.
Then in particular

Ww(f)c, @D =0=(fc,) -1

for all ¢, € C,. This implies that fis the zero homomorphism.

The map w is surjective. Let ¢:C,® F— F be a linear transformation.
Let us define f : C, — F by the equation f(c,) = ¢(c, ® 1). It follows that fis a
homomorphism of abelian groups, because f(0) = 0 and

S, +4d)=0¢((c,+4d)®1)
= 6(c,®1 + d,® 1) = f(c,) + f(d,).
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Furthermore, w(f) = ¢, since
W(f),®a)=(f¢,) - a=a-¢(,®1),
¢(c,®a) =¢(a-(c,®1)) = - ¢(,®1).
This last equation holds because ¢ is a linear transformation, not just a homo-

morphism of abelian groups.
The map w commutes with 8. We compute

Ow(f), ¢+ 1@ a) = (w(f), (3@ if)(c,+1® )}
= <.f’acp+l) o= <6f;cp+l) - a
= @B ey ®a) O

Theorem 53.5. Let @ be a free chain complex; let F be a field. Then there
is a natural vector space isomorphism

Hom(H,(@; F), F) — H?(@; F).

Proof. We imitate the proof of the universal coefficient theorem. First, we
note that if

0—4—B—C—0

is a short exact sequence of vector spaces over F and linear transformations,
then for any vector space V over F, the dual sequence

0 — Hom(A4,V) — Hom,(B,V) — Hom,(C,V) — 0

is exact. The proof is easy, for since any vector space has a basis, the first
sequence splits.

Let 6 denote the chain complex @ ® F. Then E, = C,® F is a vector space
over F. Let B,and Z, denote boundaries and cycles, respectively, in the chain
complex &; they are also vector spaces over F. Consider the short exact se-
quence of vector spaces

0—-2,—-E,—B,_,—0.
It gives rise to the dual sequence
0 — Hom(Z,,F) — Homy(E,,F) — Hom(B, _ ,,F) — 0.

We apply the zig-zag lemma, as before. The cochain complex in the middle is
isomorphic to the cochain complex Hom (C,,F), by the preceding lemma. There-
fore, by the same argument as used before, we obtain an exact sequence

0 —ker j, — H?(@; F) —cok j,_,—0,

where j,: B, — Z,, is inclusion.
Now the proof takes a different tack. Consider the exact sequence

J

0— B, %4 Z,— H,(§) — 0.

325
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Because it is a sequence of vector spaces and linear transformations, the dual
sequence is exact:

-

0 — Hom,(B,.F) 2 Hom,(Z,,F) — Hom;(H,(6),F) — 0.
Therefore cok jp = 0 and

ker j, = Hom;(H,(@; F), F).

The theorem is now proved. [J

Corollary 53.6. If (X,A) is a topological pair, there is a natural vector
space isomorphism

Hom (H,(X,A; F), F) — H(X,A; F). O

This theorem shows that if F is a field, then the vector space H?(X,4; F)
can be identified in a natural way with the dual vector space of the vector space
H,(X,A; F). In the case where the dimension of H,(X,4; F) is finite, this means
that H?(X,4; F) and H,(X,A4; F) are isomorphic as vector spaces (though not
naturally).

In differential geometry, it is common to deal with compact manifolds and
to use the field of reals as coefficients. Because the cohomology and homology
vector spaces are dual in this case, differential geometers sometimes treat ho-

mology and cohomology as if they were the same object. Needless to say, this
can lead to confusion.

EXERCISES

1. Let @ be a free chain complex. Show that if H, _,(€) is free or if G is divisible,
then the Kronecker map « is an isomorphism.

2. Use the universal coefficient theorem to compute the cohomology with general
coefficients G of T # T and P*# P* # P* and P" and the k-fold dunce cap.

3. Assume H;(X) is finitely generated for all i.
(2) Compute H?(X; G) in terms of the betti numbers and torsion coefficients
of X. Compare with Exercise 5 of §42.
(b) Repeat (a) when G is the circle group S* = R/Z.
(c) Repeat (a) when G = Q.

4. A homomorphism « : G — G’ gives rise to homomorphisms
o,  Hy(@; G) — H(C; G),
a*  H'(@; G) — H (@; G').
They are called coefficient homomorphisms. Show the universal coefficient se-
quence for cohomology is natural with respect to coefficient homomorphisms.

5. Let (X,K,) be a relative pseudo n-manifold. (See the exercises of §43.) Suppose
K is finite. Show that the torsion subgroup of H, _ ,(K,K,) vanishes if (K,K,) is
orientable, and has order 2 otherwise.
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§54. TORSION PRODUCTS

Associated with the functor Hom and derived from it is another functor, called
Ext. Both were involved in the statement of the Universal Coefficient Theorem
for Cohomology. Similarly, associated with the tensor product functor and de-
rived from it is 2 second functor, which we call the torsion product. Both of
these functors will be involved in the statement of the Universal Coefficient The-
orem for Homology. Construction of the torsion product is so similar to con-
struction of the Ext functor that we abbreviate some of the details.

The torsion product is a functor that assigns to an ordered pair 4, B of abe-
lian groups, an abelian group A4 * B, and to an ordered pair of homomorphisms
v:A— A’ and é: B— B’, a homomorphism

y*3:AsB— A = B'.

Like the tensor product, it is covariant in both variables.
The crucial property of the torsion product is expressed in the following
theorem, whose proof we shall give later:

Theorem 54.1. There is a function that assigns to each free resolution
0—R—F—A—0
of the abelian group A, and to each abelian group B, an exact sequence
0—A*B—~R®B—F®B—A®B—0.

This function is natural, in the sense that a homomorphism of a free resolution
of A to a free resolution of A', and a homomorphism of B to B’', induce a
homomorphism of the corresponding exact sequences.

First, we prove a lemma.

Lemma 54.2. Given @ homomorphism of free resolutions
0— R F ¥ 4o

e, lo,,

0—REL ¥ 40

and a homomorphism & : B— B’, there exists a unique homomorphism ¢ mak-
ing the following diagram commute:

0— ker(¢®i) — R®B 22 rop ¥®b ,ep .0

le la@& lﬁ@& h@a
0— ker(¢' ®iy) — R®B 222 rop Y85 4ep o

The homomorphism ¢ is independent of the choice of « and 8.
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Proof. Functoriality of ® shows the two right-hand squares of the preced-
ing diagram commute. Therefore, o ® § induces a homomorphism ¢ of kernels.
The proof that ¢’ is independent of the choice of a and 8 proceeds as in the
proof of Lemma 52.2. Let {«/, 8', v} be another choice. We treat {a, 8, v} and
{e, B8, v} as chain maps of one chain complex A to another A’. There is a
chain homotopy D between them; then D ® § is a chain homotopy between the

corresponding chain maps of A ® B to A’ ® B'. Thus they induce the same
homomorphism

€: H,(A; B) — Hy(A';B’)
fl I
ker(p ®iyp) ker(¢' ®iz). O
The homomorphism e¢ is said to be induced by v and 8, relative to the free
resolutions involved.
Just as in §52, we see that ¢ depends functorially on v and é. That is, the
composite of the homomorphisms induced by (v,8) and (v',6') is the homomor-

phism induced by (y ¢ v',6 o §'). And the homomorphism induced by (i,,iz) is
an isomorphism.

Definition. Given A, let

0—RA) 2 F4)—A4—0

be the canonical free resolution of 4. The group ker (¢ ® i) is denoted A4 * B,
and called the torsion product of 4 and B. If y: 4— A" and 6: B— B’ are
homomorphisms, we extend y to a homomorphism of canonical free resolutions,
and define

y+8:A*B— A % B’

to be the homomorphism induced by v and § relative to these free resolutions.

The preceding remarks show that torsion product is a functor of two varia-
bles, covariant in both.

The proof of Theorem 54.1 is now straightforward. Given any free
resolution

0—REF—4—0,
the preceding remarks show that (i,,iz) induces an isomorphism of ker (¢ ® i)
with 4 * B. Thus the exact sequence of the theorem exists. Naturality is proved
as in the proof of Theorem 52.1.
One property possessed by the torsion product that is not possessed by Ext
is commutativity. We prove it now. First, we need a lemma.

Lemma 54.3. There is a function assigning to each short exact sequence
of abelian groups

0—-A4A—B—C—0
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and each abelian group D, an exact sequence
0—D+*A—D*B—D*xC—D®A—DO®B—D&C—O.

This function is natural with respect to homomorphisms of short exact se-
quences and abelian groups.

Proof. This result is analogous to the theorem stated in Exercise 4 of
§52. Let

0—REF_D—0

be a free resolution of D. Because R and F are free, we have horizontal exact-
ness in the diagram

0— R®A—R®B—R® C—0
jd:@i, 14,@;-, j¢®ic
00— F®RA— F®B— FQ® C—0.

(See Corollary 50.7.) Treating this diagram as a short exact sequence of chain
complexes, we apply the zig-zag lemma to obtain an exact sequence in homol-
ogy, which has the form

O0—ker(¢®i,)—ker(¢®iz) —ker(¢ ®i,) —
cok (¢ ®i,) — cok(p ®iz) — cok(¢ ® i) — 0