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Preface 

This book is intended as a text for a first-year graduate course in algebraic 
topology; it presents the basic material of homology and cohomology theory. 
For students who will go on in topology, differential geometry, Lie groups, or 
homological algebra, the subject is a prerequisite for later work. For other stu-
dents, it should be part of their general background, along with algebra and real 
and complex analysis. 

Geometric motivation and applications are stressed throughout. The ab-
stract aspects of the subject are introduced gradually, after the groundwork has 
been laid with specific examples. 

The book begins with a treatment of the simplicial homology groups, the 
most concrete of the homology theories. After a proof of their topological invar-
iance and verification of the Eilenberg-Steenrod axioms, the singular homology 
groups are introduced as their natural generalization. CW complexes appear as 
a useful computational tool. This basic "core" material is rounded out with a 
treatment of cohomology groups and the cohomology ring. 

There are two additional chapters. The first deals with homological alge-
bra, including the universal coefficient theorems and the Kiinneth theorem. The 
second deals with manifolds—specifically, the duality theorems associated with 
the names of Poincare, Lefschetz, Alexander, and Pontryagin. tech cohomol-
ogy is introduced to study the last of these. 

The book does not treat homotopy theory; to do so would have made it 
unwieldy. There is a thorough and readable elementary treatment of the fun-
damental group in Massey's book [Ma]; for general homotopy theory, the 

vii 
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reader may consult the excellent treatise by Whitehead, for which the present 
text is useful preparation [Wh]. 

Prerequisites 

We assume the student has some background in both general topology and 
algebra. In topology, we assume familiarity with continuous functions and com-
pactness and connectedness in general topological spaces, along with the sepa-
ration axioms up through the Tietze extension theorem for normal spaces. Stu-
dents without this background should be prepared to do some independent 
study; any standard book in topology will suffice ([D], [W], [Mu], [K], for 
example). Even with this background, the student might not know enough 
about quotient spaces for our purposes; therefore, we review this topic when the 
need arises (520 and §37). 

As far as algebra is concerned, a course dealing with groups, factor 
groups, and homomorphisms, along with basic facts about rings, fields, and 
vector spaces, will suffice. No particularly deep theorems will be needed. We 
review the basic results as needed, dealing with direct sums and direct prod-
ucts in §5 and proving the fundamental theorem of finitely generated abelian 
groups in §11. 

How the book is organized 

Everyone who teaches a course in algebraic topology has a different opinion 
regarding the appropriate choice of topics. I have attempted to organize the 
book as flexibly as possible, to enable the instructor to follow his or her own 
preferences in this matter. The first six chapters cover the basic "core" material 
mentioned earlier. Certain sections marked with asterisks are not part of the 
basic core and can thus be omitted or postponed without loss of continuity. The 
last two chapters, on homological algebra and duality, respectively, are inde-
pendent of one another; either or both may be covered. 

The instructor who wishes to do so can abbreviate the treatment of sim-
plicial homology by omitting Chapter 2. With this approach the topological in-
variance of the simplicial homology groups is proved, not directly via simplicial 
approximations as in Chapter 2, but as a consequence of the isomorphism be-
tween simplicial and singular theory (534). 

When the book is used for a two-semester course, one can reasonably 
expect to cover it in its entirety. This is the plan I usually follow when I teach 
the first-year graduate course at MIT; this allows enough time to treat the 
exercises thoroughly. The exercises themselves vary from routine to challeng-
ing. The more difficult ones are marked with asterisks, but none is unreason-
ably hard. 

If the book is to be used for a one-semester course, some choices will 
have to be made about what material to cover. One possible syllabus consists of 
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the first four chapters in their entirety. Another consists of the first five chap-
ters with most or all asterisked sections omitted. 

A third possible syllabus, which omits Chapter 2, consists of the 
following: 

Chapter 1 
Chapter 3 (omit §27) 
Chapter 4 (insert §15 before §31 and §20 before §37) 
Chapters 5 and 6 

If time allows, the instructor can include material from Chapter 7 or the first 
four sections of Chapter 8. (The later sections of Chapter 8 depend on omitted 
material.) 

Acknowledgments 

Anyone who teaches algebraic topology has had many occasions to refer to 
the classic books by Hilton and Wylie [H-W] and by Spanier [S]. I am no 
exception; certainly the reader will recognize their influence throughout the 
present text. I learned about CW complexes from George Whitehead; the treat-
ment of duality in manifolds is based on lectures by Norman Steenrod. From 
my students at MIT, I learned what I know about motivation of definitions, 
order of topics, pace of presentation, and suitability of exercises. 

To Miss Viola Wiley go my thanks for typing the original set of lecture 
notes on which the book is based. 

Finally, I recall my debt to my parents, who always encouraged me to 
follow my own path, though it led far from where it began. To them, with love 
and remembrance, this book is dedicated. 
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Homology Groups of a 
Simplicial Complex 

A fundamental problem of topology is that of determining, for two spaces, 
whether or not they are homeomorphic. To show two spaces are homeomorphic, 
one needs to construct a continuous bijective map, with continuous inverse, 
mapping one space to the other. To show two spaces are not homeomorphic in-
volves showing that such a map does not exist. To do that is often harder. The 
usual way of proceeding is to find some topological property (i.e., some property 
invariant under homeomorphisms) that is satisfied by one space but not the 
other. For example, the closed unit disc in R2  cannot be homeomorphic with 
the plane R2, because the closed disc is compact and the plane is not. Nor can 
the real line R be homeomorphic with R2, because deleting a point from R 
leaves a disconnected space remaining, while deleting a point from R2  does not. 

Such elementary properties do not carry one very far in tackling homeo-
morphism problems. Classifying all compact surfaces up to homeomorphism, 
for instance, demands more sophisticated topological invariants than these. So 
does the problem of showing that, in general, R3  and Rm are not homeomorphic 
if n * m. 

Algebraic topology originated in the attempts by such mathematicians as 
Poincare and Betti to construct such topological invariants. Poincare introduced 
a certain group, called the fundamental group of a topological space; it is by its 
definition a topological invariant. One can show fairly readily that a number 
of familiar spaces, such as the sphere, torus, and Klein bottle, have fundamen-
tal groups that are different, so these spaces cannot be homeomorphic ((Mu], 
Chapter 8). In fact, one can classify all compact surfaces using the fundamental 
group ([Mal, Chapter 4). 

Betti, on the other hand, associated with each space a certain sequence of 
abelian groups called its homology groups. In this case, it was not at all obvious 
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that homeomorphic spaces had isomorphic homology groups, although it was 
eventually proved true. These groups can also be used to tackle homeomor-
phism problems; one advantage they possess is that they are often easier to com-
pute than the fundamental group. 

We shall begin our discussion of algebraic topology by studying the homol-
ogy groups. Later on, we shall deal with other topological invariants, such as 
the cohomology groups and the cohomology ring. 

There are several different ways of defining homology groups, all of which 
lead to the same results for spaces that are sufficiently "nice." The two we shall 
consider in detail are the simplicial and the singular groups. We begin with the 
simplicial homology groups, which came first historically. Both conceptually 
and computationally, they are concrete and down-to-earth. They are defined, 
however, only for particularly "nice" spaces (polyhedra), and it is hard work to 
prove their topological invariance. After that, we shall treat the singular homol-
ogy groups, which were introduced as a generalization of the simplicial groups. 
They are defined for arbitrary spaces, and it is immediate from their definition 
that they are topological invariants. Furthermore, they are much more conve-
nient for theoretical purposes than the simplicial groups. They are not as read-
ily computable as the simplicial groups, but they agree with the simplicial 
homology groups when both are defined. 

A third way of defining homology groups for arbitrary spaces is due to 
E. Cech. The Cech homology theory is still not completely satisfactory, but 
tech cohomology theory is both important and useful. It will appear near the 
end of this book. 

§1. SIMPLICES 

Before defining simplicial homology groups, we must discuss the class of spaces 
for which they are defined, which is the class of all polyhedra. A polyhedron is a 
space that can be built from such "building blocks" as line segments, triangles, 
tetrahedra, and their higher dimensional analogues, by "gluing them together" 
along their faces. In this section, we shall discuss these basic building blocks; in 
the next, we shall use them to construct polyhedra. 

First we need to study a bit of the analytic geometry of euclidean space. 
Given a set {ao, . . . ,ao} of points of RN, this set is said to be geometrically 

independent if for any (real) scalars ti, the equations 
a 	 a 

1 ti  =-- 0 	and 	1 tiai = 0 
i = 0 	 i = 0 

imply that to  = t, --- • • • = t„ = 0. 
It is clear that a one-point set is always geometrically independent. Simple 
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algebra shows that in general {a0, . . ,a„} is geometrically independent if and 
only if the vectors 

a, — a., . . . ,a,, — a0  
are linearly independent in the sense of ordinary linear algebra. Thus two dis-
tinct points in RN  form a geometrically independent set, as do three non-collinear 
points, four non-coplanar points, and so on. 

Given a geometrically independent set of points {ao, . . ,a„}, we define the 
n-plane P spanned by these points to consist of all points x of RN  such that 

a 

x = 
	tiai, 
i = 0 

for some scalars ti  with It, = 1. Since the a, are geometrically independent, the 
1, are uniquely determined by x. Note that each point a, belongs to the plane P. 

The plane P can also be described as the set of all points x such that 

X = a, + 	ti(ai  — a.) 
= 1 

for some scalars t„ 	,t„; in this form we speak of P as the "plane through a, 
parallel to the vectors a, — a0." 

It is elementary to check that if {a0, . ,a,,} is geometrically independent, 
and if w lies outside the plane that these points span, then {w,a0, 	,a„} is geo- 
metrically independent. 

An affine transformation T of RN  is a map that is a composition of transla-
tions (i.e., maps of the form T(x) = x p for fixed p), and non-singular linear 
transformations. If T is an affine transformation, it is immediate from the defi-
nitions that T preserves geometrically independent sets, and that T carries the 
plane P spanned by a., . ,a,, onto the plane spanned by Tao, . ,Tan. 

Now the translation T(x) = x — a, carries P onto the vector subspace 
of RN having a, — a., . . ,a,, — a0  as a basis; if we follow T by a linear trans-
formation of RN  carrying a, — a., . ,a. — a0  to the first n unit basis vectors 
e„ 	,e. in RN, we obtain an affine transformation S of RN such that S (a.) = 
0 and S(a,) = 0, for i > 0. The map S carries P onto the plane IV X 0 of the 
first n coordinates in RN; it is thus clear why we call P a "plane of dimension 
n" in RN. 

Definition. Let {a0, . ,a„} be a geometrically independent set in RN. We 
define the n-simplex a spanned by a0, . ,a, to be the set of all points x of RN  
such that 

a 	a 
x = 	t iai, where 	t, = 1 

= 0 	 i=0 
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and t, > 0 for all i. The numbers ti  are uniquely determined by x; they are 
called the barycentric coordinates of the point x of a with respect to a0, ... 

Example I. In low dimensions, one can picture a simplex easily. A 0-simplex 
is a point, of course. The 1-simplex spanned by ao  and a, consists of all points of 
the form 

x = ta. + (1 — t)a, 
with 0 < t < 1; this just the line segment joining ao  and a,. Similarly, the 2-simplex 
a spanned by a0, a,, a2  equals the triangle having these three points as vertices. This 
can be seen most easily as follows: Assume x a.. Then 

2 

X = 	tia, = 10ao + (1 — toRtilx)a,+ (121X)a2] 
i.o 

where X = 1 — t.. The expression in brackets represents a point p of the line seg-
ment joining a, and a2, since (t, + 12)/X = 1 and ti /X > 0 for i = 1,2. 

Thus x is a point of the line segment joining ao  and p. See Figure 1.1. Con-
versely, any point of such a line segment is in a*, as you can check. It follows that a 

equals the union of all line segments joining ao  to points of a,a2; that is, a is a 
triangle. 

A similar proof shows that a 3-simplex is a tetrahedron. 

a1 

Figure 1.1 

Let us list some basic properties of simplices. The proofs are elementary 
and are largely left as exercises. 

Throughout, let P be the n-plane determined by the points of the geometri-
cally independent set {a0, . . ,a„}, and let a be the n-simplex spanned by these 
points. If x e a, let {ti (x)} be the barycentric coordinates of x; they are deter-
mined uniquely by the conditions 

x = 	tia, 	and 	t = 1. 
=o 	 =o 

The following properties hold: 
(1) The barycentric coordinates ti(x) of x with respect to a0, .. ,a„ are 

continuous functions of x. 



§1. 	 Simplices 	5 

(2) a equals the union of all line segments joining a°  to points of the sim-
plex s spanned by a„ . ,a„. Two such line segments intersect only in the 
point a,. 

Recall now that a subset A of RN  is said to be convex if for each pair x,y of 
points of A, the line segment joining them lies in A. 

(3) a is a compact, convex set in RN, which equals the intersection of all 
convex sets in RN  containing a., 	,a,„ 

(4) Given a simplex a, there is one and only one geometrically indepen- 
dent set of points spanning cr. 

The points a., . ,a, that span a are called the vertices of a; the number n is 
called the dimension of a. Any simplex spanned by a subset of fa„ 	,a01 is 
called a face of a. In particular, the face of a spanned by a„ . ,a„ is called the 
face opposite a.. The faces of a different from o- itself are called the proper faces 
of a; their union is called the boundary of a and denoted Bd C f . The interior of a 
is defined by the equation Int cr = a — Bd cr; the set Int a is sometimes called 
an open simplex. 

Since Bd o consists of all points x of o-  such that at least one of the bary-
centric coordinates t;  (x) is zero, Int a consists of those points of a for which 
t;  (x) > 0 for all i. It follows that, given x e a, there is exactly one face s of CI 

such that x E Int s, for s must be the face of a spanned by those a;  for which 
ti  (x) is positive. 

(5) Int a is convex and is open in the plane P; its closure is cr. Further-
more, Int a equals the union of all open line segments joining a°  to points of 
Int s, where s is the face of a opposite a.. 

Let us recall here some standard notation. If x is in R°  and x = (x„ . . ,x.), 
then the norm of x is defined by the equation 

[ 	(x i)2] 1  
.1 

The unit n-ball B0  is the set of all points x of R" for which 611 	1, and the unit 
sphere S" -  is the set of points for which II x I I = 1. The upper hemisphere E04.-
of S" -  ' consists of all points x of S° 1  for which x. > 0; while the lower hemi-
sphere E° consists of those points for which x„ < 0. 

With these definitions, B° is a one-point space, B' equals the interval 
I-1,1], and S° is the two-point space {-1,1}. The 2-ball B2  is the unit disc in R2  
centered at the origin; and S' is the unit circle. 

(6) There is a homeomorphism of a with the unit ball Bn  that carries Bd 
onto the unit sphere S0-1. 

We leave properties (1)-(5) as exercises, and prove (6). In fact, we shall 
prove a stronger result, which will be useful to us later. 

Recall that if w e 120, a ray 5 emanating from w is the set of all points of 
the form w + tp, where p is a fixed point of Rn  — 0 and t ranges over the non-
negative reals. 
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Lemma 1.1. Let U be a bounded, convex, open set in R"; let w e U. 
(a) Each ray emanating from w intersects Bd U = U — U in precisely 

one point. 
(b) There is a homeomorphism of U with B" carrying Bd U onto S" -'.  
Proof. (a) Given a ray .7i emanating from w, its intersection with U is 

convex, bounded, and open in .7?. Hence it consists of all points of the form 
w + tp, where t ranges over a half-open interval [0,a). Then ..71 intersects 
U — U in the point x = w_+ ap. 

Suppose ..71 intersects U — U in another point, say y. Then x lies between w 
and y on the ray 	Indeed, since y = w + bp for some b > a, we have 

x 	( I — t) w + ty, 

where t = a/b. We rewrite this equation in the form 

w = (x — ty)/(1 — t). 
Then we choose a sequence y. of points of U converging to y, and we define 

w„ = (x — ty„)/(1 — t). 

See Figure 1.2. The sequence w„ converges to w, so that w„ e U for some n. But 
then since x = tw„ + (1 — t) y", the point x belongs to U, because U is convex. 
This fact contradicts our choice of x. 

if x 	0, 
if x = 0. 

n 

Figure 1.2 

(b) Assume w = 0 for convenience. The equation f(x) = x/IIxII defines a 
continuous map f of R"  — 0 onto S" 1. By (a), f restricts to a bijection of Bd U 
with S.'. Since Bd U is compact, this restriction is a homeomorphism; 
let g:S" - 	Bd Ube its inverse. Extend g to a bijection G : 	U by letting 
G map the line segment joining 0 to the point u of S" I  linearly onto the line 
segment joining 0 to g(u). Formally, we define 

G (x) = {lig (x I 	x 

Continuity of G for x 0 is immediate. Continuity at 0 is easy: If M is a bound 
for lig(x) II, then whenever lix — Oil < 6, we have II G (x) — G(0)11 < M6. 0 
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EXERCISES 

1. Verify properties (1)—(3) of simplices. [Hint: If T is the affine transformation 
carrying a. to 0 and a, to then T carries the point 

x 	t a 
=o 

to the point (t„ 	 ,0).] 

2. Verify property (4) as follows: 
(a) Show that if x e a and x * a., . . ,a,„ then x lies in some open line seg-

ment contained in cr. (Assume n > 0.) 
(b) Show that ao  lies in no open line segment contained in a, by showing that if 

a. = tx + (1 — t)y, where x,y e cr and 0 < t < 1, then x = y a.. 

3. Verify property (5). 

4. Generalize property (2) as follows: Let a be spanned by a., 	,a„. Let s be the 
face of cr spanned by a., 	â (where p < n); and let t be the face spanned by 
ap 	,a0. Then t is called the face of a opposite s. 
(a) Show that a is the union of all line segments joining points of s to points of 

t, and two of these line segments intersect in at most a common end point. 
(b) Show that Int cr is the union of all open line segments joining points of Int s 

to points of Int t. 

5. Let U be a bounded open set in R". Suppose U is star-convex relative to the 
origin; this means that for each x in U, the line segment from 0 to x lies in U. 
(a) Show that a ray from 0 may intersect Bd U in more than one point. 

*(b) Show by example that U need not be homeomorphic to B". 

§2. SIMPLICIAL COMPLEXES AND SIMPLICIAL MAPS 

Complexes in RN  

Definition. A simplicial complex K in le is a collection of simplices in RN  
such that: 

(1) Every face of a simplex of K is in K. 

(2) The intersection of any two simplexes of K is a face of each of them. 

Example I. The collection K, pictured in Figure 2.1, consisting of a 2-simplex and 
its faces, is a simplicial complex. The collection K2, consisting of two 2-simplices 
with an edge in common, along with their faces, is a simplicial complex; while the 
collection K, is not. What about K.? 

The following lemma is sometimes useful in verifying that a collection of 
simplices is a simplicial complex: 
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Figure 2.1 

Lemma 2.1. A collection K of simplices is a simplicial complex if and 
only if the following hold: 

(1) Every face of a simplex of K is in K. 
(2') Every pair of distinct simplices of K have disjoint interiors. 
Proof First, assume K is a simplicial complex. Given two simplices a and 

T of K, we show that if their interiors have a point x in common, then a = T. Let 
s = a fl T. If s were a proper face of a, then x would belong to Bd a, which it 
does not. Therefore, s = a. A similar argument shows that s = T. 

To prove the converse, assume (1) and (2'). We show that if the set a fl 
is nonempty, then it equals the face a' of a that is spanned by those vertices 
. 	,b,,, of a that lie in T. First, a' is contained in a fl 1- because a n T is con- 

vex and contains b0, . ,b,,,. To prove the reverse inclusion, suppose x e a fl T. 

Then x e Int s fl Int t, for some face s of a and some face t of T. It follows 
from (2') that s = t; hence the vertices of s lie in T, so that by definition they 
are elements of the set {b0, . . ,b.}. Then s is a face of a', so that x e a', as 
desired. 0 

It follows from this lemma that if a is a simplex, then the collection consist-
ing of a and its proper faces is a simplicial complex: Condition (1) is immediate; 
and condition (2') holds because for each point x e a, there is exactly one face s 
of a such that x e Int s. 

Definition. If L is a subcollection of K that contains all faces of its ele-
ments, then L is a simplicial complex in its own right; it is called a subcomplex 
of K. One subcomplex of K is the collection of all simplices of K of dimension at 
most p; it is called the p-skeleton of K and is denoted 10). The points of the col-
lection 100)  are called the vertices of K. 

Definition. Let 1K I be the subset of RN  that is the union of the simplices of 
K. Giving each simplex its natural topology as a subspace of RN, we then topolo-
gize IKI by declaring a subset A of IKI to be closed in IKI if and only if A fl a is 
closed in a, for each a in K. It is easy to see that this defines a topology on IKI, 
for this collection of sets is closed under finite unions and arbitrary intersec-
tions. The space IKI is called the underlying space of K, or the polytope of K. 

A space that is the polytope of a simplicial complex will be called a poly- 
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hedron. (We note that some topologists reserve this term for the polytope of a 
finite simplicial complex.) 

In general, the topology of 110 is finer (larger) than the topology 11C1 inher-
its as a subspace of RN: If A is closed in 110 in the subspace topology, then 
A = B fl VI for some closed set B in RN. Then B n a is closed in o- for each a, 
so B ft IKI = A is closed in the topology of in by definition. 

The two topologies are different in general. (See Examples 2 and 3.) How-
ever, if K is finite, they are the same. For suppose K is finite and A is closed in 
IKI. Then A fl a is closed in a and hence closed in RN. Because A is the union of 
finitely many sets A n a, the set A also is closed in RN. 

Example 2. Let K be the collection of all 1-simplices in R of the form [m, m 11, 
where m is an integer different from 0, along with all simplices of the form 
[1 /(n 	1), 1 /n] for n a positive integer, along with all faces of these simplices. 
Then K is a complex whose underlying space equals R as a set but not as a topologi-
cal space. For instance, the set of points of the form I /n is closed in Ili but not in R. 

Example 3. Let K be the collection of 1-simplices „ a„ . . . and their vertices, 
where a;  is the 1-simplex in R2  having vertices 0 and (1,1 /i). See Figure 2.2. Then 
K is a simplicial complex. The intersection of IKI with the open parabolic arc 
{(x,x2) I x > 0} is closed in 14, because its intersection with each simplex a is a 
single point. It is not closed in the topology IKI  derives from R2, however, because in 
that topology it has the origin as a limit point. 

N 

Figure 2.2 

We prove some elementary topological properties of polyhedra. 

Lemma 2.2. If L is a subcomplex of K, then ILI is a closed subspace of 
IKI. In particular, if a e K, then a- is a closed subspace of IKI. 

Proof Suppose A is closed in ILI. If 0- is a simplex of K, then a fl ILI is the 
union of those faces s of a that belong to L. Since A is closed in ILL the set 
A n s;  is closed in s, and hence closed in a. Since A 11 a is the finite union of 
the sets A (1 	it is closed in a. We conclude that A is closed in IKI. 

Conversely, if B is closed in IKI, then B fl a is closed in a for each a e K, 
and in particular for each a e L. Hence B fl ILI is closed in ILI. 0 

Lemma 2.3. A map f : IKI X is continuous if and only iffl a is con-
tinuous for each a e K. 
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Proof. If f is continuous, so is f I a since a is a subspace of K. Conversely, 
suppose each map f I a is continuous. If C is a closed set of X, then f (C) fl 
a = ( f I a)-' (C), which is closed in a by continuity of f I a. Thus f' (C) is 
closed in IKI by definition. q 

Definition. If X is a space and if e is a collection of subspaces of X whose 
union is X, the topology of X is said to be coherent with the collection C, pro-
vided a set A is closed in X if and only if A fl C is closed in C for each C e e. It 
is equivalent to require that U be open in X if and only if U fl C is open in C for 
each C. 

In particular, the topology of IKI is coherent with the collection of sub-
spaces a, for a e K. 

The analogue of Lemma 2.3 holds for coherent topologies in general; a map 
f : X Y is continuous if and only if f I C is continuous for each C e 

Definition. If x is a point of the polyhedron IKI, then x is interior to pre-
cisely one simplex of K, whose vertices are (say) ao, . ,a„. Then 

x = z tiai, 
i = 0 

where t, > 0 for each i and Mt, = 1. If v is an arbitrary vertex of K, we define 
the barycentric coordinate t„ (x) of x with respect to v by setting to  (x)= 0 if v 
is not one of the vertices a., and to  (x) = ti  if v = ai. 

For fixed v, the function t„ (x) is continuous when restricted to a fixed 
simplex a of K, since either it is identically zero on a or equals the barycentric 
coordinate of x with respect to the vertex v of 17 in the sense formerly defined. 
Therefore, to (x) is continuous on IKI, by Lemma 2.3. 

Lemma 2.4. IKI is Hausdorff 

Proof Given xo  0 x„ there is at least one vertex v such that t„(xo) 0 
10(x1). Choose r between these two numbers; then the sets {x I t.(x) < r} and 
ix I ti,(x) > r} are the required disjoint open sets. q 

Lemma 2.5. If K is finite, then IKI is compact. Conversely, if a subset A 
of IKI is compact, then A C 11(.1 for some finite subcomplex K. of K. 

Proof If K is finite, then IKI is a finite union of compact subspaces a, and 
hence is compact. Now suppose A is compact and A does not lie in the polytope 
of any finite subcomplex of K. Choose a point xs  e A fl Int s whenever this set 
is nonempty. Then the set B = {xs } is infinite. Furthermore, every subset of B is 
closed, since its intersection with any simplex a is finite. Being closed and dis-
crete, B has no limit point, contrary to the fact that every infinite subset of a 
compact space has a limit point. q 
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Three particular subspaces of 1K! are often useful when studying local 
properties of 14. We mention them here: 

Definition. If v is a vertex of K, the star of v in K, denoted by St v, or 
sometimes by St (v,K), is the union of the interiors of those simplices of K that 
have v as a vertex. Its closure, denoted St v, is called the closed star of v in K. It 
is the union of all simplices of K having v as a vertex, and is the polytope of a 
subcomplex of K. The set St v — St v is called the link of v in K and is denoted 
Lk v. See Figure 2.3. 

Lk v 

Figure 2.3 

The set St v is open in 14, since it consists of all points x of IKI such that 
to  (x) > 0. Its complement is the union of all simplices of K that do not have v 
as a vertex; it is thus the polytope of a subcomplex of K. The set Lk v is also the 
polytope of a subcomplex of K; it is the intersection of St v and the complement 
of St v. The sets St v and St v are easily seen to be path connected; the set Lk v 
need not be connected, however. 

Definition. A simplicial complex K is said to be locally finite if each ver-
tex of K belongs only to finitely many simplices of K. Said differently, a com-
plex K is locally finite if and only if each closed star St v is the polytope of a fi-
nite subcomplex of K. 

Lemma 2.6. The complex K is locally finite if and only if the space 1K! is 
locally compact. 

Proof Suppose K is locally finite. Given x e 14, it lies in St v for some 
vertex v of K. Since St v is a compact set, 14 is locally compact. We leave the 
converse as an exercise. 0 

Simplicial maps 

Now we introduce the notion of a "simplicial map" of one complex into 
another. 
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Lemma 2.7. Let K and L be complexes, and let f 	L°  be a map. 
Suppose that whenever the vertices v„,... ,v„ of K span a simplex of K, the 
points f(vo), 	,f (v„) are vertices of a simplex of L. Then f can be extended 
to a continuous map g : IKI ILI such that 

x = 	tiv 	= 	g(x) = 	t f (v i ). 
=o 	 = 0 

We call g the (linear) simplicial map induced by the vertex map f. 

Proof. Note that although the vertices f (vo ), 	,f (v n ) of L are not nec- 
essarily distinct, still they span a simplex 7 of L, by hypothesis. When we "col-
lect terms" in the expression for g(x), it is still true that the coefficients are 
non-negative and their sum is 1; thus g(x) is a point of 7. Hence g maps the 
n-simplex a spanned by vo, 	,v„ continuously to the simplex T whose vertex 
set is If (v.), . ,f (v.)}. 

The map g is continuous as a map of a into 7, and hence as a map of o• into 
ILI. Then by Lemma 2.3, g is continuous as a map of IICI into ILI. 0 

We remark that the composite of simplicial maps is simplicial: Suppose 
g : IKI - ILI and h : ILI 	IMI are simplicial maps. By definition, if x =I ti e);  
(where the vi  are distinct vertices of a e K), then g(x) = Itig(vi ). 

Now this same formula would hold even if the vi  were not distinct, so long 
as {v„ 	,v„} is the vertex set of a simplex of K. For example, suppose 

n 

x 	
ti Vi, 

=o 

where ti  a- 0 for all i and Mt;  = 1; and suppose that v. = v, and the vertices 
v„ 	,v. are distinct. Write 

x = (to + t1 ) v°  + t2  v2  + • • • + t„ v„; 

then by definition 

g(x) = (to  + t1)g(v0)  + t2g(v2) + • • • + ta(v„) 

=Itig(vi ). 
=o 

Applying this remark to the present case, we note that even though the vertices 
g(vo),... ,g(vo) of L are not necessarily distinct, the following formula holds: 

h (g(x)) = h 	ig(v i )) = 	(g(v i )). 

Therefore h o g is a simplicial map, as claimed. 

Lemma 2.8. Suppose f : 	I?)  is a bijective correspondence such 
that the vertices vo,. ,v,, of K span a simplex of K if and only if 
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f (v.), 	,f (v„) span a simplex of L. Then the induced simplicial map 
g:IKI 	is a homeomorphism. 

The map g is called a simplicial homeomorphism, or an isomorphism, of K 
with L. 

Proof Each simplex a of K is mapped by g onto a simplex r of L of the 
same dimension as a•. We need only show that the linear map h 	o induced 
by the vertex correspondence f -' is the inverse of the map g: u T. And for 
that we note that if x = t iv then g(x) = ti f (v;) by definition; whence 

h (g (x)) = h (2 t i f (v i)) = 	f-  (f (v i)) 
= nit);  x. 0 

Corollary 2.9. Let AN  denote the complex consisting of an N-simplex and 
its faces. If K is a finite complex, then K is isomorphic to a subcomplex of AN 
for some N. 

Proof Let v., 	,v,„, be the vertices of K. Choose a,„ . . , a,,, to be geo- 
metrically independent points in R', and let AN  consist of the N-simplex they 
span, along with its faces. The vertex map f (vi) = ai  induces an isomorphism 
of K with a subcomplex of AN. 0 

General simplicial complexes 

Our insistence that a simplicial complex K must lie in R' for some N puts a 
limitation on the cardinality of K and on the dimension of the simplices of K. 
We now remove these restrictions. 

Let J be an arbitrary index set, and let R' denote the J-fold product of R 
with itself. An element of R' is a function from J to R, ordinarily denoted in 
"tuple notation" by (x.). The product IV is of course a vector space with the 
usual component-wise addition and multiplication by scalars. 

Let E1  denote the subset of R' consisting of all points (x.)„ „ such that 
x. = 0 for all but finitely many values of a. Then E' is also a vector space under 
component-wise addition and multiplication of scalars. If fa  is the map of J into 
R whose value is 1 on the index a and 0 on all other elements of J, then the set 

a e J} is a basis for V. (It is not, of course, a basis for le.) 
We call E' generalized euclidean space and topologize it by the metric 

Ix — yl = max 	— KrIL J• 

Everything we have done for complexes in RN  generalizes to complexes in 
V. The space E' is the union of certain of its finite-dimensional subspaces— 
namely, the subspaces spanned by finite subsets of the basis 	I a e J}. Each 
such subspace is just a copy of R' for some N. Any finite set {ez.,...,a.} of 
points of E' lies in such a subspace; if they are independent, the simplex they 
span lies in the same subspace. Furthermore, the metric for E' gives the usual 
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topology of each such subspace. Therefore, any finite collection of simplices in 
E-1  lies in a copy of RN  for some N. All that we are really doing is to allow 
ourselves to deal with complexes for which the total collection of simplices 
cannot be fitted entirely into any one RN. Conceptually it may seem more com-
plicated to work in E' than in RN, but in practice it causes no difficulty at all. 

We leave it to you to check that our results hold for complexes in V. We 
shall use these results freely henceforth. 

Let us make one further comment. If K is a complex in RN, then each 
simplex of K has dimension at most N. On the other hand, if K is a complex in 
E', there need be no upper bound on the dimensions of the simplices of K. We 
define the dimension of K, denoted dim K, to be the largest dimension of a 
simplex of K, if such exists; otherwise, we say that K has infinite dimension. 

EXERCISES 

1. Let K be a simplicial complex; let a e K. When is Int a open in IKI? When is °-
open in IKI? 

2. Show that in general, St v and St v are path connected. 

3. (a) Show directly that the polyhedron of Example 3 is not locally compact. 
(b) Show that, in general, if a complex K is not locally finite, then the space IKI 

is not locally compact. 

4. Show that the polyhedron of Example 3 is not metrizable. [Hint: Show that 
first countability axiom fails.] 

5. If g : IKI —' ILI is a simplicial map carrying the vertices of cr onto the vertices of 
r, show that g maps some face of a homeomorphically onto r. 

6. Check that the proofs of Lemmas 2.1-2.8 apply without change to complexes in 
E', if one simply replaces RN  by E" throughout. 

7. Let K be a complex. Show that IM is metrizable if and only if K is locally finite. 
[Hint: The function 

d(x,y) = lub it.(x) — 4(y)I 

is a metric for the topology of each finite subcomplex of K.] 

8. Let K be a complex. Show that IKI is normal. [Hint: If A is closed in IKI and 
if f : A — [0,1] is continuous, extend f step-by-step to A U IK('1, using the 
Tietze theorem.] 

9. Let K be a complex in RN. Show that IKI is a subspace of RN  if and only if each 
point x of IKI lies in an open set of RN  that intersects only finitely many sim-
plices of K. Generalize to V. 

10. Show that the collection of all simplices in R of the form [1/(n + 1), 1/n] for n 
a positive integer, along with their vertices, is a complex whose polytope is the 
subspace (0,1] of R. 
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§3. ABSTRACT SIMPLICIAL COMPLEXES 

In practice, specifying a polyhedron X by giving a collection of simplices whose 
union is X is not a very convenient way of dealing with specific polyhedra. One 
quickly gets immersed in details of analytic geometry; it is messy to specify all 
the simplices and to make sure they intersect only when they should. It is much 
easier to specify X by means of an "abstract simplicial complex," a notion we 
now introduce. 

Definition. An abstract simplicial complex is a collection eS' of finite non-
empty sets, such that if A is an element of 4', so is every nonempty subset of A. 

The element A of e? is called a simplex of eV; its dimension is one less than 
the number of its elements. Each nonempty subset of A is called a face of A. 
The dimension of eS' is the largest dimension of one of its simplices, or is infinite 
if there is no such largest dimension. The vertex set V of e9 is the union of the 
one-point elements of e; we shall make no distinction between the vertex v e V 
and the 0-simplex {v} e es'. A subcollection of e that is itself a complex is called 
a subcomplex of 09. 

Two abstract complexes I and T are said to be isomorphic if there is a 
bijective correspondence f mapping the vertex set of I to the vertex set of T 
such that fa., . .. ,c1.1 e I if and only if {f (ao), . . . ,f(a.)} e T. 

Definition. If K is a simplicial complex, let V be the vertex set of K. Let 5t 
be the collection of all subsets {ar), ... ,a,,} of V such that the vertices ao, . . . ,a,, 
span a simplex of K. The collection 5€ is called the vertex scheme of K. 

The collection 5{ is a particular example of an abstract simplicial complex. 
It is in fact the crucial example, as the following theorem shows: 

Theorem 3.1. (a) Every abstract complex I is isomorphic to the vertex 
scheme of some simplicial complex K. 

(b) Two simplicial complexes are linearly isomorphic if and only if their 
vertex schemes are isomorphic as abstract simplicial complexes. 

Proof Part (b) follows at once from Lemma 2.8. To prove (a), we pro-
ceed as follows: Given an index set J, let A' be the collection of all simplices in 
Et  spanned by finite subsets of the standard basis {ea} for V. It is easy to see 
that A' is a simplicial complex; if o and r are two simplices of A', then their 
combined vertex set is geometrically independent and spans a simplex of Y. We 
shall call AI  an "infinite-dimensional simplex." 

Now let I be an abstract complex with vertex set V. Choose an index set 
J large enough that there is an injective function f: V —, {E.}„,,. (Let J = V if 
you wish.) We specify a subcomplex K of Al  by the condition that for each 
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(abstract) simplex {a°, . . . ,an } e et the (geometric) simplex spanned by 
f (a.), . . . ,f (a.)is to be in K. It is immediate that K is a simplicial complex and 
eV is isomorphic to the vertex scheme of K; f is the required correspondence 
between their vertex sets. 0 

Definition. If the abstract simplicial complex eS' is isomorphic with the 
vertex scheme of the simplicial complex K, we call K a geometric realization of 
cf. It is uniquely determined up to a linear isomorphism. 

Let us illustrate how abstract complexes can be used to specify particular 
simplicial complexes. 

Example I. Suppose we wish to indicate a simplicial complex K whose underlying 
space is homeomorphic to the cylinder .S" x I. (Here I denotes the closed unit 
interval [0,11.) One way of doing so is to draw the picture in Figure 3.1, which 
specifies K as a collection consisting of six 2-simplices and their faces. Another way 
of picturing this same complex K is to draw the diagram in Figure 3.2. This dia-
gram consists of two things: first, a complex L whose underlying space is a rectan-
gle, and second, a particular labelling of the vertices of L (some vertices being given 
the same label). We shall consider this diagram to be a short-hand way of denoting 
the abstract complex I whose vertex set consists of the letters a, b, c, d, e, and f, and 
whose simplices are the sets {a, f, dl, {a, b, 4, {b, c, el}, lc, d, el, la, c, e}, {a, e, fl, 
along with their nonempty subsets. Of course, this abstract complex is isomorphic to 
the vertex scheme of the complex K pictured earlier, so it specifies precisely the 
same complex (up to linear isomorphism). That is, the complex K of Figure 3.1 is a 
geometric realization of I. 

Let f : e --. le)  be the map that assigns to each vertex of L the correspond-
ingly labelled vertex of K. Then f extends to a simplicial map g :ILI --, 110. Because 
the spaces are compact Hausdorff, g is a quotient map, or "pasting map." It identi-
fies the right edge of ILI linearly with the left edge of ILI. And of course this is the 
usual way one forms a cylinder from a rectangular piece of paper—one bends it 
around and pastes the right edge to the left edge! 

Example 2. Now suppose we begin with a complex L and a labelling of its vertices. 
Consider for instance the same complex L with a different labelling of the vertices, 
as in Figure 3.3. Just as before, this diagram indicates a certain abstract complex I, 
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whose simplices one can list. Let K be a geometric realization of S. As before, the 
vertices of K correspond to the letters a, . ,f; we consider the linear simplicial 
map g : ILI IKI that assigns to each vertex of L the correspondingly labelled ver-
tex of K. Again, g is a quotient map; in this case it identifies the left edge of ILI lin-
early with the right edge of ILI, but with a twist. The space IKI is the one we call the 
Mobius band; it can be pictured in R3  as the familiar space indicated in Figure 3.3. 

Example 3. The torus is often defined as the quotient space obtained from a rect-
angle by making the identifications pictured in Figure 3.4. If we wish to construct a 
complex whose underlying space is homeomorphic to the torus, we can thus obtain 
it by using the diagram in Figure 3.5. You can check that the resulting quotient 
map of L onto the geometric realization of this diagram carries out precisely the 
identifications needed to form the torus. 

Figure 3.4 

Example 4. Some care is required in general to make sure that the quotient map 
g does not carry out more identifications than one wishes. For instance, you may 
think that the diagram in Figure 3.6 determines the torus, but it does not. The 
quotient map in this case does more than paste opposite edges together, as you will 
see if you examine the diagram more closely. 
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Figure 3.7 

Example 5. The diagram in Figure 3.7 indicates an abstract complex whose un-
derlying space is called the Klein bottle. It is the quotient space obtained from the 
rectangle by pasting the edges together as indicated in Figure 3.8. The resulting 
space cannot be imbedded in R3, but one can picture it in R3  by letting it "pass 
through itself." 

Figure 3.8 

We now describe more carefully the process indicated in preceding exam-
ples: Given a finite complex L, a labelling of the vertices of L is a surjective 
function f mapping the vertex set of L to a set (called the set of labels). Corre-
sponding to this labelling is an abstract complex whose vertices are the labels 
and whose simplices consist of all sets of the form if (v.), . ,f (v.)}, where 

,v„ span a simplex of L. Let K be a geometric realization of S. Then the 
vertex map of /PI onto K(*)  derived from f extends to a surjective simplicial map 
g :ILI IKI. We say that K is the complex derived from the labelled complex L, 
and we call g the associated pasting map. 

Because ILI is compact and IKI is Hausdorff, g maps closed sets to closed 
sets; thus g is a closed quotient map. Of course, g can in general map a simplex 
of L onto a simplex of K of lower dimension. For instance, g might collapse all 
of L to a single point. We are more interested in cases where this does not occur. 
We are particularly interested in situations similar to those of the preceding 
examples. We now state a lemma giving conditions under which the general 
"pasting map" g behaves like those in our examples. First, we need a definition. 

Definition. If L is a complex, a subcomplex L. of L is said to be a full sub-
complex of L provided each simplex of L whose vertices belong to L. belongs to 
L. itself. 
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For example, the boundary of the rectangle L pictured in Figure 3.5 is a full 
subcomplex of L, but the boundary of the rectangle pictured in Figure 3.6 is not. 

Lemma 3.2. Let L be a complex; let f be a labelling of its vertices; let 
g : ILI SKI be the associated pasting map. Let Lo  be a full subcomplex of L. 
Suppose that whenever v and w are vertices of L having the same label: 

(1) v and w belong to Lo. 
(2) St v and St w are disjoint. 

Then dim g(a) = dim a for all a e L. Furthermore, if g(cr,) = g(a,), then a, 
and a2  must be disjoint simplices belonging to Lo. 

The proof is easy and is left as an exercise. In the usual applications of this 
lemma, ILI is a polyhedral region in the plane or 	and ILOI is the boundary of 
the region. 

EXERCISES 

1. The projective plane P2  is defined as the space obtained from the 2-sphere S2  by 
identifying x with —x for each x e S2. 
(a) Show P2  is homeomorphic with the space obtained from B2  by identifying x 

with —x for each x e S'. 
(b) Show that the labelled complex L of Figure 3.9 determines a complex K 

whose space is homeomorphic to P 2. 
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(c) Describe the space determined by the labelled complex of Figure 3.10. 
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2. Describe the spaces determined by the labelled complexes in Figures 3.11-3.14. 

3. Prove Lemma 3.2. 

4. Let S be a set with a partial order relation 1.5_. A standard technique in com-
binatorics is to associate with S the abstract complex S whose vertices are the 
elements of S and whose simplices are the finite simply-ordered subsets of S. 
Suppose one is given the partial order on {a„ 	,a.} generated by the following 
relations: 

a, -< a, < a, .< a.; 	a, IS a, a,; 

ar, 11. a.; 	a, lc. a,. 

Describe a geometric realization of 

§4. REVIEW OF ABELIAN GROUPS 

In this section, we review some results from algebra that we shall be using—
specifically, facts about abelian groups. 

We write abelian groups additively. Then 0 denotes the neutral element, 
and —g denotes the additive inverse of g. If n is a positive integer, then ng 
denotes the n-fold sum g + • • • + g, and (—n)g denotes n(—g). 

We denote the group of integers by Z, the rationals by Q, and the complex 
numbers by C. 

Homomorphisms 

If f : G H is a homomorphism, the kernel of f is the subgroup f -  i(0) of 
G, the image off is the subgroup f (G) of H, and the cokernel off is the quotient 
group H If (G). We denote these groups by kerf and imf and cokf, respec-
tively. The map f is a monomorphism if and only if the kernel off vanishes (i.e., 
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equals the trivial group). And f is an epimorphism if and only if the cokernel of 
f vanishes; in this case, f induces an isomorphism G/kerf = H. 

Free abelian groups 

An abelian group G is free if it has a basis—that is, if there is a family 
ILL e , of elements of G such that each g e G can be written uniquely as a 
finite sum 

g = Zne,gc„ 

with n, an integer. Uniqueness implies that each element ga  has infinite order; 
that is, ga  generates an infinite cyclic subgroup of G. 

More generally, if each g e G can be written as a finite sum g = Mktg., 
but not necessarily uniquely, then we say that the family {ga} generates G. In 
particular, if the set {g.} is finite, we say that G is finitely generated. 

If G is free and has a basis consisting of n elements, say g„ . . . ,g,„ then it is 
easy to see that every basis for G consists of precisely n elements. For the group 
G/2G consists of all cosets of the form 

(€,g1) + 2G, 

where Ei = 0 or 1; this fact implies that the group G/2G consists of precisely 2" 
elements. The number of elements in a basis for G is called the rank of G. 

It is true more generally that if G has an infinite basis, any two bases for G 
have the same cardinality. We shall not use this fact. 

A crucial property of free abelian groups is the following: If G has a basis 
{g„}, then any function f from the set {g,,} to an abelian group H extends 
uniquely to a homomorphism of G into H. 

One specific way of constructing free abelian groups is the following: Given 
a set S, we define the free abelian group G generated by S to be the set of all 
functions 0 : S ---. Z such that 4)(x) 0 0 for only finitely many values of x; we 
add two such functions by adding their values. Given x e S, there is a charac-
teristic function Ox  for x, defined bysetting 

	

10 	if 	y 0 x, 
0.(Y) 	1 	if 	y ----- x. 

The functions IC I x e S} form a basis for G, for each function 4, e G can be 
written uniquely as a finite sum 

45 = ln,, O., 

where nx  = 4) (x) and the summation extends over all x for which 4)  (x) = 0. 
We often abuse notation and identify the element x e S with its characteristic 
function (k . With this notation, the general element of G can be written uniquely 
as a finite "formal linear combination" 

O .-- Inax,,, 

of the elements of the set S. 
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If G is an abelian group, an element g of G has finite order if ng = 0 for 
some positive integer n. The set of all elements of finite order in G is a subgroup 
T of G, called the torsion subgroup. If T vanishes, we say G is torsion-free. A 
free abelian group is necessarily torsion-free, but not conversely. 

If T consists of only finitely many elements, then the number of elements in 
T is called the order of T. If T has finite order, then each element of T has finite 
order; but not conversely. 

Internal direct sums 

Suppose G is an abelian group, and suppose {G.}.., is a collection of sub-
groups of G, indexed bijectively by some index set J. Suppose that each g in G 
can be written uniquely as a finite sum g = lg., where g. a G. for each a. 
Then G is said to be the internal direct sum of the groups G., and we write 

G = ®a., G.. 
If the collection {Ga}  is finite, say {G.} = {G„ 	,G.}, we also write this direct 
sum in the form G = G, 9 • • • ED G,,. 

If each g in G can be written as a finite sum g = Mg., but not necessarily 
uniquely, we say simply that G is the sum of the groups {G.}, and we write 
G =1G., or, in the finite case, G = G, + • • • + G. In this situation, we also 
say that the groups {G.} generate G. 

If G =1G., then this sum is direct if and only if the equation 0 = 
implies that g. = 0 for each a. This in turn occurs if and only if for each fixed 
index a0, one has 

G00  n1 	G.) = fol. 
..0 

In particular, if G = G, + G2, then this sum is direct if and only if G, n 
Gz  = {0}. 

The resemblance to free abelian groups is strong. Indeed, if G is free with 
basis {g.}, then G is the direct sum of the subgroups {G.}, where G. is the infi-
nite cyclic group generated by g.. Conversely, if G is a direct sum of infinite 
cyclic subgroups, then G is a free abelian group. 

If G is the direct sum of subgroups {G.}, and if for each a, one has a homo-
morphism fa  of G. into the abelian group H, the homomorphisms {fa} extend 
uniquely to a homomorphism of G into H. 

Here is a useful criterion for showing G is a direct sum: 

Lemma 4.1. Let G be an abelian group. If G is the direct sum of the sub-
groups {G.}, then there are homomorphisms 

jo : Gift 	G 	and 	iro  : G 

such that iro  0 ja  is the zero homomorphism if a # /3, and the identity homo-
morphism if a = 13. 
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Conversely, suppose {Ga } is a family of abelian groups, and there are 
homomorphisms h and ir 0  as above. Then h is a monomorphism. Furthermore, 
if the groups ja(Ga) generate G, then G is their direct sum. 

Proof Suppose G = ED Ga. We define h to be the inclusion homomor-
phism. To define ire, write g = Mg., where g. e G. for each a; and let 70(g) = 
go. Uniqueness of the representation of g shows 7ro  is a well-defined homo-
morphism. 

Consider the converse. Because Ira  0 ja  is the identity, ja  is injective (and Ira  

is surjective). If the groups ja(Ga) generate G, every element of G can be writ-
ten as a finite sum M je(g.), by hypothesis. To show this representation is 
unique, suppose 

M ja(4) = I ja(4). 
Applying Ira, we see that go  = 4. 0 

Direct products and external direct sums 

Let {Ga}a E , be an indexed family of abelian groups. Their direct product 
II„ e , G. is the group whose underlying set is the cartesian product of the sets 
G., and whose group operation is component-wise addition. Their external di-
rect sum G is the subgroup of the direct product consisting of all tuples (4). E, 
such that 4 = Oa  for all but finitely many values of a. (Here 0„ is the zero 
element of G..) The group G is sometimes also called the "weak direct product" 
of the groups Ga. 

The relation between internal and external direct sums is described as fol-
lows: Suppose G is the external direct sum of the groups {Ga}. Then for each 
$, we define ro  : G --4 Go  to be projection onto the 3th factor. And we define 
jo  : Go  —. G by letting it carry the element g e Go  to the tuple (4). E ,, where 
4 = 0„, for all a different from 0, and go  = g. Then re  0 ja  = 0 for a * $, and 
ra, o L is the identity. It follows that G equals the internal direct sum of the 
groups G,', = LAG.), where q is isomorphic to Ga. 

Thus the notions of internal and external direct sums are closely related. 
The difference is mainly one of notation. For this reason, we customarily use 
the notations 

G = G, 9 • - • ED G„ 	and 	G = ED G. 
to denote either internal or external direct sums, relying on the context to make 
clear which is meant (if indeed, it is important). With this notation, one can for 
instance express the fact that G is free abelian of rank 3 merely by writing 
G = Z EBI Z ED Z. 

If G, is a subgroup of G, we say that G, is a direct summand in G if there is 
a subgroup G2  of G such that G = G1 e G2. In this case, if Hi  is a subgroup of 
G„ for i = 1,2, then the sum H, + H2  is direct, and furthermore, 

G 	_ G, ED  G, 
H,e H, --  H, H2. 
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In particular, if G = G, ED G2, then GIG, =4 G2. 
Of course, one can have GIG, = G2  without its following that G = G, 9 G2; 

that is, G, may be a subgroup of G without being a direct summand in G. For 
instance, the subgroup nZ of the integers is not a direct summand in Z, for that 
would mean that 

Z :61 nZ G, 

for some subgroup G2  of Z. But then G, is isomorphic to Z/nZ, which is a group 
of finite order, while no subgroup of Z has finite order. 

Incidentally, we shall denote the group Z/nZ of integers modulo n simply 
by Z/n, in accordance with current usage. 

The fundamental theorem of 
finitely generated abelian groups 

There are actually two theorems that are important to us. The first is a 
theorem about subgroups of free abelian groups. We state it here, and give a 
proof in §11: 

Theorem 4.2. Let F be a free abelian group. If R is a subgroup of F, then 
R is also a free abelian group. If F has rank n, then R has rank r < n; further- 
more, there is a basis e, 	e„ for F and integers t„ . . . ,t„ with t1 > 1 such 
that 

(1) t,e„ 	 „ . . . ,e, is a basis for R. 

(2) t, I t2  I • • • I tk , that is, t, divides t, , for all i. 

The integers t„ . 4, are uniquely determined by F and R, although the basis 
e„ 	is not. 

An immediate corollary of this theorem is the following: 

Theorem 4.3 (The fundamental theorem of finitely generated abelian groups). 
Let G be a finitely generated abelian group. Let T be its torsion subgroup. 

(a) There is a free abelian subgroup H of G having finite rank such that 
G = H ED T. 

(b) There are finite cyclic groups T„ . . . ,Tk , where T1  has order t1 > 1, 
such that t,1 12 1 • • • 1 tk  and 

T = 	• • • 9 Tk. 

(c) The numbers # and t 1, . . k  are uniquely determined by G. 

The number /3 is called the betti number of G; the numbers t„ . , tk  are 
called the torsion coefficients of G. Note that 13 is the rank of the free abelian 
group G T ze., H. The rank of the subgroup H and the orders of the subgroups 
Ti  are uniquely determined, but the subgroups themselves are not. 



§4. 	 Review of Abelian Groups 	25 

Proof Let S be a finite set of generators {g1}  for G; let F be the free abe-
lian group on the set S. The map carrying each g;  to itself extends to a homo-
morphism carrying F onto G. Let R be the kernel of this homomorphism. Then 
FIR = G. Choose bases for F and R as in Theorem 4.2. Then 

F 	F,e4 • • • ED F„ 

where F1  is infinite cyclic with generator ei; and 

R 	t,F, 9 • • • ED t„ Fk  9 F, , • • • 9 F,. 

We compute the quotient group as follows: 

FIR = (F,11,F,0334 • • • ED Fat,F„) 9 (F,,., 9 • • • ED F.). 

Thus there is an isomorphism 

f :G (Z/t,  - • • 9 Z/t,) 9 (Z 9 • • • 9 Z). 

The torsion subgroup T of G must be mapped to the subgroup Z/t, 9 • • • e 
Z/tk  by f, since any isomorphism preserves torsion subgroups. Parts (a) and (b) 
of the theorem follow. Part (c) is left to the exercises. 0 

This theorem shows that any finitely generated abelian group G can be 
written as a finite direct sum of cyclic groups; that is, 

G = (Z 9 • • • e Z) ® Z/t, ED • - • ED Z/tk. 

with ti  > 1 and t, I t, • • • I tk. This representation is in some sense a "canoni-
cal form" for G. There is another such canonical form, derived as follows: 

Recall first the fact that if m and n are relatively prime positive integers, 
then 

Z/m Z/n = Z/mn. 

It follows that any finite cyclic group can be written as a direct sum of cyclic 
groups whose orders are powers of primes. Theorem 4.3 then implies that for 
any finitely generated group G, 

G = (Z 9 • • • ED Z) 9 (Z/a, ED • • • ED Z/;) 

where each ; is a power of a prime. This is another canonical form for G, since 
the numbers ai  are uniquely determined by G (up to a rearrangement), as we 
shall see. 

EXERCISES 

1. Show that if G is a finitely generated abelian group, every subgroup of G is 
finitely generated. (This result does not hold for non-abelian groups.) 

2. (a) Show that if G is free, then G is torsion-free. 
(b) Show that if G is finitely generated and torsion-free, then G is free. 
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(c) Show that the additive group of rationals Q is torsion-free but not free. 
[Hint: If {g,,} is a basis for Q, let be fixed and express go /2 in terms of 
this basis.] 

3. (a) Show that if m and n are relatively prime, then Z/m ED Z/n is cyclic of 
order mn. 

(b) If G = Z/18 9 Z/36, express G as a direct sum of cyclic groups of prime 
power order. 

(c) If G = Z/2 9 Z/4 9 Z/3 9 Z/3 9 Z/9, find the torsion coefficients of G. 
(d) If G = Z/15 ED Z/20 Z/18, find the invariant factors and the torsion 

coefficients of G. 
4. (a) Let p be prime; let b„ ...,b„ be non-negative integers. Show that if 

G 	(Z/p)b,  ED (Z/p2)'' - • • 9 (Z/e)51̀ , 

then the integers bi  are uniquely determined by G. [Hint: Consider the 
kernel of the homomorphism f : G G that is multiplication by p'. Show 
that f, and f, determine b,. Proceed similarly.] 

(b) Let p„ 	,p, be a sequence of distinct primes. Generalize (a) to a finite 
direct sum of terms of the form (ZI(pi)k)b'k, where bik  0. 

(c) Verify (c) of Theorem 4.3. That is, show that the betti number, invariant 
factors, and torsion coefficients of a finitely generated abelian group G are 
uniquely determined by G. 

(d) Show that the numbers ti  appearing in the conclusion of Theorem 4.2 are 
uniquely determined by F and R. 

§5. HOMOLOGY GROUPS 

Now we are ready to define the homology groups. First we must discuss the no-
tion of "orientation." 

Definition. Let a be a simplex (either geometric or abstract). Define two 
orderings of its vertex set to be equivalent if they differ from one another by an 
even permutation. If dim a > 0, the orderings of the vertices of a then fall into 
two equivalence classes. Each of these classes is called an orientation of a. (If a 
is a 0-simplex, then there is only one class and hence only one orientation of a.) 
An oriented simplex is a simplex a together with an orientation of a. 

If the points v., . 	are independent, we shall use the symbol 

vo ...vp  

to denote the simplex they span, and we shall use the symbol 

[VOI • • • ,Up] 

to denote the oriented simplex consisting of the simplex v. . vp  and the equiva- 
lence class of the particular ordering (v., 	, vp). 



§5. 	 Homology Groups 	27 

Occasionally, when the context makes the meaning clear, we may use a 
single letter such as a to denote either a simplex or an oriented simplex. 

Example 1. We often picture an orientation of a 1-simplex by drawing an arrow 
on it. The oriented simplex 1v., v11 is pictured in Figure 5.1; one draws an arrow point-
ing from v, to v,. An orientation of a 2-simplex is pictured by a circular arrow. The 
oriented simplex [00,0„02] is indicated in the figure by drawing an arrow in the 
direction from v, to v, to 03. You can check that Ev„ v„ 0.1 and 102, v„, 0,1 are indi-
cated by the same clockwise arrow. An arrow in the counterclockwise direction 
would indicate the oppositely oriented simplex. 

Similarly, the oriented simplex 1v., v„ vz, 0,1 is pictured by drawing a spiral 
arrow, as in the figure. The arrow in this picture is called a "right-hand screw"; if 
one curls the fingers of the right hand in the direction from v, to v, to 02, the thumb 
points toward v.. You can check that [vs, 02, v„ v,j, and each of the other ten 
orderings equivalent to these two, also give rise to right-hand screws. A "left-hand 
screw" is used to picture the opposite orientation. 

These examples illustrate that our definition of orientation agrees with the 
intuitive geometric notions derived from vector calculus. 

v ; 

vo 

Figure 5.1 

Definition. Let K be a simplicial complex. A p-chain on K is a function c 
from the set of oriented p-simplices of K to the integers, such that: 

(1) c (a) = —c (a') if a and a' are opposite orientations of the same simplex. 

(2) c(a) = 0 for all but finitely many oriented p-simplices a. 

We add p-chains by adding their values; the resulting group is denoted Cp(K) 
and is called the group of (oriented) p-chains of K. If p < 0 or p > dim K, we let 
C,, (K) denote the trivial group. 

If a is an oriented simplex, the elementary chain c corresponding to cr is the 
function defined as follows: 

c(a) = 1, 

c(a) =-- —1 
	

if o' is the opposite orientation of a, 

c(-r) = 0 
	

for all other oriented simplices T. 

By abuse of notation, we often use the symbol a to denote not only a simplex, or 
an oriented simplex, but also to denote the elementary p-chain c corresponding 
to the oriented simplex a. With this convention, if a and a' are opposite orienta- 
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tions of the same simplex, then we can write a' = —a, because this equation 
holds when a and a' are interpreted as elementary chains. 

Lemma 5.1. Cp(K) is free abelian; a basis for Cp(K) can be obtained by 
orienting each p-simplex and using the corresponding elementary chains as 
a basis. 

Proof The proof is straightforward. Once all the p-simplices of K are 
oriented (arbitrarily), each p-chain can be written uniquely as a finite linear 
combination 

c 

of the corresponding elementary chains ai. The chain c assigns the value ni  to 
the oriented p-simplex ai, the value —ni  to the opposite orientation of ai, and 
the value 0 to all oriented p-simplices not appearing in the summation. 0 

The group Co(K) differs from the others, since it has a natural basis (since 
a 0-simplex has only one orientation). The group Cp  (K) has no "natural" basis 
if p > 0; one must orient the p-simplices of K in some arbitrary fashion in order 
to obtain a basis. 

Corollary 5.2. Any function f from the oriented p-simplices of K to an 
abelian group G extends uniquely to a homomorphism Cp(K) —, G, provided 
that f (—a) = —f(cr) for all oriented p-simplices a. 0 

Definition. We now define a homomorphism 

a,: Cp(K)--.Cp  _ ,(K) 

called the boundary operator. If a = [v0, 	,vp] is an oriented simplex with 
p > 0, we define 

apa = p [Vo, 	,Up ] = 1(-1)i  [up, 	,bi, . 	p], 

i = 0 

where the symbol means that the vertex vi  is to be deleted from the array. 
Since Cp  (K) is the trivial group for p < 0, the operator 8,, is the trivial homo-
morphism for p < 0. 

We must check that a, is well-defined and that 8,(—a) = —apa. For this 
purpose, it suffices to show that the right-hand side of (*) changes sign if we 
exchange two adjacent vertices in the array [v., 	,vp]. So let us compare the 
expressions for 

a,[v„,...,v,,v;+ ,,...,v,] 	and 	ap[vo,...,v;,,,v,, 	,JJJ. 

For i j, j + 1, the ith terms in these two expressions differ precisely by a 
sign; the terms are identical except that v./  and vj  , have been interchanged. 

(*) 



a, 
V2 

a3  
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What about the ith terms for i = j and i = j 1? In the first expression, 
one has 

( — 	,v;  _ 	+ 	„ ...] 
+i 

 [. • • ,V) 	1 ,V),25i 	1,Vi + 2, . • •]• 

In the second expression, one has 

(— I [. 	 1,13i + ,,vp vi+2,...] 
+i 	.,v1_,,vi+  „i3J,vi+ 	. • •1. 

Comparing, one sees these two expressions differ by a sign. 

Example 2. For a 1-simplex, we compute a,[vo,v,] = v, — v.. For a 2-simplex, 
one has 

= Ev1,v21 — [vo,v2] + [vo,v,]• 

And for a 3-simplex one has the formula 

a3 [vo,v„v„v3] 	[v„v„ v3] — [vo,vz,u,] + [vo,v„vj — [vo,u„v2]• 

The geometric content of these formulas is pictured in Figure 5.2. If you remember 
the versions of Green's, Stokes', and Gauss' theorems you studied in calculus, these 
pictures should look rather familiar. 

Example 3. Consider the 1-chain az  [o.,v„ uz] pictured in Figure 5.2. If you 
apply the operator a, to this 1-chain, you get zero; everything cancels out because 
each vertex appears as the initial point of one edge and as the end point of an-
other edge. You can check that a similar cancellation occurs when you compute 
a,a3 [v,„v„v2,v3]. 

a 
	

v i — Po 

Vo 

Figure 5.2 
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The computations discussed in Example 3 illustrate a general fact: 

Lemma 5.3. a p  - , a p  = 0. 

Proof The proof is straightforward. We compute 

ap _ lap [v„.. _up] 	,[v0,...,6, ...,v,] 
i =0 

j<i 

- • 	— 
j>i 

The terms of these two summations cancel in pairs. 0 

Definition. The kernel of a,: C,,(K) 	C,, _ ,(K) is called the group of 
p-cycles and denoted Zp(K) (for the German word "Zyldus"). The image of 

Cp(K) is called the group of p-boundaries and is denoted 
Bp(K). By the preceding lemma, each boundary of a p 1 chain is automati-
cally a p-cycle. That is, Bp(K) C Zp(K). We define 

HP(K) = Zp(K)1B,(K), 

and call it the pth homology group of K. 

Let us compute a few examples. 

Example 4. Consider the complex K of Figure 5.3, whose underlying space is the 
boundary of a square with edges e„ e2, e3, e.. The group C, (K) is free abelian of 
rank 4; the general 1-chain c is of the form IF:ie.,. Computing a,c, we see that its 
value on the vertex v is n, — n2. A similar argument, applied to the other vertices, 
shows that c is a cycle if and only if n, = n2  = n, = n4. One concludes that Z, (K) is 
infinite cyclic, and is generated by the chain e, + e2  + e3  + e„ Since there are no 
2-simplices in K, B,(K) is trivial. Therefore, 

H,(K) = Z,(K) = Z. 

e3  

K 

ea 

el  

Figure 5.3 
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e3  

L 

e4  

e2  

Figure 5.4 

Example 5. Consider the complex L of Figure 5.4, whose underlying space is a 
square. The general 1-chain is of the form Iniej. One reasons as before to conclude 
that this 1-chain is a cycle if and only if n, = n2, n, = n„ and n, = n,— n2. One can 
assign values to n, and n, arbitrarily; then the others are determined. Therefore, 
Z, (L) is free abelian of rank 2; a basis consists of the chain e, + e, — e, obtained by 
taking n, = 1 and n, = 0, and the chain e, + e. + e, obtained by taking n, = 0 and 
n, = 1. The first equals a,a, and the second equals a,az. Therefore, 

Hi (L) = Z,(L)IB,(L) = 0. 

Likewise, 11,(L) = 0; the general 2-chain m,o, + m2a2  is a cycle if and only if 

ml = m2 = 0. 

These examples may begin to give you a feeling for what the homology 
groups mean geometrically. Only by computing many more examples can one 
begin to "see" what a homology class is. Our hope is that after you get a feeling 
for what homology means geometrically, you will begin to believe what is at the 
moment far from clear—that the homology groups of a complex K actually 
depend only on the underlying space IKI. 

Now let us consider another example. It involves a complex having more 
simplices than those in the preceding examples. In general, as the number of 
simplices increases, calculating the group of cycles Z, and the group of bound-
aries B, becomes more tedious. We can short-cut some of these calculations by 
avoiding calculating these groups and proceeding directly to a calculation of the 
homology groups H,. 

We deal here only with the groups Hp(K) for p > 0, postponing discussion 
of the group H, (K) to §7. 

We need some terminology. We shall say that a chain c is carried by a 
subcomplex L of K if c has value 0 on every simplex that is not in L. And we say 
that two p-chains c and e are homologous if c — c' = a, + ,d for some p 1 
chain d. In particular, if c = a, + ,d, we say that c is homologous to zero, or 
simply that c bounds. 

Example 6. Consider the complex M indicated in Figure 5.5, whose underlying 
space is a square. Instead of computing the group of 1-cycles specifically, we reason 
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e7 e7  

eq  

M 

e6 
e8 es 

es 	 e5 
Figure 5.5 
	

Figure 5.6 

as follows: Given a 1-chain c, let a be the value of c on e,. Then by direct computa-
tion, the chain 

= c + 43:(a0i) 

has value 0 on the oriented simplex e,. Intuitively speaking, by modifying c by a 
boundary, we have "pushed it off e„" We then "push c, off e," in a similar manner, 
as follows: Let b be the value of c, on e,; then the chain 

c, = c, + 82(ba) 

has value 0 on the oriented simplex e,. It also has value 0 on e„ since e, does not 
appear in the expression for 8,02. Now letting d denote the value of c, on e„ one 
sees that 

c, = c, + a2(dos) 

has value 0 on e, and on e, and on e,. We have thus "pushed c off" all of e„ e„ and 
e,. Said differently, we have proved the following result: 

Given a 1-chain c, it is homologous to a chain c, that is carried by the subcomplex 
of M pictured in Figure 5.6. 

Now if c happens to be a cycle, then c, is also a cycle; it follows that the value 
of c, on the simplex e, must be 0. (Otherwise, ac, would have non-zero value on the 
center vertex v.) Thus every 1-cycle of M is homologous to a 1-cycle carried by the 
boundary of the square. By the same argument as used before, such a cycle must be 
some multiple of the cycle e, + 4 e, + es. And this cycle bounds; indeed, it 
clearly equals a (cr, 	 crj. Thus H, (M) = 0, as expected. 

The fact that H,(M) = 0 is easy; one sees readily (as before) that Znzia, is a 
cycle if and only if mi  = 0 for all i. 

Note that the homology groups of M are the same as the homology groups 
of the complex L of Example 5. This fact lends some plausibility to our remark (yet 
to be proved) that the homology groups of a complex depend only on its underly-
ing space. 

EXERCISES 

1. Let 4' be the abstract complex consisting of the 1-simplices Ivo,v,I, 	. , 
{v„ - „u„}, fv,,,vol and their vertices. If K is a geometric realization of 4', com-
pute H,(K). 
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K, 

Figure 5.8 

§6. 

M 

Figure 5.7 

2. Consider the complex M pictured in Figure 5.7; it is the union of three triangles 
and a line segment. Compute the homology groups H,(M) and 1-1,(M). 

3. A 1-dimensional complex is called a tree if its 1-dimensional homology van-
ishes. Is either of the complexes pictured in Figure 5.8 a tree? 

4. Let K be the complex consisting of the proper faces of a 3-simplex. Compute 
111 (K) and H,(K). 

5. For what values of i is it true that 

Hi(K(P)) = 11,(K)? 

6. An "infinite p-chain" on K is a function c from the oriented p-simplices of K to 
the integers such that c(c) = — c (e) if o and a' are opposite orientations of the 
same simplex. We do not require that c(a) = 0 for all but finitely many ori-
ented simplices. Let Co(K) denote the group of infinite p-chains. It is abelian, 
but it will not in general be free. 
(a) Show that if K is locally finite, then one can define a boundary operator 

aP : 	(K) C7_ s (K) 

by the formula used earlier, and Lemma 5.3 holds. The resulting groups 

H;,'(K) = ker 87/im 

are called the homology groups based on infinite chains. 
(b) Let K be the complex whose space is R and whose vertices are the integers. 

Show that 

H,(K) = 0 and Hr (K) = Z. 

7. Let 	be the abstract complex whose simplices consist of the sets {im,m}, 
and 1m, — m} for all positive integers in, along with their faces. If K is 

a geometric realization of S, compute H,(K) and 1/7(K). 

§6. HOMOLOGY GROUPS OF SURFACES 

If K is a finite complex, then the chain group C,, (K) has finite rank, so the cycle 
group Z,(K) also has finite rank. Then Hp(K) is finitely generated, so that the 
fundamental theorem of abelian groups applies. The betti number and torsion 
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coefficients of Hp(K) are called, classically, the betti number of K and torsion 
coefficients of K in dimension p. The fact that these numbers are topological 
invariants of IK I will be proved in Chapter 2. 

In former times, much attention was paid to numerical invariants, not only 
in topology, but also in algebra and other parts of mathematics. Nowadays, 
mathematicians are likely to feel that homology groups are the more important 
notion, and one is more likely to study properties of these groups than to com-
pute their numerical invariants. Nevertheless, it is still important in many situa-
tions to compute the homology groups specifically—that is, to find the betti 
numbers and torsion coefficients for a given space. 

One of the greatest virtues of the simplicial homology groups is that it is in 
fact possible to do precisely this. In 511 we shall prove a theorem to the effect 
that, for a finite complex K, the homology groups are effectively computable. 
This means that there is a specific algorithm for finding the betti numbers and 
torsion coefficients of K. 

In the present section, we shall compute the betti numbers and torsion 
coefficients of the compact surfaces. The techniques we shall use may seem a 
bit awkward and ad hoc in nature. But, in fact, they are effective on a large 
class of spaces. In a later section, when we study CW complexes, we shall re-
turn to these techniques and show they are part of a systematic approach to 
computing homology groups. 

Convention. For convenience in notation, we shall henceforth delete the 
dimensional subscript p on the boundary operator 9 , and rely on the context to 
make clear which of these operators is intended. 

We shall compute the homology of the torus, the Klein bottle, and several 
other spaces that can be constructed from a rectangle L by identifying its edges 
appropriately. Thus we begin by proving certain facts about L itself. 

Lemma 6.1. Let L be the complex of Figure 6.1, whose underlying space 
is a rectangle. Let Bd L denote the complex whose space is the boundary of the 
rectangle. Orient each 2-simplex o of L by a counterclockwise arrow. Orient 
the 1-simplices arbitrarily. Then: 

(1) Every 1-cycle of L is homologous to a 1-cycle carried by Bd L. 

Figure 6.1 
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(2) If d is a 2-chain of L and if ad is carried by Bd L, then d is a multiple 
of the chain Mai. 

Proof The proof of (2) is easy. If cr, and cri  have an edge e in common, 
then ad must have value 0 on e. It follows that d must have the same value on cri  
as it does on aj. Continuing this process, we see that d has the same value on 
every oriented 2-simplex cri. 

To prove (1), we proceed as in Example 6 of the preceding section. Given a 
1-chain c of L, one "pushes it off" the 1-simplices, one at a time. First, one 
shows that c is homologous to a 1-chain c, carried by the subcomplex pictured 
in Figure 6.2. Then one shows that c, is in turn homologous to a 1-chain ; 
carried by the subcomplex of Figure 6.3. Finally, one notes that in the case 
where the original chain c is a cycle, then the chain c2  is also a cycle. It follows 
that c2  must be carried by Bd L, for otherwise ; would have a non-zero coeffi- 
cient on one or more of the vertices v„ 	, vs. 0 

Figure 6.2 
	

Figure 6.3 

Theorem 6.2. Let T denote the complex represented by the labelled rec-
tangle L of Figure 6.4; its underlying space is the torus. Then: 

11,(T) Z Z and H2(T) Z. 
Orient each 2-simplex of L counterclockwise; use the induced orientation of 
the 2-simplices of T; let -y denote their sum. Let 

=-- [a,b] + [b,c] + [c,a], 
z, 	[a,d] + [d,e] + [e,a]. 

Then ^), generates H2(T) and w, and z, represent a basis for H,(T). 

Figure 6.4 
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Proof. Let g : ILI --, I TI be the pasting map; let A = g(IBd LI). Then A is 
homeomorphic to a space that is the union of two circles with a point in com-
mon. (Such a space is called a wedge of two circles.) Orient the 1-simplices of T 
arbitrarily. Because g makes identifications only among simplices of Bd L, the 
arguments we gave earlier in proving Lemma 6.1 apply verbatim to prove the 
following: 

(1) Every 1-cycle of T is homologous to a 1-cycle carried by A. 

(2) If d is a 2-chain of T and if ad is carried by A, then d is a multiple of 7. 

However, in the complex T, two further results hold: 

(3) If c is a 1-cycle of T carried by A, then c is of the form nw, ± mzi. 

(4) ay = 0. 

The proof of (3) is easy, given the fact that A is just the 1-dimensional 
complex pictured in Figure 6.5. The proof of (4) is similarly direct: It is clear 
that ay has value 0 on every 1-simplex of T not in A. One checks directly that it 
also has value 0 on each 1-simplex in A. The elementary chain (a,b], for in-
stance, appears in the expression for ao, with value —1 and in the expression for 
au., with value +1, so that 87  has value 0 on [a,b]. (See Figure 6.4.) 

Using results (1)-(4), we can compute the homology of T. Every 1-cycle of 
T is homologous to a 1-cycle of the form c = mv, + mz„ by (1) and (3). Such a 
cycle bounds only if it is trivial: For if c = ad for some d, then (2) applies to 
show that d = p-y for some p; since 87 = 0 by (4), we have c = ad = 0. We 
conclude that 

H,(T) ..1-.: Z e Z; 

and the (cosets of the) 1-cycles w, and z, form a basis for the 1-dimensional 
homology. 

To compute 112(T), note that by (2) any 2-cycle d of T must be of the form 
p-y for some p. Each such 2-chain is in fact a cycle, by (4), and there are no 
3-chains for it to bound. We conclude that 

I12(T) = Z, 

and this group has as generator the 2-cycle -y. 0 

Figure 6.5 
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Theorem 6.3. Let S denote the complex represented by the labelled rec-
tangle of Figure 6.6; its underlying space is the Klein bottle. Then 

11,(S):-.—..Z ®Z/2 	and 	H,(S) = O. 

The torsion element of H, (S) is represented by the chain z,, and a generator 
for the group H, (S) modulo torsion is represented by w„ where 

w, = [a,b] + [b,c] + [c,a], 
z, = [a,d] + [d,e]  + [e,a]. 

Proof Let g : ILI --0 ISI be the pasting map. Let A = g(IBd LI); as before, 
it is the wedge of two circles. Orient the 2-simplices of S as before; let -y be their 
sum. Orient the 1-simplices of S arbitrarily. Note that (1) and (2) of the pre-
ceding proof hold; neither involve the particular identifications on the bound-
ary. Because A is the wedge of two circles, (3) holds as well. The final condition 
is different, however; one has 8y = 2zi. 

This equation follows by direct computation. For example, [a,1)] appears in 
aa, with coefficient —1 and in 8o2  with coefficient + 1, while [a,d1 appears in 
both acr, and acr, with coefficient + 1. 

Putting these facts together, we compute the homology of S: Every 1-cycle 
of S is homologous to a cycle of the form c = nw, + mz„ by (1) and (3). If 
c = ad for some d, then d = py by (2); whence ad = 2pz,. Thus nw, + rnz, 
bounds if and only if m is even and n is zero. We conclude that 

H,(S) = Z 49 Z 1 2 . 

The cycle z, represents the torsion element, and w, represents a generator of the 
infinite cyclic group H,(S)I T,(S). 

To compute H2(S), note that any 2-cycle d of S must be of the form py by 
(2); since py is not a cycle, by (4), we have 

H,(S) = O. 0 
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Theorem 6.4. Let P 2  be the complex indicated by the labelled rectangle of 
Figure 6.7; its underlying space is called the projective plane. Then 

Hi (P 2) = Z12 	and 	H2(P2) = O. 

Proof Let g :ILI 'Pi be the pasting map. Let A = g(IBd LI); it is 
homeomorphic to a circle. Let y be as before; let 

z, = [a, b] + [6,c] + [c,d] + [d,e] + [e, f] + [ f,a]. 

Conditions (1) and (2) hold as before. The additional results, which are easy to 
verify, are the following: 

(3) Every 1-cycle carried by A is a multiple of z,. 

(4) al,  = 

From these facts, we conclude that 

Hi (P2) = Z/2 	and 	H2(P2 ) = 0. 

The non-zero element of Hi  is represented by the cycle z,. q 

Definition. The connected sum of P2  with itself is defined as the space 
obtained from two copies of the projective plane by deleting a small open disc 
from each, and pasting together the pieces that remain, along their free edges. 
We denote this space by P2  # P2. 

The space P2  # P2  can be represented as a quotient space of a rectangle, 
obtained by pasting its edges together in the manner indicated in Figure 6.8. 
(Note that if you cut the rectangle along the dotted line C, you have two projec-
tive planes with an open disc removed from each, as indicated in the figure.) 

D 

D 

Figure 6.8 
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Theorem 6.5. Let P2  # P2  be the connected sum of two projective planes. 
Then 

H, (P 2 # P2) = Z ®Z/2 	and 	H2 (P2  It P2) = O. 

Proof We represent P2  # P2  by the same rectangle L as before, with an 
appropriate vertex-labelling. In this case, the complex A = 	LI) is again 
the wedge of two circles. Let w, be the 1-cycle "running across the top edge" 
and let z, be the 1-cycle "running down the left edge" in Figure 6.8, in the 
directions indicated. Conditions (1) and (2) of Theorem 6.2 hold. Conditions 
(3) and (4) are the following: 

(3) Every 1-cycle carried by A is of the form nw, + mz,. 

(4) a'y = 2w, + 2z,. 

It is then clear that H2  (P2  # P2) = 0. But how can one compute H,? Some 
diddling is needed. We want to compute the quotient of the group G having w, 
and z, as basis, by the subgroup H generated by 2(w, + z1). For this purpose, 
we need to choose bases for the two groups that are "compatible," as in our 
basic theorem on subgroups of free abelian groups (Theorem 4.2). In this case, 
it is easy to see what is needed: we need to choose w, + z, to be one of the basis 
elements for G. Can we do this? Of course; {w„ w, + z, } will serve as a basis for 
G just as well as {w„z,} does. (One can express each set in terms of the other: 
w, = w, and z, = (—(w1) + (w, + zi ).) If we use this basis for G, computation 
is easy: 

Hi (P2  # P2 ) Z 9 Z/2, 

the torsion element is represented by w, + zi , and w, represents a generator of 

(We remark that w, is not the only cycle representing a generator of H,/T,. 
The cycle z, does just as well; so does the cycle 2w, + 3z„ as well as many 
others. For {z,,w, + z,} and {2w, + 3z„ w, + zi} are other bases for G, as you 
can check.) 0 

The astute reader might notice that the answers here are the same as for 
the Klein bottle. This is no accident, for the two spaces are in fact homeomor-
phic. Figure 6.9 indicates the proof. 

Figure 6.9 
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By now we have worked enough examples that you should be able to com-
pute the homology groups of the general compact surface. We leave this com-
putation to the exercises. 

EXERCISES 

1. Let w, and z, be the cycles on the Klein bottle pictured in Figure 6.6. Show that 
w, + z, represents a generator of the infinite cyclic group H,(S)1T,(S). 

2. The connected sum T # T of two tori is obtained by deleting an open disc from 
each of two disjoint tori and gluing together the pieces that remain, along their 
boundaries. It can be represented as a quotient space of an octagonal region 
in the plane by making identifications on the boundary as indicated in Figure 
6.10. (Splitting this octagon along the dotted line gives two tori with open discs 
deleted.) 

(a) Construct a complex K whose underlying space is T # T by an appropriate 
vertex-labelling of the complex L pictured in Figure 6.11. 

(b) Compute the homology of T St T in dimensions 1 and 2 by following the 
pattern of Theorem 6.2. Specifically, let A be the image of Bd L under the 
quotient map; then A is a wedge of four circles. Orient each 2-simplex of L 
counterclockwise; let y be the sum of the correspondingly oriented sim-
plices of K. Show first that every 1-cycle of K is homologous to one carried 
by A. Then show that every 2-chain of K whose boundary is carried by A is 
a multiple of y. Complete the computation by analyzing the 1-cycles car-
ried by A, and by computing 87. 

Figure 6.11 

3. Represent the 4-fold connected sum P2  # P 2  # 132  # P2  by an appropriate label-
ling of the complex L of Figure 6.11. Compute its homology in dimensions 
1 and 2. 

4. (a) Define the n-fold connected sum X = T # • • • # T of tori, and compute 
its homology in dimensions 1 and 2. 

(b) Define the n-fold connected sum l'„ = P2 4# • - • # P2  of projective planes, 
and compute its homology in dimensions 1 and 2. 
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[It is a standard theorem that every compact surface is homeomorphic 
to one of the spaces in the following list: 

S2; 	X„ X„ . . . ; Y„ Y„ . . . . 

(See [Ma].) Once we have proved that the homology groups are topological 
invariants, it then follows from the computations of this exercise that no 
two of these surfaces are homeomorphic.] 

5. Compute the homology of T # P2. To which of the surfaces listed in Exercise 4 
must it be homeomorphic? Can you construct the homeomorphism? 

6. (a) Compute the homology in dimensions 1 and 2 of the quotient space indi- 
cated in Figure 6.12. We call this space the "5-fold dunce cap." 

(b) Define analogously the "k-fold dunce cap" and compute its homology. 

7. Compute the homology of the space indicated in Figure 6.13. 

8. Given finitely generated abelian groups G, and G2, with G, free, show there is a 
finite 2-dimensional complex K such that IKI is connected, H,(K) = G„ and 
112(K) G2. 

Figure 6.12 Figure 6.13 

§7. ZERO-DIMENSIONAL HOMOLOGY 

We have not yet computed any zero-dimensional homology group. In this sec-
tion, we shall show that this group has a simple topological interpretation that 
makes its computation trivial. 

We prove the following theorem: 

Theorem 7.1. Let K be a complex. Then the group H0(K) is free abelian. 
If {v.} is a collection consisting of one vertex from each component of IKI, then 
the homology classes of the chains v, form a basis for 1-10(K). 

Proof. Step I. If v and w are vertices of K, let us define v w if there is 
a sequence 

, 
of vertices of K such that v = a, and w = a„, and apai  + is a 1-simplex of K for 
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each i. This relation is clearly an equivalence relation. Given u, define 

C. = U {St w I w v}. 

We show that the sets C. are the components of IKI. 
Note first that C. is open because it is a union of open sets. Furthermore, 

C, = C, if v v ' . 
Second, we show C. is connected, in fact, path connected. Given v, let 

w 	v and let x be a point of St w. Choose a sequence a0, . ,a, of vertices of 
K, as before. Then the broken line path with successive vertices a0, . ,a„,x lies 
in C,: For ai  v by definition, so that St ai  C C„, and in particular, the line 
segment a;  a;  , lies in C,. Similarly, the line segment a,x lies in St a., which is 
contained in C,. Hence C. is path connected. 

Third, we show that distinct sets C. and C, are disjoint. Suppose x is a 
point of C. n C... Then x e St w for some w equivalent to v, and x e St w' for 
some w' equivalent to v'. Since x has positive barycentric coordinates with 
respect to both w and w', some simplex of K has w and w' as vertices. Then ww' 
must be a 1-simplex of K, so w w'. It follows that v v', so that the two sets 
C. and Co  are the same. 

Being connected, open, and disjoint, the sets C. are necessarily the compo-
nents of IKI. Note that each is the space of a subcomplex of K; each simplex of 
K (being connected) lies entirely in one component of IKI. 

Step 2. Now we prove the theorem. Let {va} be a collection of vertices 
containing one vertex va  from each component C. of IKI. Given a vertex w of K, 
it belongs to some component of 	say C.. By hypothesis, w v., so there 
is a sequence a0, . ,a, of vertices of K, as before, leading from va  to w. The 
1 -chain 

+ Ea1,a2i + • • • + [a, - i,an] 

has as its boundary the 0-chain a, — ao  = w — v.. Thus the 0-chain w is ha 
mologous to the 0-chain v.. We conclude that every chain in K is homologous to 
a linear combination of the elementary 0-chains v.. 

We now show that no non-trivial chain of the form c = nava  bounds. 
Suppose c = ad for some 1-chain d. Since each 1-simplex of K lies in a unique 
component of WI, we can write d = da, where da  consists of those terms of d 
that are carried by Ca. Since 8d = ada  and ada  is carried by C., we conclude 
that ada, = nava. It follows that n. = 0 for each a. For let e : Co(K) Z be 
the homomorphism defined by setting E (v) = I for each vertex v of K. Then 
e (a [v,w]) = e(w — u) = 1 — 1 = 0 for any elementary 1-chain [v, w]. As a re-
sult, e (ad) = 0 for every 1-chain d. In particular, 0 = e(ada) = e(nava) = na. 

0 

For some purposes, it is convenient to consider another version of 0-dimen-
sional homology. We consider that situation now. 
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Definition. Let e : C.(K)--,  Z be the surjective homomorphism defined by 
e (v) = 1 for each vertex v of K. Then if c is a 0-chain, e(c) equals the sum of 
the values of c on the vertices of K. The map e is called an augmentation map for 
Co(K). We have just noted that €(8d) = 0 if d is a 1-chain. We define the re-
duced homology group of K in dimension 0, denoted 14,(K), by the equation 

14(K) = ker e/im a, 
(If p > 0, we let ilp(K) denote the usual group Hp(K).) 

The relation between reduced and ordinary homology is as follows: 

Theorem 7.2. The group Fla(K) is free abelian, and 

ile(K) ED Z .:-.: Ho(K). 

Thus 110(K) vanishes if IKI is connected. If IKI is not connected, let {v.} consist 
of one vertex from each component of IKI; let ao  be a fixed index. Then the 
homology classes of the chains va  — va., for a = ao, form a basis for 110(K). 

Proof Given a 0-chain c, it is homologous to a 0-chain of the form 
c' = I nava; and the chain c' bounds only if nc, = 0 for all a. Now if c e ker e, 
then e(c) = e(c') = e(Inava) = In. = 0. If IKI  has only one component, this 
means that c' = 0. If IKI has more than one component, it implies that c' is a 
linear combination of the 0-chains v. — °a.. 0 

EXERCISE 

1. (a) Let G be an abelian group and let 0 : G --, Z be an epimorphism. Show that 
G has an infinite cyclic subgroup H such that 

G = (ker 0) 9 H. 

[Hint: Define a homomorphism 4, : Z ---. G such that 4)  o 4. is the identity; 
let H = im i'.] 

(b) Show that if 0 : Co(K) —. Z is any epimorphism such that 0 o a, = 0, then 

Ho(K) = (ker tb)/(im ao ®Z. 

91 THE HOMOLOGY OF A CONE 

Now we compute the homology of the n-simplex and of its boundary. A conve-
nient way of doing this is to introduce the notion of a cone. 

Definition. Suppose that K is a complex in E', and w is a point of E' such 
that each ray emanating from w intersects IKI in at most one point. We define 
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the cone on K with vertex w to be the collection of all simplices of the form 
wa. . . . ap, where a.... ap  is a simplex of K, along with all faces of such sim-
plices. We denote this collection w * K. 

We show that w * K is a well-defined complex, and it contains K as a sub-
complex; K is often called the base of the cone. 

First we show that the set {w,a., . . . ,a,} is geometrically independent: If w 
were in the plane P determined by a., . . . ,a,, we could consider the line seg-
ment joining w to an interior point x of cr = a... . a,. The set Int a, being open 
in P, would contain an interval of points on this line segment. But the ray from 
w through x intersects IKI in only one point, by hypothesis. 

We now show that w * K is a complex. The simplices of w * K are of three 
types: simplices a, . .. a, of K, simplices of the form wa... . as,, and the 0-
simplex w. A pair of simplices of the first type have disjoint interiors because K 
is a complex. The open simplex Int (wa.. .. a,) is the union of all open line seg-
ments joining w to points of Int (a.. . . as ); no two such open simplices can inter-
sect because no ray from w contains more than one point of IKI. For the same 
reason, simplices of the first and second types have disjoint interiors. 

Example 1. If IC„ is the complex consisting of the simplex a = v„ . .. v, and its 
faces, then K. = v.* K„ where s is the face of a opposite v„. Thus every simplex of 
positive dimension is a cone. 

Example 2. If K is the complex in R2  consisting of the intervals [n,n + 1] x 0 on 
the x-axis and their vertices, and if w is a point on the y-axis different from the 
origin, then w * K is the complex illustrated in Figure 8.1. Although Ili is a sub-
space of R2, 1W * KI is not a subspace of R2. (See Exercise 9 of §2.) 

w 

Figure 8.1 

One particularly useful consequence of the cone construction is the fol-
lowing: 

Lemma 8.1. Let U be a bounded convex open set in Itn; let w E U. If K is 
a finite complex such that IKI = U — U, then w * K is a finite complex such 
that 1w * KI = U. 

Proof It follows at once from Lemma 1.1 that each ray emanating from 
w intersects IK1 in precisely one point, and that U is the union of all line seg-
ments joining w to points of IKI. 0 
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Given K, we note that any two cones w * K and z * K over K are isomor-
phic. The vertex map that carries each vertex of K to itself and carries w to z 
induces an isomorphism of w * K with z * K. 

Note also that for a complex K in RN, there may be no point w in RN  such 
that the cone complex w * K can be formed. However, we can always consider 
K as a complex in RN  X 0 C 	'; then the point w = (0, ... ,0,1) E 	+ 
will do. A similar remark applies to a complex in V. 

Now we compute the homology of a cone, and show that it vanishes in posi-
tive dimensions. For this purpose, we shall introduce a certain bracket operation 
that will also be useful later. 

Definition. Let w * K be a cone. If a = [a„, . . ,a,,] is an oriented simplex 
of K, let Ew,a1 denote the oriented simplex [w,a,„ 	,ap] of w * K. This oper- 
ation is well-defined; exchanging two vertices in the array [a., . ,ap] results in 
exchanging two vertices in the array [w,a„, . . . ,ap]. More generally, if 

= Inia, 

is a p-chain of K, we define 

[w,cp] 	Ew,ail. 

This bracket operation is a homomorphism carrying Cp(K) into 	(w * K). 

We compute readily from the boundary formula: 

, 	— w 	if dim a = 0, 
a[wm = 

— [w,80-] if dim a > 0. 

This leads to the following more general formulas: 

a [w,4] = c, — E(cow, 
(*) 

a [w,cp] = c„ — [v,acp ] if p > O. 

Theorem 8.2. If w * K is a cone, then for all p, 

ilp(w * K) = 0. 

In general, a complex whose reduced homology vanishes in all dimensions is 
said to be acyclic. 

Proof. The reduced homology of w * K vanishes in dimension 0, because 
1w * K1 is connected. Consider the case p > 0. Let zp  be a p-cycle of w * K; we 
show that zp  bounds. Let us write 

zp  = cp 	[w,dp - ,], 

where cp  consists of those terms of zp  that are carried by K, and dp  - is a chain 
of K. We show that 

zp  — a [w,cp] = 0; 
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then our result is proved. By direct computation, 

zl, — 8 [w,c,,] = c, + [w,dp _,] — c,, -I- [w,acp] 
= [w,ep  _ ,], 

where ep  _ , = dp  _ , + act, is a chain of K. Now since zp  is a cycle, 

0 = {

ep -1 — e(e p - Ow if p = 1, 
ep  _ , — [w,aep  _,] if p> 1. 

Now the portion of this chain carried by K is ep  _ ,; therefore, ep  _ , = 0. We 
conclude that 

zi, — a [w,c,,] 	[w,e„ _ ,] = 0, 

as desired. 0 

Theorem 8.3. Let r be an n-simplex. The complex IC, consisting of r and 
its faces is acyclic. If n > 0, let -' denote the complex whose polytope is 
Bd o. Orient o. Then H. _ ,(r l ) is infinite cyclic and is generated by the 
chain aa; furthermore, 11;(1''') = 0 for i 	— 1. 

Proof Because K is a cone, it is acyclic. Let us compare the chain groups 
of K. and ln - 1; they are equal except in dimension n: 

C.(IC,) 
a 
 C. -1(K,) 

a_, 
	Co(K0) 	Z. 

a' 	II 	 a' _, II 	II 

It follows at once that if 	= H;  (K0) 0 for i # n — 1. Let us compute 
the homology in dimension n — 1. First take the case n > I. One has 

_ , 	- I  ) 	_ 	-' ), because there are no n — 1 boundaries, 

= ker a„_ , 
= im a",  because H. _ l (K.) = 0. 

Now C„(1C0 ) is infinite cyclic and is generated by u. Hence im a. is cyclic and is 
generated by apa; it is infinite because C„ _ 1 (10 has no torsion. 

The argument for n = 1 is similar, except that a„_ , is replaced by E 

throughout. El 

EXERCISE 

1. Let K be a complex; let w. K and Iv, s K be two cones on K whose polytopes 
intersect only in IKI. 
(a) Show that (w. s  K) U (wi  a K) is a complex; it is called a suspension of K 

and denoted S(K). 
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(b) Using the bracket notation, define : C p(K) Cp  ,(S (K)) by the 
equation 

(cp) = [wo,cp] — [w„ cp] 

Show that 0 induces a homomorphism 

ck*: 1-1 p(K) 	,(S (K)). 

(c) Show 	is an isomorphism when K consists of the proper faces of a 
2-simplex. 

We will see later that 0. is an isomorphism in general (see §25). 

§9. RELATIVE HOMOLOGY 

Suppose K. is a subcomplex of the complex K. In many of the applications of 
topology, it is convenient to consider what are called the relative homology 
groups of K modulo K0. We introduce them briefly here and compute some 
examples, postponing a more complete discussion to Chapter 3. 

If K. is a subcomplex of the complex K, then the chain group Cp(K„) can be 
considered to be a subgroup of the chain group C,(K) in the natural way. For-
mally, if cp  is a chain on K. (that is, a function on the oriented simplices of K0), 
one extends it to a chain on K by letting its value be zero on each oriented p-
simplex of K not in K0. When we write cp  as a linear combination of oriented 
p-simplices of K., we need merely to "consider" these simplices as belonging to 
K in order to "consider" cp  as a chain of K. 

Definition. If K. is a subcomplex of K, the quotient group Cp(K)/Cp(Ko) 
is called the group of relative chains of K modulo K0, and is denoted by 
Cp(K,K0)• 

Note that the group Cp(K,K.) is free abelian. Indeed, if we orient the 
p-simplices of K so as to obtain a basis for C,(K), the subcollection consisting 
of the oriented p-simplices of K. is a basis for Cp(K.). Then the quotient 
C,(K)IC p(K.) is free, for it has as basis all cosets of the form 

= 	+ Cp(K.), 
where a, is a p-simplex of K that is not in K.. 

The boundary operator a : Cp(K.) Cp  _ ,(K„) is just the restriction of the 
boundary operator on C,(K). We use the same symbol to denote both these 
homomorphisms, when no confusion will result. This homomorphism induces a 
homomorphism 

Cp  _ ,(K,K.) 
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of the relative chain groups, which we also denote by 8. As before, it satisfies 
the equation 8 e a = 0. We let 

Z„(K,Ko ) = ker a : C„(K,Ko) C, _ ,(K,K.), 
Bp(K,K.) = im a : 	Cp(K,K.), 
HI,(K,Ko) = Z,(K,K0 )1B,(K,K0). 

These groups are called, respectively, the group of relative p-cycles, the group of 
relative p-boundaries, and the relative homology group in dimension p, of K 
modulo K,. 

Note that a relative p-chain, which is a coset c, Cp(K.), is a relative cycle 
if and only if ac, is carried by K,. Furthermore, it is a relative boundary if and 
only if there is a p 	1 chain 	, of K such that c, — adp+ , is carried by K,. 

Example 1. Let K consist of an n-simplex and its faces; let K. be the set of proper 
faces of K. Then the group Cp  (K,K,) vanishes except when p = n, in which case it is 
infinite cyclic. It follows that 

Hi (K,K.) = 0 for i 0 n, 

H.(K,K.)::. Z. 

Example 2. Let K be a complex and let K. consist of a single vertex v of K. Using 
the results of §7, one sees readily that H,(K,v) is free abelian; one obtains a basis 
for H,(K,v) by choosing one vertex from each component of IKI other than the 
component containing v. Then H,(K,v) = H,(K). 

It is not hard to show that H,(K,v) = H,(K) for p > 0; see the exercises. 

Example 3. Let K be the complex indicated in Figure 9.1, whose underlying space 
is a square. Let K. be the subcomplex whose space is the boundary of the square. It 
is easy to see that the 2-chain I mitre  represents a relative cycle of K modulo K. if 
and only if m, = m, = m, = m4. Since there are no boundaries in dimension 2, 

Hz(K,K.) Z 

and the chain y = 2a;  represents a generator. 
We showed in Example 6 of §5 that any I-chain c of K is homologous to a 

1-chain c, carried by K. U e.. Now if c represents a relative 1-cycle (so that ac is 

K 

- 

Figure 9.1 
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carried by K.), ac, = ac is also carried by Ko. It follows that the value of c, on 
must be zero, whence c, is actually carried by K.. We conclude that 

H,(K,K.) = 0. 

Comparing this computation with that of Example 1 lends some plausibility to the 
statement (yet to be proved) that the relative homology groups are topological 
invariants. 

Example 4. Let K be the complex indicated in Figure 9.2. Its underlying space 
is called an annulus. Let Ko  denote the 1-dimensional complex whose space is the 
union of the inner and outer edges of K. We compute the homology of K modulo K.. 

First, Ho(K,Ko) = 0 because the relative chain group itself vanishes in dimen-
sion 0. To compute H, and H„ one first verifies three facts: 

(i) If c is a 1-chain of K, then c is homologous to a 1-chain of K that is car-
ried by the subcomplex M pictured in Figure 9.3. 

(ii) Orient each 2-simplex of K counterclockwise. If d is any 2-chain of K such 
that ad is carried by M, then d = my, where y is the sum of all the 
oriented 2-simplices of K. 

(iii) ay is carried by Ko. 

K M 

 	Ko  

Figure 9.2 Figure 9.3 

The computation then proceeds as follows: Let eo  be the oriented 1-simplex 
pictured in Figure 9.2; then eo  represents a relative 1-cycle of K modulo Ko, because 
ae, lies in K.. It follows from (i) that any relative 1-cycle {c} is relatively homologous 
to a multiple of {4}. Furthermore, no such relative cycle bounds. For suppose 
neo  — ad is carried by K., for some 2-chain d of K. Then ad is carried by M, whence 
by (ii), d = my for some integer m. But ad = may is carried by K., by (iii), so that 
n = 0. We conclude that 

H,(K,K0) Z, 

and the relative cycle eo  represents a generator. 
A similar argument, using (ii) and (iii), shows that 

H2(K,K.) = Z, 

and the relative cycle y represents a generator. 

Students often visualize the relative homology group 11,,(K,K0) as repre-
senting the homology of the quotient space X = IK I/ IKOI  obtained by collapsing 
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Wel to a point p, modulo that point. Assuming X is homeomorphic to a polyhe-
dron (so its simplicial homology is defined) this is in fact correct, but the proof 
is not easy. (See Lemma 70.1 and the exercises of §39.) 

Roughly speaking, the relative homology group Hp(K,K.) depends only on 
the part of K lying outside or on the boundary of K0; it "ignores" the part of K 
lying inside K0. We express this fact formally in the following theorem: 

Theorem 9.1 (Excision theorem). Let K be a complex; let K. be a subcom-
plex. Let U be an open set contained in IKO I, such that IKI — U is the polytope 
of a subcomplex L of K. Let Lo  be the subcomplex of K whose polytope is 
Wei — U. Then inclusion induces an isomorphism 

Hp(L,L.) = Hp(K,K.). 

We think of (ILI, IL.1) as having been formed by "excising away" the open 
set U from IKI and IKO I. See Figure 9.4. 

Figure 9.4 

Proof. Consider the composite map 4), 

(L) 	Cp(K)--. Cp(K)ICp(K.), 

which is inclusion followed by projection. Then 4) is surjective, because Cp(K)I 
Cp(K.) has as basis all cosets {ai } for a;  not in K., and L contains all such sim-
plices cri . The kernel of 4) is precisely C, (Le). Thus 4) induces an isomorphism 

Cp(L)ICp(L.) = Cp(K)ICp(K.), 

for all p. Since the boundary operator is preserved under this isomorphism, it 
follows that H p(L, L0) = H p(K,K.). 0 

This elementary fact has some useful consequences we shall consider later. 

EXERCISES 

1. Let K be the complex pictured in Figure 9.2; let K, be its "outer edge." Com-
pute H,(K) and H,(K,Ki). 



§10. 	 Homology with Arbitrary Coefficients 	51 

2. Let K be a complex whose underlying space is the Mobius band; let K. be its 
"edge." Compute 111(K) and 111(K,K.). [Hint: See Example 2 of §3. Here the 
"edge" consists of the line segments ab, bc, cd, de, ef, and fa.] 

3. Show that if K is a complex and v is a vertex of K, then Hi(K,v) = H;  (K) for 
all i. [Hint: Care is needed when i = 1.] 

4. Describe H.(K,K.) in general. 

5. Let 1K1 be the torus, represented by a labelled rectangle in the usual way; let 
K. be the subcomplex represented by the top edge of the rectangle. Compute 
H;  (K, 	(See Figure 6.4; 1K01 is the union of the line segments ab, bc, and ca.) 

6. Let K be a 2-dimensional complex; let a be a 2-simplex of K; let K. be the sub-
complex whose space is 1K1 — Int a. Compute HAK,K0). 

*§1O. HOMOLOGY WITH ARBITRARY COEFFICIENTS 

There is one further version of homology that we shall mention here, although 
we shall not study it in detail until Chapter 6. It arises when one introduces an 
arbitrary abelian group as "coefficient group." 

Let G be an abelian group. Let K be a simplicial complex. A p-chain of K 
with coefficients in G is a function c„ from the oriented p-simplices of K to G 
that vanishes on all but finitely many p-simplices, such that 

c (cri) = —c (a) 

if a' and a are opposite orientations of the same simplex. Two chains are added 
by adding their values. The resulting group is denoted Cp(K;G). 

If a is an oriented simplex and if g E G, we use ga to denote the elementary 
chain whose value is g on a, —g on the opposite orientation of a, and 0 on all 
other oriented simplices. In this notation, g(—a) (—g)a, where —a as usual 
denotes a with the opposite orientation. If one orients all the p-simplices of K, 
then each chain c, can be written uniquely as a finite sum 

c, = Igicr, 

of elementary chains. Thus Cp(K;G) is the direct sum of subgroups isomorphic 
to G, one for each p-simplex of K. 

The boundary operator 8 : Cp(K;G)—,  Cp  _ ,(K;G) is defined easily by the 
formula 

alga) = g(acr) 
where as is the ordinary boundary, defined earlier. As before, a o a = 0; and we 
define Zp  (K; G) to be the kernel of the homomorphism 

a : Cp(K;G) 	ci, _ ,(K;G), 
Bp  _ ,(K;G) to be its image, and 

Hp(K;G) = Zp(K;G)I Bp(K;G). 
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These groups are called, respectively, the cycles, boundaries, and homology of K 
with coefficients in G. 

Of course, one can also study relative homology with coefficients in G. The 
details are clear. The groups in question are denoted by Hp(K,K„;G). 

We are not going to do much concerning homology with general coefficients 
for some time to come. But you should be aware of its existence at an early 
stage, for it is often useful. 

Example I. One group that is frequently used as a coefficient group is the group 
Z/2 of integers mod 2. Let us calculate the homology of the torus and the Klein 
bottle using these coefficients. The argument given in §6 goes through essentially 
unchanged to show that 

H,(T; Z/2) :.--.. Z/249 Z/2, 

112 (T;2/2) .1r-- Z/2. 

For the Klein bottle S, the argument goes through but with some changes. One has 
the results 

H,(S;Z/2) = Z/2 ED Z/2, 

H,(S; Z12) .-:-.: Z/2. 

For with Z/2 coefficients, the basic 2-chain y, which is the sum of the 2-simplices 
of S, has boundary zero. (In the group Z/2, one has 2 = 1 + 1 = 0.) 

Note that homology with Z/2 coefficients is inadequate to distinguish between 
T and S. 

Example 2. Let us compute the homology of the torus and Klein bottle using the 
rational numbers Q as coefficients. The same arguments as before apply, but the 
end results are different. For the torus, one has 

H,(T;Q) .1.—.. Q e Q, 	H,(T;Q) .1.—.. Q. 

For the Klein bottle, one has 

H,(S;Q) z-.• Q, 	H2(S;Q) = 0. 

For with Q coefficients, the cycle z, bounds the chain 1h  y. 

EXERCISES 

1. Compute the homology of P2  with Z/2 and Q coefficients. 

2. Show that homology with Q coefficients suffices to distinguish among S2  and 
the connected sums P 2  # ...# P2  and T # T. . . # T. 

3. Let S be the Klein bottle; compute the homology of S with Z/3 and Z/4 
coefficients. 

4. Compute the homology of the k-fold dunce cap with Z/n coefficients and with 
Q coefficients. (See Exercise 6 of §6.) 

5. Let (K,K.) be the pair consisting of the Mobius band and its edge. Compute 
Hi(K,Ic;Z12) and Hi(K,K.;Q). (See Exercise 2 of §9.) 
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*§11. THE COMPUTABILITY OF HOMOLOGY GROUPS 

We have computed the homology groups of some familiar spaces, such as the 
sphere and the torus and the Klein bottle. Now we ask the question whether one 
can in fact compute homology groups in general. For finite complexes, the an-
swer is affirmative. In this section, we present an explicit algorithm for carrying 
out the computation. 

First, we prove a basic theorem giving a "normal form" for homomor-
phisms of finitely generated free abelian groups. The proof is constructive in na-
ture. One corollary is the theorem about subgroups of free abelian groups that 
we stated earlier as Theorem 4.2. A second corollary is a theorem concerning 
standard bases for free chain complexes. And a third corollary gives our desired 
algorithm for computing the homology groups of a finite complex. 

First, we need two lemmas with which you might already be familiar. 

Lemma 11.1. Let A be a free abelian group of rank n. If B is a subgroup 
of A, then B is free abelian of rank r -...S n. 

Proof. We may without loss of generality assume that B is a subgroup of 
the n-fold direct product Z' = Z X • • • X Z. We construct a basis for B as 
follows: 

Let 1ri  : Zn  --0  Z denote projection on the ith coordinate. For each m -_5_ n, 
let B. be the subgroup of B defined by the equation 

B. = B 11 (I" X 0). 

That is, B. consists of all x e B such that •tri(x) = 0 for i > m. In particular, 
B. = B. Now the homomorphism 

gym: B,.-- Z 

carries B. onto a subgroup of Z. If this subgroup is trivial, let x„, = 0; other-
wise, choose x„, e B. so that its image Ir. (x.) generates this subgroup. We 
assert that the non-zero elements of the set {x„ . . . ,x„} form a basis for B. 

First, we show that for each m, the elements x„ ... ,x„, generate B.. (Then, 
in particular, the elements x„ . . . ,x„ generate B.) It is trivial that x, generates 
B,; indeed if d is the integer ir,(x,), then 

x, = (d,0, ... ,0) 

and B, consists of all multiples of this element. 
Assume that x„ . . . ,x„, _ I  generate B. _ 1; let x e B.,. Now ir,„(x) = 

kw., (x„,) for some integer k. It follows that 

7„,(x — kx„,) = 0, 

so that x — kx„, belongs to B„, _ ,. Then 

x — kx„, = /cot, + • • • + k„, _ ,x._ , 

by the induction hypothesis. Hence x„ ... ,x,, generate B.,. 
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Second, we show that for each m, the non-zero elements in the set 
,x„,} are independent. The result is trivial when m = 1. Suppose it true 

for m — 1. Then we show that if 

X, x, + • • • + X,,,x„, = 0, 

then it follows that for each i, Xi  = 0 whenever xi  0; independence follows. 
Applying the map rm, we derive the equation 

X„,7„,(x„,) = 0. 

From this equation, it follows that either 'm = 0 or x„, = 0. For if Xm # 0, then 
(x„,) = 0, whence the subgroup ir„,(B„,) is trivial and x„, = 0 by definition. 

We conclude two things: 

Xm = 0 	if
` 
	x„,* 0, 

X, x, + . • • + „, _ 1 x„, _ , = 0. 

The induction hypothesis now applies to show that for i < m, 

= 0 	whenever 	x;  0. 0 

For later use, we generalize this result to arbitrary free abelian groups: 

Lemma 11.2. If A is a free abelian group, any subgroup B of A is free. 

Proof The proof given for the finite case generalizes, provided we assume 
that the basis for A is indexed by a well-ordered set J having a largest element. 
(And the well-ordering theorem, which is equivalent to the axiom of choice, tells 
us this assumption is justified.) 

We begin by assuming A equals a direct sum of copies of Z; that is, A equals 
the subgroup of the cartesian product Z' consisting of all tuples (n,),ae  such 
that n, = 0 for all but finitely many a. Then we proceed as before. 

Let B be a subgroup of A. Let Bo  consist of those elements x of B such that 
re  (x) = 0 for a > f3. Consider the subgroup ir$(B$) of Z; if it is trivial define 
x8  = 0, otherwise choose x8  EBB  so 78(x$) generates the subgroup. 

We show first that the set {xe, I a 151 generates Bo. This fact is trivial if 
fl is the smallest element of J. We prove it in general by transfinite induction. 
Given x e Bo, we have 

(x) = kir$  (x0) 

for some integer k. Hence 2-8  (x — kx8) = 0. Consider the set of those indices a 
for which 11-„(x — kx0) * 0. (If there are none, x = kx$  and we are through.) 
All of these indices are less than /3, because x and x8  belong to Bo. Furthermore, 
this set of indices is finite, so it has a largest element -y, which is less than But 
this means that x — kx$  belongs to B,, whence by the induction hypothesis, 
x — kx$  can be written as a linear combination of elements x„ with each a -_s y 

Second, we show that the non-zero elements in the set {x. a IS. 01 are inde- 
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pendent. Again, this fact is trivial if (3 is the smallest element of J. In general, 
suppose 

X„, x„, + • • • + a,k xak + Asxs  = 0, 

where ai  < O. Applying 70, we see that 

Asirs(xs) = 0. 

As before, it follows that either As  = 0 or xs  = 0. We conclude that 

Xs  = 0 	if 	xs  # 0, 

and 

X..x.i  + • • • + Aakxak  = 0. 

The induction hypothesis now implies that X. = 0 whenever x„ # 0. El 

We now prove our basic theorem. First we need a definition. 

Definition. Let G and G' be free abelian groups with bases a„ 	,a. and 
a;, 	,d,„, respectively. If f : G G' is a homomorphism, then 

f (ai) = 
= 

for unique integers Au. The matrix (AO is called the matrix off relative to the 
given bases for G and G'. 

Theorem 11.3. Let G and G' be free abelian groups of ranks n and m, re-
spectively; let f : G G' be a homomorphism. Then there are bases for G and 
G' such that, relative to these bases, the matrix off has the form 

b, 	0 

0 

0 	b, B — 

0 0 

where bi  a.- 1 and bi l b21 • • • I bp 

This matrix is in fact uniquely determined by f (although the bases involved 
are not). It is called a normal form for the matrix of f. 

Proof We begin by choosing bases in G and G' arbitrarily. Let A be the 
matrix off relative to these bases. We shall give shortly a procedure for modify- 
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ing these bases so as to bring the matrix into the normal form described. It is 
called "the reduction algorithm." The theorem follows. 0 

Consider the following "elementary row operations" on an integer matrix A: 

(1) Exchange row i and row k. 
(2) Multiply row i by —1. 

(3) Replace row i by (row i) q (row k), where q is an integer and k * i. 
Each of these operations corresponds to a change of basis in G'. The first 

corresponds to an exchange of a; and al. The second corresponds to replacing 
a; by —a;. And the third corresponds to replacing al by al — go', as you can 
readily check. 

There are three similar "column operations" on A that correspond to changes 
of basis in G. 

We now show how to apply these six operations to an arbitrary matrix A so 
as to reduce it to our desired normal form. We assume A is not the zero matrix, 
since in that case the result is trivial. 

Before we begin, we note the following fact: If c is an integer that divides 
each entry of the matrix A, and if B is obtained from A by applying any one of 
these elementary operations, then c also divides each entry of B. 

The reduction algorithm 

Given a matrix A = (a;;) of integers, not all zero, let a (A) denote the small-
est non-zero element of the set of numbers 'au'. We call au  a minimal entry of A 
if laul = a(A). 

The reduction procedure consists of two steps. The first brings the matrix 
to a form where a (A) is as small as possible. The second reduces the dimensions 
of the matrix involved. 

Step 1. We seek to modify the matrix by elementary operations so as to 
decrease the value of the function a. We prove the following: 

If the number a (A) fails to divide some entry of A, then it is possible to de-
crease the value of a by applying elementary operations to A; and conversely. 

The converse is easy. If the number a (A) divides each entry of A, then it 
will divide each entry of any matrix B obtained by applying elementary op-
erations to A. In this situation, it is not possible to reduce the value of a by 
applying elementary operations. 

To prove the result itself, we suppose au  is a minimal entry of A that fails 
to divide some entry of A. If the entry aq  fails to divide some entry aki  in its 
column, then we perform a division, writing 

akl 
 =-- q — , 

au 	1211 
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where 0 < Irk < 'au'. Signs do not matter here; q and r may be either positive 
or negative. We then replace (row k) of A by (row k) — q (row i). The result is 
to replace the entry (hi  in the kth row and jth column of A by ak  — qa,7  = r. 
The value of a for this new matrix is at most In, which is less than a(A). 

A similar argument applies if au  fails to divide some entry in its row. 
Finally, suppose chi  divides each entry in its row and each entry in its col-

umn, but fails to divide the entry a„, where s 0 i and I 0 j. Consider the fol-
lowing four entries of A: 

a I•j • • • ail  

as., • • • as, 
Because au  divides asp, we can by elementary operations bring the matrix to the 
form where the entries in these four places are as follows: 

air. • • ail  

0 • • • a„ 	la„ 
If we then replace (row i) of this matrix by (row i) + (row s), we are back in 
the previous situation, where au  fails to divide some entry in its row. 

Step 2. At the beginning of this step, we have a matrix A whose minimal 
entry divides every entry of A. 

Apply elementary operations to bring a minimal entry of A to the upper left 
corner of the matrix and to make it positive. Because it divides all entries in its 
row and column, we can apply elementary operations to make all the other en-
tries in its row and column into zeros. Note that at the end of this process, the 
entry in the upper left corner divides all entries of the matrix. 

One now begins Step 1 again, applying it to the smaller matrix obtained by 
ignoring the first row and first column of our matrix. 

Step 3. The algorithm terminates either when the smaller matrix is the 
zero matrix or when it disappears. At this point our matrix is in normal form. 
The only question is whether the diagonal entries b„ 	,b, successively divide 
one another. But this is immediate. We just noted that at the end of the first 
application of Step 2, the entry b, in the upper left corner divides all entries 
of the matrix. This fact remains true as we continue to apply elementary op-
erations. In particular, when the algorithm terminates, b, must divide each of 
b2, • . . ,b,• 

A similar argument shows I divides each of b„.. , b,. And so on. 
It now follows immediately from Exercise 4 of §4 that the numbers 

b„ . ,b, are uniquely determined by the homomorphismf For the number 1 of 
non-zero entries in the matrix is just the rank of the free abelian group f (G) C 
G'. And those numbers b, that are greater than 1 are just the torsion coeffi- 
cients t„ 	,t„ of the quotient group G' If (G). 
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Applications of the reduction algorithm 

Now we prove the basic theorem concerning subgroups of free abelian 
groups, which we stated in §4. 

Proof of Theorem 4.2. Given a free abelian group F of rank n, we know 
from Lemma 11.1 that any subgroup R is free of rank r < n. Consider the 
inclusion homomorphism j : 	F, and choose bases a„ . ,a, for R and 
e„ 	,e„ for F relative to which the matrix of j is in the normal form of the 
preceding theorem. Because j is a monomorphism, this normal form has no zero 
columns. Thus j(ai) = bie, for i = 1, . . . ,r, where b, > 1 and b,I 11,1 • • • I b,. 
Since j(a) = ai, it follows that b,e„ 	,b,e, is a basis for R. 0 

Now we prove the "standard basis theorem" for free chain complexes. 

Definition. A chain complex e is a sequence 

ap + 1 	a  P 

• • 	• 	C p 	 ••• p 	 4. p 	 • * • 

of abelian groups Ci  and homomorphisms a i, indexed with the integers, such 
that a„ 0 ap  4. = 0 for all p. The pth homology group of e is defined by the 
equation 

Hp(0) = ker ap/im a,+ ,.  

If Hp(e)is finitely generated, its betti number and torsion coefficients are called 
the betti number and torsion coefficients of 0 in dimension p. 

Theorem 11.4 (Standard bases for free chain complexes). Let lc, o,} be a 
chain complex; suppose each group C,, is free of finite rank. Then for each p 
there are subgroups Up, Vp, In of Cp  such that 

Cp  = Up fdV),e Wp, 

where d p(Up) C 	and dp(Vp) = 0 and ap(Wp) = 0. Furthermore, there 
are bases for Ili, and 	relative to which a,: LI, w„ _ , has a matrix of 
the form 

B= { 	- 
b, 	0 

where b,?_.• 1 and b, I b, I • • • I b,. 

Proof Step 1. Let 

Zp  = ker ap 	and 	Bp  = im d p  + „ 

Let Wp  consist of all elements c„ of C, such that some non-zero multiple of cp 

0 	bi  
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belongs to Bp. It is a subgroup of Cr  and is called the group of weak boundaries. 
Clearly 

13, C W„ C Z„ C Cp. 

(The second inclusion uses the fact that Cp  is torsion-free, so that the equation 
mcp  = ap  1dp 4. implies that apc, = 0.) We show that Wp  is a direct summand 
in Zp. 

Consider the natural projection 

Zp  Hp(e) Hp(0)/Tp(e), 

where Tp(e) is the torsion subgroup of Hp(e). The kernel of this projection 
is Wp; therefore, ZpIWp= HpITp. The latter group is finitely generated 
and torsion-free, so it is free. If c, + Wp, . ,c, + Wp  is a basis for Zp/Wp, 
and d„ 	,d, is a basis for Wp, then it is straightforward to check that 
c„ . . . ,c„d„ 	,d, is a basis for Zp. Then Zp  = Vp  ED Wp, where Vp  is the group 
with basis c„ 

Step 2. Suppose we choose bases e„ . ,en  for Cp, and e;, . . ,e„' for 
Cp  _ ,, relative to which the matrix of ap  Cp 	_ has the normal form 

e; b, 	0 

0 
• 	

0 	b, 
, 

0 
	

0 

e' m 

 b, > 1 and b, I b2  I • • • I b,. Then the following hold: 

(1) e, „ 	is a basis for Zp. 

(2) e;, 	,e; is a basis for FV, _ . 

(3) b,e;, 	,b,e; is a basis for Bp... 1. 
We prove these results as follows: Let cp  be the general p-chain. We com-

pute its boundary; if 

	

aie„ 	then 	apcp  = 	aibicl. 
= 	= 

To prove (1), we note that since b, * 0, the p-chain cp  is a cycle if and only if 
ai  = 0 for i = 1, . . . ,/. To prove (3), we note that any p — 1 boundary apc, lies 

	

in the group generated by bie;, 	,b,e;; since b;  * 0, these elements are inde- 
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pendent. Finally, we prove (2). Note first that each of e:, 	,e; belongs to 
WP  _ ,, since bie; = aei. Conversely, let 

_ = 	die: 
= 

be a p — 1 chain and suppose cp  _ e Wp  _ „ Then c, _ , satisfies an equation of 
the form 

Acp  _ 	apcp  = 
=1 

for some 	0. Equating coefficients, we see that Ad, = 0 for i > 1, whence 
= 0 for i > 1. Thus e;, 	,e; is a basis for Wp  _ 1. 

Step 3. We prove the theorem. Choose bases for C, and C, _ , as in Step 2. 
Define U, to be the group spanned by e„ . ,ei; then 

C, = U, 9 Z,. 
Using Step 1, choose V, so that z, = v, ED W,. Then we have a decomposition 
of C, such that a, (V,) = 0 and 8,(W,) = 0. The existence of the desired bases 
for Up  and Wp  _ , follows from Step 2. 0 

Note that W, and Z, = Vp  ED Wp are uniquely determined subgroups of Cr  
The subgroups U, and V, are not uniquely determined, however. 

Theorem 11.5. The homology groups of a finite complex K are effectively 
computable. 

Proof. By the preceding theorem, there is a decomposition 

Cp(K) = upe v, Wp 

where z, = V, ED Wp is the group of p-cycles and Wp is the group of weak 
p-boundaries. Now 

H,(K) = Zp1110 1---..Vpe(Wp1Bp)= (ZpITVp)e(Wp1Bp). 
The group z„Ivv, is free and the group Wp/Bp  is a torsion group; computing 
Hp  (K) thus reduces to computing these two groups. 

Let us choose bases for the chain groups C,(K) by orienting the simplices 
of K, once and for all. Then consider the matrix of the boundary homomor-
phism ap  : Cp(K)--. C, _ 1(K) relative to this choice of bases; the entries of this 
matrix will in fact have values in the set {0,1,— 1}. Using the reduction algo-
rithm described earlier, we reduce this matrix to normal form. Examining Step 
2 of the preceding proof, we conclude from the results proved there the follow-
ing facts about this normal form: 



§11. 	 The Computability of Homology Groups 	61 

(1) The rank of Zp  equals the number of zero columns. 

(2) The rank of Wp  _ , equals the number of non-zero rows. 

(3) There is an isomorphism 

f V p 11B, I = ZI b, os Z/b, e • • • ED Z/b/. 

Thus the normal form for the matrix of ap  : Cp  --, Cp  _ , gives us the torsion 
coefficients of K in dimension p — 1; they are the entries of the matrix that are 
greater than 1. This normal form also gives us the rank of Z,,. On the other 
hand, the normal form for ap  + , : C, , —, C gives us the rank of Wp. The dif-
ference of these numbers is the rank of Zp/ Wp—that is, the betti number of K 
in dimension p. 0 

EXERCISES 

1. Show that the reduction algorithm is not needed if one wishes merely to com-
pute the betti numbers of a finite complex K; instead all that is needed is an 
algorithm for determining the rank of a matrix. Specifically, show that if Ap  is 
the matrix of a p: Cp (K) Cp  _ ,(K) relative to some choice of basis, then 

13,(K) .--- rank Cp(K) — rank A p  — rank Ap  .,. ,. 

2. Compute the homology groups of the quotient space indicated in Figure 11.1. 
[Hint: First check whether all the vertices are identified.] 

3. Reduce to normal form the matrix 

[2 6 4 
4 —7 4 . 
4 8 4 

Figure 11.1 
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§12. HOMOMORPHISMS INDUCED BY 
SIMPLICIAL MAPS 

If f is a simplicial map of IKI into ILL then f maps each p-simplex o of K onto a 
simplex Ti of L of the same or lower dimension. We shall define a homomor-
phism of p-chains that carries a formal sum In2,0-, of oriented p-simplices of 
K onto the formal sum Zmir, of their images. (We delete from the latter sum 
those simplices Ti whose dimension is less than p.) This map in turn induces a 
homomorphism of homology groups, as we shall see. 

As a general notation, we shall use the phrase 

"f : K L is a simplicial map" 

to mean that f is a continuous map of IKI into ILI that maps each simplex of K 
linearly onto a simplex of L. Thus f maps each vertex of K to a vertex of L, and 
it equals the simplicial map induced by this vertex map, as defined in §2. 

Definition. Let f K L be a simplicial map. If V.... 1.),, is a simplex of 
K, then the points J (vo), • • • ,f (vp) span a simplex of L. We define a homomor- 
phism 	(K) Cp  (L) by defining it on oriented simplices as follows: 

fo([l)°, 	,up]) = 
{[f(v.),... ,f(vp)] if f (vo), 	,f  (vp) are distinct, 

0 otherwise. 

This map is clearly well-defined; exchanging two vertices in the expression 
[vo, 	,v p] changes the sign of the right side of the equation. The family of 
homomorphisms {41, one in each dimension, is called the chain map induced by 
the simplicial map f. 

Properly speaking, one should use dimensional subscripts to distinguish these 
homomorphisms, denoting the map in dimension p by (ft), : C, (K)C, (L). 
Normally, however, we shall omit the subscript, relying on the context to make 
the situation clear, just as we do with the boundary operator 8. 

In a similar vein, we shall use the symbol 8 to denote the boundary opera-
tors in both K and L, in order to keep the notation from becoming cumbersome. 
If it is necessary to distinguish them, we can use the notations aK  and a,. 

Lemma 12.1. The homomorphism fo  commutes with 8; therefore f, in- 
duces a homomorphism 	H p(K) ---0 H,(L). 

Proof We need to show that 

(*) 	afti([v„ ...,v,]) = 	,L)„]). 
Let r be the simplex of L spanned byf (v.), . . . ,f (vp). We consider various cases. 

Case I. dim r = p. In this case, the vertices f (vo), 	,f (op) are dis- 
tinct and the result follows at once from the definitions of j; and 8. 
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Case 2. dim r IS p — 2. In this case, the left side of (*) vanishes be- 
cause f (v0 ), 	, f (v p) are not distinct, and the right side vanishes because 
for each i, at least two of the points f (v.), 	, f (v _ ,),f (v + ,), 	,f (v p) are 
the same. 

Case 3. dim r = p — 1. In this case, we may assume the vertices so or-
dered that f (v.) = f (v,), and f (v,), . ,f (vp) are distinct. Then the left side of 
(*) vanishes. The right side has only two non-zero terms; it equals 

[f (v,),f (v.), • • • ,f (v,,)1 - [f(v.),f(v0, • • • ,f (vp)1. 
Since f (va ) = f (v,), these terms cancel each other, as desired. 

The homomorphism fN  carries cycles to cycles, since the equation ac, = 0 
implies that 84(cp) = Macp) = 0. And f, carries boundaries to boundaries, 
since the equation cp  = 	, implies that f„(cp) = 	= af,(dp  ,). 
Thusfo  induces a homomorphism f*  : Hp  (K)Hp(L) of homology groups. 0 

Theorem 12.2. (a) Let i : K K be the identity simplicial map. Then 
is : Hp(K)---. Hp(K) is the identity homomorphism. 

(b) Let f : K L and g: L M be simplicial maps. Then (g 
g*  oft ; that is, the following diagram commutes: 

(g o f). 
H,(K) 	Hp(M) 

H,(L) 

Proof. It is immediate from the definition that it, is the identity and 
(g o f), = g,, o fo, as you can check. The theorem follows. 0 

This theorem expresses what are called the "functorial properties" of the 
induced homomorphism. This phrase will be defined formally later when we 
discuss categories and functors. For the present, we point out simply that the 
operator Hp  assigns to each simplicial complex an abelian group, and the opera-
tor * assigns to each simplicial map of one complex into another, a homomor-
phism of the corresponding abelian groups. Because (a) and (b) hold, we say 
that (Hp, *) is a "functor" from the "category" of simplicial complexes and sim-
plicial maps to the "category" of abelian groups and homomorphisms. 

Lemma 12.3. The chain map f,, preserves the augmentation map there-
fore, it induces a homomorphism fs  of reduced homology groups. 

Proof Let f : K L. be simplicial. Then ef0 (v) = 1 and e(v) = 1 for each 
vertex v of K. Thus e o o f, = e. This equation implies that .4 carries the kernel of 
ex  : Ca  (K) Z into the kernel of CL  : Co(L)--. Z, and thus induces a homomor-
phism : Ha  (K) Ho(L). 0 

Example I. Consider the complexes K and T indicated in Figure 12.1. Their un-
derlying spaces are the circle and torus, respectively. Now H, (K) = Z; let us 
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z 

&h. MIMI 

WIWI= 
h.z  

Figure 12.1 

use the cycle z indicated in the figure as a generator. Similarly, H,(T) = Z Z; let 
us use the cosets of the cycles w, = [A,B] + [B,C] + [C,A] and z, = [A,D] + 
[D,E] + [E,A] as a basis. 

Now consider the simplicial maps: 

h:a—A 

	

b F 	1). B 	b I 

• D 	c C 	c 

• D 	— A 	d G 

e F 	e— E 	e G 

	

f E 	f D 	f A 

You can check that /p(z) is homologous to z„ that g, (z) equals w, — z„ and that 
hi  (z) is homologous to w, — z,. Thus g. and h, are equal as homomorphisms of 
1-dimensional homology. They are also equal on 0-dimensional homology. 

In general, a given homomorphism can be induced by quite different sim-
plicial maps, as the preceding example shows. This fact leads us to consider the 
general question: Under what conditions do two simplicial maps induce the 
same homomorphism of homology groups? Answering this question involves an 
important technique, one we shall use many times. So we begin by explaining 
the underlying motivation. 

Given simplicial maps ./,g : K L, we wish to find conditions under which 
fp(z) and g#(z) are homologous for each cycle z e Zp (K). Said differently, we 
want to find conditions under which there is a function (commonly called D) 
that assigns to each p-cycle z of K, a p + 1 chain Dz of L, such that 

aDz = gp(z) fp(z). 

Let us consider an example in which this is possible. Suppose K is the 
boundary of a triangle, and L consists of the sides of a triangular prism, as pic-
tured in Figure 12.2. Suppose./ and g are the simplicial maps that carry K onto 
the two ends of the prism, respectively. If z is the 1-cycle generating H,(K), as 
indicated in the figure, it is quite easy to find a 2-chain Dz whose boundary is 
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g(v) 

g(w) 

L 

f(u 

Figure 12.2 

go  (z) — fo(z); we let Dz equal the sum of all the 2-simplices of L, oriented 
appropriately. You can check that this 2-chain does the job. 

In general, it is awkward to define D just for cycles, since that requires us 
to compute the group of cycles. What proves more satisfactory is to define D as 
a homomorphism on the entire chain group, because then one can define D one 
simplex at a time. How might that procedure work in the present example? It is 
fairly clear how to proceed. Given a vertex v of K, we define Dv to be the edge 
of L that leads from f (v) to g(v), as indicated in Figure 12.3. And given the 
oriented I-simplex a of K, we define Da to be the sum of the two oriented sim-
plices that are heavily shaded in the figure, which form one side of the prism. 
We proceed similarly for the other simplices of K. Since z is the sum of the 
oriented edges of K, the chain Dz will be the sum of the oriented 2-simplices of 
L, just as before, and aDz = go(z) — (z), as desired. 

One can ask what sort of formula holds for aDc when c is an arbitrary 
chain. The answer is clear from the definition. Given the oriented simplex o, we 
compute aDa = go  (a) — Dv — (a) + Dw; see Figure 12.3 for verification. 
That is, 

(*) a (Da) = go(a) — .4(o) — D (ao. 

g(v) 

Figure 12.3 
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This same formula holds for the other simplices of K, as you can check. 
This formula expresses the crucial algebraic property of the homomor-

phism D. It is the formula at which we were aiming; we make it part of the fol-
lowing definition. 

Definition. Let f,g: K --, L be simplicial maps. Suppose that for each p, 
one has a homomorphism 

D:Cp(K)---. C., +1(L) 
satisfying the equation 

at) + Da = go  -A. 
Then D is said to be a chain homotopy between f, and go. 

We have omitted dimensional subscripts in this formula; the following dia-
gram may make the maps involved clearer: 

(f#), 
(gii), 

P-1 

Cp., 1 (L) 

l op 
Cp(L) 

With subscripts, the formula becomes 

ao  + iDp  + Dp  _ l ap  = (g.), — (f p)p. 
This formula is more precise, but messier. We shall customarily omit dimen- 
sional subscripts. 

The importance of chain homotopies comes from the following theorem: 

Theorem 12.4. If there is a chain homotopy between A and gp, then the 
induced homomorphisms f,„ and g., for both reduced and ordinary homology, 
are equal. 

Proof. Let z be a p-cycle of K. Then 

gp(z) — fp(z) = aDz + Daz = aDz + 0, 

so go  (z) and f p(z) are in the same homology class. Thus g.({z}) = fo,({z}), as 
desired. q 

We still want to find conditions on two simplicial maps f and g under which 
the induced homomorphisms f, and g. are equal. We have reduced this prob-
lem to the problem of finding conditions under which one can construct a chain 
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homotopy between fN  and go. Here is one set of conditions under which this is 
possible: 

Definition. Given two simplicial maps f, g : K L, these maps are said to 
be contiguous if for each simplex vo  . . . vp  of K, the points 

f (v.), . 	,f(vo),g(v.), 	,g(vo) 

span a simplex r of L. (The simplex r may be of any dimension from 0 to 2p + 1, 
depending on how many of these points are distinct.) 

Roughly speaking, this condition says that f and g are "fairly close"; one 
can move the simplex f (a) to the simplex g(o) across some possibly larger 
simplex T of which both are faces. 

Theorem 12.5. If f, g: K L are contiguous simplicial maps, then there 
is a chain homotopy between fo  and go. 

Proof The argument we give here is a standard one; you should master it. 
For each simplex o = v.. . . vo  of K, let L(o) denote the subcomplex of L con- 

sisting of the simplex whose vertex set is if (v.), 	,f (vp),g(v.), 	,g(vp)}, 
and its faces. We note the following facts: 

(1) L(a) is nonempty, and HAW)) = 0 for all i. 

(2) If s is a face of a, then L(s) C L(a). 
(3) For each oriented simplex o, the chains f# (o) and go(a) are carried 

by L(cr). 

Using these facts, we shall construct the required chain homotopy D : Co (K) 
c, + ,(L), by induction on p. For each a, the chain Do will be carried by L(a). 

Let p = 0; let v be a vertex of K. Because f p  and go  preserve augmentation, 
E(go(v) — .4(v)) = 1 — 1 = 0. Thus go(v) — fo(v) represents an element of 
the reduced homology group H0(L(v)). Because this group vanishes, we can 
choose a 1-chain Dv of L carried by the subcomplex L (v) such that 

a (Dv) = go  (v) — f-o (v). 

Then aDv + Day = 8Dv + 0 = go(v) — MO, as desired. Define D in this way 
for each vertex of K. 

Now suppose D is defined in dimensions less than p, such that for each 
oriented simplex s of dimension less than p, the chain Ds is carried by L(s), and 
such that 

aDs + Das = go  (s) — fo(s). 

Let o be an oriented simplex of dimension p. We wish to define Do so that 
a(Da) equals the chain 

c = go(a) — f#(a) — Dacr. 
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Note that c is a well-defined chain; Dar is defined because as has dimension 
p — 1. Furthermore, c is a cycle, for we compute 

ac = 	— a fo(cr) — ap(ao 
= ago(r) — afo (a) — [go(aa) — 	— Da (ao-)l, 

applying the induction hypothesis to the p — 1 chain ao-. Using the fact that 
a a = 0, we see that .3c = 0. 

Finally, we note that c is carried by L (cr): Both go  (a) and f„ (0-) are carried 
by L(o), by (3). To show Dar is carried by L(o), note that the chain as is a sum 
of oriented faces of a. For each such face s, the chain Ds is carried by L(s), and 
L(s) C L(a) by (2). Thus Dar is carried by L(a). 

Since c is a p-cycle carried by L(a), and since Hp(L(a)) = 0, we can 
choose a p 1 chain Da carried by L (a) such that 

aDcr = c = go(a) — fa(r) — Dar. 
We then define D (— a) = — D (a). We repeat this process for each p-simplex 
of K; then we have the required chain homotopy D in dimension p. The theorem 
follows. 0 

Some students are bothered by the fact that constructing the chain 
homotopy D involves arbitrary choices. They would be happier if there were a 
definite formula for D. Unfortunately, there is no such neat formula, because 
basically there are many possible chain homotopies between fo  and go, and there 
is no reason for preferring one over the other. 

To illustrate this fact, let us consider the preceding proof in a particular 
case. At the first step of the proof, when v is a vertex, the chain Dv is in fact 
uniquely determined. Since Dv is to be a chain carried by L (v), then necessarily 

Dv = 0 	if f (v) = g(v), 
Dv = [f (v),g(v)] if f (v) g(v). 

In the first case, L(v) is a vertex; and in the second case, it consists of a 1-
simplex and its faces. 

But at the very next step of the proof, choices can arise. Let a = vw be a 
1-simplex, and suppose the points f (v), f (w), g(v), g(w) are all distinct, so they 
span a 3-simplex T, as indicated in Figure 12.4. The chains Dv and Dw are 
indicated in the figure. How shall we define Da? There are two obvious choices 
for a 2-chain Do- whose boundary is the 1-chain go  (a) — (a) — Dar pictured 
in Figure 12.5. One choice would consist of the front two faces of T, oriented as 
indicated; the other choice would consist of the back two faces, appropriately 
oriented. There is no reason to prefer one choice to the other; we must simply 
choose one arbitrarily. 

Application to relative homology 

Let Ko  be a subcomplex of K, and let L. be a subcomplex of L. Let 
f K 	L be a simplicial map that carries each simplex of K. into a simplex of 
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f(v) 

Figure 12.4 

L0. We often express this by the phrase 

"f 	(L,L.) is a simplicial map." 

In this case, it is immediate that4 maps Cp(K.) into Cp(L.), so that one has an 
induced map (also denoted fo ) 

Cp(K,K.)-4 Cp(L,L0)• 

This map commutes with 8 and thus induces a homomorphism 

The functorial properties stated in Theorem 12.2 carry over immediately to 
relative homology. 

Definition. Let f,g: 	(L,L.) be two simplicial maps. We say 
f and g are contiguous as maps of pairs if for each simplex a = v.. . vp  of K, 
the points 

span a simplex of L, and if a• e K., they span a simplex of L0. 

Theorem 12.6. Let f, g (K, K,) --0 (L, L,) be contiguous as maps of pairs. 
Then there is for all p a homomorphism 

D: c(K,K0) Cp+ 1(L,L0) 

such that 8D + Da = g#  — fo. It follows that f. and g*  are equal as maps of 
relative homology groups. 

Proof The chain homotopy D constructed in the preceding proof auto-
matically maps Cp(K.) into c + (L0). For if a e K., the complex L(a) is by 
definition a subcomplex of L.. Given o, the chain Da is carried by L(o); there- 
fore, D maps c (K.) into 	,(L.). Then D induces the required homomor-
phism of the relative chain groups. 0 
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EXERCISES 

1. Check the assertions made in Example 1. 

2. Consider the complex K indicated by the vertex labelling in Figure 12.6, whose 
underlying space is the torus. Although this complex is slightly different from 
the one considered earlier, the computation of the homology of the torus re-
mains the same. Let y be the sum of all the 2-simplices of K, oriented counter-
clockwise; then y generates 11,(K). The cycles 

w, = [a,b] + [b,c] + (c,a] 	and 	z, = [a,d] + [d,e] + [e,a] 
generate H, (K). 
(a) Define simplicial maps f, g, h, k of K with itself such that 

f:a—.a g:a—.a h:a—.1:1 k:a—.p 
b—.1:1 	b—..c 	1,—.p 	b—.q 
c—.e 	c—.1, 	c—.q 	c—.d 
d--.c 	d--•d 	d-4 	d—.0 
e --, b 	e —. e 	e —. d 	e —. b 

(b) Compute the values of f., g., h., and k, on the homology classes fw,l, {z1}, 
and {7}. 

a 	b 
	c 	 a 

4i 1441'4 
40401'4 
a 	b 
	c 	a 

Figure 12.6 

3. Use the complex in Figure 12.6, but with the letters d and e on the right-hand 
edge reversed, to represent the Klein bottle S. Let w, and z, be as before. 
(a) Define a simplicial map f ; S --. S such that f.({w,}) = {z1}. 
(b) Show there is no simplicial map g : S —, S such that g. (12,1) = {w1}. 

4. Let K be the torus, as in Exercise 2; let y be the 2-cycle indicated there. Let L 
be the complex consisting of the proper faces of the 3-simplex having vertices 
A, B, C, D; and let y' be the 2-cycle a[A,B,C,D] of L. 
(a) Show that any map of the vertices of K to the vertices of L induces a sim-

plicial map of K to L. 
(b) Let f be the simplicial map carrying m and r to A, p to B, b and u to C, and 

all other vertices to D. Compute the induced homomorphism f. : H,(K)—. 
11,(L), in terms of 7 and y'. 

d 

e 

d 

e 
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(c) Let g be the simplicial map agreeing with f on the vertices of K except that 
g(r) = C. Compute g.. 

(d) Let h agree with g on the vertices of K except that h (u) = A. Compute h.. 
5. Let f,g : (K,K.) (L,L.) be simplicial maps. Show that if./ and g are contigu-

ous as maps of K into L, and if L. is a full subcomplex of L, then f and g are 
contiguous as maps of pairs. 

§13. CHAIN COMPLEXES AND ACYCLIC CARRIERS 

Many of the definitions and constructions we have made within the context of 
simplicial complexes also occur in more general situations. We digress at this 
point to discuss this more general context. We shall use these results many 
times later on. Proofs are left as exercises. 

First we define the algebraic analogues to our chain groups. (We men-
tioned them earlier in §11.) 

Definition. A chain complex e is a family 1Cp,apl of abelian groups Cp  and 
homomorphisms 

a,: p  cp _ „ 

indexed with the integers, such that ap  o ap, = 0 for all p. 

If Cp  = 0 for p < 0, then e is said to be a non-negative chain complex. 
If Cp  is a free abelian group for each p, then e is called a free chain complex. 
The group 

Hp(e) = ker aplim a„ 
is called the pth homology group of the chain complex t 

If e is a non-negative chain complex, an augmentation for e is an epimor- 
phism e : 	Z such that e o at = 0. The augmented chain complex le,e1 is the 
chain complex obtained from e by adjoining the group Z in dimension —1 and 
using E as the boundary operator in dimension 0. The homology groups of the 
augmented chain complex are called the reduced homology groups of the origi-
nal chain complex e, relative to the augmentation e. They are denoted either 
H;({@,e}) or Hi(e). It follows readily that Hp(e) = H,(@) for p * 0, and 

Ho(@) 14(@) ® Z. 

(See the exercises.) 
An arbitrary chain complex is said to be acyclic if H i (M) = 0 for all i. 

In particular, the augumented chain complex fe,e1 is acyclic if H;  ({@,E }) — 
H;(@) = 0 for all i, or equivalently if go) = Z and HO) = 0 for i 0. 
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Definition. Let 0 = {Cr  8,} and e' = {c;,a;} be chain complexes. A chain 
map 4) : e —. e' is a family of homomorphisms 

4,„ : c„-- c; 
such that a; o ekp  = Op  _ , o ap  for all p. 

A chain map 95 : e —, e' induces a homomorphism 

(0.), : H,(@) — Hp(ei). 

Furthermore, the following hold: 

(1) The identity map i of e is a chain map, and (is )p  is the identity map of 
Hp(e). 

(2) If 0 : e . e' and 4/ : e' —+ CJ" are chain maps, then 4/ 0 ek is a chain 
map, and Op * 0). = ip. 0 0.. 

If te,e1 and {ex} are augmented chain complexes, the chain map 0 : e —, 6' is 
said to be augmentation-preserving if e' . O.= e. If we extend cb to the (-1)-
dimensional groups by letting it equal the identity map of Z, then d) is called a 
chain map of augmented chain complexes. It follows that an augmentation-
preserving chain map 4 induces a homomorphism ek. :1-19(0) --+ 1-1;,(e') of re-
duced homology groups. 

Example I. The chain complex 

e(K,K.) = {C,,(K,K.),a,} 

defined in §9 is called the oriented chain complex of the simplicial pair (K,K.). It is 
both free and non-negative, but, in general, it does not have an augmentation. (For 
example, in Example 4 of §9 the entire group Co(K,K.) vanishes, so there can be no 
surjective map C.(K,K.)---. Z.) If K. is empty, then the complex e(K, 0) = two 
has a standard augmentation, defined by f(v) = 1 for each vertex v of K, as we 
have seen. 

Example 2. If f : K --, L is a simplicial map of simplicial complexes K and L, then 
f, is an augmentation-preserving chain map of clo into e(L). However, in general 
there exist augmentation-preserving chain maps 4) : em — e(L) that are not in-
duced by simplicial maps. 

Definition. If 0, IP : 0 — e' are chain maps, then a chain homotopy of 0 to 
0 is a family of homomorphisms 

P ' Cp C; ., , 

such that 

a; .4. ,Dp  + Dp  _ ,ap = op — op 
for all p. 

Henceforth we shall normally omit subscripts on boundary operators and 
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chain maps and chain homotopies. The preceding formula, for instance, then 
assumes the more familiar form a•E• + D8 = 4> — 4>. 

Definition. A chain map 4 : e e' is called a chain equivalence if there 
is a chain map 4/ : 	e such that iry o 4) and 4 o 4; are chain homotopic to 
the identity maps of e and e', respectively. We call 4>' a chain-homotopy in-
verse to 

We list several properties of chain homotopies; proofs are left to the 
exercises. 

(1) Chain homotopy is an equivalence relation on the set of chain maps 
from G to e'. 

(2) Composition of chain maps induces a well-defined composition oper-
ation on chain-homotopy classes. 

(3) If (1) and IP are chain homotopic, then they induce the same homomor-
phism in homology. 

(4) If 4) is a chain equivalence, with chain-homotopy inverse 4>', then ch. 
and (4>'). are homology isomorphisms that are inverse to each other. 

(5) If 4): 0 0' and 4/ : 	e" are chain equivalences, then IP o 4) is a 
chain equivalence. 

Now we investigate what all this means in the special case of augmented 
chain complexes. 

Lemma 13.1. Let 6 and 0' be non-negative chain complexes. Let 
: 0 	e' be chain maps; let D be a chain homotopy between them. Sup- 

pose e and e' are augmented bye and e', respectively. If 4) preserves augmen-
tation, so does IP. If we extend 4) and ¢ to be the identity in dimension —1, and 
extend D to be zero in dimension —1, then D is a chain homotopy between the 
extended chain maps. 

Proof If c. e Co, we have 

aDc. = (1)(co) — (co) 
because ac. = 0. Then 

0 = e' ON)) = e'0(co) — €4(c0) e(co) — es  kco), 
as desired. Furthermore, we have in dimension 0 the equation 

De(c.) OD(co) = 4>(c0) — gc0), 

because De (co ) = 0, and we have in dimension —1 the equation 

(D (1)) --= 4>(1) — 4>(1) 
because both sides vanish. Thus D is a chain homotopy between the extended 
chain maps. 0 
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Lemma 13.2. Let e and ei be non-negative chain complexes. Let 4): e 
ei be a chain equivalence with chain-homotopy inverse ch'. Suppose e and e' 
are augmented by E, e' respectively. If preserves augmentation, so does cit)'. 
Furthermore, cf) and ci; are chain-homotopy inverses as maps of augmented 
complexes. Therefore, they induce inverse isomorphisms in reduced homology. 

Proof If D' is a chain homotopy between 4  o di and the identity, then in 
dimension 0, 

a'D'4 = 44/(4) — 
SO 

0 = (' (81D1 	= er 00' (co) — (4) = Eck/  (4) — e' (4). 

Thus preserves augmentation. The remainder of the statement follows from 
Lemma 13.1. 0 

These definitions set up the general algebraic framework into which the 
oriented simplicial chain groups fit as a special case. Now we seek to put into 
this general context the method by which in the preceding section we con-
structed a chain homotopy. As motivation, we first consider the case where the 
maps 4I  and IP are general chain maps, but the chain groups are the familiar 
oriented simplicial chain groups. Later, we consider general chain complexes 
and general chain maps. 

Definition. Let K and L be simplicial complexes. An acyclic carrier from 
K to L is a function that assigns to each simplex a of K, a subcomplex 4)(0) of 
L such that: 

(1) 4)(a) is nonempty and acyclic. 

(2) If s is a face of a, then (1) (s) C 4)(a). 

If f 	C7(L) is a homomorphism, we say that f is carried by 4 if for 
each oriented p-simplex a of K, the chain f (a) is carried by the subcomplex 
4,  (a) of L. 

Theorem 13.3 (Acyclic carrier theorem, geometric version). Let (I) be an 
acyclic carrier from K to L. 

(a) If and 1,G are two augmentation-preserving chain maps from e (K) to 
e (L) that are carried by I, there exists a chain homotopy D of to 4 that is 
also carried by cl). 

(b) There exists an augmentation-preserving chain map from e (K) to 
e (L) that is carried by (1). 

Proof Part (a) of the theorem is proved by copying the proof of Theo-
rem 12.5; one simply replaces the subcomplex L (a) by the subcomplex ‘13(o) 
throughout. To prove (b), we proceed as follows: For each vertex v of K, define 
4(v) to be a 0-chain c of (I)(v) such that E(C) = 1. This we can do because cl)(v) 
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is nonempty, so E : 4'(v) 	Z is surjective. (In fact, we can simply choose 4,(v) 
to be a vertex of 4)(v).) Then 4,  preserves augmentation, and 

aq5(v) = 0 = ck(av). 

Let a. = [v,w] be an oriented 1-simplex of K. The chain c = 4,(acr) is well-
defined because as is a 0-chain and et. has been defined in dimension 0. Further-
more, c is carried by 4'(a); for ck(aa) is carried by 4'(v) and 4) (w), both of which 
are contained in 4)(a) by (2). Finally, 

E(C) = eck(aa) = e(acr) = 0, 

because 4,  preserves augmentation. Hence c represents an element of 14(4'(x)). 
Because 4)(a) is acyclic (by (1)), we can choose a 1-chain carried by 4'(a) 
whose boundary is c. We denote this 1-chain by 4,(a); then 

am a) = c = 4,(ocr). 
For the induction step, let p > 1. Assume that if dim s < p, then 4) (s) is 

defined and aci)(s) = 4,8 (s). Let a be an oriented simplex of dimension p; we 
seek to define 4,  (a). The chain c = (gm is a well-defined p — 1 chain. It is 
carried by 4) (a), since 4' 	is carried by the union of the complexes 4'(si), 
where si  ranges over the p — 1 faces of a, and each of these complexes is con-
tained in 4)(a). Furthermore, c is a cycle since 

ac = ao(aa) 	(Oa) = 0. 

Here we apply the induction hypothesis to the p — 1 chain 8a. Since 4) (a) is 
acyclic, we can choose 4,  (a) to be a p-chain carried by cD (a) such that ao (a) = 
c. Then ao (a) = 4,a (a), as desired. 

The theorem follows by induction. 0 

With this proof as motivation, we now formulate an even more general 
version of this theorem. In this form, all geometry disappears and only alge-
bra remains! 

Definition. Let e = {crap} be a chain complex. A subchain complex 2) of 
e is a chain complex whose pth chain group is a subgroup of Cp, and whose 
boundary operator in each dimension p is the restriction of ap.  

Definition. Let {e,i} = {C,,81„€} be an augmented chain complex. Sup-
pose e is free; let {a;} be a basis for C,„ as a ranges over some index set Jp . Let 
te',E1 = {C;,a;,e'} be an arbitrary augmented chain complex. An acyclic car-
rier from e to ei, relative to the given bases, is a function cia. that assigns to 
each basis element a;, a subchain complex ck(a;) of e', satisfying the following 
conditions: 

(1) The chain complex 4'(a;) is augmented by e' and is acyclic. 

(2) If af,_ appears in the expression for 0,o in terms of the preferred 
basis for c _ ,, then 4)(4_ ,) is a subchain complex of 4'(a;). 
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A homomorphism f : C;  --, c; is said to be carried by 4) if f (o-;) belongs to the 
q-dimensional group of the subchain complex 4,(v;) of ei, for each a. 

Theorem 13.4 (Acyclic carrier theorem, algebraic version). Let 6 and e' 
be augmented chain complexes; let e be free. Let'1) be an acyclic carrier from 
e to e', relative to some set of preferred bases for 6. Then there is an augmen-
tation-preserving chain map 4):e  --+ e' carried by I, and any two such are 
chain homotopic; the chain homotopy is also carried by I. 

Proof The proof of this theorem is just a jazzed-up version of the preced-
ing proof. The requirement that the restriction of e' give an augmentation for 
(I) (up means that e' must map the 0-dimensional group of this chain complex 
onto Z; this corresponds to the requirement in the earlier version that 4,  (a) be 
nonempty for all a. 0 

Application: Ordered simplicial homology 

The algebraic version of the acyclic carrier theorem may seem unnecessar-
ily abstract to you. But it is indeed useful. Let us give one application now; it is 
a theorem that we will use later when we study singular homology. This theo-
rem involves a new way of defining the simplicial homology groups, using or-
dered simplices rather than oriented simplices. 

Let K be a simplicial complex. An ordered p-simplex of K is a p + 1 tuple 
(v0  . . . , vp) of vertices of K, where vi  are vertices of a simplex of K but need not 
be distinct. (For example, if uw is a 1-simplex of K, then (v,w,w,v) is an or-
dered 3-simplex of K.) 

Let C;(K) be the free abelian group generated by the ordered p-simplices 
of K; it is called the group of ordered p-chains of K. As usual, we shall identify 
the ordered p-simplex (v., . . . , vp) with the elementary p-chain whose value is 1 
on this ordered simplex and 0 on all other ordered simplices. Then every ele-
ment of C;(K) can be written uniquely as a finite linear combination, with in-
tegral coefficients, of ordered p-simplices. We define a; : C; (K) ---* C; _ ,(K) by 
the formula 

P 

ap(Vo, . . . ,up) = 1 (-1)1 (v0 , . . . ,V i, . . . ,up). 
i = 0 

Then a'p  is a well-defined homomorphism; and one checks as before that 
a; . a; + , = 0. 

The chain complex e'(K) = {c;(10,a;} is called the ordered chain complex 
of K. It is augmented by defining e' (v) = 1 for every vertex v of K. Although 
much too huge to be useful for computational purposes, this chain complex is 
sometimes quite convenient for theoretical purposes. Its homology is, surpris-
ingly enough, isomorphic to the simplicial homology of K, in a natural way. We 
outline a proof of this fact, leaving the details to you. 
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Lemma 13.5. If w * K is a cone over the complex K, then w * K is acyclic 
in ordered homology. 

Proof Define 

D : C;(w * K) C; i (w * K) 

for p 0 by the equation 

D((vo, 	,v p)) = 

Note that it is irrelevant here whether any of the vi  are equal to w. Let cp  E 
(w * K). We compute 

a;Dc,, = c„ — t' (co) x', 

a; . ,Dcp  = cp  — DO;cp 	if 	p > 0. 

The lemma follows: If cp  is a cycle and p > 0, then cp  = 	i Dcp; if co  is a 
0-chain lying in ker e', then ca  = f3;Dco. 0 

Theorem 13.6. Choose a partial ordering of the vertices of K that induces 
a linear ordering on the vertices of each simplex of K. Define 0 : Cp(K)--
C;(K) by letting 

(Pave, 	,v pi) = 	,up) 

if v. < v, < - • • < v 1, in the given ordering. Define : Cp(K) C,(K) by the 
equation 

f,w,,] if the wi  are distinct, 

((wl" • • • ' 'vP)) 	0 otherwise. 

Then 0 and tp are augmentation-preserving chain maps that are chain-homotopy 
inverses. 

If K„ is a subcomplex of K, then 0 and IP induce chain maps of the relative 
chain complexes that are chain-homotopy inverses. 

The proof is an application of the acyclic carrier theorem; it is left as an 
exercise. 

It follows from this theorem that oriented and ordered homology are iso-
morphic in a rather "natural" way. To explain what we mean by "naturality," 
we need to consider how a simplicial map acts in ordered homology. 

Definition. Let f : K L. be a simplicial map. Define fi: ev) 	(L) 
by the rule 

fi;((v., - • • ,v,)) = (I (v.), • • • ,f(vp)). 
It is easy to check that f; is a chain map, easier in fact than in the oriented case, 
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for we need not worry whether or not vertices are distinct. Clearly f; preserves 
augmentation. If f maps K. to L., then f; induces a chain map 

ft; : 	 e'(L,L.), 
and a corresponding homomorphism in homology. 

Theorem 13.7. Let f : 	(L,L.) be a simplicial map. Let 4) and 4, 
be as in the preceding theorem. Then the following diagram commutes: 

Hi (K,K.) 	H,(L,L.) 

1." 
H i (ev, K.)) 	H (L, L.)) . 

Similarly, 4. 	= 
Proof One checks directly from the definition that f, o = o fi. Thus 

the diagram already commutes on the chain level, so it commutes on the homol-
ogy level as well. It is not true that 4) o ft  = fi o 0, since 4)  depends on a particu- 
lar ordering of vertices. However, because 44. is the inverse of 	it is true that 

- 0*. 0  

EXERCISES 

1. If i0,E1 is an augmented chain complex, show that i _ i (e) = 0 and 

11.(0) ®Z 11.(e). 

(See the exercises of §7.) Conclude that 1641 is acyclic if and only if H,(@) is 
infinite cyclic for p = 0 and vanishes for p # 0. 

2. Check properties (1)—(5) of chain homotopies. Only (2) and (5) require care. 

3. Prove (a) of Theorem 13.3. 

4. Consider Example 1 of §12. Show that although the maps g and h are not con-
tiguous, there is nevertheless a chain homotopy between gN  and 14, as follows: 
(a) Define an acyclic carrier 4,  from K to L carrying both g„ and h„. 
(b) Define a specific chain homotopy between go  and k that is carried by 4'. 
(c) Define a chain map 4, : evo 	(L) carried by 4,  that is not induced by a 

simplicial map; define a chain homotopy between 45 and he  

5. Check the details of the proof of Theorem 13.4. 

6. Prove Theorem 13.6 as follows: 
(a) Show 4) and 4' are augmentation-preserving chain maps, and show that 4, 

equals the identity map of e(K). 
(b) Define an acyclic carrier from 6'(K) to ev) that carries both 4,o 4, and 

the identity map. 



Topological Invariance of the 
Homology Groups 

In the preceding chapter, we defined a function assigning to each simplicial 
complex K a sequence of abelian groups called its homology groups. We now 
prove that these groups depend only on the underlying topological space of K. 

The way to approach this problem is to study continuous maps of one 
polyhedron to another, and what such maps do to the homology groups. We 
show that a continuous map h :IKi —. ILI of polyhedra induces, in a rather natu-
ral way, a homomorphism h.: Hp(K) --4 Hp(L) of the homology groups of the 
corresponding simplicial complexes. Constructing this induced homomorphism 
will prove to be a reasonably arduous task. 

It turns out that when h is a homeomorphism of topological spaces, then h, 
is an isomorphism of groups. The topological invariance of the simplicial ho-
mology groups follows. 

It is not hard to see intuitively why there should be such an induced homo-
morphism. If one thinks of a homology class as a geometric object, it seems fairly 
reasonable that its image under h should be a well-defined homology class. A 
closed loop on the torus T, for instance, is mapped by h : T --. X into a closed 
loop in X. But to make this idea algebraically precise requires some effort. 

We already know that a simplicial map f : IKI --. ILI induces a homomor-
phism fs  of homology groups. This chapter is devoted to showing that an arbi-
trary continuous map h can be approximated (in a suitable sense) by a simpli-
cial map f, and that the resulting induced homomorphism depends only on the 
map h, not on the particular approximation chosen. 
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§14. SIMPLICIAL APPROXIMATIONS 

In this section, we study what it means for an arbitrary continuous map to be 
"approximated" by a simplicial map. 

Definition. Let h:IKI 	ILI be a continuous map. We say that h satisfies 
the star condition with respect to K and L if for each vertex v of K, there is a 
vertex w of L such that 

h(St v) C St w. 

Lemma 14.1. Let h: IKI ILI satisfy the star condition with respect to K 
and L. Choose f : 	L(*)  so that for each vertex v of K, 

h (St v) C St f (v). 

(a) Given a e K. Choose x e Int a; and choose r so h (x) e Int T. Then f 
maps each vertex of a to a vertex of T. 

(b) f may be extended to a simplicial map of K into L, which we also 
denote by f. 

(c) If g: K ---+ L is another simplicial map such that h (St v) C St g(v) for 
each vertex v of K, then f and g are contiguous. 

Proof. (a) Let a = ... u,. Then x e St vi  for each i, so 

h(x) e h(St vi) C St f(vi). 

This means that h (x) has a positive barycentric coordinate with respect to each 
of the vertices f(vi), for i = 0, . . . ,p. These vertices must thus form a subset of 
the vertex set of T. 

(b) Because f carries the vertices of a to vertices of a simplex of L, it may 
be extended to a simplicial map f : K L. 

(c) Let a, x, and r be as before. Since 

h (x) e h (St vi) C St g(vi) 

for i = 0, . . . ,p, the vertices g(vi) must also be vertices of r. Hence f(v.), 
,f(vd, g(v.), 	,g(v,) span a face of r, so f and g are contiguous. 0 

Definition. Let h : IKI --0 ILI be a continuous map. If f : K --+ L is a simpli-
cial map such that 

h (St v) C St f(v) 

for each vertex v of K, then f is called a simplicial approximation to h. 

We think of the simplicial approximation f as being "close" to h in some 
sense. One way to make this precise is to note that given x e IKI, there is a 
simplex of L that contains both h(x) and f(x): 
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Lemma 14.2. Let f : K --, L be a simplicial approximation to h :IKi ---. 
ILI. Given x e ild, there is a simplex r of L such that h(x) e Int 7 and 
f(x) e T. 

Proof. This follows immediately from (a) of the preceding lemma. 0 

Theorem 14.3. Let h :IKI --, ILI and k :ILi --.1MI have simplicial ap-
proximations f: K ---, L and g: L --, M, respectively. Then g 0 f is a simplicial 
approximation to k o h. 

Proof We know g 0 f is a simplicial map. If v is a vertex of K, then 

h (St v) C St f(v) 

because f is a simplicial approximation to h. It follows that 

k(h (St v)) C k (St f(v)) C St g(f(v)) 

because g is a simplicial approximation to k. 0 

Example I. Let K and L be the complexes pictured in Figure 14.1, whose underly-
ing spaces are homeomorphic to the circle and to the annulus, respectively. Let K' 
be the complex obtained from K by inserting extra vertices, as pictured. Let h be the 
indicated continuous map, where we denote h (a) by A, and similarly for the other 
vertices. 

h r= J' 
K' 	 G' 

f 	> m.  E' 

A'= B' 

Figure 14.1 
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Now h does not satisfy the star condition relative to K and L, but it does satisfy 
the star condition relative to K' and L. Hence h has a simplicial approximation 
: K' — L. One such is pictured; we denote f(a) by A', and similarly for the other 

vertices. 

If h :IKI 	ILI satisfies the star condition (relative to K and L), there is a 
well-defined homomorphism 

h:: Hp(K) —' Hp(L) 

obtained by setting ht  = f,,, where f is any simplicial approximation to h. It is 
easy to see that the "functorial properties" are satisfied. 

However, in general an arbitrary continuous map h : IKI —*ILI will not 
satisfy the star condition relative to K and L, so we cannot obtain an induced 
homomorphism h, in this way. How shall we proceed? There are two ideas 
involved: 

First, one shows that given h : IKI 	ILI, it is possible to "subdivide" K, 
forming a new complex K' with the same underlying space as K, such that h 
does satisfy the star condition relative to K' and L. (This is what we did in 
Example 1 preceding.) This step is geometric in nature, and is carried out in 
§15 and §16. 

Second, one shows that the identity map i : 	--. 11C1 has a simplicial ap- 
proximation g: K' K, which induces a homology isomorphism g.. This step 
is algebraic in nature and is carried out in §17. 

The homomorphism h.: H p(K) H p(L) induced by h is then defined by 
the equation h. = f, a g; '. It turns out that the "functorial properties" also 
hold for this induced homomorphism, as we shall see in §18. 

Application to relative homology 

The preceding results about simplicial approximations generalize to rela-
tive homology with no difficulty: 

Lemma 14.4. Let h : IKI --0 ILI satisfy the star condition relative to K and 
L; suppose h maps IK.I into IL.I. 

(a) Any simplicial approximation f : K L to h also maps IK.I into IL.I; 
furthermore, the restriction off to K, is a simplicial approximation to the 
restriction of h to iKol. 

(b) Any two simplicial approximations f g to h are contiguous as maps 
of pairs. 

Proof Let f, g be simplicial approximations to h. Given cr E K., choose 
X e Int a, and let r be the simplex of L such that h (x) E Int T. Because h maps 
14 into ILII, the simplex r must belong to Le. Since both f and g map cr onto 
faces of r, they map K. into 4, and are contiguous as maps of pairs. 
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We show fiK, is a simplicial approximation to the restriction of h to la 
Let v be a vertex of K0; then St (v,K.) = St (v,K) n il(„1. We conclude that 

h (St (v,K.)) C h(St(v,K)) n h(11Col) 
C St(f(v),L) n 141 = st(f(v),4), 

as desired. 0 

EXERCISES 

1. Consider the map h:iKi ILI of Example 1. Determine how many different 
simplicial approximations f : K' L to h there are. Let f and g be two such; 
choose a cycle z generating H,(K'), and find a chain d of L such that ad = 
f#(z) — g.(z). 

2. A homotopy between two maps f, h : X Yis a continuous map F:X X I Y, 
where I = [0,1], such that F(x,0) = f(x) and F(x,l) = h(x) for all x in X. 
(a) Show that any two maps f,h : X RN  are homotopic; the formula 

(5) 	F(x,t) = (1 — t)f(x) + th(x) 

is called the straight-line homotopy between them. 
(b) Let K and L be finite complexes in ley; let f : K L be a simplicial ap- 

proximation to h:IKI 	Show that (*) defines a homotopy between 
f and h. 

*(c) Discuss (b) in the case where K and L are not finite. (We will return to this 
case later.) 

§15. BARYCENTRIC SUBDIVISION 

In this section, we show that a finite complex may be "subdivided" into sim-
plices that are as small as desired. This geometric result will be used in the 
present chapter in our study of simplicial homology, and again in Chapter 4 
when we deal with singular homology. 

Definition. Let K be a geometric complex in E'. A complex K' is said to 
be a subdivision of K if: 

(1) Each simplex of K' is contained in a simplex of K. 
(2) Each simplex of K equals the union of finitely many simplices of K'. 

These conditions imply that the union of the simplices of K' equals the 
union of the simplices of K—that is, that IK'I and IK I are equal as sets. The 
finiteness part of condition (2) guarantees that IK'I and IKI are equal as topo-
logical spaces, as you can readily check. 
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Note that if K" is a subdivision of K', and if K' is a subdivision of K, then 
K" is a subdivision of K. 

Also note that if K' is a subdivision of K, and if K. is a subcomplex of K, 
then the collection of all simplices of K' that lie in 1K01 is automatically a sub-
division of K0. We call it the subdivision of K. induced by K'. 

For later use, we note the following. 

Lemma 15.1. Let K' be a subdivision of K. Then for each vertex w of K', 
there is a vertex v of K such that 

St(w,K') C St (v,K). 
Indeed, if a is the simplex of K such that w e Int 0, then this inclusion holds 
precisely when v is a vertex of a. 

Proof. If this inclusion holds, then since w belongs to St (w,K'), w must lie 
in some open simplex of K that has v as a vertex. 

Conversely, suppose w e Int a and v is a vertex of a. It suffices to show that 

IKI — St (v,K) C IKI — St(w,K'). 

The set on the left side of this inclusion is the union of all simplices of K that do 
not have v as a vertex. Hence it is also a union of simplices 7 of K'. No such 
simplex T can have w as a vertex, because w e Int a C St(v,K). Thus any such 
simplex lies in IKI — St (w,K'). 

Example 1. Let K consist of the 1-simplex [0,1] and its vertices. Let L consist of 
the 1-simplices [1 /(n + 1),1/n] and their vertices, for n a positive integer, along 
with the vertex 0. Then ILI = IKI as sets but not as topological spaces; L satisfies all 
the conditions for a subdivision except the finiteness part of (2). 

Example 2. Let I be the complex consisting of a 2-simplex a and its faces. The 
subdivision K of Bd cr indicated in Figure 15.1 can be extended to a subdivision Z' of 

by forming the cone w * K, where w is an interior point of o; the subdivision Z' is 
said to be obtained by "starring K from w." This method of subdividing complexes 
will prove very useful. 

Now we describe the "starring" method for subdividing complexes in gen- 
eral. We shall need the following lemma, whose proof is straightforward. 

Figure 15.1 
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Lemma 15.2. If K is a complex, then the intersection of any collection of 
subcomplexes of K is a subcomplex of K. Conversely, if {K.} is a collection 
of complexes in E' , and if the intersection of every pair lid n 11C81 is the poly-
tope of a complex that is a subcomplex of both K. and Ko, then the union U K. 
is a complex. 0 

Our method for constructing subdivisions is a step-by-step one. We de-
scribe one step in the process now. 

Definition. Let K be a complex; suppose that Li, is a subdivision of the 
p-skeleton of K. Let a be a p + 1 simplex of K. The set Bd a is the polytope of a 
subcomplex of the p-skeleton of K, and hence of a subcomplex of 4;  we denote 
the latter subcomplex by L.. If w, is an interior point of a, then the cone w, * 
is a complex whose underlying space is a. We define 4 , to be the union of Li, 
and the complexes w, * 4, as a ranges over all p + 1 simplices of K. We show 
44. , is a complex; it is said to be the subdivision of Ku, 1)  obtained by starring 
4 from the points w,. 

To verify that 4 , is a complex, we note that 

1w,, * L„1 n 1Lp1 = Bd 

which is the polytope of the subcomplex L. of both w„ * L. and Lp. Similarly, 
if r is another p + 1 simplex of K, then the spaces 1w, * L01 and 1w,. * L.„1 inter-
sect in the simplex a fl r of K, which is the polytope of a subcomplex of Lp  and 
hence of both L. and L.,. It follows from Lemma 15.2 that Li, , is a complex. 

Now the complex Lp, , depends on the choice of the points w,. Often it is 
convenient to choose a "canonical" interior point of a to use for starring pur-
poses. The usual such point is the following: 

Definition. If a = 	v p, the barycenter of a is defined to be the point 

1  
es1 = 	 Vi. 
;.0  p + 1 

It is the point of Int a all of whose barycentric coordinates with respect to the 
vertices of a are equal. 

If a is a 1-simplex, then a is its midpoint. If a is a 0-simplex, then a- = a. In 
general, & equals the centroid of a, but that fact is not important for us. 

Now we describe our general method of constructing subdivisions. 

Definition. Let K be a complex. We define a sequence of subdivisions of 
the skeletons of K as follows: Let L, = r)), the 0-skeleton of K. In general, if 4 
is a subdivision of the p-skeleton of K, let 4+  , be the subdivision of the p + 1 
skeleton obtained by starring Lp  from the barycenters of the p + 1 simplices of 
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K. By Lemma 15.2, the union of the complexes 4 is a subdivision of K. It is 
called the first barycentric subdivision of K, and denoted sd K. 

Having formed a complex sd K, we can now construct its first barycentric 
subdivision sd (sd K), which we denote by sd2K. This complex is called the 
second barycentric subdivision of K. Similarly one defines stint< in general. 

On some occasions it is convenient to have a specific description of the 
simplices of the first barycentric subdivision. We give such a description now. 
Let us use the notation 0, } a, to mean "o, is a proper face of 01." 

Lemma 15.3. The complex sd K equals the collection of all simplices of 
the form 

6-162 • • • 6.rt, 

where o, ). 	. . . 

Proof We prove this fact by induction. It is immediate that the simplices 
of sd K lying in the subdivision of 10)  are of this form. (Each such simplex is a 
vertex of K, and u = v for a vertex.) 

Suppose now that each simplex of sd K lying in 1101 is of this form. Let 7 

be a simplex of sd K lying in IV + 21 and not in 110)1. Then r belongs to one of 
the complexes & * L„, where a is a p + 1 simplex of K and L„ is the first bary-
centric subdivision of the complex consisting of the proper faces of a. By 
the induction hypothesis, each simplex of .4, is of the form eria-2  . . . &n, where 

a,} 	a,, and oi  is a proper face of a. Then r must be of the form 

iraia.2 • • • Fr., 

which is of the desired form. 0 

Example 3. Consider the complex K indicated in Figure 15.2. Its first and second 
barycentric subdivisions are pictured. Note that each of the simplices of sd K is of 
the form described in Lemma 15.3. Note also how rapidly the simplices of sd"K 
decrease in size as n increases. This is a general fact, which we shall prove now. 

Theorem 15.4. Given a finite complex K, given a metric for IKI, and given 
e> 0, there is an N such that each simplex of se K has diameter less than e. 

Proof Because K is finite, IKI is a subspace of the euclidean space E' in 
which it lies. Because IKI is compact, it is irrelevant which metric we use for 
IKI. (For if d, and d, are two metrics for IKI, then the identity map of (11‘1,d,) to 
(1KI,d2) is uniformly continuous. Thus given e> 0, there is a 6 > 0 such that 
any set with d;  diameter less than S has drdiameter less than E.) Therefore we 
may as well use the metric of 	which is 

lx — YI = max ix. — 

Step 1. We show that if 0- = v.. . vp  is a simplex, then the diameter of a 
equals the number 1 = max Iv;  — 	which is the maximum distance between 
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Figure 15.2 

the vertices of a. Because vi, v1  e a, we know that diam a 2: 1. We wish to prove 
the reverse inequality. 

We first show that lx — vil < 1 for every x e a. Consider the closed neigh-
borhood of vi  of radius 1 in V, defined by the equation 

C(vi;/) = {x; I x — vil 	/1. 

You can check that this set is convex. Therefore, since it contains all the ver-
tices of a, it must contain a. Then Ix — vil Ls. 1 for x e a. 

Now we show that Ix — zl :51 for all x,z e a, so that diam a 1, as de-
sired. Given x, consider the closed neighborhood C(x;/). This set contains all 
the vertices of a, by the result of the preceding paragraph. Being convex, it 
contains a. Thus Ix — zI < 1 for x,z 6' a. 

Step 2. We show that if a has dimension p, then for every z e a, 

Ia — zl 	P diam a. 
p+ 1  

For this purpose, we compute 

Iv — el = IVO 	 I (I) ± 

i = 0 

11(1 I ( p + 1)) (L)0  — V i)1 

i=1 

(p/(p + 1)) max Iv„ — 	(p/(p + 1)) diam a. 

A similar computation holds for I u1  — &I. Therefore the closed neighborhood 
of & of radius (p/(p + 1)) diam a contains all vertices of a. Being convex, it 
contains a. 
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Step 3. We show that if a is a p-simplex and r is a simplex in the first 
barycentric subdivision of a, then 

diam r < (p/(p + 1)) diam a. 

We proceed by induction. The result is trivial for p = 0; suppose it true 
in dimensions less than p. Leta be a p-simplex. In view of Lemma 15.3 and 
Step 1 preceding, it suffices to show that if s and s' are faces of a such that 
s } s', then 

1. — ki IS (p/(p + 1)) diam a. 

If s equals a itself, this inequality follows from Step 2. If s is a proper face of a 
of dimension q, then 

Is — VI -... (q/(q + 1)) diam s -._5_ (p/(p + 1)) diam a. 

The first inequality follows by the induction hypothesis, and the second from 
the fact that f(x) = x/(x + 1) is increasing for x > 0. 

Step 4. Let K have dimension n; let d be the maximum diameter of a 
simplex of K. The maximum diameter of a simplex in the Nth barycentric 
subdivision of K is (n/(n + 1))Nd; if N is sufficiently large, this number is less 
than e. 0 

EXERCISES 

1. Let K be a complex; let xa  e IKI. 
(a) Show there is a subdivision of K whose vertex set contains x„. 

*(b) Show there is a subdivision of K whose vertex set consists of x, and the 
vertices of K. 

2. If A and 53 are collections of sets, we say that 53 refines A if for each B e 53, 
there is an A E A such that B C A. 

A space X is said to have finite covering dimension if there is an integer m 
satisfying the following condition: For every open covering A of X, there is an 
open covering B of X that refines A, such that no point of X lies in more than 
m + 1 elements of B. 

The covering dimension of such a space X is the smallest integer m for 
which this condition holds. 
(a) Show that a discrete set has covering dimension 0. 
(b) Show that [0,1] has covering dimension 1. 
(c) Show that if X has covering dimension m, then any closed subspace A of X 

has covering dimension at most m. 
(d) Show that if K is a finite complex of dimension m, then the covering 

dimension of IKI exists and is at most m. (We will see later that it is pre-
cisely m.) 
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§16. THE SIMPLICIAL APPROXIMATION THEOREM 

We now show that if h 	is a continuous map, then there is a subdivi- 
sion K' of K such that h has a simplicial approximation f : K' L. The proof 
when K is finite follows easily from the results of the preceding section; bary-
centric subdivision will suffice. The general case requires a slightly more sophis-
ticated technique of subdivision, called generalized barycentric subdivision, 
which we shall describe shortly. 

Theorem 16.1 (The finite simplicial approximation theorem). Let K and L 
be complexes; let K be finite. Given a continuous map h 	ILI, there is an 
N such that h has a simplicial approximation f : sd''K L. 

Proof Cover IK I by the open sets h.' (St w), as w ranges over the vertices 
of L. Now given this open covering A of the compact metric space K, there is a 
number X such that any set of diameter less than X lies in one of the elements of 
A; such a number is called a Lebesgue number for A. If there were no such X, 
one could choose a sequence C„ of sets, where C„ has diameter less than 1 /n 
but does not lie in any element of A. Choose x„ e C,i; by compactness, some 
subsequence x„,  converges, say to x. Now x E A for some A e A. Because A is 
open, it contains C., for i sufficiently large, contrary to construction. 

Choose N so that each simplex in seK has diameter less than X/2. Then 
each star of a vertex in scrK has diameter less than X, so it lies in one of the sets 
h' (St w). Then h : IKI 	ILI satisfies the star condition relative to sdNK and L, 
and the desired simplicial approximation exists. 0 

As a preliminary step toward our generalized version of barycentric subdi-
vision, we show how to subdivide a complex K in a way that leaves a given sub-
complex K. unchanged. 

Definition. Let K be a complex; let K. be a subcomplex. We define a se-
quence of subdivisions of the skeletons of K as follows: Let J. = 1C101. In general, 
suppose J1, is a subdivision of the p-skeleton of K, and each simplex of K. of 
dimension at most p belongs to Jr  Define 	, to be the union of the complex 
Jp, all p 1 simplices a belonging to K., and the cones & * J., as o ranges over 
all p 1 simplices of K not in K.. (Here J„ is the subcomplex of Jp  whose 
polytope is Bd cr.) The union of the complexes .11,is a subdivision of K, denoted 
sd (KI K.) and called the first barycentric subdivision of K, holding K. fixed. 

As with barycentric subdivisions, this process can now be repeated. The 
complex sd (sd(KIK.)1K.) will be called the second barycentric subdivision of K 
holding Ko  fixed, and denoted by sd2(K/Ko). And so on. 

Example 1. Figure 16.1 illustrates the first barycentric subdivision sd K of a com- 
plex K, and the first barycentric subdivision sd (K/K,) holding a complex K. fixed. 
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da\r 

w 

It sd K 	sd(KIK0) 

Figure 16.1 

To prove the general simplicial approximation theorem, iterated barycen-
tric subdivision will not suffice, because the Lebesgue number argument used in 
the proof of Theorem 16.1 requires the space WI to be compact. For a general 
complex K, the number A that measures how finely a simplex must be subdi-
vided may vary from one simplex to another. Thus we must generalize our 
notion of barycentric subdivision to allow for this possibility: 

Definition. Let K be a complex. Let N be a function assigning to each 
positive-dimensional simplex a of K, a non-negative integer N(o). We construct 
a subdivision of K as follows: Let 4 = K(0). In general, suppose 4 is a subdivi-
sion of the p-skeleton of K. For each p + 1 simplex a of K, let Lo  be the sub-
complex of L, whose polytope is Bd a. Form the cone & * Lc;  then subdivide this 
cone barycentrically N(cr) times, holding L„, fixed. Define 4 +  , to be the union 
of L„ and the complexes 

scr"(ii* 414), 

as a ranges over all p + 1 simplices of K. Then 4 + , is a subdivision of the 
p + 1 skeleton of K. The union of the complexes L, is a subdivision of K. It is 
called the generalized barycentric subdivision of K corresponding to the function 
N(a). 

The remainder of this section is devoted to showing that this generalized 
barycentric subdivision is adequate to prove the general simplicial approxima-
tion theorem. The techniques involved in the proof will not be used later in the 
book, so the reader may skip the details and simply take the theorem on faith 
if desired. 

Keep Figure 16.1 in mind as we compare the complex sd (ICI IC.) with the 
complex sd K in general: 

Lemma 16.2. Let Ko  be a subcomplex of K. 
(a) If T is a simplex of sd (K/K,), then r is of the form 

7  = a. • • • &qv._ vp, 
where s = yo . . . ur, is a simplex of Ko, and cr„ ... ,a, are simplices of K not in 
Ko, and a, }. . .. } aq  } s. 
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(b) Either vo . . . yr  or "e, . . . &q may be missing from this expression. The 
simplex r is disjoint from IKol if and only if vo  . . . v p is missing; in this case, r is 
a simplex of sd K. 

Proof. (a) The result is true if 7 is in Jo. In general, let 7 be a simplex of 
Jp .„ not in 4. Then either r belongs to Ko, in which case 7 is of the form 
v. ... v„ or 1- belongs to one of the cones & * Jo.. Now each simplex of ./,, has the 
form a, . . . alvo  .. . v„ by the induction hypothesis, where cr } a,. Then r has 
the form oir, ... &qv. ... v,, as desired. 

(b) Let r = 'a, . . . &qv. ... u,. If v. ... vp  is not missing from this expres-
sion, then T intersects 14 in v. ... v,, at least. Conversely, if the set r fl 1K01 is 
nonempty, then it contains a face of r and hence a vertex of T. Since none of the 
points e„, . . . , eq  is in Ila the term v.... v, cannot be missing. 0 

To prove the general simplicial approximation theorem, we need to show 
that given an arbitrary continuous map h :IKI --4 ILI, there is a subdivision K' 
of K such that h satisfies the star condition relative to K' and L. This is equiva-
lent to the statement that if A is the open covering of K defined by 

A = {12- 1  (St (w,L)) I w a vertex of L}, 

then there is a subdivision of K' of K such that the collection of open stars 

/3 = {St(v,K') I v a vertex of K'} 

refines A. (Recall that a collection Z refines a collection A if for each element 
B of 1, there is an element A of A that contains B.) 

To make the proof work, we actually need to prove something slightly 
stronger than this. We shall construct a subdivision K' of K fine enough that 
the collection fSi(v,IC1)} of closed stars in K' refines the collection A. 

The following lemma gives the crux of the argument; it will enable us to 
carry out the induction step of the proof. 

Lemma 16.3. Let K = p * B be a cone over the finite complex B. Let A 
be an open covering of IKI. Suppose there is a function assigning to each vertex 
v of the complex B, an element A. of A such that 

Si(v,B) C A.. 

Then there is an N such that the collection of closed stars of the subdivision 
se (K1 B) refines A, and furthermore such that for each vertex v of B, 

(v,scii '4' (KIB)) C A.. 

Proof. We assume that IBI lies in Rm X 0 for some m, and that p = 
(0, ... ,0,1) in Rm x R. Let n = dim K. 

Step 1. In general, as N increases, the maximum diameter of the sim-
plices of sdN(K/B) does not go to zero. For if u has a positive-dimensional face 
in B, that face never gets subdivided. However, it is true that as N increases, the 
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simplices that intersect the plane Rm X 0 lie closer and closer to this plane. 
More generally, we show that if K' is any subdivision of K that keeps B fixed, 
and if the simplices of K' that intersect Rm x 0 lie in the strip Rm X [OA, then 
any simplex r of sd(K' IB) that intersects Rm X 0 lies in the strip Rm X 
[0,nel(n + 1)]. 

The simplex 7 is of the form eri  . . . &qv.. vi,, as in Lemma 16.2; assuming 
r intersects R'" X 0 but does not lie in it, neither 	a-q  nor v,... vp  is missing 
from this expression. Each vertex vi  lies in le X 0. 

Consider the vertex irj  of T. The simplex cri  of K' intersects Rm X 0 because 
0-;  has v, 	vp  as a face; therefore ty;  C R"' X [0,€]. Let 	,w, be the ver- 
tices of ai, and let it : Rm X R R be projection on the last coordinate. Then 
ir(m) < e for i = 0, . . . ,k; and ir(w,) = 0 for at least one i. We compute 

Ir(iiJ)   7  (Wi) 
+1) 	(k 	+1) 

E.  

Thus each vertex of T lies in the set Rm X [0,(n/(n 	1))t]. Because this set is 
convex, all of r lies in it. 

Step 2. For convenience, let K, denote the complex sdN(K/B). We show 
there is an integer N. such that if N > N., then for each vertex v of B, 

(*) 
	

gi(v,K,T) C A. 

This is part of what we want to prove. 
We are given that St (v,B) C A. We assert that we can choose 5> 0 

so that 

gi(v,K) fl (Rm X [0,6]) C A. 
for each v e B. See Figure 16.2. To prove this assertion, consider the continu-
ous map p :IBI X I —.11(1 defined by p(x,t) = (1 — t)x + tp. The map p car-
ries St (v,B) X I onto Sqv,K), because K is a cone over B. Furthermore, p 
preserves the last coordinate, since 

rp(x,t) = (1 — 1)7(x) + 1r(p) 

= (1 — t) • 0 + t • 1 = (x,t). 

.52(v,B)X I 

\\\\%A\\\\\\  

Figure 16.2 
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Now gi(v,B) is a compact set. The "tube lemma" of general topology enables 
us to choose S such that 

St(v,B) X [0,6] C p-1  (Ay). 
(More directly, one can cover St (v,B) x 0 with finitely many sets of the form 
U, X [0,6;], each lying in 	(Ay); then choose S = min Se.) It follows that 
the set 

p(St(v,B) X [0,6]) = gi(v,K) fl (Rm X [0,5]) 

lies in A0, as desired. 
Now we can choose N.. Applying Step 1, we choose N. so that for N 

each simplex of KN  that intersects Rm X 0 lies in Rm X [0,5]. Then if v is 
a vertex of B, the set St (v,KN) lies in R' X [0,6]. Since this set also lies in 
St (v,K), it lies in A0, as desired. 

Step 3. The integer N. is now fixed. Consider the complex KN.+ 1. Let P 
be the union of all simplices of KNo+i  that intersect B. Let Q be the union of all 
simplices of KNo .4. 1  that do not intersect B. See Figure 16.3. We prove the fol-
lowing: If N N. + 1, then for each vertex w of K„, lying in P but not in WI, 
there is an element A of A such that 

(**) 
	

St (w,KN) C A. 

We prove (**) first in the case N = N. + 1. Now P is the polytope of a 
subcomplex of KNo .+1  by definition. If w is a vertex of KNo+1  lying in P but not 
in B, then w = & for some simplex a of Km)  that intersects B but does not lie in 
B, by Lemma 16.2. See Figure 16.4. Let v be a vertex of o lying in B. Because w 
lies in Int a, we have 

St (w,KN0  + 1) C  St (v,KNo) 

by Lemma 15.1. Then 

g(w,KNo  +I) C K(v,KNo) C A. 
by (*) of Step 2. 

p 

B 
Figure 16.3 Figure 16.4 
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Now we prove (**) in the case N > No  + 1. If w' is a vertex of KN lying 
in P, then w' e St(w,KNo. ,) for some vertex w of KNo  A. lying in P. Then 
St (w',KN ) C St (w,KNo  ,), by Lemma 15.1. Then (**) follows from the result 
of the preceding paragraph. 

Step 4. We now complete the proof. Let X be a Lebesgue number for the 
open covering A of IKI. Consider the space Q. It is the polytope of a subcom-
plex J of KNo  + 1. In forming the subdivision Km  0. 2, each simplex of J is subdi-
vided barycentrically, by the preceding lemma. Thus 40 + 2 has sd J as a sub- 
complex. Repeating the argument, we see that in general KNo 	m has sd",/ as 
a subcomplex. 

Choose M large enough that each simplex of sdm.T has diameter less than 
X/2. Then if N > N. + 1 + M, and if w is a vertex of KN not in P, we show 
that there is an element A of A such that 
(***) 
	

§i(w,K pi) C A. 
For since w is not in P, each simplex of lc having w as a vertex must lie in Q 
and hence must be a simplex of sdMJ. Therefore St (w,KN) has diameter less 
than X, so it lies in an element of A. 

The combination of (*), (**), and (***) proves the lemma. 0 

Theorem 16.4. Let K be a complex; let A be an open covering of IKI. 
There exists a generalized barycentric subdivision K' of K such that the collec-
tion of closed stars 1St (w,K11, for w a vertex of K', refines A. 

Proof We proceed step-by-step. Initially, we let L. = 10), and for each 
point v of KI*), we let A. denote an element of A that contains v. 

In general, we assume that a subdivision L,„ of Klm is given, and that a 
function fP  is given assigning to each vertex v of Li, an element A. of A such 
that 

gi(v,Lp) C A.. 

We extend Lp  to a subdivision 4+  , of the p + 1 skeleton of K and we extend fp  
to a function f, + ,, in a manner we now describe. 

We proceed as follows: For each p + 1 simplex o of K, the space Bd o is the 
polytope of a subcomplex L. of L. Consider the cone a * L. By the preceding 
lemma, there is an integer N(o) such that if we set 

C(o) = sd' °>(Q  La  I L.), 
then the following conditions hold: For each vertex v of C(a)belonging to L., 

§i(v,C(a)) C A., 

and for each vertex w of C(o) not in L., there exists an element A of A such 
that 

gi(w,C(a)) C A. 

We define 	, to be the union of 4 and the complexes C(o), as a ranges over 
the p + 1 simplices of K. 
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If v is a vertex of L,,„ then St(v,Lp  + ,) is the union of the sets 
St (v,Lp) and St (v,C(a)), as a ranges over the p + 1 simplices of K containing 
v. Each of these sets lies in A., by construction. 

On the other hand, if w is a vertex of 4, , not in L,,„ then w lies interior to 
some p + 1 simplex a of K, so that 

St(w,Lp 4. ,) = St(w,C(a)). 

The latter set is contained in some element A of A; we define fp , ,(w) to be 
such an element A,, of A. Then the induction step is complete. 

The theorem follows. The complex K' is defined to be the union of the 
complexes 4, and the function f(v) = A„ from the vertices of K' to A is 
defined to be the union of the functions fr  The function f satisfies the require-
ments of the theorem. For let v be a vertex of K'. Then v is a vertex of 4 for 
some p, and 

St 	„ k ) c 4. k(v) =ftv) = Av 

for all k _. 0, from which it follows that §i(v,IC) C A,,. 0 

Theorem 16.5 (The general simplicial approximation theorem). Let K and 
L be complexes; let h : IKI —0 ILI be a continuous map. There exists a subdivi-
sion K' of K such that h has a simplicial approximation f : K' —* L. 

Proof Let A be the covering of IKI by the open sets h'(St(w,L)), as w 
ranges over the vertices of L. Choose a subdivision K' of K whose closed stars 
refine A. Then h satisfies the star condition relative to K' and L. 0 

EXERCISES 

1. (a) Using Theorem 16.1, show that if K and L are finite and dim K = m, then 
any continuous map h : IKI —.ILI is homotopic to a map carrying K into 
Pm), where P"')  is the m-skeleton of L. [Hint: See Exercise 2 of §141 

We shall consider the non-finite case later. 
(b) Show that if h : S"' —, S" and m < n, then h is homotopic to a constant 

map. [Hint: Any map f : X —, S" — p is homotopic to a constant.] 

2. Let h : IKI --. VI be a continuous map. Given € > 0, show that there are subdi-
visions K' and V of K and L, respectively, and a simplicial map f : K' E , 
such that I f(x) — h(x)I < e for all x in IKI. 

3. Show that if K is a complex of dimension m, then IKI has covering dimension at 
most m. (See the exercises of §15.) 

§17. THE ALGEBRA OF SUBDIVISION 

Now we explore some of the algebraic consequences of subdivision, determining 
what subdivision does to the homology groups. We prove that if K is any com-
plex and if K' is a subdivision of K, then there is a uniquely defined chain map 
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X : Co(K) C,(K') called the subdivision operator that induces an isomor-
phism of homology groups. Furthermore, if g : K' K is any simplicial ap-
proximation to the identity map of IKI, then X and g#  are chain-homotopy 
inverse to each other, so gs  is also an isomorphism. 

Lemma 17.1. Let K' be a subdivision of K. Then the identity map 
i : IKI IKI has a simplicial approximation 

g: K' K. 

Let r be a simplex of K' and let a be a simplex of K; tf 7 C a, then g(7) C a. 

Proof. By Lemma 15.1, the map i has a simplicial approximation g. 
Given r C a, let w be a vertex of 7. Then w lies interior to a or to a face of a. 
Then g maps w to a vertex of a, by Lemma 14.1. 0 

Definition. Let K' be a subdivision of K. If a is a simplex of K, let K(a) 
denote the subcomplex of K consisting of a and its faces, and let IC' (a) denote 
the subcomplex of K' whose polytope is a. 

Theorem 17.2 (The algebraic subdivision theorem). Let K' be a subdivision 
of K. There is a unique augmentation-preserving chain map 

X : e(K) e(1C1) 

such that X(a) is carried by K'(a) for each a. If g : K' K is a simplicial 
approximation to the identity, then X and go  are chain-homotopy inverses, so 
X and g. are isomorphisms. 

We call X the subdivision operator. 

Proof. Step 1. We show first that the theorem holds if K' satisfies the 
condition that for each a e K the induced subdivision K'(a) of a is acyclic. We 
shall use Theorem 13.3, the geometric version of the acyclic carrier theorem. 
We define acyclic carriers as follows: 

The carriers and A are easy to define; we set 

111 (a) = K(a), 
A (a) =K'(a),   

for each a e K. The complex K(a) is acyclic because it consists of a simplex and 
its faces, and the complex K'(a) is acyclic by hypothesis. The inclusion con-
dition for an acyclic carrier is immediate; if s a, then K(s) C K(a) and 
K'(s) C K'(a). 

To define A and 4, we proceed as follows: For each simplex r e K', let a, be 



K(o) 

A 	 K'(o) 
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Figure 17.1 
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the simplex of K of smallest dimension such that r C a,. Then if t is a face of 7, 
we have a, C a,. For since both a, and a„ contain t, their intersection also con-
tains t; because a, has minimal dimension, it must equal this intersection. We 
define 

= K(a,), 

cker) = K'(a,); 
both complexes are acyclic. The inclusion condition follows from the fact that if 
t 	r, then a, C a,. See Figure 17.1, which illustrates these carriers in the case 
where K' = sd K. 

By Theorem 13.3, there exist chain maps A and 0 

C,(K) 
B  

(K) 	(K') X 
P 

preserving augmentation and carried by A and 43, respectively. 
Now the identity map Cp(K)--,  C,(K) is carried by 41 (trivially). We show 

that 0 o A is also carried by If; whence it follows that 0 o A is chain homotopic to 
the identity. If a is a simplex of K, then A(a) is a chain of K'(cr). Now each 
simplex 7 in the subdivision K' (a) of a is contained in a, whence a, equals a or a 
face of a. In any case, if T appears in the chain A (a), then 0(7) is carried by 
K(a,.) C K(a). Thus 0 (X(cr)) is a chain of K(a), so 0 0 A is carried by 4f. 

The identity map Cp(K')---. C,(K') is carried by 4); for 7 is contained in a, 
by definition, so that r is a simplex of K' (a,). We show that A o 0 is also carried 
by 4), whence A o 0 is chain homotopic to the identity. If r e K', then 0(7) is 
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carried by the complex K(cr,) consisting of a, and its faces, so it equals a sum of 
oriented faces of a,. Now if s is any face of a„ then X (s) is carried by K'(s) C 
K'(a,). It follows that X0 (T) is carried by K'(a,) = cl(T), as desired. 

The preceding discussion is independent of the choice of the particular 
chain maps 0 and X. One choice for 0 is the chain map go; it follows from the 
preceding lemma that go  is carried by a Therefore, go  and X are chain-homo-
topy inverses. 

We show that X is unique. Suppose X' is another augmentation-preserving 
chain map carried by A. Then by Theorem 13.3, there is a chain homotopy D, 
also carried by A, between X and X'. Note that if a is a p-simplex, then A (a) ---
Ki(a) is a complex of dimension p. Since D(a) is a p + 1 chain carried by 
K'(a), it must be zero. Thus D is identically zero; the equation aD + Da — 
A — X' now implies that X = A'. 

Step 2. The theorem holds if K' = sd K. For in this case, given a € K, the 
complex K'(a) is a cone. In fact, K'(a) equals er * J, where J is the first barycen-
tric subdivision of Bd a. And we know from Theorem 8.2 that cones are acyclic. 

This is a place where barycentric subdivisions are essential to the proof. 

Step 3. The theorem is true if K' = sdNK. In view of Step 1, it suffices to 
prove that for any simplex a of K, the complex KINK (a) is acyclic. This follows 
from Step 2, which implies that for any complex L, 

H;  (L)zr.  H;(sd L) =  H;(sd2L) ;:-.--' • • • . 

In particular, if L is acyclic, so is sdNL. 

Step 4. The theorem holds in general. In view of Step 1, it suffices to 
prove that if a e K and if K' is any subdivision of K, then K'(a) is acyclic. 

Let L = K(a) and L' = K'(a). Then L is acyclic, and we wish to prove that 
L' is acyclic. We proceed as follows: Let g: L' --. L be a simplicial approxima-
tion to the identity. Choose N so that the identity map of ILI to itself has a 
simplicial approximation f : sdNL --. L'; for this we need the (finite) simplicial 
approximation theorem. Proceeding similarly, choose M so the identity has a 
simplicial approximation k : sd"(L') ---, sd NL. 

sd" (L') 

Now we note that g 0 f is a simplicial approximation to the identity, so that by 
Step 3, (g o f) * = g*  0 f*  is an isomorphism. For the same reason, (J 0 k)*  = 
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f. o k*  is an isomorphism. The first fact implies f, is injective and the second 
implies f, is surjective. Thus f, is an isomorphism. Finally, because g. . L and 
f, are isomorphisms, so is g.. Thus L' is acyclic. q 

Definition. In the special case where K' is the first barycentric subdivision 
of K, we denote the subdivision operator X by 

sd : Cp(K)--0 Cp(sd K) 

and call it the barycentric subdivision operator. (Here we abuse notation, letting 
sd denote both the "algebraic" and "geometric" subdivision operators.) 

There is an inductive formula for the operator sd. It is the following: 

sd(v) = v, 

sd (a) = re,sd (aa)] , 

where the bracket notation has the meaning we gave it in §8. We leave this for-
mula for you to check. 

Application to relative homology 

We can generalize the preceding theorem to relative homology with no 
difficulty: 

Theorem 17.3. Let K. be a subcomplex of K. Given the subdivision K' of 
K, let K,', denote the induced subdivision of K.. The subdivision operator X in-
duces a chain map 

X : Cp(K,K.) —, Cp(K',K;). 
If g : (K',Ka --0 (K,K,) is any simplicial approximation to the identity, then X 
and g1  are chain-homotopy inverse to each other. 

Proof We check that each of the acyclic carriers defined in Step 1 of the 
preceding proof preserves the subcomplexes involved. Certainly if a e K., then 
NI,  (a) = K (a) and A (a) = K' (cr) are subcomplexes of K. and 1(;), respectively. 
On the other hand, if r e C, then r is contained in some simplex a of K,; it 
follows that the simplex a, of K of smallest dimension containing T must belong 
to K,. Thus if 7 e lc., then 8(r) = K(cr,) and (1)(7) = K'(a,) are subcomplexes 
of K. and 1‘'., respectively. 

It follows that the chain maps X and 0 carried by A and 8, respectively, 
induce chain maps on the relative level, and that the chain homotopies of 0 o X 
and X o 0 to the respective identity maps induce chain homotopies on the rela-
tive level as well. Since one choice for 0 is the map go, it follows that go  and A 
are chain-homotopy inverses on the relative level. q 
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EXERCISES 

1., Let K' be a subdivision of K; let X : c(K) — c(K') be the subdivision opera-
tor. Let g: K' --. K be a simplicial approximation to the identity. Show that 
g, 0 X equals the identity map of c(K). 

2. Let K and K' be the complexes pictured in Figure 17.2, whose common under-
lying space is a square. 
(a) Find a formula for the subdivision operator X : c(K)-* CAK'). 
(b) Find two different simplicial approximations g, g' : K' — K to the identity. 

Conclude that the chain equivalence 0 constructed in the proof of Theorem 
17.2 is not unique. 

(c) Check that X o gi, does not equal the identity on the chains of K'. 

3. (a) Show that the inductive formula for the barycentric subdivision operator sd 
defines an augmentation-preserving chain map that is carried by A. 

(b) Compute sd cr for the case of a 1-simplex and a 2-simplex. 

§18. TOPOLOGICAL INVARIANCE OF THE 
HOMOLOGY GROUPS 

In this section, we achieve the basic goal of this chapter, to prove the topologi-
cal invariance of the simplicial homology groups. 

Definition. Let K and L be simplicial complexes; let h : IKI --, ILI be a 
continuous map. Choose a subdivision K' of K such that h has a simplicial 
approximation f : K' ---. L. Let A : d (K) —. d' (K') be the subdivision operator. 
We define the homomorphism induced by h, 

h.: H p(K)--* 11 ,(L), 

by the equation h. = f. o A,. 

Note that once K' has been chosen, the homomorphism h, is independent 
of the particular choice of the simplicial approximation f : K' ---, L to h. For any 
two such simplicial approximations are contiguous. 

Note also that if g : K' ---, K is a simplicial approximation to the identity 



§18. 	 Topological Invariance of the Homology Groups 101 

map 11K1 of IKI with itself, then X and g, are inverse to one another. Therefore, 
one could just as well define 

h*  = 

We use this fact to show that h*  is independent of the choice of the subdivision 
K'. Suppose K" is another subdivision of K such that h has a simplicial approxi-
mation mapping K" into L. We show that if h*  is defined using the subdivision 
K", the result is the same as if one uses K'. 

The proof is especially easy in the case where the identity map of IKI has a 
simplicial approximation k : K" K', as in the following diagram: 

k 	K K" K 
f L 

Then since g o k and f 0 k are simplicial approximations to the identity and to 
h, respectively, the homomorphism h*, defined using the subdivision K", equals 
the composite 

( 	k). o (g o 	Cf. 0 	o (g. 0 k*)-1  = 0 g:'. 

The result is thus the same as when ha  is defined using the subdivision K'. 
The general case is proved by choosing a subdivision K"' of K such that the 

identity map has simplicial approximations 

k, : K"' K' 	and 	k2: K"' K". 

Then using K"' to define h*  gives the same result as using K' or K". 
We should remark that, properly speaking, the homomorphism h*  depends 

not only on the spaces X = IKI and Y = ILI and the continuous map h: X --, Y, 
but also on the particular complexes K and L whose polytopes are X and Y, re-
spectively. If M and N are other complexes whose polytopes are X and Y, 
respectively, then h also induces a homomorphism 

h* : Hp(M) —, Hp(N). 

One should really use a notation such as (kJ). and (hm,N), to distinguish 
between these homomorphisms. We shall abuse terminology, however, and use 
the simple notation h*, relying on the context to make the meaning clear. We 
return to a further discussion of this point later, when we define the homology 
of a triangulable space (§27). 

Theorem 18.1 (The functorial properties). The identity map i : IKI IKI 
induces the identity homomorphism i, : Hp(K)---,  Hp(K). If 	and 
k : ILI IMI are continuous maps, then (k a h)*  = k*  a h.. The same results 
hold for reduced homology. 

Proof That i, is the identity is immediate from the definition. To check 
the second statement, choose fo : L' M and go  : L' L as simplicial approxi-
mations to k and 11L1, respectively. Then choose f, : K' L' and g, : K' K as 
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simplicial approximations to h and ilic1, respectively. We have the following dia-
gram of continuous maps and simplicial maps: 

IKI A ILI A WI 

K L M 
ge 1 tflo  

g1 / L' 

K' s' 

Now i; of; is a simplicial approximation to k 0 h; therefore, 

(k ° h)* = (f0 ° fi)* ° (gi):1, 
by definition. Since g0  0 f, is a simplicial approximation to h, we have 

hs = (g0 cf1)* ° (g1);' 	and 	k*  = (f.)*  0 (g0);', 

again by definition. Combining these equations and applying Theorem 12.2, we 
obtain the desired result, 

(k 0 h)*  = k*  0 Its. 0 

Corollary 18.2 (Topological invariance of homology groups). If h :WI — 
ILI is a homeomorphism, then h*  : 11,,(K) --. Hp(L) is an isomorphism. The 
same result holds for reduced homology. 

Proof Let k : ILI --4 IKI be the inverse of h. Then h*  0 ka  equals (iiLi )*  

and k*  0 h*  equals (iiiri)*. Thus h*  0 k*  and k*  0 h*  are isomorphisms, so h*  is 
an isomorphism. 0 

Application to relative homology 

We have proved the topological invariance of the (absolute) homology 
groups. Can we do the same for the relative homology groups? Yes. Everything 
we have done in this section goes through for relative homology with no diffi-
culty. One simply replaces each occurrence of a complex by the appropriate 
pair consisting of a complex and a subcomplex, and applies Theorems 1/6, 
14.4, and 17.3 freely. We restate the preceding theorems in this situation. 

Theorem 18.3. The identity map i of (1414) with itself induces the 
identity homomorphism in relative homology. If 

(IKLIK0I) 2-.2  (IL1,14) 1..̀ (IMI,IM0I) 

are continuous maps, then (k e h)*  = ka  0 hs  in relative homology. If h is a 
homeomorphism of lid with ILI that maps IlCol onto la then h*  is an isomor- 
phism in relative homology. 0 
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EXERCISES 

I. If A C X, a retraction r : X —• A is a continuous map such that r(a) = a for 
each a a A. 
(a) If 	A is a retraction and X is Hausdorff, show A is closed in X. 
(b) Let r :11d --, 14 be a retraction, where K, is a subcomplex of K. Show 

r.:11,(K)---, 1-1,,(14) is surjective and the homomorphism j, induced by 
inclusion j :14 --01K1 is injective. 

(c) Show there is no retraction r: B' --• 

2. (a) Show there is a retraction of the Klein bottle S onto the imbedded circle A 
pictured in Figure 18.1, but no retraction of S onto the circle C. 

(b) Show there is no retraction of the projective plane onto the imbedded circle 
C pictured in Figure 18.2. 

3. Determine whether there are retractions of the torus onto the tube A pictured 
in Figure 18.3, onto the disc B, and onto the circle C. 

Figure 18.2 

Figure 18.1 

Figure 18.3 

§19. HOMOMORPHISMS INDUCED BY 
HOMOTOPIC MAPS 

We now introduce the important concept of homotopy, which was mentioned 
earlier in the exercises. Throughout, let I denote the closed unit interval [0,1]. 

Definition. If X and Y are topological spaces, two continuous maps 
h, k : X Y are said to be homotopic if there is a continuous map 
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such that F(x,0) = h(x) and F(x,1) = k(x) for all x E X. If h and k are 
homotopic, we write h =.--._ k. The map F is called a homotopy of h to k. We think 
of F as a way of "deforming" h continuously to k, as t varies from 0 to 1. 

We shall prove that if h, k :WI —.ILI are homotopic, then the homology 
homomorphisms h., k, they induce are the same. This leads to the important 
result that the homology groups are invariants of the "homotopy type" of a 
space. 

Example 1. Let X = S'. Then H,(X) is infinite cyclic; choose the cycle z generat-
ing H,(X) indicated by the arrow in Figure 19.1. Let T denote the torus; let 
h,k:X—.Tbe the maps indicated in Figure 19.1. These maps are clearly homo-
topic, for one can "push h around the ring" until it coincides with k. It is geometri-
cally clear also that the cycles ho(z) and ko(z) are homologous. Indeed, the 2-chain 
d obtained by chopping the right half of the torus into triangles and orienting them 
appropriately satisfies the equation ad = h,(z) — k#(z). Since z represents a gener-
ator of H,(X), it follows that in this case at least, h. = k.. 

Figure 19.1 

We now prove in general that if h ::-..., k, then h. = k.. We need two pre-
liminary results. The first is a basic fact about the topology of IKI X I, which 
we shall prove in the next section: 

The topology of the product space IKI X I is coherent with the subspaces 
a X I, for a 8 K. 

The second concerns the fact that IKI X I is a polyhedron: 

Lemma 19.1. If K is a complex, thenild X I is the polytope of a complex 
M, such that each set a X I is the polytope of a subcomplex of M, and the sets 
a X 0 and a X 1 are simplices of M, for each simplex a of K. 

Proof. We have IKI C E' for some J. Then IKI X I C EJ  X R. We shall 
subdivide IKI X I into simplices by a variant of the starring procedure used in 
defining barycentric subdivision. 

For p ..>_- 0, let us define 

Xp  = (IKI X 0) U (IKI X 1) U OM X I). 

We proceed inductively to subdivide Xp  into simplices. Consider the case p = 0. 
The space (IKI X 0) U (IKI X 1) is the polytope of a complex consisting of all 
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simplices of the form a X 0 and a X 1, for a a K. The space IKffil X I is the 
polytope of the complex consisting of all 1-simplices of the form v x I, for 
v a Ku)), and their vertices. Their union is a complex M. whose polytope is X0. 

In general, suppose MP  _ , is a complex whose polytope is X,, _ „ such that 
each set s X I, for s a simplex of K of dimension less than p, is the polytope of a 
subcomplex of Mr  _ 1.  Let dim a = p, and consider the set a X I. Now let 

Bd(cr X I) = (a X I) — (Int a X Int /) 

= ((Bd a) X I) U (a X 0) U (a X 1). 

Since Bd a is the union of simplices s of K of dimension p — 1, Bd (a X I) is the 
polytope of a subcomplex M. of kr„_ ,. It is finite because Bd (a X I) is com-
pact. Let w, denote the point (a,1/2) a a X I. Then the cone Ivo  * M. is a com-
plex whose polytope is a X I. The intersection of 1w„ * M01 and I Mp  _ is the 
polytope of a subcomplex of each of them. 

Define M, to be the union of Mr  _ and the cones iv, * Ma, as a ranges over 
all p-simplices of K. Finally, define M to be the union of the complexes M,, for 
all p. 

Now M is a complex whose underlying space consists precisely of the points 
of the space IKI X I. However, it is not at all obvious that the spaces IMI and 
IKI X I are equal as topological spaces. To prove that result, we need the fact 
about the topology of IKI X I that was just quoted. 

We know that the topology of IKI X I is coherent with the subspaces a X I, 
for a a K. On the other hand, the topology of IMI is coherent with the sub-
spaces s, for s a M. Now if C is closed in IKI X I, then C fl (a X I) is closed in 
a X I. If s is a simplex of M lying in a X I, then s is a subspace of a X I (both 
are subspaces of E' x R, being compact). Hence C fl s is closed in s. It follows 
that C is closed in IMI. 

Conversely, if C is closed in IMI, then C fl s is closed in s for each s a M. 
Because a X I is a finite union of simplices s of M, the set C fl (a X I) is 
closed in a X I. Thus a is closed in IKI X I. 0 

Example 2. If K is the complex consisting of a 1-simplex and its faces, then 
IKI X I is by the procedure of the preceding lemma subdivided into the complex 
pictured in Figure 19.2. If it is the complex consisting of a 2-simplex and its faces, 
then IKI X I is subdivided into the complex pictured in Figure 19.3. 

IKI X 1 

M 

Figure 19.2 



IKI XI 

Figure 19.4 

IMI IKI 
IL I 
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Figure 19.3 

Theorem 19.2. If h, k 	are homotopic, then h., k.: 14(K) 
1-4(L) are equal. The same holds for reduced homology. 

Proof Let K be a complex. Let M be a complex whose underlying space 
is IKI X I, such that for each a e K, both o X 0 and a x 1 are simplices of M, 
and a X I is the polytope of a subcomplex of M. 

Let F :IKI X I ILI be the homotopy of h to k. Let i, j : IKI WI X / be 
the maps i(x) (x,0) and j (x) = (x,1), as pictured in Figure 19.4. Then i and 
j are simplicial maps of K into the complex M; furthermore, 

Foi=h and Foj=k. 

We assert that the chain maps io  and jo  induced by i and j are chain 
homotopic. Consider the function st,  assigning, to each simplex a of K, the sub-
complex of M whose polytope is a X I. Now the space a X I is acyclic because 
it is homeomorphic to a closed ball. And if s a, then s X I C o X I, so 4)(s) is 
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a subcomplex of cb(a). Therefore, cl) is an acyclic carrier from K to M. Further-
more, it carries both i#  and j#, for both i(a) = a X 0 and j(a) = a X 1 belong 
to (1)(0). It follows from Theorem 13.3 that i#  and j#  are chain homotopic. We 
conclude that is  = j.. Then 

h.= 	= F.0 j. = k., 

as desired. q 

This result carries over readily to the relative homology groups. Given maps 
h, k : (144) (ILI,141), we say they are homotopic (as maps of pairs of 
spaces) if there is a homotopy H : (KI X I —.ILI of h to k such that H maps 
iKoi X I into 141. We have the following theorem: 

Theorem 19.3. If h and k are homotopic as maps of pairs of spaces, then 
h. = k*  as maps of relative homology groups. 

Proof The proof of Theorem 19.2 goes through without difficulty. Both 
i and j carry 11C01 into 1K#1 X I, and so does the chain homotopy connecting i#  
and jo. Then is  = j#  as maps of relative homology, and the proof proceeds as 
before. q 

Here is another result which follows from our knowledge of the topology of 
VC( X I; we shall use it later on. 

Theorem 19.4. If f : K L is a simplicial approximation to the continu-
ous map h :IKI ILL then f is homotopic to h. 

Proof For each x in IKI, we know from Lemma 14.2 that f (x) and h(x) 
lie in a single simplex of L. Therefore, the "straight-line homotopy" given by 

F(x,t) = (1 — t) f(x) th(x) 

maps IKI X I into ILL If L is finite, then F is automatically continuous, because 
it is continuous as a map into euclidean space, of which ILI is a subspace. To 
show F continuous in general, we show that its restriction to a X I is continu-
ous, for each a E K. Since the topology of IKI X I is coherent with the sub-
spaces a X I, this will suffice. 

For each x e a, let 7x  denote the simplex of L whose interior contains h (x). 
Because h(a) is compact, the collection of simplices 7x, for x e a, is finite. Let 

be the subcomplex of L consisting of these simplices and their faces. By 
Lemma 14.2, the point f(x) lies in 7x. Therefore, F carries the set x X I into 7x. 

Thus F maps a X I into la since L.,„ is a finite complex, its space is a subspace 
of euclidean space. Hence F:aXI—.14,1 is continuous. Because inclusion 
ILJ 	iLi is continuous, the mapF:axI—, ILI is also continuous, as desired. 

q 

We know that if two spaces are homeomorphic, they have isomorphic ho-
mology groups. There is a weaker relation than homeomorphism that implies 
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the same result. It is the relation of homotopy equivalence, which we now 
introduce. 

Definition. Two spaces X and Y are said to be homotopy equivalent, or to 
have the same homotopy type, if there are maps 

f:X--9Y 	and 	g : Y —, ./Y 

such that g . f =--, i., and f o g .1--- iy. The maps f and g are often called homo-
topy equivalences, and g is said to be a homotopy inverse tof. 

Symmetry and reflexivity of this relation are trivial. Transitivity is left as 
an exercise. 

If X has the homotopy type of a single point, then X is said to be con-
tractible. This is equivalent to the statement that the identity map ix  : X --0 X is 
homotopic to a constant map. For example, the unit ball is contractible, because 
the map F(x,t) = (1 — t) x is a homotopy between the identity and a constant. 

Theorem 19.5. If f : IKI --, ILI is a homotopy equivalence, then f. is an 
isomorphism. In particular, if IKI is contractible, then K is acyclic. 

Proof The proof is immediate. If g is a homotopy inverse for f, then g, is 
an inverse for f.. 0 

Homotopy equivalences are hard to visualize in general. There is a special 
kind of homotopy equivalence that is geometrically easier to understand: 

Definition. Let A C X. A retraction of X onto A is a continuous map 
r : X --, A such that r(a) = a for each a e A. If there is a retraction of X onto 
A, we say A is a retract of X. A deformation retraction of X onto A is a con-
tinuous map F : X X I --- X such that 

F(x,0) = x for x e X, 

F(x,1) E A for x e X, 

F(a,t) = a for a e A. 

If such an F exists, then A is called a deformation retract of X. 

If F is a deformation retraction of X onto A, then the map r(x) = F(x,1) 
is a retraction of X onto A. The latter fact is equivalent to the statement that 
the composite 

i A —. X —r,  A, 

(where j is inclusion) equals the identity map 14 . On the other hand, the map F 
is a homotopy between the identity map ix  and the composite 

XLALX 
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(and in fact each point of A remains fixed during the homotopy). It follows that 
r and j are homotopy inverse to each other. 

One can visualize a deformation retraction as a gradual collapsing of the 
space X onto the subspace A, such that each point of A remains fixed during the 
shrinking process. This type of homotopy equivalence can thus be visualized 
geometrically. It is intuitively clear that if A is a deformation retract of X, and 
B is a deformation retract of A, then B is a deformation retract of X. (It is also 
easy to prove.) 

We now consider some special cases. 

Theorem 19.6. The unit sphere S''' is a deformation retract of punc-
tured euclidean spacer — 0. 

Proof Let X = Rn — 0. We define F : X X / —, X by the equation 

F(x,t) = (1 — t)x + tx/l}xII. 

The map F gradually shrinks each open ray emanating from the origin to the 
point where it intersects the unit sphere. It is a deformation retraction of 
It' — 0 onto S' - 1. 0 

Corollary 19.7. The euclidean spaces Ir and R"' are not homeomorphic 
tin # m. 

Proof. Suppose that h is a homeomorphism of R's with R'". Then h is a ho-
meomorphism of R" — 0 with Rm — p for some p e Rm. The latter space is ho-
meomorphic with Rm — O. It follows from the preceding theorem that S".  ' and 
Sm - I  are homotopy equivalent. This cannot be true if m # n, for in that case 
ii. _ , (S8  - 1) z--.:. Z and il„ _ l (S' I) = 0. 0 

Example 3. The wedge of two circles has the same homotopy type as the letter O. 
Let X be a doubly punctured elliptical region in the plane, as pictured in Figure 
19.5. The sequence of arrows on the left side of this figure indicates how one can 
collapse X to the wedge of two circles. The arrows on the right side indicate how to 
collapse X to the letter O. Since each of these spaces is homotopy equivalent to X, 
they are homotopy equivalent to each other. 

The situation that occurs in Example 3 is more general than might be 
supposed. It is an interesting fact that every homotopy equivalence may be 
expressed, as in this example, in terms of deformation retractions. Specifically, 
there is a theorem to the effect that two spaces X and Y have the same homo-
topy type if and only if there is a space Z and imbeddings h : X --, Z and 
k : Y —, Z such that both h (X) and k (Y) are deformation retracts of Z. (See 
[Wh], [F].) This fact helps in visualizing what the notion of homotopy equiva-
lence really means, geometrically. 

Homotopy equivalences are a powerful tool for computing homology 
groups. Given a complex K, it is often much easier to show that its space is 
homotopy equivalent to a space whose homology is known than it is to calculate 
the homology of K directly. The exercises following will illustrate this fact. 
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Figure 19.5 

EXERCISES 

1. Show that, if A is a collection of spaces, then homotopy equivalence is an 
equivalence relation on A. 

2. Show that if A is a deformation retract of X, and B is a deformation retract of 
A, then B is a deformation retract of X. 

3. Group the following spaces into homotopy equivalence classes. Assuming they 
are all polytopes of complexes, calculate their homology groups. 
(a) The Mobius band 
(b) The torus 
(c) The solid torus B1  X S' 
(d) The torus minus one point 
(e) The torus minus two points 
(f) The Klein bottle minus a point 
(g) R3  with the z-axis deleted 
(h) R3  with the circle {f + y1  = 1, z = 0} deleted 
(i) The intersection of the spaces in (g) and (h) 
(j) S3  with two linked circles deleted 
(k) S3  with two unlinked circles deleted. 
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4. Theorem. If K is a complex of dimension n, then IKI has covering dimension 
at least n. 

Proof. Let A be a finite open covering of the n-simplex cr = v.. . . v„ that 
refines the open covering {St v., 	,St v„}. Let 14>A1 be a partition of unity sub- 
ordinate to A. For each A, let vA  be a vertex of a such that A C St vA. Define 
h : a cr by the rule 

h(x) = M(be(x)ve• 

If no x e X belongs to more than n elements of A, then h maps a into Bd a. 
Further, h maps each face of a into itself. Conclude that h : Bd a Bd a is 
homotopic to the identity, and derive a contradiction. 

5. Prove Theorem 19.2 without using the fact that WI X I is the space of a com-
plex, as follows: 
(a) Let K and L be finite; let h : IKI ILl. Show there is an e > 0 such that 

if k 	—,11.1 and i h(x) — k(x)I < e for all x, then h. = kt. [Hint: 
Choose K' so that h(St(v,K')) C St (w,L) for some w. If a is small, this 
same inclusion holds with h replaced by k.] 

(b) Prove the theorem when K and L are finite. 
(c) Prove the theorem in general. [Hint: Each cycle of K is carried by a finite 

subcomplex of K.] 

§20. REVIEW OF QUOTIENT SPACES 

Here we review some standard definitions and theorems concerning quotient 
spaces that we shall need. 

A surjective map p : X —' Y is called a quotient map provided a subset U of 
Y is open if and only if the set p-1(U) is open in X. It is equivalent to require 
that A be closed in Y if and only if p-1  (A) is closed in X. 

A subset C of X is saturated (with respect to p) if it equals the complete 
inverse image 	(A) of some subset A of Y. To say that p is a quotient map is 
equivalent to saying that p is continuous and that p maps saturated open sets of 
X to open sets of Y (or saturated closed sets of X to closed sets of Y). 

Let p : X Y be a surjective continuous map. If p is either a closed map or 
an open map (i.e., if p maps closed sets of X to closed sets of Y, or open sets of X 
to open sets of Y), then p is a quotient map. In particular, if X is compact and Y 
is Hausdorff, then p is a closed map and hence a quotient map. 

First, we list some elementary facts about quotient maps, whose proofs are 
straightforward and will be left to the reader. 

A one-to-one quotient map is a homeomorphism. 
A composite of quotient maps is a quotient map; if p : X —4 Y and 

q : Y Z are quotient maps, so isqop:X-4Z. 
A restriction of a quotient map is sometimes a quotient map: If p : X Y 

is a quotient map, and if A is a saturated subspace of X that is either open or 
closed in X, then the map ptA : A p (A) is a quotient map. 
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A relation between continuous maps and quotient maps is the following: If 
p : X --, Y is a quotient map, and if f : X --. Z is a continuous map that is con-
stant on each set p"' (y), then there is a unique continuous map g : Y--' Z such 
that g e p = f. See the following diagram; we say g is induced by f. 

We define the notion of quotient space as follows: Let X* be a partition of 
the space X into disjoint subsets whose union is X. Let 7 : X --4  X*  map each 
point to the set containing it. If we topologize X* by declaring the subset U of 
X* to be open in X* if and only if it"' (U) is open in X, then it is a quotient 
map. The space X* is called a quotient space of X. We often say it is obtained 
by "identifying each element of the partition to a point." 

If p : X --, Y is a quotient map, we can always "consider" Y to be a quotient 
space of X by the following device: Given p, let X* denote the partition of 
X into the disjoint sets p"' (y), for y e Y. Then X* is homeomorphic to Y. 
We need only apply the preceding remark twice, to obtain continuous maps 
g : X* —, Y and h : Y —. X*, as in the following diagram: 

X 

/ g \p 

X
. 
- -- --4- Y h 

These maps are readily seen to be inverse to each other. 

Example 1. Let X be the subspace of R3  obtained by rotating the unit circle in the 
x-z plane centered at (2,0,0) about the z-axis. Using cylindrical coordinates (r,0,z) 
in R3, we can express X as the set of points satisfying the equation (r — 2)2  + e - 1. 
Letting P = I X /, we define p : P --, X by setting, for (s,t) e I2, 

r — 2 = cos 2irt, 	z = sin 271, 	0 = 27.s. 

You can check that p maps f2  onto X and is a closed quotient map. 
By use of this map, we can consider X to be the quotient space obtained from P 

by identifying (s,0) with (s,1), and (04) with (1,t), for s,t e I. See Figure 20.1. This 

Figure 20.1 
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is the topological version of the method by which we constructed the torus in §3 by 
pasting together the edges of a rectangle. 

The separation axioms do not behave well for quotient spaces. For in-
stance, a quotient space of a Hausdorff space need not be Hausdorff. All one 
can say in general is the following: If p : X Y is a quotient map, and if each 
set p"' (y) is closed in X, then Y is a 7'1-space; that is, one-point sets are closed 
in Y. This means that if X* is a partition of X into closed sets, then the quotient 
space X* is a 7'1-space. 

We will return to the matter of separation axioms and quotient spaces in a 
later section (§37). 

Now we consider one final question: Under what conditions is the cartesian 
product of two quotient maps a quotient map? We prove two results in this 
direction: 

Theorem 20.1. Let p : X Y be a quotient map. If C is a locally compact 
Hausdorff space, then 

p X ic:XX 	C 

is a quotient map. 

Proof. Let 7 = p X ic. Let A be a subset of Y X C such that 7-1(A) is 
open in X X C. We show A is open in Y X C. That is, given (yo,c.) in A, we 
find an open set about (yo,c.) lying in A. 

	

Choose x„ so that p(x.) = y.; then ir(x.,c0) 	(yo,c0). Since 7"1 (A) is 
open, we can choose neighborhoods U, of x. and W of c, such that U, X 
W C 7r"' (A). Because C is locally compact Hausdorff, we can choose a neigh-
borhood V of c, so that V is compact and V C W. Then U, X V is a neighbor-
hood of (x,,,c„) such that V is compact and 

U, X 9 C 7-1(A). 

In general, suppose U, is a neighborhood of xs, such that U, X V C 	(A). 
Now p'p(Ui) is not necessarily open in X, but it contains 	We construct an 
open set Ui 1  of X such that 

p"l p(Ui) X V C 	C r-1  (A), 

as follows: For each point x of p-l p(U;), the space {x} X Ti lies in lr"' (A). Us-
ing compactness of V, we choose a neighborhood WI  of x such that Wx  X V C 
7-1(A). Let U;  , be the union of the open sets WW; then U. + , is the desired 
open set of X. See Figure 20.2. 

Finally, let U be the union of the open sets U, C U2  C • • • . Then U X V 
is a neighborhood of (x„,c,,) and U X VC rr" (A). Furthermore, U is saturated 
with respect to p, for 

U C p"1p(U) =cp-1p(Ui) COI 	U. 



C 

VV 

X 

Figure 20.2 
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Therefore p(U) is open in Y. Then 

p(U) X V = ir(U X V) C A 

is a neighborhood of (y„,c(,) lying in A, as desired. 0 

Corollary 20.2. If p : A B  and q : C D are quotient maps, and if the 
domain of p and the range of q are locally compact Hausdorff spaces, then 

pXq:AXC--, I3XD 

is a quotient map. 

Proof We can write p X q as the composite 

iA X 	p X iD  
AXC--0AXD--0BXD. 

Since each of these maps is a quotient map, so is p X q. 0 

There is a close connection between coherent topologies and quotient maps, 
which can be described as follows: 

Definition. Suppose E is a space that is the union of disjoint subspaces E., 
each of which is open (and closed) in E. Then we say E is the topological sum of 
the spaces E., and we write E = E. A set U is open in E if and only if U fl 
E. is open in E. for each a. 

More generally, let {XI e j  be a family of topological spaces, which may or 
may not be disjoint. Let E be the set that is the union of the disjoint topological 
spaces 

E. = X, X {a}, 

for a e J. If we topologize E by declaring U to be open in E if and only if 
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U n E. is open in E. for each a, then E is the topological sum of the disjoint 
spaces E. One has a natural map p : E --+ U X., which projects X. X {a} onto 
X. for each a. (We sometimes abuse terminology and speak of E as the topo-
logical sum of the spaces X. in this situation.) 

In this situation, one has the following result, whose proof is immediate: 

Lemma 20.3. Let X be a space which is the union of certain of its sub-
spaces X.. Let E be the topological sum of the spaces X.; let p : E X be the 
natural projection. Then the topology of X is coherent with the subspaces X. if 
and only if p is a quotient map. q 

In this situation, we often say that X is the coherent union of the spaces 

Theorem 20.4. If the topology of X is coherent with the subspaces X., 
and if Y is a locally compact Hausdorff space, then the topology of X X Y is 
coherent with the subspaces X. X Y. 

Proof. Let E 	(X. X {a}); let p : E X be the projection map. Be- 
cause Y is locally compact Hausdorff, the map 

p X iy:E X Y --+ X X Y 

is also a quotient map. Now E is the topological sum of the subspaces E. = 
X. X {a}. Then E X Y is the disjoint union of its subspaces E. X Y, each of 
which is open in E X Y. Therefore, E X Y is the topological sum of the spaces 
E. X Y = X. X 	X Y. Since p X i y is a quotient map, the topology of 
X X Y is coherent with the subspaces X. X Y. q 

Corollary 20.5. The topology of IKI X I is coherent with the subspaces 
a x I, for a e K. 

Proof By definition, the topology of IKI is coherent with the subspaces a, 
for a e K. Since I is locally compact Hausdorff (in fact, compact Hausdorff), 
the preceding theorem applies. q 

Corollary 20.6. Let w * K be a cone over the complex K. The map 
7 : 11C1 X 1-4  IW*K1 defined by 

tr(x,t) = (1 — t)x tw 

is a quotient map; it collapses IKI X 1 to the point w and is otherwise one-
to-one. 

Proof If a = v.. . . v„ is a simplex of K, let w * a denote the simplex 
wv... . v, of w * K. A set B is closed in 1w * KI if and only if its intersection with 
each simplex w * a is closed in that simplex. A set A is closed in IKI X I if and 
only if its intersection with each set a X I is closed in a X I. Therefore, in order 
that it be a quotient map, it suffices to show that the map 

iri:a X /---ow*a 



116 	Topological Invariance of the Homology Groups 	 Chapter 2 

obtained by restricting 7, is a quotient map. But that fact is immediate, since 
V'  is continuous and surjective, and the spaces involved are compact Hausdorff. 

0 

The preceding corollary suggests a way to define a cone over an arbitrary 
topological space. 

Definition. Let X be a space. We define the cone over X to be the quotient 
space obtained from X X I by identifying the subset X X 1 to a point. This 
point is called the vertex of the cone; the cone itself is denoted by C(X). 
Formally, we form C(X) by partitioning X X I into the one-point sets {(x,t )1 
for t < 1, and the set X X 1, and passing to the resulting quotient space. 

EXERCISES 

1. Verify the results about quotient spaces stated without proof in this section. 

2. Let X be the space obtained from two copies of R2, say R2  X {a} and R2  X {b}, 
by identifying (x,a) and (x,b) whenever x 0 0. Then X is called the plane with 
two origins. 
(a) Show that each point of X has a neighborhood homeomorphic with an open 

set in R2. 
(b) Show that X is not Hausdorff. 

3. (a) Show that if p : X Y is an open quotient map and A is open in X, then 
plA : A —0 p (A) is an open quotient map. 

(b) Repeat (a) replacing "open" by "closed." 

4. Show that if p : ,4 B and q : C D are open quotient maps, so is p X q. 
5. Let X be the coherent union of the subspaces Pd. Show that if Y is a subspace 

of X that is open or closed in X, then Y is the coherent union of its subspaces 
C) 

6. Let K and L be complexes. Show that if K is locally finite, then the topology of 
WI X 14 is coherent with the subspaces a X r, for a e K and r E L. 

*§21. APPLICATION: MAPS OF SPHERES 

In this section, we give several applications of homology theory to classical 
problems of geometry and topology. The theorems we prove here will be gener-
alized in the next section, when we prove the Lefschetz fixed-point theorem. 

Definition. Let n > 1. Let f : 	S6  be a continuous map. If a is one of 
the two generators of the infinite cyclic group 1-4, (Se), then f*  (a) = da for 
some d. The integer d is independent of the choice of generator, since f*  ( —a) =--
d(—a). It is called the degree of the map f. 
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Degree has the following properties: 

(1) If f =---: g, then deg f = deg g. 
(2) If f extends to a continuous map h : B" +' —. SR, then deg f = 0. 

(3) The identity map has degree 1. 

(4) deg (f o g) = (deg f) • (deg g). 

Property (1) follows from Theorem 19.2; while (2) follows from the fact that 
f, : H,,(S") —.4 H „(S") equals the composite 

H„(S") 14  H„(B"+ 1 ) 12-4  H„(S8), 

where j is inclusion. Since 13"+ 'is acyclic, this composite is the zero homomor-
phism. Properties (3) and (4) are immediate consequences of Theorem 18.1. 

Theorem 21.1. There is no retraction r : Bn +' —. S". 

Proof. Such a map r would be an extension of the identity map i : S" —, 
S". Since i has degree 1 	0, there is no such extension. 0 

Theorem 21.2 (Brouwer fixed-point theorem). Every continuous map 
0: B" —, Illn has a fixed point. 

Proof If (1) : BIT 4--. B" has no fixed point, we can define a map h: B"--. 
S'' by the equation 

h(x) —  x  —  4)(x)  
II x — 0 (x)II ' 

since x — (t)(x) * 0. Let f : S" - 1  —4 S" -' denote the restriction of h to S"" '; 
then f has degree 0. 

On the other hand, we show that f has degree 1, giving a contradiction. 
Define a homotopy H : 54-1 )<Isg l  by the equation 

H(u,t) —  u — t0(u)  
Vu — t0(u)ii .  

The denominator is non-zero for t = 1 since u * 4)(u); and it is non-zero for 
0 -_ t <1 because !lull = 1 and II t4)(u)11 = tliO(u) II :5_ t < 1. The map H is 
a homotopy between the identity map of S" -' and the map f. Therefore, 
deg f = 1. 0 

Definition. The antipodal map a : St' .-- S's is the map defined by the equa-
tion a(x) = —x, for all x. 

In order to make further applications, we need to compute the degree of the 
antipodal map. We do this here by a direct proof. A second proof is given in the 
next section, and a third, in §31. 
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Theorem 21.3. Let n > 1. The degree of the antipodal map a : S" S"  is 

yf + 

Proof We show in fact that the reflection map 

P (xi, • • • Ay + 1) 	(x1, • • • ,Xn, — Xn+i) 

has degree —1. It then follows that any reflection map 

	

Pi (x1, • • - ,Xi, • • • 1Xn +1) = (XI ,  • • • 	• .. 	,) 

has degree —1. For pi  = h -' o p o h, where h is the homeomorphism of Itn + 
that simply exchanges xi  and x„ 1, so that 

deg pi  = (deg h-') (deg p) (deg h) 
= deg (h-' 0 h) deg p = deg p. 

Since a equals the composite D . 1. 2 • • • Pn+i, we have deg a = (-1)n +' 

Step 1. A triangulation of a space X is a complex L and a homeomor-
phism h : ILI X. We shall construct a triangulation of Sn by an n-dimensional 
complex such that the reflection map p induces a simplicial map of this complex 
to itself. 

In general, if K is a finite complex in R" X 0 C RN  +', let wo  — 
(0, 	,0,1) and w, 	(0, . . . ,0,— 1) in R" +', and let 

S(K) = (w.* K) U (w,* K). 

Then S(K) is called a suspension of K. (See the exercises of §8.) Let 
S(K) be the simplicial map that exchanges wo  and w, and maps 

each vertex of K to itself. We show that there exists a complex K of dimension 
n — 1, and a triangulation 

k :IS(K)I 	S", 

such that the following diagram commutes: 

S(K)—L S" 

r 	
P 

S(K) S" 

Then Step 1 is proved. 
Let h:IKI S"" 'be any triangulation of sn by a complex of dimension 

n — 1. Let y e IS(K)I. If y = (1 — t)x two  for some x e IKI, define 

k(y) = ( 	 1). 

If y = (1 — t)x + tw„ define 

k(y) = (15 	—t). 
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Figure 21.1 

See Figure 21.1. It is easy to check that k carries IS(K)I homeomorphically 
onto Sn. See Exercise 3. The fact that p o k = k o r is immediate, since 

r((1 — t)x two) = (1 — t)x + zwi• 

Step 2. In view of Step 1, in order to prove our theorem it suffices to show 
that deg r = —1. 

Let z be an n-cycle of S(K); then z is a chain of the form 

z = Ewo,cmi + [w14.3 

where cm  and dm  are chains of K, and m = n — 1. (Here we use the bracket 
notation of §8.) Assume n > 1. Since z is a cycle, 

0 = az = C. — [wo,ac,„] + dm  — 
Restricting this chain to K, we obtain the equation cm  + dm  = 0, whence 

Z= [WOICirsi [wl,cml • 

Since r simply exchanges
/ 
 wo  and w„ we have 

r,(z) = [w„cm] — [w„cm] = —z, 
as desired. A similar computation holds if n = 1. 0 

Theorem 21.4. If h 	--, S" has degree different from (-1)"+ ', then h 
has a fixed point. 

Proof We shall suppose that h:S"—,  S' has no fixed point and prove 
that h = a. The theorem follows. Intuitively, we construct the homotopy by 
simply moving the point h(x) to the point —x, along the shorter great circle arc 
joining these two points; because h (x) and —x are not antipodal, there is a 
unique such arc, so the homotopy is well-defined. Formally, we define the 
homotopy H : S" X I S" by the equation 

H(x,t) —  (1 — t)h(x) + t(—x)  
11(1 — t)h(x) + 
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The proof is complete once we show that the denominator does not vanish. If 
(1 — t)h(x) = tx for some x and t, then taking norms of both sides, we con-
clude that 1 — t = t = 1 / 2. From this it follows that h (x) = x, contrary to 
hypothesis. 0 

Theorem 21.5. If h: S" --* Sit has degree different from 1, then h carries 
some point x to its antipode —x. 

Proof. If a is the antipodal map, then a o h has degree different from 
( — 1)' ', so it has a fixed point x. Thus a(h(x)) = x, so —h(x) = x as 
desired. 0 

Corollary 21.6. Sr' has a non-zero tangent vector field if and only if n 
is odd. 

Proof If n is odd, let n = 2k — 1. Then for x e Sn, we define 

v(x) = (-x2,x„-x4,x3,- • • ,-xu,xv, _ ,)• 
Note that ii(x) is perpendicular to x, so that ii(x) is tangent to Sn at x. 

Conversely, suppose i3(x) is a non-zero vector field defined for x e S", such 
that 17 (x) is tangent to S" at x. Then h (x) = 1.) (x)143(x)II is a map of S'n into 
5". Since "i3 (x) is perpendicular to x, for all x, we cannot have h (x) = x or 
h (x) = —x. Thus h has no fixed point and h maps no point to its antipode. We 
conclude that deg h = (-1)" +' and deg h = 1, so that n must be odd. 0 

EXERCISES 

1. (a) Let K be the complex pictured in Figure 21.2, whose space is the boundary 
of a square; let sd K be its first barycentric subdivision, as indicated. Let 
f: sd K ---. IC be the simplicial map specified by f(a) = av, where the sub-
script 2i is reduced modulo 8 if necessary. Show that the map f has degree 2. 

Figure 21.2 
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(b) Consider S' as the set of complex numbers of unit modulus. Show the map 
h : S' ---. S' given by h (z) = z2  has degree 2. [Hint: By radial projection, 
h induces a map of IKI to itself that is homotopic to the simplicial map f of 
part (a).] 

(c) If n is any integer, show that the map k : S' —, S' given by k(z) = z.  has 
degree n. 

2. Using the result of Exercise 1, prove the following: 
The Fundamental Theorem of Algebra. Every polynomial 

z" + a„ _ ,z" -  ' + • • • + a,z + a. 

with real or complex coefficients has a zero in the complex plane. 
Proof. Let S, be the circle IzI = c of radius c. Suppose the given poly- 

nomial has no zero in the ball Izi :5 c. Let 

h:S,--, R2 — 0 

be defined by h(z) = z" + a. _ 1  z' -' + • - • + ao- 
(a) Show that h, is trivial. 
(b) Show that if c is sufficiently large, then h is homotopic to the map k : S,—. 

R' — 0 given by k(z) = z-. [Hint: Set F(z,t) = z-  + t(a„ _ ,z' " 1  + 
• • • + a.).] 

(c) Derive a contradiction. 

3. Show that the map k defined in Step 1 of Theorem 21.3 is a homeomorphism, 
as follows: 
(a) Show that the maps 

p: IKI X [ —1,1] --. IS(K)I, 

q: lid X [—Li] —'S", 

given by the equations 

p(x,t) = 1(1 — t)x + two 	if 	t .?.:. 0, 

	

(1 + t)x — tw, 	if 	t -_.5. 0, 

q(x,t) = (3 I  I  - t 2  h(x), i), 

are quotient maps. 
(b) Show that the quotient maps p and q induce the homeomorphism k. 

*§22. APPLICATION: THE LEFSCHETZ 
FIXED-POINT THEOREM 

The fixed-point theorems proved in the preceding section concern maps of balls 
and spheres to themselves. There is a far-reaching generalization of these theo-
rems, due to Lefschetz. We shall prove it now. 

First we need a few facts from algebra. 
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If A = (au) is an n X n square matrix, then the trace of A, denoted tr A, is 
defined by the equation 

tr A = 

If A and B are n X n matrices, then 

tr AB = 	4  b ji  = tr BA. 

If G is a free abelian group with basis e„ . ,e,„ and if 4' : G G is a 
homomorphism, we define the trace of 4  to be the number tr A, where A is the 
matrix of 4>  relative to the given basis. This number is independent of the choice 
of basis, since the matrix of 4) relative to another basis equals 	AB for some 
square matrix B, and tr (B-'(AB)) = tr((AB)B-1) = tr A. The same argu- 
ment shows that if i : G G' is an isomorphism, then tr (i 	e i-') = tr 

If K is a finite complex, and if 4) : Cp(K)--,  Cp(K) is a chain map, then 
since Cp(K) is free abelian of finite rank, the trace of ¢ is defined. We denote it 
by tr(0,Cp(K)). The group Hp(K) is not necessarily free abelian, but if T,,(K) 
is its torsion subgroup, then the group H p(K)I T,,(K) is free abelian. Further-
more, 0, induces a homomorphism of this group with itself. We use the nota-
tion tr(0,,Hp(K)1Tp(K)) to denote the trace of this induced homomorphism. 

There is no obvious relation between these two numbers; as a result, the 
following formula is rather striking. 

Theorem 22.1 (Hopf trace theorem). Let K be a finite complex; let 
q5: Cp(K)--,  C,,(K) be a chain map. Then 

1(— 	tr (0,c, (K)) =1(— 1)P  tr (0.,Hp(K)1Tp(K)). 

Proof Step I. Let G be free abelian of finite rank, let H be a subgroup 
(necessarily free abelian), and suppose that G/H is free abelian. Let 
be a homomorphism that carries H into itself. We show that 

tr (0,G) = tr (0',G/H) 	tr (4)",H), 

where 4>' and 4," denote the homomorphisms induced by 4). 

	

Let {a, + H, 	,a„-1- H} be a basis for G/H and let /3„ 	,43,, be a basis 
for H. If A and B are the matrices of 0' and 4>" relative to these respective bases, 
then 

<I; (a;  + H ) --= 	 H); 
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Now it is easy to check that a„ 	,a„,f3„ 	,Bp  is a basis for G. Furthermore, 
it follows from the preceding equations that 

4)(a) =Iauct, + (something in H); 

O(3) = 	ijOi• 

Therefore, the matrix of 0 relative to this basis for G has the form 

Obviously, tr C = tr A + tr B; our result follows. 

Step 2. As usual, let Cp  denote the chain group C,(K). Let Z, denote the 
p-cycles, let B, denote the p-boundaries, and let TV, denote the group of weak 
p-boundaries, which consists of those p-chains some multiple of which bounds. 
Then 

Bp  C Wp  C Zp  C Cp. 
Since 0 is a chain map, it carries each of these groups into itself. We shall show 
that the quotient groups C,,/Zp  and Zpl W, are free; then it will follow from Step 
1 that 

(i) 	tr (4,C,) = tr (0,Cp/Zp) tr (0,Zpi WP) tr (0, WW). 

(Here we abandon the use of primes to distinguish among the various induced 
homomorphisms.) We compute each of these terms. 

Step 3. Consider the group C,,/Z,. The homomorphism a.: cp — BP  _ , 
obtained by restricting the range of 8 is surjective and has kernel equal to Z,. 
Therefore, it induces an isomorphism of Cp/Zp  with Bp  _ 1, so C,/Z, is free. 
Furthermore, because 0 commutes with a, it commutes with this isomorphism. 
Therefore (as remarked earlier), 

(ii) 	 tr (0, C,/Z,) = tr (0,Bp  _ i ). 

Step 4. Consider the group Z,/W,. Consider the projection mappings 

ZP— Zpl = 	HpITp. 

Their composite is surjective and has kernel W. Therefore, it induces an iso-
morphism 

Thus Z,,/W, is free. Because the projections commute with q5, so does this iso-
morphism; therefore, 

(iii) tr 	Wp) = tr (0.,H„IT„). 
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Step 5. Consider the group Wp. We show that 

(iv) 	 tr (4), 	= tr (4),Bp). 

Recall that Bp  is a subgroup of Wp. Applying the basic theorem of free abelian 
groups, we can choose a basis a„ 	,a„ for Wp  such that for some integers 
Pn1, • - • 	1, the elements Miai, 	Plkak form a basis for Bp. Now 
is a torsion group; therefore, k = n. We compute the trace of 4p on WI, and 
B,,. Let 

4(a1) = 	aija, 

4.(7ri fai) 	b ii(rn icci), 

where the summations extend from 1 to n. Then tr(4,Wp) = I au  and 
tr(4),Bp) = E bii, by definition. Multiplying the first equation above by ?ni, we 
conclude that miau  = ben;  for all i and j. In particular, a, = bii  for all i. 
Hence tr (4), Wp) = tr (4,Bp). 

Step 6. To complete the proof, we substitute formulas (ii), (iii), and (iv) 
into (i) to obtain the equation 

tr (4), Cp) = tr (4), Bp  _ ,) + tr (4).,14/ 7;) + tr (0,Bp). 

If we multiply this equation by (-1)p and sum over all p, the first and last 
terms cancel out in pairs, and our desired formula is proved. 0 

Definition. The Euler number of a finite complex K is defined, classically, 
by the equation 

X(K) = (-1)p rank(Cp(K)). 

Said differently, x (K) is the alternating sum of the number of simplices of K in 
each dimension. 

We show the Euler number of K is a topological invariant of IKI, as follows: 

Theorem 22.2. Let K be a finite complex. Let 13„, = rank Hp(K)ITp(K); it 
is the betti number of K in dimension p. Then 

X(K) ;(-1Y13,- 

Proof. If 4): C,,(K)—,  Cp(K) is the identity chain map, then the matrix 
of 4) relative to any basis is the identity matrix. We conclude that tr(0,Cp) =- 
rank Cp. Similarly, because 	is the identity map, tr(4).,14/7,,) = rank 

= flp. Our formula now follows from the Hopf trace theorem. 0 

This theorem has a number of consequences. For instance, the fact that 
X(K) = 2 if IKI is the boundary of a convex open region in R3  (since then IKI is 
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homeomorphic to S2) can be used to show that there are only five such com-
plexes that are regular polyhedra. These give the five classical Platonic solids. 
See the exercises. 

Definition. Let K be a finite complex; let h : IKI 	IKI be a continuous 
map. The number 

A(h) = (— 1)P tr(h.,1/1,(K)IT,(K)) 

is called the Lefschetz number of h. 

Note that A (h) depends only on the homotopy class of h, by Theorem 19.2. 
Furthermore, it depends only on the topological space IKI, not on the particular 
complex K: If L is another complex with ILI = IKI, then the homomorphism 

: 

induced by the identity is an isomorphism. The fact that (hL), = j;' 0 (4), 
j, implies that (hL). and (hK)„, have the same trace. 

Theorem 22.3 (Lefschetz fixed-point theorem). Let K be a finite complex; 
let h : IKI IKI be a continuous map. If A(h) # 0, then h has a fixed point. 

Proof Assume that h has no fixed point. We prove that A(h) = 0. 

Step I. We shall assume in subsequent steps that K satisfies the condition 

h(St(v,K)) n St(v,K) = 0, 

for all v. Thus we must show that this assumption is justified. 
To begin with, let E = min Ix — h (x)I. Using the uniform continuity of h, 

choose 6 so that whenever ix — yI < 6, we have Ih (x) — h(y)1 < e/3. Let X = 
min Ike/ 21. Then for any set A of diameter less than A, both A and h(A) have 
diameter less than €12, so they are necessarily disjoint. Replace K by a subdivi-
sion of K in which the closed stars have diameter less than A. As noted earlier, 
this does not affect the calculation of A (h). Then our condition holds. 

Step 2. Assume that K satisfies the condition of Step 1. Now let us choose 
a subdivision K' of K such that h has a simplicial approximation f : K' —4 K. 
We show that if s and a are simplices of K' and K, respectively, such that s C 
then f (s) # a. 

Suppose f (s) = a. Let w be a vertex of s, and let f (w) = v, a vertex of a. 
The fact that s C a implies that w e St (v,K), so that 

(*) 	h(w) e h(Si(v ,K)). 

On the other hand, we have by the definition of simplicial approximation 

h (St (w,K')) C St ( f (w),K), 

which implies in particular that 

h(w) eK(v,K). 
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The combination of (*) and (**) contradicts the assumption of Step 1. 

Step 3. Now we compute A (h) by applying the Hopf trace theorem. 
Let f : K' K be a simplicial approximation to h; let X : 0(K) 0 (K') be 

the subdivision operator. Then h*  is induced by the chain map 0 = 	X, by 
definition. 

We compute the trace of 0. Let A be the matrix of relative to the usual 
basis for Cp(K), which consists of oriented p-simplices of K. Let a be a typical 
basis element. The chain X (a) is a linear combination of oriented simplices s of 
K' such that s C a. For any such simplex s, it follows from Step 2 that f (s) * 
a. We conclude that the chain 4(a) = fo(a((r)) is a linear combination of ori-
ented p-simplices of K different from a. The matrix A thus has an entry of 0 in 
the row and column corresponding to a. It follows that all the diagonal entries 
of A vanish, so that tr A = tr = 0. 

The Hopf trace theorem tells us that 

A(h) = 1(-1)°tr(0,C,(K))• 

Because each of the terms in this summation vanishes, A (h) = 0. q 

In order to apply this theorem, we need the following lemma. 

Lemma 22.4. Let K be a finite complex; let h:IKI IKI be a continuous 
map. If IKI is connected, then h. :11.(K) H5(K) is the identity. 

Proof. Let f : K' K be a simplicial approximation to h. If v is a vertex 
of K, the subdivision operator X carries v to a 0-chain carried by the subdivision 
of v, which is just v itself. Thus X(v) is a multiple of v. Because X preserves 
augmentation, A (v) = v. 

ThenAX(v) = fo(v), which is a vertex of K. Because IKI is connected, fo  (v) 
is homologous to v. Therefore h* 	equals the identity on 1-4,(K). q 

Theorem 22.5. Let K be a finite complex; let h:iKi—.1Ki be a continu-
ous map. If IKI is acyclic, then h has a fixed point. 

Proof The group Ho(K) is infinite cyclic, and h*  is the identity on 
1-10(K). Thus tr(h.,14(K)) = 1. Since all the higher dimensional homology 
vanishes, A (h) = 1. Therefore, h has a fixed point. q 

Theorem 22.6. The antipodal map of S" has degree (-1)"+ 1. 

Proof Let h : 	Sn be a map of degree d. We compute A (h). Now h*  
is the identity on 0-dimensional homology. On n-dimensional homology, its 
matrix is a one by one matrix with single entry d = degree f Therefore, 

A(h) = 1 + (-1)nd. 

Now the antipodal map a has no fixed points, so that A(a) = 0. It follows 
that the degree of a is (-1)" 1. q 
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EXERCISES 

1. Show that every map f : P2  -- PT has a fixed point. 

2. Let K be a finite complex. Show that if h :1K1-11(1 is homotopic to a constant 
map, then h has a fixed point. 

3. (a) Show there is a map f of the Klein bottle S to itself that carries the curve C 
indicated in Figure 22.1 homeomorphically onto the curve D, and a map g 
that carries C into the shaded region E. 

(b) Let f and g be as in (a). Show that if f'=-.-,  f and g' _-:-_. g, then f' and g' have 
fixed points. 

(c) Find a map h : S —. S that has no fixed point. 

Figure 22.1 

4. If M is a compact smooth surface in W, and if ii(x) is a tangent vector field to 
M, it is a standard theorem of differential geometry that for some e > 0 there is 
a continuous map 

F : M X (—t,e)—'M 

having the property that for each x0, the curve 

t --* F(xe,t) 

passes through the point x, when t = 0, with velocity vector Ei(x.). Further-
more, if v(x) * 0 for all x, then there is a (5 such that F(x„t) * x. for 
0 < Id < a. 
(a) Using these facts, show that if M has a non-zero tangent vector field, then 

X(M) = 0. 
(b) Determine which compact surfaces have non-zero tangent vector fields. 

5. Suppose B is a finite collection of polygons in W, each two of which intersect in 
at most a common edge or a common vertex. Each of these polygons is called a 
face of B; its edges are called edges of B; and its vertices are called vertices of B. 
(a) Let IBI be the union of the elements of B. Show that 

X (IBI) =-• (# faces) — (# edges) + (# vertices), 

where # stands for "the number of." [Hint: Subdivide B into a simplicial 
complex by starring from an interior point of each face.] 
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(b) We say B is "combinatorially regular" if all the faces of B have the same 
number (say k) of edges, if each edge of B belongs to exactly two faces of 
B, and if each vertex of B belongs to the same number (say 1) of faces of B. 
The triangles making up the boundary of a tetrahedron form one such col-
lection; the squares making up the boundary of a cube form another. 

Show there are only five combinatorially regular collections B such 
that IBI is homeomorphic to S2. [Hint: Geometric considerations imply 
that 1 .?...- 3 and k ..... 31 

(c) There are many combinatorially regular collections B such that IBI is ho-
meomorphic to the torus. But there are only a limited number of possibili-
ties for k and 1. What are these? 



Relative Homology and the 
Eilenberg-Steenrod Axioms 

Until now we have concentrated mainly on studying the "absolute" simplicial 
homology groups, although we have defined the relative groups and have proved 
their topological invariance. Now we study the relative groups in more detail. 
Their uses are many. For one thing, they arise naturally in many of the applica-
tions of topology. For another, they are involved in an essential way in express-
ing those fundamental properties of homology that are called the Eilenberg-
Steenrod axioms, as we shall see. 

§23. THE EXACT HOMOLOGY SEQUENCE 

One of the many ways that relative homology groups can be useful is for giving 
information about the absolute homology groups. There are relationships be-
tween the relative groups I - 1,(K,K0) and the absolute groups 1-1,(K) and 14(1Q. 
For example, the vanishing of I - 1,(K,K.) and I I , , + i (K,K0) implies that I I p(K) 
and I - 11,(K.) are isomorphic, a fact that is not at all obvious at first glance. 
Formulating this relationship in a precise and general manner is a rather subtle 
problem. 

In the early days of algebraic topology, the theorems proved along these 
lines were often awkward and wordy. The right language for formulating them 
had not been found. A remarkable algebraic idea due to Eilenberg clarified the 
matter immensely. Really just a new and convenient notation, it is called an 
"exact sequence" (of groups, or rings, or what have you). The usefulness of this 
concept, in algebra as well as topology, is hard to overestimate. Obscure alge-
braic arguments often become beautifully transparent once they are formulated 
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in terms of exact sequences. Other arguments that were difficult even for pro-
fessional algebraists, become so straightforward that they can be safely left to 
the reader. 

The relationship between the absolute and relative homology groups is ex-
pressed by an exact sequence called the "exact homology sequence of a pair." In 
this section, we shall study exact sequences of groups (usually, abelian groups), 
and we shall define the exact homology sequence of a pair. 

Definition. Consider a sequence (finite or infinite) of groups and homo-
morphisms 

01 02 
• • • --' A,— + A-4 A,--,  . • • . 

This sequence is said to be exact at A2  if 
image 0, = kernel q52. 

If it is everywhere exact, it is said simply to be an exact sequence. Of course, 
exactness is not defined at the first or last group of a sequence, if such exist. 

We list here several basic facts about exact sequences; you should have them 
at your fingertips. Proofs are left as exercises. Because the groups we consider 
are abelian, we shall let 0 denote the trivial (one-element) group. 

(1) Ai t A2  0 is exact if and only if 0 is an epimorphism. 

(2) 0 ---, A,Sk A2  is exact if and only if 4) is a monomorphism. 

(3) Suppose the sequence 

0 --* A,--,  A,--.IP  A,--,  0 

is exact; such a sequence is called a short exact sequence. Then 
A210(A1) is isomorphic to A,; the isomorphism is induced by 1,1/. Con- 
versely if 4' : A --, B is an epimorphism with kernel K, then the 
sequence 

0--4C1,44B—o0 

is exact, where i is inclusion. 

(4) Suppose the sequence 
a 	(t) A,--,  A,--+ A,--, # A. 

is exact. Then the following are equivalent: 
(i) a is an epimorphism. 
(ii) 0 is a monomorphism. 
(iii) 4) is the zero homomorphism. 

(5) Suppose the sequence 

A,--- a * A,—,  A,--,  A.--, 0 A, 
is exact. Then so is the induced sequence 

0 ---. cok a --- 24,--,  ker 13 --. 0. 
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Definition. Consider two sequences of groups and homomorphisms having 
the same index set, 

• • • —4 A1  —4 A2  —4 • • • , 

. . . —4 B, 	B2 	. . • . 

A homomorphism of the first sequence into the second is a family of homomor- 
phisms ai  : 	111  such that each square of maps 

Ai "-4-1.  Ai + 

ai 	I ai + 

B, 

commutes. It is an isomorphism of sequences if each a;  is an isomorphism. 

For example, if a chain complex 6 is looked at as a sequence of groups Ci  
and homomorphisms a1, then a homomorphism of one such sequence e into 
another is just what we have called a chain map of d' into D. 

Definition. Consider a short exact sequence 

0 	Al  --, A2  -C A, O. 

This sequence is said to split if the group 4,(A1) is a direct summand in A2. 

This means that A, is the internal direct sum of 4.(A1) and some other sub-
group B; the group B is not uniquely determined, of course. In this case, the 
sequence becomes 

(1) 0 A, ck(A,)®B-A, 0, 

where 4,  defines an isomorphism of A, with 4,(A,), and 4/ defines an isomor-
phism of B with A,. An equivalent formulation is to state that there is an 
isomorphism B such that the following diagram commutes: 

0 	A,--+ A, 444-4A3---,0 

1= 	is i - 
0 	A, 	+A, ®A, 

In this case, 19 denotes external direct sum; i is inclusion and 7 is projection. 
The map 0 is defined by writing A, = 4,(A1) B and letting 0 equal 4)-' on the 
first summand and 4/ on the second. 

Theorem 23.1. Let 0 	 0 be exact. The following are 
equivalent: 

(1) The sequence splits. 

(2) There is a map p : A,--0 A, such that p o = i„,. 
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(3) There is a map j: 	A, such that ‘G o j = 

0-+ A, A2  t A,—+0. 
P 

Proof We show that (1) implies (2) and (3). It suffices to prove (2) and 
(3) for the sequence 

0 	Ai  A, ED A, A, --0 O. 

And this is easy; we define p: A, ®A, A, as projection, and j : 	A,9 A, 
as inclusion. 

(2) (1). We show Az  = 46(A0 e(ker p). First, for x e Az  we can write 
x = cop (x) (x — 43p (x)). The first term is in 43(A1) and the second is in ker p 
because p(x) — P(OP(x)) = P(x) — (POP(x) = 0. Second, if x e (1)(A1) fl 
ker p, then x = 0(y) for some y, whence p (x) = pc/Ay) = y. Since x e ker p, 
the element y vanishes, so x = 43(y) vanishes also. 

(3) (1). We show A, = (ker 4') ED j(A3). Since ker 	im 0, this will 
suffice. First, for x eAz we can write x = (x — jil.(x)) jfr(x). The first term 
is in ker 4', since 4/(x) — (40,G(x) = 11/(x) — kx) = 0; the second term is in 
j (A,) . Second, if x e (ker 1p) fl j (A,), then x = j(z) for some z, whence 4/(x) = 
44(z) = z; since x e ker IP, the element z vanishes, so x = j (z) vanishes 
also. 0 

IP Corollary 23.2. Let 0 	142  A, 0 be exact. If A, is free abe- 
lian, the sequence splits. 

Proof We choose a basis for A,, and define the value of j : A, A, on the 
basis element e to be any element of the nonempty set 4-' (e). 0 

With these basic facts about exact sequences at our disposal, we can now 
describe the exact homology sequence of a pair. 

First we need to define a certain homomorphism 

a.: .11,,(K,K„)--4 	,(K.) 
that is induced by the boundary operator and is called the homology boundary 
homomorphism. It is constructed as follows: Given a cycle z in Cp(K,K0), it is 
the coset modulo Cp(1(0) of a chain d of K whose boundary is carried by K0. The 
chain ad is automatically a cycle of K0. We define a, {z} = {ad}, where { } means 
"homology class of"; we prove later that a, is a well-defined homomorphism. 

Algebraically, the construction of a, can be described as follows: Consider 
the following diagram, where i : K0  K and 7 : 	 (K,K0) are inclusions: 

Cp(K)--1.Cp(K,K.) 

a• 	I 
Cp  _ ,(K.) 	_ ,(K) 
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Now io  is inclusion, and 114 is projection of Cp(K) onto Cp(K)IC,(K.). Given a 
cycle z of Cp(K,K.), the chain d of Cp(K) representing it is a chain such that 
a#  (d) = z. We take 8d, and note that since it is carried by K0, it equals i# (c) for 
some p — 1 chain c of K.. Now c is actually a cycle; its homology class is 
defined to be 8.({z}). Thus a, is defined by a certain "zig-zag" process: Pull 
back via 7r0 ; apply 8; pull back via io. This description of a, will be useful in the 
next section. 

Now we can state our basic theorem relating the homology of K, K., and 
(K,K.). 

Definition. A long exact sequence is an exact sequence whose index set is 
the set of integers. That is, it is a sequence that is infinite in both directions. It 
may, however, begin or end with an infinite string of trivial groups. 

Theorem 23.3 (The exact homology sequence of a pair). Let K be a com-
plex; let K. be a subcomplex. Then there is a long exact sequence 

• • • --- Hp(K.)-t Hp(K)-4 Hp(K,K0) 24  Hp  _ 1 (K.) ---, • • -, 

where i: K.— K and 7 : (K,0)--. (K,K.) are inclusions, and a, is induced by 
the boundary operator a. There is a similar exact sequence in reduced 
homology: 

• • • --, ilp(K.)--. .14(K) ---, Hp(K,K.)--+ Hp _ I (K.)--,  • • • . 

The proof of this theorem is basically algebraic in nature. We shall formu-
late it in a purely algebraic fashion and prove it in the next section. For the 
present, we apply this sequence to some specific examples. 

Example I. Let K be the complex pictured in Figure 23.1, whose polytope is a 
square. Let K. be the subcomplex whose polytope is the boundary of the square. We 
know from Example 3 of §9 that H,(K,K„) is infinite cyclic and is generated by the 
2-chain y that is the sum of the 2-simplices, oriented counterclockwise. Further-
more, H,(Ic) is infinite cyclic and is generated by the 1-chain s, + ; + s, + S„ 

S3 

$4 

s1 

Figure 23.1 
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which happens to equal a-y. Thus in this particular case, the boundary homo-
morphism 

8,,, : H,(K,K.) --' 111(1C0) 

is an isomorphism. 
This fact can also be proved by considering the exact homology sequence of the 

pair (K,K„). A portion of this sequence is 
as  

H,(K) —. H,(K,K0) —. H,(K.)—. H,(K). 

The end groups vanish because iKl is contractible; therefore a, is an isomorphism. 

Example 2. Let K be the complex pictured in Figure 23.2, whose underlying space 
is an annulus. Let K. be the subcomplex of K whose polytope equals the union of the 
inner and outer edges of the square. In Example 4 of §9, we computed the homology 
of (K,K0). We recompute it here, using our knowledge of the homology of K and K.. 
Consider the following portion of the exact sequence in reduced homology: 

*  0 ---. H,(K,K„) 
as 
—. H,(K.) 

s  
—. H,(K) —

s 
 1-1,(K,K.) 

8 
— Ho  (K0) —. 0, 

0--• (?) 	—, Z 09 Z —. Z —. 	(?) 	—. Z —. 0. 

The zeros at the ends come from the fact that 1K1 has the homotopy type of a circle, 
so H,(K) = H,(K) = 0. Furthermore, H,(K) is infinite cyclic. It is generated by 
the cycle z, indicated in Figure 23.2 running around the outer edge of K, or by the 
cycle z, running around the inner edge; these cycles are homologous. Because IKQI is 
topologically the disjoint union of two circles, H,(K.) =.- Z ED Z and has as basis the 
cosets of z, and z„ while H0(K0) :-..- Z and is generated by {v, — v.1. 

If i : K, K is inclusion, then i, maps both {z,} and {z,} to the same generator 
of H, (K). It follows that (1) i, is an epimorphism, and (2) its kernel is infinite 
cyclic and is generated by {z,} — {z2}. 

From the first fact, it follows that 7*  is the zero homomorphism, whence 

a, : H,(K,KO) —. 110(K,,) 

is an isomorphism. Thus H, (K,K0) is infinite cyclic and is generated by the 1-chain 
e,,, whose boundary is v, — v.. 

From the second fact, it follows that since 

a, : H,(K,K.) —• ker i. 

Figure 23.2 
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is an isomorphism, the group H,(K,K.) is infinite cyclic, and is generated by the 
chain y that is the sum of the 2-simplices of K, oriented counterclockwise. For lay} = 
1z, - z2}, and z, - z2  generates ker is. 

Example 3. We consider the next two examples together. Let (K,K.) denote either 
the cylinder and its top edge, or the Mobius band and its edge. In each case, IK.1 is a 
circle. Furthermore, IKI has the homotopy type of a circle; the central circle C indi-
cated in Figure 23.3 is a deformation retract of iK i. Thus we know the homology of 
K and K,; we compute the homology of (K,KJ from the exact homology sequence, a 
portion of which is as follows: 

is  
I-12(K) —' 1-12(K,Ks) ----. 1-11 (K0 —. H,(K) ---. H,(K,K0) ---' k(K,,), 

0 --. (9) --, Z --. Z ---. (9) ---, 0. 

Everything depends on computing the homomorphism is. Since the retraction 
r : IKI --* C is a homotopy equivalence, it suffices to compute the homomorphism 
induced by the composite map r o i :14 --. C, which collapses the edge 14 to the 
central circle C. In the case of the cylinder, this map has degree 1; while in the case 
of the MObius band the induced homomorphism clearly equals multiplication by 2. 

Thus H,(K,K.) = H,(K,K„) = 0 in the case of the cylinder. In the case of the 
Mobius band, 

H,(K,K„) = 0 	and 	H,(K,K„) = Z/2. 

The central circle C represents the non-zero element of H,(K,K,,) in this case. So 
does the chain D, as you may prove. 

D 

Figure 23.3 

EXERCISES 

1. Check statements (1)-(5) of this section concerning exact sequences. 

2. (a) Suppose 
a, 	01 	 ct2 	02A, --. B, -. C, 	and 	A, -. B, --4  C, 

are exact. Show that 
a, X 2 	01 X 13  A, X A, --

a
. B, X B, -2

' Ci X C2 

is exact. 
(b) Generalize to arbitrary direct products. 
(c) Generalize to arbitrary direct sums. 
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3. Show that if K. is acyclic, H,(K,K„) = FI,(K). 
4. Suppose inclusion 	lid is a homotopy equivalence. Show H,,(K,K0) = 0 

for all p. 
5. Let (K,K.) denote the MObius band and its edge, as in Example 3. Show that 

the non-zero element of 1-11(K,K.) is represented by the chain D indicated in 
Figure 23.3. 

6. Let S denote the Klein bottle. Let A and C be the usual simple closed curves in 
S. (See Exercise 2 of §18.) Compute the exact sequences of the pairs (S,A) and 
(S,C). 

§24. THE ZIG-ZAG LEMMA 

Now we prove exactness of the homology sequence of a pair. We shall reformu-
late this result as a theorem about chain complexes and prove it in that form. 
First we need a definition. 

Definition. Let t, 2), and 6 be chain complexes. Let 0 denote the trivial 
chain complex whose groups vanish in every dimension. Let 4 : e 	and 

: 	6 be chain maps. We say the sequence 

is exact, or that it is a short exact sequence of chain complexes, if in each di-
mension p, the sequence 

0 	Cp-t Dp11, 	0 

is an exact sequence of groups. 

For example, if K is a complex and K. is a subcomplex of K, the sequence 

0 	 e (K)--. 6 (K,K.)--- 0 

is exact, because Cp(K,K.) = Cp(K)I Cp(K0) by definition. 

Lemma 24.1 (The zig-zag lemma). Suppose one is given chain complexes 
= {cad, = {Drop}, and 6 = {Ep,(30, and chain maps dr, 1,1/ such that 

the sequence 
0 	6 Lk 7 ) 6 0 

is exact. Then there is a long exact homology sequence 

(1) • • • 	I-4 	,(6) 	Hp(D) 	1-I,„(6)
a. 	_ i(e) 	_ ,(D) 	• • • , 

where a,, is induced by the boundary operator in 2. 
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Proof. The proof is of a type now commonly known as "diagram-chasing." 
Master this proof; in the future we shall leave all proofs of this sort as 
exercises. 

We shall use the following commutative diagram: 

dp  + , ep + I 
0--,  Cp + I 

ac 

p 

0 - CP 

acl
c P - I 

0 ----* c _ I 

0 	_l__ r  --......n , + , 	• ...Wp + I -,0 

4 	al 
T, 

—±—ol),  E P  —00 
aD1 	8E1 

DP I '...4Ep _, —0 0. 

--c, 

Step I. First, we define a.. Given a cycle ep  in E, (that is, an element of 
ker 8E), choose d, e DP  so that 1,G(dp) = ep. (Recall 1/. is surjective.) The ele-
ment aDdp  of Dp _ , lies in ker IA since 4'(aDdd = aEigdp) = aEc, = 0. There-
fore, there exists an element cp  _ , in Cp  _ , such that 4)  (c, _ ,) = apdp, since 
ker 1,G = im 0. This element is unique because 4)  is injective. Furthermore, ep  _ , 
is a cycle. For 

0(accp _ I) = aack(c,,_ I) = aDa„dp  = 0; 

then ace, _ , = 0 because 4)  is injective. Define 

a. ie,,1 = lc), - 11, 

where { } means "homology class of." 

Step 2. We show a*  is a well-defined homomorphism. Notation: Let e, 
and e, be two elements in the kernel of aE :E,—,  Ep _,. Choose d, and d; so 
that Ip(dp) = ep  and Vi(d;) = ep. Then choose cp _ , and ep  _ , so 4)(cp  _ ,) = 
aad, and cP(ep  _ ,) = aacrp. 

To show a, well defined, we suppose ep  and ep  are homologous, and show 
that cp  _ , and ep  _ , are homologous. So suppose ep  — ep  = aEep., ,. Choose 
dp+ , so that 1,t(dp+ ,) = ep+1. Then note that 

t,b(d, — d; — apd, + 1) = e, — e, — amdp.,.,) 
= ep — ep  — aEep+ , = 0. 

Therefore, we can choose cp  so 4)  (ce) = d, — d; — and, + ,. Then 

0( a c  cp) = a„o(c,) = aa(d, — d,) — 0 = 4)(c,_ I — c;_,). 
Because 0 is injective, acc, = c,, _ , — c; _ ,, as desired. 

To show as  is a homomorphism, note that 1//(d„ + dp) = ep  + e,, and 
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(15(c, - , 	c; _ 1) = a p(d, 	dp). Thus a. {e, + 	= {cp _ , + c p _ ,1 by defini- 
tion. The latter equals, of course, 8.{ep} + a,,,{e;}. 

Step 3. We prove exactness at Hp(2)). Let y e H, (0). Because ¢ o = 
0, we have 4/.. 	= 0. Hence if y e image 0., then 4' (y) = 0. 

Conversely, let y = {tip} and suppose 4/.(y) = 0. Then 4'(d p) = a Eep , for 
some ep ,. Choose d,+ , so Ili (dp ,) 	ep ,. Then 

1,1,(dp 	—  aDdp ,) --= ~(dp) — a El,ti(dp ,) 	4/(dp) — a Eep , = 0 

so d, — ape', , = (1)(cp) for some cp. Now cp is a cycle because 

ck(accp) = a Do(c p) = aodp — 0 = 0 

and 	is injective. Furthermore, 

= 10(cp)1 = 	— 8 0(4+1 } = 1,1„1, 
so {dp} e im 	as desired. 

Step 4. We prove exactness at Hp(6). Notation: Let a = lepl be an ele-
ment of H,(6). Choose dp so 11/(dp) = ep; then choose cp _ , so cl)(c„,_,) = apd p. 
Then a.« = {c p _ 11 by definition. 

If a e 	then a = {4.(dp)}, where dp is a cycle of D. Then (cp _ ,) = 
0; whence cp = 0. Thus a.« = 0. 

Conversely, suppose a.« = 0. Then c, _ , = accp for some cp. We assert 
that d, — 4'(cp) is a cycle, and a = 1,G.{dp — 4)(co}, so a e im O.. By direct 
computation, 

ap(dp — 4)(cp)) = a — gacc„) = and„ — o(c, 	= 0, 
0.{d„ — (1)(cp)} 	{4.(d„) — 	= {e,} = a. 

Step 5. We prove exactness at H, _ ,(e). Let $ e Hp _,(0). If i3 e im a., 
then $ = {c, _ ,}, where (1)(c, _,) = a Sp for some d,, by definition. Then 

0: (R) = {0 (cp - 1)} = la Dcl p} = 0. 

Conversely, suppose 0.($) = 0. Let 13 = {c, _ ,}; then {ck(c, - 1)} = 0, so 
4k(cp _ ,) = ape', for some d,,. Define e, = 4'(d,); then e, is a cycle because 
oEep = 0(aDdi,) = 00(c„ _ ,) = 0. And $ = a.ie pl by definition. Thus 

E im a.. 0 

Note that nowhere in the proof of this lemma did we assume that the chain 
complexes involved were free or that they were non-negative. This lemma thus 
has a much broader range of application than just to chain groups of simplicial 
complexes. However, applied to the simplicial chain groups 0 (K„) and 0 (K) 
and 0 (K,K0), we obtain Theorem 23.3 for non-reduced homology as an imme-
diate consequence. 

To obtain the theorem for reduced homology, we let 6 0 (K,K„), as be-
fore; but we replace 6 and 2) by the augmented chain complexes {64} and 1.7),€), 
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respectively. Note that exactness and commutativity hold in dimension —1, 
since inclusion Co(Ko)--,  Co(K) preserves augmentation: 

0 	Co(K0) 	Co 	 Co(K,K.) ---+0 

I 
0 —• Z 1,  Z 	0 —• 0. 

Application of the zig-zag lemma now gives us Theorem 23.3 for reduced 
homology. 

Before considering further applications, let us extract some additional in-
formation from the proof of the zig-zag lemma. We have constructed a function 
assigning to each short exact sequence of chain complexes, a long exact se-
quence of their homology groups. Now we point out that this assignment is 
"natural," in the sense that a homomorphism of short exact sequences of chain 
complexes gives rise to a homomorphism of the corresponding long exact ho-
mology sequences. 

Theorem 24.2. Suppose one is given the commutative diagram 

	

0 	 2-LI, 6 	0 

l a  I S  17  
0 — e•--(72Y--. 6' 

where the horizontal sequences are exact sequences of chain complexes, and a, 
13, 7 are chain maps. Then the following diagram commutes as well: 

, er" lks , 	as  
Hpke- 	npk4...) ---0 n p(Co ) 0  H _ 

	

la* 	.113* 44 17*  a' 
Proof Commutativity of the first two squares is immediate, because com-

mutativity holds already on the chain level. Commutativity of the last square 
involves examining the definitions of a*  and 4. 

Given {e p}e 14(6), choose dp  so 1,t/ (4) = ep, and choose cp  _ , so 
4)(cp  _ ,) = asp. Then a*  {ep} 	_ j, by definition. Let ep  = le(ep); we wish 
to show that 4{e;} = ce* Ic„_ ,I. Roughly speaking, this follows because each 
step in the definition of a*  commutes: The chain 13 (4) is a suitable "pull-back" 
for ep, since 1,G',3(dp) = -4(4) = -y(ep) = ep. And then the chain a(cp  _ ,) is 
the pull-back of 80(4), since clict(ci,_ ,) 130(cp _ ,) = 13(4(4) = a'„o(dp). 
Thus 4{e;} = {a(cp  _ ,)} by definition. 0 

Naturality of the long exact homology sequence is extremely useful. We 
give one application now. It makes use of the following lemma, whose proof is 
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simple "diagram-chasing." As promised, we leave the proof to you. The lemma 
itself is of great usefulness. 

Lemma 24.3 (The Steenrod five-lemma). Suppose one is given a commuta-
tive diagram of abelian groups and homomorphisms: 

A4---4 As  

I f2  1f3  114  I fs  
B,--0 B2-4 	4 Bs  

where the horizontal sequences are exact. Iff1, f,, f4, and f, are isomorphisms, 
so is f,. q 

Lemma 24.4. Let h : 	(L,L„) be a simplicial map. 
(a) The induced homology homomorphisms h*  give a homomorphism of 

the exact homology sequence of (K,K0) with that of (L,L0). 
(b) If h.: H, (K) 1-11(L) and h.: Hi(K0) -4  HALO are isomorphisms 

for i p and i = p — 1, then 

Hp(K,K.)--,  Hp(L,L0) 

is an isomorphism. 
(c) Both these results hold tf absolute homology is replaced throughout 

by reduced homology. 

Proof We know ht, is a chain map, and the following diagram commutes: 

0 —4 Cp(IC„)-1-, 	c(K)1C,,(IC(,)--. 0 

lho 	'hi  

0 	 c(L)2514 Cp(L)I Cp(4)--* 0. 

Then (a) follows. To deal with the case of reduced homology, we recall that hi  
is augmentation-preserving, so it gives the desired chain map of the augmented 
chain complexes, provided we define hil:z.z as the identity on the chain 
groups in dimension —1. Thus (a) holds for reduced homology. 

Result (b) follows immediately from the Five-lemma. 0 

The following is an immediate consequence of this lemma and the results of 
Chapter 2. 

Theorem 24.5. The preceding lemma holds for an arbitrary continuous 
map h : 	(I441). 0 
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EXERCISES 

1. Let X be a complex; let A be a subcomplex of X; let B be a subcomplex of A. 
Prove the existence and naturality of the following sequence; it is called the 
exact homology sequence of the triple (X,A,B): 

- • • 	 H, _ 	• • • - 

2. Prove the following: 
Lemma (The serpent lemma). Given a homomorphism of short exact se- 
quences of abelian groups 

0—* A— — 	 0 

0 --0 D—oE----oF—' O, 

there is an exact sequence 

0 	ker a — ker 	ker --• cok a cok # cok 	0. 

3. (a) Prove the Five-lemma. 
(b) Suppose one is given a commutative diagram of abelian groups, as in the 

Five-lemma. Consider the following eight hypotheses: 

is a monomorphism, for i = 1, 2, 4, 5, 

is an epimorphism, for i = 1, 2, 4, 5. 

Which of these hypotheses will suffice to prove that f, is a monomorphism? 
Which will suffice to prove that f, is an epimorphism? 

4. Show by example that one can have HAK.) = HAL.) and HAK) = HAL) for 
all i, without having HAK,K.) = HAL,L.). 

5. Let w * K be a cone over K. Show that 

H;  (w * K,K) 	_ 1 (K). 

6. Let K. be a subcomplex of K. 
(a) If there is a retraction r 	—0 14, show that 

Hp(K) = Hp(K,K.) 9 Hp(K.). 

(b) If the identity map i : IKI 	IKI is homotopic to a map carrying IKI into 
show that 

Hp  (K.) = Ho (K) ® Hp i (K,K.). 

(c) If the inclusion j 	IKI is homotopic to a constant, show that 

Hp(K,K.) = Hp(K) 	_ , (K.). 

[Hint: Show that the map j extends to a map f 1w * K,I IKI. (See 
Corollary 20.6.) Then apply Exercise 5.] 

*(d) Show by example that the conclusion of (c) does not hold if one assumes 
only that j*  is the zero homomorphism in reduced homology. 
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7. Given a complex K and a short exact sequence of abelian groups 

0 --. G —. G' — G" --. 0, 

one has a short exact sequence of chain complexes 

0 — Cp(K;G) ---, c(K;G')---. c(K;G") --. 0, 

and hence a long exact sequence in homology. The zig-zag homomorphism in 
this sequence is commonly denoted 

Q* : .1-1,(K;G") — Hp  _ ,(K;G) 

and called the Bockstein homomorphism associated with the given coefficient 
sequence. 
(a) Compute 0. for the coefficient sequences 

0—.Z--.Z—Z/2-0, 

0 —Z/2 — Z/4 — Z/2 —, 0, 

when lid equals In. 
(b) Repeat (a) when IKI is the Klein bottle. 

§25. MAYER-VIETORIS SEQUENCES 

The homology exact sequence is one useful device for computing homology 
groups. Another is the Mayer-Vietoris sequence, which we now construct. It is 
another consequence of the zig-zag lemma. 

Theorem 25.1. Let K be a complex; let K. and K, be subcomplexes such 
that K = K. U K,. Let A = K. n K,. Then there is an exact sequence 

• • • --, Hp(A)--,  Hp(K.) ED Hp(K,)--,  Hp(K) —4 H„ - i(A) —' • • • , 

called the Mayer-Vietoris sequence of (K.,K,). There is a similar exact se-
quence in reduced homology i f A is nonempty. 

Proof. The proof consists of constructing a short exact sequence of chain 
complexes 

1,11 0 --. 6 (A) ---0 e (K.) 9 e (K,) ---, e (K) --, 0, 

and applying the zig-zag lemma. 
First we need to define the chain complex in the middle. Its chain group in 

dimension p is 

Cp(K.) ED Cp(K1), 

and its boundary operator a' is defined by 

a' (d,e) = (a.d, 81e), 
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where a„ and a, are the boundary operators in e (K.) and e (K,), respectively. 
Second, we need to define the chain maps 4>  and 1,G. We do this as follows. 

Consider the inclusion mappings in the following commutative diagram: 

IC. 

Define homomorphisms tt, and 1k by the equations 

0(c) = (i# (c) , — 4(e)), 
xi/ (d,e) = 1c0  (d) + 1.(e). 

It is immediate that 4) and lk are chain maps. 
Let us check exactness: First, note that 4>  is injective, since i. is just inclu- 

sion of chains. Second, we check that 4. is surjective. Given d e C,(K), write d 
as a sum of oriented simplices, and let do  consist of those terms of d carried by 
K,. Then d — do  is carried by K,; and 4/(4 d — d.) = d. 

To check exactness at the middle term, note first that 44 (c) = m#  (c) — 
mo(c) = 0. Conversely, if 4/(d,e) = 0, then d = — e, when considered as chains 
of K. Since d is carried by K. and e is carried by K„ they must both be carried 
by K, fl K, = A. Then (d,e) = (d,— d) =-- (1)(d), as desired. 

The homology of the middle chain complex in dimension p equals 

ker a' ker a. 9 ker a,  
im a' 	im a. 9 im a, 

az H p(K.) 9 1-1,(K). 

The Mayer-Vietoris sequence now follows from the zig-zag lemma. 
To obtain the Mayer-Vietoris sequence in reduced homology, we replace 

the chain complexes considered earlier by the corresponding augmented chain 
complexes. Let € 4 , ea , (1, and e denote the augmentation maps for ê (A), 0 (K.), 
0 (K,), and e(K), respectively. Consider the diagram 

0 ---, Co  (A) --, Co(K.) 49 C„(10 --, C.(K)---. 0 

leA 	I eo ED ei 
I 

0 --. Z -Tr Z 9 Z -T. Z —0. 

Commutativity and exactness hold at the bottom level if we define 4,(n) — 
(n,—n) and km,n) = m + n. Each map -46 , -0 - f 	and t is surjective (since A G -1, 
is nonempty). Thus the homology of these respective chain complexes vanishes 
in dimension —1, and in dimension 0 equals the respective groups 11.(A), 
if.(K.) 9 1-1,(K,) and 1-1.(K). We now apply the zig-zag lemma. 0 
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Lemma 25.2. Let h: (K,Ko,K,) ---. (L,Lo,L,) be a simplicial map, where 
K = Ko  U K, and L = Lo  U L,. Then h induces a homomorphism of Mayer-
Vietoris sequences. 

Proof One checks immediately that the chain maps hi  induced by h com-
mute with the chain maps 0. and IP defined in the preceding proof. Naturality 
then follows from Theorem 24.2. 0 

The following is an immediate consequence of this lemma and the results of 
Chapter 2. 

Theorem 25.3. The preceding lemma holds for an arbitrary continuous 
map h : (11(1,14,14) —' (1L1,141,1Lii). 0 

To illustrate how the Mayer-Vietoris sequence is used in practice, we shall 
compute the homology of a suspension of a complex. We recall the definition 
from the exercises of §8: 

Definition. Let K be a complex; let wo  * K and w, * K be two cones on K 
whose polytopes intersect in IKI alone. Then 

S(K) = (wo * K) U (w,* K) 

is a complex; it is called a suspension of K. Given K, the complex S(K) is 
uniquely defined up to a simplicial isomorphism. 

Theorem 25.4. If K is a complex, then for all p, there is an isomorphism 

14(S (K)) --, k, _,(K). 
Proof Let Ko  ---- wo * K and K, = w,* K. Then Ko  U K, = S(K) and 

Ko  11 K, = K. In the reduced Mayer-Vietoris sequence 

14(1Q ED 14(K) --, i I p(S (K)) --, I I i  _ ,(K) --* il i  _ ,(Ko) ED k,_,(K,) 
both end terms vanish, because Ko  and K, are cones. Therefore the middle map 
is an isomorphism. 0 

EXERCISES 

1. Let K be the union of the subcomplexes K. and K„ where 1K01 and 14 are 
connected. What can you say about the homology of K in each of the following 
cases? 
(a) K, fl K, is nonempty and acyclic. 
(b) lid n IK,I consists of two points. 
(c) K„ fl K, has the homology of S", where n > 0. 
(d) K. and K, are acyclic. 
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2. Let K. and K, be subcomplexes of K; let L. and L, be subcomplexes of K. and 
K„ respectively. Construct an exact sequence 

• • • 	1 i (K. n K„L. 	Hi(K„L.) Hi(K„L,)---. 
I- I 	U K„Lo  U L1) 	• - • . 

This sequence is called the relative Mayer-Vietoris sequence. 

3. Show that if d is an integer, and if n > 1, there is a map h : 	S" of degree 
d. [Hint: Proceed by induction, using naturality of the Mayer-Vietoris se-
quence. The case n = 1 was considered in Exercise 1 of §21.] 

4. Let : 	c + 1(S (K)) be the homomorphism defined in Exercise 1 of 
§8. Show that the isomorphism of Theorem 25.4 is inverse to 0,. 

5. Given a sequence G., . ,G. of finitely generated abelian groups, with G. and 
G. free and G. non-trivial, show there is a finite complex K of dimension n such 
that Hi(K) = Gi  for i = 0, . . . ,n. [Hint: See Exercise 8 of §6.1 

6. We shall study the homology of X X Yin Chapter 7. For the present, prove the 
following, assuming all the spaces involved are polyhedra: 
(a) Show that if p e S", 

.1-19(X X S", X X p) Hq  _ „(X). 

[Hint: Write S" as the union of its upper and lower hemispheres, and pro-
ceed by induction on n.] 

(b) Show that if p e Y, the homology exact sequence of (X X Y, X X p) 
breaks up into short exact sequences that split. 

(c) Prove that 

1-1.(X x S") 	_ „(X) 1/9(X). 

(d) Compute the homology of S" x S'". 

§26. THE EILENBERG-STEENROD AXIOMS 

We have defined homology groups for a particular class of spaces—namely, the 
polyhedra. Historically, these were the first homology groups to be defined. 
Later, various generalized definitions of homology were formulated that ap-
plied to more general spaces. These various homology theories had many fea-
tures in common, and they all gave the same results as simplicial homology 
theory on the class of polyhedra. 

This plethora of homology theories led Eilenberg and Steenrod to 
axiomatize the notion of a homology theory. They formulated certain crucial 
properties these theories have in common, and showed that these properties 
characterize the homology groups completely on the class of polyhedra. 

We shall not try to reproduce the axiomatic approach at this point, nor 
shall we prove that the axioms characterize homology for polyhedra. For this, 
the reader is referred to Eilenberg and Steenrod's book [E-S]. We shall simply 
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list the seven axioms here, together with an additional axiom that is needed 
when one deals with non-compact spaces. In the next section, we verify that 
simplicial homology theory satisfies the axioms. 

Definition. Let A be a class of pairs (X,A) of topological spaces such 
that: 

(1) If (X,A) belongs to A, so do (X,X), (X,0 ), (A,A), and (A, 0 ). 
(2) If (X,A) belongs to A, so does (X X I,A X I). 
(3) There is a one-point space P such that (P, 0) is in A. 

Then we shall call A an admissible class of spaces for a homology theory. 

Definition. If A is admissible, a homology theory on A consists of three 
functions: 

(1) A function Hp  defined for each integer p and each pair (X,A) in A, 
whose value is an abelian group. 

(2) A function that, for each integer p, assigns to each continuous map 
h : (X,A) --4 (Y,B) a homomorphism 

(h.),: Hp(X,A)-4 H,(Y,B). 
(3) A function that, for each integer p, assigns to each pair (X,A) in A, a 

homomorphism 

(a.), : H p(X,A) —' Hp - ,(A), 
where A denotes the pair (A, 0 ). 

These functions are to satisfy the following axioms, where all pairs of spaces 
are in A. As usual, we shall simplify notation and delete the dimensional sub-
scripts on h, and a.. 

Axiom 1. If i is the identity, then i,t  is the identity. 

Axiom 2. (k . h)5  = k.. h.. 

Axiom 3. If f : (X,A)--. (Y,B), then the following diagram commutes: 

Hp(X,A)- -1---:=P. Hp(Y,B) 

18* 	18*  (f IA) Hp  _ ,(A)-----%Hp  _ ,(B) 
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Axiom 4 (Exactness axiom). The sequence 

• • • -• Hp(A) Hp(X) v—t Hp(X,A)--t Hp  _ ,(A)--,  • - . 

is exact, where i : A ---, X and 7r : X (X,A) are inclusion maps. 

Recall that two maps h,k : (X,A) (Y,B) are said to be homotopic (writ-
ten h = k) if there is a map 

F : (X X I, A X I) (Y,B) 

such that F(x,0) = h(x) and F(x,1) = k(x) for all x e X. 

Axiom 5 (Homotopy axiom). If h and k are homotopic, then h. = k.. 

Axiom _6 (Excision axiom). Given (X,A), let U be an open subset of X 
such that U C Int A. If (X — U, A — U) is admissible, then inclusion induces 
an isomorphism 

Hp(X — U, A — U) = Hp(X,A). 

Axiom 7 (Dimension axiom). If P is a one-point space, then Hp(P) = 0 
for p 0 0 and 14(P) = Z. 

Axiom 8 (Axiom of compact support). If a e Hp(X,A), there is an admis-
sible pair (X,,,,40) with X0  and A. compact, such that a is in the image of the 
homomorphism 	 H,(X,A) induced by inclusion. 

A pair (X0,A0) with both X0  and A. compact is called a compact pair. 
Note that one can modify Axiom 7 by writing 14(P) = G, where G is a 

fixed abelian group. What one has then is called "homology with coefficients in 
G." We shall stick to integer coefficients for the present. 

Of all the Eilenberg-Steenrod axioms, the dimension axiom seems most in-
nocuous and least interesting. But in some sense, just the opposite is true. Since 
Eilenberg and Steenrod's axioms were published, several new mathematical 
theories have been discovered (invented?) that resemble homology theory. 
Cobordism theories in differential topology and K-theory in vector bundle the-
ory are examples. Although these theories were invented for purposes quite 
different from those for which the homology groups were invented, they share 
many formal properties with homology theory. In particular, they satisfy all 
the Eilenberg-Steenrod axioms except for the dimension axiom. 

Such a theory is nowadays called an extraordinary homology theory, or a 
generalized homology theory. It differs from ordinary homology in that a one-
point space may have non-zero homology in many dimensions. 

This situation illustrates a phenomenon that occurs over and over again in 
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mathematics; a theory formulated for one purpose turns out to have conse-
quences far removed from what its originators envisaged. 

EXERCISES 

1. Consider the following commutative diagram of abelian groups and homomor-
phisms, which is called a braid: 

a 	 # 	 7 

A ..--- 	---1 	..------ 	----I 	..---"----Th B 	C 	D 

E \/3  >F< ) < ) / G 	H 

I 	J 	K 

it 0) 

This diagram contains the following four sequences, arranged in the form of 
overlapping sine curves: 

E--, A--.B—, G—, K, 

E—.I--.J—, G--.C—, D, 

A--.F--.J*K--, H--.D, 

I—F--, B--, C--.H. 
If all four sequences are exact, this diagram is called an exact braid. Prove the 
following two facts about braids: 
(a) If this braid is exact, there is an isomorphism 

A : 	—....4 , ker w 	kern 
—  
inl 11, 	im a 

defined as follows: If w(j) = 0, choose f so p(f) = j; then define A( j) =- 

{n (I)}. 
(b) Lemma (The braid lemma). In order that a braid be exact, it suffices if 

the first three of the preceding sequences are exact, and if the composite 
I --. F --• B is zero. 

2. Using only the axioms for a homology theory, prove exactness of the homology 
sequence of a triple: 

ir 	 0 
• • • — Hp(A,B)--. Hp(X,B)-- n . Hp(X,A)--. Hp  _,(A,B)--. • - - 

where 7 and n are induced by inclusion. The map # is the composite 

Hp(X,A) 
a. 
---, Hp  _,(A)

i 
 -. Hp  _ ,(A,B), 

where a, is given by the axioms and i is inclusion. Assume the pairs involved 
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are admissible. [Hint: Prove that Hp(A,A) = 0. Show that 77 e 7 = 0. Then 
apply Exercise 1.] 

3. Using only the axioms for a homology theory, derive the Mayer-Vietoris se-
quence, as follows: 

Let X = X, U 24; let A = X, r) X,. We say that (X„Xz) is an excisive 
couple for the given homology theory if (X„A) and (X,X,) are admissible and if 
inclusion (X„A)--. (X,X,) induces a homology isomorphism. 
(a) Consider the following diagram of inclusions, and the corresponding homo-

morphism of long exact homology sequences: 

A ---, X1-2:1-,t  (X„A) 

j 1 	k I 	17 

X,---1---0 X -T, (x X2) 

Given that (X„X2) is excisive, define a sequence 
0 	 IP • • • —. H,,(A).— Hp(X,) ED I i 1,(X,) --, 111,(X)- 

0
-* Hp  _ ,(A)-* • • • 

by letting 

4(a) = (is (a), —J: (a)), 

ik(z„zz) = k„ (x,)  + 1*  (x2), 

9(x) = 4(7*r% (x). 

Here o is the boundary homomorphism in the homology exact sequence of 
(X„A). Show that this sequence is exact and is natural with respect to 
homomorphisms induced by continuous maps. [Hint: The proof is a dia-
gram-chase. One begins with a homomorphism of one long exact sequence 
to another, where every third homomorphism is an isomorphism.] 

(b) Show that if X is the polytope of a complex K, and if X, and X, are poly-
topes of subcomplexes of K, then (X„Xz) is excisive for simplicial theory, 
and this sequence is the same as the Mayer-Vietoris sequence of Theorem 
25.1. 

(c) Suppose (X„A) and (X,X2) are admissible. Show that if Int X, and Int Xz  
cover X and if X, is closed in X, then (X„X2) is excisive for any homology 
theory satisfying the axioms. 

§27. THE AXIOMS FOR SIMPLICIAL THEORY 

Before showing that simplicial homology theory satisfies the Eilenberg-
Steenrod axioms, we must treat several points of theory with more care than we 
have done up to now. The axioms involve homology groups that are defined on 
an admissible class of spaces. Strictly speaking, we have not defined homology 
groups for spaces, but only for simplicial complexes. Given a polyhedron X, 
there are many different simplicial complexes whose polytopes equal X. Their 
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homology groups are isomorphic to one another in a natural way, but they 
are nevertheless distinct groups. Similarly, if h : X --, Y is a continuous map, 
where X = IK I and Y= ILI, we have defined an induced homomorphism 
h, : H p(K) --, H p(L). Of course, if X = IMI and Y = INI, we also have an in-
duced homomorphism Hp(M)----,  Hp(N), which we also denote by h,. We noted 
this notational ambiguity earlier. 

The way out of this difficulty is the following: Given a polyhedron X, we 
can consider the class of all simplicial complexes whose polytopes equal X, and 
we can identify their homology groups in a natural way. The resulting groups 
can be called the homology groups of the polyhedron X. 

More generally, we can perform this same construction for any space that 
is homeomorphic to a polyhedron. We give the details now. 

Definition. Let A be a subspace of the space X. A triangulation of the pair 
(X,A) is a complex K, a subcomplex K„ of K, and a homeomorphism 

h : (11(1,14) --, (X,A). 
If such a triangulation exists, we say (X,A) is a triangulable pair. If A is empty, 
we say simply that X is a triangulable space. 

Now let (X,A) be a triangulable pair. We define the simplicial homology 
Hp(X,A) of this pair as follows: Consider the collection of all triangulations of 
(X,A). They are of the form 

ha : (iKal,iCal) —+ (X,A), 

where Ca  is a subcomplex of Ka. 
Now there is some set-theoretic difficulty with the concept of the "set of all 

triangulations of a pair," just as there is with the "set of all sets." We avoid such 
problems by assuming that each Ka  lies in some fixed space V. This is justified 
by noting that if J is large enough, each Ka  has an isomorphic copy lying in V. 
For instance, we can let J have the cardinality of X itself! 

For fixed p, consider the groups Hp(Ka,Ca). We make sure they are disjoint 
as sets by forming H p(Ka,C a) X {a}. Then in the disjoint union 

U a  H p(IC„,C,,) X {a}, 

we introduce an equivalence relation. We define 

(x, a) e H p(Ka,C a) X {a} 
(y, 13) e Hp(Ks,Cd X {0} 

to be equivalent if (hi' 10.(x) = y. And we let Hp(X,A) denote the set of 
equivalence classes. 

Now each equivalence class contains exactly one element from each group 
H p(Ka,C a) X {a}. That is, the map 

Hp(Ka,Ca) X {a} --. Hp(X,A) 
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that carries each element to its equivalence class is bijective. We make 
Hp(X,A) a group by requiring this map to be an isomorphism. This group struc-
ture is unambiguous because (kV ha). is an isomorphism for each pair of indi-
ces a, S. 

A continuous map h: 	(Y,B) induces a homomorphism in homol-
ogy as follows: Take any pair of triangulations 

ha : (iKaLiCal) 	(X,A), 

(14,1D$1) (Y,B). 

The map h induces a map h' : 	 (1431,1D01), which in turn gives rise 
to a homomorphism 

h'.:11,(Ka,Ca) Hp(Li„Do) 

of simplicial homology groups. By passing to equivalence classes, this homo-
morphism induces a well-defined homomorphism 

Hp(X,A)--4 Hp(Y,B). 

In a similar manner, the boundary homomorphism a,: H ,,(IC„,c) 
Hp _ ,(Ca) induces a boundary homomorphism 

a.: .11),(X,A)--* 	_ ,(A). 

We now have all the constituents for a homology theory. 
First, we note that the class of triangulable pairs forms an admissible class 

of spaces for a homology theory. If (X,A) is triangulable, so are (X,X), (X, 0), 
(A,A), and (A,0). Any one-point space is triangulable. Finally, if (X,A) is tri-
angulable, then so is (X X I, A X I), by Lemma 19.1. 

Theorem 27.1. Simplicial homology theory on the class of triangulable 
pairs satisfies the Eilenberg-Steenrod axioms. 

Proof Axioms 1-5 and 7 express familiar properties of the homology of 
simplicial complexes that carry over at once to the homology of triangulable 
pairs. Only Axioms 6 and 8, the excision axiom and the axiom of compact 
support, require comment. 

To check the axiom of compact support, it suffices to show that it holds for 
simplicial complexes. Let a be an element of 11,(K,K.). Let c be a chain of K 
representing a; its boundary is carried by K0. Since c is carried by a finite 
subcomplex L of K, it can be considered as a cycle of (L,L.), where 4 =-
K. fl L. If /3 is the homology class of c in Hp(L,L.), then j.(13) = a, where j is 
inclusion of (L,L.) in (K,K.). Thus the axiom is verified. 

Checking the excision axiom involves a subtlety that may not be apparent 
at first sight. The problem is that even though both (X,A) and (X — U, 
A — U) may be triangulable, the two triangulations may be entirely unrelated 
to one another! If this is not the case, then the excision axiom follows readily 
from Theorem 9.1, as we now show. 
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Let U C A C X. Suppose there is a triangulation 

h: (IKI,IKJ) 	(X,A) 

of the pair (X,A) that induces a triangulation of the subspace X — U. This 
means that X — U = h (ILI) for some subcomplex L of K. Let Lo  = L fl K.; 
then A — U = h (41) . (It follows that U is open and A is closed.) Theorem 9.1 
states that inclusion induces an isomorphism 

H,(L,L„) = H,(K,K0). 

Thus our result is proved. 
Now we prove excision in the general case. Let U C Int A; let 

h : (K,K0) (X,A) 

k : (M,M.) (X — U, A — U) 

be triangulations of these respective pairs of spaces. Let X, denote the closure of 
X — A, and let A, = X,11 A. We assert that the pair (X„A,) is triangulated by 
both h and k. (See Figure 27.1, where the maps j, and j, denote inclusions.) 

To verify this assertion, note that the space IK I — 14 is the union of all 
open simplices Int a such that a E K and a K.. Then its closure C is the poly-
tope of the subcomplex of K consisting of all simplices a of K that are not in Ko , 
and their faces. The image of the set C under the homeomorphism h equals the 
closure of X — A, which is X,. Therefore, X, is triangulated by h. Since both X, 
and A are triangulated by h, so is A, = X, ri A. Similarly, the closure of 
IMI — IM.I is the polytope of a subcomplex of M, and its image under k equals 
the closure of (X — U) — (A — U) = X — A. Thus X, is triangulated by k, 
and so is A, = X, fl A. (Here is where we need the fact that U C Int A.) 
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It follows from the special case already proved that in the diagram of 
inclusions 

(X„A,)-1L * (X,A) 

31 	.1 
(X — U, A — U) 

both j, and j, induce isomorphisms. Because the diagram commutes, j, is also 
an isomorphism. 0 

We remark that in the preceding proof we did not need the full strength of 
the hypothesis of the excision axiom. We did not use the fact that U C Int A, 
nor that U is open. Thus for simplicial theory on the class of triangulable pairs, 
the following stronger version of the excision axiom holds: 

Theorem. 27.2 (Excision in simplicial theory). Let A be a subspace of X. 
Let U be a subset of X such that U C Int A. If both pairs (X,A) and (X — U, 
A — U) are triangulable, then inclusion induces an isomorphism 

11.(X — U, A — U) = .11,(X,A). 0 

The axiom of compact support states, roughly speaking, that every homol-
ogy class is compactly supported. It is also true that every homology relation 
between such classes is compactly supported. More precisely, one has the fol-
lowing useful result, which we shall verify directly for simplicial theory. It may 
also be derived from the axioms; see the exercises. 

Theorem 27.3. Let i :(X.,A.) —, (X,A) be an inclusion of triangulable 
pairs, where (X.,A.) is a compact pair. If a e H,(X,,A.) and i,,(a) = 0, then 
there are a compact triangulable pair (X„A,) and inclusion maps 

(X0,A,) -4 (x.A,).A. (X4) 
such that j#  (a) = 0. 

Proof We may assume that (X,A) is the polytope of a simplicial pair 
(K,C). Because X. is compact, it is contained in the polytope of a finite sub-
complex K. of K. Then A, is contained in the polytope of C fl IC. = C,. The 
theorem thus reduces to the case where 

i : (K,,C,) --- (K,C) 
is an inclusion of subcomplexes and K. is finite. 

Let a e I-4 (4C.) and suppose that is  (a) = 0. Let c, be a chain of K. 
representing a. Since is  (a) .-- {io(cp)} = 0, there is a chain 14., of K such 
that cp  — ad, .„ is carried by C. Choose a finite subcomplex of C carrying 
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c„— acip.,.,; let C, be the union of this subcomplex and C.. Then choose a finite 
subcomplex of K carrying di, + ,; let K, be the union of this subcomplex and K„ 
and C,. Then the homomorphism induced by the inclusion 

(Ko,C,,) (K„Ci) 

carries a to zero. q 

EXERCISES 

1. Theorem. Given a sequence G., G,, ...of finitely generated abelian groups 
with G„ free and non-trivial, there is a complex K such that 111(K) = Gi  for 
each i. 

[Hint: See Exercise 5 of §25.] 

2. Let A be either the class of triangulable pairs, or the class of all topological 
pairs. Prove Theorem 27.3, with the word "triangulable" replaced throughout 
by the word "admissible," directly from the axioms. 

[Hint: Show that in the triangulable case, one can assume that the trian- 
gulation of (X,A) triangulates X. as well. Examine the diagram 

H,(X0>A0) 

to find a compact A, such that 10 (a) is in the image of 14(A„A.) 
14(X,A.). Then inclusion (X„,A.)--. (X,A,) induces a homomorphism carrying 
a to zero. Examine the diagram 

Hi(X„,A.) 

1m* 

H y, ,(X,X. U A,) H.(X. U Al, Ai) 	1.(X41) 

to find a compact X, such that m. (a) is in the image of 

a.: H 	U A,) --0 14(X, U A„A,). 

Complete the proof.] 

*§28. CATEGORIES AND FUNCTORSI 

By now you have seen enough references to "induced homomorphisms" and 
their "functorial properties," and to the "naturality" of the way one assigns one 
mathematical object to another, that you may suspect there is some common 
idea underlying all this language. There is; we study it in this section. It consists 

/This section will be needed when we study cohomology, in Chapter 5. 
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mostly of new terminology; what proofs there are, are elementary and are left to 
the reader. 

Definition. A category C consists of three things: 

(1) A class of objects X. 

(2) For every ordered pair (X,Y) of objects, a set horn (X,Y) of morphisms f. 

(3) A function, called composition of morphisms, 

hom (X,Y) X hom (Y,Z) ---, hom (X,Z), 

which is defined for every triple (X,Y,Z) of objects. 

The image of the pair (f,g) under the composition operation is denoted by g o f. 
The following two properties must be satisfied: 

Axiom 1 (Associativity). If f e hom(W,X) and g E hom(X,Y) and 
h e horn (Y,Z), then h 0 (g 0 f) = (h . g) 0 f. 

Axiom 2 (Existence of identities). If X is an object, there is an element 
lx  e horn (X,X) such that 

lx  of = f and g a 1, = g 

for every f e hom (W,X) and every g e hom(X,Y), where W and Y are 
arbitrary. 

One standard example of a category consists of topological spaces and con-
tinuous maps, with the usual composition of functions. This example illustrates 
why we speak of the objects of a category as forming a class rather than a set, 
for one cannot speak of the "set of all topological spaces" or the "set of all sets" 
without becoming involved in logical paradoxes. (Is the set of all sets a member 
of itself?) A class is something larger than a set, to which we do not apply the 
usual set-theoretic operations (such as taking the set of all subsets). 

Let us note the following fact: The identity morphism 1, is unique. For 
suppose 

lx  of= f and g = g o l„ 

for every f e hom(W,X) and g e hom(X,Y). Then setting f = l'x  and g = 1,, 
we have 

lx  0 lx  — l'x 	and 	lx  = lx  0 l'x, 

whence l'x  = 1,. 

Definition. Let f e hom(X,Y) and g, g' e hom(Y,X). If g 0 f = l x , we 
call g a left inverse for f; if f 0 g' = l y, we call g' a right inverse for f 
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We note the following fact: If f has a left inverse g and a right inverse g', 
they are equal. For one computes as follows: 

(g 0 f) 0 g' = l x  0 g' = g', 
go (fogl= g o l y = g, 

whence g = g'. The map g = g' is called an inverse to f; it is unique. 
If f has an inverse, then f is called an equivalence in the category in 

question. 
In general, we write f : X —. Y to mean f e horn (X,Y); and we call X the 

domain object of f, and Y, the range object of f. 

Definition. A (covariant) functor G from a category C to a category D is a 
function assigning to each object X of C, an object G(X) of D, and to each 
morphismf: X --, Y of C, a morphism G (f) : G(X) --4 G(Y) of D. The follow-
ing two conditions must be satisfied: 

G(1x) = 1G(x)  for all X, 

G(g ° f) = G(g) 0 G(f)• 

That is, a functor must preserve composition and identities. It is immediate that 
if f is an equivalence in C, then G(f) is an equivalence in D. 

Example I. We list a number of categories. In all these examples, composition is 
either the usual composition of functions or is induced by it. Equivalences in some 
of these categories are given special names; in such cases, the name is listed in pa-
rentheses. 

(a) Sets and maps (bijective correspondences). 

(b) Topological spaces and continuous maps (homeomorphisms). 

(c) Topological spaces and homotopy classes of maps (homotopy equiv-
alences). 

(d) Simplicial complexes and simplicial maps (simplicial homeomorphisms). 

(e) Simplicial complexes and continuous maps of their polytopes. 

(f) Simplicial complexes and homotopy classes of continuous maps. 

(g) Groups and homomorphisms (isomorphisms). 

(h) Chain complexes and chain maps. 

(i) Chain complexes and chain-homotopy classes (chain equivalences). 

(j) Short exact sequences of abelian groups and homomorphisms of such. 

(k) Short exact sequences of chain complexes and homomorphisms of such. 

(1) Long exact sequences of abelian groups and homomorphisms of such. 

(m) Pairs (X,Y) of topological spaces and pairs (f,g) of continuous maps. 
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Example 2. Now we list several examples of functors. 

(a) The correspondence assigning to a pair (X,Y) of spaces, the space X X Y, 
and to a pair (f,g) of continuous maps, the map f X g, is a functor from 
pairs of spaces to spaces. 

(b) The correspondence assigning to a space X its underlying set, and to a con-
tinuous map, the underlying set map, is a functor from spaces to sets. It is 
called the forgetful functor; it "forgets" the topological structure involved. 

(c) The correspondence K --. e (K) and f —,f'  is a functor from the category 
of simplicial complexes and simplicial maps to the category of chain com-
plexes and chain maps. 

(d) Given a homology theory, the correspondence X ---. Hp(X) and [h) --, h*  is 
a functor from the category of admissible spaces and homotopy classes of 
maps to the category of abelian groups and homomorphisms. (Here [h] 
denotes the homotopy class of h.) This is precisely the substance of the 
first two Eilenberg-Steenrod axioms and the homotopy axiom. 

(e) The zig-zag lemma assigns to each short exact sequence of chain com-
plexes, a long exact sequence of their homology groups. The "naturality" 
property expressed in Theorem 24.2 is just the statement that this assign-
ment is a functor. 

Definition. Let G and H be two functors from category C to category D. 
A natural transformation T from G to H is a rule assigning to each object X of 
C, a morphism 

Tx : G (X) ---, H(X) 
of D, such that the following diagram commutes, for all morphisms f : X ---, Y of 
the category C: 

G (X) Tx  —.- H (X) 

IG(f) 	III (f) 
'GULLY H(Y). 

If for each X, the morphism Tx  is an equivalence in the category D, then T is 
called a natural equivalence of functors. 

Example 3. Given a homology theory, let p be fixed, and consider the following 
two functors, defined on admissible pairs: 

G(X,A) = Hp(X,A); 	G(f) =f:. 

H(X,A) = Hp-,(A); 	H(f) = (fIA).. 

The commutativity of the diagram 

a 
H,(X,A)— 

.
-.H, _ 1 (A) 

I f. 	1(.11A)* 
Hp(Y,B) —. Hp  _ (B) 
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tells us that a, is a natural transformation of the functor G to the functor H. This is 
precisely the third of the Eilenberg-Steenrod axioms. 

Example 4. Consider the category of pairs of spaces and pairs of maps. Let G and 
H be the functors 

G(X,Y) = X X Y; G(f,g) = f x g. 
H(X,Y) = Y X X; H(f,g) = g x I 

Given (X,Y), let T( xy)  be the homeomorphism of X X Y with Y X X that switches 
coordinates. Then T is a natural equivalence of G with H. 

We have until now been dealing with what we call covariant functors. 
There is also a notion of contravariant functor, which differs, roughly speaking, 
only inasmuch as "all the arrows are reversed"! Formally, it is defined as 
follows: 

Definition. A contravariant functor G from a category C to a category D 
is a rule that assigns to each object X of C, an object G (X) of D, and to each 
morphism f : X --. Y of C, a morphism 

G(f): G(Y) —.4 G(X) 

of D, such that G(1x) = 1 _GQ0 and 

G(g °f) = G(f) . G(g). 

A natural transformation between contravariant functors is defined in the obvi-
ous way. 

In this book, we have not yet studied any contravariant functors, but we 
shall in the future. Here is an example of one such, taken from linear algebra: 

Example 5. If V is a vector space over R, consider the space .L(V,R) of linear 
functionals on V (linear transformations of V into R). It is often called the dual 
space to V. The space .L (V,R) has the structure of vector space, in the obvious way. 
Now if f : V—,  W is a linear transformation, there is a linear transformation 

./.`' : -C (W,R) * C (KR), 

which is often called the transpose (or adjoint) of I.  It is defined as follows: if 
a : W--. R is a linear functional on W, then f (a) : V—. R is the linear functional 

on V which is the composite V f —. W a  —. R. 
The assignment 

V 	L(V,R) 	and f ---. f' 

is a contravariant functor from the category of vector spaces and linear transforma-
tions to itself. 
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EXERCISES 

1. Check that each class of objects and morphisms listed in Example 1 is indeed a 
category, and that the equivalences are as stated. (Only (c) and (i) need any 
attention.) 

2. Functors have appeared already in your study of mathematics, although that 
terminology may not have been used. Here are some examples; recall their defi-
nitions now: 
(a) Consider the category of complexes and equivalence classes of simplicial 

maps, the equivalence relation being generated by the relation of contigu-
ity. Define a functor to chain complexes and chain-homotopy classes of 
chain maps. 

(b) Give a functor from abstract complexes to geometric complexes, called the 
"geometric realization functor." What are the maps involved? 

(c) Give functors from families of abelian groups, indexed with the fixed index 
set J, to abelian groups, called "direct product" and "direct sum." 

(d) In algebra, there is a functor G —• G/[G,G] called the "abelianization 
functor." Either recall it or look it up. 

(e) In topology, there is a functor from completely regular spaces to compact 
Hausdorff spaces, called the "Stone-tech compactification." Either recall 
it or look it up. Don't forget to deal with maps as well as spaces. 

3. Let G and H be the functors assigning to a complex K its oriented chain com-
plex and its ordered chain complex, respectively. To each simplicial map, they 
assign the induced chain map. 
(a) There is a natural transformation either of G to H or of H to G. Which? 
(b) Show that if you consider G and Has taking values in the category of chain 

complexes and chain-homotopy classes of chain maps, then both natural 
transformations exist and are natural equivalences. 

4. Consider the category of pairs (X,Y) of triangulable spaces such that X X Y is 
triangulable, and pairs of continuous maps. Define 

G(X,Y) = Hp(X x Y) 	and 	G(f,g) = (f X g),,; 
H(X,Y) = Hp(X) X Hp(Y) 	and H(f,g) = f, X g,. 

Define a natural transformation of G to H; show it is not a natural equivalence. 

5. We have not yet studied a category where the morphisms are other than maps 
in the usual sense or equivalence classes of maps. Here is an example, for those 
who are familiar with the fundamental group of a topological space. 

Let X be a fixed space. Let C be the category whose objects are the points 
of X; and let hom (x„xo) consist of path-homotopy classes [a] of paths a from 
x,, to x,. The composition operation 

horn (x„xi) X hom (x„;) ---o hom (x„x0) 

is induced by the usual composition of paths (0,a) —0 a * /3. 
(a) Check that C is a category in which every morphism is an equivalence. 

(Such a category is called a groupoid.) 
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(b) Check that the assignment x.— ri(X,x0) and [a] 	is a contravariant 
functor from C to the category of groups and homomorphisms. (Here 
et([fl) = [et * f * a], where et is the reverse path to a.) 

Note: 	The reason we must let [a] represent an element of 
horn (x„x.) rather than horn (x0,;) arises from the awkward fact that when 
we compose paths we put the first path on the left, while when we compose 
maps we put the first function on the right! 



Singular Homology Theory 

Now we are in some sense going to begin all over again. We construct a new 
homology theory. As compared with simplicial theory, it is much more "natu-
ral." For one thing, the homology groups are defined for arbitrary topological 
spaces, not just for triangulable ones. For another, the homomorphism induced 
by a continuous map is defined directly and its functorial properties are proved 
easily; no difficult results such as the simplicial approximation theorem are 
needed. The topological invariance of the singular homology groups follows 
at once. 

However, the singular homology groups are not immediately computable. 
One must develop a good deal of singular theory before one can compute the 
homology of even such a simple space as the sphere S. Eventually, when we 
develop the theory of CW complexes, we will see how singular homology can be 
computed fairly readily. Alternatively, since we shall show that simplicial and 
singular homology groups are isomorphic for triangulable spaces, we can al-
ways go back to simplicial theory if we want to compute something. 

In this chapter, we construct the singular homology groups and prove that 
they satisfy the Eilenberg-Steenrod axioms on the class of all topological 
spaces. (The homotopy axiom and the excision axiom, it turns out, require some 
effort.) Then we construct a specific isomorphism between the singular and 
simplicial theories that will be useful later. 

Finally, we give a number of applications. They include the Jordan curve 
theorem, theorems about manifolds, and the computation of the homology of 
real and complex projective spaces. 
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§29. THE SINGULAR HOMOLOGY GROUPS 

In this section we define the singular homology groups and derive their elemen-
tary properties. First, we introduce some notation. 

Let 12(x' denote the vector space E', where J is the set of positive integers. 
An element of 12' is an infinite sequence of real numbers having only finitely 
many non-zero components. Let Op  denote the p-simplex in Ir having vertices 

€o = ( 0,0, • • • 	• • •), 

e, = (1,0, . . . ,O, . . .), 

ep  = (0,0, .. . 	. . .). 

We call Ap  the standard p-simplex. Note that under this definition, 46,,, _ , is a 
face of Op. 

If X is a topological space, we define a singular p-simplex of X to be a 
continuous map 

TA,—,  X. 

(The word "singular" is used to emphasize that T need not be an imbedding. 
The map T could for instance be a constant map.) 

The free abelian group generated by the singular p-simplices of X is de-
noted Sp(X) and called the singular chain group of X in dimension p. By our 
usual convention for free abelian groups (see §4), we shall denote an element of 
Sp(X) by a formal linear combination, with integer coefficients, of singular 
p-simplices. 

It is convenient to consider a special type of singular simplex. Given points 
a., . , a, in some euclidean space V, which need not be independent, there is a 
unique affine map 1 of Op  into E' that maps ei  to ai  for i = 0, . ,p. It is defined 
by the equation 

1(X„ 	 .) = a. + 	xi(ai  — a0). 
= 

We call this map the linear singular simplex determined by a., . . , ap; and we 
denote it by 1(a., . ,ap). 

For example, the map 1(4, . ,E„) is just the inclusion map of Ap  into R. 
Similarly, if as usual we use the notation Ili  to mean that the symbol vi  is to 

be deleted, then the map 

l(€0, • • • 	• • • ,ep) 
is a map of _ , into Ir that carries Op  _ , by a linear homeomorphism onto 
the face 4 	Ei lei .. 	e, of Op. We often consider it as a map of Ap  _ , into 
Al, rather than into R. Then if T : 	X, we can form the composite 

T ° 100, • • • 	• • • ,S). 



§29. 	 The Singular Homology Groups 163 

This is a singular p — 1 simplex of X, which we think of as the "ith face" of the 
singular p-simplex T. 

We now define a homomorphism a : SP (X) * se, _ ,(x). If T : OP  —. X is a 
singular p-simplex of X, let 

P 

ar = Z(-1)` T o 1(eo, . 	,EP). 

Then aT equals a formal sum of singular simplices of dimension p — 1, which 
are the "faces" of T. We shall verify that az = 0 presently. 

If f : X Y is a continuous map, we define a homomorphism fx  :So(X)—. 
So( Y) by defining it on singular p-simplices by the equation fo (T) = f o T. 
That is, fk  (T) is the composite 

T „ x Y 

Theorem 29.1. The homomorphism f f, commutes with a. Furthermore, 
a= = 0. 

Proof The first statement follows by direct computation: 

off(T) 	I(-1)i  ( f o T) o 1(4, 	,EP), 
= o 

fo(aT) =I(-1)` f 0 (T o 1(€0, 	,to)). 
= o 

To prove the second statement, we first compute a for linear singular simplices. 
We compute: 

81(e20, 	,ap) = 	lY 1(a0, 	,cip) 1(eo, 	. 	. 
= o 

= 	( -•- 1)i  1(a0, . . 	. 	,ap). 

i = 0 

(The second equality comes from the fact that a composite of linear maps is 
linear. See §2.) The fact that as (1(a0, 	,ao)) = 0 is now immediate; one sim-
ply takes the proof that a,  = 0 in simplicial theory (Lemma 5.3) and inserts the 
letter 1 at appropriate places! The general result then follows from the fact that 

aa(T) = 88(7.0 (4E0, 	,E„))) 
and a commutes with T.  0 

Definition. The family of groups S,, (X) and homomorphisms a : sp(X) 
S, _ ,(X) is called the singular chain complex of X, and is denoted g(X). The 
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homology groups of this chain complex are called the singular homology groups 
of X, and are denoted Hp(X). 

(If X is triangulable, this notation overlaps with that introduced in §27 for 
the simplicial homology of a triangulable space. We shall prove later that the 
simplicial and singular homology theories are naturally isomorphic, so there is 
in fact no real ambiguity involved.) 

The chain complex S(X) is augmented by the homomorphism e : So  (X) Z 
defined by setting t(T) = 1 for each singular 0-simplex T : O, X. It is im-
mediate that if T is a singular 1-simplex, then e(aT) = 0. The homology groups 
of IS(X), el are called the reduced singular homology groups of X, and are 
denoted II ,(X). If f : X Y is a continuous map, thenfs  : Sp  (X) ---0 Sp  (Y) is an 
augmentation-preserving chain map, since ft, (T) is a singular 0-simplex if T is. 
Thus fo  induces a homomorphism f. in both ordinary and reduced singular 
homology. 

If the reduced homology of X vanishes in all dimensions, we say that X is 
acyclic (in singular homology). 

Theorem 29.2. If i : X X is the identity, then i. : Hp  (X) Hp(X) is 
the identity. If f : X Y and g: Y Z, then (g o f). = g. o f.. The same 
holds in reduced homology. 

Proof Both equations in fact hold on the chain level. For i. (T) 
i 	T = T. And (g 0 f).(T) (g of) o T =g (f o T) = g.(f.(T)). q 

Corollary 29.3. If h : X --. Y is a homeomorphism, then h*  is an iso-
morphism. 0 

The reader will note how quickly we have proved that the singular homol-
ogy groups are topological invariants. This is in contrast to simplicial theory, 
where it took us most of Chapter 2 to do the same thing. 

Following the pattern of simplicial theory, we next compute the zero-
dimensional homology groups. 

Theorem 29.4. Let X be a topological space. Then H0(X) is free abelian. 
If {X.} is the collection of path components of X, and if T. is a singular 
0-simplex with image in X., for each a, then the homology classes of the 
chains T. form a basis for H.(X). 

The group 110(X) is free abelian; it vanishes if X is path connected. Other-
wise, let ao  be a fixed index; then the homology classes of the chains T. — Tao, 
for a a0, form a basis for H0(X). 

Proof Let xcr  be the point T. (A.). If T : 	X is any singular 0-simplex 
of X, then there is a path f : [0,1] X from the point T(.6,0) to some point x„. 
Then f is a singular 1-simplex and of = Ta  — T. We conclude that an arbitrary 
singular 0-chain on X is homologous to a chain of the form I ?2,, T.. 
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We show that no such 0-chain bounds. Suppose that Ina Ta  = ad for some 
d. Now each singular 1-simplex in the expression for d has path-connected 
image, so its image lies in some one of the path components X0. Thus we can 
write d = d0, where d. consists of those terms of d carried by Xa. Then ado  
lies in X. as well. It follows that n0  T, = ad. for each a. Applying € to both sides 
of this equation, we conclude that na  = 0. 

The computation of I-I.(X) proceeds as in the proof of Theorem 7.2. 0 

Still following the pattern of simplicial theory, we compute the homology of 
a cone-like space. Actually, it is more convenient here to deal with an analogous 
notion, that of a "star-convex" set. 

Definition. A set X in E' is said to be star convex relative to the point w of 
X, if for each x in X different from w, the line segment from x to w lies in X. 

Definition. Suppose X C E' is star convex relative to w. We define a 
bracket operation on singular chains of X. Let 	be a singular p- 
simplex of X. Define a singular p + 1 simplex [T, w] : 0, +1 --. X by letting it 
carry the line segment from x to ep 1, for x in Ar  linearly onto the line segment 
from T(x) to w. See Figure 29.1. We extend the definition to arbitrary p-chains 
as follows: if c = ni  T, is a singular p-chain on X, let 

[c, 	= ni  [ Ti ,w]. 

This operation is similar to the one we introduced in §8 for cones, except 
here we have put the vertex w last instead of first. 

Note that when restricted to the face Ap  of Ap  + ,, the map [T,Iv] equals 
the map T. Note also that if T is the linear singular simplex 1(a., . . 	then 

T, w] equals the linear singular simplex /(aa, 	w). 

•	 
x 

AP  

[T, w) 

x 

Figure 29.1 
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We must show that the map [T,Iv] is continuous. First, we note that 
the map 

a : Op  X I 

defined by the equation 1r (x,t) = (1 — t)x + up+  , is a quotient map that 
collapses At, X 1 to the vertex Ep+1  and is otherwise one-to-one. The contin-
uous map 

defined by f (x,t) = (1 — t)T(x) tw is constant on A, X 1; because 7 is a 
quotient map, it induces a continuous map of Ai, , into X. Since 7 maps the 
line segment x X I linearly onto the line segment from x to 	,, and f maps 
x X I linearly onto the line segment from T(x) to w, this induced map equals 
the singular p 1 simplex [T, w] defined previously. Thus [T, w] is continuous. 

We now compute how the bracket operation and the boundary operator 
interact. 

Lemma 29.5. Let X be star convex with respect to w; let c be a singular 
p-chain of X. Then 

a[c,w] = 1[8c,w] + (-1)° ic 	if 	p > 0, 
E(c) T„ — c 	if 	p = 0, 

where T,, is the singular 0-simplex mapping A. to w. 

Proof If T is a singular 0-simplex, then [ T,w] maps the simplex A, lin-
early onto the line segment from T (Do) to w. Then a[T,w] = TW  — T. The 
second formula follows. 

Let p > 0. It suffices to check the formula when c is a singular p-simplex 
T. The formula's plausibility when p = 1 is illustrated in Figure 29.2. 

Using the definition of a, we compute 
p+1 

(*) 
	

a[T,w]= 	 Id, 
=o 

w 
w 

T(1) 
T(1) 

[T, w) 
	 SIT, w) = iar, wi T 

Figure 29.2 
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where for convenience we use I;  to denote the linear singular simplex 

= 1(€0, - • • 	• • • T ell + I) 

mapping At, into Ai, ,. Now Ip+  , equals the inclusion map of Ai, into tip  ,; 
since the restriction of [ T,w] to Ap  equals the map T, the last term of (*) equals 

To complete the proof, we consider the singular simplex [T, w] o li  for 
i < p + 1. Now the map carries Op  homeomorphically onto the ith face 
of A, ,; it carries to, 	to 4, 	,e;  _ „e;  + „ 	„ respectively. There- 
fore the restriction of to All  _ = Eo  ... s _ carries this simplex by a lin- 
ear map onto the simplex spanned by to, 	es  _,,E;  + ... ,Ell. (Recall that 
< p + 1.) Thus 

(**) 	 li I 	- 1 = 441 • • • ,k,• • • ,c,). 

Now we can compute [T, w] o : tip —. X. Let x be the general point of 
_ ,. Since : 	+ I is a linear map, it carries the line segment from x to 

Ep  linearly onto the line segment from li  (x) to 	,. Since 1;  (x)e Op, the map 
[T,w} : tip 	X by definition carries this line segment linearly onto the line 
segment from T(Ii(x)) to w. Therefore, by definition, 

[T,w] o  li = [T o (1;  I Op -1),w]. 

Substituting this formula into (*) and using (**), we obtain the equation 

a[T,W] := 	(-1)i  [T o 	,Ep),w] + (-1)'+'T 
=o 

= [aT,w] + (-1)P + IT. 0 

Theorem 29.6. Let X be a subspace of that is star convex relative to w. 
Then X is acyclic in singular homology. 

Proof. To show that 1-4(X) = 0, let c be a singular 0-chain on X such 
that e (c) = 0. Then by the preceding lemma, 

a[c,w] = e(c)T„ — c = —c, 

so c bounds a 1-chain. 
To show Hp(X) = 0 for p > 0, let z be a singular p-cycle on X. By the 

preceding lemma, 

a [z,w] 	[az,w] + (-1)p+ .z = (-1)P+1z. 

Thus z bounds a p + 1 chain. 0 

Corollary 29.7. Any simplex is acyclic in singular homology. 0 
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EXERCISES 

1. (a) Let X„1 be the set of path components of X. Show that ./1,(X) 

(b) The topologist's sine curve is the subspace of R2  consisting of all points 
(x, sin 1/x) for 0 < x < 1, and all points (0,y) for —1 < y < 1. See Fig- 
ure 29.3. Compute the singular homology of this space. 

2. Let X be a compact subspace of RN; let f : X Y. 
(a) Let w be the point (0, ... ,0,1) in RN  X R; let C be the union of all line 

segments joining points of X to w. Show that C is a quotient space of 
X X I. 

(b) Show that if f is homotopic to a constant map, then f, is the zero homo-
morphism in reduced homology. [Hint: Show that f extends to C.] 

(c) Show that if X is contractible, then X is acyclic. 

JV-Th'  
Figure 29.3 

§30. THE AXIOMS FOR SINGULAR THEORY 

We now introduce the relative singular homology groups. Then we show, in this 
section and the next, that they satisfy the Eilenberg-Steenrod axioms on the 
class of all topological pairs. 

If X is a space and A is a subspace of X, there is a natural inclusion 
Sp(A) —. S p(X). The group of relative singular chains is defined by 

S p(X,A) = S p(X) S „(A). 

The boundary operator a : Sp(X) si,_,(Y) restricts to the boundary opera-
tor on Sp(A); hence it induces a boundary operator 

a :Sp(X,A)--,  Sp _ i (X,A) 

on relative chains. The family of groups Sp(X,A) and homomorphisms a is 
called the singular chain complex of the pair (X,A) and denoted i(X,A). The 
homology groups of this chain complex are called the singular homology groups 
of the pair (X,A) and are denoted Hp(X,A). 

Note that the chain complex e9(X,A) is free; the group Sp(X,A) has as 
basis all cosets of the form T Sp(A), where T is a singular p-simplex whose 
image set does not lie in A. 

If f 	(Y,B) is a continuous map, then the homomorphism 
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.4 : S,(X) Sp(Y) carries chains of A into chains of B, so it induces a homo-
morphism (also denoted ft ) 

fN  : S,(X,A) Sp(Y,B). 

This map commutes with 8, so it in turn induces a homomorphism 

f.: H,(X,A) H,(Y,B). 

The following theorem is immediate: 

Theorem 30.1. If i : (X,A) 	(X,A) is the identity, then i, is the identity. 
If h:(X,A)—o (Y,B) and k : (Y,B) (Z,C) are continuous, then (k h). = 
k. 0 h.. 0 

Theorem 30.2. There is a homomorphism 8.: H, (X,A) —0 Hp  _ ,(A), de-
fined for A C X and all p, such that the sequence 

• • • —4 Hp(A) 4  Hp(X) Hp(X,A) 110 _ ,(A)—o • • • 

is exact, where i and 7 are inclusions. The same holds if reduced homology is 
used for X and A, provided A * 0 . 

A continuous map f : (X,A) (Y, B) induces a homomorphism of the cor-
responding exact sequences in singular homology, either ordinary or reduced. 

Proof For the existence of 8, and the exact sequence, we apply the "zig-
zag lemma" of §24 to the short exact sequence of chain complexes 

0 	Sp(A) „, Sp(X) 5joi  Sp(X,A)—* 0, 

where i : A X and 7 : (X, 0) (X,A) are inclusions. The naturality of 8, 
follows from Theorem 24.2, once we note that fi  commutes with io  and ir. The 
corresponding results for reduced homology follow by the same methods used 
for simplicial theory (see §24). q 

Theorem 30.3. If P is a one-point space, then H p(P) = 0 for p * 0 and 
1-10(P) = Z. 

Proof This follows from Theorem 29.6, once one notes that a one-point 
space in le is star convex! For a more direct proof, we compute the chain com-
plex *(P). There is exactly one singular simplex Tp : 0, P in each non-nega-
tive dimension, so S p(P) is infinite cyclic for p > 0. Each of the "faces" of Tp, 

Tp ° 1(eo, • • • 	• • • ,(p), 

equals the singular simplex Tp  _ I . Therefore, a = 0 if p is odd (the terms 
cancel in pairs), and 8T, = Tp  _ , if p is even (since there is one term left over). 
The chain complex S(P) is thus of the form 

	

S2k  (P) S2k _ i(P) —o • • • 	S, (P)  So(P)—o 0 
0 	 0 

Z 	Z 	• • • 	Z 	Z 	0. 
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In dimension 2k — 1, every chain is a boundary; while in dimension 2k, for 
k > 0, no chain is a cycle. In dimension 0, every chain is a cycle and no chain is 
a boundary, so the homology is infinite cyclic. 0 

Theorem 30.4. Given a e H,(X,A), there is a compact pair (X0,A0) C 
(X,A), such that a is in the image of the homomorphism induced by inclusion 

la : H,(XO,A0) —s H,(X,A). 
Proof If T : 	X is a singular simplex, its minimal carrier is defined 

to be the image set T(A,). The minimal carrier of a singular p-chain n;  T, 
(where each ni  # 0) is the union of the minimal carriers of the Ti; since the sum 
is finite, this set is compact. Let c, be a chain in S,(X) whose coset modulo 
S, (A) represents a; then ac, is carried by A. Let X. be the minimal carrier of c, 
and let Ao  be the minimal carrier of ac,. Then c, can be taken to represent a 
homology class [3 in H,(X0,A0); and i# (0) = a. 0 

The preceding theorem shows that singular theory satisfies the compact 
support axiom. There is an addendum to this theorem, which we prove here. (It 
can also be derived directly from the axioms; see the exercises of §27.) 

Theorem 30.5. Let i : 	(X,A) be inclusion, where (X0,A0) is a 
compact pair. If a e H,(X0,A0) and i,o(a) = 0, then there are a compact pair 
(X„A1) and inclusions 

(Xo,A.) L (X,,A,) (X,A) 
such that j, (a) = 0. 

Proof. Let c, be a singular p-chain of X0  representing a; then ac, is carried 
by A,. By hypothesis, there is a chain d, + , of X such that c, — ad, , is carried 
by A. Let X, be the union of X0  and the minimal carrier of d, + ,; let A, be the 
union of Ao  and the minimal carrier of c, — ad, + 1. 0 

Thus far everything has been relatively easy; we have verified all but the 
homotopy and excision axioms. These two require more work. We verify the ho-
motopy axiom now. 

In outline, the proof is similar to the proof of the homotopy axiom for sim-
plicial theory (Theorem 19.2). We consider the inclusion maps i, j : 
defined by 

i(x) = (x,0) 	and 	j(x) = (x,1), 

and we construct a chain homotopy D between io  and jo. If F is a homotopy 
between f and g, then Fo  o D is a chain homotopy between and go, and the 
theorem follows. To construct D in simplicial theory, we used acyclic carriers; 
here we need something more general. It is a special case of what we shall later 
call the "method of acyclic models." 

It is plausible that a chain homotopy D between io  and jo  should exist. For 
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T 

Figure 30.1 

example, if T is the singular 1-simplex pictured in Figure 30.1, and if aT = 
T, — To, we can take DT, and DT„ to be the "vertical" singular 1-simplices 
pictured. Then we can take DT to be a 2-chain that covers the shaded region in 
the figure, having as boundary ji(T) — DT, — io(T) + DT„ 

We state the existence of D as a separate lemma: 

Lemma 30.6. There exists, for each space X and each non-negative inte-
ger p, a homomorphism 

Dx : So(X)--. So+  ,(X X I) 
having the following properties: 

(a) If T : 	X is a singular simplex, then 
aD,T + DxaT = jo(T) — io(T). 

Here the map i : X X X I carries x to (x,0): and the map j: X X X I 
carries x to (x,1). 

(b) DX  is natural; that is, iff:X Y is a continuous map, then the 
following diagram commutes: 

spa)-1-2).' s, ,(X x I) 

If# 	l(f X ido  
So(Y)--1-1. 	,(Y X I). 

Proof. We proceed by induction on p. The case p = 0 is easy. Given 
T : 	--, X, let x. denote the point T(410). Define DxT : A, ---, X X I by the 
equation 

D„T(t,O, ..) =-- (x„t) 	for 	0 	t < 1. 

(Recall that Ai  = Eoti  consists of all points (t,O, ...) of R:' with 0 < t < 1.) 
Properties (a) and (b) follow at once. 
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Now suppose Dx  is defined in dimensions less than p, for all X, satisfying 
(a) and (b). We define DxT in dimension p, by first defining it in the case 
where X = Ai, and T equals ip, the identity map of Op  with itself This is the 
crux of the technique; we deal first with a very special space, called the "model 
space," and a very special singular simplex on that space. 

Let i, j : Op  --. Llp  x I map x to (x,0) and (x,1), respectively. Let cp  be the 
singular chain on Ap  X I defined by the equation 

t cp  = MO — 10 (z p) — D„,p(aip). 

(Note that the last term is well-defined, by the induction hypothesis; ip  is a 
singular simplex on Op, so ip  belongs to .3),(Ap) and 6ip  belongs to Sp  _ ,(Ap).) 
Now cp  is a cycle, for using the induction hypothesis, we have 

acp  = 8:4(ip ) — a!„(4,) — [Imo — ii,(ai,) — DAp aaipb 
and this chain vanishes. Since Ap x I is convex, it is acyclic (by Theorem 29.6). 
Therefore, we can choose an element of Sp . ,(A„ X I) whose boundary equals 
cp. We denote this element by DA,(ip); then formula (a) holds because 

aDt,p(ip) = cp. 

Now, given an arbitrary space X and an arbitrary singular p-simplex 
T:6ip  X, we define 

DxT = (T X ii )0(D,pip). 

See Figure 30.2. Intuitively, D,pip is a singular p + 1 chain filling up the entire 
prism Zip  X I; its boundary is, roughly speaking, the boundary of the prism. The 
map (T X 00  carries this chain over to a singular chain on X X I. 

Checking (a) and (b) is now straightforward. To check (a), we compute 

(*) 	 aDx T = (T X 4)00D,,,ip  

= (T X ii )4 (j8(ip) — 11(0 — D,paip) 
= j„(T) — i,(T) — (T X i,)0 DA,(aip). 

Figure 30.2 
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Now we use naturality. By the induction hypothesis, we have commutativity in 
the diagram: 

DA  

Sp  - 1 (Ap) "''''' Sp  (A, X /) 

Tol 	 1(T X il)#  

Sp _ (X) -P-LC Sp(X X 1). 
Therefore, the last term of (*) equals 

—Dx7vaip) = —DxaT#(i,) = —DxOT, 

as desired. 
Checking (b) is easier. If f: X ---. Y, note that (f 0 T) X ll = (f X i,) ° 

(T X i,). Now 

Dy(f p(T)) = Dy(f a T) = ((f 0 T) X ii.)# D,,,,(ip), 

by definition. This in turn equals 

(f X 0# (7.  X i,)#D4,,,(c) = (1 x 4)#DxT. 0 

Note that in the proof just given, we gave a direct construction for DX  in the 
case p = 0. Only in the inductive step did we use the "model space" Op. Here is 
a proof for the case p = 0 that looks more like the inductive step; this is the 
proof we shall later generalize: 

Let p = 0. We define DxT first in the case where X = Do, and T equals i,„ 
the identity map of Ao  with itself. We want the formula 

8A,„(4) = J#(4) —4(4) 

to hold. Note that the right side of this formula is a 0-chain carried by Lio  X I, 
and e of it is zero. Since the space A. X I is convex, it is acyclic. Therefore, we 
can choose DA.io  to be an element of S1 (Lio  X I) whose boundary is .4(0 —
4(4). Then for general X and T, we define 

DxT = (T x il)0D,04. 

Properties (a) and (b) are proved just as they were in the inductive step. 

Theorem 30.7. If f, g :(X,A)--,  (Y,B) are homotopic, then f,, = g,,. The 
same holds in reduced homology if A = B = 0 . 

Proof. Let F : (X X I,A X I) ---, (Y,B) be the homotopy between 
f, g:(X,A)---. (Y,B). Let i, j : (X,A)--,  (X x I,A x I) be given by i(x) = 
(x,0) and j(x) = (x,1). Let Dx :Sp(X)---0 Sp +1(X X I) be the chain homotopy 
of the preceding lemma. Naturality of DX  with respect to inclusion A --. X 
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shows that the restriction of Dx  to S p  (A) equals DA. Thus Dx  carries Sp(A) into 
sp.,(A X I), and thus induces a chain homotopy 

DX,A: S p(X,A)--)Sp  ., ,(X X I,A X I) 

on the relative level. Formula (a) of Lemma 30.6 holds because Ati, is induced 
by Dx. Define D to be the composite of Dx4  and the homomorphism 

Fo  : Sp  ,. , (X X I,A X I) —) Sp 4. ,(Y,B). 

Then we compute 

ap = aF,D,,,,A  = FdDx,A 
= Fp(jp  — ip — DzA  a) 
= (F 0 D p  — (F 0 O p  — FpDx4 a 

=f,, — go  — Da. 0 

Definition. Let f : (X,A) (Y,B). If there is a map g: (Y,B)--. (X,A) 
such that f 0 g and g 0 fare homotopic to the appropriate identities as maps of 
pairs, we call fa homotopy equivalence, and we call g a homotopy inverse for f. 

Theorem 30.8. Let f : (X,A)—) (Y,B). 
(a) If f is a homotopy equivalence, then f„ is an isomorphism in relative 

homology. 
(b) More generally, if f : X —) Y and f IA : A —.13 are homotopy equiva-

lences, then f,, is an isomorphism in relative homology. 

Proof Iff is a homotopy equivalence, it is immediate that/. is an isomor-
phism. To prove (b), we examine the long exact homology sequences of (X,A) 
and of (Y,B), and the homomorphism f,, carrying the one exact sequence to the 
other. The hypotheses of the theorem tell us that 

f,, : Hj,(X) ---, Hp (Y) 	and 	(f IA).: Hp  (A)—) 14(B) 

are isomorphisms. The theorem then follows from the Five-lemma. 0 

If f : (X,A)—) (Y,B) is a homotopy equivalence, then so are f : X —) Y and 
flA:A—)B. The converse does not hold, however, as the following exam-
ple shows. 

Example 1. Consider the inclusion map j: (Be, Se - 3 ) --. (R", R" — 0). Since Be 
is a deformation retract of R", and Sa -' is a deformation retract of R° — 0, the 
map j, is an isomorphism in relative homology. Suppose there existed a map 
g : (R, R" — 0) —. (Be, S' 1 ) that served as a homotopy inverse for j. Then since 0 
is a limit point of R" — 0, the map g necessarily carries 0 into S" - '. Hence 

g . j: (Be, Se - 3 ) —. (Be , Se - 3) 
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carries all of r into S" " so it induces the trivial homomorphism in homology. On 
the other hand, this map is by hypothesis homotopic to the identity, so it induces the 
identity homomorphism of H„(13', S" I ). Since this group is non-trivial (as we shall 
prove shortly), we have a contradiction. 

EXERCISES 

I. Construct the exact sequence of a triple in singular homology. (See Exercise 2 
of §26.) 

2. Show that if f X Y is homotopic to a constant, then f, is the zero homo-
morphism in reduced homology. Conclude that if X is contractible, then X is 
acyclic in singular homology. 

3. Suppose inclusion j : A X is a homotopy equivalence. Show Hp(X,A) = 0. 

4. Give an example in which Hp(X,A) Hp(Y,B), although X has the homotopy 
type of Y and A has the homotopy type of B. Compare with Theorem 30.8. 

5. In the proof of Lemma 30.6, one has some freedom in choosing the chain Dooi p. 
Show that the formula 

Dpi = I(-1)i1((4,0), 	 ,(cp,1)) 
= o 

gives a p + 1 chain on Op  X I that satisfies the requirements of the lemma. 
Draw a picture when p = 1 and p = 2. 

6. Show that if f 	(Y,B) is a homotopy equivalence, then both f : X Y 
and f I : A B are homotopy equivalences. 

7. Consider the category C whose objects are chain complexes; a morphism of C 
(of degree d), mapping 6 to 6', is a family of homomorphisms (1);  : C;  
C;+,. Consider the following functors from the topological category to C: 

G(X) = S(X); 	G(f) 

H(X) = S(X X I); H(f) = 	Or• 

Show that the chain homotopy Dx  of Lemma 30.6 is a natural transformation 
of G to H. 

§31. EXCISION IN SINGULAR HOMOLOGY 

In this section, we verify the excision axiom for singular homology. The tech-
niques involved in the proof will be useful later in other situations. 

One of the facts we proved about simplicial complexes was that we could 
chop up a finite complex barycentrically into simplices that were as small as 
desired. We need a similar result for singular chains. To be precise, suppose one 
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is given a space X and a collection A of subsets of X whose interiors cover X. A 
singular simplex of X is said to be A-small if its image set lies in an element 
of A. Given a singular chain on X, we show how to "chop it up" so that all 
its simplices are A-small. Not surprisingly, what we do is to introduce some-
thing like barycentric subdivision in order to accomplish this. We give the 
details now. 

Definition. Let X be a topological space. We define a homomorphism 
sdx  : Sp(X) --# Sp(X) by induction. If T : Da --,  X is a singular 0-simplex, we 
define sdx  T = T. Now suppose sdx.,  is defined in dimensions less than p. If 
1i, : tip  —. tip  is the identity map, let A, denote the barycenter of Zip  and define 
(using the bracket operation of §29), 

sd,pip  = (-1)P [sd,p(aip), a,,i. 
The definition makes sense since iii, is star convex relative to Ap. Then if 
T : AD —,  X is any singular p-simplex on X, we define 

sdx  T = T # (sd 4 pi p). 

See Figure 31.1. It is called the barycentric subdivision operator in singular 
theory. 

T 
--------). 

sd ip  ap   

Figure 31.1 

Lemma 31.1. The homomorphism sdx  is an augmentation-preserving 
chain map, and it is natural in the sense that for any continuous map f : 
X --, Y, we have 

fi  0 sdx  = sd, 0 fo. 
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Proof The map sdx  preserves augmentation because it is the identity in 
dimension 0. Naturality holds in dimension 0 for the same reason. Naturality 
holds in positive dimensions by direct computation: 

f.(sdx  T) fii Tii (skpip) 	(f T).(sd,pip ) 

= sdy(f 0 T) = sdy(f,(T)). 

Henceforth, we shall normally omit the subscript on the operator sdx, relying on 
the context to make the meaning clear. 

To check that sd is a chain map, we proceed by induction on p. The fact 
that sd o a = a o sd in dimension 0 is trivial. Assuming the result true in dimen-
sions less than p, we apply Lemma 29.5 to compute 

a sd ip  = (-1)P a [sd aip, Op] 

I

( — 	[a sd aip, 	sd aip 	if 	p > 1, 

—e (sd ay) 	sd aii 	if 	p = 1, 

where T. is the 0-simplex whose image point is 0,. Now if p > 1, we have 
a sd aip  = sd aai, = 0 by the induction hypothesis. If p = 1, we have 
e(sd ail) = coo = 0, because sd preserves augmentation. Hence in either 
case, a sd ip  = sd air  In general, we compute 

a sd T = aT,(sd ip) 	by definition, 

= T„ (a sd ip ) 	because T„ is a chain map, 

= TM  (sd aip) 	by the formula just proved, 

= sd To  (aip) 	because sd is natural, 

= sd a (T0 (0) 	because T, is a chain map, 

= sd a T. 

Lemma 31.2. Let T : Ap a be a linear homeomorphism of Ap with the 
p-simplex a. Then each term of sd T is a linear homeomorphism of A, with a 
simplex in the first barycentric subdivision of a. 

Proof The lemma is trivial for p = 0; suppose it is true in dimensions less 
than p. Consider first the identity linear homeomorphism ip  : Ap Op. Now 

sd ip  = [sd 

Each term in aip  is a linear homeomorphism of Ap 1 with a simplex in Bd 
By the induction hypothesis, sd 	= ± T„ where T, is a linear homeomor- 
phism of A, 	with a simplex s, ....1„ in the first barycentric subdivision of 
Bd Ap. Then VA] is by definition a linear homeomorphism of Ap  with the 
simplex AA 	•1p, which belongs to the first barycentric subdivision of Ar  

Now consider a general linear homeomorphism T : 	Q. Note that T 
defines a linear isomorphism of the first barycentric subdivision of Ap  with the 
first barycentric subdivision of a, because it carries the barycenter of A, to the 
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barycenter of o. Now sd T = TM  (sd i,); since the composite of linear homeo-
morphisms is a linear homeomorphism, each term in sd T is a linear homeomor-
phism of A with a simplex in the first barycentric subdivision of o. 0 

Theorem 31.3. Let A be a collection of subsets of X whose interiors cover 
X. Given T : 0, —+ X, there is an m such that each term of sd" T is .A-small. 

Proof It follows from the preceding lemma that if L is a linear homeo-
morphism of 0, with the p-simplex a, then each term of sd "L is a linear homeo-
morphism of A, with a simplex in the mth barycentric subdivision of a. 

Let us cover Ap  by the open sets T " (Int A), for A e A. Let X be a 
Lebesgue number for this open cover. Choose m so that each simplex in the mth 
barycentric subdivision of Ap has diameter less than X. By the preceding remark, 
each term of sdmip  is a linear singular simplex on b., whose image set has 
diameter less than X. Then each term of se T = T ii (scr i p) is a singular simplex 
on X whose image set lies in an element of A. 0 

Having shown how to chop up singular chains so they are A-small, we now 
show that these A-small singular chains suffice to generate the homology of X. 
First, we need a lemma. 

Lemma 31.4. Let m be given. For each space X, there is a homomorphism 
Dx : S, (X) Sp 4  ,(X) such that for each singular p-simplex T of X. 

(*) 	aDxT + DxaT = se T — T. 
Furthermore, DX  is natural. That is, if f : X —. Y, then f, a DX  = Dy . ft. 

Proof If T : A. —4 X is a singular 0-simplex, define DxT = 0. Formula 
(*) and naturality follow trivially. Now let p > 0. Suppose DX  is defined, satis-
fying (*) and naturality, in dimensions less than p. We proceed by a method 
similar to that used in the proof of Lemma 30.6, which will be formalized in the 
next section as the "method of acyclic models." 

We first define DxT in the special case X = Ap  and T = ip, the identity 
map of A with itself. Consider the singular p-chain 

cp  = sd" ip  — ip  — Dt,,(aip). 

This is by definition a singular p-chain on Op. It is a cycle, by the usual compu-
tation (using the hypothesis that (*) holds in dimensions less than p). Since 
A is acyclic in singular homology, we can choose D„,,ii, to be an element of 
S,, (A) whose boundary equals c,. Then (*) holds for X = Ap  and T = ip. 

Given a general singular p-simplex T : 0, —. X, we define 

DxT = Ti(D,,,,(ip)). 
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Formula (*) holds for Dx  by the usual direct computation: 

aDxT = Tp(aD,,(0) 
= r,(se ip  — ip  — D4,p(ai,)) 
= se To  (ip) — To  (ip) — DxTi(aii,) 
-- sdm T — T — DxoT, 

where the next to last equality uses naturality of Dx  for the p — 1 chain Sip. 
Naturality of Dx  in dimension p follows directly from the definition. El 

Note that the naturality of se and Dx  shows that if A is a subspace of X, 
then scr and Dx  carry S p(A) into S p(A) and Sp 4. 1 (A), respectively. Thus they 
induce a chain map and a chain homotopy, respectively, on the relative chain 
complex i(X,A) as well. 

Definition. Let X be a space; let .A be a covering of X. Let Sp (X) denote 
the subgroup of Sp  (X) generated by the A-small singular simplices. Let eS (X) 
denote the chain complex whose chain groups are the groups S-; (X). It is a 
subchain complex of e(X), for if the image set of T lies in the element A of A, 
so does the image set of each term of aT. 

Note that each singular 0-chain is automatically .'t-small; hence S.  (X) = 
So  (X), and e defines an augmentation for e(X). It follows from the preceding 
remark that both se and Dx  carry eS'A  (X) into itself for if the image set of T 
lies in A, so does the image set of each term in sdn'T and Dx7'. 

Theorem 31.5. Let X be a space; let .A be a collection of subsets of X 
whose interiors cover X. Then the inclusion map c.S'(X)--,  i(X) induces an 
isomorphism in homology, both ordinary and reduced. 

Proof. The obvious way to proceed is to attempt to define a chain map 
X : *(X) --. eS'-'4  (X) that is a chain-homotopy inverse for the inclusion map. This 
is not as easy as it looks. For any particular singular chain, there is an m such 
that the map scr will work, but as the singular chain changes, one may have to 
take in larger and larger. We avoid this difficulty by using a different trick (or 
method, if you prefer). 

Consider the short exact sequence of chain complexes 

0 --, Sp (X) —, Sp  (X) —0 Sp(X)/SP (X) --. 0. 

It gives rise to a long exact sequence in homology (either ordinary or reduced). 
To prove our theorem, it will suffice to show that the homology of the chain 
complex ts.„(x)/ s „. A (X), a} vanishes in every dimension. This we can do. We 
need only prove the following: 

Suppose cp  is an element of .5p(X) whose boundary belongs to .3-:_ 1(X). 
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Then there is an element d, + , of .S,„.,(X) such that c, + ad,,,, belongs 
to Sp'(X). 

Note that cp  is a finite formal linear combination of singular p-simplices. In 
view of Theorem 31.3, we can choose m so that each singular simplex appearing 
in the expression for sdmc, is A-small. Once m is chosen, let Dx  be the chain 
homotopy of Lemma 31.4. We show that ci, + aDxcp  belongs to S,, (X). Then 
we are finished. 

We know that 

aDxcp  + Dxacp  = seep  — cp, 
or 

cp  + aDxcp  = sdmcp  — Dxacp. 
The chain sdm cp  is in . S c,-'' (X), by choice of m. And since ac„ belongs to SpA_ ,(X), 
the chain Dxacp  belongs to S,, (X), as noted earlier. 0 

Now there does exist a chain map 

X : e9(X) ---, eS'-' (X) 
that is a chain-homotopy inverse for the inclusion map. A specific formula for 
X, involving the chain maps sd'n, is given in [V], p. 207. We shall derive the 
existence of X shortly from a more general result. (See the exercises of §46.) 

Corollary 31.6. Let X and A be as in the preceding theorem. If B C X, 
let Sp' (B) be generated by those singular simplices T :.6,,,-- B whose image 
sets lie in elements of A. Let S,, (X,B) denote SpA(X)1Sp-4 (B). Then inclusion 
SpA  (X, B) —4 Sp(X,B) induces a homology isomorphism. 

Proof The inclusions eS'' (B)--,  e9(B) and eS'' (X) —, S(X) give rise to a 
homomorphism of the long exact homology sequence derived from 

0 --, eS'(B)—,  *(X) —, 8(X,B)--. 0 

with the one derived from 

0 -+ eS'.4  (B) —, eS'' (X) —* 4' (X,B) --. 0. 

Since inclusion induces an isomorphism of the absolute homology groups of 
these respective sequences, the Five-lemma implies that it induces an isomor-
phism of the relative groups as well. 0 

Theorem 31.7 (Excision for singular theory). Let A C X. If U is a subset 
of X such that U C Int A, then inclusion 

j : (X — U, A — U) —4 (X,A) 
induces an isomorphism in singular homology. 
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Proof Let A denote the collection {X — U,A}. Now X — U contains the 
open set X — U. Since U C Int A, the interiors of the sets X — U and A cover 
X. Consider the homomorphisms 

S,(X — U) 	Sp (X) 	Sp(X) 
S p(A — U) 	S'-'; (A) 	S p(A) 

induced by inclusion. The second of these homomorphisms induces a homology 
isomorphism, by the preceding corollary. We show that the first is an isomor-
phism already on the chain level, and the proof is complete. 

Note first that the map 

: 	(X — U) S.-; (X) I S-'; (A) 

induced by inclusion is surjective. For if cp  is a chain of S-'; (X), then each term 
of cp  has image set lying in either X — U or in A. When we form the coset 
cp  + S, (A) we can discard those terms lying in A. Thus 4, is surjective. The 
kernel of 4,  is 

S, (X— U) fl S, (A) = Sp  ((X— U) 11 A) = S p(A — U), 

as desired. 0 

Note that this theorem is slightly stronger than the excision axiom proper 
(see §26); in singular theory we do not need to assume U is an open subset of X. 

As an application, we compute the singular homology of the ball and the 
sphere. 

Theorem 31.8. Let n > 0. The group Hi (B",Sn -1) is infinite cyclic for 
i = n and vanishes otherwise. The group HAP) is infinite cyclic for i = n and 
vanishes otherwise. The homomorphism of H.(S1 with itself induced by the 
reflection map 

(Xt,xz, • • • Ocif + 	= (--XI,X2, • - • 	+1) 

equals multiplication by —1. 
Proof We verify the theorem for n = 0. It is trivial that Hp  (B°, 0) is 

infinite cyclic for p = 0 and vanishes otherwise, since B° is a single point. 
It is similarly easy to see that H, (S°) = 0 for p 0 0, since S° consists of 

two points a and b. In dimension 0, the singular chain group of S° is generated 
by the constant simplices T. and Tb . The boundary operator 8 : 
so (fa,b1) is trivial, because any singular 1-simplex on {a,b} is constant. It fol-
lows that Ho(S°) is infinite cyclic, and is generated by T. — Tb . As a result, the 
reflection map, which exchanges a and b, induces the homomorphism of Ho  (S°) 
that equals multiplication by —1. 

Suppose the theorem is true in dimension n — 1, where n > 1. It follows 
from the long exact homology sequence of (Be  , S's -1) that 

H i(B", S" 	- 1(S" 
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S" 

Figure 31.2 

since Bn is contractible. Thus H i (B", S° ') is infinite cyclic for i = n and 
vanishes otherwise. 

To compute 111 (S"), consider the following homomorphisms, 

" 1 ) 29-1-4 	_ ,(sn ') 
lk. 

HAS" — q, E". — q) 

Hs (S',E1) 

where i, j, k are inclusions, and q = (0, . . . ,0,— 1) is the "south pole" of Sa. 
Recall that El. and El are the upper and lower hemispheres of 54, respectively, 
and S° 	n El is the "equator" of S". See Figure 31.2. Now both E. 
and 	are n-balls; in fact, the projection of R" + onto R" X 0 carries El. and 
El homeomorphically onto Ba. (It also carries Ea_ — q onto B" — 0.) In par-
ticular, Et is contractible, so the long exact homology sequence of (5",El.) 
shows that is  is an isomorphism. The excision property shows that js  is an iso-
morphism, since q e Int El. The map k, is an isomorphism because S° ' is a 
deformation retract of El — q, and E+ is a deformation retract of S" — q. 
(Since the pair (Et — q, S" 1) is homeomorphic to the pair (B" — 0, S' - I ), 
there is a deformation retraction F, of El — q onto 5' '. It extends to a de-
formation retraction of S' — q onto El, by letting F, equal the identity on 
El., for each I.) The fact that a, is an isomorphism follows from the contract-
ibility of E".}.. 

It follows from the induction hypothesis that 1-11 (S") is infinite cyclic for 
i = n and vanishes otherwise. 

Now the reflection map p, induces a homomorphism of the preceding dia- 
gram with itself, since it maps each of p, 	El., and S" into itself. By the 
induction hypothesis, the homomorphism induced by p, equals multiplication by 
—1 on H. _ 1(P -1); therefore, it equals the same on H.(S"). 0 

Corollary 31.9. If a : S" S° is the antipodal map a (x) —x, then a, 
equals multiplication by (-1)" 1. 0 
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EXERCISE 

1. Express the naturality provisions in Lemmas 31.1 and 31.4 by stating that sd 
and Dx  are natural transformations of certain functors. 

*§32. ACYCLIC MODELS? 

In the two preceding sections, we constructed certain natural chain homotopies 
D. The method was to define Dx  first for a particular singular simplex ii, on a 
particular space Ap. To do this, we needed the acyclicity of another space, either 
of A,, X I (in §30) or of Ap  itself (in §31). This part of the construction involved 
an arbitrary choice; everything thereafter was forced by naturality. The resem-
blance to earlier constructions involving acyclic carriers was strong, but never-
theless there were differences. 

Now we formalize this method for later use. We state here a theorem, suffi-
ciently strong for our purposes, that we shall call the acyclic model theorem. Its 
formulation is sufficiently abstract to bother some readers. It may help you 
keep your feet on the ground (even if your head is in the clouds of abstraction) 
if you reread the proofs of Lemmas 30.6 and 31.4 before tackling this theorem 
and its proof. 

Throughout this section, let C denote an arbitrary category with objects 
X, Y, . . . and morphisms f, g, . . . ; and let A denote the category of augmented 
chain complexes and chain maps of such. We will be dealing with functors 
from C to A. 

For most of the applications we have in mind, C will be either the topolog-
ical category (whose objects are topological spaces and whose morphisms are 
continuous maps) or the category of pairs of spaces and pairs of continuous 
maps. So you may think only of those categories if you like. 

Definition. Let G be a functor from C to A; given an object X of C, let 
G, (X) denote the p-dimensional group of the augmented chain complex G(X). 
Let At be a collection of objects of C (called models, or model objects). We say 
that G is acyclic relative to the collection At if G (X) is acyclic for each X e At. 
We say G is free relative to the collection At if for each p _?_- 0, there are: 

(1) An index set .1„. 
(2) An indexed family {MJ e,,, of objects of A. 

(3) An indexed family fil e  ,p, where i, e Gp(Ma) for each a. 

The following condition is to hold: Given X, the elements 

G(f)(ia) e G,(X) 

'In this section, we assume familiarity with §28, Categories and Functors. The results of this 
section will be used when we prove the Eilenberg-Zilber theorem, in §59. 
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are to be distinct and form a basis for Gp(X), as f ranges over all elements of 
horn (M,.„X), and a ranges over J. 

Example I. Consider the singular chain complex functor, from the topological 
category to A. Let At be the collection {A, I p = 0,1, . . .}. This functor is acyclic 
relative to At. We show it is free relative to .4t: for each p, let the index set .1i, have 
only one element; let the corresponding family consist of .1, alone; and let the corre-
sponding element of Sp(Ap) be the identity singular simplex is,. It is immediate that, 
as T ranges over all continuous maps Ai, — X, the elements T,(4) = T form a basis 
for Sp  (X). 

Example 2. Consider the following functor G, defined on the category of topologi-
cal pairs: 

	

(X, Y) --. 8(X x Y) 	and 	(f,g) --, (f X g),. 
Let At = IAA) Ip,q = 0,1, ... }. Then G is acyclic relative to .4t, since 41,, X Zig  
is contractible. We show G is free relative to At: For each index p, let .11, consist of a 
single element; let the corresponding family consist of (Apolp) alone; and let the 
corresponding element of ..S; (A, X AO be the diagonal map dp  (x) = (x,x). As f 
and g range over all maps from Ap  into X and Y, respectively, (f x g)0(dd ranges 
over all maps zip  --, X X Y—that is, over a basis for ..Sp(X X Y). 

Example 3. Let G be the functor 

X --, ei4  (X x I) 	and I- (f x 4),- 
Let .1K = {A,I p = 0,1, ... }. Then G is acyclic relative to ..4t. It is also true that G is 
free relative to At, but the proof is not obvious. Let J, be the set of all continuous 
functions a : Ap  I. Let the family wel, e  Jp  be defined by setting M. = A, for 
each a. For each a, let i. E S,(M, X I) be the singular simplex 

i. : Ap  ---, Lip  X I 

defined by 

c(x) =-- (x, a(x)). 

As f ranges over all maps of Ap  into X, and a ranges over the set J,, the element 
(f x ii)0(c) ranges over a basis for Sp(X X I). 

Note that if G is free relative to a collection A, then it is automatically free 
relative to any larger collection, while if it is acyclic relative to .ht, it is auto-
matically acyclic relative to any smaller collection. Therefore, if we wish G to 
be both free and acyclic relative to 42, we must choose At to be just the right 
size, neither too large or too small. 

Theorem 32.1 (Acyclic model theorem). Let G and G' be functors from the 
category C to the category A of augmented chain complexes and chain maps. 
Let .1K be a collection of objects of C. 

If G is free relative to At, and G' is acyclic relative to .42, then the follow-
ing hold: 
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(a) There is a natural transformation Tx  of G to G'. 
(b) Given two natural transformations Tx, T, of G to G', there is a natu-

ral chain homotopy Dx  between them. 

"Naturality" means the following: For each object X of C, 

Tx  : G;(X) —* G;(X) 	and 	Dx  : Gp(X) -, G; 4, i (X). 

Naturality of Tx  and Dx  means that for each f e horn (X, Y), we have 

G'(f) 0 Tx  = Ty 0 G(f), 

G' (f) 0 Dx  = Dye G(f). 

The proof of Theorem 32.1 is left to the reader! 
Actually, this is not as unkind as it might seem. One cannot in fact under-

stand a proof at this level of abstraction simply by reading it. The only way to 
understand it is to write out the details oneself. If you have labored through the 
acyclic carrier theorem, and have followed the constructions of D, in the pre-
ceding sections, you should be able to write down the proof of (b). After that, 
the proof of (a) should not be too difficult. 

An immediate corollary is the following. 

Theorem 32.2. Let C be a category; let G and G' be functors from C to A. 
If G and G' are free and acyclic relative to the collection At of objects of C, 
then there is a natural transformation Tx : G(X) --0 G' (X); any such transfor-
mation is a chain equivalence. 

Proof. We apply the preceding theorem four times. Because G is free and 
G' is acyclic, Tx  exists. Because G' is free and G is acyclic, there is a natural 
transformation Sx  of G' to G. Now Sx  0 Tx  and the identity transformation are 
two natural transformations of G to G; because G is free and acyclic, there is a 
natural chain homotopy of Sx  o Tx  to the identity. Similarly, because G' is free 
and acyclic, there is a natural chain homotopy of Tx  0 Sx  to the identity. 0 

EXERCISES 

1. Prove the acyclic model theorem. 

2. Consider the following functors: 

G : X --' cf (X) 	and 	J.* .4, 

G' : X — S(X x I) 	and f --. (f X ii )#. 

(a) Show that the maps Tx, 71 : S#(X) —. Si,(X X I) defined by Tx(T) = 
i#(T) and TX(T) = j#(T) are natural transformations. Derive Lemma 30.6 
as a consequence of the acyclic model theorem. 

(13) Derive Lemma 31.4 from the acyclic model theorem by showing that se 
and (ix)#  are natural transformations of the functor G to itself. 
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3. Let K and L be simplicial complexes; suppose cI,  is an acyclic carrier from 
K to L. 

Consider the category C whose objects are subcomplexes of K and whose 
morphisms are inclusion maps j of subcomplexes of K. If Ko  is a subcomplex of 
K, let 4'(Ko) be the union of the subcomplexes 4) (a) of L, as a ranges over all 
simplices of Ko. 
(a) If Ko  and K, are subcomplexes of K, and j : K, K, is inclusion, consider 

the functors from C to A given by 

G : Ko  e(K0) 	and 
	

iN1 

G' : Ko  e(4(K.)) 	and 	j—IN,  

where I :S(K.) 4(K1) is the inclusion map. Show that G and G' are 
indeed functors. 

(b) Derive the acyclic carrier theorem (geometric version) from the acyclic 
model theorem. [Hint: Let At consist of those subcomplexes of K whose 
polytopes are simplices of K.] 

§33. MAYER-VIETORIS SEQUENCES 

If X is the union of two subspaces X, and X2, under suitable hypotheses there is 
an exact sequence relating the homology of X with that of X, and X2. It is called 
the Mayer-Vietoris sequence of the pair X„ X2. We constructed such a sequence 
in simplicial theory under the assumption that X, and X2  were polytopes of sub-
complexes of a complex. In singular theory, we need an analogous condition: 

Definition. Let X = X, U X2. Let i(X,) + S(X2) denote the chain com-
plex *A  (X), where A = {X„ X,}. Its pth chain group is the sum Si, (X,) + 
..3,,(X2), which is not a direct sum unless X, and X2  are disjoint. We say {X1, x2} 
is an excisive couple if the inclusion 

(./3  C 1) + (X,) —4 eSV C 

induces an isomorphism in homology. 

For singular homology, this definition is equivalent to the one given in the 
exercises of §26. Proof is left to the reader (see Exercise 2). 

In view of Theorem 31.5, one situation in which {X„ X2} is excisive occurs 
when the sets Int X, and Int X2  cover X. 

Theorem 33.1. Let X = X, U X,: suppose {X„ X2} is an excisive couple. 
Let A = X, fl X2. Then there is an exact sequence 

4,* 	1P* • • • H p(A) H p(X,) ®Hp  (X,) H ,(X) H _ ,(A) 	• • • 
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called the Mayer-Vietoris sequence of IX„ X2}. The homomorphisms are de-
fined by 

0*(a) = (i*(a), —.1* (a)), 

0,,,(x2,x2) = k*(;) + 1* (x2), 

where the maps 

I 
X2  —1--,  X 

are inclusions. A similar sequence exists in reduced homology if A is nonempty. 
Both sequences are natural with respect to homomorphisms induced by con- 
tinuous maps. 

Proof We define a short exact sequence of chain complexes 

(*) 	0 --. Si,(A)S-. S p(X,) e si,(X2) I. s,(X,) + S, (X2) — o 
by the equations 

OW = Mc), —.4(c)), 

1,G (c„ c2) = k#  (c,) + 1#  (c2). 

The map 4)  is injective, while 4./ is surjective and its kernel consists of all chains 
of the form (c, —c), where c e S ,,(X,) and —c e Sp(X2). Exactness follows. We 
obtain from the zig-zag lemma a long exact sequence in homology. Since the 
hypotheses of the theorem guarantee that 
(**) 
	

140' (X,) + e S IX)) --r. I - 1;,(X), 

the proof is complete. Exactness of the Mayer-Vietoris sequence in reduced ho-
mology when A * 0 follows by a similar argument. 

Now suppose f : (X,X„X2)—,  (Y,Y„Y2) is a continuous map; where X = 
X, U X2  and Y= Y, U Y3  and both {X„X,} and IY„ Y2} are excisive couples. 
Since fi, commutes with inclusions, it commutes with the chain maps 46 and 4/. 
Thus f, gives a homomorphism of short exact sequences of chain complexes, so 
that f#  is a homomorphism of the corresponding homology sequences. Finally, 
we note that the isomorphism (**) commutes with f,,, since it is induced by in-
clusion. The naturality of the Mayer-Vietoris sequence follows. 0 

The Mayer-Vietoris sequence has many applications. We give one here, as 
an illustration. We shall not, however, have occasion to use this result later in 
the book. 

Recall that if K is a complex and if w#  * K and w, * K are cones on K whose 
polytopes intersect in IKI alone, then their union is a complex denoted S(K) and 

i I 
k  1 
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called a suspension of K. (See §25.) It is easy to show that the map 

,r : IKI X [— 1,1] 	IS(K)I 

defined by 

, 	1(1 — t)x + two  if t 0, 
ir (X, t) 

(1 + 	— tWi  if t -5_ 0, 

is a quotient map that collapses IKI X 1 to the point wo, and WI X ( —1) to w„ 
and is otherwise one-to-one. The proof is similar to the corresponding result for 
cones (see Corollary 20.6). This fact motivates the definition of suspension for 
an arbitrary topological space. 

Definition. Let X be a space. We define the suspension of X to be the 
quotient space of X x [—LI] obtained by identifying the subset X X 1 to a 
point, and the subset X X ( — 1) to a point. It is denoted S(X). 

Just as in the case of simplicial theory, one can compute the homology of a 
suspension by using a Mayer-Vietoris sequence. One has the following theorem: 

Theorem 33.2. Let X be a space. There is for all p an isomorphism 

j,(S (X)) 	_ ,(X). 

Proof Let 7 : X X [ —1,1] S (X) be the quotient map. Let v = 
it (X X 1) and w = 7(X X (-1)); these points are called the "suspension 
points." Let X, = S(X) — w and X2  = S(X) — v; since both X, and X2  are 
open in S (X), the pair {X,, X,} is excisive. We show that X, and X2  are acyclic. 
The Mayer-Vietoris sequence then implies that there is an isomorphism 

(S(X)) 	X2). 

We also show there is a homotopy equivalence of X, fl X2  with X, so there is an 
isomorphism 

_ 	n x,),  _ ,(x). 

The theorem follows. 
Now X X (-1,1] is open in X x [ — 1,1] and is saturated with respect to 

7. Therefore, the restricted map 

7' :X X (-1,1] —.X, 

is a quotient map. Now X X 1 is a deformation retract of X X (-1,1]; the map 

F:XX(-1,11X1--. Xx ( —1,11 

defined by 

F(x,s,t) 	(x, (1 — t)s + t) 
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is the desired deformation retraction. Since the map 7' o F in the following 
diagram 

XX (-1,1] 	 X (-1,1] 

le X ill 
1 7'  

X, X r G 
 

is constant on X X 1 X I, it induces a continuous map G that is a deformation 
retraction of X, to the point v. (Here we use the fact that 111  X i1 is a quotient 
map, which follows from Theorem 20.1.) Thus X, is acyclic. 

A similar proof shows that X2  is acyclic. Finally, we note that the re-
stricted map 

le :X X (-1,1) -4X1  n x, 

is a one-to-one quotient map, and hence a homeomorphism. Since X X 0 is a 
deformation retract of X X (-1,1), there is a homotopy equivalence of X with 
X, n x, o 

EXERCISES 

1. Consider the closed topologist's sine curve X, pictured in Figure 33.1. It is the 
union of the topologist's sine curve Y (defined in the exercises of §29) and an 
arc that intersects Y only in the points (0,-1) and (1,sin 1). Compute the sin-
gular homology of X, using a suitable Mayer-Vietoris sequence. 

Figure 33.1 

2. Show that 1X„ X21 is an excisive couple in singular theory if and only if in-
clusion (X„ X, ft X2) (X,X2) induces an isomorphism in singular homology. 
[Hint: Construct an exact sequence 

ecro et(x)  + (x2) 	e(x, n A-2) 0. 

Compare its derived homology sequence with the homology sequence of 
e(X,X2).] 

3. Show that P S(Sn -1) for n 1. Use this fact to compute the singular 
homology of P. 
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4. State and prove a relative version of the Mayer-Vietoris sequence in singular 
homology, where the middle group is H p(X„B,) (Es I p(X,,B,), assuming {X„X,} 
and {B„/32} are excisive. (Hint: Include the sequence 

0 	8(B, 11 B2 ) cV(Bi ) ED (BO 	(BO + QS' (B2) 0 

into the sequence (*) of the proof of Theorem 33.1 and use the serpent lemma.] 

5. Let X = X, U X2  and A = X, CI X2. Suppose X, and X2  are closed in X, and A 
is a deformation retract of an open set U of X2. Show that X, is a deformation 
retract of U U X1; conclude that {X„X,} is an excisive couple. 

§34. THE ISOMORPHISM BETWEEN SIMPLICIAL 
AND SINGULAR HOMOLOGY 

In this section, we show that if K is a simplicial complex, the simplicial homol-
ogy groups of K are isomorphic with the singular homology groups of 1K!. In 
fact, we show that the isomorphism commutes with induced homomorphisms 
and with the boundary homomorphism as, so it is an isomorphism between the 
two homology theories. 

The proof involves a notion we introduced in §13, that of the ordered chain 
complex IC;(K), 8' of a simplicial complex K. We proved there that the homol-
ogy groups of this chain complex, called the ordered homology groups of K, are 
isomorphic to the usual (oriented) homology groups of K. In this section, we 
show that the ordered homology groups of K are in turn isomorphic with the 
singular homology groups of 	thus showing that simplicial and singular ho-
mology agree for polyhedra. 

Recall that an ordered p-simplex of K is a p + 1 tuple (v., . ,v,) of 
vertices of K (not necessarily distinct) that span a simplex of K, and the group 
Cp(K) is the free abelian group generated by the ordered p-simplices. Also 
recall that 

a' (v., • 	, vp) = 	( — 1)' (v., . 	, 

and that e' (v) = 1 for each vertex v. We now construct a chain map carrying 
C;(K) to S,(IKI) and prove that it induces an isomorphism in homology. 

Definition. Define 0 : Cp(K)--,  Sp( IKI) by the equation 

8((v., 	,vd) = 1(v., 	,vp). 

Then 0 assigns, to the ordered simplex (v., . ,vi,) of K, the linear singular sim-
plex mapping As, into SKI and carrying e;  to vi  for i = 0, . . ,p. 

It is immediate from the definitions that 0 is a chain map and that it 
preserves augmentation. If Ko  is a subcomplex of K, then 8 commutes with 
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inclusion, so it maps C; (K0) into S,(11C01), and thus induces a chain map 

0 :C;,(K,K.) --.S„(14,1Koi)• 
To show 0, is an isomorphism, the following lemma will be useful: 

Lemma 34.1. Let IP :0 --4 6' be a chain map of augmented chain com-
plexes. Then 1,1i*  is an isomorphism in reduced homology if and only if it is an 
isomorphism in ordinary homology. 

Proof. We recall the proof that H.(0) .7-- k.(e) 9 Z. (See the exercises 
of §7.) Begin with the exact sequences 

0 --+ ker E ---0 Co  -.--. Z ----4 0 

,1 
	I 

1 =  
0 --, ker E' -0  Co —.0 Z --. 0. 

Choose j : Z --. Co  so that j o E is the identity. Define j' : Z --. C by setting 
j' =‘L o j. Then j and j' split the two sequences, so 

Co  = ker E 9 im j 	and 	Co = ker E' 9 im j'. 
Note that 1,t defines an isomorphism of im j with im j'. Now 

ker E 	 r E' (E, im  j,. 1-1.(e)z-- ac 9 im j 	and 	.110(e1).2.1 a 
ke
ic;  

It follows that 1Y. : Ho(e)--° H.(0') is an isomorphism if and only if IP induces 
an isomorphism of ker elac, with ker E'/(3'C;. 0 

Lemma 34.2. Let K. be a subcomplex of K. For all p, the chain map 0 
induces isomorphisms 

(1) 0„:111,(e1(K))---)111,(IKI), 
(2) B.: H,(e'(K))  ---. Hp  (1KI), 

(3) 0.: Hp(e'(K,K.)) --, 1-4(1K1,1K.1). 
Proof. We assume K. K, since otherwise (3) is trivial. 

Step I. We prove the theorem first when K is finite, by induction on the 
number of simplices in K. If n = 1, then K consists of a single vertex v. In 
each dimension p, there is exactly one ordered p-simplex (v, . . . ,v) of K, and 
exactly one singular p-simplex T : tl,,, —• v of IK I. Furthermore, 0 (v, . . . ,v) = 
1(v, . . . ,v) = T. Then 0 :e'(K)---. 8(1K1) is an isomorphism already on the 
chain level. Hence (1), (2), and (3) hold. 

Now suppose the lemma holds for any complex having fewer than n 
simplices. Let K have n simplices. We note that it suffices to prove (1) for K. 
For then (2) follows by Lemma 34.1. And since 0.:14(e'(K.))---.11,(1K.1) is 
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an isomorphism by the induction hypothesis, (3) follows from the long exact 
homology sequences and the Five-lemma. 

To prove (1), let cr be a simplex of K of maximal dimension. Then a is not a 
face of any other simplex, so that the collection of all simplices of K different 
from a is a subcomplex K, of K having n — 1 simplices. Let 2 denote the com-
plex consisting of o and its faces; let Bd 2 be the collection of proper faces of o. 
Consider the following commutative diagram, where i and j are inclusions: 

kr(evo) 	,(11c1) 

H„(es (KA) 	H K 

T i' 	 T i 
Hp(e'(K„Bd 2)) 

0
Hp(IK,I,Bd u). 

(If dim o = 0, then Bd 2 and Bd a are empty.) It follows from the induction 
hypothesis that the map 0, on the bottom line of the diagram is an isomor-
phism. We shall show that the vertical maps are isomorphisms; it then follows 
that the map 0, on the top line is an isomorphism and the proof is complete. 

First we consider the homomorphisms i,. Because o is acyclic in singular ho-
mology, the long exact homology sequence of (11C1,0) shows that the right-hand 
map i, is an isomorphism. The same argument applies to the map i, in ordered 
simplicial homology, since 2 is acyclic in ordered homology, by Lemma 13.5. 

The map j*  is an isomorphism in ordered simplicial homology, because jr  is 
an isomorphism already on the chain level; the inclusion map 

e'(K,) 	 (K)I6'(Z) 

is surjective and carries to zero precisely those chains carried by K, n z 
Bd 	(In fact, j is just an excision map.) 

It is tempting to assert that j is also an excision map for singular homology, 
so j, is an isomorphism. But this is not true. The domain of j is formed by 
"excising away" from IKI and o the set U = Int u. Since U = a, Theorem 31.7 
does not apply; we are excising away something too large. We can however ex-
cise something smaller—namely, the barycenter 0. of CT. This we now do. 

Consider the diagram 

111,(14a) 

j. 

H,,(IK,I,Bd o) 

where k and 1 are inclusions. The map 1 is an acceptable excision map, since 0 is 

Hp(IKI — er,cr — 
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closed and is contained in Int a. (Note that Int a is open in IKI, because IK,I is 
closed. Therefore, the interior of a in IKI, in the sense of point-set topology, 
equals the "open simplex" Int a.) Therefore, 1, is an isomorphism. Why is k, an 
isomorphism? If dim a = 0, then a — ix and Bd a are empty, and IKI — a = 
IK11; the map k is the identity in this case. If dim a > 0, then we use the fact 
that Bd a is a deformation retract of a — ii. This deformation retraction extends 
to a deformation retraction F, of IKI — ir onto 110, by letting F, equal the iden-
tity on 1K11. See Figure 34.1. We conclude from Theorem 30.8 that k*  is an 
isomorphism. Then j, is an isomorphism in singular homology, as desired. 

Step 2. Having proved the theorem when K is finite, we prove it in gen-
eral. As before, it suffices to prove (1) for all K. For then (2) follows from the 
preceding lemma; and (3) follows from (2) and the Five-lemma. 

First, we show 0, is surjective. Given {z} e 14(11C1), there is a compact sub-
set A of IKI such that the chain z is carried by A. Let L be a finite subcomplex 
of K such that A is contained in ILI. Consider the commutative diagram 

14(ei(L)) 4.-.! Hp(ILI) 
4
111*  

k,,(e' (K))—=.'0  1-1,(1K1) 
where the vertical maps are induced by inclusion. Then {z} lies in the image of 
j,. The map B, on the top line is an isomorphism by Step 2. Hence {z} lies in the 
image of the map 0, on the bottom line. 

We show 0, has trivial kernel. Suppose {z} e kp(61(K)) and 0,„ (14) = 0. 
Then 0(z) = ad for some singular p + 1 chain d of IKI. The chain d is carried 
by a compact subset of IKI; choose a finite subcomplex L of K such that z is 
carried by L and d is carried by ILI. Consider the same commutative diagram as 
before. Let a denote the homology class of z in Hp(e'(L)). Because 0(z) = ad, 
where d is carried by ILI, B, : H;(0' (L)) --. 1-1,(14) carries a to zero. Because 
this map is an isomorphism, a = 0. Hence {z} = 1,, (a) = 0 as well. 0 

Figure 34.1 
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The argument given in Step 2 is of the general kind known as a "direct 
limit argument." It is a standard way of carrying over results that hold for the 
homology of finite complexes, to complexes in general. 

We now combine the results of 513 on ordered homology with the lemma 
just proved. 

Definition. Let K be a complex. We define 

n : &(K) ---0 S (IKI) 
as follows: Choose a partial ordering of the vertices of K that induces a linear 
ordering on the vertices of each simplex of K. Orient the simplices of K by using 
this ordering, and define 

nay., ... ,vp1) = /(v., . . . ,vp), 

where v. < • • • < vp  in the given ordering. It is immediate that n is a chain 
map, that it preserves augmentation, and that it commutes with inclusions. 
Thus it induces a chain map on the relative level as well. 

In fact, n is just the composite 
95 e (K) --, e'(K) 0- S(11C1), 

where 0 is the chain map of the preceding lemma, and 4) is the chain equivalence 
of Theorem 13.6. Since both 45 and 8 induce homology isomorphisms, so does n. 
This result holds for relative homology and reduced homology as well. Although 
77 depends on the chosen ordering of vertices of K, the homomorphism n*  does 
not. For n. = 0. 0 0., where 0 obviously does not depend on the ordering, and 
it. does not depend on the ordering, by Theorem 13.6. 

Finally, we note that since the chain map n commutes with inclusions, the 
naturality of the zig-zag lemma implies that n. commutes with a.. 

We summarize these facts as follows. 

Theorem 34.3. The map n. is a well-defined isomorphism of simplicial 
with singular homology that commutes with the boundary homomorphism a.. 

0 

Furthermore, one has the following naturality result. 

Theorem 34.4. The isomorphism nx  commutes with homomorphisms in-
duced by simplicial maps. 

Proof. Let f : (K,K.) --, (L,L0) be a simplicial map. We have already 
proven that f, commutes with 4. (See Theorem 13.7.) We show it commutes 
with 8.. In fact, f,, commutes with 8 on the chain level. 
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Recall that in ord6red homology, the chain map induced by f is defined by 
the equation 

I;((wo, • • • ,w,)) 	(I (wo), • • • , f (w,,)), 
where (wo, 	,wp) is an ordered p-simplex of K. We compute directly 

f#0((wo, • • • ,wp)) = f o  1(wo, • • • ,wp). 

This map equals the linear map of & into IM that carries E t  to wi  for each i, 
followed by the map f, which carries the simplex spanned by 	,wp  onto a 
simplex of L. Since the composite of linear maps is linear, this map equals 

1  (f (w0), • • • ,f (w p)) = ((f (w0), • • • (w,))) 
= f,;((wo, • • • ,w p)). 0 

It is possible to define the homomorphism of simplicial homology induced 
by a continuous map h as the composite n;' o h, 	where h, denotes the 
induced homomorphism in singular homology. This would give us the same 
homomorphism of simplicial homology as we defined in Chapter 2 by use of 
simplicial approximations. We prove this result as follows: 

Theorem 34.5. The isomorphism n*  commutes with homomorphisms in-
duced by continuous maps. 

Proof Let 

h : (IKI,iKoi) 	(ILMLol) 

be a continuous map. Let 

f: (K',1C,;) 	(L,L0 ) 	and 	g: (K',K0 	(K,K0) 

be simplicial approximations to h and to the identity, respectively. In simplicial 
homology, we have 

h. 	o 

by definition. Now in singular homology, the map gs  equals the identity isomor-
phism, because g is homotopic to the identity map (Theorem 19.4). Similarly, 

= h. in singular homology, because f is homotopic to h. Thus in singular ho-
mology, we also have the equation h. = f, o (g.)-1. 

Our theorem now follows by applying the preceding theorem to the maps 
f and g. 0 

Although we have proven that the chain map n induces an isomorphism in 
homology, we have not found a chain-homotopy inverse A for n. The fact that 
such a A exists is a consequence of results we shall prove later. (See the exer-
cises of §46.) A specific formula for A can be derived using the theory of "regu-
lar neighborhoods." (See [E-S].) 
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EXERCISE 

1. Show that if K, and K2  are subcomplexes of a complex K, then {1K11,1K21 is an 
excisive couple in singular homology. 

*95. APPLICATION: LOCAL HOMOLOGY GROUPS 
AND MANIFOLDSt 

In this section, we define the local homology groups of a space X at a point x of 
X, and we use these groups to prove several non-trivial facts about manifolds. 
Throughout this section, let X denote a Hausdorff space. 

Definition. If X is a space and if x a X, then the local homology groups of 
X at x are the singular homology groups 

Hp(X, X — x). 

The reason for the term "local" comes from the following lemma. 

Lemma 35.1. Let A C X. If A contains a neighborhood of the point x, 
then 

Hp  (X, X — x) = Hp  (A, A — x). 

Therefore, if x a X and y E Y have neighborhoods U, V, respectively, such 
that (U,x) (V,y), then the local homology groups of X at x and of Y at y are 
isomorphic. 

Proof Let U denote the set X — A. Because A contains a neighborhood 
of x, 

U C X — x Int (X — x). 

It follows from the excision property that 

11,(X, X — x) Hp(X — U, X — x — U) = H p(A, A — x). q 

Let us compute some local homology groups. 

Example 1. If x a ir", we show that 1/,(1e,12"' — x) is infinite cyclic for i = m 
and vanishes otherwise. 

Let B denote a ball centered at x. By the preceding lemma, 

H, (R"`, 	— x) = H;  (B, B — x) 	B'" — 0). 

'This section will be assumed in Chapter 8. It is also used in treating one of the examples 
in §38. 
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Now S'" is a deformation retract of B'" — 0. See Figure 35.1; the formula for the 
deformation is given in the proof of Theorem 19.6. Therefore, 

H;  (B"', 	— 0) = HAP", S'" -1). 

This group is infinite cyclic for i = m and vanishes otherwise. 

Example 2. Let Ha' denote euclidean half-space 

H"'  

Let Bd H'" denote the set R'" X 0. If x e Bdir, then the group H;  (H"`, H'" — x) 
vanishes for all i. If x E H"' and x & Bd H"', then this group is infinite cyclic for 
i = m and vanishes otherwise. We prove these facts as follows. 

If x 4 Bd H'", this result follows from the preceding example, once we note 
that x has a neighborhood that is an open set of Ir. So suppose x e Bd 11' ; we can 
assume without loss of generality that x = 0. Let 13"' be the unit ball in It-, centered 
at 0. The set B'" fl H"' contains a neighborhood of 0 in H'". Letting D'" denote the 
half-ball Bm 	we have 

11;(11m, H"' — 0) = HAD', D'" — 0). 

See Figure 35.2. Now there is a deformation retraction of 	— 0 onto S"' 1 . It 
restricts to a deformation retraction of the punctured half-ball D'" — 0 onto the set 

S"' 	H'" = E",'. -1. 

Therefore, 

HAD', D" — 0) 11,(Dm, ET -1). 

Now Dm is acyclic, being a convex set in Itm; and ET ' is acyclic, being homeomor-
phic to B'" -I. The long exact homology sequence shows that their relative homol-
ogy vanishes. 

Figure 35.1 Figure 35.2 

Definition. A nonempty Hausdorff space X is called an m-manifold if each 
point of X has a neighborhood homeomorphic with an open subset of euclidean 
space R". It is called an m-manifold with boundary if each point has a neighbor-
hood homeomorphic with an open set of euclidean half-space 

Note that an m-manifold is automatically an m-manifold with boundary. 
For if x has a neighborhood homeomorphic with an open set in R'", it has a 
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neighborhood U homeomorphic with an open ball in Ir. Then U is homeomor-
phic with the open unit ball in Ir centered at (0, . . . ,0,1), which is an open set 
of Ir. 

One often includes in the definition the requirement that X have a countable 
basis, or at least that X be metrizable. We shall not make either assumption. 

Manifolds and manifolds with boundary are among the most familiar and 
important of geometric objects; they are the main objects of study in differen-
tial geometry and differential topology. 

If X is a manifold with boundary and if h : U —. V is a homeomorphism of 
an open set U in X onto an open set V in 1-1-, then h is called a coordinate patch 
on X. A point x of X may be mapped by h either into the open upper half space 
Rm - 1  X R., of H", or onto the "edge" Rm -' X 0. The local homology groups 
distinguish between these two possibilities. For it follows from Example 2 that 
if x is mapped into the open upper half space of lim, then H„,(X,X — x) is infi-
nite cyclic, while if x is mapped into Bd H'n, then H„,(X,X — x) vanishes. This 
fact leads to the following definition: 

Definition. Let X be an m-manifold with boundary. If the point x of X 
maps to a point of Bd H'n under one coordinate patch about x, it maps to a point 
of Bd lim under every such coordinate patch. Such a point is called a boundary 
point of X. The set of all such points x is called the boundary of X, and is de-
noted Bd X. The space X — Bd X is called the interior of X and denoted Int X. 

Note that there is nothing in the definition requiring that X have any 
boundary points. If it does not, then Bd X is empty, and X is an m-manifold. 
While Bd X may be empty, the set Int X cannot be. For if h :U —, V is a 
coordinate patch about a point x of X, then V is open in Hm and hence contains 
at least one point of the open upper half space. The corresponding point y of X 
lies in Int X by definition. 

We remark that the space IV is itself an m-manifold with boundary, and 
its boundary is precisely the set Rm -' X 0, which we have already denoted by 
Bd Ir. Similarly, Rm is itself an m-manifold. 

Definition. Let X be an m-manifold with boundary. It follows from Ex-
ample 2 that m is uniquely determined by X, for it is the unique integer such 
that the group H„,(X,X — x) is non-trivial for at least one x in X. The number 
m is called (obviously) the dimension of the manifold with boundary X. 

Example 3. The unit ball B" in II" is an n-manifold with boundary, and Bd if' ,----
S' - '. We prove this fact as follows. 

If p e r — .s.-  i, then the set of all x with iixii < 1 is an open set of II"; thus 
there is a coordinate patch about p. Now let p e S" - 1; we find a coordinate patch 
about p. Some coordinate of p is non-zero; suppose for convenience that p„< 0. 
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Figure 35.3 

Let U be the open set in B" consisting of all points x of B" with x„ < 0. Define 
h : U --0 H" by the equation 

h(x) = (x„ . . . ,x„ _ „ x „ f (x)), 

where f (x) = [1 — — • • - — xR _ ,11/2 . Then you can check that h is a homeo-
morphism of U onto the open set V of H'" consisting of all points y with IIyli < 1 
and y„ > 0; and it carries p to a point of Bd H". See Figure 35.3. 

Example 4. Let a be an n-simplex. Then a is an n-manifold with boundary, be-
cause there is a homeomorphism of a with B". This homeomorphism carries the 
union Y of the proper faces of a onto S" '. Thus the set Y, which we have been 
denoting by Bd a, is just the boundary of a when it is considered as an n-manifold 
with boundary! And the set a — Y, which we have been denoting by Int a, is just the 
interior of a as a manifold with boundary. 

There is a certain overlapping of terminology here, which we should clarify. 
In general topology, if A is a subset of a space X, then the interior of A, denoted 
Int A, is the union of all open  sets of  X contained in A. And the boundary of A, 
denoted Bd A, is the set A ( X 	In the special case where A is an open set 
of X, it turns out that Bd A = A — A. We have used this terminology from 
general topology earlier in this book. For instance, the notion Bd U appeared in 
Lemma 1.1; and the notion Int A was used in formulating the excision axiom. 

The concepts of boundary and interior for a manifold with boundary are 
entirely different; it is unfortunate that the same terminology is commonly used 
in two different ways. Some authors use ax to denote the boundary of a mani-
fold with boundary. But that can lead to difficulty when one wishes to distin-
guish the boundary of the space a from the simplicial chain aa! We will simply 
endure the ambiguity, relying on the context to make the meaning clear. 

It happens that for the subset B"  of the topological space R", its boundary in 
the sense of general topology is the same as its boundary in the sense of mani-
folds with boundary. The same remark applies to the subspace H" of R". But 
these cases are the exception rather than the rule. 

Now we prove a result about triangulations of manifolds. 

Lemma 35.2. Let s be a simplex of the complex K. If x and y are points 
of Int s, then the local homology groups of IKI at x and at y are isomorphic. 
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Proof. It suffices to prove the theorem when x = s, the barycenter of s. 
Let sd K be the first barycentric subdivision of K. Let K' be a subdivision of K 
defined exactly as sd K was, except that y is used instead of 3 when "starring" 
the subdivision of Bd s from an interior point of s. There is a linear isomorphism 
of sd K with K' that carries :s' to y, and carries each remaining vertex of sd K to 
itself. Then the pair (IICI, IKI —s) is homeomorphic with the pair (11Ci, WI — y). 

0 

Recall that a homeomorphism h :14 —. M is called a triangulation of M. 
It is not known whether an arbitrary manifold with boundary has a triangulation. 

Theorem 35.3. Let M be an m-manifold with boundary; suppose K is a 
complex and h : IKI M is a homeomorphism. Then II' (Bd M) is the poly-
tope of a subcomplex of K. 

Proof If an open simplex Int s of K intersects the set I2-1(Bd M), it lies 
in this set, by the preceding lemma; since this set is closed, it must contain s. 

0 

Now we give a final application of local homology groups. We show that 
the dimension of a finite-dimensional simplicial complex K is a topological in-
variant of IKI. (A different proof, using the notion of "covering dimension," was 
outlined in the exercises of §16 and §19.) 

Recall that if v is a vertex of K, then St v is the union of the interiors of all 
simplices that have v as a vertex, and Lk v = St v — St v. 

Lemma 35.4. Let v be a vertex of the simplicial complex K. Then 

Hi(14,11Ci — v) :-..-; H;  (St v, Lk v). 

Proof The set St v contains a neighborhood of v; therefore, it follows 
from Lemma 35.1 that 

Hi  (14,14 — v) f...--. Iii(St v, § v — v). 

Let L denote the subcomplex of K whose polytope is Lk v. Then St v is the 
polytope of the cone v * L, by definition. See Figure 35.4. The following lemma 
implies that Lk v is a deformation retract of St v — v; then our proof is com-
plete. q 

Figure 35.4 
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Lemma 35.5. Let v * L be a cone over L. Then ILI is a deformation retract 
of Iv * LI —v. 

Proof Consider the quotient map 

7 : ILI X I --. IV * Li 

defined by ir(x, t) = (1 — t)x + tv. (See Corollary 20.6.) Since ILI X [0,1) is 
open in ILI X I and is saturated with respect to ir, the restriction of /r, 

7' : ILI X [0,1) '-' iv * LI -v, 

is a quotient map; being one-to-one, it is a homeomorphism. Since ILI X 0 is 
a deformation retract of ILI X [0,1), the space ILI is a deformation retract of 
Iv * LI — v. 0 

Theorem 35.6. Let K be a complex of dimension n; let X = IKI. For 
p > n the local homology groups Hp(X,X — x) vanish, while for p =-- n at 
least one of the groups H „(X,X — x) is non-trivial. 

Proof Leta be an n-simplex of K. Then a is a face of no other simplex of 
K, so the set Int a is in fact an open set of IKI. (Its complement is the union of 
all simplices of K different from a.) If x is the barycenter a of o-, it follows from 
Lemma 35.1 that 

H„(X,X — x) = H„(o-,cr — a) 

= H„(.13n,Bn — 0). 

By Example 1, this group is infinite cyclic. 
Now let x be an arbitrary point of X. We wish to show that 

II ,(X,X — x) = 0 for p > n. In view of Lemma 35.2, it suffices to consider the 
case where x is the barycenter of a simplex of K. Then x is a vertex of the com-
plex L = sd K, and Lemma 35.4 applies. We have 

H p(X, X — x) = If p(§i(x, L), Lk (x, L.)). 

Since L is a complex of dimension n, St (x,L) is the polytope of a complex of 
dimension at most n. Therefore, this group vanishes in simplicial homology for 
p > n, so it vanishes in singular homology as well. 0 

EXERCISES 

1. Check the details of Example 3. 

2. Show that if M and N are manifolds with boundary of dimensions m and n, 
respectively, then M X N is a manifold with boundary of dimension m + n, 
and 

Bd(M X N) = (M X (Bd N)) U ((Bd M) X N). 
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3. A space X is homogeneous if given x and y, there is a homeomorphism of X with 
itself carrying x to y. Show that a connected manifold is homogeneous. [Hint: 
Define x — y if there is such a homeomorphism; show the equivalence classes 
are open.] 

4. Let M be an m-manifold with boundary; suppose h : IKI —, M is a triangulation 
of M. 
(a) Show that if v is a vertex of K, then Lk v is a homology m — 1 sphere or 

ball, according as h (x) e Int M or h (x) a Bd M. 
(b) Show that every simplex of K either has dimension m or is the face of a 

simplex of dimension m. 
(c) Show that an m — 1 simplex s of K is a face of precisely one m-simplex of 

K if s C 12-' (Bd M), and it is a face of precisely two m-simplices of K 
otherwise. 

5. A solid torus is a space homeomorphic to S' X B'; it is a 3-manifold with 
boundary whose boundary is homeomorphic to the torus. Use the fact that S' is 
homeomorphic to Bd (B2  X B') to write S' as the union of two solid tori T„ T, 
that intersect in their common boundary. Compute the Mayer-Vietoris se-
quence of T,, T„ 

*§36. APPLICATION: THE JORDAN 
CURVE THEOREM 

Using the basic properties of singular homology, we now prove several classical 
theorems of topology, including the generalized Jordan curve theorem and the 
Brouwer theorem on invariance of domain. 

Definition. If A is a subspace of X, we say that A separates X if the space 
X — A is not connected. 

We are going to be concerned with the case where X is IV or S", and A is 

closed in X. Since X — A is then locally path connected, its components and 
path components are identical. In particular, the group H„(X — A) vanishes if 
and only if X — A is connected, and in general its rank is one less than the num-
ber of components of X — A. We shall use this fact freely in what follows. 

Definition. A space homeomorphic to the unit k-ball B' is called a k-cell. 

Theorem 36.1. Let B be a k-cell in STM. Then Sn — B is acyclic. In particu-
lar, B does not separate STM. 

Proof. Let n be fixed. We proceed by induction on k. First take the case 

k = 0. Then B is a single point. The space Sn — B is a single point if n = 0, 
while if n > 0, it is homeomorphic to RTM. In either case, S" — B is acyclic. 
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We now suppose the theorem holds for a k — 1 cell in S". Let B be a k-cell 
in S"; let h : 	B be a homeomorphism. 

Step 1. Let B, and B2  be the two k-cells 

B, = h(r 	X [0,1/2]) 	and 	B, = h(l k 	X [1/2,1]) 

in Sn. Let C be the k — 1 cell h(1' X ( 1 )) in S. See Figure 36.1. We show 
that if a is a non-zero element of H;  (S" — B), then its image is non-zero under 
at least one of the homomorphisms induced by the inclusion mappings 

i : (Sn — 	(S" — BO 	and 	j : (Sn — B) (S" — 132). 

To prove this fact, let X = Sa — C. By the induction hypothesis, X is acy-
clic. We write X as the union of the two subspaces 

X, = S" — B, 	and 	X, --- S" — B,. 

Since X, and X2  are open in Sn, they are open in X; so we have an exact Mayer-
Vietoris sequence 

H1 +1(X) 11 i(A) 1-11(X1) e im.x2) kJ (X), 
where A = X, fl X2  = S" — B. Since X is acyclic, the map in the middle is an 
isomorphism. By Theorem 33.1, it carries a e H1(A) to (i. (a), —j. (a)). 
Therefore, at least one of the elements i.(a) and j, (a) is non-trivial. 

Figure 36.1 

Step 2. We suppose there exists a non-zero element a in IMP — B) and 
derive a contradiction. Let B, and B2  be as in Step 1. Then the image of a in 
either H;  (S" — B1) or Hi (Sa  — B2) is non-zero. Suppose the former. Then write 
B, as the union of the k-cells 

B„ = h(I A 	X [0,1/4]) 	and 	B12 = h(Ik 	X [1/4,1/2 ])• 

Applying Step 1 again, we conclude that the image of a in either (Sn — B„) 
or H. 	— B12) is non-zero. 

Continuing similarly, we obtain a sequence of closed intervals [a1,b1 ] 
[a„b,] J • • • , each half the length of the preceding one; furthermore (letting 
Da, denote the k-cell 

D,„ = h(Ik -1  X [a„„b„,]) 
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for convenience) the image of a in kw — Dm) is non-zero for all m. Let e be 
the unique point in the intersection of the intervals Eam,bm ]; then the set E = 
h (P 	X {e}) is a k — 1 cell in .3" that equals the intersection of the nested 
sequence of k-cells D, D D2  D • - • . By the induction hypothesis, the group 
HAS" — E) vanishes. In particular, the image of a in this group vanishes. By 
Theorem 30.5, there is a compact subset A of S" — E such that the image of a 
in 111(A) vanishes. Since S. — E is the union of the open sets 

S' — D, C S" — D, C • - • , 
the set A lies in one of them, say in S" — D,,,. But this means that the image of 
a in HAS' — Dm ) vanishes, contrary to construction. q 

Theorem 36.2. Let n> k > 0. Let h : S" Sft be an imbedding. Then 
if.i=n—k-1, HAS° — h(Sk)) 0 otherwise. 

Proof. Let n be fixed. We prove the theorem by induction on k. First take 
the case k = 0. Then h (S°) consists of two points p and q. Since S" 
R" — 0, and R" — 0 has the homotopy type of S' ',we see that H;  (S"— p — q) 
is infinite cyclic for i = n — 1 and vanishes otherwise. 

Now suppose the theorem is true in dimension k — 1. Let h : S'` S" be an 
imbedding. We construct a certain Mayer-Vietoris sequence. Let X, and X2  be 
the following open sets of S": 

X, = — h(V,) 	and 	X2  = 5' — h(Et). 
See Figure 36.2. Then let 

= X, U X, = Sft — h(sk -1),  

A = X, n x, = s. h(Sk). 

Since X, and X2  are open in X, we have a Mayer-Vietoris sequence 

, (X,) 	4. ,(X,) 	4. ,(X) H;(A) Hr (x,) ® Hr (X2). 

h(Sk  ) 

Figure 36.2 
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Both X, and X2  are acyclic by the preceding theorem; therefore, the middle map 
is an isomorphism. That

( 
 is, 

Hi ,Sn  — h (Sk  - 1 )) = E (S" — h (Sk )) 

for all i. By the induction assumption the group on the left is infinite cyclic 
for i 1 = n — (k — 1) — 1 and vanishes otherwise. Hence the group on the 
right is infinite cyclic for i = n — k — 1 and vanishes otherwise. 0 

Theorem 36.3 (The generalized Jordan curve theorem). Let n > 0. Let C 
be a subset of Sn homeomorphic to the n — 1 sphere. Then Sn — C has pre-
cisely two components, of which C is the common (topological) boundary. 

Proof Applying the preceding theorem to the case k = n — 1, we see 
that II.(Sn — C) = Z. Thus .5' — C has precisely two path components (which 
are the same as its components, as noted earlier). Let W, and W2  be these path 
components; because S" is locally path connected, they are open in S'. Then the 
(topological) boundary of W;  is the set W4  — W. We need to show that 

— 	= C = W2 — 

It suffices to prove the first of these equations. Since W2  is open, no point of W2  
is a limit point of W,; therefore W, — W, C C. We show that C C W, — 
whence equality holds. 

Given x e C and given a neighborhood U of x, we show that U intersects 
the closed set W, — W1. This will suffice. Since C is homeomorphic to S" 1, we 
can write C as the union of two n — 1 cells, C, and C2, such that C, is small 
enough to lie in U. Figure 36.3 illustrates the case n = 2. 

Figure 36.3 
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Now C2  does not separate S", so we can choose a path a in Sn C2  joining 
a point p of W, to a point q of W2. Now a must contain a point of W, — W„ 
since otherwise a would lie in the union of the disjoint open sets W, and S" —
W, and contain a point of each of them, contrary to the fact that the image set 
of a is connected. Let y be a point of W, — W, lying on the path a; then y lies in 
C. Since it cannot lie in C2, it must lie in C, and hence in U. Then U intersects 
W, — W, in the point y, as desired. 0 

We remark that, under the hypotheses of this theorem, it seems likely that 
if W, and W, are the components of S" — C, where C is an n — 1 sphere, then 
the sets W, and W, should be n-cells. But actually this is not true. It is not even 
true in general that W, and 1372  are open balls. There is a famous imbedding of 
S2  in S3, called the Alexander horned sphere, for which one of the sets Wi  is not 
even simply connected! (See {H-1], p. 176.) 

What can one prove about the sets Wi? In the case n = 2, the answer has 
been known for a long time. If C is a simple closed curve in S2, then C separates 
S2  into two components W, and W2, and both W, and W2  are 2-cells. This result 
is called the Schoenflies Theorem. A proof may be found in [N]. 

More recently (1960), results have been proved in higher dimensions, assum-
ing additional hypotheses about the imbedding. Suppose the map h : - '  
S" can be "collared," which means there is an imbedding H : S" X I Si` 
such that H (x, 1/2 ) = h (x) for each x. (This hypothesis is satisfied, for instance, 
if h is differentiable with Jacobian of maximal rank.) In this case both W, and 
W2  are n-cells; this result is known as the Brown-Mazur Theorem [B]. 

Classically, the Jordan curve theorem is usually stated for spheres imbed-
ded in W rather than in S". We prove that version of the theorem now. 

Corollary 36.4. Let n > 1. Let C be a subset of Itn homeomorphic to 
S' '. Then Ir — C has precisely two components, of which C is the common 
boundary. 

Proof Step I. We show first that if U is a connected open set in S", 
where n > 1, no point of U separates U. 

Let p e U and suppose U — p is not connected. We derive a contradiction. 
Choose an open e-ball B. centered at p and lying in U. Then B, — p is connected, 
being homeomorphic to r — 0; hence B, — p lies entirely in one of the compo-
nents C of U — p. Let D be the union of the other components of U — p. Now p 
is not a limit point of D, since B, is a neighborhood of p disjoint from D. Hence 
the two sets C U {p} and D form a separation of U, contrary to hypothesis. 

Step 2. We prove the theorem. Without loss of generality, we can replace 
W in the statement of the theorem by S" — p, where p is the north pole of S". 
Now S" — C has two components W, and W. Suppose p e W1. By the result of 
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Step 1, W, — p is connected. Then W, — p and Wz  are the components of 
Sn — p — C, and C equals the boundary of Wz  and W, — p. 0 

Theorem 36.5 (Invariance of domain). Let U be open in R"; let f : U—. R" 
be continuous and infective. Then f (U) is open in R" and f is an imbedding. 

Proof Without loss of generality, we can replace R" by S. 

Step 1. Given a point y of f (U), we show that f (U) contains a neighbor-
hood of y. This proves that f (U) is open in S. 

Let x be the point of U such that f (x) = y. Choose an open ball B, of 
radius t, centered at x, whose closure lies in U. Let S, = B, — B,. See Figure 
36.4. Now the set f (S,) is homeomorphic to Sn - 1; therefore, f (SE) separates Sn 
into two components W, and W„ each open in S. The set f (A) is connected 
and disjoint from f (Si). Therefore, it lies in either W, or W2; suppose it lies in 
W1. Now it must equal all of W„ for otherwise the set 

S" — f (B,) — f (S,) = s" — f (73-  ,) 

would consist of all of Wz  along with points of W, as well, contradicting the fact 
that the cell f (B,) does not separate S. Therefore, f (B.) = W1. We conclude 
that f (U) contains the neighborhood W, of y, as desired. 

Step 2. In view of Step 1, f carries any set open in U to a set that is open 
in Sn and hence open in f (U). Thus f is a homeomorphism of U with f (U). 0 

w„ 

Figure 36.4 

The theorem on invariance of domain is much easier to prove if one as-
sumes that f is continuously differentiable with non-singular Jacobian. In this 
case the theorem follows from the inverse function theorem of analysis. The 
true profundity of invariance of domain is that it has nothing to do with dif-
ferentiability or Jacobians, but depends only on continuity and injectivity of the 
map f. 

Similarly, the Jordan curve theorem is much easier to prove in the case that 
the imbedding f : S" -' --+ R" is a simplicial map (of some complex whose space 
is homeomorphic to Sn - 1), or a differentiable map with Jacobian of maximal 
rank. The true difficulties appear only when one assumes no more than continu-
ity and injectivity. 



Figure 36.6 

A 

B 

Figure 36.5 

83 

208 	Singular Homology Theory 	 Chapter 4 

EXERCISES 

1. Let M be an m-manifold with boundary, as defined in the preceding section. 
Use invariance of domain to prove the following. 
(a) Show that if a point x of M maps to a point of le x 0 under one 

coordinate patch about x, it does so under every such coordinate patch. 
(b) Let U be open in R°" and let V be open in R". Show that if U and V are 

homeomorphic, then m = n. 
(c) Show that the number m is uniquely determined by M. 

2. (a) Let Y be the topologist's sine curve (see the exercises of §29). Show that if 
h : Y .5" is an imbedding, then .5° — h (Y) is acyclic. 

(b) Let X be the closed topologist's sine curve (see the exercises of §33). Show 
that if h : X —0 S" is an imbedding, then H;  (S" — h(X)) is infinite cyclic if 
i = n — 2, and vanishes otherwise. 

(c) Show that if h : X —• S2  is an imbedding, then S2  — h (X) has precisely two 
components, of which h(X) is the common boundary. 

3. (a) Consider S3  as R3  with a point at infinity adjoined. Let A, B„ B2, and B, be 
the simple closed curves in S3  pictured in Figure 36.5. The map 

H,(13;)---0 H,(S2  — A) 

induced by inclusion is a homomorphism of infinite cyclic groups, so it 
equals multiplication by d1, where d, is well-defined up to sign. The integer 
di  measures how many times A links A. What is it in each case? Similarly, 
determine the integer corresponding to the homomorphism 

111(A) H,(S3  — B,) 

induced by inclusion. Can you formulate a conjecture? 
(b) Let A consist of two points of S2, and let B, and B2  be two simple closed 

curves in S2, as pictured in Figure 36.6. What are the homomorphisms 

14(A) —• 14(S2 - B,) 	and 	H ,(B1) H,(S2  — A) 

induced by inclusion? Formulate a conjecture. 
(c) Formulate a conjecture concerning disjoint imbeddings of SP and Sq in 

SP"'". 
We shall return to this conjecture later on, after we prove the 

Alexander duality theorem. (See the exercises of §72.) 
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§37. MORE ON QUOTIENT SPACES 

We reviewed some aspects of the theory of quotient spaces in §20. We now dis-
cuss the topic further; in particular, we consider separation axioms for quotient 
spaces. 

We have already noted that the separation axioms do not behave well for 
quotient spaces. In general, it is difficult to ensure that a quotient space satisfies 
any stronger separation axiom than the 7'1-axiom. Even the Hausdorff axiom is 
often hard to verify. We give here three situations in which we can be sure that 
the quotient space is Hausdorff (in fact, normal). 

Theorem 37.1. Let p : X —, Y be a quotient map. if p is a closed map, and 
if X is normal, then Y is normal. 

Proof. If x is a point of X, then x is closed in X, so the one-point set p(x) 
is closed in Y (because p is a closed map). Thus Y is a 7-1-space. 

Let A and B be disjoint closed sets in Y. Then p-1  (A) and p-1  (B) are dis-
joint closed sets in X. Choose disjoint open sets U and V in X about p-1  (A) and 
p-1(B), respectively. The sets p(U) and p (V) need not be disjoint nor open in 
Y. See Figure 37.1. However, the sets C = X — U and D = X — V are closed 
in X, so p (C) and p (D) are closed in Y. The sets Y — p(C) and Y — p(D) are 
then disjoint open sets about A and B, respectively. 

To show these sets are disjoint, we begin by noting that U fl V = 0 . Tak-
ing complements, we have 

C U D = (X — U) U (X — V) = X. 
Then p (C) U p (D) = Y; taking complements again, 

(Y — p(C)) n (Y — p(D)) = 0, 
as desired. 

To show these sets contain A and B, respectively, note first that because C 

x 

F  A 4  i 	B  1 Y 

Figure 37.1 
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is disjoint from .12' (A) , the set p (C) is disjoint from A. Thus p(C) C Y — A; 
taking complements, we have Y — p (C) D A. Similarly, Y — p (D) contains B. 

0 

If X* is a partition of X into closed sets, and if the quotient map p : X --. 
X* is closed, then X* is called, classically, an upper semicontinuous decomposi-
tion of X. Specifically, this means that for each closed set A of X, the set 
p-1p (A) , which is called the saturation of A, is also closed in X. In such a case, 
normality of X implies normality of X. 

Definition. Let X and Y be disjoint topological spaces; let A be a closed sub-
set of X; let f : A —> Y be a continuous map. We define a certain quotient space 
as follows: Topologize X U Y as the topological sum. Form a quotient space by 
identifying each set 

{y} u I-1(Y) 
for y e Y, to a point. That is, partition X U Y into these sets, along with the 
one-point sets {x}, for x e X — A. We denote this quotient space by X U f  Y, 
and call it the adjunction space determined by f See Figure 37.2. 

A x 

Y 
,f 

P ---> 

Figure 37.2 

X u f Y 

Let p : X U Y---,  X Uf  Y be the quotient map. We show first that p defines 
a homeomorphism of Y with a closed subspace of X Uf  Y. Obviously p I Y is 
continuous and injective. Furthermore, if C is closed in Y, then./ "(C) is closed 
in X, because f : A -.-4 Y is continuous and A is closed in X. It follows that 

p-1p(C) = C U f'(C) 

is closed in X U Y. Then p (C) is closed in X Uf  Y by definition of the quotient 
topology. Thus p I Y carries Y homeomorphically onto the closed subspace p (Y) 
of X Uf  Y. We normally abuse notation and identify Y with p(Y). 

Now if X and Y are 7'1-spaces, then X Uf  Y is also a T1-space, since each of 
the equivalence classes is closed in X U Y. The preceding theorem does not ap-
ply to give us further separation properties, for p is not in general a closed map. 
However, we can still prove the following. 

Theorem 37.2. If X and Y are normal, then the adjunction space X U1  Y 
is normal. 
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Proof. As usual, A is closed in X and f : A --, Y is continuous. Let B and 
C be disjoint closed sets in X Uf  Y. Let 

Bx  = p" (B) n x; 	cx  = p-' (C) n X; 
By =- II' (B) II Y; 	Cy = p" (C) n Y. 

See Figure 37.3. By the Urysohn lemma, we can choose a continuous function 
g:Y-- [0,1] that maps By to 0 and Cy to 1. Then the function g of :A --, [0,1] 
equals 0 on A fl Bx  and 1 on A fl Cx. We define a function 

h : A U Bx  U Cx  ---, [0,1] 

by letting it equal g . J on A, and 0 on Bx, and 1 on Cx. Since A, Bx, and Cx  are 
closed in X, the map h is continuous. By the Tietze theorem, we can now extend 
h to a continuous function k defined on all of X. 

The function X U Y --, [0,1] that equals k on X and g on Y is continuous. 
It is constant on each equivalence class, because k (f ' (y)) = g(y) if y e 
f (A). Therefore, it induces a continuous map of X Uf  Y into [0,1] that equals 0 
on B and equals 1 on C. 0 

Bx A 	Cx 
X 

Y 
B y f(A) Cy 

XUI  Y 

Figure 37.3 

We have already defined what it means for the topology of a given space X 
to be coherent with a collection of subspaces of X. We wish to deal with the 
separation axioms in this context. 

First, we extend the notion of coherent topology slightly. We suppose that 
we have a collection of topological spaces {X.} whose union X has no topology. 
We seek to find conditions under which there exists a topology on X, of which 
the Xa  are subspaces, such that this topology is coherent with the subspaces X,. 

Lemma 37.3. Let X be a set which is the union of the topological spaces 
Ixal. 

(a) If there is a topological space XT  having X as its underlying set, and 
each Xa  is a subspace of XT, then X has a topology, of which the Xa  are sub-
spaces, that is coherent with the Xa. This topology is in general finer than the 
topology of XT. 

(b) If for each pair a, f3  of indices, the set Xa  fl xi, is closed in both X, and 
X8, and inherits the same subspace topology from each of them, then X has 
a topology coherent with the subspaces X,. Each Xa  is a closed set in this 
topology. 
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Proof (a) Let us define a topological space Xc  whose underlying set is X 
by declaring a set A to be closed in Xc  if and only if its intersection with each X. 
is a closed set of X.. The collection of such sets contains arbitrary intersections 
and finite unions of its elements, so it does define a topology on the set X. 

If A is closed in XT, then because X, is a subspace of XT, the set A n x„ is 
closed in X. for each a. It follows that A is closed in Xc. Thus the topology of 
Xc  is finer than that of XT. 

We show that each X. is a subspace of Xc; it then follows from its defini-
tion that Xc  is coherent with the subspaces X.. For this purpose, we show that 
the collection of closed sets of X. equals the collection of sets of the form A fl 
X., where A is closed in Xc. First, note that if A is closed in Xc, then A fl X. is 
closed in X. by definition of Xc. Conversely, suppose B is closed in X.. Because 
X. is a subspace of XT, we have B = A fl X. for some set A closed in XT. Be-
cause the topology of Xc  is finer than that of XT, the set A is also closed in Xc. 
Thus B = A fl X. for some A closed in Xc, as desired. 

(b) As before, we define a topology Xc  on the set X by declaring A to be 
closed in Xc  if A n xa  is closed in X. for each a. 

We show that each X„ is a subspace of Xc; it then follows immediately that 
Xc  is coherent with the subspaces X.. As before, we show that the collection of 
closed sets of X. equals the collection of sets of the form A fl X„, where A is 
closed in Xc. First, if A is closed in Xc, then A fl Xi, is closed in X„ by defini-
tion of Xc. Conversely, suppose B is a closed set of X.. Let (3 be any index. 
Because X. fl X0  is a closed set in X., the set 

B X,9  B (Xe, X0) 

is a closed set of X.. Because X„ fl Xe  is a subspace of X,„ it is also a closed set 
in X. fl Xs; because X.11 Xs  is a closed subspace of X0, it is a closed set in X0. 
Since is arbitrary, B is by definition a closed set of Xc. Thus B = B fl X., 
where B is closed in Xc, as desired. 

Incidentally, we have shown that every closed set of Xe  is also closed in Xc. 
In particular, X„ is itself closed in Xc. 0 

Example 1. Let K be a complex in E'. Since El is a space, IKI has a topology in-
herited from E'; each simplex a of K is a subspace in this topology. By (a) of the 
preceding theorem, IKI has a topology coherent with the subspaces a, which is in 
general finer than the topology IKI inherits from V. This is a fact we proved di-
rectly in §2. 

Suppose X is a space whose topology is coherent with its subspaces X.. In 
general, even if each of the spaces X. has nice separation properties, X need not 
have these properties. In the special case of a countable union of closed sub-
spaces, however, one can prove the following. 

Theorem 37.4. Let X be a space that is the countable union of certain 
closed subspaces X. Suppose the topology of X is coherent with the spaces X. 
Then if each Xi  is normal, so is X. 
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Proof If p is a point of X, then {p} fl X, is closed in X, for each i, so {p} is 
closed in X. Thus X is a 7'1-space. 

Let A and B be disjoint closed sets in X. Define Y. = A U B, and for 
n > 0, define 

Y„ = X, U • • • U X„U A U B. 

We define a continuous function f. : Y. --. I by letting fo  equal 0 on A and 1 on 
B. In general, suppose we are given a continuous function f„ : Y„ --, I. The space 
X„ + 1  is normal and lc fl x,,, , is closed in X„ + ,; we use the Tietze theorem to 
extend the function f„ I (Y. fl X„ 1 ) to a continuous function g : X„ + ,--, I. Be-
cause Y„ and X.+  I  are closed subsets of Y„ 1 , the functions f„ and g com-
bine to define a continuous function f„ ,: Y„ , --, I that extends f .. The func-
tions f„ in turn combine to define a function f : X ---, I that equals 0 on A and 1 
on B. Because X has the topology coherent with the subspaces X„, the map f is 
continuous. 0 

EXERCISES 

1. Let X be a set which is the union of the topological spaces {X,}. Suppose that 
each set X. fl X,/  inherits the same topology from each of X. and X0. 
(a) Show that if X, fl X8  is open in both X. and Xt„ for each pair «43, then 

there is a topology on X of which the X„ are subspaces. 
(b) Show that in general there is no topology on X of which each Xa  is a sub-

space. [Hint: Let A, B, and C be three disjoint subsets of It, each of which 
is dense in R. Let A, B, X, = It — A, and X2  -= R — B be topologized as 
subspaces of R; let X, = A U B be topologized as the topological sum of A 
and B. Let X = X, U X2  U X,. Compute A.] 

2. Recall that if J = Z+, we denote the space 1E-i  by R. Each space 11" X 0 is a 
subspace of R. Show that the function f :Ir -,--. R given by 

f (x) --= fix;  
i =1 

is not continuous in the usual (metric) topology of Ir, but is continuous in the 
topology coherent with the subspaces R" X 0. 

3. Let X be a space. Let Xc  denote the set X in the topology coherent with the 
collection of compact subspaces of X. 
(a) Show that a subset B of X is compact in the topology it inherits from X if 

and only if it is compact in the topology it inherits from Xc. [Hint: Show 
also that these two distinct subspace topologies on the set B are in fact the 
same topology. 

(b) A space is said to be compactly generated if its topology is coherent with 
the collection of its compact subspaces. Show that Xc  is compactly gener-
ated. Conclude that (Xc)c  --= Xc. 

(c) Show that inclusion Xc  --. X induces an isomorphism in singular homology. 
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(d) In general, let X Xc  Y denote the compactly generated topology (X X nc 
derived from X X Y. Show that if K and L are complexes, then the topol-
ogy of IKI X c  ILI is coherent with the subspaces a X 7-, for a e K and 1-  e 
L. Compare Exercise 6 of §20. [Hint: If D C X X Y is compact, then 
DC A X BCXX Y, where A and B are compact.] 

4. Show that Theorem 37.4 does not hold for uncountable collections. [Hint: Let 
X be an uncountable well-ordered set with a smallest element 0 and a largest 
element it, such that [0,a] is countable for each a < St. Then (0,11) x [0,51] is 
not normal. See [Mu], p. 201, or [K], p. 131.] 

§38. CW COMPLEXES 

We have stated that one of the advantages of simplicial homology theory is its 
effective computability. But in fact this statement is somewhat misleading. The 
amount of labor involved in a straightforward calculation in all but the simplest 
cases is too large to carry out in practice. Even when we calculated the homol-
ogy of such simple spaces as the torus and the Klein bottle, in §6, we did not 
proceed straightforwardly. Instead, we used geometric arguments (of a rather 
ad hoc nature) to reduce the computations to simpler ones. 

We now refine these ad hoc techniques into a systematic method for comput-
ing homology groups. This method will apply not only to simplicial homology, 
but to singular homology as well. We introduce in this section a notion of com-
plex more general than that of simplicial complex. It was invented by J. H. C. 
Whitehead, and is called a "CW complex." In the next section, we show how to 
assign to each CW complex a certain chain complex, called its "cellular chain 
complex," which can be used to compute the homology of the underlying space. 
This chain complex is much simpler and easier to deal with than the singular or 
simplicial chain complexes. In a final section, we apply these methods to com-
pute, among other things, the homology of real and complex projective spaces. 

Definition. Recall that a space is called a cell of dimension m if it is homeo-
morphic with Bm. It is called an open cell of dimension in if it is homeomorphic 
with Int B"'. In each case the integer m is uniquely determined by the space in 
question. 

Definition. A CW complex is a space X and a collection of disjoint open 
cells ea  whose union is X such that: 

(1) X is Hausdorff. 

(2) For each open in-cell ea  of the collection, there exists a continuous map 
fa  : 13'n —, X that maps Int Bin homeomorphically onto ea  and carries 
Bd Bm into a finite union of open cells, each of dimension less than m. 

(3) A set A is closed in X if A fl ea  is closed in ea  for each a. 

The finiteness part of condition (2) was called "closure-finiteness" by 
J. H. C. Whitehead. Condition (3) expresses the fact that X has what he called 
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the "weak topology" relative to the collection teal. These terms are the origin of 
the letters C and W in the phrase "CW complex." 

We commonly denote ia  — ea  by ea. We remark that conditions (1) and (2) 
imply that fa  carries .13m onto e"„ and Bd 13m onto ea: Because fa  is continuous, it 
carries BP% which is the closure of Int Bm , into the closure of /c(Int Bin), which 
is ea . Because fa  (B"') is compact, it is closed (since X is Hausdorff); because it 
contains ea, it must contain ea. Thus fa  (Bm) = ea. Finally, because fa  (Bd B"') is 
disjoint from ea, it must equal ea. 

We remark also that the converse of (3) holds trivially; if A is closed in X, 
then An ea  is closed in ea  for each a. 

The map fa  is called a "characteristic map" for the open cell ea. Note that 
the maps fa  are not uniquely specified in the definition of a CW complex. Only 
the space X and the collection{ea} are specified. We customarily abuse notation 
and use the symbol X to refer both to the CW complex and to the underly-
ing space. 

A finite CW complex X is a CW complex for which the collection of open 
cells is finite. If X has only finitely many open cells, then the finiteness part of 
(2) is automatic, and condition (3) is implied by the other conditions: If the set 
A fl ea  is closed in ea, it is closed in X; then since A is a finite union of such sets, 
A is also closed in X. 

A finite CW complex is of course compact. Conversely, any compact subset 
A of a CW complex X can intersect only finitely many open cells of X; we leave 
the proof to the exercises. One needs the finiteness part of condition (2) in 
the proof. 

The following lemma is an immediate consequence of our general results 
about coherent topologies (see §20). 

Lemma 38.1. Let X be a CW complex with open cells ea. A function 
f : X Y is continuous if and only if f I ea  is continuous for each a. A func-
tion F : X X I Y is continuous if and only if FI(e a  X I) is continuous for 
each a. 0 

Example I. Consider the torus as a quotient space of a rectangle, as usual. See 
Figure 38.1. We can express T as a CW complex having a single open 2-cell (the 
image under w of the interior of the rectangle), two open 1-cells (the images of 
the open edges), and one 0-cell (the image of the vertices). Conditions (1)-(3) hold 
at once. 

Figure 38.1 
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Similarly, one can express the Klein bottle as a CW complex having the same 
number of cells in each dimension as the torus. The projective plane can be ex-
pressed as a CW complex having one open cell in each dimension 0, 1, 2. 

More generally, the discussion in the exercises of §6 shows how one can express 
the n-fold connected sum T # • • • # T (or P2 # • • • 47 P2, respectively) as a CW 
complex having one open cell in dimension 2, one cell in dimension 0, and 2n (or n, 
respectively) open cells in dimension 1. 

Similarly, the k-fold dunce cap can be expressed as a CW complex with one 
open cell in each dimension 0, 1, 2. 

Example 2. The quotient space formed from B" by collapsing Bd B" to a point is 
homeomorphic to S". (We leave the proof to you.) Therefore, S' can be expressed as 
a CW complex having one open n-cell and one 0-cell, and no other cells at all. See 
Figure 38.2. 

s2  

Figure 38.2 

Example 3. Condition (2) does not require that f,(Bd 131 = ie, equal the union of 
a collection of open cells of lower dimension. For example, the space X pictured in 
Figure 38.3 is a CW complex having one open cell in each dimension 0, 1, 2; if e2  is 
the open 2-cell, then e.2  lies in, but does not equal, the union of open cells of lower 
dimensions. 

Example 4. Let K and L be simplicial complexes; suppose K is locally finite. The 
space X = IKI x ILI can be expressed as a CW complex by taking the sets (Int a) X 
(Int r) as its cells, for a a K and r a L. In this case the characteristic maps 

fa 	a X T 

can be taken to be homeomorphisms. Furthermore, in this case Bd (a X r) equals a 
union of open cells of lower dimension. Condition (3) is a consequence of Exercise 6 
of §20; it depends on the local finiteness of K. Thus IKI X (LI is a special kind of 
CW complex. We give the formal definition now. 

A CW complex X for which the maps f, can be taken to be homeomorphisms, 
and for which each set ia  equals the union of finitely many open cells of X, is called 
a regular cell complex. A regular cell complex X can always be triangulated so each 
closed cell of X is the polytope of a subcomplex. The proof is similar to the one we 
gave for IKI X I. 

Example 5. Many of the constructions used in topology for forming new spaces 
from old ones, when applied to CW complexes, give rise to CW complexes. The 
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Figure 38.3 

product X X Y of two CW complexes, for instance, is a CW complex, provided Y is 
locally compact. Similarly, adjunction spaces can often be made into CW com-
plexes. If A is a subcomplex of X, a cellular map f : A Y is a map carrying each 
p-cell of A into the union of the open cells of Y of dimension at most p. In this case, 
one can show that the adjunction space X U fY is a CW complex. 

Definition. Let X be a CW complex. Let Y be a subspace of X that equals 
a union of open cells of X. Suppose that for each open cell ea  of X contained in 
Y, its closure is also contained in Y. Then we shall show that Y is a closed set in 
X, and that Y is a CW complex in its own right. It is called a subcomplex of X. 
In particular, the subspace X' of X that is the union of the open cells of X of 
dimension at most p satisfies these conditions. It is thus a subcomplex of X, 
which is called the p-skeleton of X. 

Clearly, Y is Hausdorff. If ea  is an open m-cell of X contained in Y, then its 
characteristic map fa  : B1"--,  X carries Bin onto ea, which is contained in Y by 
hypothesis. The open cells of X that intersect fc,(Bd Bm) = ea  must lie in Y; 
thus fa  carries Bd Bm into the union of finitely many open cells of Y. It only 
remains to show that Y has the topology specified by (3). 

Let B C Y; suppose B n "ea  is closed in ea  for each ea  contained in Y. If es  is 
a cell of X not contained in Y, then ee  is disjoint from Y. Hence Y fl ee  C 	so 
Y fl is  lies in the union of finitely many open cells of Y, say e„ . ,ek. Then 

B 	io  = [(B n ei) u • • • U (B 4)] fl es. 

By hypothesis, B 	is closed in e, and hence in X. Therefore, B fl eft  is closed 
in X, and in particular is closed in es. Since 13 is arbitrary, it follows that B is 
closed in X, and in particular, is closed in Y, as desired. 

It follows that Y has the topology specified by condition (3). It also fol-
lows that if B is closed in Y, then B is closed in X. In particular, Y itself is closed 
in X. 

The finiteness part of condition (2) is crucial for what we have just proved, 
as the following example shows. 

Example 6. Let X be a 2-simplex o in the plane, in its usual topology. Break X up 
into a single open 2-cell Int cr, and infinitely many open 1-cells and 0-cells, as indi-
cated in Figure 38.4. Then X satisfies all the conditions for a CW complex except 



218 	Singular Homology Theory 	 Chapter 4 

the finiteness part of (2). (Condition (3) is trivial, since the closure of Int a equals 
X.) Let Y be the union of the 1-cells and 0-cells of X, topologized by declaring C to 
be closed in Y if C fl e„ is closed in e„ for each 1-cell and 0-cell e‘,. Then Y is a CW 
complex, but it is not a subspace of X. For the subspace Bd a of Xis compact, and Y 
is not. 

Figure 38.4 

Definition. If a CW complex X can be triangulated by a complex K in 
such a way that each skeleton X" of X is triangulated by a subcomplex of K of 
dimension at most p, then we say that X is a triangulable CW complex! 

Each of the CW complexes mentioned in the earlier examples is a triangu-
lable CW complex. We now give an example of one that is not. The proof uses 
results about local homology groups from §35. 

Example 7. Let A be a subspace of R3  that is the union of a square and a trian-
gle, such that one of the edges of the triangle coincides with the diagonal D of the 
square. See Figure 38.5. Then A is the space of a complex consisting of three trian-
gles with an edge in common. Now draw a wiggly 1-cell C in the square, intersect-
ing the diagonal in an infinite, totally disconnected set. (An x sin(1/x) curve will 
do.) Take the 3-ball B3  and attach it to A by a map f : Bd B3  C that maps each 
great circle arc in S2  from the south pole to the north pole homeomorphically onto 
the 1-cell C. The resulting adjunction space X is easily seen to be a CW complex; 
one takes the open simplices of A as the open cells of dimensions 0, 1, and 2, and 
Int /Pas the open 3-cell e,. We show that the space X cannot be triangulated; hence 
in particular, it is not triangulable as a CW complex. 

Suppose h: IK I X is a triangulation. First we write X as the disjoint union 

X = (A — C) U C U e,. 

Now if x e e3, then 1-1,(X,X — x) is infinite cyclic, because x has a neighbor-
hood homeomorphic to an open 3-ball. On the other hand, if x e A — C, then 
H3(X,X — x) vanishes, because x has a neighborhood lying entirely in the 2-
dimensional complex A. (See Lemma 35.6.) It follows from Lemma 35.2 that if 
a is a simplex of K, then h (Int a) cannot intersect both A — C and e,. It follows that 
h(o) lies either in A or in e3. Thus A and e, are triangulated by h, and thus so is 
A n -= C. 

'The dimensional condition is in fact redundant. See Exercise 2. 
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Figure 38.5 

On the other hand, similar reasoning shows that D is triangulated by h: 
Consider the local homology groups H,(A,A — x) of A. At each point x interior 
to D, H2(A,A — x) = Z Z. (For A can be expressed as a cone with vertex x 
and base homeomorphic to a "0 curve"; by the long exact homology se-
quence, H2(A,A — x):.--111(0) = Z® Z.) At each point x of A not in D, either 
H2(A,A — x) z Z (if x is interior to one of the triangles) or H2(A,A — x) = 0. 
We conclude that if h (Int a) intersects the interior of D, then it lies in D. Then D is 
triangulated by h. 

It follows that C fl D is triangulated by h. This is impossible, since C fl D has 
infinitely many components and K is a finite complex. 

It is often helpful to view a CW complex as a space built up from a collec-
tion of closed balls by forming appropriate quotient spaces, or to construct a 
CW complex in this way, as we did in the preceding example. The following two 
theorems show how this is done. 

The dimension of a CW complex Xis the largest dimension of a cell of X, if 
such exists; otherwise it is said to be infinite. 

Theorem 38.2. (a) Suppose X is a CW complex of dimension p. Then X 
is homeomorphic to an adjunction space formed from XP and a topological 
sum I B. of closed p-balls, by means of a continuous map g : Bd 	X" 
It follows that X is normal. 

(b) Conversely, let Y be a CW complex of dimension at most p — 1, let 
M B. be a topological sum of closed p-balls, and let g : Bd B, Y be a con-
tinuous map. Then the adjunction space X formed from Y and I B. by means 
of g is a CW complex, and Y is its p — 1 skeleton. 

Proof (a) For each cell e. of X of dimension p, one is given the charac-
teristic map fa  : BP ea. Let B. = BP X {a}, and let E B. be the topological 
sum of these disjoint p-balls. Form the topological sum 

E = XP - I U  B.), 

and define it E X by letting it equal inclusion on X" -' and the composite 

= BP  X {a} BP X 

on B. To prove (a), it will suffice to show that it is a quotient map. 
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Obviously r is continuous and surjective. Suppose C is a subset of X and 
a--I(C) is closed in E. Then: 

(1) 7-1  (c)nxP-t=cnr -' is closed in XP -1. 

(2) 7-1(C) n B. is closed in B. for each a. 

The first condition implies that C 11 es  is closed in es  whenever dim es  < p. 
Since B. is compact and r is continuous, the second condition implies that 
7(7-' (C) 11 Ba) = C (1 ea  is compact. Since X is Hausdorff, C fl ea  is closed 
in X and hence closed in ea, whenever dim ea  = p. Thus C is closed in X, so a-  is 
a quotient map, as desired. 

Normality of X follows from Theorem 37.2; one proceeds by induction 
on p. 

(b) Let f : Y U (1 Ba) ---. X be the hypothesized quotient map. Now Y is 
normal, by part (a), and 2 B. is normal. It follows from Theorem 37.2 that X is 
normal (and in particular, Hausdorff). As usual, we consider Y to be a sub-
space of the adjunction space X; then f equals inclusion on Y, and f equals g on 
2 Bd Ba. We define the open cells of X to be the cells {es}  of Y (having dimen-
sion less than p), and the cells ea  = f (Int B.), (having dimension p). Since 
Int B. is open in the topological sum Y U (2 B.), and it is saturated relative to 
f, the restriction of f to Int B. is a quotient map. Being one-to-one, it is a ho-
meomorphism. Thus f maps Int B. homeomorphically onto ea, so ea  is an open 
p-cell, as desired. 

We check condition (2) for a CW complex. We have already noted that the 
map fa  = fiB. maps Int B. homeomorphically onto the set ea. By construction, 
fa  maps Bd B. into Y, which is the union of cells of dimension less than p. 
Because Bd B. is compact, the set f(Bd B.) is a compact subset of Y; because Y 
is a CW complex, it intersects only finitely many open cells of Y. Thus condi-
tion (2) is satisfied. 

Condition (3) follows readily. Suppose C is a subset of X and C n ea  is closed 
in ea  for each open cell ea. We show f -1(C) is closed in Y U (2 Ba); from this 
it follows that C is closed in X. 

First note that f -1(C) 11 Y = C ("1 Y; because C 11 io  is closed in es  for 
each cell of dimension less than p, C 11 Y is closed in Y. Similarly, 

f -1(C) n B. = f -1(C n ea) 11 Ba. 

We use here the fact that f (Ba) = ea. Now C n ea  is closed in ea  by hypothesis, 
and hence closed in X. We apply continuity off to see that f ' (C (1 ea) n B. is 
closed in Ba. Thus f ' (C) is closed, as desired. 0 

Theorem 38.3. (a) Let X be a CW complex. Then r is a closed subspace 
of X'+' for each p, and X is the coherent union of the spaces X° C 
X' C • • • . It follows that X is normal. 

(b) Conversely, suppose Xp  is a CW complex for each p, and X, equals the 
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p-skeleton of Xi, , for each p. If X is the coherent union of the spaces Xp, then 
X is a CW complex having Xp  as its p-skeleton. 

Proof. (a) Suppose C fl X° is closed in XP for each p. Then C fl Jo  is 
closed in ea  for each cell ea  of dimension at most p. Since p is arbitrary, we con-
clude that C is closed in X. Thus X has the topology coherent with the subspaces 
X°. Normality follows from Theorem 37.4. 

(b) If p < q, then Xp  fl Xg  = Xp  is a closed subspace of both Xj, and Xq. 
Therefore by (b) of Lemma 37.3, there is a topology on X coherent with the 
subspaces Xp, and each Xp  is closed in X. By the preceding theorem, each space 
Xp  is normal; therefore, by Theorem 37.4, X is normal (and in particular, Haus-
dorff). Condition (2) for a CW complex is trivial. We check condition (3). 
Suppose C fl -ea  is closed in ea  for each cell e„. Then C f1 Xp  is closed in X„, be-
cause Xp  is a CW complex. Then C is closed in X because the topology of X is 
coherent with the spaces X. 0 

Sometimes one begins with a space X and seeks to give it the structure of 
CW complex. This we did in Examples 1-3. On the other hand, sometimes one 
seeks to construct new spaces that are CW complexes by the process of pasting 
balls together. This is what we did in Example 7. The general construction is 
described in the two theorems we just proved. This construction significantly 
enlarges the class of spaces about which algebraic topology has something 
interesting to say. 

EXERCISES 

1. Let X be a CW complex; let A be a compact subset of X. 
(a) Show that A intersects only finitely many open cells of X. Where do you 

use "closure-finiteness” in the proof? 
(b) Show that A lies in a finite subcomplex of X. 

2. Let X be a CW complex. Suppose h :WI—. X is a triangulation of X that 
induces a triangulation of each skeleton X'. 
(a) Show that h induces a triangulation of each set e„. 
(b) Show that if Ka  is the subcomplex of K triangulating Xâ , then Ka  has di-

mension at most p. [Hint: Use local homology groups.] 

3. Let X be a CW complex. Show that the topology of X is compactly generated. 
(See Exercise 3 of §37.) 

4. Let X and Y be CW complexes. Then X X Y is the union of open cells ea  X ea, 
for ea  a cell of X and ea  a cell of Y. 
(a) Show that if Y is locally compact, then X X Y is a CW complex. 
(b) Show that X X cY is a CW complex in general. (See Exercise 3 of §37.) 

5. Verify that a regular cell complex can be triangulated so that each closed cell is 
the polytope of a subcomplex. 
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§39. THE HOMOLOGY OF CW COMPLEXES 

We now show how to compute the singular homology of a CW complex. 
Throughout this section, X will denote a CW complex with open cells ea  

and characteristic maps fa. The symbol Hp  will denote singular homology in 
general, but if it happens that Xis a triangulable CW complex, then Hp  can also 
be taken to denote simplicial homology, since there is a natural isomorphism 
between singular and simplicial theory. 

Definition. If X is a CW complex, let 

D°(X) = Hp(XP,X° '). 

Let 8 : D°  (X)_ ,(X) be defined to be the composite 

Hp(XP,X° 	
a. H

p  _,(X° 1 ) :1*  Hp  _ ,(X° -1,X° - 2), 

where j is inclusion. The fact that a. = 0 follows from the fact that 

Hp  _ ,(X° ') -14  Hp  _,(XP ',X° - 2) 124' Hp  _ 2 (XP  - 2  ) 

is exact. The chain complex 2)(X) {Dp(X),0} is called the cellular chain com-
plex of X. 

Example I. Consider the case where X is the space of a simplicial complex K, and 
the open cells of X are the open simplices of K. Let Hp  denote ordinary simplicial 
homology. We compute ii,,(XP,XP - 1). The simplicial chain group C, (10°),r° - I)) 
vanishes if i # p, and it equals the chain group Cp(Kol = c(K) when i = p. 
Therefore, 

1-1,(X°,X° 	= Hi,(K(P),K( P 1)) = C,(K). 

Furthermore, the boundary operator in the cellular chain complex is just the ordi-
nary simplicial boundary operator of K. It follows that in this case at least, the cel-
lular chain complex can be used to compute the homology of X. 

Our goal is to prove in general that if Xis a CW complex, the cellular chain 
complex D(X) behaves very much like the simplicial chain complex e(K). In 
particular, we show that the group Dp(X) is free abelian with a basis consist-
ing of, roughly speaking, the oriented p-cells. And we show the chain complex 
D(X) can be used to compute the singular homology of X. 

We begin with a sequence of lemmas. 

Lemma 39.1. Given an open p-cell ea  of X, any characteristic map for ea, 

(BP,SP  -) —'' Ocoee), 
induces an isomorphism in relative homology. 
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f'  

Figure 39.1 

Proof If p = 0, the result is trivial. Let p > 0. The point 0 is the center 
of BP; let ea  denote L (0). Note that because fa  is a quotient map, so is its 
restriction 

f:: (BP — 0) —, (ea  — ea) 

to the saturated open set BP — 0. Now SP -' is a deformation retract of BP — 0; 
this deformation retraction induces, via the quotient map 

fc: X it : (BP — 0) X I (ea  — ea) X I, 

a deformation retraction of e.— ea  onto i.. See Figure 39.1. 
It follows that the horizontal inclusion maps on the left side of the following 

diagram, 

(BP, S° - ') --* (BP,BP — 0) ,— (Int BP, Int BP — 0) 

I .f. 	V 	 IL 

(e., ea) — (e.,e. — e.) — 	(e.,e. — ea) 

induce isomorphisms in homology, by Theorem 30.8. Since the horizontal inclu-
sion maps on the right side of the diagram are excision maps, they also induce 
homology isomorphisms. (On the top line, one excises SP - 1; on the second line, 
one excises ea.) Now the map f. : Int BP —. ea  is a homeomorphism that carries 
0 to ea. Therefore, the vertical map fa  at the right of the diagram induces a ho-
mology isomorphism. Our result follows. 0 

Lemma 39.2. Let the map 

f : XP - ' U I B„ --- XP 

express Xi' as the adjunction space obtained from XP -' and a topological sum 
of p-balls M Ba  via a map g:M S. X° - 1, where S. = Bd Ba. Then f induces a 
homology isomorphism 

H,(M B,„I S.) z...-• Hi(XP,X° -1). 
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Proof. The proof is similar to that of the preceding lemma. The restric-
tion f' of f to the space 

UZ(Ba  — 0„), 

where Oa  is the center of Ba, is a quotient map. Furthermore, there is a deforma-
tion retraction of this space onto XP I  U Sa. This deformation induces, via 
the quotient map f' X it, a deformation retraction of X' — U "ea  onto XP', 
where k = f(0.). One has the following diagram: 

Ba,2 Sa) (I Ba,Z(Ba  — Oa)) — a Int B„,2 ((Int Ba) — Oa)) 

1 f 	 if 	 if 
(X',X' - 1) —. (XP,XP — U ea) 	(U ea, U (ea  — ea)) 

The map f on the right is a homeomorphism, being a one-to-one quotient map. 
The horizontal maps are inclusions, and they induce homology isomorphisms 
for the same reasons as before. 0 

Theorem 39.3. The group HAXP,XP - 1) vanishes for i # p, and is free 
abelian for i = p. If y generates Hp(BP,SP -1), then the elements (fa),,(7) 
form a basis for Hp(XP,XP -1), as fa  ranges over a set of characteristic maps 
for the p-cells of X. 

Proof The preceding lemma tells us that 

Hi(XP,XP ') 	Ba,Z Sa),  

where 2 Ba  is a topological sum of p-balls and Sa  = Bd Ba. Because the sets 
Ba  are disjoint open sets in 2 Ba, this group is isomorphic to the direct sum 
ED Hi(Ba,Sa). The theorem follows. 0 

Definition. Given a triple XD A D B of spaces, one has a short exact se-
quence of chain complexes 

0 --0S,(A) S,(X) S,(X) 
0. 

S p(B) S p(B) S p(A) 

It gives rise to the following sequence, which is called the exact homology 
sequence of a triple: 

• • • Hp(A,B)--. Hp(X,B) Hp(X,A)-0Hp  _,(A,B) 	• • • . 

This sequence was mentioned earlier in the exercises. As usual, a continu- 
ous map f 	(Y,C,D) induces a homomorphism of the correspond-
ing exact homology sequences. 

In the case (X,A,B) (XP,XP -1,XP - 2), the boundary operator a, in the 
above sequence equals the boundary operator a of the cellular chain complex 
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0(X). This follows from the fact that 6, commutes with the homomorphism j, 
induced by inclusion: 

Hp(XP,X° 1) (24 	_ ,(X° I, 0) 
= I a. 	li* 

Hp(XP,X° -1) 	_ ,(X° -',X°  - 

Using this fact, we now prove that the cellular chain complex of X can be 
used to compute the homology of X. For later purposes, we are going to prove 
this theorem in a somewhat more general form. We shall assume that we have a 
space X that is written as the union of a sequence of subspaces 

X0  C X, C X2  C • - • . 

Then we form the chain complex whose p-dimensional chain group is 
H,(X,,X, _ ,) and whose boundary operator is the boundary homomorphism in 
the exact sequence of the triple (X,„Xp  _ „XP  _ 2). We shall show that under 
suitable hypotheses (which are satisfied in the case of a CW complex) this 
chain complex gives the homology of X. 

Definition. If X is a space, a filtration of X is a sequence X0  C X, C • • - 
of subspaces of X whose union is X. A space X together with a filtration of X 
is called a filtered space. If X and Y are filtered spaces, a continuous map 
f : X Y such that f (XP) C Yp  for all p is said to be filtration-preserving. 

Theorem 39.4. Let X be filtered by the subspaces 	X. C X, C 	; let 
Xi  = 0 for i < 0. Assume that Hi(Xp,Xp  _ ,) = 0 for i 0 p. Suppose also that 
given any compact set C in X, there is an n such that C C X. Let Z(X) be the 
chain complex defined by setting DP(X) = Hp(Xp,Xp  _ ,) and letting the bound-
ary operator be the boundary homomorphism a, in the exact sequence of a 
triple. Then there is an isomorphism 

X : Hp(1(X)) Hp(X). 

It is natural with respect to homomorphisms induced by filtration-preserving 
continuous maps. 

Proof. As motivation for the proof, let us consider the situation of Exam-
ple 1, where XP  is the p-skeleton K(P)  of a simplicial complex and Hp  denotes 
simplicial homology. Then D(X) = e(K) in this case, and the theorem holds. 
It is also true in this case that 

Hp(K) = Hp(K(p+ ",lop - 2)),  

because only chains of dimensions p 1, p, and p — 1 are used in defining 
Hp(K). We shall show in Steps 1 and 2 that an analogous result holds in the 
present situation. 
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Step 1. We show that the homomorphism 

is  : H„(Xp+ ,)--,  Hp(X) 

induced by inclusion is an isomorphism. For this purpose, we first note that the 
homomorphisms 

Hp (X, + 2) 	Hp (X, 4. 3) 	• • • 

induced by inclusion are isomorphisms. This follows by examining the exact 
sequence 

Hp  + 1 (X, + , + ,,Xp+ 	Hp(X,, 	Hp(X,.,. 	Hp(X, + + „X, + i ) 

and noting that both end groups vanish if i > 1, by hypothesis. 
Our result now follows from the compact support properties of homology. 

To show that i, is surjective, let 0 be an element of H,(X). Choose a compact 
set C in X such that 0 is in the image of Hp(C)--. H,(X) under the homomor-
phism induced by inclusion. Since C is compact, C C X, + for some k. Then ft 
is the image of an element of Hp(Xp  + k ) in the diagram 

Hp(X, + ,) Hp(Xp , 	Hp(X). 

Because the first of these homomorphisms is an isomorphism, is the image of 

	

an element of Hp  (X, 	as desired. 
To show that is  has kernel 0, suppose e Hp(Xp+ ,) maps to zero in 

Hp(X). There is a compact set C such that maps to zero in Hp(C). Again, C 
lies in X, + k  for some k. Then 

Hp(Xp+ ,)--,  Hp(X,+k) 

carries 3  to zero; because this map is an isomorphism, /3 = 0. 

Step 2. We show that the homomorphism 

j5 : Hp(Xp + I) Hp(Xp + 1,Xp - 2) 

induced by inclusion is an isomorphism. 
This result will follow once we show that the homomorphisms 

Hp (X, + 1, 0) Hp (X, + „X.) . . . Hp(Xp+  „X, - 2) 

induced by inclusion are isomorphisms. To prove this fact, consider the exact 
sequence of the triple (X, + „X,,Xi  _ 1 ): 

	

Hp(X,,X, _ 1) Hp(Xp +1,X;  _ 	Hp(X, + „Xi ) --0 

Both end groups vanish for i < p — 2, by hypothesis; therefore, the middle 
homomorphism is an isomorphism. 

Step 3. We now prove the theorem. Given a quadruple XDADBDC 
of spaces, one has four "exact sequences of a triple" associated with this qua- 
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druple. They are most conveniently arranged in the form of four overlapping 
sine curves. We shall consider the special case 

(X,A,B,C) 	Xp ,,,X,„Xp  _ 1,XP _2). 

In this case, the groups in the upper left and right corners of the diagram, 
Hp(B,C) and Hp  (X,A), vanish, by hypothesis. 

0 	 Hp(X,C) 	 Hp(X,A) = 0 

Hp(A,C) 	 Hp(X,B) 

,(X,A) 	a 	Hp(A,B) 	a, 	Hp  _ ,(B,C) 
* 	 *  

Now k*  carries Hp(A,C) isomorphically onto ker (3;r. Furthermore, the 
map l* 	carries ker a'. onto Hp(X,C) (because 1*  is surjective); its kernel 
is just im a*  (because the kernel of is  equals im aio. Thus l* 	induces an 
isomorphism 

ker d's 
 HP (X, C) Hp(Xp,„Xp _2). 

im a*   
(A more general result concerning this diagram was given in Exercise 1 of §26.) 

Combining this result with those of Steps 1 and 2, we obtain our desired 
isomorphism 

24  kmer  Hp(X) 	+,) z•—•-• Hp(Xp .,. 	_ 2) 

The latter group equals H p(O (X)). 
Naturality of the isomorphism is easy to check. If f : X Y preserves fil-

trations, the first two of the preceding isomorphisms obviously commute with 
L. Furthermore, f*  carries the diagram of Step 3 for X into the correspond-
ing diagram for Y. It follows that the third isomorphism commutes with as 
well. 0 

We now prove an addendum to this theorem in the case where X is 
triangulable. 

Theorem 39.5. Let X be filtered by the subspaces X. C X, C • • • ; sup-
pose that X is the space of a simplicial complex K, and each subspace Xp  is the 
space of a subcomplex of K of dimension at most p. Let H, denote simplicial 
homology. Suppose 11,(X,„Xp  _ 1) = 0 for i * p. Then Hp(Xp,4 _,) equals a 
subgroup of Cp(K), and the isomorphism A of the preceding theorem is in-
duced by inclusion. 
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Indeed, 11„(X,,X,_,) is the subgroup of Cp(K) consisting of all p-chains 
of K carried by X, whose boundaries are carried by X, _ 

Proof. Any compact set in X lies in a finite subcomplex of K, so it lies in 
Xi  for some i. Therefore, the hypotheses of the preceding theorem are satisfied. 
Since Xi, contains no p 1 simplices, the homology group Hp(X,,X,_ ,) equals 
the group of relative p-cycles, which is the kernel of the homomorphism 

(Xp)  a cp  _ ,(x„) 
cpa, _ ,) c, _ 1(X,_1) • 

Because X, _ , contains no p-simplices, the denominator on the left side van-
ishes. Thus H,(X,,X,_ I) equals the group of simplicial p-chains of K carried 
by X, whose boundaries are carried by x„ _ 

We must check that the isomorphism X of the preceding theorem is induced 
by inclusion. Examining the preceding proof, we see that X is obtained by tak-
ing an element of ker a'. and mapping it into Hp  (X) according to the following 
diagram: 

H,(X,,X, _ 2) 	H,(Xp+  „X, _ 2) 1-L-- 	 H,(X). 

1k. 

ker 

Since each map is induced by inclusion, our theorem follows. 0 

We now see how strong the analogy is between the homology of simplicial 
complexes and the homology of CW complexes. Let us introduce some termi-
nology that will make the analogy even stronger. 

For each open p-cell ea  of the CW complex X, the group H,(e„ea ) is infi-
nite cyclic. The two generators of this group will be called the two orientations 
of ea. An oriented /real of X is an open p-cell ea  together with an orientation 
of ea. 

The cellular chain group Dp  (X) = Hp(XP,X° -1) is a free abelian group. 
One obtains a basis for it by orienting each open p-cell ea  of X and passing to 
the corresponding element of Hp(XP,XP 1 ). [That is, by taking the image of 
the orientation under the homomorphism induced by inclusion 

11„( a,ea )—+ 11„(X",XF ').] 

The homology of the chain complex 2(X) is isomorphic, by our theorem, with 
the singular homology of X. 

In the special case where Xis a triangulable CW complex triangulated by a 
complex K, and H, denotes simplicial homology, we interpret these comments 
as follows: The fact that X' and XP are subcomplexes of K implies that each 
open p-cell ea  is a union of open simplices of K, so that ea  is the polytope of a 
subcomplex of K. The group Hp  (e„, i„) equals the group of p-chains carried by 

"e a  whose boundaries are carried by ea. This group is infinite cyclic; either gener-
ator of this group is called a fundamental cycle for (ee,e„). 
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The cellular chain group A, (X) equals the group of all simplicial p-chains 
of X carried by r whose boundaries are carried by r 1. Any such p-chain 
can be written uniquely as a finite linear combination of fundamental cycles for 
those pairs (e,„ k,) for which dim ea  = p. 

Let us interpret these results in some familiar situations. 

MIMI= 
PAW:r4rd rig 

UMIWI 
NEIP2AM 
=MEI 

Figure 39.2 

Example 2. Let X denote either the torus or the Klein bottle, expressed as a 
quotient space of the rectangle L in the usual way. See Figure 39.2. 

Then X is a triangulable CW complex, having one open 2-cell e„ two open 
1-cells e, and e; (which are the images of A and B, respectively), and one 0-cell 
Then 

D2(X) Z, 	D,(X) Z • Z, 	100(X) Z. 

Let us find specific generators for these chain groups. The 2-chain d of L that is the 
sum of all the 2-simplices of L, oriented counterclockwise, is by inspection a cycle 
of (L, Bd L). Because d is a multiple of no other cycle, it is a fundamental cycle for 
(L, Bd L). By Lemma 39.1, y = go(d) is a fundamental cycle for (e2, 

Let c, be the sum of the 1-simplices along the top of L, oriented as indicated in 
Figure 39.3. Let c2, c3, and c, denote chains along the other edges of L, as indicated. 
Now. w, = g„(c,) is a fundamental cycle for (e1,i,). So is 84(4), of course. Simi-
larly, z, = g0(c2) is a fundamental cycle for ("e„i;), as is g#(c.). 

4 

Figure 39.3 
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In terms of these basis elements, it is easy to compute the boundary operator in 
the cellular chain complex Z(X). We first compute a in the complex L as follows: 

ac, 	—v„ 	acz  = vz  — v1, 
ad = —c, + + 	c.. 

Applying go, we see that 8w1  = go(8c1) = 0 and 8; = mac,) = 0 for both the to-
rus and the Klein bottle. In the case of the torus, a-y = Mad) = 0 because 
g, (c,) = g, (c,) and go  (c,) = g„ (c4). In the case of the Klein bottle, 

a-y = Mad) = 2g,(c2) = 2z, 

because g,(c,) = go(c,) and g,(c2) = —Mc.). 
Thus the homology of the cellular chain complex D(X) when X is the torus is 

H2(X) Z, H,(X) Z Z, 14(X) 

while in the case of the Klein bottle it is 

14(X) =0, 	H,(X) ZED Z/ 2, 	14(X) Z. 

Of course, we have carried out these same computations before. But now their 
justification comes from our general theorems about CW complexes, rather than 
from the ad hoc arguments we used back in §6. It is in this sense that our results 
about CW complexes make systematic the ad hoc computational methods we stud-
ied there. 

Example 3. Let S" be an n-sphere. Assume n > 1 for convenience. We can make 
S' into a CW complex having one open cell in dimension n and one cell in dimen-
sion 0. It follows that the cellular chain complex of S" is infinite cyclic in dimen-
sions n and 0, and vanishes otherwise. Therefore, 14(P) = Z and 14(S") = Z, 
while IMP) = 0 for i * 0, n. A similar computation applies when n = 1. 

EXERCISES 

1. Recompute the homology of the n-fold connected sums 

T # • • • # T 	and 	P2  # • • - # P2  

by expressing them as triangulable CW complexes and finding the correspond-
ing cellular chain complexes. 

2. Let A be a closed subset of X; suppose A is a deformation retract of an open set 
in X. If X/A is the space obtained by collapsing A to a point, show that 

H 	11,,(X I A). 

[Hint: Examine the proof of Lemma 39.1.] 

3. Let X be a CW complex; let A be a subcomplex. Show that inclusion induces 
a monomorphism Dp(A)--,  D,(X). The quotient D,(X)11),(A) is denoted 
D,(X,A). 
(a) Show that if X is a triangulable CW complex, 0(X,A) can be used to com-

pute the simplicial homology of (X,A). [Hint: Use the long exact se- 
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quences to show that inclusion D°  (X,A) C°  (X,A) induces a homology 
isomorphism.] 

(b) Show that in general, Zl(X,A) can be used to compute the singular homol-
ogy of (X,A). [Hint: Show that 2(X,A) is isomorphic to the chain com-
plex whose pth chain group is H°  (X° U A, X° -' U A) and whose bound-
ary operator comes from the exact sequence of a triple. Let x,= xP U A 
for all integers p. Repeat the proof of Theorem 39.4, replacing H;  (X°) by 
H,(Xp,A) and Hi(X) by Hi(X,A).1 

*4. Theorem. Let e = {c,431 be a non-negative free chain complex such that 
H0(6') is free and non-trivial. Then there is a CW complex X whose cellular 
chain complex is isomorphic to 6. 

Proof (a) Show that if n > 1, given an n-simplex and a homomorphism 

: H,,(cr, Bd 

ck is the homomorphism induced by some continuous map. (See Exercise 3 
of §25.) 

(b) Show that if X is a CW complex consisting of a collection of n-spheres 
with a point p in common (n > 0), and if a e H„(X,p), there is a map 
f 	(X,p) whose induced homomorphism carries a generator of 
H„(S",x.) to a. 

(c) Show that for p > 0 one can write Cp  = Up  e z,, where z, is the group of 
p-cycles, and for p = 0 one can write Co  = au, A, where A is non-trivial. 

(d) Complete the proof. 

5. Let G., G„ ... be a sequence of abelian groups with G. free and non-trivial. 
Assuming Exercise 4, show that there is a CW complex X such that Hi  (X) 
Gi  for all i. 

*§4O. APPLICATION: PROJECTIVE SPACES 
AND LENS SPACES/ 

We now apply the theory of CW complexes to compute the homology of certain 
spaces that are of particular importance in topology and geometry—the projec-
tive spaces. We also study those classical 3-manifolds called the lens spaces. 

Definition. Let us introduce an equivalence relation on the n-sphere S" by 
defining x —x for each x e S0. The resulting quotient space is called (real) 
projective n-space and denoted P. 

The quotient map p : S" I" is a closed map. For if A is closed in S", then 
the saturation p-1(p (A)) of A equals the set A U a(A), where a : Sn S" is 
the antipodal map. Because a is a homeomorphism, A U a(A) is closed in S", 
so (by definition of quotient space) the set p (A) is closed in Pe 

Therefore, P0  is Hausdorff (in fact, normal). 

'The results of this section will be used when we compute the cohomology rings of these 
spaces, in §68 and §69. 
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If we consider W to be the set of all real sequences (x„ x2, .) such that 
x;  = 0 for i > n, then IV C R3  +'. As a result, S' 	C Sn; in fact, S" ' is the 
intersection of S" with the plane x,, 	0. Now the equivalence relation x 
—x is the same in Sa -' as it is in S"; therefore, P" - C 	In fact, P" -  ' is 
a closed subspace of Pa. For if C is a subset of 11" - 1, then p-1(C) is closed in 
S" -  ' if and only if it is closed in S". Hence C is closed in P" if and only if it 
is closed in P". 

Theorem 40.1. The space Pa is a CW complex having one cell in each di-
mension 0 j n; its j-skeleton is P. 

Proof The space P° is obtained from the 2-point space S° by identifying 
these two points. Thus P° consists of a single point. 

We proceed by induction. Suppose we restrict the map p:S" P" to the 
closed upper hemisphere E'.',. of S". Because S" is compact and P" is Hausdorff, 
the map p' = p I E'.; is a quotient map; and it maps El. onto P" because each 
equivalence class ix, —x} contains at least one point of 	Its restriction to the 
open upper hemisphere Int Ers., is also a quotient map; being one-to-one, it is a 
homeomorphism of Int 	with P" — P" -1. Thus P" — P's -1  is an open n-cell. 
Call it e„. 

Now the map p' carries Bd 	= S's ' onto P" 1, which .by the induction 
hypothesis is the union of finitely many open cells of dimensions less than n. 
Thus when we identify El. with B", the map p' becomes a characteristic map for 
e„. It follows that P" is a CW complex with one open cell in each dimension 
0 j n. q 

Note that I", having one open 1-cell and one 0-cell, is homeomorphic to S'. 

Definition. Consider the increasing sequence P° C P' C • • - of projec-
tive spaces. Their coherent union is denoted by Pc°, and called infinite-dimen-
sional (real) projective space. It follows from Theorem 38.3(b) that Pc° is a CW 
complex having one open cell in each dimension j > 0; and its n-skeleton is P". 

Now we perform an analogous construction with complex numbers replac-
ing real numbers. Let Ca be the space of all complex sequences z = (z„z„...) 
such that z;  = 0 for i > n. Then Ca C C" "4-  for all n. There is an obvious 
homeomorphism p : C" + 	R2n + 2, which we call the "realification operator," 
defined by 

p(z,,z2, • .) = (Re z„ Im zi,Re z2, Im z2, ...), 

where Re zi  and Im zi  are the real and imaginary parts of z„ respectively. Let 
us define 

Izl = lip (z) = [2((Re zi)z 	(Im zi )z)] 1/2  = 

where 2;  is the complex conjugate of The subspace of Ca ' consisting of all 
points z with IzI = 1 is called the complex n-sphere. It corresponds to the sphere 
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S' under the operator p, so we use the symbol S2" +' to denote it, whether 
we consider it in C" 	or in 122n + 2. 

Definition. Let us introduce an equivalence relation in the complex n- 
sphere S2" + 1  C 	+' by defining 

(z„ 	,z„ „0, . .) 	Qtz„ . ,Xz„ „O, .) 

for each complex number A with IXI = 1. The resulting quotient space is called 
complex projective n-space and is denoted CP". 

The quotient map p : 	+ 1  CP" is a closed map. For if A is a closed 
set in S2" +', then p"'p(A) is the image of S' X A under the scalar multiplica-
tion map (X,z) Az. Since this map is continuous and S' X A is compact, its 
image is compact and therefore closed in .52" +'. Then p(A) is closed in CP", by 
definition. 

It follows that CP" is Hausdorff (in fact, normal). 
As in the real case, C" C C" 	for all n, so that S2" C S2" + Then, 

passing to quotient spaces, we have CP" CCP'. In fact, CP" ' is a closed 
subspace of Cr, by the same argument as before. 

Said differently, the elements of Cr are equivalence classes of sequences 
(z„z„ . . .) of complex numbers such that z, = 0 for i > n 1. If one sequence 
in an equivalence class satisfies the equation zn  = 0, so does every member of 
the equivalence class; and the class in question belongs to CP' 1 , by definition. 

Theorem 40.2. The space CP" is a CW complex of dimension 2n. It has 
one open cell in each even dimension 2j for 0 :5_ 2j < 2n, and CPi is its 2j-
skeleton. 

Proof The space CP° is a single point. In general, we show that CP" —
CP" ' is an open 2n-cell, which we denote by e2„. Consider the subset of S2" 
consisting of all points z = (z„ 	,z„ „0, ...) with z. real. Under the op- 
erator p, this corresponds to the set of all points of R2" + 2  of the form 

(xi,Yi, • • • 	+DOA • • •) 

having euclidean norm 1. This is just the unit sphere S2" in R2a+ 1 ; it is the 
equator of S2" 	If we further restrict the set by requiring z„ , to be real and 
non-negative, then x„., 	0 and we obtain the upper hemisphere E24" of this 
equator sphere. The restriction p' of p to Et' is of course a quotient map, be- 
cause the domain is compact and the range is Hausdorff. The boundary of Ems'
is the sphere S2" - obtained by setting z„ , = 0; the map p' carries S2"  - ' onto 
CP" -1. We shall show that p' maps Int E24" bijectively onto e2„ = CP" —
CP" 1; then since it is a one-to-one quotient map, it is a homeomorphism. It 
follows that e,,, is an open 2n-cell, and that p' is a characteristic map for em. 

The map p' : Int Ems" e2„ is surjective. Given a point of e2,, = CP" — 
CP" 	, it equals p (z) for some point z = (z„ 	,z „ „0, .) of 
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S2"+ ' — S' 1. Then IA = 1 and z„ , 0 0. Write z,, , = re'°, where r > 0. 
Let A = e-'; then 

Az = (Az„ • • • ,Xz„,r,0, • - •) e Int E24.". 

Now IXI = 1, so p(Xz) = p(z). Thus p(z) e p (Int V.:). 
The map p' : Int Ems` e2 ,e, is infective. Suppose p (z) = p (w), where z and 

w are in Int E24.8. Then w = Az, so in particular w„ = Az„ ,. Since w„ , and 
z„,. , are real and positive, so is A. Since IXI = 1, we conclude that A = 1. Thus 
w = z, as desired. CI 

We have noted that CP° is a single point. The space CP' is obtained by at-
taching a 2-cell to CP°; therefore, CP' is homeomorphic to S2. 

Definition. Consider the increasing sequence of spaces CP° C CP' C 
• • • . Their coherent union is denoted CP' and called infinite-dimensional 
complex projective space. By Theorem 38.3, it is a CW complex with one cell in 
each non-negative even dimension, and CP" is its 2n-skeleton. 

The homology of complex projective space is exceedingly easy to compute: 

Theorem 40.3. The group H1(CP") is infinite cyclic if i is even and 
0 < i < 2n; it vanishes otherwise. The group Hi(CP') is infinite cyclic if i is 
even and i > 0; it vanishes otherwise. 

Proof The cellular chain group D;  (CP") is infinite cyclic if i is even and 
0 < i < 2n; otherwise, it vanishes. Therefore, every chain of this chain complex 
is a cycle, and no chain bounds. A similar computation applies to CP'. 0 

The computations for P" require more work. The cellular chain group 
EVPn) is infinite cyclic for 0 < k < n; we shall compute the boundary opera-
tor in the cellular chain complex. Since the open k-cell ek  of P" equals PI` 

P' ', and ek  = 	we have Dk(P") = Hk(Pk,Pk - I). Thus we must com-
pute the boundary operator 

a. Ilk + 1(p* 	Ilk (llPk,Pk  - 

First, we prove a lemma. 

Lemma 40.4. Let p: S" P" be the quotient map (n a:1). Let j : Fs" 
(P1,P" - 1 ) be inclusion. The composite homomorphism 

11,(S")--. Ps(P") 
s 
 H„(P',Pn I ) 

is zero if n is even, and multiplication by 2 if n is odd. 

Chain-level prodf We assume that S" is triangulated so that the antipo-
dal map a : S" S" is simplicial, and that Pn is triangulated so that p : Sn Pn 
is simplicial. (See Lemma 40.7 following.) We use simplicial homology. Let c„ 
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be a fundamental cycle for (E7,,Sn -1). Then p0(c.) is a fundamental cycle for 
(P",1"  - 1 ), by Theorem 39.1. 

Consider the following chain of S": 
-y. = c„ + (-1)n  1  ao(c.). 

It is a cycle, for its boundary is 

a7„ = ac" + (-0-  ao(oc„) 
= ac. + (-1)2  n -  'ac.= O. 

This equation follows from the fact that a : S.  - 	sa - has degree (-1)R, so 
that ao, mapping the n — 1 cycle group of P - to itself, equals multiplication 
by (-1)n. Furthermore, -y„ is a multiple of no other cycle of Sn, for its restric- 
tion to 	is c„, which is a fundamental cycle for (En.i.,S" '). Thus -y. is a 
fundamental cycle for P. 

Finally, we compute 

P# ein) = P# (c. + (-1)" - a0(c.))- 
Since p c  a = p, we conclude that 

p#(7.) = El + (- 1)^ -qp#(c.). 

Since 'y„ is a fundamental cycle for P and p#(c.) is a fundamental cycle for 
(P",P'), the lemma follows. 

Homology-level proof. This proof is similar to the preceding one, except 
that the computations are carried out on the homology level rather than the chain 
level. It may seem more complicated, but the ideas are basically the same. 

Step 1. Consider the diagram 

a e H„(g.,S" - 

l i*  
H.(S1) 	11„(Sn,S" 	H _ i (Sn -1) 

1

1* 	'°a* 	(alS"- 1)*  
H.(S",En_.) 

where i, k, 1, m are inclusions and a is the antipodal map. Let a be a generator 
of H„(E",,Sn -1). Consider the element 

7 = i*  (a) (— 1)' asi*  (a) 

of H.(Sn,S" 1). We show there is a generator /3 of lin(P) such that k*  (13) -= 7. 
First, we show that 7 = k*  (,B) for some g. Note that 

as-r = 	+ (-1)ft -1(alSn 1)*(a*ja(a)) 

because as  is natural. This homology class vanishes, because (a IS'). equals 
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multiplication by ( — 1)". By horizontal exactness, there exists some i3 e H" (S") 
such that I c , (13) = -y. 

Second, we show that # generates 14(S"). Now m*  is an isomorphism, by 
the long exact reduced homology sequence. (Recall n _?... 1.) Therefore, it suf-
fices to show that m*  ((3) generates H „(Sh , En-) . Since m*  (13) = 1*(7), we shall 
compute 

1* (7) = I* 1*(a) + (-1)"'1,,,a* 1*(a). 

For this purpose, we note first that /* i*  (a) generates Hn (Sn,En_ ), because 
the inclusion map I o i induces a homology isomorphism. (See the proof of The-
orem 31.8.) Then we note that 1.aa i* (a) is trivial; this fact is a consequence of 
the following commutative diagram, where the unlabelled maps are inclusions. 

(Ea+  , S n - 1 ) ---L,  (S ' s, Sn - 1 ) 

I
alE'.', 	1 a 

(E1,Se - 1 ) --, (S",Se -1) 

1 	 1 1  
(.E1,E11.) --. (S",.E1) 

It follows that 1*  (y) generates II. (S",E11), as desired. 

Step 2. We prove the lemma. Consider the following commutative 
diagram: 

a e H.(En.,.,,Se -1) 

k 	lis 	a* 
(3 e Hn(Sn)--,*  H„(SR,S8  -1) ----- H.(Sn,Se -1) 

	

I
P* 	 1P5 	 P* 

H.(Pe)-. H.(Pe,Pe - ) 

Choose generators a and 13 as in Step 1. We wish to compute j*ps (t3). The map 

p 0 i : (En+  , Sn - 1 ) ---+ (Pn,Pe -I ) 

is a characteristic map for the n-cell of the CW complex Pe, so it induces 
an isomorphism in homology. Thus Nis (a) is a generator of H,,(Pa,Pe -  '). 
We compute 

.i*P* (i3) = P* k* (0) = P * (i * (a) + ( — 1 )n  - 1  a * i 5 (a)) 

= [1 + (-1)n- 9P*i*(a)- 

Here we use the fact that p 0 a = p. The lemma follows. 0 
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Theorem 40.5. The homomorphism 

a* : H. + 	H„(P",P" - 1) 

is zero if n is even, and carries a generator to twice a generator if n is odd. 

Proof.  The map p' : (E++ 1,S") (P' 1,P") is a characteristic map for 
the open n + 1 cell of P" 1; therefore, it induces a homology isomorphism. 
Consider the commutative diagram 

H„(Sn) 

114 	IP* 

H„+1(P"+ 1,P") =Loa  H„(I") *-11-+ H„(Pn,Pn -1) 

The map as  at the top of the diagram is an isomorphism, by the long exact re-
duced homology sequence of (E++ ',S"). By the preceding lemma, (j a p)*  is 
zero if n is even, and multiplication by 2 if n is odd. The theorem follows. 0 

Theorem 40.6. The homology of projective space is as follows: 

Z/2 	if i is odd and 0 < i < 2n + 1, 
ili (P11 + 1 ) a.:Z 	if i = 2n + 1, i 

0 	otherwise. 

H, 
(p,) az  to  Z12 if i is odd and 0 < i <2n, 

otherwise. 

ii i(pcQ)  = toZ/ 2 if i is odd and 0 < i, 
otherwise. 

Proof.  The cellular chain group 131 (P°°) is infinite cyclic for i .?.. -._ 0, and 
the augmented chain complex has the form 

1 • • • —,, Dv(P") 
2  
--- Dv  -1(p°°)  -4 • • • 

0 
--4 Do(P') ---. Z. 

There are no cycles in even dimensions; while in odd dimensions, every element 
is a cycle and even multiples of the generator bound. Thus H;  (P°°) is of order 2 
if i is positive and odd, and vanishes otherwise. 

The computations for P' and Fan + 1  are similar. 0 

Now we prove the lemma we used in the preceding chain-level proof. 

Lemma 40.7. The spaces S" and P" may be triangulated so that the an- 
tipodal map a : 	Sn and the projection map p : S" I" are simplicial. 

Proof. Step 1. We show first there is a complex L in R" such that each 
reflection map 

PAX', • • • Xi, • • • 9XX + 1) = (Xi ,  • • • I 	• • • ,Xn + 1) 
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induces a linear isomorphism of L with itself; and we show there is a triangula- 
tion k :ILI-4 S" that commutes with each map p;. 

The result is trivial for n = 0. Assume K is a complex in Ir and h : IKI 
S' 	is a triangulation satisfying our hypotheses. Let w. = (0, . ,0,1) and 
w, 	(0, . ,0,-1) in R" +'. Let L = (wo * K) U (w, * K). Then pi  induces a 
linear isomorphism of L with itself, for i = 1, . . . ,n + 1. The triangulation 
defined by 

k(y) 	( 	t2  h(x), t) 

if y (I — t)x + tw„, and 

k(y) = 	1 — t2  h(x), —t) 

if y = (1 — t)x + tw„ commutes with each pi. (This is the same triangulation 
we used in the proof of Theorem 21.3.) 

Step 2. Let k :ILI S" be the triangulation of Step 1. The antipodal map 
commutes with k, and induces a linear isomorphism of L with itself. It also 
induces a linear isomorphism of se L with itself, for any fixed N. 

Let us choose N large enough that for any vertex v of se L, the closed stars 
of v and a(v) are disjoint. Then we can use the "vertex-labelling" device of §3 
to construct a complex whose underlying space is homeomorphic to 1": Let us 
label the vertices of se L, giving v and a (v) the same label for each vertex v. 
Let g :Ise LI —4 IMI be the quotient map obtained from this labelling. Then the 
map g will identify x with a (x) for each x e ILI, and will identify x with no 
other point of ILI. Because the homeomorphism k commutes with a, it induces a 
homeomorphism of IMI with 1" that is our desired triangulation of P". 0 

As a further application of these techniques, we now define a certain class 
of 3-dimensional manifolds called the lens spaces and compute their homology. 
It is of interest that they form one of the few classes of spaces that have been 
completely classified up to homeomorphism and up to homotopy type. We dis-
cuss this classification later. 

Definition. Let n and k be relatively prime positive integers. We construct 
the lens space L (n, k) as a quotient space of the ball B3  as follows: Write the 
general point of B3  in the form (z,t), where z is complex, t is real, and 1z12  + 
t2  < 1. Let A = exp(27riln). Define f : S' S2  by the equation 

f (x) = (Ak  z, —t). 

Let us identify each point x = (z,t) of the lower hemisphere E2  of S2  = Bd B3  
with the point f (x) of the upper hemisphere 	The resulting quotient space is 
called the lens space L (n, k). 

Note that the map z —.Az of C to itself is just rotation through the angle 
In. Thus f equals a rotation of S2  about the z-axis through the angle a --

27k1n, followed by reflection in the xy-plane. See Figure 40.1. 
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Figure 40.1 

Let p : B3  L (n, k) be the quotient map. Each point of Int B3  is identified 
only with itself under p, and each point of Int E2_ is identified with a point of 
Int El_ However, since a point (z,0) of the equator in S2  belongs to both E2  
and E2i. , its equivalence class contains n points—namely, the points 

(Xkz,0),(Pz,0), . . . , (Xnkz, 0) = (z,0). 

Because k and n are relatively prime, these points are distinct and constitute a 
permutation of the points 

(Xz, 0), (X3z,0), . , (X' z,0) = (z,0), 

which are evenly spaced about the equator 

Theorem 40.8. The space L(n,k) is a CW complex with one cell in each 
dimension 0, 1, 2, 3. 

Proof We first show that the quotient map p is closed, so that L (n, k) is 
Hausdorff (in fact, normal). Let A be closed in B3. The saturation p-  p (A) of 
A is the union of the set A, the following subsets of S2: 

f (E2_ fl A) 	and 	f 	fl A), 

and the following subsets of S': 

f (A fl S'), f 2(A fI S'),..., 1-1(A n S'). 

All these sets are compact, so they are closed in B3, and so is their union. Since 
p-1p(A) is closed, so is p(A). Thus p is a closed map. 

We give L (n, k) the structure of CW complex as follows: First, choose a 
particular point a on the equator, say a = (1,0); let p (a) be the 0-cell es, of 
L(n,k). 

Let A denote the smaller arc of S' running from a to b = (X, 0). Now ',IA 
is a quotient map, since A is compact and L (n, k) is Hausdorff; it identifies a 
and b, but is one-to-one on Int A. Thus p (Int A) is an open 1-cell; we take it to 
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Figure 40.2 

be the open 1-cell e, of L(n,k). The map ptA is a characteristic map for e,. 
Note that the points of p' p (a) break the circle S' up into n open arcs, each of 
which is mapped homeomorphically by p onto e,. See Figure 40.2. 

For similar reasons, the map IA El is a quotient map; the set p (Int E2 ) is 
an open 2-cell that we take to be the open 2-cell e2  of L (n, k); and p1E2_ is a 
characteristic map for e2. Finally, the set p(Int B3) is the open 3-cell e3; and p is 
its characteristic map. 

Note that p(S') equals the 1-skeleton of L(n,k), and p(S2) equals the 
2-skeleton. 0 

Now we compute the homology of this lens space. 

Theorem 40.9. If X = L (n, k), then the cellular chain complex of X has 
the form 

D3(X) D2(X) -14  D,(X) -0 Do(X), 

where each group Di(X) is infinite cyclic. Therefore, 

H3(X) Z, 	H2  (X) = 0, 	11,(X)=Z1n, 	Ho  (X) Z. 

Thus the lens spaces L (n, k) and L (m, l) cannot be homeomorphic, or even 
have the same homotopy type, unless n = m. 

Proof Now B3  and L (n, k) may be triangulated so that the rotation-
reflection map f and the quotient map p are simplicial. We leave the proof as 
an exercise. 

Let A be the arc of S' having end points a = (1,0) and b = (X,0), as be-
fore. Let c, be a cycle generating H, (A, Bd A); let c2  be a cycle generating 
H3(E1 ,S'); and let c3  be a cycle generating H3(B3,S2); their signs will be chosen 
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shortly. The chains po(c,), pi(c,), and po (c,) generate the chain groups D,(X), 
D2(X), and D,(X), respectively. 

Choose the sign of c, so that ac, = b — a. Then we shall show that the chain 

(*) 	 z, = c, + f#(c1) + _a(c,) + • • • + 1; (c„) 

generates H,(S'). Once this fact is proved, we note that since 8c2  also gener-
ates H, (Si), we can choose the sign of c2  so that 8c2  = z,. We then show that 
the chain 
(**) 	 z, 	— 

generates li2(S2). Given this fact, we choose the sign of c, so that ac, = z2. 
First, we consider z,. Let g: 5' S' be the map g(z,0) = (Xz,0); it 

equals rotation through angle 27r/n. Rearranging terms in the expression for z„ 
we have 

z, = c, + g.„(c,) + • • • + 4 -1(c,). 

Now ac, = g,„ (a) — a. Therefore, 

az, ---- [go(a) — a] + [4(a) — Ma)] + • • • + [g; (a) — 	1 (a)] 

= 0. 

Thus z, is a cycle. Because its restriction to A equals c„ which is a fundamental 
cycle for H,(A,Bd A), it is a fundamental cycle for S'. Thus z, generates 
H, (S'). 

Now let us consider ;. To show z, is a cycle, we compute 

a; = ac, — ,f,,(aco = z, — f, (z,) = 0, 

for by direct computation with formula (*), we have ./.0  (z,) = z„ Because the 
restriction of ; to V_ is a fundamental cycle for (E2_ ,S'), the chain z2  is a 
fundamental cycle for S2, so it generates H2(S2). 

Now we are ready to compute the boundary operators in the cellular chain 
complex of X. First, 

4914(c) = PM (b) — Ma) = 0, 

so the boundary operator D, (X) D, (X) is trivial. Second, 

aP# (c2) = PA) = PM (c, + Mci) + • • • + 	'(cI)) 
= npi(c,), 

because p(fj (x)) = p(x) for all x in S1  and all j. Thus the map D,(X)—,  
D,(X) is multiplication by n. Third, 

aP# (c3) = P# (z2) = P# (c2 — f# (c2)) = 0, 

because p(f(x)) = p(x) for x in El . Thus D3(X) D2  (X) is trivial. 0 
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EXERCISES 

1. Show that P" is homeomorphic to the quotient space of r obtained by identify-
ing x with —x for each x e S" 1. 

2. (a) Show P" is an n-manifold and CP" is a 2n-manifold. 
(b) Show more generally that if a finite-dimensional CW complex is homoge- 

neous, it is a manifold. 

3. Let A be a regular n-sided polygonal region in the plane; let B be the suspension 
of A. Describe L(n,k) as a quotient space of B; conclude that B3  and L(n,k) 
can be triangulated so the quotient map is simplicial. 

4. Theorem. L(n,k) is homeomorphic to L(n,l) if either 

k 	±1 (mod n) 	or 	kl = ±1 (mod n). 

Proof (a) Prove the case k = —1 (mod n) by considering the reflection 
map (z, t) 	(z,—t) in B3. 

(b) Let 1 < k < n, for convenience. Consider n disjoint 3-simplices 

a,b,c,d„ a2b,c,c1„ 	, a„b„c„d„, 

indexed with the elements of Z/n. See Figure 40.3. Show that L(n,k) can 
be obtained from these simplices by first pasting 

OA to a„.+ ,bi+ ,ci+ „ 

for each i in Z/n, by a linear homeomorphism that preserves the order of 
vertices, and then pasting 

Cidibi to Cj kdi kai it> 

again by a linear homeomorphism that preserves the order of the vertices. 

a2 

c2 2 • • • 

Figure 40.3 

(c) Rewrite the simplices of (b) in the order 

ak b„c„d,„ a,bucc12,„ 	, a"kb"kc"kd"k• 

See Figure 40.4. Carry out the second pasting operating of (b), and then 
carry out the first pasting operation of (b). Show this gives a description of 
L(n,1), where 1 is the integer between 1 and n such that kl =5 1 (mod n). 
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Ck 
	 C 

a2k 

d2k 

Figure 40.4 

(d) Prove the theorem. 

5. Show that L(n,k) is a compact 3-manifold. 

We note that the converse of the theorem stated in Exercise 4 holds, but 
the proof is very difficult. 

In the 1930's R. Reidemeister defined a number associated with a simpli-
cial complex, called its torsion. This number is a combinatorial invariant, 
which means that two complexes that have isomorphic subdivisions necessarily 
have the same torsion. By computing the torsion for lens spaces, Reidemeister 
showed that if the simplicial complexes L(n,k) and L (n, l) have isomorphic 
subdivisions, then either k = ±1 or kl = ± 1 (mod n). 

To complete the proof of the converse, it remained for E. E. Moise (in the 
1950's) to prove that two triangulated 3-manifolds that are homeomorphic nec-
essarily have subdivisions that are isomorphic. 

The homeomorphism classification of lens spaces is thus known. We shall 
discuss their homotopy-type classification in a later chapter. 
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Cohomology 

With each topological space X, we have associated a sequence of abelian groups 
called its homology groups. Now we associate with X another sequence of abe-
lian groups, called its cohomology groups. These groups were not defined until 
long after the homology groups. The reason is not hard to understand, for they 
are geometrically much less natural than the homology groups. Their origins lie 
in algebra rather than geometry; in a certain algebraic sense (to be made pre-
cise), they are "dual" to the homology groups. In the past, topologists have used 
such terms as "pseudo-cycle" for representatives of these group elements, im-
plying a certain skepticism as to their legitimacy as objects of study. However, 
it eventually became clear that these groups are both important in theory and 
useful in practice. 

The duality theorems for manifolds, the connections between topology and 
differential geometry (de Rham's theorem) and between topology and analysis 
(cohomology with sheaf coefficients)--all these results are formulated in terms 
of cohomology. Even such purely topological problems as classifying spaces up 
to homeomorphism, or maps up to homotopy, are problems about which coho-
mology has a good deal to say. We will return to some of these problems later. 

Throughout, we shall assume familiarity with the language of categories 
and functors (§28). 

§41. THE HOM FUNCTOR 

Associated with any pair of abelian groups A, G is a third abelian group, the 
group Horn (A,G) of all homomorphisms of A into G. This group will be in-
volved in an essential way in the definition of the cohomology groups. In this 
section we study some of its properties. 
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Definition. If A and G are abelian groups, then the set Hom(A,G) of all 
homomorphisms of A into G becomes an abelian group if we add two homomor-
phisms by adding their values in G. 

That is, for a E A we define (4) + 1,(,) (a) = 4)(a) + 4/(a). The map 4) + 
is a homomorphism, because (4) + 1,G) (0) = 0 and 

(4) + IP) (a + b) = 4)(a + b) + 1,G(a + b) 

= 0(a) + 0(a) + 0(b) + >G (b) 

= (0 + 0)(a) + (0 + 0)(4 
The identity element of Hom(A,G) is the function mapping A to the identity 
element of G. The inverse of the homomorphism cp is the homomorphism that 
maps a to —0(a), for each a e A. 

Example I. Hom (Z,G) is isomorphic with the group G itself; the isomorphism 
assigns to the homomorphism : Z G, the element 0  (1). 

More generally, if A is a free abelian group of finite rank with basis ei, 	,e„, 
then Hom(A,G) is isomorphic with the direct sum G e • • • e G of n copies 
of G. The isomorphism assigns to the homomorphism 	G, the n-tuple 
(4) (e 1), . . . ,a)(e ,,)) . Note that this isomorphism is not "natural," but depends on 
the choice of a basis for A. Note also that it depends on the finiteness of the rank 
of A. If A is free abelian with non-finite basis jej„, j, then the correspondence 

(4)(e.))." carries not to an element of the direct sum e.e  1q, of copies of 
G, but rather to an element of the direct product IL E  ,G.. (See §4 for definitions.) 

We will state these facts formally as a theorem later on. 

Definition. A homomorphismf : A B gives rise to a dual homomorphism 

Hom(A,G) Hom(B,G) 

going in the reverse direction. The map f assigns to the homomorphism 
: B 	G, the composite 

A f B±G.  

That is, f(0) = 	f. 

The map f is a homomorphism, since f(0) = 0 and 

[Act. +1p)] (a) = (0 + 0)(f(a)) = 0(1(a)) + W(4)) 
= [AO)] (a) + [AO] (a). 

Note that for fixed G, the assignment 

A 	Hom (A,G) and f- f 
defines a contravariant functor from the category of abelian groups and homo-
morphisms to itself. For if iA  : A A is the identity homomorphism, then 
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7 
IA  (0) = 40 0  = 0, so IA  is the identity map of Hom(A,G). Furthermore, if 
the left diagram following commutes, so does the right diagram: 

C Hom(A,G) h  Hom(C,G) 

Horn (B,G) 

For iz (0) oh=o(gof); while j(k(0)) 	g) = (og)of, by 
definition. 

We list some consequences of this fact: 

Theorem 41.1. Let f be a homomorphism; let f be the dual homomorphism. 
(a) If f is an isomorphism, so is f. 
(b) If f is the zero homomorphism, so is f 
(c) If f is surjective, then f is injective. That is, exactness of 

B C 0 

implies exactness of 

Hom(C,G) 0. 

Proof (a) and (b) are immediate. To prove (c), suppose f is surjective. 
Let 	e Hom(C,G) and suppose f(1,G) = 0 = a f. Then 1p(f(b)) = 0 for 
every b e B. As b ranges over B, the element f(b) ranges over all elements 
of C. Thus Cc) = 0 for every c e C. 0 

More generally, we have the following result concerning the dual of an 
exact sequence. 

Theorem 41.2. If the sequence 

A I g 

is exact, then the dual sequence 

Horn (A,G) Horn (B,G) 1  Horn (C,G) 0 

is exact. Furthermore, if f is infective and the first sequence splits, then f is 
surjective and the second sequence splits. 

Proof Injectivity of g follows from the preceding theorem. We check 
exactness at Horn (B,G). Because h= g of is the zero homomorphism, so is 
h 	On the other hand, supposing f(1P) = 0, we show 4) = k(o) for 
some e Hom(C,G). Since f(I,L) = 4) o f is the zero homomorphism, 1p van-
ishes on the group f(A). Thus >G induces a homomorphism : Blf(A)---. G. 
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Exactness of the original sequence implies that g induces an isomorphism 
g' : B I f(A) --, C, as in the following diagram: 

r:  4' p g 
G '  ---- " --, C 

0;\ I =Ye 

B/f(A) 
The map 4) = 4/ o (g')-1  is a homomorphism of C into G, and as desired, 

k(4)) = (I:, 0 g = ;(/' 0 (g')-1  0 g = 11,/. 

Suppose now that f maps A injectively onto a direct summand in B. Let 
7 : B --. A be a homomorphism such that it of= iA. Thenf o ii- is the identity of 
Hom (A,G), so f is surjective and ii- : Horn (A,G)--,  Horn (B,G) splits the dual 
sequence. 0 

We remark that, in general, exactness of a short exact sequence does not 
imply exactness of the dual sequence. For instance, if f : Z --, Z equals multipli-
cation by 2, then the sequence 

0 --, Z --1--. Z --. Z/2 ---. 0 

is exact. But f is not surjective. Indeed, if 4) e Hom (Z,Z), then f(4>) = 4) 0 f is 
a homomorphism that maps Z into the set of even integers. Thus the image of f 
is not all of Horn (Z,Z). 

We have considered Horn as a functor of the first variable alone. But it 
may also be considered as a functor of both variables. In this case, it has a 
mixed variance; it is contravariant in the first variable and covariant in the 
second. We formalize this statement as follows: 

Definition. Given homomorphisms a : A —' A' and (3 : G' —' G, we define 
a map 

Horn (a,13) : Hom (A',G') --. Hom (A,G) 

by letting it map the homomorphism 4/ : A' ---. G' to the homomorphism 
/3 0 cy ca:A--0G. 

You can check that Horn (a,/3) is indeed a homomorphism. Functoriality fol-
lows: The map Hom(iA,iG) is the identity. And if a' : A' --4 A" and f3' : G" —, G', 
then 

Hom (a' o a, t3 0 f3') = Hom (a, f3) o Hom (a',0') 

by definition. (Both sides carry 40" : A" ---, G" to ( 0 0' o 0" . a' o a.) 
In this notation, the "dual homomorphism" a obtained when we consider 

Horn as a functor of the first variable alone is just the map Horn (a,ic). 
One can also consider Horn as a functor of the second variable alone; this 

case we leave to the exercises. 
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Now we prove some properties of the Horn functor. 

Theorem 41.3. (a) One has the following isomorphisms: 

Horn (%, ,A„,G) =1L E , Horn (A„,G), 

Horn (A,IIa e  1G.) = IIQ  e  Horn (A,G.). 

(b) There is a natural isomorphism of Horn (Z,G) with G. If f 
equals multiplication by m, then so does f. 

(c) Hom (Z/m,G) = ker (G mG). 

Proof. Property (a) follows immediately from standard facts of algebra 
concerning homomorphisms of products. The proof of (b) is also direct; the 
homomorphism A : Hom(Z,G) G assigns to the homomorphism 4 : Z G 
the value of cp at 1. That is, A (0) = (1). Since 0 is entirely determined by its 
value at 1, and since this value can be chosen arbitrarily, X is an isomorphism of 
Hom(Z,G) with G. 

Let f Z Z be multiplication by m. Then 

j(0)(x) = 4(.f(x)) = q5(mx) = mckx), 

so f(0) = m0. Thus f equals multiplication by m in Horn (Z,G). Under the iso-
morphism X of Horn (Z,G) with G, the map fin turn corresponds to multiplica-
tion by m in G. 

Now we prove (c). Begin with the exact sequence 

Z 	Z --rZ/m O. 

Then the sequence 

Hom (Z,G) 1  Horn (Z,G) Horn (Z/m,G) 0 

is exact, and (c) follows. 0 

We remark that the isomorphisms given in (a) of this theorem are "natu- 
ral." Specifically, suppose one is given homomorphisms 	:A.—,  Ba  and 

: H 	G. Then it follows immediately from the definition of the isomorphism 
that the diagram 

Hom (4314.,G) = II Horn (A0,G) 

Hom(90.011) j 	 j II Horn (04) 

Hom(eB„,H)=. II Horn (13„,H) 

commutes. A similar comment applies to the other isomorphism in (a). 
The preceding theorem enables us to compute Horn(A,G) whenever A 

is finitely generated, for Horn (A,G) equals a direct sum of terms of the form 
Hom (Z,G) and Hom(Z/m,G), which we compute by applying the rules 

Hom (Z,G) = G, Hom (Z1m,G) = ker (G G). 
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When G is also finitely generated, these groups can be written as direct sums of 
cyclic groups. One needs the following lemma, whose proof is left to the exercises. 

Lemma 41.4. There is an exact sequence 

0 --, Z/d --, Z/n -n4 Z/n ---, Z/d --. 0, 

where d = gcd(m,n). 0 

EXERCISES 

1. Show that if T is the torsion subgroup of G, then Hom(G,Z) .1-.4 Horn (G/T,Z). 

2. Let G be fixed. Consider the following functor from the category of abelian groups 
to itself: 

A --, Hom (G,A) 	and 	f--. Horn (iG,f). 

(a) Show that this functor preserves exactness of 

0 -.A--•B—+C. 

(b) Show that this functor preserves split short exact sequences. 

3. (a) Show that the kernel of Z/n It Z/n is generated by in/ d}, where d = 
gcd (m,n). 

(b) Show that a quotient of a cyclic group is cyclic. 
(c) Prove Lemma 41.4. 

4. The abelian group G is said to be divisible if for each x e G and each positive 
integer n, there exists y e G such that ny = x. For instance, the rationals form a 
divisible group under addition. 

Theorem. Let G be divisible. Then if 

0—A--, B--.0 --. 0 

is exact, so is 

0 .— Hom (A,G) •--- Hom(B,G) .-- Hom (C,G) .— 0. 

Proof. It suffices to show that if A C B and 4): A —G is a homomor-
phism, then 4) extends to a homomorphism 4,  : B —, G. 
(a) Prove this fact when B is generated by the elements of A and a single addi-

tional element b. 
(b) Let 2 be a collection of subgroups of B that is simply ordered by inclusion. 

Let {4,ff  I H e 53} be a collection of homomorphisms, where 4,H  maps H into 
G for each H, such that any two agree on the common part of their domains. 
Show that the union of the elements of 53 is a subgroup of B, and these ho-
momorphisms extend to a homomorphism of this union into G. 

(c) Use a Zorn's lemma argument to complete the proof. 

5. Let R be a commutative ring with unity element 1. Let A and B be R-modules. 
(See §48 if you've forgotten the definitions.) 
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(a) Let Hem, (A,B) denote the set of all R-module homomorphisms of A into B. 
Show it has the structure of R-module in a natural way. Show that if f,g are 
R-module homomorphisms, so is Hom (f,g). 

(b) State and prove the analogues of Theorems 41.2 and 41.3 for R-modules. 
(c) Consider the special case where R is a field F. Then A and B are vector spaces 

over F, and so is HomF(A,B). Show that in this case every exact sequence 
splits, so the functor Horn, preserves exact sequences. 

§42. SIMPLICIAL COHOMOLOGY GROUPS 

In this section, we define the cohomology groups of a simplicial complex, and 
we compute some elementary examples. 

Definition. Let K be a simplicial complex; let G be an abelian group. The 
group of p-dimensional cochains of K, with coefficients in G, is the group 

CP(K; G) = Hom(Cp(K),G). 

The coboundary operator 5 is defined to be the dual of the boundary operator a : c . 1 (K) --. C,(K). Thus 

CF +' (K; G) 4 CP  (K; G), 

so that (3 raises dimension by one. We define ZP (K; G) to be the kernel of this 
homomorphism, BP +' (K; G) to be its image, and (noting that 52  = 0 because a,  = 0), 

HP (K; G) = ZP (K; G) I BP (K; G). 

These groups are called the group of cocycles, the group of coboundaries, and 
the cohomology group, respectively, of K with coefficients in G. We omit G 
from the notation when G equals the group of integers. 

If cP is a p-dimensional cochain, and c, is a p-dimensional chain, we com-
monly use the notation (cP,c,) to denote the value of cP on c,, rather than the 
more familiar functional notation cP(cp). In this notation, the definition of the 
coboundary operator becomes 

(5cP,dp  + ,) = (9,8dp  + 1). 

The definition of cohomology is, as promised, highly algebraic in nature. Is 
it at all possible to picture the groups involved geometrically? The answer is a 
qualified "yes," as we now observe. 

Recall that the group Cp(K) of p-chains is free abelian; it has a standard 
basis obtained by orienting the p-simplices of K arbitrarily and using the corre-
sponding elementary chains as a basis. Let {al € , be this collection of oriented 
simplices. Then the elements of Cp(K) are represented as finite linear combina-
tions 1 naa a  of the elementary chains cc. Now an element cP of Hom (C,(K),G) 
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is determined by its value ga  on each basis element oc, and these values may be 
assigned arbitrarily. There is, however, no requirement that c" vanish on all but 
finitely many a.. 

Suppose we let cra* denote the elementary cochain, with Z coefficients, 
whose value is 1 on the basis element a. and 0 on all other basis elements. Then 
if g e G, we let gol denote the cochain whose value is g on as  and 0 on all other 
basis elements. Using this notation, we often represent cf by the (possibly infi-
nite) formal sum 

cP 	g„,at. 

Why is this representation of e reasonable? We justify it as follows. 
Suppose we let C„ denote the infinite cyclic subgroup of C°(K) generated 

by a.. Then Cp(K) = ED,,C., and as noted earlier, 

(*) 	 C° (K; G) = Hom(9‘,Ca,G) = II„ Horn (c,G); 

the latter group is a direct product of copies of G. Under the isomorphism (*), 
the cochain 9 corresponds to the element (g.ana, j  of the direct product. In-
stead of using "tuple" notation to represent this element of the direct product, 
we shall use formal sum notation. 

This notation is especially convenient when it comes to computing the co-
boundary operator S. We claim that if 9 = E g.a.*, then 

(30 ) 
	 oc° = &Oa:), 

just as if we had an honest sum rather than formal one. To verify this equation, 
let us orient each p + 1 simplex T and show that the right side makes sense and 
that both sides agree, when evaluated on T. Suppose 

p+ I  

ar = 
= 0 

where ti  = ±1 for each i. Then 
p + 1 

09 	= (9,8T) = L  Ei(c' 07,„) 
i = 0 

p + 1 

= 

i = 0 

Furthermore, 

(g.(547:),7) = ga(Ocr:,r) = ga(sl,ar) 

{ = eig,,, if a = cx;  for i = 0, ... ,p ± 1, 

0 	otherwise. 

Thus ocP and I ge, (Se) have the same value on T, so (**) holds. 
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By (**), in order to compute oe, it suffices to compute Oa* for each ori-
ented p-simplex cr. That we can compute by using the formula 

Sa* = 

where the summation extends over all p + 1 simplices having u as a face, and 
= ± 1 is the sign with which a appears in the expression for BT;. One verifies 

this formula by simply evaluating both sides on the general p + 1 simplex T. 

Now let us apply these facts to some examples. We make only a few com-
putations here, reserving the general problem of computing cohomology groups 
until a later section. 

Example 1. Consider the complex K pictured in Figure 42.1. Let us compute the 
coboundaries of a few cochains. Let Iv11 denote the set of vertices; let {ei} denote the 
edges, oriented as indicated; let tail denote the 2-simplices, oriented as indicated. 
We compute 54; it has value 1 on a, and value —1 on a„ because e, appears in aa, 
and au, with signs +1 and —1, respectively. Thus 

= — : 

A similar remark shows that 

but = e + et — 

Are there any cocycles in this complex? Yes, both c and at are cocycles, for the 
trivial reason that K has no 3-simplices. Each of them is a coboundary, since 

be; = CI 	and 	be; = 	. 

The 1-dimensional cochain 

c' = 4 ± 4 —e; 

is also a cocycle, as you can check; it happens to be a coboundary, since it equals 
+ v:). Similarly, you can check that the 0-cochain 

c" = v: + + 	v: 

is a cocycle; it cannot be a coboundary because there are no cochains of dimen-
sion —1. 

110 
	e 	'; 

e4  e2 

v3 	e3 

Figure 42.1 
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Example 2. Consider the torus, in a slightly simplified version of the triangulation 
considered earlier. See Figure 42.2. Consider the 1-cochain z' = e + • • • + < 
pictured in the figure. It is a cocycle, as you can check, and so is the cochain 
d' = et + • • • + <2. They happen to be cohomologous, since 6(c* + h* + j*) = 
z' — d'. (Here h and j lie on the vertical line through c.) 

This example illustrates the fact that while we can think of a 1-cycle as being a 
closed curve, the best way to think of a 1-cocycle is as a picket fence! 

Later we -shall compute the cohomology of the torus T and show that the co-
cycle z' represents one of the generators of IP (T). (See §47.) 

Example 3. Consider the complex K pictured in Figure 42.3. We compute its 
cohomology groups. The general 0-cochain is a sum of the form c° = E n,v;'. Since 
(6c°,ei) = (c°,aei), we see that 6c° has value n, — n, on e„ value n, — n2  on e2, and so 
on. If c° is a cocycle, then necessarily n, = n, = n, = n4, so c° is of the form nM u7. 
We conclude that H°(K) = Z, and is generated by I v:°. 

Now let c' be a 1-cochain; it is a cocycle, trivially. We show that c1  is cohomol-
ogous to some multiple of e7. It suffices to show that e? is cohomologous to et for 
each i, and this can be done directly. For instance, e is cohomologous to et because 
6(v: + vt) = e — . A similar remark applies to the other ei. 

Furthermore, no multiple of et is a coboundary: For let z be the cycle e, + 
e, + e, + e4. Then for any 0-cochain c°, we have (6c°,z) = (c°,8z) = 0. But (net,z) = 
n; thus net is not a coboundary unless n = 0. 

We conclude that INK) = Z and is generated by et. It is also generated by 
<, by <, and by et 

Note that this same argument applies if K is a general n-gon instead of a 4-gon. 
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Figure 42.4 

Example 4. In the preceding example, the homology and cohomology groups of K 
are equal. Lest you think this always occurs, consider the following example. 

Let S denote the Klein bottle, represented by the labelled rectangle of Figure 
42.4. We show that H2(S) is nontrivial, whereas we know that H,(S) = 0. Orient 
the 2-simplices of L counterclockwise. Use the induced orientation of the 2-sim-
plices of S, and let 7 denote their sum. Now y is not a cycle, because ay = 2z„ 
where z, = [a,d] + [d,e] + [e,a]. 

Let a denote a single oriented 2-simplex of S, as pictured. Then cr*  is a cocycle 
of S, because S has no 3-simplices. Furthermore, a* is not a coboundary. For if c2  is 
an arbitrary 1-cochain, then (bc',-y) = (a' ,87) = 2(c' ,z,), which is an even integer, 
while (a.,-r) = 1. Thus a* represents a non-trivial element of H 2(S). 

Now in fact a* represents an element of order 2 in Hz (S). You can check 
that the coboundary of the 1-cochain (et + • • • + et) pictured in the figure 
equals 20. 

Now we consider the zero-dimensional cohomology groups, and com-
pute them. 

Theorem 42.1. Let K be a complex. Then H°(K; G) equals the group of 
all 0-cochains c° such that (c°,v) (c°,w) whenever v and w belong to the same 
component of (KI. 

In particular, if IKI is connected, then H°(K) = Z and is generated by the 
cochain whose value is 1 on each vertex of K. 

Proof Note that H°(K; G) equals the group of 0-cocycles, because there 
are no coboundaries in dimension 0. If v and w belong to the same component of 
IKI, then there is a 1-chain c, of K such that ac, = v — w. Then for any cocycle 
c°, we must have 

0 = (Sc°,c,) = (c°,ac,) 	(c°,v) — 
Conversely, let c°  be a cochain such that (c°,v) — (c°,w) = 0 whenever v and w 
lie in the same component of IKI. Then for each oriented 1-simplex a of K, 

(Oc°,a) = (c°,acr) = 0. 

We conclude that &c°  = 0. The theorem follows. 0 
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The preceding theorem shows that in general H° (K) is isomorphic to a di-
rect product of infinite cyclic groups, one for each component of IKI. The group 
14(K), on the other hand, is isomorphic to the direct sum of this collection of 
groups. This is another case where homology and cohomology groups differ. 

Definition. Given a complex K, we dualize the standard augmentation 

C,(K)
a, 
 Co(K) 4  Z, 

and obtain a homomorphism 

Cl (K; G) C° (K; G) ~ G, 

called a coaugmentation. It is injective, and 6, 	= 0. We define the reduced 
cohomology of K by setting IP (K; G) = (K; G) if q > 0, and 

k° (K; G) = ker 8,/im E. 

Theorem 42.2. If IKI is connected, then k° (K; G) = 0. More generally, 
for any complex K, 

H° (K; G) = 11° (K; G) e G. 

Proof If IKI is connected, then 110(K) vanishes, so C,(K) Co(K) 
Z 	0 is exact. It follows that 

(K; G) C° (K; G) G (--- 0 

is exact, so 11°(K; G) vanishes. The rest of the theorem we leave as an exercise. 

EXERCISES 

1. Consider the complex K of Example 1. Find a basis for the cocycle group in each 
dimension. Show that the cohomology of K vanishes in positive dimensions. 

2. Check the computations of Examples 2, 3, and 4. 

3. (a) Suppose one is given homomorphisms 

C, 	C° L Z, 

where e o = 0 and e is an epimorphism. Consider the dual sequence 

Hom(C„G) Horn (C,„G) Hom (Z,G). 

Show that im is a direct summand in Hom(C.,G) and hence in ker 4. 
[Hint: See the exercises of §7.] 
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(b) Conclude that 

ker 	ker 3 63, G,  
im Z 

so that in particular, 

H° (K; G) 11°(K; G) e G. 
4. Let K be the complex whose space is the real line and whose vertices are the inte-

gers. Let Q = [n,n + 1]. Show that 111 (K) = 0 by finding a specific cochain 
whose coboundary is 

*5. Let K be a finite complex. 
(a) Use the theorem on standard bases for chain complexes (§11) to express 

HP (K) in terms of the betti numbers and torsion coefficients of K. 
(b) Express HP (K;G) in terms of the betti numbers and torsion coefficients of K; 

the answer will involve the groups G, G I mG, and ker (G G). 
(c) Compute HP (X; G) if X is the torus, Klein bottle, or projective plane. 

§43. RELATIVE COHOMOLOGY 

Continuing our discussion of simplicial cohomology, we define the relative co-
homology groups. We also consider the homomorphism induced by a simplicial 
map, and the long exact sequence in cohomology. In some respects, relative co-
homology is similar to relative homology; in other respects it is rather different, 
as we shall see. 

Definition. Let K be a complex; let IC°  be a subcomplex of K; let G be 
an abelian group. We define the group of relative cochains in dimension p by 
the equation 

CP (K,K.; G) = Hom(Cp(K,K0),G). 

The relative coboundary operator 6 is defined as the dual of the relative bound-
ary operator. We define Z" (K,K,,; G) to be the kernel of the homomorphism 

: CP (K,K0; G) CP + (K,K,,; G), 

BP + (K,Ko; G) to be its image, and 

HP (K,K0; = ZP (K,K,,; 6)1 BP (K,K.; G). 

These groups are called the group of relative cocycles, the group of relative 
coboundaries, and the relative cohomology group, respectively. 
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We have an idea of how to picture cochains and cocycles. How shall we 
picture a relative cochain or cocycle? Here the situation is rather different from 
the situation in homology. We explain the difference as follows: 

For chains, we had an exact sequence 

0 --. C,(K0)  -4  c(K)-L• Cp(K,K.) —0 0, 

where Cp(K0) is a subgroup of Cp(K), and Cp(K,K.) is their quotient. The 
sequence splits because the relative chain group is free. Therefore, the sequence 

-.- 
0 — MK.; G) 4  CP (K; G) 3  4— CP (K,K.; G)+- 0 

is exact and splits. This leads to the following surprising fact: 
It is natural to consider CP (K,K.; G) as a subgroup of CP (K; G), and 

Cp(K0; G) as a quotient group of C'(K; G). 
Let us examine this situation more closely. A relative cochain is a homo-

morphism mapping Cp(K,K.) into G. The group of such homomorphisms cor-
responds precisely to the group of all homomorphisms of Cp(K) into G that 
vanish on the subgroup Cp(K0). This is just a subgroup of the group of all 
homomorphisms of Cp  (K) into G. Thus CP (K,K.; G) can be naturally consid-
ered to be the subgroup of C' (K; G) consisting of those cochains that vanish on 
every oriented simplex of K0. In some sense, CP (K,K.; G) is the group of those 
cochains of K that are "carried by" K — K0. The coboundary operator maps 
this subgroup of CP (K; G) into itself: Suppose cP vanishes on every simplex of 
K0. If 7.  is a p + 1 simplex of K., then ar is carried by K0, so 

(6cP,r) = (cP,ar) = 0. 

Thus the map 3 can be interpreted as an inclusion map. To interpret i, we 
note that it carries the cochain cP of K to the cochain 9 o i, which is just the 
restriction of cP to Cp(K.). We summarize these results as follows: 

If we begin with the sequence 

0 +0 Cp(K0) -1-0 Cp(K)1-0  Cp(K,K.) —0 0, 

the dual of the projection map j is an inclusion map :7, and the dual of the 
inclusion map i is a restriction map i. 

Let us now consider the homomorphism of cohomology induced by a sim-
plicial map. 

Recall that if f : (K,K.) —0 (L,L.) is a simplicial map, then one has a corre-
sponding chain map 

f„ : Cp(K,K.) —0 Cp(L,L.). 

The dual of j; maps cochains to cochains; we usually denote it by f*. Because j; 
commutes with a, the map f# commutes with 6, since the dual of the equation 
L.8-490.4 is the equation 6 o f* = J.* o S. Hence f* carries cocycles to co- 
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cycles and coboundaries to coboundaries. It is called a cochain map; it induces a 
homomorphism of cohomology groups, 

H"(K,K.; G) HP (L,L.; G). 
Functoriality holds, even on the cochain level. For if i is the identity, then is 
the identity and so is P. Similarly, the equation (g o 	= 	fo  gives, when 
dualized, the equation (g o f)" = f# g". 

Just as in the case of homology, one has a long exact sequence in cohomol-
ogy involving the relative groups. But again, there are a few differences. 

Theorem 43.1. Let K be a complex; let K. be a subcomplex. There exists 
an exact sequence 

6* • • • 4— HP (K.; G) H" (K; G) H" (K,K.; G) H" (K0; G) 4-- • • • . 
A similar sequence exists in reduced cohomology if K. is not empty. A simpli-
cial map f : (K,K0) (L,L.) induces a homomorphism of long exact cohomol-
ogy sequences. 

Proof This theorem follows from applying the zig-zag lemma to the 
diagram 

cP 	G) .LCD ' (K.; G)4--- CP + 	G) 	0 (K; 	(K,K.; 	4---- 

I - ja 
	

5 

4-11- C"(K; 0(-- C"(K.; G) G) 	C"(K,K.; G) 	0. 

Since i and j commute with a, the dual maps i and j commute with E. The 
fact that 6* raises dimension by 1 follows from the proof of the zig-zag lemma. 
(If you turn the page upside down, the arrows look like those in the proof of 
the lemma.) 

The sequence in reduced cohomology is derived similarly, once one adjoins 
the sequence 

0 	C° (K.; 	(K; G)4--- (K,K.; 	0 

0 	G 	G 	 0 	4-- 0 

at the bottom of the diagram. Since "i is injective, no nontrivial cohomology 
groups appear in dimension —1. 0 

Now let us compute cohomology groups in a few examples, using this 
sequence. 

Example 1. Consider the case of a square K modulo its boundary K., as pictured 
in Figure 43.1. We treat the group of relative cochains as those cochains of K that 
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Figure 43.1 

are carried by K — K„. Both a and cr: are such cochains, and each is a cocycle 
(trivially). There is only one cochain e in dimension 1 carried by K — K„; its co-
boundary is 

64 = 4 — 4 
Thus the group H2(K,K0) is infinite cyclic, and is generated by the cohomology 
class {a:} = loll. 

The group H' (K,K„) vanishes because the only 1-cochain carried by K — Kt, is 
not a cocycle. The group H° (K,K,) vanishes because there are no 0-cochains carried 
by K — K„. 

Now consider the exact sequence 

INK.) '— Hz(K) .--- Hz (K,K„) ,— H' (KJ .-- H' (K) .-- H' (K,Ko) 

0 .— (?) ,— Z PI Z .— (?) ,— 0 

We just computed the cohomology of (K,K„), and we found the cohomology of K„ in 
Example 3 of §42. What is 5*? The group H'(K„) is generated by the cocycle e*. 
To compute 8* {et }, we first "pull et back" to K (considering it as a cochain of K) 
taking its coboundary 64 in K, and then considering the result as a cocycle of K 
modulo K„. By direct computation, Set .---- —01 as cochains of K. Since vst generates 
112(K,K0 ), as just proved, it follows that 5* is an isomorphism. 

Therefore, both the unknown groups in this exact cohomology sequence 
must vanish. 

Example 2. Consider the Mi3bius band M modulo its edge E, as pictured in Figure 
43.2. We calculate the cohomology of (M,E)' and of M. 

v0 	e7 	V1 	 Vl 
	 v3  

v3 	 v4 
	 vs 	 vo 

Figure 43.2 



§43. 	 Relative Cohomology 261 

Each of the cochains cr:" is a cocycle (trivially), so they form a basis for 
the group Z2(M,E) of relative 2-cocycles. Similarly, e', 	4: form a basis for the 
group CI (M,E) of relative 1-cochains. (The other 1-simplices of M lie in the edge 
E.) It is convenient to replace these bases for Zz(M,E) and C'(M,E) by different 
bases. Let us take 

at, at — , 	— at, 	— a:, a: — , o' — a: 
as a basis for Z2(M,E), and 

4, 	4., er, et, e: , 	+ 	- + e: 
as a basis for C' (M,E). Then we can calculate H2  (M,E) readily. We see that Set = 
af — af.,., for i = 1, . . . ,5; and 5(e' + • • • + 	= 24. Thus H2(M,E) 
Z/2 and is generated by cr:. 

The group H' (M,E) vanishes, for there are no relative 1-cocycles: This follows 
from the fact that 5 carries our chosen basis for C(M,E) to a basis for a subgroup 
of C2  (M,E). (You can also prove directly that niet + • - - + ner is a cocycle only 
if ni  = 0 for all i.) 

Consider now the exact sequence 

H2  (E) H'(M) H2  (M,E) H'(E) H' (M) H' (M,E) 

0 	(?) 	5* 
Z/2 	Z 	(?) 	0 

We have just computed H'(M,E); the proof that H'(E) is infinite cyclic is easy, 
since E is a 6-gon. (See Example 3 of §42.) Let us compute 5*. The group H'(E) is 
generated by e;', where e, is any oriented 1-simplex of E. Choose e, as indicated in 
Figure 43.2. Then by direct computation a*er = —at; so 5* is surjective. It follows 
at once that H2(M) = 0 and H'(M) 21 Z. 

EXERCISES 

1. Let M denote the Mobius band, as in Example 2. Find a cocycle generating 
H'(M). 

2. Consider the cylinder C modulo one edge E. 
(a) Compute Hi(C,E). 
(b) Use the long exact cohomology sequence of the pair (C,E) to compute 

H' (C). 
Relative pseudo n-manifolds 

A simplicial pair (K,K,) is called a relative pseudo n-manifold if: 
(i) The closure of 14 — IK,I equals a union of n-simplices. 
(ii) Each n — 1 simplex of K not in K. is a face of exactly two n-simplices 

of K. 
(iii) Given two n-simplices a, a' of K not in K., there is a sequence of n-

simplices of K not in K. 

goal, • • ,crk 

such that ai  n ai +l is an n — 1 simplex not in K., for each i. 
If K„ = 0 , we call K simply a pseudo n-manifold. 
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3. Which of the following spaces are pseudo manifolds in their familiar trian-
gulations? 
(a) S' 
(b) S2  
(c) The letter O. 
(d) The union of S2  and a circle that intersects S2  in one point. 
(e) The union of two copies of S2  with a point in common. 
(f) S2  with the north and south poles identified. 

4. Show that the compact 2-manifolds, in their usual triangulations, are pseudo 
manifolds. (We will see later that any connected, triangulated n-manifold is a 
pseudo n-manifold.) 

5. Let (K,K0) be a relative pseudo n-manifold. 
(a) Given a * a', neither in K„, show there exists a sequence 

= cro, 	• - • 'GA = 

as in (iii) with no repetitions. 
In this situation, once a is oriented, there are unique orientations of 

each a;  such that acr, _ , + aa, has coefficient 0 on a;  _ , fl a, for each i. The 
resulting orientation of a, = a' is said to be induced by the given orientation 
of a, relative to the given sequence. 

(b) Let a be fixed and oriented. If for every a' 0 a, the orientation of a' induced 
by that of a is independent of the sequence joining them, then (K,K„) is said 
to be orientable. Otherwise, (K,K„) is said to be non-orientable. Show that if 
K is finite, 

H„(K,K,) = Z and PP (K,K0) = Z 	if (K,K0) is orientable, 

.11,,(K,K0) = 0 and PP (K,K,) = Z/2 if (K,K0) is non-orientable. 

[Hint: If y is the sum of all the n-simplices of K not in K„, oriented arbi-
trarily, then for each relative n — 1 cochain e -1, the number (Se %-y) is 
even. Therefore, a* does not cobound.] 

(c) Conclude that in the finite case at least, orientability is independent of the 
choice of a, and in fact depends only on the topological pair (1.KIJK.1), not on 
the particular triangulation involved. 

(d) Show that if K is finite, 

H„(K,Ko; Z/2) = Z/2 = INK,Ko; Z/2). 

§44. COHOMOLOGY THEORY 

Now that we have some feeling for what the simplicial cohomology groups look 
like, let us deal with cohomology theory more generally. We construct both the 
simplicial and the singular cohomology theories, we show they are naturally iso-
morphic for triangulable spaces, and we verify the cohomology versions of the 
Eilenberg-Steenrod axioms. 

First, let us work on the level of chain complexes. 
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The cohomology of a chain complex 

Let e = (C,,,o) be a chain complex; let G be an abelian group. We define 
the p-dimensional cochain group of 6, with coefficients in G, by the equation 

CP (e; G) = Hom (CpG). 

We define the coboundary operator 5 to be the dual of the boundary operator; it 
follows that 62  = 0. The family of groups and homomorphisms {CP (0; G),6} is 
called the cochain complex of e with coefficients in G. As usual, the kernel of 
the homomorphism 

a : CP (e; G) —4 CP + 1  (e; G) 

is denoted ZP (0; G), its image is denoted BP + 1 (0; G), and the cohomology 
group of e in dimension p, with coefficients in G, is defined by the equation 

HP(e; G) = Z'(0; G)/ BP (e; G). 

If {6,€} is an augmented chain complex, then one has a corresponding co-
chain complex 

6,  • • • 4— 0(0; G) 4— C° (6; G) 4— Hom (Z,G), 

where Z is injective. We define the reduced cohomology groups of e by setting 
H4(0; G) = H'(6; G) if q > 0, and 

1-1°(e; G) = ker &dim Z. 

It is easy to see that if 11„(e) vanishes, then 11°(e; G) vanishes as well, for 
exactness of C, --. Co  --. Z —, 0 implies exactness of the dual sequence. In gen-
eral (see the exercises of §42), we have the equation 

H°(6; G) = 110 (e; G) 09 G. 

Definition. Suppose e = tc,,,al and e' = ic,,81 are chain complexes. 
Suppose 0 : e --. e' is a chain map, so that 8' 00= 008. Then the dual 
homomorphism 

CP (e; G) 4-- CP (6'; G) 

commutes with 6; such a homomorphism is called a cochain map. It carries 
cocycles to cocycles, and coboundaries to coboundaries, so it induces a homo-
morphism of cohomology groups, 

4)* HP (e; G) 4— HP (e'; G) 

The assignment 

e --. HP (e;  G) 	and 	0 --, 4* 

satisfies the usual functorial properties; in fact, they hold already on the chain 
level. 



264 Cohomology 	 Chapter 5 

If 1641 and {e',€'} are augmented chain complexes and if 4) : e e' is an 
augmentation-preserving chain map, then e' o ¢ = e, so that 4) o "I' 	In this 
case, 4) induces a homomorphism of reduced as well as ordinary cohomology. 

Suppose now that 4), : 	are chain maps, and that D is a chain 
homotopy between them, so that 

Da 	a'D = — 
Then b : 	'(e'; G) CP (e; G) is a homomorphism satisfying the equation 

It is said to be a cochain homotopy between ;1) and cl/. If such a b exists, it fol-
lows at once that the induced cohomology homomorphisms 4)* and 1,G* are 
equal. For given any cocycle z°, we have 

-4)(z°) — jp(z0) = obz° 0. 

This observation has the following consequence: 

Theorem 44.1. Let e and e' be chain complexes: let 4>  :0 0' be a 
chain equivalence. Then 0*  and (1)* are isomorphisms of homology and coho-
mology, respectively. If e and e' are augmented and 4>  is augmentation-pre-
serving, then 0„ and 0* are isomorphisms of reduced homology and cohomol-
ogy, respectively. 

Proof Since 4) is a chain equivalence, there is a chain map It : 	e 
such that 4  o  4'  and IP o 4) are chain homotopic to identity maps. Then 4, 0 4> and 
4) o 4, are cochain homotopic to identity maps, so 4,* 0 4)* and 4)* 0 4'* equal the 
identity maps of .11°(e') and HP(e), respectively. 

The same argument holds for reduced cohomology. 0 

Finally, suppose 

(1) --+ 0 

is a short exact sequence of chain complexes that splits in each dimension. 
(This occurs, for example, when 6 is free.) Then the dual sequence 

0 	C° (e; G) MD; G) C°(6; G) 0 

is exact. Applying the zig-zag lemma, we have a long exact sequence in co-
homology, 

• • • 	H°(@, G) 0* 	(I); G) IP*  H°(6; G) 8* H° - (e; G) 	• • • , 

where 5* is induced in the usual manner by the coboundary operator. This 
sequence is natural in the sense that if f is a homomorphism of short exact 
sequences of chain complexes, then f is a homomorphism of the dual sequences, 
and f* is a homomorphism of the corresponding long exact cohomology 
sequences. 
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The axioms for cohomology 

Now we state the cohomology versions of the Eilenberg-Steenrod axioms. 
Given an admissible class A of pairs of spaces (X,A) and an abelian group 

G, a cohomology theory on A with coefficients in G consists of the following: 

(1) A function defined for each integer p and each pair (X,A) in A, whose 
value is an abelian group HP (X,A; G). 

(2) A function that assigns to each continuous map h : (X,A) (Y,B) and 
each integer p, a homomorphism 

HP (X,A; G) 4  HP (Y,B; G). 

(3) A function that assigns to each pair (X,A) in A and each integer p, a 
homomorphism 

HP (X,A; G) (.31-‘  HP (A; G). 

The following axioms are to be satisfied: 

Axiom I. If i is the identity, then i* is the identity. 

Axiom 2. (k o h)* = h* 	. 

Axiom 3. 6* is a natural transformation of functors. 

Axiom 4. The following sequence is exact, where i and j are inclusions: 

i 	is 	 (5* 
• • • 4— HP (A; G) HP (X; G)  HP (X,A; G) HP I  (A; G) 4— • • • . 

Axiom 5. If h k, then le = . 

Axiom 6. Given (X,A), let U be an open set in X such that U C Int A. 
If (X — U, A — U) is admissible, then inclusion j induces a cohomology iso-
morphism 

HP (X — U, A — U; G) is HP (X,A; G). 

Axiom 7. If P is a one-point space, then HP (P; G) = 0 for p 0 0 and 

H° (P; G) 1-.4. G. 

The axiom of compact support has no counterpart in cohomology theory. 

Singular cohomology theory 

Now we consider singular theory and show it satisfies the axioms. 
The singular cohomology groups of a topological pair (X,A), with coeffi- 

cients in the abelian group G, are defined by the equation 

HP (X,A; G) = HP (S(X,A); G), 
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where S(X,A) is the singular chain complex of (X,A). As usual, we delete A 
from the notation if A = 0 , and we delete G if it equals the group of integers. 

The reduced cohomology groups are defined by the equation 

11P (X; G) 	(eS'(X); G), 

relative to the standard augmentation for i(X). 
Given a continuous map h : (X,A) (Y,B), there is a chain map 

hi : p(X,A) S(Y,B), 

defined by hi(T) = h c T. We customarily denote the dual cochain map by hi 
It induces a homomorphism 

HP (X ,A; G) 	(Y,B; G). 

(The same holds in reduced cohomology if A and B are empty, since by  is aug-
mentation-preserving.) The functorial properties (Axioms 1 and 2) hold even on 
the cochain level. The short exact sequence of chain complexes 

0 S p(A) S p(X) S i(X,A) 0 

splits because Sp  (X,A) is free. Therefore, the zig-zag lemma gives us an exact 
sequence 

43* 
• • • 	HP (A; G) HP (X; G) HP (X,A; G) 4-- 	HP - (A; G) 4-- • • • . 

A continuous map h : (X,A) (Y,B) induces a homomorphism of long exact 
cohomology sequences, by the naturality property of the zig-zag lemma. (A 
similar result holds for reduced cohomology if A is non-empty.) Thus Axioms 
3 and 4 hold. 

If h, k : (X,A) (Y,B) are homotopic, then h„ and lc, are chain homotopic, 
as we proved in Theorem 30.7. Then 10 and are cochain homotopic, so that 
h* = k*. 

To compute the cohomology of a 1-point space P, we recall (see Theorem 
30.3) that the singular chain complex of P has the form 

The cochain complex of P then has the form 

• • • 2-4±1 G4-9--G449-G4-0. 

It follows that Hi  (1'; G) is isomorphic to G if i = 0, and vanishes otherwise. 
Finally, we come to the excision property of singular cohomology. Here is a 

point where the arguments we gave for homology do not go through automati-
cally for cohomology. Suppose 

j : (X — U, A — U) (X ,A) 

is an excision map. If we had showed that ji  is a chain equivalence, then there 
would be no difficulty, for j# would be a cochain equivalence, and it would fol- 
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low that j* is an isomorphism. But we proved only the weaker result that j*  is 
an isomorphism. (See Theorem 31.7.) So we have some work to do to carry this 
result over to cohomology. 

What we need is the following fact, which will be proved in the next section: 
Let e and Z be free chain complexes; let 0:6 ---, 93 be a chain map that 

induces a homology isomorphism in all dimensions. Then 0 induces a coho-
mology isomorphism in all dimensions, for all coefficient groups G. 

The excision property of singular cohomology is an immediate consequence: 
Given U C AC X, with U C Int A, consider the inclusion map 

j : (X — U, A — U) ---. (X,A). 

Since the chain complexes involved are free, and since 4 induces an isomor- 
phism in homology, it induces an isomorphism in cohomology as well. 

Note that singular cohomology, like singular homology, satisfies an exci- 
sion property slightly stronger than that stated in the axiom. One needs to have ..._ 
U C Int A, but one does not need U to be open, in order for excision to hold. 

Simplicial cohomology theory 

We have already dealt with some aspects of simplicial cohomology. We 
have defined the cohomology groups of a simplicial pair (K,K*), and have showed 
how a simplicial map f induces a homomorphism of these groups. Just as with 
homology, showing that an arbitrary continuous map induces a homomorphism 
requires a bit of work. 

The construction follows the pattern of §14—§18. First, we recall that if f 
and g are two simplicial approximations to the same continuous map, then they 
are contiguous, so the corresponding chain maps A and gii  are chain homotopic. 
It follows that f# and g# are cochain homotopic, so the cohomology homo-
morphisms f * and g* are equal. Furthermore, if K' is a subdivision of K, and if 
g:(K',K0 -- (K,K.) is a simplicial approximation to the identity, then g*  is a 
chain equivalence, so that g# is a cochain equivalence, and g* is an isomorphism. 

One then defines the homomorphism induced by the continuous map 
h : (14,1Ko1) —' (ILI,14,1) as follows: Choose a subdivision K' of K so that h has a 
simplicial approximation f: (K1,K,',)--. (L,4). Choose g : (K',K;) -- (K,Ko) to 
be a simplicial approximation to the identity. Finally, define 

h*  = ceri .1.*. 
To verify that h* is independent of the choices involved, and to check 

its functorial properties, involves arguments very similar to those given in §18, 
when we verified the corresponding properties for the homomorphism h*. In 
fact, one can use exactly the same diagrams as appear in that section, simply 
reversing the arrows for all the induced homomorphisms! We leave the details 
to you. 

Verifying the Eilenberg-Steenrod axioms is now straightforward. The exis-
tence of the long exact cohomology sequence we have already noted. Naturality 
of the sequence reduces to proving naturality in the case of a simplicial map, 
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which we have already done. The homotopy axiom, the simplicial version of the 
excision axiom, and the dimension axiom follow just as they did in the case of 
singular cohomology. Nothing new of interest occurs. 

The topological invariance, indeed the homotopy-type invariance, of the 
simplicial cohomology groups follows at once. 

The isomorphism between simplicial 
and singular cohomology 

Let K be a simplicial complex. We defined in §34 a chain map 

n : e(K)--,  g(IKI) 

that induces an isomorphism in homology. Although it depends on a choice of a 
partial ordering for the vertices of K, the induced homomorphism n, does not. 
Because n commutes with inclusions of subcomplexes, it induces a homomor-
phism on the relative groups, which is an isomorphism as well. We now show 
the same result holds for cohomology. 

Theorem 44.2. Let (K,K0) be a simplicial pair. Then n induces a coho-
mology isomorphism 

IIP (0 (K,Ko); G) .7.71 IIF (S(11(1,1K01); G) 

that is independent of the choice of partial ordering of the vertices of K. It 
commutes with 5* and with homomorphisms induced by continuous maps. 

Proof The chain map n carries the oriented simplex [v., ... ,vp] of K to 
the linear singular simplex /(v., . . . ,L),,) of K, provided vo  < • • • < vi, in the 
chosen ordering. Because the chain complexes involved are free and n induces a 
homology isomorphism, it induces a cohomology isomorphism as well. Further-
more, because n commutes with inclusions, it induces a homomorphism of rela-
tive cohomology. This homomorphism commutes with the coboundary operator 
5*, by the naturality of the zig-zag lemma; therefore, it is an isomorphism in 
relative cohomology, by the Five-lemma. 

To prove the rest of the theorem, we must examine the definition of n more 
closely. The map n was defined as the composite 

c(K)---,  C;(K) 0—,  Sp(IKI), 

where (k([v„ ... ,vj,]) equals the ordered simplex (v., .. . ,v,) if v. < • • - < LI, 
in the chosen ordering, and 

0  ((we, • • • ,wp)) = 1(wo, • • • ,wp). 

In §13, we defined a chain-homotopy inverse to 4) by the equation 

{[w„, ... ,wp] if the w;  are distinct 

0 	otherwise ;i ((we, • • • ,w,)) = . 
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The maps 1i/ and 0 do not depend on the ordering, although 95 does. The fact that 
n* is independent of the ordering follows from the equation n* = (p*)-1  . 8*. 

To show n* commutes with induced homomorphisms, we first consider the 
case of a simplicial map f. We showed in proving Theorem 13.7 that .4 com-
mutes with lk, and we showed in proving Theorem 34.4 that fi  commutes with O. 
It follows that f# commutes with the duals of IP and 0, so that f* commutes with 
n*. To extend this result to arbitrary continuous maps, one follows the pattern 
of Theorem 34.5. 0 

EXERCISES 

1. If X is a path-connected space, show H°(X) = Z. Find a generating cocycle. 

2. State and prove a Mayer-Vietoris theorem in simplicial cohomology. Can you 
prove it for arbitrary coefficients? 

3. (a) Let A,, A, C X. Show that if {A„AO is an excisive couple, then inclusion 

S(A,) + 8(A,) --. *(A, U A) 

induces an isomorphism in cohomology as well as homology. 
(b) State and prove a Mayer-Vietoris theorem in singular cohomology. 

Simplicial cohomology with compact support. 
Let K be a complex. Let q (K; G) denote the group of homomorphisms of 
c(K) into G that vanish on all but finitely many oriented simplices of K. 
These homomorphisms are called cochains with compact support. 

4. (a) Show that if K is locally finite, then S maps q to Cr'. The resulting 
cohomology groups are denoted I-P;(K;G) and called the cohomology groups 
with compact support. 

(b) If K is the complex whose space is R and whose vertices are the integers, 
show that 11!(K) = Z and H°(K) = 0. 

(c) Show that if IK 1 is connected and non-compact, then H°(K) = 0. 

5. A map h : X —, Y is said to be proper if for each compact subset D of Y, the set 
it"' (D) is a compact subset of X. A proper homotopy is a homotopy that is itself 
a proper map. 
(a) Show that the assignment 

K --. 11:(K;G) 	and 	h --. h* 

defines a functor from the category of locally finite simplicial complexes and 
proper continuous maps of their polytopes to abelian groups and homomor-
phisms. [Hint: If h is proper, so is any simplicial approximation to h. If f 
and g are contiguous and proper, and D is the chain homotopy between them, 
show that D carries finite cochains to finite cochains. If X : &(K) — ecto is 
the subdivision operator and if g: K' --, K is a simplicial approximation to 
the identity, show that the duals of X and gi, carry finite cochains to finite 
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cochains. Prove the same for the dual of the chain homotopy between X o g, 
and the identity.] 

(b) Show that if 

h, k :14 —.ILI 

are properly homotopic, then h* = k* as homomorphisms of cohomology 
with compact support. [Hint: Show that if D is the chain homotopy con-
structed in proving Theorem 19.2, then D carries finite cochains to finite 
cochains.] 

(c) Extend the results of (a) and (b) to relative cohomology. Does there exist a 
long exact sequence of cohomology with compact support? If so, is it natural 
with respect to induced homomorphisms? 

(d) Is there an excision theorem for cohomology with compact support? 

*6. Repeat Exercise 5 for the homology groups based on infinite chains, which were 
introduced in the Exercises of §5. 

§45. THE COHOMOLOGY OF 
FREE CHAIN COMPLEXES 

Until now, we have computed the cohomology groups only for a few simple 
spaces. We wish to compute them more generally. We shall prove that for a 
CW complex X, the cellular chain complex 2)(X), which we know can be used 
to compute the homology of X, can be used to compute the cohomology as well. 
This we shall prove in §47. The proof depends on two theorems about free chain 
complexes, which we prove in this section. 

The first theorem states that for free chain complexes & and 2), any homo-
morphism Ho(ê) --. H,(2)) of homology groups is induced by a chain map ¢. 
And the second states that if a chain map (t. : & ---. 2) of free chain complexes 
induces an isomorphism in homology, it induces an isomorphism in cohomology 
as well. An independent proof of this second theorem will be given in Chapter 7, 
so you can simply assume this theorem for the time being if you wish. 

Definition. A short exact sequence of abelian groups, 

0 —, A--013--, C—,  0, 

where A and B are free, is called a free resolution of C. Any abelian group C has 
a free resolution; one can take B to be the free abelian group generated by the 
elements of C, and take A to be the kernel of the natural projection B --. C. This 
gives what is called the canonical free resolution of C. 
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Free resolutions have the following useful property: Suppose one is given 
the diagram 

A Cb D 

A 	D 	I 
o 	 0 

where the horizontal sequences are exact and A and B are free. In this situation, 
there exist homomorphisms a : A A' and 0 : B ---0 B' that make this diagram 
commute. 

The proof is easy. Choose a basis for B; if b is a basis element, let /3 map b 
into any element of the set (V)-1 (7(4/(b))); this set is non-empty because 4/ is 
surjective. A bit of diagram-chasing shows that 13 carries im ¢ into im 0'; be-
cause is a monomorphism, 13 induces a homomorphism a : A A'. 

Now we prove the first of our basic theorems. 

Theorem 45.1. Let e and (9' be free chain complexes. If y :1-4,(e) 
111,(0') is a homomorphism defined for all p, then there is a chain map 

e —s e' that induces y. 
Indeed, if 13 : Z;  Z; is any homomorphism of cycle groups inducing y, 

then /3 extends to a chain map cp. 

Proof. Let â denote the p-cycles, and Bp, the p-boundaries, in the chain 
complex e. Similarly, let Z; and B; be the p-cycles and p-boundaries of 
Since these groups are free abelian, there exist, for all p, homomorphisms a, 13 
making the following diagram commute: 

0 	 H,(@) —» 0 

l a  la 	ly 
0 	 0. 

We seek to extend $ to a chain map 0 of C,, into C;. For that purpose, con- 
sider the short exact sequences 

0 	Zp 	o 
LP p  _ 	0 

13 I 	ck
a; 	

I a 

0 —0 z;--. c;--o B; _ 	0. 

Because Bp  _ , and B; _ , are free, the sequences split. Choose subgroups Up  and 
u; so that 

Cp = Zp 49 Up  and C; = Z; 9 U;. 

Then ao : Up  13, _ and (3;, : U; B; _ I  are isomorphisms. We define 0 : Cp  
C; by letting it equal $ : 	z; on the summand Z,,, and the map Up  u; 
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induced by a on the summand U,. Then the first square commutes, automati-
cally. The second square commutes for any element of Up, by definition. And it 
commutes for any element of Z, by exactness, for 

a(80z p) = a(0) = 0 	and 	a'ock(z p) = aal 3 (z p)) = 0. 

Thus it commutes for any element of Cr  
Now we show that 0 is a chain map. Consider the diagram 

Cp .."....''' Bp .. 1 °  Zp 	l '''  Cp .. , 
10 	

l a 
	113 	1°  ,, (N, f.....;-- B; _ ,--9 Z ; _ ,--. C; _ , 

where the unlabelled maps are inclusions. The middle square commutes by defi-
nition of a and $; the two end squares commute as we have just proved. Thus 0 
is a chain map. 

The fact that 0 induces the original homology homomorphism 7 follows from 
the definition of #. 0 

Corollary 45.2. Suppose {e, e} and {01, El are free augmented chain com-
plexes. If -y : 11,(e) — 1-1,(e') is a homomorphism defined for all p, then -y is 
induced by an augmentation-preserving chain map 4): e— ei. 

Proof. Consider the augmented chain complexes obtained from e and 6';  
they have Z as their ( — 1)-dimensional groups and t, ci, respectively, as the 
boundary operators from dimension 0 to dimension —1. We define # to equal 
the identity in dimension —1 (where the homology vanishes), and to be any 
homomorphism of cycle groups inducing 7 in other dimensions. The preced-
ing theorem applies; the resulting chain map 0 will automatically preserve 
augmentation. 0 

Now we prove the second of our basic theorems. We begin by considering a 
special case. 

Lemma 45.3. Let 

be an exact sequence of free chain complexes. If 0 induces homology isomor- 
phisms in all dimensions, it induces cohomology isomorphisms as well. 

Proof. The existence of the long exact sequence in homology and the fact 
that 4„, is an isomorphism imply that H, (t)= 0 for all p. To prove that 4)* is 
an isomorphism, it suffices to show that HP (4; G) = 0 for all p. 

Let B, C Z, C E, denote boundaries, cycles, and chains of 6, respectively, 
in dimension p. The short exact sequence 

a. 
1—' 
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splits because B,_, is free. Furthermore, z, = B, because the homology of 6 
vanishes. Therefore, we can write El, = B,,EDU,,, where a maps B, to zero and 
carries U, isomorphically onto B, _ ,. Now 

Hom(Ep,G) = Hom (Bp,G) Hom(UrG). 

You can check that S induces a homomorphism that carries Hom(Bp,G) 
isomorphically onto Hom(Up  „G) and carries Hom(UrG) to zero. Then 
Horn (U,,,G) represents the cocycle group of 6 and it equals the image of b. 
Thus H'(6; G) = 0. 0 

This special case of our theorem is all we actually used in the preceding 
section. Later, however, we shall need the general version. The general case is 
reduced to the special case by means of the following lemma. 

Lemma 45.4. Let & and 2) be free chain complexes; let 1: & 2) be 
a chain map. There is a free chain complex 2)' and infective chain maps 
i :0 2)' and j 	2' such that j induces homology isomorphisms in all 
dimensions, and the diagram 

commutes up to chain homotopy. Furthermore, the quotients 2)'/im i and 
lim j are free. 
Proof The definition of 2)' is one we shall simply "pull out of a hat." 

Later, we shall explain its geometric motivation. It is sometimes called the 
"algebraic mapping cylinder" of 4,. 

Define 2)' to be the chain complex whose chain group in dimension p is 
given by 

D;= C,EB D, 9 Cp  _ 

Let the boundary operator in 2Y be defined by the equations 

a' (cro,o) 	(8cr0,0), 
a' (0,dp,0) 	(o,ad,,o), 

a' 	_ ,) = (--c, _ th(C 	ac 	) 1,, p 	- p-1,• 

You can check without difficulty that a' o  a' = 0. It is clear from the defini-
tions that the natural inclusions i : Cp  D; and j : Dp  D; are chain maps. 
It is also clear that D; and the quotients glim i and gdim j are free. 

We define a chain homotopy 	D; + , by the equation 

D(cp) = (0,0,cp). 

You can check that it satisfies the equation 

a'D + Da=jeck—i. 
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Finally, we show that j induces an isomorphism in homology. For that pur-
pose, it suffices to show that the homology of the chain complex 2:Y 10 vanishes. 
The pth chain group of D'ID is isomorphic to Cp  49 Cp  _ „ and the induced 
boundary operator 8" is given by the equation 

a" (c,,, cp  _ ,) = (ac„ — ci,_ „ —ac„ _ i). 
If (cp,cp  _ ,) is a cycle of this chain complex, then it follows in particular that 
ac, — cp _ , = 0. We compute directly 

(cp,cp  _ ,) = (ci„acp) = --8"(0,cp). 

Thus (cp,cp  _ ,) is a boundary. 0 

Theorem 45.5. Let e and 2) be free chain complexes; let ck : e ---, 2) be 
a chain map. If 0 induces homology isomorphisms in all dimensions, then q5 
induces cohomology isomorphisms in all dimensions. 

Proof Given 0, let i : 0 —, Di and j : 2) ----. Di be as in the preceding 
lemma. One has exact sequences of free chain complexes 

0 --, e --L. D' --, Dye --, 0, 

./ 0 —, 0--.0'—, 0110---,  O. 

The map j induces a homology isomorphism by the preceding lemma, while i 
induces a homology isomorphism because both j and 0 do and i is chain homo-
topic to j o 4. Therefore, by Lemma 45.3, i and j induce cohomology isomor-
phisms i * and j*, respectively, in all dimensions. Since i is chain homotopic 
to j 0 0, we have i* = 0* 0 j*; therefore, ci)* is a cohomology isomorphism 
as well. 0 

Corollary 45.6. Let e and 0 be free chain complexes. If 11,(6) Qr. .11,(2)) 
for all p, then PP (e; G) -:-..• H'(2); G) for all p and G. 0 

Remark Let us explain the geometric motivation underlying the definition of the 
chain complex 2)'. 

In homotopy theory, there is a standard construction for, roughly speaking, 
replacing an arbitrary continous map h: X --. Y by an imbedding of X in a space 
that is homotopy equivalent to Y. More precisely, there is a space Y' and imbed-
dings i and j such that the diagram 

commutes up to homotopy, and such that j is a homotopy equivalence. It follows at 
once that h is a homotopy equivalence if and only if i is. In this way problems 
concerning the map h are reduced to problems concerning the imbedding i. 



§45. 	 The Cohomology of Free Chain Complexes 275 

This construction is called the mapping cylinder construction. We describe it 
here, and explain how the chain complex D' is an algebraic analogue. 

Given h : X Y, let us form a quotient space from the disjoint union of X x 
and Y by identifying each point (x,0) of X X 0 with the point h (x) of Y. The 
resulting adjunction space Y' is called the mapping cylinder of h. We picture it as 
looking something like a "top hat." See Figure 45.1. 

Let r : (X X I) U Y Y' be the quotient map. The restriction of 7 to Y 
defines an imbedding j of Yin Y', and the map i (x) = a (x,1) defines an imbedding 
of X in Y'. Clearly j(Y) is a deformation retract of Y'; one just "pushes down the 
top hat" onto j(Y). Just as clearly, the map i : X Y' is homotopic to the map 
j c h; again, one just "pushes i(X) down." 

We seek to imitate this construction algebraically. So let us suppose for conve-
nience that Y' is triangulated in such a way that i (X) and j(Y) are subcomplexes, 
and so is each set it (a X I), for a e X. Let us identify X with i (X), and Y, with 
j(Y), for simplicity of notation. Now e(X) plays the role of the chain complex 
d and e(Y) plays the role of A and e(Y1) plays the role of D'. The map 
ho : e(X) — e(Y) plays the role of the chain map 0. 

What does the chain complex 7Y look like algebraically? Suppose we break Y' 
up into the cells of a CW complex. The open p-cells will consist of the open p-
simplices Int 7, of X, the open p-simplices Int .5, of Y, and the open cells of the form 
it (Int cro _, X Int I) that lie "between" X and Y. Then the pth chain group of Y' is 
essentially just 

C,,(X) Cp(Y) G _ , (X), 

since the group of "in between" cells is isomorphic to C _ ,(X). How does the 
boundary operator of Y' act on these chains? Clearly it acts just like ay in X, and 
like ay in Y. What does it do to a cell of the third kind? In the space X X I, it is 
easy to see that 

a (cr X I) = crX0—crX 1 ± (aa)X I.  

(One has to be careful with signs.) When X X 0 is pasted onto Y via h, this for-
mula becomes 

a' (Int a X Int /) = h#(a) — cr ± (ao X I. 

X X I 
7r 

Y 

Figure 45.1 
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Finally, when we identify the p-chains of Y' with the group Cp(X) 9 Cp(Y) 
Cp  _ ,(X), this formula becomes 

a' (o,o,a,_ 	= (—a, _ "h# 	(4y, _ I ), -± acr, _ i). 

(The last sign must in fact be —, in order that a' c 8' = 0.) By now it should be 
quite clear what the connection is between the algebraic and topological map-
ping cylinders! 

Let us give one application of this theorem. It is a formula that relates 
cohomology with homology. It will be generalized in Chapter 7. 

Definition. If @ = Ici,al is a chain complex, there is a map 

Hom(Cp,G) X c G 

which carries the pair (e,cp) to the element (cP,cp) of G. It is bilinear, and is 
called the "evaluation map." It induces a bilinear map 

HP (0; G) x H,(e) G, 

which we call the Kronecker index. We denote the image of a° and Op under the 
map also by (a°,f1p). 

It is easy to see that the Kronecker index is well-defined, since 

(9' + Se-  ',z,,) 	(9,z,,) 	(dP -1,8z,,) 

and 

(zP,zp 	= (9,z,) 	(azP,d,, ,). 

The final terms vanish if 9' is a cocycle and zp  is a cycle. 

Definition. It is convenient to define the Kronecker map 

: HP (e; G) Horn (H„(e),G) 
as the map that sends a to the homomorphism (a, ). Formally, we define 

(icaP)(0,,) = (aP,ftp). 

The map K is a homomorphism because Kronecker index is linear in the first 
variable. We leave it to you to check that x is "natural." (See Exercise 2.) 

The following lemma is elementary; its proof makes no use of the theorems 
of this section. 

Lemma 45.7. Let e be a free chain complex. Then there is a natural 
exact sequence 

0 	Hom(1-4(0),G) 4c- HP (0; G) ker K 0. 

It splits, but not naturally. 
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Proof We shall construct a homomorphism 

X* : Horn (H, (@),G) --. HP (e; G) 

such that K a X* is the identity. It follows that K is surjective and that the se- 
quence splits. 

Let Bp, Zp, and Cp  denote boundaries, cycles, and chains, respectively, in e. 
We begin with the projection homomorphism 

7r : .4 --0  ZpIBp = HO). 

The exact sequence 0 --. Zp  --0 Cp  ---, Bp  _ , --, 0 shows that Z1, is a direct sum- 
mand in Cp. Therefore, ir extends to a homomorphism X : Cp  ---, Hp(e). Define a 
chain complex 6 by letting E,, = H,,(e) and letting all boundary operators in 6 
vanish. Then 

Hp(6) = E„ = Ho), 
HP(6; G) = Hom(Ep,G) = Hom(H,(e),G). 

Because the boundary operators in 6 vanish, the map X : e - 6 is a chain map. 
For X(acp ,. ,) = {ac,. ,} = 0. The induced homomorphism in homology 

X*  : Hp(e) --. H,,(6) = H,(e) 
is the identity map (and hence an isomorphism). For if zp  is a p-cycle, 

r X*  (Izpl) = X (zp) = (zp) = Izpl. 

The induced homomorphism in cohomology 

HP (e; G) HP (6; G) = Horn (Hp  (@),G) 

is not in general an isomorphism. 
Now the composite K a X*  is the identity map of Horn (H, (@),G), for if 

Izpl e Ho) and 7 e Hom(Hp(e),G), then 

(KX* (7)) (}, z,,}) = (X* (-y),I zp}) = (i(7),zp) 

=-- (7,X (zp)) = 7 ({z,}). 0 

Theorem 45.8. Let e be a free chain complex. If H„(@) is free for all p, 
then K is an isomorphism for all p. 

Proof Let X : d --, 6 be as in the preceding lemma. Since the homology 
of d' is free, 6 is a free chain complex and Theorem 45.5 applies. Since the 
chain map A : C ---, 6 induces homology isomorphisms X*  in all dimensions, X* 
is an isomorphism. The fact that K o X* is the identity implies that K is an iso-
morphism as well. 0 

This theorem says that if the homology of e is free in all dimensions, then 
the cohomology group HP(e;G) can be considered in a natural way to be the 
dual group Horn (14(e),G) of the homology group H,(e). We will generalize 
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this theorem in Chapter 7; all one in fact needs is for the single group Hp  _ ,(e) 
to be free. 

EXERCISES 

1. Check that the operator a' defined in the proof of Lemma 45.4 satisfies 
a' 0 = 0. 

2. (a) Show that the Kronecker map K is natural with respect to homomorphisms 
induced by chain maps. That is, show that if 4) : e 2) is a chain map, the 
following diagram commutes: 

Horn (Hp(e),G) 	HP (e; G) 

Hom (Hp(Z),G)--HP (D; G). 

(b) Naturality of the Kronecker index itself is a bit awkward to formulate, since 
it is covariant in one variable and contravariant in the other. Let 4, : 	2) 
be a chain map; show that if a e H'(2); G) and $ e Hp(e), then 

(4,5  (a),$) = (a,4* 

3. Let X and Y be spaces such that H„(X), H" (X), H„(Y), and H'(Y) are infinite 
cyclic. Let f : X Y be a continuous map. Show that if 

: H„(X) H (Y) 

equals multiplication by d, then (up to sign) so does 

f* : (Y) H" (X). 

[Hint: Show K is an isomorphism.] 

4. Since arbitrary choices are made in the definition of the homomorphism A : Cp — 
Hp(e) in the proof of Lemma 45.7, one would not expect the splitting homo-
morphism 

X* : Horn (If p(e),G) HP (e; G) 

to be natural. Show that it is in fact not natural, as follows: 
(a) Find free chain complexes e, and a chain map 4, : e 21 such that for no 

choices of X does the following diagram commute: 

Hom (Hp(e),G) 	HP (e;  G) 

tfr*  
Hom (Hp(2)),G)-11,  HP (2); G). 

*(b) Find spaces X and Y and a continuous map f : X Y, such that setting 
e 	i(X), = e(Y), and 4) =.6, realizes the situation of (a). 
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*§46. CHAIN EQUIVALENCES IN 
FREE CHAIN COMPLEXESt 

We now prove a second version of Theorem 45.5. Again we assume we are given 
a chain map 4 : --. 2) of free chain complexes that induces homology isomor- 
phisms in all dimensions. We show that if e and 	satisfy the (fairly mild) 
additional condition that both vanish below a certain dimension, then it follows 
not just that 4* is an isomorphism, but that the chain map 4, is itself a chain 
equivalence. The proof involves the "algebraic mapping cylinder" we con-
structed in the last section. 

First we need an elementary lemma, which for later use is stated in slightly 
greater generality than we presently need. 

Lemma 46.1. Let 6 and 7 be non-negative chain complexes. Suppose 
E,, is free for p > 0 and II,,(7) = 0 for p > 0. Then any two chain maps 
f g : 6 7 that agree in dimension 0 are chain homotopic. 

Proof Define D : E.—. F, to be zero. Then the equation aD + Da = 
g — f holds in dimension 0, because g = fin dimension 0. Suppose D is defined 
in dimension p — 1, where p > 0. Choose a basis for E,,. If e is a basis element, 
then g(e) — f (e) — D(8e) is well-defined, and it is a cycle (by the usual com-
putation). Define D(e) to be an element of F,,,. , whose boundary equals this 
cycle. 0 

As you might suspect, one can with care derive this result from the acyclic 
carrier theorem. It isn't worth the effort. 

Theorem 46.2. Let e and 2) be free chain complexes that vanish below a 
certain dimension; let :6 —. 2) be a chain map. If 4) induces homology iso-
morphisms in all dimensions, then 4,  is a chain equivalence. 

Proof We return to the chain complex D' defined in the proof of Lemma 
45.4. The inclusion mapping 

i : 	= Ci, D,, ED Cr, _ 

is chain homotopic to j c  0, where j : D, Dip  is inclusion. Since j and 4,  induce 
homology isomorphisms, so does i. It follows that the chain complex 6 = vie 
has vanishing homology in all dimensions. Now 

Ep 	Dp09 _ 1. 

The induced boundary operator satisfies the formula 

a (drcp  _ 1) --- (up+ otc,_ 0,—ac, _ 

tWe shall use the results of this section in §56 and §60 in proving the naturality of certain 
exact sequences. 
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We apply the preceding lemma to the chain complex 6 and any two chain 
maps f, g from 6 to itself. The chain complex 6 vanishes below a certain 
dimension (since e and 0 do); we may as well take this dimension to be di-
mension 1. We know that Ei, is free and H0(6) = 0, for all p. Since any two 
chain maps f, g: 6 --, 6 agree (trivially) in dimension 0, they are chain homo-
topic. In particular, there is a chain homotopy between the identity map and the 
zero chain map. That is, there is a homomorphism D:.E0 —. El,,., satisfying 
the equation 

aD + Da = identity. 

Hidden in this formula are all the chain maps and chain homotopies we need. 
Recalling that E 0  = D0  ED Ci, _ „ we define homomorphisms 0, 4', A, II by 

the equations 

D(c10,0) = (0(d0),11/(4)) 	e D0,.  , 9 Cp, 

D(0,c0  _,) = (X(c0 _ ,),At(ci, _ ,)) e Da, .,_ , ED c. 
Then we compute like mad! First we compute 

Da (4,o) = 0 (ado ogad p)), 
aD(cl,„0) = (ae (4) + op (4),— alp (4)). 

Adding these two equations, we obtain the equations 

di, = o (ad p) + '99(4) + ogd,,), 
0 = 4 , (ad f) — map). 

The second equation says that 4, : D0 —. cis a chain map, and the first says 
that 0 : D0  --. D0+  , is a chain homotopy between 4) o IP and the identity. Second, 
we compute 

Da (o,c, _ 0 = D(k(ci, _,),0) — Do,ac, _ 0 
= 04 (c, - 1)40 (cf  - 1 )) — (X Oct, - 0 ,ii (ac , - 0), 

arm,c,, _ ,) = a (x(c, _ ,),A(c, _ 0) 
= (a(c, - i) + (14L(c,-1),-8,1(ci. _ 1)). 

Adding the second coordinates of these equations, we obtain the equation 

cp - 1 = 4 (ci, - 1) — AL (ac„ - 0 — akcf - i ), 

which says that /4 is a chain homotopy between 4' 0 0 and the identity. 
Thus our theorem is proved. El 

EXERCISES 

1. Let X be a space; let .A be a collection of subsets of X whose interiors cover X. 
Show that inclusion 

i : eVA(X)— N(X) 
is a chain equivalence. 
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2. Let 77 : 3'(K) 	eV(IKI) be the chain map of §34, which induces an isomorphism 
of simplicial with singular homology. Show 77 is a chain equivalence. 

§47. THE COHOMOLOGY OF CW COMPLEXES 

Now we can compute the cohomology groups of some familiar spaces, and can 
find specific cocycles that generate these groups. The basic theorem we shall 
use in carrying out these computations is the following: 

Theorem 47.1. Let X be a CW complex; let 0(X) be its cellular chain 
complex. Then 

HP (Z(X);G) =.-.• HP (X; G) 

for all p and G. If X is a triangulable CW complex, triangulated by a complex 
K, then the isomorphism is induced by inclusion 1)(X) d' (K). 

Proof Both 7J(X) and 8(X) are free chain complexes. Since their homol-
ogy groups are isomorphic, so are their cohomology groups, by Corollary 45.6. 
In the case where X is triangulable, the inclusion map i : .7)(X) 0(K) induces 
the homology isomorphism in question. (See Theorem 39.5.) Then i induces a 
cohomology isomorphism as well. 0 

Corollary 47.2. Let n > 0. Then 

(S";G) = G for i = 0 and i = n, 
H'(B",Sn ';G) = G for i = n. 

These cohomology groups vanish for other values of i. 

Proof The first statement follows from the fact that the cellular chain 
complex of S" is infinite cyclic in dimensions 0 and n and vanishes otherwise, 
and all the boundary operators vanish. The second then follows from the long 
exact sequence in reduced cohomology, using the fact that the reduced coho-
mology of B' vanishes, since it is contractible. 0 

Example 1. Let X denote either the torus T or the Klein bottle S, expressed as a 
CW complex having one open cell in dimension 2, two in dimension 1, and one in 
dimension 0. We computed the cellular chain complex of X, in Example 2 of §39, to 
be of the form 

a, 

Let y generate D2(X); let w, and z, be a basis for D,(X). We know a, and 8, vanish 
in the case of the torus. Passing to the dual sequence, we compute 

112(T;G) = G, 	111(T;G) = G G, 	H°(T;G) = G. 
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In the case of the Klein bottle, we know that a, vanishes, and that we can 
choose w, and z, so that ai-y = 2z,. The dual sequence is of the form 

S, 
—.,--0—G—GeG 

<5, 
 G-0. 

Here Horn (D, (S), G) :--- G 9 G, where the first summand represents those homo- 
morphisms 0 : D,(S)---,  G that vanish on z„ and the second represents those ho- 
momorphisms ik : D, (S) 	G that vanish on w„ Because a, is trivial, so is its dual 6,. 
We compute (5, as follows: 

(1520,7) = (0,827) = 2(0,z1) = 0, 

(S:¢, 7) = (/,,azy) = 2 (1,G, z1). 

Thus Sz  carries the first summand to zero, and equals multiplication by 2 on the sec-
ond summand. We conclude that 

H2(S;G) = G I2G, 	H'(S;G) ;.--• G® ker(G -a. G), 	H°(S;G) .:.• G. 

In particular, 

H2 (S) :.-.. Z/2, 	I-11(S) = Z, 	H°(S) = Z. 

The computations given in the preceding example are typical. Once one has 
the cellular chain complex D(X), computing the cohomology groups is not hard. 

However, there is an associated problem that is more difficult—namely, 
the problem of finding specific simplicial cocycles that generate these groups. 
In the next section, when we study cup products, we shall need to have such co-
cycles at hand. How can one find them? 

In the case of homology, finding simplicial cycles of X that generate the 
homology is not difficult. Let us represent T and S as quotient spaces of the rect-
angle L, as pictured in Figure 47.1. The chain d of L that is the sum of all the 
2-simplices of L, oriented counterclockwise, is a fundamental cycle for (L, Bd L), 
so its image -y = go(d) generates the cellular chain group D2(X). Similarly, 
the chains 

w, = [a,b] + [b,c] + [c,a], 
z, = [a,d] + [d,e] + [e,a], 

are a basis for the cellular chain group D,(X). As we know, these chains are 
cycles representing certain elements of the homology of 2)(X). Now because 
the isomorphism Hi(2)(X)) 2.-. Hi(X) is induced by inclusion i : 2)(X) --, ea), 
these same chains, considered now as chains in 0(X), represent elements of the 
simplicial homology of X. 

However, cohomology is not so easy. What happens in this case? We can of 
course find generators for the cohomology of the cellular chain complex 2)(X): 
The homomorphism X : D2(X) —, Z that maps the fundamental cycle y to 1 
generates Horn (D2  (X),Z) = Z. And the homomorphisms 04 : D, (X) Z de-
fined by 

(4,w,)= 1 and (0,z,) = 0, 

(11/, w,) = 0 and (i/,z,) = 1, 
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L 

S 

Figure 47.1 

are a basis for the group Hom(D, (X),Z) :.-- Z ED Z. For the torus, 6 vanishes, so 
X generates H2(Z(T)) and 0 and IP represent a basis for H' (2(T)). For the 
Klein bottle, we have 60 = 0 and 64, = 2X, so A represents the non-zero element 
of H2(D(S)) = Z/2 and 0 represents a generator of Hi (D(S)) :.—.. Z. 

However, unlike the situation in homology, the homomorphisms A and 4) 
and 4, cannot be "considered" as cocycles of the simplicial complex X. For the 
inclusion map i : D,(X) --. c(X) induces a homomorphism in the opposite 
direction 

Hom (D, (X),Z).- Hom (C., (X), Z). 

This homomorphism is a restriction map. To find cocycles of the simplicial com-
plex X that generate the simplicial cohomology of X, we must pull A, cp, and 4/ 
back to cocycles 

z2  : CZ(X) --, Z, 

w', z' : C, (X) -- Z, 

whose restrictions to the subgroups D, (X) and D,(X), equal X, 0, and 4,, 
respectively. 

There is no general procedure for finding such cocycles. But in the present 
case, since we know that a cocycle is supposed to look like a "picket fence," we 
can find the desired cocycles without too much difficulty, as we now show. 

Example 2. Generators for the cohomology of the torus. We represent T as a quo-
tient space of the rectangle, as in the preceding example. Let w, and z, be as in that 
example. The cochains w' and z' pictured in Figure 47.2 are cocycles of T, by direct 
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Figure 47.2 

computation. Furthermore, when evaluated on the cycles w, and z, that generate 
Di (X), we have 

(w',w,) = 1 and (w',z,) = 0, 

(z',w,) = 0 and (z',z,) = 1. 

Thus w' is a "pull-back" of 0, and z' is a pull-back of 1,1/. Therefore, they represent a 
basis for H'(T). 

Similarly, if a is any 2-simplex of T, oriented counterclockwise, then a* is a 
cocycle of T. Because (0,7) = 1, the restriction of cr* to the subgroup D2(X) of 
C2(X) equals X, so a* is a pull-back of X. Thus a* represents a generator of 112(T). 
(More generally, if all 2-simplices of T are oriented counterclockwise, then the co-
chain Ini0-7 of T is a pull-back of A if and only if In;  -= 1.) 

Example 3. Generators for the cohomology of the Klein bottle, with integer coef-
ficients. We follow the pattern of the preceding example. Switch the labels d and e 
on the right side of the rectangles in Figure 47.2 so they represent the Klein bottle. 
Then w' still represents a cocycle; it generates H'(S). And the cochain a* repre-
sents the non-zero element of H2(S). (More generally, the cochain Iniar represents 
the non-zero element of H2(S) if and only if Mn, is odd.) 

Example 4. Generators for the cohomology of the Klein bottle, with Z/2 coeffi-
cients. The cohomology groups are given by 

.11:(S; Z/2) =a' Z/2, 	H'(S; Z/2) = Z/2 ED Z/2, 	H°(S; Z/2) Z/2. 

The pattern of the preceding argument applies to show that the cochains w' and z' 
of Figure 47.2 generate the 1-dimensional cohomology. (You can erase the arrows if 
you like, since 1 = —1 in the group Z/2. Thus there is no problem in making z' a 
cocycle.) The cochain a* (or more generally a' + • - • + af, where k is odd), gen-
erates 112(S; Z/2). 

Example 5. The cohomology of 1:" with Z/2 coefficients. One has 

H' (P2; Z/2) az Z/2 	for 	i = 0,1,2. 

If o is a 2-simplex, the cochain 47* generates the 2-dimensional group. And the co- 
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cycle pictured in Figure 47.3 generates H' (P 2; Z/2), for its value is 1 on the cycle 

[a,b] + [b,c] + [c,d] + [d,e] + [e,f] + [ f,a] 

that generates D,(X). 

EXERCISES 

1. Compute the cohomology of r and Pc° with integer coefficients, with Z/2 
coefficients, and with rational coefficients. 

2. Compute the cohomology of Cr and CP'. 

3. Compute Hi (T # T). Find simplicial cocycles that generate the cohomology, if 
T # T is triangulated as indicated in the exercises of §6. 

4. Compute the cohomology of P2  # P2  # P2 # P. with Z/2 coefficients. Find sim-
plicial cocycles that generate the cohomology. 

5. Compute the cohomology of the Klein bottle S with Z/6 coefficients; find rep-
resentative cocycles as in Examples 3 and 4. 

6. Compute the cohomology of the 5-fold dunce cap X with Z and Z/5 coeffi-
cients. (See Exercise 6 of §6.) Triangulate X and find cocycles that generate 
the cohomology. 

7. Compute the cohomology of the lens space L(n,k) with Z and Z/n coefficients. 

8. Triangulate S2  and the torus T; let f T S2  be a simplicial map. Show that if 
.fs 112(T) H2(S2) equals multiplication by d, so does f* : H2(S2) Hz (T), 
by comparing the values of f, and f# on generators. Compare with Exercise 3 
of §45. 

§48. CUP PRODUCTS 

The results of §45 tell us that, if the homology groups fail to distinguish be-
tween two spaces, then the cohomology groups will fail as well. One might be 
tempted to ask, "Why bother with cohomology? What possible use can it be?" 

There are several answers to this question. One answer is that cohomology 
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appears naturally when one studies the problem of classifying, up to homotopy, 
maps of one space into another. Another is that cohomology is involved when 
one integrates differential forms on manifolds. Still another answer is the one 
given in this section. We show that the cohomology groups have an additional 
algebraic structure—that of a ring—and that this ring will distinguish between 
spaces when the groups themselves will not. 

We shall define the ring structure of cohomology by giving a specific co-
chain formula for the multiplication operation. Historically, this is how the 
ring structure was first obtained. The formula was discovered about 1936 by 
Alexander, Cech, and Whitney. At the time, it seemed very mysterious; its geo-
metric meaning was not at all clear. Furthermore, it was very puzzling why 
there was a multiplication operation in cohomology but not in homology. 

In the case of a compact orientable manifold, it had been known for some 
time that its homology had a ring structure. The multiplication operation in this 
ring was called the intersection product, and had a clear geometric meaning. 
But all attempts to generalize this multiplication to more general spaces failed. 
It was not until 1942, when Lefschetz gave a new definition of the multipli-
cation operation in cohomology, did it become clear why, for general spaces, 
there exists a cohomology ring but not a homology ring. It also became clear 
about the same time what the relation was between the homology and cohomol-
ogy rings when both were defined; the Poincare duality theorem showed that 
the two rings were isomorphic. We shall return to these matters later. (See §61 
and §69.) 

Review of rings, modules, and fields 

We begin by reviewing some basic facts from algebra concerning rings and 
modules. 

A ring R is an abelian group, written additively, with a multiplication oper-
ation satisfying two axioms: 

(1) (Associativity) a • (0 • -y) 	(a • (3) • 7. 

(2) (Distributivity) a • (0 + 7) = a • f3 + 	7; 

(a + 0) • 7 = a • 7 13 • 7. 

If a • 13 = i3 • a for all a,#, then R is said to be commutative. If there is an 
element 1 in R such that a • 1 = 1 • a = a for all a, then 1 is called a unity ele-
ment in R. If R has a unity element, this element is easily seen to be unique; fur-
thermore, one has ( —1) • a = —a and 0 • a = 0 for all a. 

If R is a commutative ring with unity, and if R satisfies the additional con-
dition that for every a # 0, there is a fi  such that a • # = 1, then R is called 
a field. 

Example 1. Examples of rings include, among many others, the following: 

(i) The integers Z. 

(ii) The set Z/n of integers modulo n. 
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(iii) The set of n X n matrices with integer entries. 

(iv) The set of polynomials with integer coefficients. 

Examples of fields include: 

(v) Z/p, where p is prime. 

(vi) The rationals Q. 

(vii) The real numbers R. 

(viii) The complex numbers C. 

In each case, the multiplication operation is the usual one. 

Now suppose A is an additive group and R is a commutative ring with 
unity. We say A has the structure of module over R if there is a binary oper-
ation R X A A (written as scalar multiplication) such that for ao3 e R and 
a,b e A, we have: 

(1) a (a + b) = as + ab. 
(2) (a + 0)a = as + $a. 
(3) «(Ra) = (a - $)a. 
(4) la = a. 

If A and B are R-modules, a module homomorphism is a homomorphism ¢ : A 
B such that 4) (aa) = a4) (a) for a e R and a e A. The kernel and the cokernel 
of such a homomorphism have natural R-module structures. In the special case 
where R is a field F, we call A a vector space over F, and we call the homomor-
phism 4)  a linear transformation. 

We shall not have much occasion to deal with modules in this book. Our 
primary concern will be with rings and vector spaces. 

Example 2. Given R, it can always be considered as an R-module over itself. More 
generally, the cartesian product R" becomes an R-module if we define 

a (il, • • • 43.) = (OD • • • ,a13.)- 
Example 3. If G is an abelian group, then G has a natural structure of Z-module, 
obtained by defining ng to be the n-fold sum g + • • • + g, as usual. 

Cup products 

Throughout this section and the next, we shall let R denote a commutative 
ring with unity element 1. 

Definition. Let X be a topological space. Let SP (X; R) = Hom(S p(X),R) 
denote the group of singular p-cochains of X, with coefficients in R. We define 
a map 

SP (X; R) X Sg (X; R) -14  SP + 9  (X; R) 
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by the following equation: If T : Op  + q  X is a singular p + q simplex, let 

(c° u c 9, T) = (cP,T o 1(4, 	,$)) • (cg,T o l(t p, 

The cochain c° L cg is called the cup product of the cochains cP and cq. 

Recall that /(w0, ,w,) is the linear singular simplex mapping ei  into 
wi  for i = 0, . . . ,p. The map T o 400, . . ,ei,) is just the restriction of T to 
the "front p-face" [1,,, of A, q; it is a singular p-simplex on X. Similarly, 
T o l(f p . 	q) is, roughly speaking, the restriction of T to the "back g- 
face" of Lip q; it is a singular q-simplex on X. The multiplication indicated on 
the right side of this equation is multiplication in the ring R, of course. 

What, if anything, this mysterious formula means remains to be seen. 

Theorem 48.1. Cup product of cochains is bilinear and associative. The 
cochain z° whose value is 1 on each singular 0-simplex acts as a unity element. 
Furthermore, the following coboundary formula holds: 

(*) 	 b(cP u cg) = (45c') u cg + (— 1)'c° L.) (kg). 

Proof. Bilinearity is immediate, since two cochains are added by adding 
their values, and multiplication in R is distributive. Associativity is also imme- 
diate; the value of (CP  Li Cq ) Li c' on T : 	q 	X equals the product of 

(cP,T o 	,$)), 

(cg,T o 	,ep+  q)), and 

(cr,T 0 l (to  q, • • • ,ep q „))- 

The value of CP  LJ (Cq  LJ c') on T equals the same. The fact that CP  L.) Z°  --= 

Z°  L.) cf = cis follows directly from the definition. 
To check the coboundary formula, we compute the value of both sides of 

(*) on T : 	X, where we let r = p + q + I for convenience. The cochains 
(ocP) u cq and (-1)'c' LJ (15cg), evaluated on T, equal the two following ex-
pressions, respectively: 

p+1 

I (-1).(cP ,T 01(4, 	,ep+ ,)) • (cg,T 1(ep  „ 	,e,)) 
= 0 

and 

(-1)P1(-1)i  P(cP,T o l(e0, 	,e,,)) • (cg,T 
i=p 

If we add these expressions, the last term of the first expression cancels the 
first term of the second expression; what remains is precisely the formula for 

LJ C q,an. 0 
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Theorem 48.2. The cochain cup product induces an operation 

HP (X; R) X 114  (X; R) (---j-,  HP + q (X; R) 

that is bilinear and associative. The cohomology class tel acts as a unity 
element. 

Proof If 9 and zq are cocycles, then their cup product is a cocycle as 
well, since 

uzq) = OzP V zq + ( — 1)P zP U SZq = 0. 

The cohomology class of this product depends only on the cohomology classes 
of 9 and zq, since 

(zP + SdP - u zq = zP zq + O(dP -' uzq) 

and 

zP u (zq + Sclq 	e uzq + (-1)Ps(zP u clq -1). 0 

Theorem 48.3. If h : X Y is a continuous map, then h* preserves cup 
products. 

Proof In fact, the cochain map h# preserves cup products of cochains. For 
by definition, the value of h" (c' u 0) on T equals the value of cP Li C g  on 
h o T, which is 

(cP,h o T o 	 (cl,h o T o 1(ep, 	,ep  ,)), 

and the value of h# (cP) u h#  (C g ) on T equals the same. 0 

Definition. Let H* (X; R) denote the external direct sum 	(X; R). The 
cup product operation makes this group into a ring with a unity element. It is 
called the cohomology ring of X with coefficients in R. 

If h : X Y is a continuous map, then h* is a ring homomorphism. There-
fore, a homotopy equivalence induces a ring isomorphism. It follows that the co-
homology ring is a topological invariant, in fact, a homotopy-type invariant. 

Commutativity 

We have not yet discussed whether or not the cohomology ring is commuta-
tive. In fact it is not, in general. Instead, it has a property commonly called anti-
commutativity. Specifically, if aP  e HP (X; R) and 13q e Hq (X; R), then 

aP u f3q = (--1)09$q  t..) a'. 

We shall not prove this formula now, for the proof will become much easier 
when we give an alternate definition of the cup product operation later on. 
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In the next section, we shall compute the cohomology ring in several spe-
cific cases. But first, let us introduce several generalized versions of our cup 
product operation. 

Cup products with general coefficients 

Let G be an arbitrary abelian group. Then we note that the cup product 
formula makes sense if we interpret it as a function 

S'(X) x Sq (X; G) ---'-')  SP 4-  q (X; G). 

In this case, cP is a cochain with integral values, c° is a cochain with values in G, 
and the multiplication on the right side of the formula is the usual product oper-
ation sending (n,g) to ng. Bilinearity is immediate. Associativity holds when it 
makes sense—that is, when it involves a map 

S'(X) X Sq(X) X Sr (X; G) --, SP 1-  q + ' . (X; G). 

The cochain z° whose value is 1 on each 0-simplex T acts as a left unity ele- 
ment. The proof of the coboundary formula is unchanged, as is the proof that 
the homomorphism h* induced by a continuous map preserves cup products. 

Therefore, we have a well-defined cup product operation 

HP (X) X Hg (X; G) --) HP + g (X; G). 

The most general cup product operation usually considered begins with 
a bilinear map a : G X G' --, G", called a "coefficient pairing"; using this map 
to replace the multiplication operation in the cochain formula, one has a well-
defined cup product 

HP (X; G) X Hg (X; G') -2,  HP + g (X; G"). 

We shall not need this degree of generality. 

Relative cup products 

Sometimes, one wishes to define a cup product operation on relative coho-
mology groups. One can use the same cup product formula as before. The rela-
tive cup products we shall need are the following: 

HP (X,A; R) X Hg (X; R) ---0 HP + g(X,A; R), 
HP (X, A; R) X Hg (X,A; R) --. HP .4-  q(X,A; R). 

(The second of these is in fact just a restriction of the first.) The existence of 
these cup products is easy to demonstrate. For if cP : S p(X) —, R vanishes on 
all singular p-simplices carried by A, then c' u cq automatically vanishes on all 
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p 	q simplices carried by A. The coboundary formula holds just as before, so 
one has an induced operation on the cohomology level. Bilinearity and associa-
tivity are immediate, as is the fact that the homomorphism induced by a contin-
uous map preserves cup products. The class WI e H°(X;R) acts as a right 
unity element for the first of these operations. 

The most general relative cup product operation is a bilinear map 

HP (X, A; R) X II° (X, B; R) H° ° (X, A U B; R). 

It is defined whenever {A,B} is an excisive couple. See the exercises. 

EXERCISES 

1. Let A be a path component of X; let B be the union of the remaining path com-
ponents of X; assume B # 0. Let c° be the cochain whose value is 1 on each 
T : 	A and 0 on each T : A. B. Show c° is a cocycle, and describe fc°1 
OP for a general cohomology class OP. 

2. Let A C X; let i : A X be inclusion. Let n e H* (X; R); let ri A denote 
is (n) e H'(A; R). Show that the following diagram commutes: 

HP + (X, A; R) 4-- HP (A; R) 	HP (X; R) 4-- HP (X, A; R) 

I L) n 

	
IL-' (77 i A ) 	I Li 71 	

I L)  
HP + a "4" (X,A; R) 4---- HP (A; R) 4— HP (X; 	HP + *(X,A; R) 

What happens if you replace t..) n with n v throughout? 

3. Show that if (A,E1) is an excisive couple, then the cup product formula induces a 
bilinear map 

HP (X,A; R) X WI (X, B; R) HP + (X,A U B; R). 

Interpret associativity in this case. 

4. (a) If G is an abelian group, show that the group Horn (G,R) can be given the 
structure of R-module by defining (a4,g) = a • (4),g) if ck e Hom(G,R) 
and a e R and g e G. Show that if f :G G' is a homomorphism, then f 
is an R-module homomorphism. 

(b) Give SP (X; R) = Hom (X),R) the structure of R-module as in (a). Show 
that 6 is an R-module homomorphism, so that HP (X; R) has the structure 
of R-module. 

(c) Show that if h : X Y is a continuous map, h* is an R-module homo-
morphism. 

(d) Show that cup product, as a function of each variable separately, is an R-
module homomorphism. (This means that H* (X; R) is what is sometimes 
called a ring with operators R. In the special case where R is a field F, it is 
called an algebra over F.) 
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§49. COHOMOLOGY RINGS OF SURFACES 

There is no general method for computing the singular cohomology ring of X, 
even if X is a CW complex. The reason is not hard to find: It turns out that the 
cellular chain complex of X does not determine the cohomology ring of X. That 
is, two CW complexes can have isomorphic cellular chain complexes without 
having isomorphic cohomology rings! 

Therefore, to compute cup products, we turn to simplicial cohomology. In 
this section, we define a simplicial cup product formula that corresponds to the 
previous formula for singular cochains under the standard isomorphism of sim-
plicial with singular theory. Then we use this formula to compute a number of 
examples. 

Definition. Given a complex K, choose a partial ordering of the vertices of 
K that linearly orders the vertices of each simplex of K. Define 

C° (K; R) X Cf (K; R) =-. CP + 1  (K; R) 

by the formula 

(CP 	I.-) Cq  ,[V(I, • • • ,V p .4. ql) = (CP  ,[EI 0, • • • ,V pi) . (Cq  , EV p, • • • , Vp + q]) 

if v. < • • • < vi, + q in the given ordering. 

The similarity of this formula to the corresponding formula in singular the-
ory is striking. 

Theorem 49.1. Given an ordering of the vertices of K, the corresponding 
simplicial cup product is bilinear and associative. The cochain z° whose value 
is 1 on each vertex of K acts as a unity element. The coboundary formula (*) 
of Theorem 48.1 holds. If n: cp(K)--. .3 p(IKI) is the chain map of §34, deter-
mined by the given ordering, then its dual i carries singular cup product to 
simplicial cup product. 

Proof The proofs are straightforward. Only the coboundary formula re-
quires comment. One can prove it by the same computations we used in proving 
Theorem 48.1; only slight changes of notation are needed. Alternatively, one 
can use the fact that since n carries basis elements to basis elements, n is injec-
tive and its image is a direct summand in Sp(IKt). Hence its dual i  is surjective. 
Given simplicial cochains c° and cf, they can thus be pulled back to singular co-
chains of IK I, say eP and V. We know the coboundary formula holds in singular 
theory for eP L.) eq. Since i preserves both cup products and coboundaries, the 
same coboundary formula must hold in simplicial theory for c° t c°. 0 

Theorem 49.2. The simplicial cup product induces an operation 

HP (K; R) X Hq (K; R) -L4  HP + 1  (K; R) 
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that is bilinear and associative. It is independent of the ordering of vertices of 
K. The cohomology class {e} acts as unity element. If h 	is a contin- 
uous map, then h* preserves cup products. 

Proof The existence of u follows from the coboundary formula as be-
fore. The chain map n induces an isomorphism n* of singular with simplicial co-
homology that preserves cup products. Since n* is independent of the chosen 
ordering in K, so is the cup product in simplicial cohomology. 

Because h* preserves cup products in singular cohomology, and ri*  com-
mutes with h*, the homomorphism h* in simplicial theory necessarily preserves 
cup products. 0 

Note that in general, if f K L is a simplicial map, the cochain map pi 
need not preserve cup products on the cochain level. For the simplicial cup 
product is defined using a particular ordering of the vertices, and the simplicial 
map f need not preserve the ordering of vertices in K and L. This would be a se-
rious problem if one wanted to work entirely within oriented simplicial theory; 
it would be difficult to prove naturality of the cohomology cup product. 

We remark that the more general cup products 

HP (K) X Hq (K; G) L-4  HP "(K; G) 

and 

HP (K,A; R) X Hq (K,B; R) HP + q (K,A U B; R) 

exist in simplicial theory just as they do in singular theory. The relative cup 
product is in fact easier to define in simplicial than in singular theory, for if cP 
vanishes on C°(A) and c9  vanishes on C9(B), then c° L.) cq automatically van-
ishes on Cp(A U B), because simplex of A U B must lie in either A or B. (Of 
course, {A,B} is excisive in this case, so that singular cup product is defined as 
well. See the exercises of §34.) 

Now let us compute some examples. First, we need some terminology. 

Definition. Since the cohomology ring has a unity element in dimension 0, 
multiplication by this element is never trivial. It can happen, however, that ev-
ery product of positive-dimensional cohomology classes vanishes. In that case, 
we say that the cohomology ring is the trivial ring. 

Here are some cohomology rings that are not trivial. 

Example I. Consider the torus T. Let w' and z' denote the cocycles pictured in 
Figure 49.1. We know that a = 1w' and $ = {z'} generate H'(T). If we orient 
each 2-simplex counterclockwise, then A = Icr*1 generates Hz(T) = Z, where a is 
any oriented 2-simplex of T. In general, if a„ 	,a, are oriented 2-simplices of T, 
the cochain Znicr7 is cohomologous to (Zni )cr*. 

Order the vertices of T alphabetically. Using this ordering, we compute the 
value of w' L.) z' on each oriented 2-simplex a. Note that (w' i zi,cr) = 0 unless a 
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Figure 49.1 

face of a is in the carrier of w' and a face is in the carrier of z'. Thus the only possi-
ble non-zero values occur when Cf is one of the simplices ghi or hij. We compute 

(w' L) z',[g,h,i]) 	(10,[g,h]) • (z 1,[h,i]) = 1 • 1 = 1, 

(w' v z',[h,i,j]) = (w',[h,i]) • (z',[i,j]) = (-1) • 0 = 0. 

Thus w' L.) 	= [g,h,i]*. Now the orientation of [g,h,i] is clockwise. Therefore, 
in terms of our standard generators, a Li Q = —A. 

A similar computation shows that 

(z' L.) w',[g,h,i]) = 0 • (-1) = 0, 

(z' v w',[h,i,j]) = 1 • 1 = 1, 

so that z' L.) w' 	[h,i,j]*. Thus # u a = A. (This is exactly what anticommuta- 
tivity would have led us to expect.) 

A similar direct computation shows that a Li a = 0 and # v = 0. Alterna-
tively, we note that w' is cohomologous to the cochain y' pictured in Figure 49.2. 
Sincc no 2-simplex has one face in the carrier of w' and another face in the carrier 
of y', necessarily w' v y1  -- 0. Hence a Li a = 0. A similar argument shows that 
13 v f3 =--- 0. 

Another alternative computation comes by noting that anticommutativity im-
plies that a L.) a = —(a LJ a). Since H2(T) has no elements of order 2, a L.) a 
must vanish. A similar remark applies to L.) 13. 
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Figure 49.2 
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We can specify the ring structure of H* (T) by writing its multiplication table 
in terms of generators for H* (T). This table becomes (omitting the unity element) 

(-1 a a A 

a 0 —A 0 

A 0 0 

A 0 0 0 

where the last row and column vanish for dimensional reasons. 

Figure 49.3 

Example 2. Consider now the Klein bottle S. Let us compute the cohomology ring 
with Z/2 coefficients. We know that 111(S; Z/2) is generated by the cocycles w1  
and z' pictured in Figure 49.3. Furthermore, H2(5; Z/2) is generated by a*, for any 
2-simplex a. (We omit orientations, since 1 = —1 in Z/2.) Let a = 1w' and /3 — 
{z'} and A = {0). Some of the computations we carried out in Example 1 apply 
without change, provided we reduce the coefficients modulo 2. In particular, 

w' v z' = [g,h,i]* , and 

34,1  v y'=0, 

where y' is the cochain pictured in Figure 49.2 (without the arrows). We conclude 
thatav 0=Aanda Li a= 0. 

Computing z' v z' must be done directly, since we cannot "pull it off itself" as 
we did with w'. (Why?) The cochain L.) z' has value 1 on [d,e, g], on [e,g,i], and 
on [d,e,j]; and it vanishes on all other 2-simplices. Thus it is cohomologous to 
3a* = a*. We conclude that ft L.) S = A. 

The multiplication table for H* (S; Z/2) thus has the form 

a /3 A 

a 0 A 0 

13 A A 0 

A 0 0 0 

Example 3. Consider the connected sum P2  # P 2. We compute its cohomology 
ring with Z/2 coefficients. Let us express P2  It P2  as a CW complex X having one 
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cell in dimension 0, one cell in dimension 2, and two cells in dimension 1. See Figure 
49.4. Fundamental cycles for the 1-cells of X are 

w' = [a,b] + [1,,c] + [c,a) 	and 	z, = [a,d] + (d,e] + [e,a]. 

A fundamental cycle y for the 2-cell is the sum of all the 2-simplices, oriented coun-
terclockwise. By direct computation, aw, = az, = 0, and 8-y = —2w, — 2z,. When 
we pass to the dual (cochain) complex Hom(D(X),Z/2), all coboundary operators 
vanish (since we are using Z/2 coefficients). Thus in singular cohomology, we have 

Hi (P2  # P2; Z/2) = Z/2 Z/2, 

H2(P2  # P2; Z/2) = Z/2. 

Passing now to simplicial cohomology, we see that the cocycles w' and z' pic-
tured in the figure, when restricted to D,(X), serve as a basis for Horn (D,(X),Z1 2), 
since 

(w1,w,) = 1 	and 	(wl,z,) = 0, 

(z',w,) = 0 	and 	(e,z,) = 1. 

The classes 5 = {w'} and e 	thus generate Ht, and A = {e} generates H2  
(where a is any 2-simplex). Direct computation shows that 

w' u z' = 0 

w' 	v w' 	[a,c,j]*, 

zi 	z' = [a,e,g]*. 

Thus H* (P2  # P2; Z/2) has the multiplication table 

A 

5 A 0 0 

0 A 0 

A 0 0 0 

But we know that P2  # P2  is homeomorphic to the Klein bottle S. (See Figure 
6.9.) Thus their cohomology rings are isomorphic, even though this multiplication 
table is quite unlike the one we computed in Example 2. We leave it to you to con-
struct an isomorphism between these two rings. 
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This example illustrates the following important fact: One cannot, in general, 
by examining the multiplication tables of two rings, determine at once whether or 
not the rings are isomorphic. 

Example 4. Consider the space X pictured in Figure 49.5; it is the union of two 
topological circles and a topological 2-sphere with a point in common. It is called 
the wedge product S' V S' V 52. The space X can be expressed as a CW complex 
with one cell in dimension 0, one cell in dimension 2, and two cells in dimension 1. 
When we write fundamental cycles 

w, = [a,b] + [b,c] + [c,a], 
z, = [a,d] + [d,e] + [e,a], 
z2  = 8[a, f, g,h], 

for these cells, we see that the boundary operators in the cellular chain complex all 
vanish. Therefore, the cellular chain complex 2(X) of X is isomorphic to the cel-
lular chain complex D(T) of the torus T. 

It follows that the homology groups and cohomology groups of X are isomor-
phic to those of T. However, their cohomology rings are not isomorphic. For it is 
easy to see that the cohomology ring of X is trivial. Consider the cocycles 

w' = [6,d* 	and 	z' = [d,e]*. 

Since the cycles w, and z, are a basis for the chain group D,(X), the cocycles w' and 
z' give the dual basis for the cochain group Hom(D,(X), Z). All the cup products 
w' t...) z' and w' L...) w' and z' L., z' vanish, because no 2-simplex has a face in the 
carriers of either w' or z1. 

Figure 49.5 

The preceding examples will, I hope, convince you that cup products are 
not as a rule easy to compute. The difficulty is that one must go down to the 
simplicial level and find specific representative cocycles, in order to use the cup 
product formula. 

As a consequence, any theorem that tells us something about cup products 
in general is likely to be a useful theorem. We shall prove two such theorems in 
later chapters. One will tell us something about the cohomology ring of a prod- 
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uct space X X Y. The other will give us information about the cohomology ring 
of a manifold, which will in particular enable us to compute the cohomology 
rings of the projective spaces. 

EXERCISES 

Throughout, let T denote the torus, and let S denote the Klein bottle. 

1. Let f : S2  --. T be continuous. Show that f* : H2  (T) —. H 2(S2) is trivial, and 
conclude that f*  : 112 (S2) — 112(T) is trivial. What can you say about a contin-
uous map g : T —. S2? 

2. If f : X — Y, show that 

f* : II2(Y; Z/2) — H2(X; Z/2) 

is trivial in the following cases: 
(a) X = .52  and Y = S. 
(b) X = S and Y = T. 
(c) X = T and Y = S. 

3. Give multiplication tables for the following cohomology rings: 
(a) H*(T# • • • # T). 
(b) H* (P2; Z/2). 
(c) H* (P2 # • • • # Pz; Z/2). 

4. Define an isomorphism between the rings of Examples 2 and 3. 

5. Consider the cohomology rings of the Klein bottle S and the space Pz V S'. 
(a) Show that these rings are isomorphic with integer coefficients. 
(b) Show that these rings are not isomorphic with Z/2 coefficients. [Note: It 

does not suffice to show that they have different multiplication tables!] 

6. Compute the cohomology ring of the 3-fold dunce cap with Z/3 coefficients. 

7. (a) Let (M,E) denote the Mobius band and its edge. Compute the cup product 
operations 

H* (M,E; Z12) X H* (M; Z/2) --. H* (M,E; Z/2), 

H* (M,E; Z/2) X H* (M,E; Z/2) ---.1/* (M,E; Z/2). 

(b) Repeat (a) when M is the cylinder S' X I and E = S' X Bd I. 

8. Let A be the union of two once-linked circles in S3; let B be the union of two 
unlinked circles, as in Figure 49.6. Show that the cohomology groups of S3  — A 
and S3  — B are isomorphic, but the cohomology rings are not. 

00 
 00 

Figure 49.6 



Homology with Coefficients 

Having studied cohomology with arbitrary coefficients, we now return to a sub-
ject introduced briefly for simplicial theory in Chapter I—homology with arbi-
trary coefficients. 

First, we introduce an algebraic functor called the tensor product, and study 
its properties. It plays a role in homology theory similar to that played by the 
Hom functor for cohomology. Then we study homology with arbitrary coeffi-
cients in general. 

§50. TENSOR PRODUCTS 

If A and B are abelian groups, then their Cartesian product A X B is of course 
an abelian group, and one often considers homomorphisms of the group A X B 
into an abelian group C. However, one sometimes wishes rather to consider 
functions from A X B to C that are bilinear, that is, functions that are homo-
morphisms when considered as functions of each variable separately. In this 
section, we define an abelian group called the tensor product of A and B and 
denoted by A ® B. It has the property that bilinear functions from A X B to C 
can naturally be considered as homomorphisms from A 0 B to C, and con-
versely. By this means the study of bilinear functions is reduced to something 
familiar, the study of homomorphisms. 
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Definition. Let A and B be abelian groups. Let F(A,B) be the free abelian 
group generated by the set A X B. Let R (A,B) be the subgroup generated by 
all elements of the form 

(a + a',b) — (a,b) — (a',b), 

(a,b + b') — (a,b) — (a,b'), 

for a, a' e A and b, b' e B. We define 

A 0 B = F(A,B)I R (A,B), 

and call it the tensor product of A and B. The coset of the pair (a,b) is denoted 
by a b. 

Now any function f from the set A X B to the abelian group C determines 
a unique homomorphism of F(A,B) into C, since the elements of A X B are the 
basis elements for F(A,B). This function f is bilinear if and only if it maps the 
subgroup R (A,B) to zero. Thus every homomorphism of A ® B into C gives rise 
to a bilinear function from A X B into C, and conversely. 

Note that any element of F(A,B) is a finite linear combination of pairs 
(a,b), so any element of A 0 B is a finite linear combination of elements of the 
form a 0 b. 

NOTE WELL: The element a 0 b is not the typical element of A 0 B, but 
rather a typical generator. 

We have the following relations in A 0 B: 

(a+a')0b=a0b+a'Ob, 

a®(b+b')=a®b+ a®b',  

by definition. It is immediate that 0 b = 0, since 

a0b= (0 + a)0b=00b+a0b. 

Similarly, a ®0 = 0 for all a. It follows that 

(—a) 0 b = —(a b) = a 0 (—b), 

since adding a 0 b to each expression gives zero. An immediate consequence is 
the relation 

(na) b = n(a 0 b) = a 0 (nb), 

when n is an arbitrary integer. 

Definition. Let f : A A' and g: B B' be homomorphisms. There is a 
unique homomorphism 

f0g:A0B--4A'OB' 

such that (f 0 g) (a 0 b) = f(a) g(b) for all a, b; it is called the tensor prod-
uct of f and g. 
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This fact is an immediate consequence of the fact that the function from 
A X B into A' ® B' carrying (a,b) to f(a) 0 g(b) is bilinear, as you can check. 
We also leave it to you to check the following: 

Lemma 50.1. The function mapping (A,B) to A 0 B and (f,g) to f g is 
a covariant functor from the category of pairs of abelian groups and homo-
morphisms to the category of abelian groups and homomorphisms. 0 

Later we will show how to compute tensor products. For the present, we 
merely note the following: 

Theorem 50.2. There is an isomorphism 

ZOG:=G 

that maps n 0 g to ng; it is natural with respect to homomorphisms of G. 

Proof. The function mapping Z X G to G that sends (n,g) to ng is bilin-
ear, so it induces a homomorphism : Z 0 G G sending ne g to ng. 

Let tP : G Z G be defined by the equation kg) = 1 ®g; then 1,1/ is a 
homomorphism. For g e G, we have 

(tn,G (g) = 0(10 g) = g; 

while on a typical generator n 0 g of Z G, we have 

114 (n g) kng) = 1 0 (ng) = n g. 

Thus IP is an inverse for 4. 
Naturality is a consequence of the commutativity of the diagram 

zec G 

ize f I 	
If 

zelf-2-.. H. 0 

We now derive some general properties of tensor products. 
First, let us note a common fallacy. Suppose A' is a subgroup of A, and B' 

is a subgroup of B. Then it is tempting to assume that A' 0 B' can be consid-
ered as a subgroup of A 0 B. But this is not in general correct. The inclusion 
mappings i : A' A and j : B' B do give rise to a homomorphism 

i 	j:A' B' A0 B, 

but this homomorphism is not in general injective. For example, the integers Z 
are a subgroup of the additive group of rationals Q. But Z 0 Z/2 is a non-trivial 
group, and Q 0 Z/2 is trivial, for in Q 0 Z/2, 

a 0 b = (a/2) 0 2b = (a/2) ®0 = 0. 
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Although tensor products of injective maps are not in general injective, 
tensor product of surjective maps are always surjective. This is the substance of 
the following lemma: 

Lemma 50.3. Suppose the homomorphisms 4 ,: B —. C and 4) 1  : B' —, C' 
are surjective. Then 

404)1 :BOB'—.00C' 

is surjective, and its kernel is the subgroup of B 0 B' generated by all elements 
of the form b ®b' for which b e ker 0 or b' e ker 4,'. 

Proof Let G denote the subgroup of B 0 B' generated by these elements 
b ® b'. Clearly 4) ®O' maps G to zero, so it induces a homomorphism 

4.:(B0131)1G--, C0C'. 

We show that 4 is an isomorphism by defining an inverse \If for 4. 
We begin by defining a function 

P:CXC'--, (BOB')IG 

by the rule 3,1/ (c,c') = b 0 b' + G, where b is chosen so that 4)(b) = c and b' is 
chosen so that 0'(b') = c'. We show that IP is well-defined. Suppose 411,(k) = c 
and C(b,;) = c'. Then 

b ® b' — bo o V. = ((b — bo)eb')+ (bo 0 (bi  — bO))- 

This element lies in G because b — bo  e ker 0 and b' — 14 e ker 4'. Thus 1,G 
is well-defined. It follows from its definition that 1t, is bilinear, so it induces a 
homomorphism 

if :C0 C' —, (B 0 11')/G. 

It is straightforward to check that 4 0 4/ and NI,  o 4 are identity maps. 0 

Just as we did with the case of the Hom functor, we consider what "tensor-
ing" does to an exact sequence. 

Theorem 50.4. Suppose the sequence 

AtB 2k.C.—. 0 

is exact. Then the sequence 

4) e 	ip e i 
A 0 G ---,i' B 0 G --C,C 0 G —. 0 

is exact. If 4) is infective and the first sequence splits, then 4)0 is  is infective 
and the second sequence splits. 

Proof. The preceding lemma implies that 1,/, 0 iG  is surjective, and that its 
kernel is the subgroup D of B 0 G generated by all elements of the form b 0 g 
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for b e ker 4/. The image of 4. 0 iG  is the subgroup E generated by all elements 
of the form (t. (a) 0 g. Since image co = kernel IP, we have D = E. 

Suppose 4  is injective and the sequence splits. Let p : B A be a homo-
morphism such that p o <15 =Then 

(p 	(4) iG) = jA 	= 	c, 

so 	® iG  is injective and p 0 iG  splits the tensored sequence. 0 

Corollary 50.5. There is a natural isomorphism 

Zlm 0 G=1 GlmG. 

Proof. We take the exact sequence 

0 Z Z—•Z/m --*O  

and tensor it with G, obtaining the exact sequence 

Applying Theorem 50.2, we have the exact sequence 

The corollary follows. 0 

Now we prove some additional properties of tensor products. 

Theorem 50.6. One has the following natural isomorphisms: 

(a) A0Bz--B0A. 

(b) (®A.) 0 B = ®(A.0 B), 
A 0 (EBB.) 	(A 0 B.). 

(c) A0(B0C)=(A0B)0C. 

Proof. We construct the isomorphisms, and leave naturality for you to 
check. 

(a) The map A X B B X A sending (a,b) to (b,a) induces an isomor-
phism of F(A,B) with F(B,A) that carries R(A,B) onto R(B,A). 

(b) We apply Lemma 4.1. By hypothesis, there are homomorphisms 

ja : As  ED A. 	and 	wo  : ®Aa  As  

such that ro  0 ja  is trivial if a 0 /3 and equals the identity if a = 0. Let 

fo =j0 0iB :A0 0B---.(EDA.)0B, 

gs  = irs 0 is : (®A.) ® B As  0 B. 

Then gs  o fa  is trivial if a 0 /3 and equals the identity if a = 13. Now (DA.) 0 B 
is generated by elements of the form a 0 b, where a e ED A. and b e B. Since a 
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is, in turn, equal to a finite sum of elements of the form ja(aa), we see that 
((BA.) 0 B is generated by the groups fe(A,, 0 B). The existence of the first iso-
morphism of (b) follows from Lemma 4.1. 

The second isomorphism of (b) follows by commutativity. 
(c) To define a homomorphism mapping the tensor product A 0 (B 0 C) 

into an abelian group G, we must define a bilinear function f on the set A X 
(B 	C). In order that f be linear in the second variable, it must for fixed 
a e A, come from a bilinear map of the set a X B X C into G. We conclude 
that a map f of the set A X B X C into G defines a homomorphism of A 0 
(B 	C) into G precisely if it is linear in each of the three variables separately. 
Such a function is called a multilinear function. A similar argument shows that 
homomorphisms of (A 0 B) 0 C into G are obtained in exactly the same way. 

Now consider the functions 

f(a,b,c) = a ®(b ®c), 

g(a,b,c) = (a 0 b) 0 c. 

These are multilinear functions from A X B X C to A0 (B C) and 
(A 0 B) 0 C, respectively. They induce homomorphisms 

(A0B)0CAO(B0C) 2 (A0B)0C, 

respectively. Both F o G and G o F act as identity maps on generators of these 
groups, so they are identity maps. 0 

Corollary 50.7. If 

is exact and G is torsion-free, then 

is exact. 

Proof. Step 1. We show first that the theorem holds if G is free. The se-
quence 

(*) 

is exact because D 0 Z is naturally isomorphic to D for all D. Therefore, 

—, A0G--.B0G--0C0G--.0 

is exact; for by the preceding theorem this sequence is isomorphic to a direct 
sum of sequences of type (*), and direct sums of exact sequences are exact. 

Step 2. We prove the following fact: Let a„ . , ak  e A and b„ 	, bk  e 
B. Suppose the element 2 a, 0 bi  of A 0 B vanishes. Then there are finitely gen- 
erated subgroups A, and B. of A and B containing ta„ . . . ,(2,1 and {b„ 	,b,}, 
respectively, such that the sum 2 ai  bi  vanishes when considered as an ele-
ment of A, 0 B.. 



§50. 	 Tensor Products 	305 

Recall that A 0 B equals the quotient of F(A,B) by a certain relations sub-
group R(A,B). The equation 2 ai  0 bi  = 0 means that the element 2 (ai,b) of 
F(A,B) lies in R(A,B). That is, it can be written as a finite linear combination 
of terms of the form 

(a + a',b) — (a,b) — (a',b) 
and 

(a,b + 6') — (a,b) — (a,b'). 
Let A. denote the subgroup of A generated by the first components of these 
finitely many terms, along with a„ . , a,. Let B. denote the subgroup of B gen-
erated by the second components of these terms, along with b„ . ,b,. Then 
when we consider the formal sum 2 (a i,b i) as an element of F(A.,B.), it lies in 
the relations subgroup used in defining A. 0 B.. Thus the sum 2 ai  0 bi  vanishes 
when considered as an element of A. 0 B.. 

Step 3. Now we complete the proof. Suppose 

O 	ct. 0 

is exact and G is torsion-free. We wish to show that 	is  is injective. The 
typical element of A 0 G is a finite sum 2 a;  0 g,. Suppose it lies in the kernel of 
cb ®ia. Then 2 0(a) 0 gi  vanishes in BO G. Choose finitely generated sub-
groups B., G. of B, G, respectively, such that this sum vanishes when considered 
as an element of B.0 G.. Applying the map B. 0 	B 0 G, induced by inclu- 
sion, we see that it vanishes when considered as an element of B 0 G.. 

Now G. is torsion-free, being a subgroup of G; therefore, since G. is finitely 
generated, it is free. As a consequence, the sequence 

0—)AOG.—,130G.-4COG.—,0 
is exact. We conclude that 2 a;  0 g;  must vanish when it is considered as an 
element of A 0 G.. Applying the map A 0 G,—. A 0 G induced by inclusion, 
we see that it also vanishes when considered as an element of A 0 G. 0 

The theorems we have proved enable us to compute the group A 0 B when 
A is finitely generated. For 0 commutes with direct sums, and we have the rules 

Z G G, Z1m0G GlmG. 
In particular, tensor products of free abelian groups are free abelian. For later 
use, we state this fact formally as follows: 

Theorem 50.8. If A is free abelian with basis {ai } and B is free abelian 
with basis {bi}, then A 0 B is free abelian with basis tai  0 bb }. 

Proof Let (a) and (b,) denote the infinite cyclic subgroups of A and B 
generated by ai  and bj, respectively. Then 

A = ® (a) 	and 	B = ED (b,). 
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It follows that A 0 B = ED ((a) 0 (bi)). Now Z 0 Z is infinite cyclic and is 
generated by 1 0 1; likewise, (a,) (b;) is infinite cyclic and is generated by 
a, 0 bi. The theorem follows. 0 

Tensor products of modules 

Let R be a commutative ring with unity element, as usual. If A and B are 
modules over R, then (as we mentioned in the exercises of §41) the group 
HomR  (A,B) of all module homomorphisms of A into B has the structure of R-
module. An analogous situation obtains for the tensor product functor. We shall 
in fact be interested only in the special case where R is a field. But we may as 
well consider the general case for the time being. 

Let A and B be modules over the ring R. As before, let F(A,B) be the free 
abelian group generated by the set A X B. But now let R (A,B) be the subgroup 
generated by elements of the form 

(a + a',b) — (a,b) — (a',b), 
(a,b + b') — (a,b) — (a,b'), 
(aa,b) — (a,ab), 	for 	a e R. 

Then F(A,B)1 R(A,B) has the structure of module over R: Given a, we define a 
map of F(A,B) to itself by the rule a (a,b) (aa,b). This map carries R(A,B) 
into itself. For instance, when we apply a to the first of the listed generators for 
R(A,B), we have 

(a(a + a'),b) — (aa,b) — (aa',b) 
= (aa + aa',b) — (aa,b) — (aa',b). 

The latter element is in R(A,B) by definition. A similar remark applies to the 
second of the listed generators. For the third, we have 

(aa,b) — t (a,ab) = (i3(aa),b) — (13a,ab) 
= (a (fia),b) — (fla,ab), 

which is in R(A,B) by definition. 
Thus we have an induced operation on the quotient FIR. The module prop-

erties are easy to verify. We shall denote the resulting module by A ®R  B, and 
call it the tensor product of A and B over the ring R. The coset of (a,b) will be 
denoted a 0 b, as before. Besides the usual relations in A 0 B, one also has in 
A ®R  B the relation 

a(a ®b) (aa) b = a 0 (ab). 

Now let us consider a set mapf:A X B C that is a module homomor-
phism in each variable separately. Since it maps R(A,B) to zero, it induces a 
homomorphism 

g : A OR  B C, 

which is actually a module homomorphism, as you can check. 
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Note that A ®R  B is "smaller" than A 0 B; in fact, it is isomorphic to the 
quotient group of A 0 B by the subgroup generated by all terms of the form 
(aa) b — a 0 (ab). This is analogous to the situation for the Horn functor, 
where HomR(A,B) is a subgroup of Hom(A,B). 

If f : A —4 A' and g : B B' are module homomorphisms, then there is a 
module homomorphism 

fOg:AOR B—, A' eR  B ' 

mapping a 0 b to f(a) g(b) for all a, b, for the map sending (a,b) to 
f(a) g(b) is a module homomorphism in each variable separately. 

The theorems of this section generalize to the tensor product of modules. 
Proofs are left as exercises. 

EXERCISES 

1. Let G be an abelian group with torsion subgroup T. Let H be a divisible group. 
Show that G H = (G IT) 0 H. [Note: T is not necessarily a direct sum-
mand in G!] 

2. Show that the additive group Q is torsion-free but not free. [Hint: Compute 
Q0Z/2.] 

3. Show that if A and B are Z-modules, then 

A Oz  B = A 0 B. 

4. Let A be an R-module. Show that there is an R-module isomorphism 

BOR A v.r. A. 

5. Prove the analogues of Theorems 50.4 and 50.6 for 0R. 

6. Let A, B, and C be vector spaces over a field F. 
(a) Show that OF  preserves exact sequences of vector spaces. [Hint: Every 

such sequence splits.] 
(b) If A and B have vector space bases {ai} and 10, respectively, show that 

fa, ®b;} is a vector space basis for A OF  B. 

7. If A and B are vector spaces over Q, show that 

A®Q B = A0 B. 

§51. HOMOLOGY WITH ARBITRARY COEFFICIENTS 

We now use the tensor product functor to define homology groups with arbi-
trary coefficients in general. The treatment will follow the pattern of §44, 
where we dealt with cohomology theory with arbitrary coefficients. 

First, we work on the level of chain complexes. Then we specialize to singu- 
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lar theory, and finally to simplicial theory, at which point we show that the defi-
nition of homology with arbitrary coefficients we use here is equivalent to the 
one given in §10. 

Homology of a chain complex 

Let G be an abelian group. Let e . {cp,a} be a chain complex. We denote 
the pth homology group of the chain complex 0 0 G = {C, 0 G,a ®iG } by 
Hp(e;G), and call it the pth homology group of 0 with coefficients in G. 

If te,e1 is an augmented chain complex, then one has the corresponding 
chain complex obtained from 0 0 G by adjoining the group Z 0 G = G in di-
mension —1, and using e ® iG  as the boundary operator from dimension 0 to 
dimension —1. Its homology groups are denoted Hp(e;G) and are called the 
reduced homology groups of e with coefficients in G. If Ho(e) vanishes, so does 
He; G), since exactness of C, —0 C. —0 Z —0 0 implies exactness of 

C, 0 G --, C,, 0 G —, Z 0 G —0 0. 

In general, we have the equation 

H,(@; G) = ifo(e; G) ® G. 
Note that if G is the group of integers, then 0 0 G is naturally isomorphic 

with e. Thus the usual homology of e can be thought of as "homology with 
coefficients in Z." 

If 4) : e —+ 2) is a chain map, then so is 0 ®iG  : e 0 G —4 2) 0 G. The in-
duced homology homomorphism is for convenience denoted by 

cps  : Hp(e; G) —4 H„(D;G), 
rather than by (0 0 iG),,. If e and 2) are augmented and 0 is augmentation-
preserving, then cif) 0 iG  induces a homomorphism of reduced as well as ordinary 
homology. 

If 0, IP : 0 —+ 0' are chain maps, and if D is a chain homotopy between 
them, then DO iG  is a chain homotopy between 0 0 iG  and 4/ 0 iG. It follows 
that if 0 and 4/ are chain homotopic, then 0. and 4/*  are equal as homomor-
phisms of homology with arbitrary coefficients. It also follows that if 0 is a 
chain equivalence, so is 0 0 iG. 

Finally, suppose one has a short exact sequence 

of chain complexes that splits in each dimension. Then the tensored sequence 

0--, Cp0G--, Dp0G--, EpOG--.O 
is exact. Applying the zig-zag lemma, one has a long exact sequence 

• 	• • —0 Hp(e;G)--. Hp(2);G)—,11,(6;G)'24  Hp  _ ,(e; G) 	.. . 

where a*  is induced by a 0 iG. This sequence is natural with respect to homo-
morphisms induced by chain maps. 
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Singular homology 

We define the singular homology groups of a topological pair (X,A), with 
coefficients in G, by the equation 

1-1,(X,A; G) = 1-1),(g (X,A); G). 

As usual, we delete A from the notation if A is empty. We define reduced ho-
mology groups by the equation 

G) = 11,0e (X),e1; G), 

where e is the usual augmentation for e(X). 
Since S p(X,A) is free abelian, the group S p(X,A) 0 G is a direct sum of 

copies of G. Indeed, if {T) is the family consisting of those singular p-simplices 
of X whose image sets do not lie in A, then the cosets modulo Sp(A) of the 
singular simplices T. form a basis for Sp(X,A). Therefore each element of 
S p(X,A) 0 G can be represented uniquely by a finite sum M T. 0 gam. This is our 
usual way of representing a singular p-chain with coefficients in G. The minimal 
carrier of such a chain is the union of the sets T.(k), where the union is taken 
over those a for which g, * 0. It is of course a compact set. 

A continuous map h : (X,A) (Y,B) gives rise to a chain map 

hi/ 	iG  e9(X,A) 0 G i(Y,B) 0 G. 

We sometimes denote this map simply by hp  and the induced homology homo-
morphism by h.. Functoriality is immediate; it holds in fact on the chain level. 

The short exact sequence of chain complexes 

0 	S p(A) —+Sp(X) S p(X,A) 0 

splits because S p(X,A) is free. Therefore, one has a long exact homology se-
quence with coefficients in G; it is natural with respect to homomorphisms 
induced by continuous maps. 

If the maps h,k : (X,A) (Y,B) are homotopic, then by the proof of Theo-
rem 30.7 there is a chain homotopy between /20  and Ics. Then hit  i6  and /co  
iG  are chain homotopic, so h. and k. are equal as maps of homology with coeffi-
cients in G. 

Direct consideration of the singular chain complex of a one-point space P 
leads to the result that H i(P; G) = 0 for i 0 and HAP; G) = G. 

The "compact support property" of singular homology carries over at once 
to the same property for singular homology with arbitrary coefficients. 

The only property of singular homology that requires some care is the 
excision property. 

Let (X,A) be a topological pair, and let U be a subset of X such that 
U C Int A. We know that inclusion 

j : (X — U, A — U) (X,A) 

induces an isomorphism in ordinary homology. We wish to show it induces an 
isomorphism in homology with arbitrary coefficients as well. 



310 	Homology with Coefficients 	 Chapter 6 

One way of doing this is to use Theorem 46.2, which implies that j p  is a 
chain equivalence. (Note that the chain complexes involved are free and vanish 
below a certain dimension.) Alternatively, one can prove the following, which is 
an analogue of Theorem 45.5. 

Theorem 51.1. Let e and .59 be free chain complexes. If the chain map 
(I):& ---. 2) induces homology isomorphisms in all dimensions, so does the 
chain map 

OD iG :e 0 G ---, DO G. 
Proof. Step I. We first consider the case where we have a short exact 

sequence 

of free chain complexes. We know that Hp(6) = 0 for all p, and we wish to 
prove that H„(6; G) = 0 for all p. As in the proof of Lemma 45.3, we can write 
Ep  = B, ED Up, where a maps B, to zero and carries Up  isomorphically onto 
Bp  _ ,. Then 

E p  ®G = (B, ®G) ®(Up  ® G), 
and a ® iG  maps Bp  ®G to zero and carries U,,OG isomorphically onto 
Bp  _ , 0 G. It follows that Hp(6; G) = 0 for all p. 

Step 2. The general case now follows from Lemma 45.4. Given 
(1): e — 2), there is a chain complex D' and injective chain maps i : ê --, 2' and 
j : 0 ---, V such that j induces homology isomorphisms in all dimensions and 
T. 01) is chain homotopic to i. Furthermore, 2)' and Dyini i and D'Iimj are 
free. If (1). is an isomorphism in ordinary homology, so is i. = j. 0 44. Then by 
Step 1, both i and j induce isomorphisms of homology with arbitrary coeffi-
cients. Hence 0 does the same. 0 

Simplicial homology 

Let (K,K.) be a simplicial pair; let G be an abelian group. We define the 
simplicial homology of (K,K0) with coefficients in G by the equation 

H p(K,K.; G) = H p(e(K,K0); G). 
We define the reduced groups by the equation 

k,,(K; G) = H p(le(K),e1; G), 
where E is the usual augmentation for e(K). 

Now the group C„(K,K.) 0 G is the direct sum of copies of G, one for each 
p-simplex of K not in K0. Indeed, if we orient the p-simplices fr. of K not in K„ 
arbitrarily, then each element of Cp(K,K.)® G can be represented uniquely by a 
finite sum Ea. 0 ga. Its boundary is then represented by I (aa.) 0 ga. 
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The connection with the definition we gave in §10 of homology with arbi-
trary coefficients is now clear. In that section, we represented a simplicial p-
chain c p  with coefficients in G by a finite formal sum ci, = IL") , and its bound-
ary was defined by the formula 

acp  = zgjacr.). 
It follows that the chain complex @(K; G) defined in §10 is isomorphic to the 
chain complex @(K) 0 G. Henceforth, we shall use the latter chain complex in 
dealing with simplicial homology with arbitrary coefficients. 

The existence of induced homomorphisms and the long exact homology 
sequence, and the verification of the Eilenberg-Steenrod axioms, is so straight-
forward that we omit the details. The argument follows the pattern given in §44 
for simplicial cohomology. 

The isomorphism between simplicial 
and singular theory 

We have the chain map of §34, 

n : Cp(K,K.) ---. S p(11(1,14), 

which induces an isomorphism in ordinary homology. It follows from Theorem 
51.1 that it induces an isomorphism in homology with arbitrary coefficients 
as well. The fact that it is independent of the ordering of vertices used in defin-
ing 71, and the fact that it commutes with the boundary homomorphism as  and 
with homomorphisms induced by continuous maps, follow as in the proof of 
Theorem 44.2. 

The homology of CW complexes 

If X is a CW complex with cellular chain complex Z(X), we know that 
Hp(2(X)) = H p(X) for all p. It follows from Theorem 45.1 that there is a 
chain map inducing this isomorphism; it then follows from Theorem 51.1 that 

H p(D(X) 0 G) = H p(X; G). 

Thus the cellular chain complex of X can be used to compute homology with 
arbitrary coefficients. If X is a triangulable CW complex, then the chain map 
inducing this isomorphism is the inclusion map 

j : D(X) --, @(X). 

EXERCISES 

1. If {6,e} is an augmented chain complex, show that 

HO; G) :-.-- 14(0; G) ® G. 
IHint: The sequence 0 --. ker e --. C. --, Z --. 0 splits.] 
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2. Use the cellular chain complexes to compute the homology, with general coeffi-
cients G, of T # T and P 2  # P2  # P2  and PI' and the k-fold dunce cap. 

3. Theorem. Let d be a free chain complex. Then there is a natural exact se-
quence 

o Hp(e)® G Ho G) cok 0, 

where is induced by inclusion. The sequence splits, but not naturally. If 
1.1;M is free for all i, then 4  is an isomorphism. 

[Note: This lemma is the analogue for homology of Lemma 45.7 and 
Theorem 45.8. It will be generalized in the next chapter.] 

4. Let R be a commutative ring with unity; let e be a chain complex. Show that 
C, 	R can be given the structure of R-module by defining 

a (c ®1S) = c ®(as) 

for a,13 a R. Show that HAO; R) has the structure of R-module, and that chain 
maps induce R-module homomorphisms. Show that a x  is an R-module homo-
morphism. 



7 
Homological Algebra 

We have already seen, in Chapter 5, that two spaces with isomorphic homology 
groups have isomorphic cohomology groups as well. This fact leads one to sus-
pect that the cohomology groups of a space are in some way determined by the 
homology groups. In this chapter this suspicion is confirmed. We show precisely 
how the cohomology groups (with arbitrary coefficients) are determined by the 
homology groups (with integer coefficients). The theorem involved is called the 
Universal Coefficient Theorem for Cohomology. Its statement involves not only 
the "Horn" functor, which we have already studied, but also a new functor, 
called "Ext," which we shall introduce. 

Similarly, we know that if two spaces have isomorphic integral homology 
groups, then the same is true for homology with arbitrary coefficients. Just as 
with the cohomology groups, it turns out that the homology groups with arbi-
trary coefficients are determined by the homology groups with integer coeffi-
cients. The theorem involved is called the Universal Coefficient Theorem for 
Homology. It involves not only the tensor product functor, but also a new func-
tor, called the "torsion product," which we shall introduce. 

These functors form part of a general subject called Homological Algebra. 
Although its origins are topological in nature, it has come to have an indepen-
dent existence nowadays within the field of algebra, having applications to 
many problems that are purely algebraic. Our interest in it is confined to its 
connections with topology. 

These functors also play a role when one comes to study the homology of a 
product space X X Y. It turns out that the homology of X X Y is determined 
by the homology of X and of Y. The relationship is expressed in the form of an 
exact sequence called the Ktinneth sequence. It involves the tensor and torsion 
product functors. 
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There is a similar sequence for cohomology that holds if the homology is 
finitely generated. It has applications to cup products in general, and to com-
puting the cohomology ring of X X Y in particular. 

§52. THE EXT FUNCTOR 

Associated with the functor Horn (A,B) is another functor of two variables, 
called Ext(A,B). Like the Horn functor, it is contravariant in the first variable 
and covariant in the second. This means that, given homomorphisms y : A A' 
and d : B' B, there is a homomorphism 

Ext (7,6) : Ext (A',B') 	Ext (A,B), 

and the usual functorial properties hold. 
Defining this functor involves some preliminary work. But its crucial prop- 

erty is easy to remember; we express it in the form of a theorem. 

Theorem 52.1. There is a function that assigns, to each free resolution 

0--.R F t A 0 

of the abelian group A, and to each abelian group B, an exact sequence 

0 	Ext (A,B) 74- HOM (R,B) Hom(F,B)- Hom(A,B) 0. 

This function is natural, in the sense that a homomorphism 

1a 	1$ 
	

1 
0 	R' ---+ F' 	A' 	0 

of free resolutions and a homomorphism 6: B' B of abelian groups gives 
rise to a homomorphism of exact sequences: 

,B1) 

.-- Ext (A,B) 

Ext (7,01 

Hom(R,B) 

Horn (a,(5)1 

Hom(F,B) 

Horn (1905)I 

Hom(A,B) 

Horn (705)1 

4-0. 0 	Ext (A',B1) Hom(A',/r) 

We shall prove this theorem shortly. It will then be used to derive the other 
properties of the Ext functor, and to compute it. 

Now we define the Ext functor. We begin with a lemma. 
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Lemma 52.2. Suppose one is given a homomorphism 

0-4 R-i-k-oF—A— 0 

0 --o R' —(--tio F ---, A' --o 0 

of free resolutions of A and A', respectively, and a homomorphism 6 : B' ---o B. 
Then there is a unique homomorphism E making the following diagram of 
exact sequences commute: 

0 .--- cok3 .-- Hom (R,B) 4-;-- Hom (F,B) 4— Hom (A,B) 4— 0 

l
e 	I Hom (a,6) 	1 Hom (,3,(5) 	I Hom (7,5) 

0 4— cok3' 4-- Hom (1 2 1,1314-.-. -. --Hom (F' ,B'),----- Horn (A' ,B').---- 0. 
' 

The homomorphism E is independent of the choice of a and ft. 
Proof Functoriality of Hom shows that the two right squares of the pre-

ceding diagram commute. Therefore, Hom (a,S) induces a homomorphism E of 
cokernels. 

We show e is independent of the choice of a and (3. Suppose {a', i 3 ' , y} is 
another homomorphism of the two given free resolutions. Consider the free 
resolution of A as a chain complex A, indexed so that A is the 0-dimensional 
group. Do the same for A', obtaining a chain complex A'. Then {a, j3, y} and 
{a', ft', y} are chain maps of A to A' . By exactness, the homology groups of A 
and A' vanish. The cohomology groups need not vanish; indeed, the group 
cok ch is just the 2-dimensional cohomology group H2(A; B), and cok ei5' = 
H2(A'; B'). The map E is just the cohomology homomorphism induced by the 
chain map la, 0, y}. 

Now the hypotheses of Lemma 46.1 are satisfied by the chain complexes A 
and A'. Therefore there is a chain homotopy D between the chain map {a, (3, 7} 
and the chain map ta', IS', -yl. Then Hom (D,45) is a cochain homotopy between 
the corresponding cochain maps; it follows that they induce the same homomor-
phism e of 2-dimensional cohomology groups. 0 

Definition. The homomorphism e constructed in the preceding lemma is 
said to be induced by y and 45, since it depends only on the homomorphisms y 
and 5 and the free resolutions involved. 

We show that a version of functoriality holds. First, we show that compos-
ites behave correctly. Let a,13, y, 6, E be as in the lemma; and suppose 

0 —, R' —• F' —0 A' —o 0 
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is another homomorphism of free resolutions, with 6' : B" —' B' another homo-
morphism of abelian groups. Let E i  be the homomorphism induced by 7' and 3'. 
The fact that 

Hom(7,6) o Hom(71,6') -= Hom (y' 0 7,5 o 5') 

and the similar equations for a, a' and 0, $', imply that e 0 e' is the homomor-
phism induced by y' o 7 and 6 e d'. 

Second, we show that if i4  and i8  are identity maps, then the homomor-
phism E they induce is an isomorphism. Certainly this is true in the situation 
where the two free resolutions are the same, since a and 13 can then be chosen to 
be identity maps, so that c is the identity. But it is also true in the situation 

0 — - , .12 ,(-4 F --,A--.O 

lay, 1
. 0 IiA 

0 ----. 12' ----, F' ----0 A---00, 

as we now prove. Let e : cok 3' ---. cok 0 be the map induced by 04,4), relative 
to these free resolutions. Choose a' and ft' making the following diagram com-
mute: 

0 --, R' (-± ' -f F' ---- A--0 0 

I ce  l iT  l iA  
0- — .12 2- -.0  F-0A--0. 

(Here we use the fact that F' is free.) Let e' : cok (75 --. cok (51  be the map in- 
duced by (i4,i8) relative to these free resolutions. By the previous remarks, both 
composites e o e' and e' a E equal identity maps. Thus E is an isomorphism. 

It follows from these comments that, given A and B, if one chooses any free 
resolution of A, the group cok 4) will be independent (up to isomorphism) of the 
choice. This fact leads us to the following definition of a "canonical version" of 
cok 0, which we shall call Ext (A,B). 

Definition. If A is an abelian group, let F(A) denote the free abelian 
group generated by the elements of A, and let R (A) be the kernel of the natural 
projection F(A) --, A. The sequence 

0 --, R (A) --, F(A) --0 A —. 0 

is called the canonical free resolution of A. (See §45.) The group 

cok c t. = Hom (R (A),B)I3(Hom(F(A),B)) 

is denoted Ext (A,B). If -y : A --, A' and ö : B' ----• B are homomorphisms, we ex- 
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tend 7 to a homomorphism of the canonical free resolution of A with that of A', 
and define 

Ext (7,5) : Ext (A',B') --o Ext (A,B) 

to be the homomorphism induced by y and 5 relative to these free resolutions. 

The previous remark shows that Ext is a functor of two variables, contra- 
variant in the first variable and covariant in the second. 

The group Ext (A,B) is sometimes called the group of extensions of B by A; 
for an explanation of this terminology, see [Macli. 

Now we prove our basic theorem. 

Proof of Theorem 52.1. The exact sequence 

nOr A A 0 	r 	v 

gives rise to the exact sequence 

0 cok Hom(R,B) Hom(F,B) Hom(A,B) 0. 

In view of the preceding remarks, there is an isomorphism of cok 4  with 
Ext (A,B) that is induced by (iA,iB). We use this isomorphism to replace cok 
by Ext (A,B) in this exact sequence. 

It remains to check naturality. Let a, 13, y define a homomorphism of free 
resolutions of A and A', respectively, as in the statement of the theorem; let 
: B' B. Consider the following diagram: 

I A\ 01 	rt A, 0 --+ R 	kra 	A —0 0 

0—. 	 F(A')—o A' —o O. 

There are homomorphisms 

cok 3, 	cok 	cok 	cok 

induced by (iA4B.,) and (7,5) and (i,,ia), respectively. Both e, and Ei  are iso-
morphisms. The composite ei  e E2  E3  is, by functoriality, the unique homomor-
phism induced by 

(i A' ° 7 ° 1A, iB ° 5  ° ir) = (7,5), 
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relative to the canonical free resolutions, so it must equal Ext (7,6). Therefore, 
the diagram 

Ext (A,B) 411— cok32 4--- Hom(R,B) 

Ext( y,(5)1 	E2T 	 T Horn (a,o) 

Ext(A',B')-—.cok33 4----Horn(R',B') 

commutes, and the proof is complete. 0 

We now prove further properties of the Ext functor. 

Theorem 52.3. (a) There are natural isomorphisms 

Ext (49A,,,B) = II Ext (A„,B), 

Ext (A,I111..) = II Ext (A,Ba). 

(b) Ext (A,B) = 0 if A is free. 
(c) Given B, there is an exact sequence 

Ext (Z 1 m,B) 4— B 1  B Hom(Z1m,B) 4-- 0. 

Proof In the proof, we shall use the fact that direct sums and direct prod-
ucts of exact sequences are exact, and the fact that a direct sum (but not a 
direct product) of free abelian groups is free abelian. 

(a) Let 0 	—4 A.-4 0 be a free resolution of Aa; then 0 
(BR. ®Fa  EDA. 0 is a free resolution of eAa. Both the sequences 

Ext (A„,B) Hom (R„,B)4-- Horn (F„,B) Hom (A,B) 0, 

Ext (EDAa,B) Hom (EBR„„B) 4-- Hom (49F„,B) 4-- Horn (EDA,„B) 4-- 0, 

are exact, by Theorem 52.1. The direct product of sequences of the first type 
gives a sequence that is naturally isomorphic with the second sequence in its 
three right-hand terms. Therefore, there is an isomorphism between the left- 
hand terms as well. This isomorphism Ext (0944„,B) 	Ext (A4,B) is in fact 
natural, by a standard argument. 

Similarly, if 0 --.1?--.F-4A--0 0 is a free resolution of A, then the 
sequences 

0 	Ext (A,Ba) 4— Hom(R,B„) 4— Hom (F,B„) 4— Hom(A,k) 4-- 0, 

0 	Ext(A,I1B.)4— Hom(R,I1B.) H0111 (F,IIB„) Hom(A,I1B,) 4— 0, 

are exact. Since the direct product of sequences of the first type agrees with the 
second in the three right-hand terms (the isomorphisms in question being natu-
ral), these sequences agree in the left-hand group as well. Again, the isomor-
phism is natural. 
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To check (b), we recall that a free resolution of A splits if A is free. Then 
the dual sequence is exact, so Ext (A,B) vanishes. 

To prove (c), one begins with the free resolution 

0 —.Z 242  Z--.Z/m—, 0. 

Applying Theorem 52.1, one obtains the exact sequence 

0 4--- Ext (Z I m,B) 4— Hom (Z,B) a Hom (Z,B) .— Horn (Z/m,B) 4-- 0, 

from which (c) follows. 0 

This theorem enables us to compute Ext (A,B) when A is finitely generated. 
For Ext commutes with finite direct sums, and one has the rules 

Ext (Z,G) = 0, 	Ext (Z/m,G) = G/mG. 

EXERCISES 

1. Show that if B is divisible, then Ext (A,B) = 0. 

2. Compute Horn (A,B) and Ext(A,B) if 

A = Z 0 Z/2 e Z/4 e Z/6, B = Z 0 Z 0 Z/9 19 Z/12. 

3. Let S' denote the additive group R/Z. It is isomorphic to the multiplicative 
group of complex numbers of unit modulus and is often called the circle group. 
(a) If A is finitely generated, compute Hom(A,G) and Ext (A,G) in terms of 

the betti number and torsion coefficients of A, if G = S'. 
(b) Repeat (a) with G = Q. 

4. If we "Horn" a short exact sequence with a group G (either on the left or the 
right), the resulting sequence may fail to be exact. The Ext functor measures in 
some sense the extent to which exactness fails. One has the following theorem: 

Theorem. There are functors assigning to each short exact sequence of 
abelian groups 

0 —A-4B-4C— 0, 

and each abelian group G, two exact sequences: 

0 4— Ext(A,G) 4— Ext (B,G) — Ext(C,G) — 

Hom(A,G) 4— Hom(B,G) 4— Hom(C,G) 4— 0, 

0 --. Hom(G,A) — Hom(G,B) —. Hom(G,C) — 

Ext(G,A)--. Ext(G,B)— Ext (G,C)--• 0. 

Proof. (a) To obtain the second sequence let 0 —412—.F—.G—. 0 be a 
free resolution of G, and apply the serpent lemma to the diagram 

0 --. Hom(F,A) --, Hom(F,B) --0 Hom(F ,C) --+0 

1 	1 	I 
0 --0 Hom(R,A) --0 Hom(R,B) ---,Hom(R,C)---.0. 
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(b) Given an abelian group G, show there is an exact sequence 

0 •—• G --• H --• K --• 0 

where H and K are divisible. Such an exact sequence is sometimes called an 
injective resolution of G. [Hint: It suffices to find H, since a quotient of a 
divisible group is divisible. Write G = FIR, where F is free, and construct 
a monomorphism of F into a direct sum of copies of Q.] 

(c) Show there is a functor assigning to each injective resolution 0 --, G --• 
H --• K --• 0 of G, and each abelian group A, an exact sequence 

0 — Hom (A,G) --• Hom(A,H) --• Hom (A,K) --• Ext (A,G) —• 0. 

(d) Use the serpent lemma to derive the first sequence of the theorem. 

§53. THE UNIVERSAL COEFFICIENT 
THEOREM FOR COHOMOLOGY 

We now show how the homology groups of a space determine the cohomology 
groups. The answer is expressed in the form of a short exact sequence involving 
the groups HP and H, and 11,, _ „ and the functors Hom and Ext. 

We already know that if e is a free chain complex, there is a natural exact 
sequence 

0 .-- Hom(H,(e),G) 4-HP(e; G) .--- ker K .-- 0. 

(See Lemma 45.7.) We now identify the group ker K, and show it depends only 
on the groups Hp  _ ,(e) and G. 

Theorem 53.1 (The universal coefficient theorem for cohomology). Let e 
be a free chain complex; let G be an abelian group. There is an exact sequence 

0 .--- Hom (. H ,,(6),G) 4-H° (G; G) .— Ext (Hp  _ ,(e),G) •---- 0 

that is natural with respect to homomorphisms induced by chain maps. It 
splits, but not naturally. 

Proof Step 1. Let C,, Z,, and B, denote the groups of p-chains, p- 
cycles, and p-boundaries of 6, respectively. Consider the exact sequence 

ao 
0 —, Zp  --, Cp  ---. Bp  _ ,--0 O. 

It splits because Bp  _ , is free. Define a chain complex Z by letting its p-dimen-
sional group be Z, and by letting its boundary operator be the restriction of a. 
Then all boundary operators in Z vanish. Similarly, define a chain complex 11 
by letting D, = B, _ , and by letting its boundary operator be the restriction of 
a; all boundary operators in 2) vanish. 
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We then have a (split) short exact sequence of chain complexes 

0 ---, Zp  -, Cp  It' Dp  --. O. 

The map i is a chain map by definition, and the map 6, is a chain map trivially 
(since a o a = 0). 

Applying the Horn functor, we obtain a short exact sequence of cochain 
complexes and hence a long exact cohomology sequence, of which we consider 
five terms: 

0 	i* 	6: 	0 (*) 	H" 1  (D; G) (-- HP (Z; G) .--- HP (e; G) 4-- HP (Xi; G) 4-- HP - 1 (Z; G). 

To avoid confusion, we use 0 instead of 5* to denote the zig-zag homomor- 
phism. 

Step 2. We now identify the terms of this sequence and the homomor- 
phism 13. Since the chain complex 5) has trivial boundary operators, so does the 
corresponding cochain complex. Therefore, the group HP +' (D; G) equals the 
cochain group Horn (Di, + „G) = Hom (Bp,G). For similar reasons, HP (Z; G) = 
Horn (Zp,G). 

Thus # is a map 

Hom(Bp,G) 4- Hom(ZrG). 

We show that it is just the dual jp of the inclusion map 4 : Bp  —. Zp. 
One obtains the zig-zag homomorphism $ by following through the diagram 

5. 
Hom (Cp  + „ -- G).Hom(Bp,G) 

16 
Horn (Zp,G) ,--1--- Hom(Cp,G) 

from left to right, as follows: Let f be an element of Horn (Zp,G). Note that 
Of = 0, because all coboundary operations in 7 vanish. Pull f back via i to an 
element g of Horn (Cp,G). (That is, extend f to a homomorphism g : Cp  --, G.) 
Form 6g, and pull it back via 60  to an element of Horn (Bp,G). We show that 
jp ( f ) is such a pull-back of 5g; that is, we show that 80.4(f) = 6g. Then our 
result is proved. 

We compute 

(6,g,c,,,,) = (g,acp+ ,) = (face ,,), 
the last equation holding because acp . , is in Zp. Similarly, 

(ajp(f), e„ ,) = (I; i p(a0Cp + 1)) = (f,ac, +1 ). 

Step 3. We now prove the theorem. The five-term exact sequence (*) 
gives rise to the short exact sequence 
(**) 	 0 (--- ker3p  — HP (e;G) .-- cok jp  _ i  4-- 0. 
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We need only to identify the kernel and the cokernel of the map 

Horn (B ,G) 22  Horn (4,G). 

Now the sequence 

o --, Bp 4 zi, 2-, H„ ( e ) -. 0 

is a free resolution of H,,(e). Therefore, the sequence 

(***) 0 -- Ext (H,(e),G) .- Horn (B„,G) le 

Hom(ZrG) ':•- Horn (Hp(e),G).--- 0 

is exact. The kernel and cokernel of 3p  are now apparent. The existence of the 
exact sequence of our theorem is thus established. 

Step 4. We check naturality of the sequence. Let cp : e ---0 e' be a chain 
map; let Zp, B'p, and C; be the cycles, boundaries, and chains of e', respec-
tively. The chain maps 

0 — Z --0 C --L B ---.O P 	P 	P - 1  

1010 	14)  

; 
0 ---", ,... 

, 
,, -+ a- 
, a 

; ---4  ./..,
D  

ip  _ 1  -----0  0 

define a homomorphism of short exact sequences, for 4) commutes with i be- 
cause i is inclusion, and 41 commutes with 49. because 0 is a chain map. It follows 
that cb induces a homomorphism to the five-term exact sequence (*) from the cor- 
responding sequence for e', and hence induces a homomorphism to the short 
exact sequence (**) from the corresponding sequence for e'. It remains only to 
comment that the exact sequence (***) is natural with respect to homomor- 
phisms induced by chain maps, so the isomorphisms of ker jp  and cok jp  _ , 
with the appropriate Hom and Ext groups are natural as well. 

Step 5. To complete the proof, we show that the homomorphism 

Horn (Hp(e),G) .-- ip(e;  G) 

of our exact sequence equals the Kronecker map K. Then the splitting of the se- 
quence is a consequence of Lemma 45.7. 

The homomorphism in our exact sequence equals the composite (.21-)-1  . i* 
of the following diagram: 

Hom(Zp,G) D ker jp  ,-i - HP (0; G) 

Hom (Hp(Hp(e),G) 
l'  where jp  is the dual of the inclusion map 4, : Bp -. Zp, where i* is induced by 
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inclusion i : Zp  ---, Cp, and where it is the dual of projection 7r : Zp  —, Hp  (0). 
We need to show that the diagram commutes. 

Let {zP} be an element of HP(0; G); we show that 

irK ({e}) = 1*(1zPI) = 1(zP), 

and the proof is complete. Let zp  e Zp; we compute 

[fric ( {z°})] (zr) = [K({9})] (ir (zp)) = ({zP ),{zpl) 

= (z,zp) = (z°,i(zp)) = (I(9),zp). 0 

Corollary 53.2. Let (X,A) be a topological pair. There is an exact se-
quence 

0 — Hom (Hp(X,A),G).--- HP (X,A; G) .-- Ext (Hp  _ ,(X,A),G) 4--• 0, 

which is natural with respect to homomorphisms induced by continuous maps. 
It splits, but not naturally. 0 

Corollary 53.3. Let 0 and 2) be free chain complexes; let 0 : 6 --, 2) be a 
chain map. If O.:111(0) --, HAD) is an isomorphism for i = p and i = p — 1, 
then 

0*  H°(0; G) ,--- H°(2); G) 

is an isomorphism. 

Proof Apply naturality of the universal coefficient sequence and the Five-
lemma. 0 

This corollary provides an alternate proof of Theorem 45.5. It in fact proves 
something more than stated in that theorem, since we do not need to assume 
that 4)*  is an isomorphism in all dimensions. 

The universal coefficient theorem 
with field coefficients 

There is a second version of the universal coefficient theorem that is often 
useful. It concerns the case where the coefficient group is a field F. It relates 
cohomology with homology if both are taken with coefficients in F. 

We have already remarked that if 0 is a chain complex and F is a field, 
then both 

Hom(Cp,F) 	and Cp  ® F 
have, in a natural way, the structure of vector space over F. Given a e F, and 
cP e Hom(cF), and cp  e Cp, one defines 

(ac°, cp) = a • (cP,cp), 

a (cp ®R) = cp  0 (a0). 
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(See the exercises of §48 and §51.) Both a and a are vector space homomor-
phisms (linear transformations), so that 

HP (0; F) 	and 	H,(@; F) 

also have the structure of vector space over F. We show that they are in fact 
dual as vector spaces. 

We recall that if A and B are vector spaces over F, then HomF(A,B) is 
also a vector space over F; it is the set of linear transformations of A into B. If 
f : A --. A' and g: B' —, B are linear transformations, then Hom(f,g) is also a 
linear transformation. (See the exercises of §41.) 

We wish to reprove the universal coefficient theorem for cohomology in this 
context. One difficulty is that we have several possible contenders for the title of 
the space of cochains—namely, 

Hom (C,,F), 	Hom (Cp  ® F, F), 	HomF(C, 0 F, F). 

By definition, the first of these gives the cohomology HP((l; F) of & with coeffi-
cients in F. We shall show that the third does, as well. 

Lemma 53.4. Let e be a chain complex. Let 

w:Hom(Cp,F)--, HomF(Cp0 F,F) 

be defined by the equation 

(w(f), cp  0 a) ---- (f,c,,) • a, 
where f e Hom(Cp,F), and cp  e Cp, and a e F. Then w is a vector space iso-
morphism that commutes with S. 

Proof Strictly speaking, we use the preceding formula to define w (f) as 
a function on the cartesian product C, X F, and note that it is bilinear. To 
check that w (f) is a linear transformation, we compute 

(40(i), a (cF  ®a)) = ( ,o(f), cp ®as) = (f,c,) • (0) 

= a • ((i,ci,) • (3) = a • ( 0(f), cp ®/3). 

The map w is infective. Suppose w(f) is the zero linear transformation. 
Then in particular 

(a)(f), cpe 1) = o = (f,cp) • 1 

for all cp  e C. This implies that f is the zero homomorphism. 
The map w is surjective. Let 0 : C, 0 F —4 F be a linear transformation. 

Let us define f : C, --, F by the equation f (c p) = 4)(c (c, 0 1). It follows that f is a 
homomorphism of abelian groups, because f (0) = 0 and 

f (cp  + dp) = q5((cp  + dp) 0 1) 
= 0 (c p  0 1 + d p  0 1) = f (cp) + f (dp). 
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Furthermore, w(f) = 0, since 

(w (f), cp  ®a) ( fcp) • a = a • 0(cp e 1), 

o(c 0 a) = 4,(a • (c,€) 1)) = a • o(cp e 1). 

This last equation holds because 4) is a linear transformation, not just a homo- 
morphism of abelian groups. 

The map a) commutes with S. We compute 

(f 	+ 1 ®a) = (w(f), (a iF)(cp. 1 ®«)) 

= (f,ac, 1) • a (aA, + I) • a 

(a/(a f), , a). 0 

Theorem 53.5. Let e be a free chain complex; let F be a field. Then there 
is a natural vector space isomorphism 

HomF(Hp(e; F), F) HP (e; F). 

Proof. We imitate the proof of the universal coefficient theorem. First, we 
note that if 

is a short exact sequence of vector spaces over F and linear transformations, 
then for any vector space V over F, the dual sequence 

0 	HomF(A,V) 4-- HomF(B,V) 4-- HomF(C,V) 0 

is exact. The proof is easy, for since any vector space has a basis, the first 
sequence splits. 

Let 6 denote the chain complex e F. Then Ep  = Cp  F is a vector space 
over F. Let Bp  and Zp  denote boundaries and cycles, respectively, in the chain 
complex 6; they are also vector spaces over F. Consider the short exact se-
quence of vector spaces 

0 —9ZP  —9EP —41P-1  —9 0. 

It gives rise to the dual sequence 

0 	HomF(Zp,F) 4--- HomF(Ep,F) HomF(B, _ „F) 4-- 0. 

We apply the zig-zag lemma, as before. The cochain complex in the middle is 
isomorphic to the cochain complex Horn (Cp,F), by the preceding lemma. There-
fore, by the same argument as used before, we obtain an exact sequence 

0 4-- ker 31, HP (e; F) cok 3, _ 	0, 

where jp  : Bp  Zp  is inclusion. 
Now the proof takes a different tack. Consider the exact sequence 

p 0 	Zp  Hp(6) —9 O. 
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Because it is a sequence of vector spaces and linear transformations, the dual 
sequence is exact: 

0 	HomF(A„F) Horn,. (z,,F) HomF(H, (6),F) 4— 0. 

Therefore cok 	0 and 

ker jp  = Hom,(H p(e; F), F). 
The theorem is now proved. 0 

Corollary 53.6. If (X,A) is a topological pair, there is a natural vector 
space isomorphism 

Hom,(H j,(X,A; F), F) 	(X,A; F). 0 

This theorem shows that if F is a field, then the vector space IP (X,A; F) 
can be identified in a natural way with the dual vector space of the vector space 
Hp(X,A; F). In the case where the dimension of I- 4,(X,A; F) is finite, this means 
that (X,A; F) and 11,,(X,A; F) are isomorphic as vector spaces (though not 
naturally). 

In differential geometry, it is common to deal with compact manifolds and 
to use the field of reals as coefficients. Because the cohomology and homology 
vector spaces are dual in this case, differential geometers sometimes treat ho-
mology and cohomology as if they were the same object. Needless to say, this 
can lead to confusion. 

EXERCISES 

1. Let e be a free chain complex. Show that if Hp  _ ,(e) is free or if G is divisible, 
then the Kronecker map K is an isomorphism. 

2. Use the universal coefficient theorem to compute the cohomology with general 
coefficients G of T # T and f" # P 2  # P2  and P" and the k-fold dunce cap. 

3. Assume Hi (X) is finitely generated for all i. 
(a) Compute IP'(X;G) in terms of the betti numbers and torsion coefficients 

of X. Compare with Exercise 5 of §42. 
(b) Repeat (a) when G is the circle group S' = R/Z. 
(c) Repeat (a) when G = Q. 

4. A homomorphism a : G G' gives rise to homomorphisms 

H;(e; G) Hi (e; G'), 

They are called coefficient homomorphisms. Show the universal coefficient se-
quence for cohomology is natural with respect to coefficient homomorphisms. 

5. Let (K,K0) be a relative pseudo n-manifold. (See the exercises of §43.) Suppose 
K is finite. Show that the torsion subgroup of H. _ ,(K,K.) vanishes if (K,K.) is 
orientable, and has order 2 otherwise. 
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§54. TORSION PRODUCTS 

Associated with the functor Hom and derived from it is another functor, called 
Ext. Both were involved in the statement of the Universal Coefficient Theorem 
for Cohomology. Similarly, associated with the tensor product functor and de-
rived from it is a second functor, which we call the torsion product. Both of 
these functors will be involved in the statement of the Universal Coefficient The-
orem for Homology. Construction of the torsion product is so similar to con-
struction of the Ext functor that we abbreviate some of the details. 

The torsion product is a functor that assigns to an ordered pair A, B of abe-
lian groups, an abelian group A * B, and to an ordered pair of homomorphisms 

: A 	A' and 5 : B B', a homomorphism 

*b:A*B—, A' *B'. 

Like the tensor product, it is covariant in both variables. 
The crucial property of the torsion product is expressed in the following 

theorem, whose proof we shall give later: 

Theorem 54.1. There is a function that assigns to each free resolution 

of the abelian group A, and to each abelian group B, an exact sequence 

—0,4*B--R0B-4F0B--4A0B--, 0. 

This function is natural, in the sense that a homomorphism of a free resolution 
of A to a free resolution of A', and a homomorphism of B to B', induce a 
homomorphism of the corresponding exact sequences. 

First, we prove a lemma. 

Lemma 54.2. Given a homomorphism of free resolutions 

la y'113 1.7  r  IP' A, 0 	a —"*"--"4  

and a homomorphism 5 : B B', there exists a unique homomorphism E mak-
ing the following diagram commute: 

0 	ker(ckeiB) 	ROB 	FOB 1"---N AeB 

1 t 	
la 0 5 

iB, 	I 7
el 

ker (0' i3.)i, 	R' B' 	F' 0 B' 	A' B' 

The homomorphism E is independent of the choice of a and 0. 
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Proof Functoriality of 0 shows the two right-hand squares of the preced-
ing diagram commute. Therefore, a 6 induces a homomorphism E of kernels. 

The proof that e' is independent of the choice of a and 13 proceeds as in the 
proof of Lemma 52.2. Let {as, 0', 7} be another choice. We treat {a, 13, 7} and 
{a', 	-y} as chain maps of one chain complex A to another A'. There is a 
chain homotopy D between them; then D 0 6 is a chain homotopy between the 
corresponding chain maps of A 0 B to A' 0 B'. Thus they induce the same 
homomorphism 

e: H, (A; B) 	1-4(A1; B') 

ker (4) iB) 	ker (01  ii„). 0 

The homomorphism e is said to be induced by 7 and 5, relative to the free 
resolutions involved. 

Just as in §52, we see that e depends functorially on y and 5. That is, the 
composite of the homomorphisms induced by (7,5) and (71,51 is the homomor-
phism induced by (-y c  -y1,6 o 6'). And the homomorphism induced by (i,,iB) is 
an isomorphism. 

Definition. Given A, let 

0 ---0 12(A) --+ F (A) ) A 	0 

be the canonical free resolution of A. The group ker 	iB) is denoted A* B, 
and called the torsion product of A and B. If -y : A A' and S : B B' are 
homomorphisms, we extend 7 to a homomorphism of canonical free resolutions, 
and define 

7 * 	 B' 

to be the homomorphism induced by y and S relative to these free resolutions. 

The preceding remarks show that torsion product is a functor of two varia-
bles, covariant in both. 

The proof of Theorem 54.1 is now straightforward. Given any free 
resolution 

(I) F 	0, 

the preceding remarks show that (14 ,i3) induces an isomorphism of ker 0 is) 
with A * B. Thus the exact sequence of the theorem exists. Naturality is proved 
as in the proof of Theorem 52.1. 

One property possessed by the torsion product that is not possessed by Ext 
is commutativity. We prove it now. First, we need a lemma. 

Lemma 54.3. There is a function assigning to each short exact sequence 
of abelian groups 

0 —0 A --0 B C 0 
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and each abelian group D, an exact sequence 
0--.D*A--, D*B—,D*C—.D0A--.D0B---D0C--, 0. 

This function is natural with respect to homomorphisms Of short exact se-
quences and abelian groups. 

Proof This result is analogous to the theorem stated in Exercise 4 of 
§52. Let 

0--,12—, F--+D—, 0 
be a free resolution of D. Because R and F are free, we have horizontal exact-
ness in the diagram 

0 ---. R 0 A --. R ® B---- R ec----,0 
looiA  loei, 1.0eic  

0---, F0A--0F0B--.F0C----00. 
(See Corollary 50.7.) Treating this diagram as a short exact sequence of chain 
complexes, we apply the zig-zag lemma to obtain an exact sequence in homol-
ogy, which has the form 

0 --. ker (0 0 i4) —, ker (4, 0 iB) --+ ker (0 0 ic) --. 

cok (ck 0 i,) ---, cok(4) 0 i3) --, cok(0 0 ic) --. 0. 

(This result is called the "serpent lemma." See Exercise 2 of §24.) Theorem 
54.1 enables us to identify these terms; 

ker (0 0 iA) .7-...- D * A 	and 	cok (0 0 i,) = D 0 A. 
Similar results hold for B and C. 

The naturality of the zig-zag lemma and of the sequence in Theorem 54.1 
gives us naturality of this exact sequence. q 

Theorem 54.4. (a) There is a natural isomorphism 
A*B.-r-B*A. 

(b) There are natural isomorphisms 
(0921.)* B =ED(A.* B), 
A * (®B,„) :A (KA * Be). 

(c) A * B = 0 if A or B is torsion-free. 
(d) Given B, there is an exact sequence 

0--(Z1m)*B--, BaB-0(Z1m)0B-00. 
Proof Note first that if B is torsion-free, then when one tensors a free 

resolution of A with B, exactness is preserved, by Corollary 50.7. It follows that 
A * B = 0. 
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(a) Apply the preceding lemma to the free resolution 0 —, R--+F--. 
A --, 0 of A. One obtains a six-term exact sequence. The first terms 

0 —.B*R--, B*F 

vanish because R and F are torsion-free. What remains is the exact sequence 

0 --, B*A--.B0R--.110E--, B0A--,  O. 

In its last three terms, this sequence is naturally isomorphic to the sequence of 
Theorem 54.1, 

0---.A*B--, R0B--, F0B--, A0B--.0. 

Therefore, the first terms are isomorphic as well. Naturality is straightforward. 
(b) Let 

0 ---+ R.---,  F.---,  A.---. 0 

be a free resolution of Aa. Then 

0 --. eRa  --, (BT.—. eAa  -.0 
is a free resolution of ®ma. We tensor the first sequence with B and sum; and 
we tensor the second sequence with B. We obtain the two sequences 

0 --, ED(Ac, * B)---. EB(R.0 B)---. e(F.0 B)--. e(A.0 B) --* 0, 

0 --, ((DIA.)* B --, (®R.) 0 B--. (®Fa) ®B --) (®A.) ®B --. O. 

Since the last three terms of these two sequences are naturally isomorphic, the 
first terms are isomorphic as well. Naturality is straightforward. This proves 
the first isomorphism of (b). The second follows from commutativity. 

(c) This follows from the remark made at the beginning of the proof and 
commutativity. 

(d) We begin with the free resolution 

0--.Z /Lz, Z—.Z/m-0. 

Tensoring with B, we obtain the sequence 

m 0 iB  
0--, Z/m*B--, Z0B--.Z0B--.Z/m0B--.0. 

The sequence in (d) follows. q 

Remark. We have studied the Ext and torsion product functors only for abelian 
groups; they are "derived" from the functors Horn and ®, respectively. If one deals 
instead with modules over a ring R, one has the functors HomR  and OR, as already 
indicated. A question arises: Can one also introduce Ext and torsion product for 
modules? The answers to this question constitute, basically, the subject matter of 
homological algebra. (See [MacL].) 

One begins, much as in the case of abelian groups, with the notion of a free 
R-module. Then, given an R-module A, one lets F0  denote the free module gener-
ated by the elements of A. There is a natural epimorphism 0 : F.--. A. However, in 



§54. 	 Torsion Products 331 

the case of a general ring R, a submodule of a free module is not necessarily free. 
Thus there need be no short exact sequence 0 R F A 0, where R and F 
are free. However, one can let F, denote the free R-module generated by the ele-
ments of ker ck and obtain an exact sequence F,-* F.—,  A — 0, where F, and F„ are 
free. Continuing similarly, one obtains an exact sequence 

CAI 
• • • -* Fk 	Fk_ 	• • • ""-' F.—,  A --) 0, 

where each Fi  is free. Such a sequence is called a free resolution of the R-module A. 
Applying the functor HomR, one obtains a sequence 

• • • 	
jth (F„G)—HomR(F„,G).— HomR(A,G) 0. 

Exactness holds at the two right-hand terms. For n > 1, we define 

Ext; (A,G) = ker ;P.„ + dim ;i>„. 

Thus we obtain an entire sequence of Ext groups! Of course, if R = Z, then Ext; 
vanishes for n > 1 and equals Ext for n = 1. 

A similar construction, using 0,, gives one a sequence of groups Tor: (A,G). 
Many of the theorems we have proved about Ext and torsion product generalize to 
statements about these new groups. The applications, both to topology and algebra, 
are numerous and fruitful. 

The theorems of this section enable us to compute tensor and torsion prod-
ucts when the groups are finitely generated. We summarize the rules for these 
products, as well as those for Horn and Ext, as follows: 

Z * G = 0 

Hom(Z,G) = G 
	

Ext(Z,G) = 0 

GlmG 
	

Z/m* G ker(G G) 

Hom (Z/m,G) = ker (G 11.1  G) 
	

Ext(Z/m,G) = G/ mG 

In particular, these rules imply the following, where d = gcd (m,n): 

Z/m Z Z/m 	 Z/m*Z=0 

Hom(Z/m,Z) = 0 	 Ext(Z/m,Z) = Z/m 

Z/m 	Z/n = Z/m * Z/n = Horn (Z/m,Z/n) = Ext(Z/m,Z/n) = Z/d 

EXERCISES 

1. Compute A0 B and A * B if 
A = ZeZ/29Z/49Z16, B = ZeZe Z/9 e Z/12. 
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2. Let A be finitely generated. 
(a) If S' is the circle group, compute A 0 S' and A* S' in terms of the betti 

numbers and torsion coefficients of A. 
(b) Repeat (a) with S' replaced by Q. 

3. Suppose 0 : A ---, B is a monomorphism. Show that 

Oic 
A* C---4 B* C 

is a monomorphism. Conclude that if A' C A and B' C B, then A' * B' can be 
naturally considered as a subgroup of A* B. 

4. Let TA  and TB  be the torsion subgroups of A and B, respectively. Use Lemma 
54.3 to show that inclusion induces an isomorphism 

A* TB —' A* B. 

Conclude that A a B = TA  * TB. 

5. Show that in general, A * B is a torsion group. [Hint: Consider the sequence 

0 ---, A * TB  --. R et TB  --. F 0 Ts  — A 0 Ts  —. O.] 

§55. THE UNIVERSAL COEFFICIENT 
THEOREM FOR HOMOLOGY 

Just as there is with the cohomology group H° (X; G), there is a theorem ex-
pressing the homology group H p(X; G) in terms of the homology groups H p(X) 
and II„ _,(X). The statements of the two theorems are similar, except that here 
the tensor product and torsion products replace the Hom and Ext functors, 
respectively, and the arrows are reversed. 

Theorem 55.1 (The universal coefficient theorem for homology). Let e be a 
free chain complex; let G be an abelian group. There is an exact sequence 

0 --. 14(0)0 G -- 14(0; G) --0 Hp  _ ,(e) * G ---. 0, 

which is natural with respect to homomorphisms induced by chain maps. It 
splits, but not naturally. 

One can give a direct proof of this theorem that is very similar to the proof 
of the universal coefficient theorem for cohomology. Instead, we shall postpone 
the proof, and derive it from a more general theorem called the Kiinneth theo-
rem, which we shall prove in §58. 

Corollary 55.2. Let (X,A) be a topological pair. There is an exact se-
quence 

0 --. Hp(X,A) ®G --, II p(X,A; G) --, Hp  _ ,(X,A) * G --. 0, 
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which is natural with respect to homomorphisms induced by continuous maps. 
It splits, but not naturally. q 

Corollary 55.3. Let e and 2) be free chain complexes; let 0 : e --, 2) be a 
chain map. If 0, : H, (d')—,  HAY)) is an isomorphism for i = p and i = p — 1, 
then 

4), : .14(e; G) —. 11,(2); G) 

is an isomorphism for arbitrary G. 

Proof. This result follows from naturality of the universal coefficient se-
quence and the Five-lemma. q 

This corollary provides an alternate proof of Theorem 51.1. 

EXERCISES 

1. Let e be a free chain complex. Show that if Hp  _ , (e) or G is torsion-free then 
H,(@) ®G :--- H„(e; G). 

2. Use the universal coefficient theorem to compute the homology, with general 
coefficients G, of T # T and P2  # P2 # P2  and l'" and the k-fold dunce cap. 
Compare with Exercise 2 of §51. 

3. Assume Hi(X) is finitely generated for all i. 
(a) Compute Hp(X;G) in terms of the betti numbers and torsion coefficients 

of X. 
(b) Repeat (a) when G is the circle group SI. 
(c) Repeat (a) when G = Q. 

4. Let d be a free chain complex. Show that if 111(e) is finitely generated for all 
i, then 

H,(@; Z 1 n) = H''(6; Z In). 

(The isomorphism is not natural.) 

5. Show that if K is a finite complex, the homology group H,(K) is uniquely de-
termined by the groups Hi(K;ZIpk ), as pi' ranges over all prime powers and i 
ranges from 0 to n. 

6. Show that if K is a finite complex, the homology group Hp(K) is uniquely de-
termined by the groups H,(K; S') and H,.,. 1 (K; S'). 

7. Show that if T is the torus and S is the Klein bottle, and if f : T —, 5, then 

fs: 112(T; Z/2) — HAS; Z/2) 

is trivial. 

8. Show by example that the splitting of the sequence in Corollary 55.2 is not 
natural. 
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*9. Prove Theorem 55.1. [Hint: Let Z, d' and 1 be as in the proof of Theorem 
53.1. One has an exact sequence 

• • • —* 11, + ,(2i; G) 0 — H p(Z; G) —. 14(e; G) --. 11,,(2); G) --, • - • . 
Show that 13 is induced by inclusion j, : By  Zr.] 

*§56. OTHER UNIVERSAL COEFFICIENT THEOREMS' 

We have stated two universal coefficient theorems, which express the homology 
and cohomology groups with arbitrary coefficients in terms of homology with 
integer coefficients. One might ask whether cohomology and homology are sym-
metric in some sense—that is, whether these same groups can be expressed in 
terms of cohomology with integer coefficients. There are in fact two short exact 
sequences that do this. However, they do not hold in complete generality, but 
only if the homology groups 11,(e) are finitely generated. We consider them 
now. 

These sequences are derived by re-indexing the groups of the cochain com-
plex {Horn (Ci,Z),6} to make it into a chain complex, and then applying the uni-
versal coefficient theorems we have already considered. The problem with this 
approach is that the group Hom (C„Z) is not in general free, so some restrictive 
hypotheses are needed. 

Theorem 56.1. Let e be a free chain complex; let G be an abelian group. 
If 0 is finitely generated in each dimension, then there are exact sequences 

0 4— Horn (HP (e),G) — 14(0; G) 4— Ext (HP +' (e),G) i— 0, 

0 —4 HP (e) 0 G --* HP (0; G) —. HP * 1  (e) . G --. 0, 

which are natural with respect to homomorphisms induced by chain maps. 
They split, but not naturally. 

Proof Step 1. Since C, is free and finitely generated, the cochain com-
plex {Horn (C,,Z),5} is free. We define a chain complex 6 by letting Ei, = 
Hom (C_ p,Z) and taking as the boundary operator a E  in 6 the usual cobound-
ary operator ö of e. One then has the universal coefficient sequences 

0 .-- Hom (H_ p  (6),G) — II-P(6; G) .— Ext (H_ p  _ ,(6),G) 4— 0, 

0 --. H _ p(6) ®G —. H _ p(e; G) —. H.., _ ,(6) * G —. 0, 

where we have for convenience replaced p by —p throughout. It is immediate 

'This section uses the results of §46. 
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from the definition that H _ p(6) = H°(@). We shall show that there are natu-
ral isomorphisms 

(*) 	 H _ p(e; G) = 1-1°(&; G), 
(**) 	 H'°(6; G) = Hp(e; G). 

The theorem follows. 

Step 2. We show first that if A is free of finite rank, then there is a nat-
ural isomorphism 

: Horn (A,Z) G Horn (A,G), 

defined by the equation 

Ft. (4) 0 g)] (a) 	4, (a) • g. 

(Strictly speaking, we define 4 on the pair (4),g) by this formula. We note that 
4)(4,g) is indeed a homomorphism of A into G. Then we note that 4 is bilinear.) 

Let a„ 	,ak  be a basis for A; let 	be the dual basis for 
Hom(A,Z), defined by i'zi (ai) = Sii, where 64  = 0 if i * j and 64  = 1 if i = j. 
The group Hom (A,Z) 0 G is a direct sum of k copies of G, the ith copy consist-
ing of all elements of the form a, 0 g, for g e G. The group Horn (A,G) is also a 
direct sum of k copies of G, the ith copy consisting of all homomorphisms that 
vanish on a;  for j * i. These two copies of G are isomorphic under 4, since 
4(ai  g) is the homomorphism of A into G that maps ai  to g and maps a;  to 0 
for j * i. 

Step 3. To prove (*), we recall that E...p  = Hom(Cp,Z) and apply Step 2 
to obtain an isomorphism 

E..p 0 G = Hom (CpG). 

The naturality of the isomorphism means that aE. ic  corresponds to 6. Thus 
H 	G) = H°(@; G), as desired. 

Step 4. We show that if A is free of finite rank, then there is a natural iso-
morphism 

e : A Horn (Horn (A,Z),Z), 

defined by the equation 

[e (a)] (40 = (a), 

where a e A and 4, e Hom(A,Z). 
First, one checks that e (a) is a homomorphism of Horn (A,Z) into Z; then 

one checks that e itself is a homomorphism. To prove e is an isomorphism, 
choose a basis a„ 	,a, for A. Let a„ . . . ,a, be the dual basis for Horn (A,Z); 
then let a„ 	,a, be the corresponding dual basis for Horn (Hom (A,Z),Z). All 
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the groups involved are free abelian of rank k; the homomorphism e carries a, to 
a„ since for all j, 

je(ai))(a) = Zij(a) = bij  = a,(Zzi). 

Step 5. To prove (**), we apply first Step 4 and then Step 2 to define 
natural isomorphisms 

A 0 G Horn (Horn (A,Z),Z) 0 G Hom (Horn (A,Z),G). 
Setting A = Cr  we have a natural isomorphism 

Cp 	G Hom(Hom(Cp,Z),G) = Horn (E 
By naturality, the boundary operator a ® iG  corresponds to the coboundary 
operator 8E, so one has a natural isomorphism 

14(0; G) = H" (6; G), 
as desired. 0 

The preceding theorem is of limited interest topologically. The only inter-
esting case to which it applies is the homology of a finite simplicial complex or a 
finite CW complex. However, one can obtain a much more general theorem 
with very little effort: 

Theorem 56.2. The preceding theorem holds if the hypothesis that (3  is 
finitely generated in each dimension is replaced by the hypothesis that & van-
ishes below a certain dimension, and the homology of e is finitely generated in 
each dimension. 

To prove this theorem, we need the following lemma: 

Lemma 56.3. Let 6 be a free chain complex such that HO) is finitely 
generated for each i. Then there is a free chain complex 0' that is finitely gen-
erated in each dimension, whose homology is isomorphic to that of 0 If (3  
vanishes below a certain dimension, so does 6'. 

Proof Let Op be the betti number of Hp  (e` and let tP, 	,t(1,)  be its tor- 
sion coefficients. Let Up, Vp, and Wp  be free abelian groups, where Up  has 
rank lc, _ „ and Vp  has rank Op, and Wp  has rank kr  Let 

C; = Up  9 Vp  9 Wp.  

Let 8' : c; , C; vanish on Vp  + 1  9 W, ,. Choose bases for Up  , and W,, 
and define a' ,,„,— Tv,, to be the homomorphism whose matrix relative to 
these bases is 

0 

Then 8' satisfies the requirements of the lemma. 0 
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Proof of Theorem 56.2. Choose a chain complex e' as in the preceding 
lemma. In view of Theorem 45.1, we can choose a chain map 4): 0' 0 induc-
ing the given isomorphism HAel. Ho). It follows from the universal coef-
ficient theorems already stated (or from Theorems 45.5 and 51.1) that 0 also 
induces isomorphisms 

1-1,(e'; G) = H i (e; G) 	and 	Hi  (01; G) 	(e; G) 

for all i and G. Now the universal coefficient sequences in question hold for 0'. 
Using the isomorphisms induced by 0, we can replace e' by e in these exact se-
quences. 

The resulting exact sequences for 0 are in fact independent of the choices 
of e' and 0. This is a consequence of naturality, which we now prove. 

Let 0 : e 2) be a chain map, where 6 and .7) are free chain complexes 
vanishing below a certain dimension, and H1  (6) and HAY)) are finitely gener-
ated for each i. We wish to show 0 induces homomorphisms of the universal co-
efficient sequences of our theorem. 

Here we need (for the first time) the fact that the chain map 0 is actually a 
chain equivalence (Theorem 46.2). 

Let 0 : 0' 6 and 4 : fr 2) be chain maps that induce homology iso-
morphisms in all dimensions, as in the preceding lemma; here e' and 2)' are 
free, finitely generated in each dimension, and vanishing below a certain dimen-
sion. In view of Theorem 46.2, there are chain-homotopy inverses A : e 
and u: 	2)' to 0 and 0, respectively. 

Now 0 induces an isomorphism of the exact sequences for e with the exact 
sequences for e'; indeed, this is how we obtained the exact sequences for 6' A 
similar remark applies to #. Consider the diagram 

0' 	0 

10  

The composite w e 0 c 0 induces homomorphisms of the exact sequences for e' 
with those for 2)', by the naturality property of Theorem 56.1. It follows that 
# (AL c 0 c 0) o A induces homomorphisms of the exact sequences for e with 
those for D. But this map is chain homotopic to 0. 

Applying this result to the special case in which 0 = and 0 is the iden-
tity, we see that the exact sequences are independent of the choices of e' and 0. 

0 

Corollary 56.4. Let (X,A) be a topological pair such that H;  (X,A) is 
finitely generated for each i. Then there are natural exact sequences 

Hom (HP (X,A),G) H p(X,A; G) Ext (Hp + (X,A),G) 0, 

0 	HP (X,A) ®G --0 HP (X,A; G) HP + (X,A) * G O. 

They split, but not naturally. 0 
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EXERCISE 

1. The argument used in proving Lemma 56.3 has a flavor that makes one suspect 
there is a functorial version of it. Here is that formulation: 

Let C be the category whose objects are free chain complexes 0, each of 
which vanishes below some dimension, such that H,(e) is finitely generated for 
each i. Let C' be the subcategory whose objects consist of those objects of C 
whose chain groups are finitely generated in each dimension. In both cases, the 
morphisms are chain-homotopy classes of chain maps. 

Let J: C' C be the inclusion functor. Show there is a functor G :C C' 
such that G o J is the identity functor of C' and J o G is naturally equivalent to 
the identity functor of C. 

§57. TENSOR PRODUCTS OF CHAIN COMPLEXES 

In this section, we introduce an algebraic device that will be used for studying 
the homology of a product space. We define the tensor product of two chain 
complexes, and show how to make it into a chain complex. 

Definition. Let e = tc,„al and f' = lc,a1 be chain complexes. We de-
fine their tensor product e 0 e' to be the chain complex whose chain group in 
dimension m is defined by 

(e 0 e')„, 	4. q Cp 0q, 
and whose boundary operator 5 is given by the equation 

5(c, c;) = ac, ® + (— 1)"c, ® avg. 
Formally, we define 5 as a function on the set C X C;; since it is bilinear, 

it induces a homomorphism of the tensor product. 

It is straightforward to check that 52  = 0. It is also straightforward to 
check that, if 4 : @ 2 and 0' : 	are chain maps, so is (1) ®4'. 

Note that if f and e' are free chain complexes, then so is e 0 Indeed, if 
{at} is a basis for Ci, and Ibg is a basis for Crg, then the collection 

latObli Ip+q=m1 

is a basis for the group (e 0 e').. 

Definition. Let {@A } and {e ;e' I be augmented chain complexes. We aug-
ment e 0 e' by the homomorphism e, which is the composite 

z. 
You can check that E is surjective, and that i" o 5—o. 
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We now give the geometric motivation underlying our definition of e 0 
Let K and L be simplicial complexes, with K locally finite. Then IKI X ILI 

is a CW complex with cells a X T, fora e K and T e L. In fact, it is a special 
kind of CW complex called a "regular cell complex"; therefore, it can be trian-
gulated so that each cell is the polytope of a subcomplex. (See Example 4 and 
Exercise 5 of §38.) 

Let D(K X L) denote the cellular chain complex of the CW complex X = 
IKI X ILI. Let M denote the underlying simplicial complex of X. Because X 
is triangulated, we can use simplicial homology in the definition of the chain 
group D,,, (K X L). This chain group is a free abelian group, with one basis ele-
ment for each cell aP X Tq for which p + q = m. This basis element is a funda-
mental cycle for crP X Tq. 

If we orient the simplices of K and L, once and for all, then they form bases 
for e (K) and e (L), respectively. A basis for the m-dimensional chain group of 
e (K) e (L) consists of all the elements 6P  0 Tq, for p + q = m. 

It follows that the groups 

(0 (K) e (L)). 	and 	Dom, (K X L) 

are isomorphic, for they are both free abelian and there is a one-to-one corre-
spondence 4  between their bases, assigning to the basis element a° ®Tq for 
(e (K) e (L)),„, a fundamental cycle for the p + q cell a X T. We shall prove 
that this isomorphism can be chosen so that it preserves boundary operators, so 
that it is thus an isomorphism of chain complexes as well. 

Theorem 57.1. If K and L are simplicial complexes, and if IKI XIV is 
triangulated so each cell a X T is the polytope of a subcomplex, then 

0 (K) 0 e (L) r-- (K X L). 
Thus e (K) 0 e (L) can be used to compute the homology of IKI X ILI. 

Proof. We proceed by induction. A basis element for (e (K) ®e (L))„ is 
of the form v 0 w, where v is a vertex of K and w is a vertex of L. Define 
cii(v w) to be a fundamental 0-cycle for v X w. (That is, ck(v 0 w) = v X w.) 

The augmentation E for 6 (K) ®e (L) satisfies the equation E (v 0 w) = 
I whenever u is a vertex of K and w is a vertex of L. The chain complex 
2)(K X L) is augmented as a subchain complex of e (m), so e (v X w) = 1. 
The map //:, is thus augmentation-preserving, since e o 4> = E for 0-chains. 

For the induction step, we assume that 

: (e (K) 0 (L)); --* DAK X L) 

is defined in dimensions i less than in, where in ?: 1, and that 0. 8 = a o 4) in 
those dimensions. We suppose further that for p + q < m, the chain 4>(0." 0 Tq) 

is a fundamental cycle for the cell e X r. Then we define 4>  in dimension m. 
Consider the basis element a' Tq, where p + q = m. Let 

	

en, - 1 = 	(ETP  ®Tq)). 
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Then cm  _ , is an m — 1 chain of the simplicial complex M underlying X. 
First we note that if m = 1, then co  e ker e, for 

e (co) = e0c1) = i(T9c,) = 0. 

Second, we note that if m > 1, then cm  _ , is a cycle. For by the induction hy-
pothesis, 

ac,n  _ , = 	(a (a° ®T°)) 	(a (a° ®rQ)) = 0. 
Now we show that cm  _ , is carried by Bd (a X r). Let us write as = Is, if 

dim a > 0, where the s, are oriented simplices of dimension p — 1. Similarly, 
we write ar = ltj  if dim T > 0. Then we have the formula 

cm  -1 = D(s, 0 r) (-1)° (k (a ® 1:,) 

if dim a > 0 and dim T > 0. If dim a = 0, the first summation is missing 
from this formula; while if dim T = 0, the second is missing. Since the chain 
4)(si  T) is carried by s, X T, and ctp(a t,) is carried by a X 	the cycle cm  _ , is 
carried by Bd (a X r). 

Now Bd (a X r) is, topologically, an m — 1 sphere; we show that cm  _ , 
is a fundamental cycle for this m — 1 sphere. That is, it generates the group 
H„,_ (Bd (a X r)), which is infinite cyclic and equals the group of m — 1 cy-
cles if m > 1, and the group ker a if m = 1. 

Either dim a > 0 or dim T > 0; assume the former. Then as = Zs;, and the 
restriction of cm  _ , to the cell s, X T equals 4  (si  T), which is by hypothesis, a 
fundamental cycle for this cell. It follows that cm  _ , is not zero, and that it is not 
a multiple of another cycle. Thus cm  _ , is a generator of the infinite cyclic group 
H„, - , (13d (a X r)). 

Consider now the exact sequence 

H„,(a X T, Bd (a X r))
a 
 H„, _ , (Bd (0-  x r)) — 0. 

Both end groups vanish because a X T is acyclic. Because homology groups 
equal cycle groups in this instance, this sequence is actually the sequence 

0 	Z„,(cr X r, Bd (cr X T)) ±,„ - (Bd (a X 7)) 0, 

where 2. _ , denotes ker E if m = 1. We define (Act° rq) to be the unique 
fundamental cycle for the cell a X 7 such that 

act,(0.P 74) = cm _ ,. 

Then ao = 05, and our result is proved. 0 

EXERCISES 

1. (a) Show that a' = 0. 
(b) Show that if 6 and e' are augmented by E, e', respectively, then e 0 e' is 

augmented by 

Co  0 c;e1'.Eiz0Z Z. 
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2. Let 0, : e 2J and 	4/' : —• D' be chain maps. 
(a) Show that (i) cl; e ® 	® 5)' is a chain map. 
(b) Show that if D is a chain homotopy of to IA then D ® 4' is a chain homot-

opy of 0 0' to 1,G 0 (Y. 
(c) If D is a chain homotopy of 4)' to 4", find a chain homotopy of IP 0 4; to 

>y®,.'. 
(d) Show that if 4  and tk' are chain equivalences, so is 4)0 

3. Our formula for a boundary operator in e 0 e' seems rather arbitrary. It is; 
there are other formulas that would do as well. 

Let K and L be complexes; let a be a boundary operator for e (K) 0 e (L) 
such that: 
(i) If K. and 4 are subcomplexes of K and L, respectively, then a.  maps 

evco 0 e(L.) to itself. 
(ii) If v is a vertex of K and w is a vertex of L, then 

= 	i on C,(K) Co(w), 

and 

± i 	a, on Co(v) C, (L). 

Assuming X = iKi X iLi triangulated as in Theorem 57.1, show that the chain 
complex l& (K) 0 (L),al is isomorphic to the cellular chain complex 11(X). 

4. Show that the formula 

(c, 	c;) = ( — 1 )gac, c; + c, ac:, 
defines a boundary operator for e e' that satisfies the requirements of Exer-
cise 3. 

§58. THE KUNNETH THEOREM 

Now we prove a basic theorem that enables us to compute the homology of 
the tensor product of two chain complexes. The proof is, as you would expect, 
highly algebraic in nature. 

The first thing we show is that, under suitable hypotheses, there is a nat-
ural monomorphism of the tensor product Hp(e) Ho') into the group 

+ ,(e e 

Definition. We define a homomorphism 

: 14(6)0 1-1,(e') 11, ,(e 0 ') 
as follows: If zp  is a p-cycle of e and z; is a q-cycle of 6, let 

e({z„} {41) = fzi, e 41. 
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Using the formula for the boundary operator 8, we see that z,, 0 z; is a cycle 
of e ® e'. To show 0 well-defined, one computes 

(zp  ± ad,, + 0 ® z,,0 = z,,® 4 + T3 (d„ ,0 z), 
zp e (z; + ow; + 0 = zi,® zi, + (— i)'  ij (z,,® d; . 1 ). 

Because 0 is induced by the inclusion map Zp  0 Z9---,  (e 0 01, + q, it is nat-
ural with respect to chain maps. 

Lemma 58.1. Let e and es be chain complexes such that in each dimen-
sion the cycles form a direct summand in the chains. (This occurs, for instance, 
when l and es are free.) Then 

0 : ep 4. , ,..Hp(() 0 H,,(ei)---,  H,,,(e 0 0') 

is a monomorphism, and its image is a direct summand. 
Proof We define a homomorphism A in the opposite direction to e, such 

that A o 0 equals the identity. This suffices. 
Let Zp  denote the group of p-cycles in 0; let Z; denote the q-cycles in es. 

We begin with the natural projections Zp--,  Hp(0) and Z, --0 Hq  (es). Because 
the cycles form a direct summand in the chains, these maps extend to homo-
morphisms 

4) : Cp  --, Hp(e) 	and 	4)' : C; ---+ Hq(0'), 

respectively. Let e be the chain complex whose pth group is Hp(0), and whose 
boundary operators vanish. Similarly, let 6' be the chain complex whose qth 
group is Hq(0') and whose boundary operators vanish. Then 95 : e --. 6 and 
4; : es . 6' are chain maps, as you can check. Now 

004)':000'--4606' 

is a chain map, so it induces a homomorphism 

A : 11„,(e 0 0') —, H„,(6 0 6'). 

Since the boundary operator in 6 0 6' vanishes, H.(6 ® 6') equals the m-
dimensional chain group 

(6 0 &')m = ep  + q  ..Hp(0) 0 Hq(0'). 

It is trivial to check that A 0 0 is the identity, for 

X0({z} 0 {z'}) = X({z 0 zi) 
= 0(z) *0 4' (z') = {z} 0 {z'}. 0 

Now we prove our main theorem, which identifies the group cok 0. 

Theorem 58.2 (The Kitimeth theorem for chain complexes). Let & be a free 
chain complex; let &' be a chain complex. There is an exact sequence 

0 --, e„ t  ..Hp(0) 0 H q(&) 2  . ii.„,(e ® ei) — 
49, 4. q..Hp _ 1 (0) * 111(es) --, c 
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which is natural with respect to homomorphisms induced by chain maps. If the 
cycles of es are a direct summand in the chains, the sequence splits, but not 
naturally. 

Proof Let Bp, Z,,, and c, be the p-boundaries, p-cycles, and p-chains, 
respectively, of 0. Choose 13;„ Zip, and C1,, similarly for es. 

Step 1. We begin with the exact sequence 

	

0 Z C 	 0 P 	P 	P I 	' 

which splits because B,, _ is free. Let Z be the chain complex whose p-dimen-
sional group is 4 and whose boundary operators vanish. Let be the chain 
complex whose p-dimensional group D,, equals Bp  _ „ and whose boundary oper-
ators vanish. Then the preceding sequence becomes a short exact sequence of 
chain complexes. 

Now tensor with C'q  and sum over p q = m. Exactness is retained, be-
cause the original sequence splits and direct sums of exact sequences are exact. 
One obtains the exact sequence 

j '  
0 	e ( z, ® 	®' etc, co 8 	ED (Dp  CO 	0, 

where i' denotes the identity map of 61. Since the maps involved are chain 
maps, this is a short exact sequence of chain complexes 

0 	(Z e es)„, (6 0 0%1,—. (0 es)„, 0. 

The boundary operator in 0 0 es is denoted as usual by 5. The boundary opera-
tors in the end groups have the form ± i 0 8', where i is the identity map in e. 
For instance, in Z 0 es, one computes 

5 (zp  e c;) = (— 1)Pzp  e avg, 
since az,, = 0. A similar remark applies to 2 es. 

We obtain from this short exact sequence of chain complexes, a long exact 
homology sequence, of which we consider five terms: 

+ 	
+ ,(0 es) 	II„,(Z 0 6') 	H„,(6 es) 

H„,(2) 61) 	H„,_ ,(Z es), 

where fl„, denotes the zig-zag homomorphism. This sequence is natural with 
respect to homomorphisms induced by chain maps. Consider the induced se-
quence 

(*) 	 0 cok ,8„, , H (6 0 el ker 0„, 0. 

It is also natural. We identify the terms of this short exact sequence. 
Before proceeding, let us recall that if B is a subgroup of C, and if A is free, 

then the map 

A0B--.A0C 
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induced by inclusion is injective. Hence in this case, we can consider A 0 B as a 
subgroup of A 0 C. We shall use this fact freely in what follows. 

Step 2. We compute the group Hm(Z 0 s'). We show that there is an 
isomorphism, induced by inclusion, 

ep +4 . .4 ®Ho') = Hm(Z 0 6'). 
The chain group of Z ®

@/f' 
 in dimension m is 

(Z ® @')m  = 9, + q  , Zp  0 Cq. 

To compute the cycles and boundaries of Z 0 ', we begin with the exact se-
quence 

0 --, Z; ---, C; —. B; _ , --o O. 

Since Zi, is free, when we tensor with Z1, we have horizontal and vertical exact-
ness in the diagram 

0 
i e a' 	i 

0 —, Zj, 0 Z; --. Zi, 0 C ----1,  Z,, 0 B; _ 1 -0 O. 
i 0 a' 	1 

z, e q _,c  
It follows that the kernel of i 0 a' is the subgroup Zp  0 z; of C, 0 C;; and the 
image is the subgroup z, 0 B; _ , of z, ® c; _ ,. Hence the groups of cycles 
and boundaries of Z 0 l' in dimension m are the respective groups 

eop  + q = .Zp0 Z'  
g 	and e„ q ,Zp0 B;. 

Now consider the exact sequence 

0 —. B; --o Z; --o Hq(es) ---. O. 

Tensoring and summing, we obtain the exact sequence 

0 --. esZp  0 B; --o eZp0 Z;--o 494 ® H, ( e ' ) --, 0, 

where the summations extend over p + q = m. Since the first two groups of 
this sequence are the m-boundaries and m-cycles of Z 0 ei, the last is isomor- 
phic to Hm(Z 0 9'), as claimed. 

Step 3. ,An entirely similar argument shows that the m-cycle group of 
0 0 e' is the group 

ep 4. q =„,Dp  0 Z;, 
and that inclusion induces an isomorphism 

E131„ + , ..Dp  0 Hq(es) .-z.,  H„,(0 0 6'). 

Step 4. We now show that the zig-zag homomorphism $m  is induced by 
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inclusion j : Bp  Z,,. More precisely, we show that the following diagram com-
mutes: 

0„,+, H„,+ ,(2)0e1-1-1,,,(Z0ei) 
-.- 

ED, + q,D,+,0Hq(e') 	 p g.,Zp0 A, (es). 
(Recall that Bp  = D, ,.) 

The map [3. , is defined via the following zig-zag diagram: 

ED, + „ C„ ® '3-2-11-- 9, „„D, , tip C„ 

la  
9, , ,Z,® c; 	9, „ , C, 

One begins with an element of the m + 1 cycle group of 2) 0 6'. By the pre-
vious step, this cycle group is 

„,Dp+, 0 Z. 
Since Dr  , = Bp, a typical generator for this group has the form b, 0 4, where 
by  e Bp  and 4 e Z; and p + q = m. Pulling back to 0 0, one obtains an 
element cp+ , eq, where a.c,+ , = b„. Applying 5, we obtain the element 

(cp 	0 4) = ac, ,® z; ± c, + ,€ a'z; 
= bp0 

Finally, we pull this back to Z 6', obtaining by  0 eq, which is the same ele-
ment we started with! 

Step 5. Now we can identify the kernel and cokernel of $m.  Begin with the 
free resolution 

0 B Z Hp(e) O. 

Tensor with H4,(6'), obtaining the sequence 

0 —.11,(0)* H„(e')--- Bp  0 H,,(ei) 
z,® Igo') H p(e) Hg(er) 0. 

The map in the middle is induced by inclusion. Summing over p + q = m and 
applying Step 4, we obtain the sequence 

0 	4E1)p.I. q,H,(e) * 	H„, 1(.7)®@')
0,11+1 

H „,(Z 0e)— ED, + ..H „(0) B., (ei).o. 
The kernel and cokernel of /3„, , are now apparent. From this sequence and se-
quence (*) of Step 1, the theorem follows. Because both sequences are natural, 
the Kiinneth sequence is also natural. 
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Finally, we note that the map 

cok 	H„,(0 00') 

in sequence (*) is induced by inclusion Z e' 	d 0 d'. Therefore, the first 
map of the Kiinneth sequence is just the map 6 of Lemma 58.1. 0 

Corollary 58.3. Let d, 0', 0, Di be chain complexes with 0 and 0 free; 
let 	: d 0 and 4' : 	0' be chain maps that induce homology isomor- 
phisms in all dimensions. Then (1) 0 : d 0 0' ---+ 2) 0 0' induces a homology 
isomorphism in all dimensions. 

Proof We apply naturality of the Ktinneth sequence, and the Five-lemma. 
0 

Example 1. Let K and L be simplicial complexes, with K or L locally finite. The 
results of the preceding section show that the chain complex 6 (K) 0 6 (L) can be 
used to compute the homology of IKI X ILI. Since 0(K) and e(L) are free, the 
Kiinneth theorem implies that 

H„,(IKI X ILI) = Epp  , [H,(K)0 H„,(L) ED 	_ ,(K) * H,(L)]. 

Example 2. In particular, for the product S' X Ss, we have 

H.(S` X Ss) 2= (8, ..11,(S') 0 Ha(Ss). 

Hence if r # s, 

	

Hm  (S' X Ss) =.- 
10Z 	

if m = 0, r, s, r + s, 
otherwise. 

	

IZ 
	if m = 0, 2r, 

H„,(S' x S')..—...- Z e Z ifm=r, 
0 	otherwise. 

Example 3. Given a e 14(K) and 13 e Hq(L), it is geometrically clear that there 
should be a corresponding element in Hi, q (IKI X ILI). The image of a 0 3  in 
11,, 	X ILI) under the natural monomorphism 6 is called the homology cross 
product of a and 13, and denoted a X /3. It behaves in some sense like a cartesian 
product. In the torus T = S' X S', for example, the cross product of the two 
1-dimensional homology classes pictured in Figure 58.1 is the generator of the 
2-dimensional homology, by the Kiinneth theorem. This is quite plausible; if z 

s;  is a fundamental cycle for a triangulation K of S', then z 0 z = si  0 repre-
sents the sum of all the 2-cells of K x K, suitably oriented. 

It is geometrically less clear why, given a cycle z in K representing a torsion 
element in 11,(K) of order k, and a cycle z' in L representing a torsion element in 
11,(L) of order 1, there should be two elements in the homology of IKI X ILI of order 
n = gcd (k,1). One, of course, is their cross product, in dimension p + q. The other 
is an element in dimension p + q + 1 arising from H,(K) * Hq (L). Where does 
this unexpected one come from? 

Let us write 

kz = ad 	and 	/z' = a'd', 



§58. 	 The Kiinneth Theorem 347 

Figure 58.1 

where d and d' are chains of K and L, respectively. The unexpected element in 
dimension p q + 1 is exhibited by computing 

5(d 0 d') = (kz) 0 d' + (-1)P + 'd (lz') 

= n[—(z ®d') + (-1)P + — 1 (d z')]. 

The expression in brackets is thus a cycle of dimension p q 1 and n times it is 
a boundary! This is the element that we were seeking. 

The universal coefficient theorem for homology 

We now derive the universal coefficient theorem for homology as a cor-
rollary of the Kiinneth theorem. 

Proof of Theorem 55.1. Let 6 be a free chain complex; let G be an abe-
lian group. We define a chain complex 6' by the equation 

C„ —  G 	if p =--- 0, 
{0 	if p O. 

All the boundary operators in e' vanish. The chain complex e' is not in general 
free, but the cycles do form a direct summand in the chains, in each dimension 
(trivially). 

We compute 

® 0'). = 	 = C„,0G, 
(c„,0 g) = ac„,0 g 0. 

Thus le 0 ecal equals the chain complex le 0 G,a 0 is}. We now apply the 
Kenneth theorem, and use the facts 

Ho') = G, 
H,,(ei) = 0 for p O. 

The universal coefficient theorem for homology is an immediate consequence. 
0 

The Kiinneth theorem with field coefficients 

Suppose 6 and 6' are chain complexes whose chain groups are vector 
spaces over a field F, and whose boundary operators are linear transformations. 
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In this situation, we can form the chain complex 6 OF 6', whose chain group in 
dimension m is 

q 	(E, OF  E,). 

It is a vector space over F. (See §50.) The chain map a is a linear transforma- 
tion, so its kernel and image are vector spaces. 

The Kiinneth theorem simplifies considerably in this case: 

Theorem 58.4. Suppose the chain complexes 6 and 6' are vector spaces 
over the field F, and the boundary operators are vector space homomorphisms. 
Then H,(6) and H„(6') are vector spaces over F, and there is a natural iso-
morphism of vector spaces 

ep q ,H,(6) 0,14(6') H„,(6 ®F  6'). 

Proof. The proof of the Kiinneth theorem proceeds unchanged through its 
first four steps, if 0 is replaced throughout by OF. A change first appears in 
Step 5, where we take the sequence 

0 	 H,(6)—. 0 

and tensor it with H„(6'). Because we are in the context of vector spaces, we 
obtain the sequence 

Bp  OF Hq(61)--. Z, OF Hq(C)--. H,(6) OF  Hq(6)---. O. 

That is, no torsion product term appears. As a result, the homomorphism 	, 
has vanishing kernel for all m. 0 

The Kiinneth theorem with field coefficients follows: 

Theorem 58.5. Let e and ê' be free chain complexes; let F be a field. 
There is a natural isomorphism 

ED, 	F) OF Hq(e'; F) H„,(e e'; F). 

Proof. We apply the preceding theorem to the chain complexes 6 -- 
0 0 F and 6' = 0 F, which are vector spaces over F. We obtain a natural 
isomorphism 

ED„ + q  = mH,(6)0, 	H„,((9 0, C1). 

Now Hp(6) = 14(0; F) and H,(6') = H„(e'; F) by definition. It remains to 
show there is a natural vector space isomorphism 

f:60,e'--.(60e1OF 

that is also a chain map. Then our theorem is proved. Let us define 

f:C,XFXC'„XF-4C,OC9OF 
by the equation 

(*) 
	

f (x,a,y,9) = (x y) afl. 
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This map is multilinear, so it gives us a homomorphism 

f' : (Ci,0 F) C3) (C; 0 F) --, Cp  C3) c; cg) F. 

Now f' is in fact a vector space homomorphism in each variable separately. For 
instance, if y and $ are fixed, 

I ' (7 (x ® a) ® (y ® On = I' ((x 0 7.1) 0 (y 0 0)) 
--.--- x 0 y 0 (ya) /3 = 7(x 0 y 0 03). 

Thus f' induces a homomorphism 

f " : (C, C3) F) OF  (C; 0 F) --. C i, 0 C'g  0 F. 

The fact that f" is an isomorphism is easy to prove. If {x.} is a basis for e 
and fya l is a basis for et, then {x0  ®yo} is a basis for e 0 e'. The elements 
{x„ 0 1} and }y$  0 1} form vector space bases for e 0 F and e' 0 F, respec-
tively; hence the elements {(xa  0 1) OF  (ye  0 1)1 form a vector space basis for 
(e ® F) OF  (9' 0 F). Their images under f" are the elements {(xa  ® ye) 0 1 }, 
which form a vector space basis for (e 0 ') 0 F. 0 

Example 4. If K and L are simplicial complexes, with K or L locally finite, there is 
a vector space isomorphism 

ED, + , . .14(K; F) OF  H,(L; F) —0 H.,(1Ki X ILI; F). 

This fact follows from the preceding theorem, once we note that since for all i, 

I i i (e (K) e e(L)) = H1(IKI X [Lb, 

the same holds with arbitrary coefficients F, by Theorem 45.1 and Theorem 51.1. 

EXERCISES 

I. Show the Kfinneth theorem fails in reduced homology. 

2. Let K. and L. be subcomplexes of K and L, respectively; assume K or L locally 
finite. Then ild X iLi is triangulable, as usual. Show there is a chain map that 
induces homology isomorphisms 

e (K,K.) ®e (L,4) --, 7) (K X L, (K. X L) U (K X 4)). 

Derive a Kenneth sequence in relative simplicial homology. 
3. Let e be a free chain complex. Show there is a natural exact sequence 

0 — ED, + , ..H,(e) e H.(e';G) --. H.,(e 0 e';G)-- 

ep 4. , ..Hp  _ ,(e) * 1-19(e';G)--. O. 

Show this sequence splits if e,  is free and either G is torsion-free or H,(e') is 
torsion-free for all i. 
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§59. THE EILENBERG-ZILBER THEOREM 

Now we show that for an arbitrary pair of topological spaces, the chain com-
plex i(X) 0 *(Y) can be used to compute the singular homology of X X Y. 
The crucial tool for the proof is the acyclic model theorem (§32). 

Lemma 59.1. If {e,t} and fecel are acyclic augmented chain complexes, 
and if e is free, then {e 0 ecil is acyclic. 

Proof We show that H„,(& 0 0') is infinite cyclic if m = 0, and vanishes 
otherwise. This proves that e ® e' is acyclic relative to any augmentation. 

We can apply the Kiinneth theorem, since e is free. We have 

Hp(&) * H,(ei) = 0 

for all p and q, because each group involved either vanishes or is infinite cyclic. 
Therefore, 

H., (e 0 el =., Epp 4. 9  ..II,,(e) 0 II,(6'). 

If m is positive, at least one of the groups Hp(0) or 11q(&') vanishes, so 
1-1„,(e ®e') = 0. If m = 0, then 

11,,(0 0 e') :-...- II.(e)0 H,,(01) --:--Z0Z=Z. 0 

Theorem 59.2 (The Eilenberg-Zilber theorem). For every pair X, Y of 
topological spaces, there are chain maps 

eS' ( X ) 0 eS' (Y ) 4 -._: eS' ( X x Y) 

that are chain-homotopy inverse to each other; they are natural with respect to 
chain maps induced by continuous maps. 

Proof Consider the category of pairs of topological spaces and pairs of 
continuous maps. We define two functors from this category to the category of 
augmented chain complexes, as follows: 

G(X,Y) = eS"(X)0 e (y), 	G' (X,Y) --- S (X X Y), 
G (f,g) =A ®g,. 	G' (f,g) = (f X g)#- 

It is easy to check the functorial properties. 
Let At be the collection of all pairs (AA), where Ak  denotes the standard 

k-simplex. We show that G and G' are both acyclic and free relative to the 
collection of models .42. Then the theorem follows immediately from the acyclic 
model theorem. 

Acyclicity is easy to check. The augmented chain complex IS (Ap  X A,),€} is 
acyclic because A, X A, is a contractible space. The chain complex 1* (41,) 0 
? (41,),i) is acyclic by the preceding lemma. 

We show that G' is free. Given a non-negative integer m, let the indexed 
family of objects from AI corresponding to this integer consist of the single pair 
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(41„„A„), and let the corresponding element of S,„ (I„, X A„,) be the diagonal 
map d : A„,---,  A„, X A,,,. We show that as (f,g) ranges over all pairs of continu-
ous maps 

(f,g): (41„„A„,) --+ (X,Y), 

then the elements 

[G1  (f,g)1 (d) = (f X g)4(d) -= (f X g) 0 d 

are distinct and range over a basis for the group S,„ (X X Y). But 

(f x g) ed:A,,,--)XXY 
is just the map T given in coordinates by T(z) = (f (z),g(z)). For each pair 
(f,g) of maps, we have a different singular simplex T, and every singular sim-
plex on X X Y is of this form. Thus these elements do form a basis for 
Sk,(X X Y). 

Now we show G is free. Given a non-negative integer m, let the indexed 
family of objects from ..42 corresponding to this integer be the family 

((AA) I p + q = m}. 

The index set in this case consists of all pairs (p,q) of non-negative integers for 
which p + q = m. Let the element of (eS' (ilp) 0 ef (Q)., corresponding to the 
index (p,q) be the element ip  0 iv  where ik  : btk  --, ilk  denotes the identity sin-
gular simplex on the space Ak. We need to show that as (p,q) ranges over its 
index set and (f,g) ranges over all maps 

(f,g) : (4,60—,  (X,Y), 

then the elements 

[G (f,g)] (ip0i4) = (f0 0 g4)(ip0i4) = f0 g 

are distinct and form a basis for the group (et (X) 0 6' (Y)).. But Sp(X) is 
free with the set of all singular simplices f :.6.,,--. X as a basis. Similarly, Sq(Y) 
has as basis the set of all singular simplices g: A.,,--,  Y. By Theorem 50.8, 
Sp(X) 0 Sq(Y) has the elements JO g as a basis. The proof is now complete. 

0 

Theorem 59.3 (The Kiinneth theorem for topological spaces). Given topo-
logical spaces X, Y, there is an exact sequence 

0 --. Epp  + g ..Hp( X) 0 1-14(Y)--+ H,„(X X Y) --0 

EB„ 9 ,Hp  _ ,(X) * 1-1,,(Y) --+0. 

It is natural with respect to homomorphisms induced by continuous maps. It 
splits, but not naturally. 0 

The monomorphism 

Hp(X) 0 114(Y) --, H„,(X X Y) 
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of this theorem is called the homology cross product. It equals the composite 

I-4(X) Hq(Y)  H,,,(eS' (X) 0 eS' (Y)) --.11„,(X X Y), 

where 0 is induced by inclusion and µ is the Eilenberg-Zilber chain equivalence. 
We shall not have much occasion to use the homology cross product, but a 
similar cross product in cohomology will prove to be quite important, as we 
shall see in the next two sections. 

Theorem 59.4. Let X and Y be topological spaces; let F be a field. There 
is a natural isomorphism 

EDF 	„I-4(X; F) Hq(Y; F) H„,(X X Y; F). 0 

For later applications, it will be convenient to have a specific formula for 
one of the Eilenberg-Zilber chain equivalences. Here is such a formula. 

Theorem 59.5. Let al  :X X Y X and 7r2 : X X Y—*Y be projections. 
Define 

v: S,„(X X Y) e„ 	MS, (X) Sq(Y) 

by the equation 
m 

v (T) 	T o l(oe, 	,e,)] 0 [ir2 o T o 1(c,, 
=o 

Then v is a natural chain equivalence that preserves augmentation. 

Proof. That v is natural and augmentation-preserving is easy to check. 
The fact that v is a chain map is a straightforward computation, about as messy 
as such computations usually are. In fact, when one computes directly, one finds 
that the expression for ov(T) equals the expression for v(8T) plus some extra 
terms. One has 

5v(T) — v(f3T) 

[Tx o l(€0, • • ,Zi)] 0  [Ty ° (Ei, • • • 'EA 
i =t 

m — 3 

+ 	( 	I )`t Tx o 1(€,), 	A)1 0 [Ty o l 	- • • A„,)]. 
=o 

where Tx 	T and Ty = ir2  o T. These terms cancel in pairs. 
It then follows from the proof of the Eilenberg-Zilber theorem that v is a 

chain equivalence. 0 
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The original proof of the Eilenberg-Zilber theorem did not use acyclic 
models. It used the chain map v, and a chain map /.1 defined by a similar for-
mula. One wrote down formulas to show that both v c µ and µ o v were chain 
homotopic to identity maps. 

EXERCISES 

1. Show there is a (non-natural) isomorphism 

H„,(X x Y ) ED, 	.H„(X;If,(Y)). 

2. (a) Let A C X and B C Y. Use the Eilenberg-Zilber theorem to show that 
there is a natural chain equivalence 

(X,A) 0 (Y,B)--. 	e.V(X X Y)  
8 (X X B) + 8 (A X Y)

.  

(b) State and prove a Kfinneth theorem in relative singular homology, assum-
ing {X X B, A X Y} is excisive. 

3. Let v be the chain map defined in Theorem 59.5. Show that it is natural and 
preserves augmentation. Check that v is a chain map. 

4. (a) Let X and Y be CW complexes. Show that the tensor product D(X) 0 
2) (Y) of their cellular chain complexes can be used to compute the homol-
ogy of X X Y. 

*(b) Show in fact that 2)(X) 0 23(Y) and eV(X) ® eS' (Y) are chain equivalent. 
(c) Compute the homology of P2  X P3  by computing the groups and boundary 

operators in the chain complex 2)(P2) 0 2) (P3). 
(d) Check the results of (c) by using the Kenneth theorem. 

S. Compute the homology of the following: 
(a) S2  X PS 

(b) P3  X I" 
(c) S3  X L(n,k) 
(d) L(n,k) X L(m,j) 
(e) S' X St X S3  
(f) CP2  X CP' 

6. Suppose M is a compact, connected n-manifold, such that H„(M) = Z. There 
are relations among the betti numbers and torsion coefficients of M. Use the 
results of the preceding exercise to formulate a conjecture concerning these 
relations. 

*§60. THE KUNNETH THEOREM FOR COHOMOLOGY 

One can always compute the cohomology of a product space by first computing 
its homology from the Kenneth theorem, and then applying the universal coeffi-
cient theorem for cohomology. But one might hope for a version of the Kiinneth 
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theorem that applies to cohomology directly. We prove such a theorem now. It 
has applications to computing the cohomology ring of a product space, which we 
shall study in the next section. 

First, we introduce the cross product operation in cohomology. We give only 
the definition here, postponing discussion of its properties to the next section. 

Throughout, let R be a commutative ring with unity element. 
Let 0 and 6' be chain complexes. Corresponding to the chain complex 

6, there is a cochain complex Horn (0,R), whose p-dimensional group is 
Horn (Cp,R). Similarly, one has the cochain complex Horn (0',R). We make the 
tensor product of these cochain complexes into a cochain complex in the 
way one might expect: The m-dimensional cochain group of Horn (0,R) 0 
Horn (0',R) is the group 

el, + q  ,..Hom(C„,R) 0 Hom (C;,R). 

And the coboundary operator is given by the rule 

5 (0°  e ,Pq) = (50' e 0 + ( — 1 )poP 0  O itifi• 

Roughly speaking, this cochain complex is obtained by Homming first, and 
then tensoring. Of course, one could instead tensor first and then Horn. One 
obtains the cochain complex Horn ((0 0 ei),R). Its group in dimension in is 

Hom ((0 0 el „,,R). 

Its coboundary operator is the dual of 5, so we denote it by a. 
There is a natural homomorphism of the first of these cochain complexes to 

the second, described as follows: 

Definition. Let p + q = m; let 

0 : Hom(C,,R) 0 Horn (Cq ,R) ---, Hom ((e 0 el „„R) 
be the homomorphism defined by the equation 

(9 (0'' 0 0), c, 0 4) = (0P,c,.) • (0,4). 

Here we make the convention that (4',c,) equals 0 unless p = r, and 
(0,4) = 0 unless q = s. Said differently, we agree that any element O P  of 
Horn (C,,R) is automatically extended, without change of notation, to a homo-
morphism of EDC, into R, by letting it be zero on all summands other than Cr  

Lemma 60.1. The homomorphism 0 is a natural cochain map. 

Proof Let q5 e Hom(C,,R) and 0 e Hom(c,R), where p + q = m. Let 
r + s = m + 1. We compute 

(0 (5 (0 0 v')), c, ® 4) = (oo,c,)(0,4) + (— 1 )'ok,c,)(3'0,4), 

(a° (4) o 0, c, ®e,) = (3(4) o ;1), 5 (c, €0 4)) 

= (0,ac,)(0,4) + (-1)'(46,c,)(4,,o'c's). 
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These expressions are equal except for the signs (-1)' and (-1)' on the final 
terms. However, if p r, then (0,c,) = 0 and these final terms vanish. 

It is apparent from its definition that if f : c --. A, and g : Cg --. 1)9  are 
homomorphisms, then -..... 

0 . (.10 -,e) = (f 0 g) 0 O. 

Thus 0 is natural. 0 

Now we define a homomorphism in cohomology analogous to the map 9 
that appeared in the homology version of the Kenneth theorem. 

Definition. Define a homomorphism 

9 : HP (0; R) 0 Hq(e'; R) --. fr i(e 0 ei; R), 

where m = p + q, as follows: Let ck and 4/ be cocycles of e and e' of dimen-
sions p and q, respectively. Then define 

000 ® 101) = {6 (o ® 01- 
Note that 0 (4) ®4i) is a cocycle, because 

50(0 0 IP) = 00(0 0 0) = 0(a0®4' ± 0 0 6'4,), 
which vanishes because 0 and IP are cocycles. A similar computation shows 9 is 
well-defined. 

Definition. Let m = p + q. We define the cohomology cross product as 
the composite 

IP 	
9 

(X; R) 0 Hf(Y; R) ---, Ilm (4' (X) 0 S (Y); R) 4  H" (X X Y; R), 

where v is the Eilenberg-Zilber chain equivalence. The image of af ®/69  under 
this homomorphism is denoted a" X ftg. 

Let us note that just as was the case with the cup product, the homomor-
phism 0 can be defined for other coefficients than R. For instance, our formula 
for 6 can be used to define a homomorphism 

0 : Hom (CrZ) 0 Hom (C,,G) --. Hom ((@ 0 @')„„G) 

that is a natural cochain map. It is the same as the previous map when R = 
G = Z. 

Similarly, one notes that both Horn (C,,,R) and Horn (C;,R) have R-module 
structures. From the definition of 6, it follows that 

0  (4:10 0  In = 0(4,  0 4) = a0 (4 ® O. 
This means that 6 induces a homomorphism 

0 : Hom (Cp,R) OR  Horn (C7,R) --. Hom ((e 0 ei)„„R) 

that is in fact a homomorphism of R-modules. The case of particular interest to 
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us occurs when R is a field F; in this case 0 is a linear transformation of vector 
spaces. 

Now in both these cases, one has an induced homomorphism 0 on the coho-
mology level, and thus a cohomology cross product operation as well. In one 
case, the cross product is a homomorphism 

HP (X) 0 Hq (Y; G) --, 1-1„,(X X Y; G). 

In the other case, it is an R-module homomorphism 

1-11' (X; R) OR  Hg (Y; R) --, Hin (X X Y; R). 

The most general cross product is defined relative to an arbitrary coefficient 
pairing, which is a homomorphism A ®R  A' --. A" of R-modules. We shall not 
need this degree of generality. 

The Kiinneth theorem with integer coefficients 

Now we prove the Kiinneth theorem in cohomology. We restrict ourselves 
to integer coefficients for the present. 

The idea of the proof is to re-index the groups Horn (Cp,Z) so as to make 
Horn (6,Z) into a chain complex, and then apply the Kfinneth theorem we have 
already proved. One difficulty is that Hom(Cp,Z) is not free in general, so some 
restrictive hypotheses are needed. 

There is an additional difficulty as well. By definition, the cohomology of 
6 0 6' is computed from the cochain complex Hom((e 0 0')„„Z). This is not 
the same as the cochain complex 

Hom (0,Z) 0 Hom (61,Z) 

to which we are going to apply the Kfinneth theorem. Here is where the homo-
morphism 0 comes in. We prove the following lemma: 

Lemma 60.2. Let e and e' be chain complexes that vanish below a certain 
dimension. Assume e is free and finitely generated in each dimension. Then 

0 : ED!, + q ,. . Hom (Cp,Z) 0 Hom(C;,Z) --. Hom ((6 0 61)„„Z) 

is an isomorphism. 

Proof For purposes of this proof, we break B up into a composite of 
two maps: 

Hom (Cp,Z) 0 Hom (C;,Z) M Hom (Cp  0 C;,Z), 

EpHom (Cp  0 C;,Z) --. Hom (49C; 0 C;,Z), 

where the summations extend over p + q = m. The map M satisfies the equation 

age 0 r), cp  0 ed . (OP,cp )(zkg,eq ). 

The map e is defined as follows: If F : Cp  0 C; ---, Z, then e (F) is the map of 
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(131r + $ = mCr0 C; into Z that equals F on the summand Cp  0 C; and vanishes on 
all other summands. 

Step 1. Because C„ is free of finite rank, it follows that 

M : Hom (Cp,Z) 0 Hom (C;,Z) Hom(Cp  C;,Z) 

is an isomorphism: Let a„ 	,a, be a basis for Cp; let -eta, 	,a„ be the dual 
basis for Hom(Cp,Z). The group on the left is the direct sum of k copies of 
Horn (C;,Z), the ith summand being the subgroup 

(5,) 0 Hom (C;,Z), 

where (iii) is the infinite cyclic group generated by «J. Now Cp  C; is the direct 
sum of k copies of cg, the ith copy being (a) 0 C. So Hom (Cp  0 C;, Z) is the 
direct sum of k copies of Horn (C;,Z), the ith copy consisting of all homo-
morphisms that vanish on (ai ) C; for j i. Now M is an isomorphism of 
(a,) 0 Hom (C;,Z) with the ith summand of Hom (Cp  C;,Z), so M is an iso-
morphism. 

Step 2. The map e is clearly injective, and its image consists of those 
homomorphisms of EDC, C; into Z that vanish on all but finitely many sum-
mands. Thus e is not in general surjective. However, since e and e' vanish be-
low a certain dimension, the summation 

9 ,.(Cp e 

is finite. Hence under our present hypotheses, e is an isomorphism. 0 

Theorem 60.3 (The Ktinneth theorem for cohomology). Let e a"d 0' be 
chain complexes that vanish below a certain dimension. Suppose t is free and 
finitely generated in each dimension. Then there is a natural exact sequence 

0 	ED, + q 	 (e) 0 Hq (e') 2,  H'"(e 0 &') 

„IP + 1 (0) * 	o. 

It splits (but not naturally) if 0' is free and finitely generated in each dimension. 

Proof. Let 6 and 6' be the chain complexes whose chain groups in dimen-
sion —p are defined by the equations 

E_, = Horn (Cp,Z) 	and 	E!..p = Hom 

and whose boundary operators are 5 and (5', respectively. Since 6 is free, the 
Kiinneth theorem applies. There is an exact sequence 

ED(H_,(6)0 H_,(61))—,  H,(6 ®6') 

®(H -v ,(6) * H _„(6')) 0, 

where the summations extend over —p — q = —m. Now H _„(6) = HP (e) 
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and H_,,(6') = H9(0'), by definition. Furthermore, by preceding lemma, there 
is a natural isomorphism of cochain complexes 

0 
(6 ®6')-,R  = (Hom (e,z) Horn (ei,z))„, Hom((6 ei)„„z). 

It induces a natural isomorphism 

H „,(6 6') H"'(0 el. 
Combining these facts, we obtain the Kenneth sequence for cohomology. Be-
cause the maps 

H_„v) 	H,(6 ® 6') Hm (e 0 6") 
are induced by inclusion and 0, respectively, their composite equals A. 

If e' is free and finitely generated in each dimension, then C' is free and 
the sequence splits. 0 

Corollary 60.4. In the preceding theorem, the hypothesis that 0 be finitely 
generated in each dimension can be replaced by the hypothesis that H;  (G')be 
finitely generated for each i. Similarly, the hypothesis that 0' be finitely gen-
erated in each dimension can be replaced by the hypothesis that Ho') be 
finitely generated for each i. 

Proof. The proof is similar to that of Theorem 56.2. If 0 is free and van-
ishes below a certain dimension, and Hi  (0) is finitely generated for each i, we 
choose a free chain complex 2) that vanishes below a certain dimension such 
that HAI)) = H;  (@) and is finitely generated in each dimension. By Theo-
rem 45.1, there is a chain map q5 : @ --0 5) that induces homology isomorphisms 
in all dimensions. By Theorem 46.2, it is a chain equivalence. Then 

00P:000'—, D0 

is also a chain equivalence. (See the exercises of §57.) 
Since the Kiinneth theorem holds for 2) 0 ec it holds for e ei as well. 

Naturality of the sequence follows as in the proof of Theorem 56.2. 
One proceeds similarly if H;(0') is finitely generated for each i. One re-

places 6" by a chain-equivalent chain complex 2)' that is finitely generated in 
each dimension. 0 

Theorem 60.5. Let X and Y be topological spaces; suppose 111(X) is fi-
nitely generated for each i. There is a natural exact sequence 

0 	 (X) ® 119  (Y) 25+ H"'(X X Y) —+  
Gip 	,HP 1 (X) * Hq(Y) O. 

It splits (but not naturally) if HAY) is finitely generated for each i. 0 
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The Kiinneth theorem with field coefficients 

Just as with homology, the Kiinneth theorem simplifies considerably if the 
cohomology groups are taken with coefficients in a field. 

Theorem 60.6. Let 0 and 6' be chain complexes that vanish below a cer-
tain dimension, such that e is free and H; (6) is finitely generated in each di-
mension. Then there is a natural isomorphism 

p 	q = ,n (HP(6; F) ®F  lig (e'; F)) 2,  H'"(e0 (p' ;  F). 

Proof. By the usual argument, we may assume that 0 itself is finitely gen-
erated in each dimension. The chain complexes 6 and 6' defined by 

= Hom(Cp,F) 	and E'_,7  = Hom 

are vector spaces over F. By the "vector space version" of the Kunneth theorem 
(Theorem 58.4), there exists a natural vector space isomorphism 

..H„,(6) ®F  H_,(6')--. H_„,(6 ®F  €'). 

Since 0 and 5" vanish below a certain dimension and 0 is free and finitely gen-
erated in each dimension, the proof of Lemma 60.2 goes through essentially un-
changed to show that the map 8 defines a vector space isomorphism of 6 ®F  6' 
with Horn (6 ® @;F) that is a cochain map. Our theorem follows. 0 

Corollary 60.7. Let X and Y be topological spaces; suppose 11,(X) is fi-
nitely generated for each i. If F is a field, there is a natural vector space iso-
morphism 

ED p q 	 (X; F) OF  Hq (Y; F) 4  Fr (X X Y; F). 0 

EXERCISES 

1. State and prove a Kiinneth theorem in relative singular cohomology. (See Exer-
cise 2 of §59.) 

2. Compute the cohomology groups of the following spaces. You may use either 
the Kunneth theorem, or the universal coefficient theorem applied to the results 
of Exercise 5 of §59. 
(a) S2  X P5  
(b) P' X P5  
(c) S3  X L(n,k) 
(d) L(n,k) X L(m,j) 
(e) S' X S' X S' 
(f) CP2  x CP3 
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3. Let M be a compact, connected n-manifold such that H„(M) = Z. There are 
relations between the homology and cohomology groups of M. Compare the 
computations of the preceding exercise with those you made in Exercise 5 of 
§59 to formulate a conjecture concerning these relations. 

*561. APPLICATION: THE COHOMOLOGY RING 
OF A PRODUCT SPACE 

In the preceding section, we defined the cohomology cross product and used 
it in obtaining a Kiinneth theorem in cohomology. In this section, we explore 
some of its properties, and use it to obtain information about the ring structure 
of cohomology. 

Throughout, we shall state our results first for the cross product with coef-
ficients in R, and then explain to what extent they hold for the cross product 
with (Z,G) coefficients. 

Definition. The cross product is defined as the composite of the homomor-
phisms A and v* of cohomology. Because these homomorphisms are induced by 
the cochain maps 0 and respectively, the cross product is induced by the co-
chain map o 0. Accordingly, we define 

cP X cq = 1/0(cP ce), 

and call it the cochain cross product. 

This operation induces the cohomology cross product. We compute it as 
follows: Let m = p q. If T : 	X x Y, then 

(cP X cg,T) = (8(cP 0 eq),v(T)) 

T o 1(eo, 	,ei )) (C9,72  o T o 1(ci , . 	,e„,)). 
i = 0 

Now only one of these terms is non-zero, the term for which i = p. We con- 
clude the following: 

Lemma 61.1. The cochain cross product is given by the formula 

7 (c° X cg,T) = (c°,, T 1(co, • • • ,Ep)) 	T o  1(e°, 	,t,„)). 0 

This result holds for (Z,G) coefficients as well. In words, it says that the 
value of cP X c9  on T equals the value of c° on the front face of the first compo- 
nent of T, times the value of cq on the back face of the second component of T! 

We now derive some properties of cross products. 
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Theorem 61.2. (a) If X :X X Y---. Y X Xis the map that reverses coordi-
nates, then 

Xa  09  X ce) --- (-1)mce X 09- 

(b) In H* (X X Y X Z; R), we have the equation (a X 1) X y = a X 
(0 X 7). 

(c) Let 2-1 : X X Y—,  X be the projection map. Let 1y be the unity element 
of the ring H*(Y; R). Then 

Irt (aP) = a° X l r  

Similarly, 

11-: UM = lx X Og . 

Proof. (a) Consider the chain maps 

(e9 (x) 0 e (Y)). .2— S„,(X X Y) 

1w 	 1 # 

(eV(Y) 0 4' (X)). 42— S„,(Y :X), 

where we define w by the equation 

co (cp  0 cf) --= (-1)"(cq  0 cp). 

Then w is a chain map, as you can check. (Without the sign, it would not be.) 
This diagram commutes up to chain homotopy, as we now show. 

The chain maps Air  and v are known to preserve augmentation, and they 
are natural with respect to homomorphisms induced by continuous maps. One 
checks readily that w has the same properties. Consider the functors 

G(X,Y) = A' (X X Y), 	G' (X,Y) = et' (Y) 0 8 (X), 

G(f,g) = (f x g)#, 	G' (f,g) = g#  ®f,. 

We have already shown that these functors are free and acyclic relative to the 
collection of model objects .4t = {(Apaig)}. Therefore, any two natural transfor-
mations of G to G' are naturally chain homotopic. The chain maps w 0 v and 
v o Ai/  are two such natural transformations, as we noted; therefore they are 
chain homotopic. 

Consider the dual diagram 

(BP (X; R) 0 Sq (Y; R) ----. Hom ((49  (X) 0 * (Y))„„R) —7-=,  Sm(X X Y; R) 

171 1.6) 	 T x'  
EDS.; (Y; R) 0 SP  (X; R) ---+ Hom ((e9 (Y) ® 8 (X)),,,,R) ---11  -' , S''' (Y x X; R), 

where we define n by the equation 

n (cq 0 e) = (— °me 0 cq. 
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The first square of this diagram commutes, as you can check. The second square 
commutes up to cochain homotopy. Therefore, the induced cohomology dia-
gram actually commutes. Then (a) follows. 

The proofs of (b) and (c) may be carried out, as was the proof of (a), using 
acyclic model arguments. It is easier, however, to use the cochain cross product 
formula. In particular, the proof of (b) is trivial if one uses this formula. To 
check (c), let 9 be a cocycle of X that represents the element a° of HP (X; R). 
Then ce X 1 y is represented by the cochain 9 X z°, where z° is the cocyle of Y 
whose value is 1 on each singular 0-simplex of Y. If T : A,, ---, X X Y is a singu-
lar p-simplex, we compute 

(zii X z°, n = (zPor, o T o 1(4,. . . ,e,,)) • (z°,2-2  o T 0 1(tp)) 

= (zPor, 0 T) • 1 = (ir: (9),T). 

Therefore, aP X 1y = Ill (a"), as claimed. The proof for Ix  X IV is 
similar. 0 

We note that all three of these properties, suitably interpreted, hold for the 
other version of cross product. Anticommutativity (a) holds if one uses (Z,G) 
coefficients on the left side of the equation and (G,Z) coefficients on the right. 
Associativity (b) holds if two of the coefficient groups are Z and one is G. The 
first statement in (c) holds if 1 y e H° (Y) and aP e HP (X; G), for then aP X 
1 y e H° (X X Y; G) and the statement makes sense. A similar remark applies 
to 1x  X 13'. 

The similarity of the formula for the cross product to the formula for the 
cup product may make you suspect that there is some relation between the two. 
It is the following: 

Theorem 61.3. Let d : X --, . X X X be the diagonal map, given by d(x) =--
(x,x). Then 

ci*(aP x 047) = ce,  u Og. 

This formula holds for both versions of the cohomology cross product. 

Proof Let zP and z° be representative cocycles for aP and /39, respectively. 
If T : tli, + q  ---, X is a singular simplex, we compute 

(d 11 (zP X zq),T) = (zP X zq,d 0 T) 

= (zPor, o (d 0 T) 0 1(4, . . . ,ep)) • (zgor, o (d 0 T) o 1(c„. . . ,e,,,. q)) 

= (ZP u zg,T). 

Here we use the fact that 7ri  e d . ix  = 72  0 d. 0 

This theorem is due to Lefschetz. It shows, finally, why cohomology has a 
ring structure but homology does not. Both homology and cohomology have 
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cross products, but only in cohomology can one form the composite of this cross 
product with the homomorphism induced by the diagonal map. In homology, 
one has the diagram 

Hp(X) ®14(X) X  ----, II,,.,. 	
d 

9(X X X) 2- Hp 4. q(X). 

Here cl*  goes in the wrong direction! 

Coronary 61.4. Cup products are anticommutative. That is, 

Ce L-3 Og  .---- (-1)Pq M t..) a". 

This formula holds for both versions of cup product. 

Proof Let X:X X X ---. X X X be the map that reverses coordinates. Then 
X . d = d. We compute 

a" Li Og  = a. (a,  x oq) = (X 0 d)*  (ce X Og) 
= d* ((-1)m fig x aP) --= (-1)" i3q t a'. 0 

Now we compute cup products in the cohomology of a product space. 

Theorem 61.5. In the cohomology ring H* (X X Y; R), the following for-
mula holds: 

(a X g) u (a' X gi) = (-1)*-0)0k-o(ce L.) a') X (13 L., g'). 

Proof. Let irl  : X X Y---. X and iri  : X X Y--. Y be the projection maps. 

Step I. We first prove the formula when 0 and a' are the unity elements 
of their respective cohomology rings. Let z' be a cocycle representing a, and zq 
a cocycle representing 0'. Then a X 01  is represented by z" X zq. Now 

(9 X zg,T) = (zPori  0 T 0 l(f,„ . . . ,c0)) • (e7,71-2  0 T 0 l(e„, • • • ,ep + 0) 

= (Irj (zP), T 0 1(4, • • • ,f,,)) • (71(e),T o  I (Er  • • • ,ep + q)) 

=---- (ii  (z') L.) al (e),T). 

Thus we have the desired formula, 

a X fr 0-- irt (a) t...) ir: (3') 0.-- (a X 1 y) u (1 x  X 13'). 

Step 2. We now prove the formula when # and #' equal the unity element 
of their cohomology ring. By naturality of cup products, 

71(a) u irt (a') = ir:' (a u a'). 

This formula says that 

(a X 1 y) li (or t  X 1 y) = (a L.) a') X ly. 
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Step 3. Finally, we prove the general case. We compute 

(a X13) u (a' X 13') = (a X 10 L.,  (1 x  X )3) u (a' X 1y) Li (1 x  X )3') 
= 	

(a X 
10 Li (a, 10 Li  

(1x X0) u (1x X 131 

= (-1)(d1")(6'.)  (a u a') X (3 Li 13'). 0 

This theorem enables us to compute the cup product of certain elements of 
the cohomology ring H* (X X Y; R) in terms of the cup product operations in 
H* (X) and H* (Y). In the case where the Kiinneth theorem for cohomology 
holds, we can state this fact more formally, as we do in the following theorem. 

Definition. Given X and Y, we give the tensor product 

H* (X; R) eR FP (Y; R) 

the structure of ring by defining 

(a 0 0) t..) (a' i3') = (-1)P (a Li a') 0 (13 	)3'), 

if 13 e HP (Y; R) and a' 6 119  (X; R). 

You can check this operation is well-defined, and satisfies the axioms for a 
ring. In particular, the signs come out right for associativity. 

Theorem 61.6. Suppose Hi (X) is finitely generated for all i. Then the 
cross product defines a monomorphism of rings 

H* (X) ®H* (Y) H* (X X Y). 

If F is a field, it defines an isomorphism of algebras 

H* (X; F) OF H* (Y; F) H* (X X Y; F). 

Example 1. Consider the cohomology ring of Sa X Sm, where n,m 	Let a" e 
(S") and ir 6111"(.31 be generators. Then H* (S" x S'") is free of rank 4, 

with basis 1 X 1, a X 1, 1 X 13, and a X /3. The only non-trivial product of positive 
dimensional elements is (a X 1) t..) (1 X 0) = a X ,B. 

Inthe special case n = in = 1, this space is the torus, and this is the cohomol-
ogy ring we have already computed. Let us picture these cohomology classes. Rep-
resent the torus by the usual diagram, as in Figure 61.1. If X denotes the subspace 
abca, then a generator a for its 1-dimensional cohomology is represented by the 
cocycle x' = [b,c] *. Since the projection map 7/  is simplicial, the cocycle 4(x9 is 
the cocycle w' of T, as pictured. This cocycle thus represents the cohomology class 
a X 1. Similarly, the cocycle z' pictured in Figure 61.2 represents the cohomology 
class 1 X )5, where 13 is represented by the cocycle [d,e] * of the space Y = adea. 
Now (a X 1) L.) (1 X $) = a X (3, and this class generates H2( T). This fact we 
already knew, of course. 

Example 2. Consider the cohomology ring of P2  X P2, with Z/2 coefficients. Let 
a e W(P2; Z/2) be the nonzero element; then az = a a is non-zero. (See the 
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exercises of §49.) By the preceding theorem, the vector space H* (P2 x P2; Z/2) 

has dimension 9 with the following basis elements: 

dim 0 	1 X 1 

dim 1 	a X 1,1 X a 

dim 2 	a2  X 1,a X a, 1 X a' 

dim 3 	a' X a, a X a2  

dim 4 	a' X a2. 

The multiplication table is easy to write down. No signs are involved because the 
coefficient field is Z/2. 

EXERCISES 

1. (a) Let A C X and B C Y. Show that if {X X B, A X Y} is excisive, there is a 
relative cross product 

HP (X,A) 0 119(Y,B)-0 Hr' I(X X Y,(X X B) U (A X Y)) 

for our usual sets of coefficients. 
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(b) Prove Theorems 61.3 and 61.4 for relative cup products. 

2. (a) Suppose that the cohomology cross product is defined as in this section, 
and that cup products are defined by the formula a L.) (3 = d* (a X 3). 
Use properties of cross products to show that L.) is bilinear and associative, 
and that the class {z0}  acts as a unity element. 

(b) Suppose that cup products are defined as in §48 and that we define cross 
products by the formula 

a X /3 	(a) 	(0)1 

where r, : X x Y— X and rz  : X X 	Y are the projections. Use prop- 
erties of cup products to show that cross product is bilinear and associative, 
that r: (a) = a X 1 y, and that a Li = d* (a X /3). 

3. Compute the following cohomology rings: 
(a) H* (Si x S1  X S'). 
(b) H* ((T # T) X S'), where T is the torus. 
(c) H* ((SI X S') # (S2  X S")). 

(In general, if M and N are connected n-manifolds, M # N is obtained by 
removing an open n-ball from each of M and N and pasting the remnants 
together along their boundaries. In the examples we have considered, this 
manifold is well-defined (up to homeomorphism). This is not true in gen-
eral, however, unless one brings in the question of "orientation," as we 
shall see.) 

4. Let M be a compact, connected n-manifold with H"(M) Z. Use the re-
sults of the preceding exercise to formulate a conjecture about the cup product 
operation 

(M) 0 Ha "(M)—. H"(M) 

5. Let S denote the Klein bottle and let T denote the torus. Compute the following 
cohomology rings: 
(a) H* (T X S). 
(b) H* (T X S; Z/2). 



Duality in Manifolds 

As we have mentioned before, manifolds are among the most familiar and 
important geometric objects. Therefore, any theorems we can prove about man-
ifolds are likely to be useful, not only in topology, but also in differential geome-
try and other branches of mathematics. The duality theorems are examples of 
such theorems. 

We already know one relationship that holds between the homology and 
cohomology groups of an arbitrary topological space; it is expressed by the 
universal coefficient theorem for cohomology. For manifolds, there is a second 
such relationship; it is expressed in the famous theorem called the Poincare 
duality theorem. If one thinks of the universal coefficient theorem as expressing 
a kind of algebraic duality between cohomology and homology, then Poincare 
duality can be thought of as basically geometric in nature. This duality does not 
hold for an arbitrary space, but depends specifically on properties possessed 
by manifolds. 

There is a certain amount of interplay between these geometric and alge-
braic types of duality. This interplay has some interesting applications; we shall 
apply it to the problem of computing the cohomology ring of a manifold. 

There are further duality theorems; they bear the names of Lefschetz, 
Alexander, and Pontryagin. We shall take them up in due course. All are con-
cerned in one way or another with algebraic-topological properties of manifolds. 

Throughout, we assume familiarity with local homology groups (§35). 
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§62. THE JOIN OF TWO COMPLEXES 

In this section, we introduce the notion of the join of two complexes, and study 
some of its properties. 

Definition. Let K and L be nonempty complexes in some euclidean space 
V. Let s = v, . 	„, be the general simplex of K and let t = wo  . w, be 
the general simplex of L. Suppose that whenever s e K and t e L, the points 
v., • - • ,v„,, wo, • • . ,w„ are independent. Then we let 

s * t = v. 	vmwo . w. 

denote the simplex they span. If the collection consisting of all the simplices s * t 
and their faces is a simplicial complex, then this complex is called the join of K 
and L, and is denoted by K * L. 

If K consists of a single vertex u, then v * L is the cone over L, as already 
defined. If K consists of two points, then K * L is the suspension of L and is 
denoted S (L). Conditions under which K * L exists in general are given in the 
following lemma. 

Lemma 62.1. Let K and L be disjoint nonempty complexes in E'. 
(a) If K * L exists, then its polytope equals the union of all line segments 

joining points of IKI to points of ILL two such line segments intersect in at most 
a common end point. 

(b) Conversely, if every pair of line segments joining points Of 14 to 
points of ILA intersect in at most a common end point, then K * L exists. 

Proof Step 1. We prove the following: Let a = v.. . . 	w„ be a 
simplex in V. Then a equals the union of all line segments joining points of 
s = 	v,„ to points of t = wo  . w„; two such line segments intersect in at 
most a common end point. Furthermore, Int a equals the union of all open line 
segments joining points of Int s to points of Int t. 

This result was given as an exercise in §1; we give a proof here. 
Let us prove the statement about Int a first. Suppose p = Ax + (1 — X)y, 

where 0 < A < 1 and x e Int s and y e Int t. Then x = aiv, and y = 2 Ojw,, 
where ai  > 0 and > 0 and 2 _2(3;= 1. Hence, 

p 	2 (Xai)vi  + 2 (1 — X)fliwi, 

where the coefficients are positive and their sum is 1. Thus p is in Int a. Con-
versely, suppose p e Int a, so that 

p -y + Opvi, 
where 7;  > 0 and of  > 0 and -yi  + 0.;  =-- 1. Set =-- 2 -ye ; set ai  = 71/X and 
131  = 45j/(1 — X). Then 

p = XI 	+ (1 — X) 13”. 



§62. 	 The Join of Two Complexes 369 

Thus p lies interior to a line segment joining a point of Int s and a point of Int t. 
Now we prove the statement about a. Since a is convex, it contains all line 

segments joining points of s to points of t. Conversely, suppose x e a and x is in 
neither s nor t. Then x lies interior to a face a' of a that has vertices in common 
with both s and t. By the result of the preceding paragraph, x lies on an open 
line segment joining a point of d fl s with a point of a' fl t. 

Finally, we show that any two of these line segments intersect in at most 
a common end point. Suppose p is a point lying on two such line segments—
that is, p equals 

X 2 aivi  + (1 — X) 2 	= X' 2 a;c7;  + (1 — X') 2 13;wi, 

where 0 X, X' :5._ 1, and a, a- 0, ,3;  0, a; a- 0, f;>0, and 2 ai  = 	= 
2 	= 	13.; = 1. Since the sum of the coefficients on either side of this equation 
is 1, we conclude from the independence of the vertices of a that 

Xa, = X'a;, and 

(1 — X)iij  = (1 — 

Summing the first of these, we see that X = X'. If A = 0 or X = 1, then p is 
an end point of each line segment. Otherwise, these two equations imply that 
a;  = a; and f3 = gip  and the two line segments coincide. 

Step 2. Now we prove (a). Consider the distinct line segments xy and 
x'y', where 

x e Int s and x' e Int s', with s, s' e K; 
y e Int t and y' e Int t', with t, t' e L. 

Since the interior of the line segment xy lies in Int (s * t), we have the inclusions 

xy C (Int s) U (Int(s * t)) U (Int t), 
x'y' C (Int s') U (Int (s' * t')) U (Int t'). 

Because K * Lis a complex, these six open simplices are disjoint if s * s' and 
t * 	whence xy and x'y' are disjoint. If s = s' and t * t', they intersect only 
in the set Int s, so the line segments intersect in at most the end points x, x'. If 
s 	s' and t = t', then the line segments intersect in at most the end points 
y, y'. Finally, if s = s' and t = t', it follows from Step 1 that the line segments 
intersect in at most a common end point. 

Step 3. We prove (b). First, we show that if va  . 	e K and 	w e 
L, then the points v„, 	,v.„w„ 	,w„ are linearly independent. Consider the 
linear map 

1 = 1(vo, • • • ?v,,,,wo, • • • X.), 

mapping ,64, 4. „ 4. , into V. This map carries each line segment joining a point of 
4... e„, to a point of Em+1-"Em+.+1  linearly onto a line segment joining a 
point of vo 	u„, to a point of w„ 	w„. Then by hypothesis, 1 is injective. As 
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a result, the plane spanned by these points must have dimension m ± n + 1; 
otherwise, the linear map 1 could not be injective. Hence v., .. . ,v„„w„, . . . ,w,, 
are independent. 

It follows that K * L exists. For if two simplices of K * L have interiors that 
intersect, one must be of the form s * t. Each point of Int s * t lies on an open 
line segment joining a point of (ICI to a point of ILI. If Int s * t and Int s' * t' 
intersect, two such open line segments must intersect. If Int s * t and Int s' 
intersect in a point y, then y lies interior to one such line segment and is the end 
point of another. Similarly, if Int s * t and Int t' intersect. Each of these situa-
tions is contrary to hypothesis. 12 

Suppose K and L are complexes, but they are not situated in euclidean 
space in such a way that K * L is defined. Then one can find complexes K. and 
L. isomorphic to K and L, respectively, such that K„ * L. is defined. For in-
stance, one can take K. and L. to be disjoint subcomplexes of the standard sim-
plex .1i, for some index set J. 

Lemma 62.2. Suppose K * L exists, and suppose K is locally finite. Then 
the map 

7r : IKI X ILI X I--,  IK * LI 
defined by 

7 r(x,y,t) ----- (1 — t)x + ty 

is a quotient map. For each x e IKI and y e ILI, it collapses x 
point and IKI X y X 1 to a point. Otherwise, it is one-to-one. 

Proof The topology of IKI X ILI X I is coherent with the subspaces o-  X 
T X I, for a e K and T e L. To prove this fact, we apply the results of §20. The 
topology of ILI X I is coherent with the subspaces r X I, for T 8 L. Because IKI 
is locally compact Hausdorff, the topology of IKI X ILI X I is thus coherent 
with the subspaces IKI X r X I. Because r X I is locally compact Hausdorff 
(in fact, compact), the topology of IK I X r X I is in turn coherent with the sub-
spaces crX7XI, for aeKandreL. Thus A is closed in IKI X ILI X / if and 
only if its intersection with each space a X r X I is closed in that space. 

Now w is continuous as a map of a X r X I onto o- * r, by definition. (Both 
are subspaces of euclidean space.) And inclusion of a * r in (K * LI is continu-
ous. Thus w I a X r X / is continuous; because the topology of IKI X ILI X I is 
coherent with these subspaces, r is continuous. 

To show r is a quotient map, suppose 7-1(C) is closed in IKI X ILI X I. 
Then its intersection with a X r X/ is closed and hence compact. We conclude 
that C fl (o- * r) is compact and therefore closed. Hence C is closed in K * L. 

The fact that r carries out precisely the indicated identifications follows 
from Lemma 62.1. 0 

Corollary 62.3. Suppose K * L and M * N are defined, where K is locally 
finite. If IKI -,---.1 (MI and ILI — (NI, then (K * L(— IM * NI. 

X ILI X 0 to a 
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Proof Since IKI is locally compact, so is IMI; therefore, M is locally fi-
nite. If h : IKI IMI and k : ILI INI are homeomorphisms, then h X k X 
induces, via the quotient maps indicated in the preceding lemma, a homeomor-
phism of IK * LI with IM * NI that equals h on IKI and k on ILI. q 

Lemma 62.4. Let J, K, L be complexes. Assume J * K and (J * K) * L 
exist. Then J*K=K*1 and (J * K) * L = J * (K * L). 

Proof The symmetry of the definition shows that J * K = K * J. Simi- 
larly, if (J * K) * L is defined, then for vo 	e J and wo 	E K and 
x.... x e L, the points 

vo, . 	,v„„wo, . ,w„,x0, 

are independent and the collection of simplices they span, along with faces of 
such simplices, forms a complex. But this is just the complex J * (K * L). q 

Theorem 62.5. Assume K * L exists. If ILI sn - then for all i, 
.11; ,(K * L) = H; (K) 

Proof In the case n = 1, ILI consists of two points and the complex K * L 
is just the suspension of K. The existence of the isomorphism in question is a 
consequence of the Mayer-Vietoris sequence. (See Theorem 25.4.) 

In general, we suppose the theorem true in dimension n, and prove it true in 
dimension n + 1. 

In view of Corollary 62.3, it suffices to prove the theorem for any particular 
complex L whose space is homeomorphic to S. Choose a complex J such that 
IJI 	S" -  and let L = J * {wo,w,} be a suspension of J. Then it is easy to see 
that ILI Sn. Now 

111(K) :az ili ,(K * J) 	by the induction hypothesis, 

„ ,((K * J) * {w.,w,}) as noted earlier, 

zr. 	* L) 	by Lemma 62.4. q 

Now we apply these results to study local properties of arbitrary simplicial 
complexes. 

Definition. Let s be a simplex of the complex K. The star of s in K, de-
noted St s, is the union of the interiors of all simplices of K having s as a face. 
The closure of St s is denoted St s; it is the union of all simplices of K having s 
as a face and is called the closed star of s in K. The link of s in K, denoted Lk s, 
is the union of all simplices of K lying in St s that are disjoint from s. 

We have already given these definitions when s is a vertex. See §2. 
In general, if s = v.. . . v., then St s is the open subset of IKI consisting of 
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those points x for which the barycentric coordinate of x on each of v., .. . ,v. is 
positive. That is, 

St s = st v. n • • • n st v.. 
Note that St s consists of all simplices of K of the form s * t, and the link of 

s equals the union of all the faces t of such simplices. The sets St s and Lk s are 
thus polytopes of subcomplexes of K; we often use the notation St s and Lk s to 
denote these complexes as well as their polytopes. 

Example 1. In the 2-dimensional complex pictured in Figure 62.1, the link of the 
vertex g consists of the hexagon abcdefa and the vertex h. The link of the 1-simplex 
ag consists of the two vertices b and f. The link of the vertex h is the vertex g. 

In the 3-dimensional complex pictured in Figure 62.2, the link of the 1-simplex 
fg is the pentagon P = abcdea, and the link of the vertex f is the cone P * g. The 
link of the 1-simplex ab is the 1-simplex fg, and the link of the vertex a is the union 
of the 2-simplices bfg and efg. 

f 

Figure 62.1 Figure 62.2 

Keep the preceding example in mind as we prove the following lemma. 

Lemma 62.6. Let K be a complex. Let s be a simplex of K. Then 
St s =-- s * Lk s, 

St s — St s .=-- Bd s * Lk s. 

Note that here we are considering s and Bd s and Lk s not only as sub-

spaces of IK I but also as subcomplexes of K. In order that these equations 
should hold even if Lk s or Bd s is empty, we make the convention that K * 0 = 
0 * K = K for all K. 
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Proof The first equation is immediate from the definitions. St s is the 
union of all simplices of K of the form s * t, and Lk s is the union of all the faces 
t of such simplices. 

On the other hand, if a simplex of K lies in St s but not in St s, it must be a 
face of s * t of the form s' * t', where s' is a proper face of s and t' is a face of t. 
Since t lies in Lk s, so does t'; hence s' * t' lies in Bd s * Lk s. Conversely, every 
simplex of this form lies in St s but not in St s. 0 

EXERCISES 

1. Let s denote the simplex fg in Figure 62.2. Describes * Lk s ands * Bd s and 
Bd s * Lk s. 

2. If X and Y are topological spaces, let us define X * Y to be the quotient space of 
X X Y X I obtained by identifying each set x X Y X 0 to a point and each set 
X X y X1 to a point. 
(a) Show that the maps 

i(x)=xX YXO and j(y) =XXyX1 

define imbeddings of X and Y, respectively, into X * Y. 
(b) Show that if X --,-- X' and Y :----- Y', then X * Yg---1 X' * Y'. 
(c) Show that X* Y :,-- Y* X. 

*3. Show there is a split short exact sequence 

0 --. ii„ 4. ax * Y)—. 1,1„(X x n —A,(x)eil,(Y) — O. 
*4. Show that (X * Y) * Z .--:-.: X * (Y * 2). [Hint: The "obvious" proof does not 

work. You can check that the quotient maps 

(X X Y X /i) X Z X 4 ---. (X * Y) X Z X /2  --. (X * Y) * Z, 
X X (Y X Z X /0 X /, --.X X (Y*Z) X /, -- X * (Y* Z) 

carry out different identifications. Instead, in the space X X Y X Z X A„ in-
troduce the following relations: 

(x,y,z,w) — (x',y,z,w) if w E e,e„ 
(x,y,z,w) —, (x,y',z,w) if w e €0,, 
(x,y,z,w) — (x,y,z',w) if w e f.0,. 

Let W be the quotient space; let 7 be the quotient map. Let f : /, x 4 — A, 
map t X /, linearly onto the line segment from t E co, = [0,1] to E2. Show that 

id X f 	7 XX YXZX/,X/,---.XX YXZXA,--0W 

carries out the same identifications as the first of the preceding quotient maps. 
Conclude that W is homeomorphic to (X * Y) * Z. Show that W is also homeo-
morphic to X * (Y * Z).] 
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§63. HOMOLOGY MANIFOLDS 

In this section we define homology manifolds and derive some of their local 
properties. The class of homology manifolds includes, among other things, all 
topological manifolds, so it is a broad and important class of spaces. The trian-
gulable homology manifolds will be the basic objects involved in the various 
duality theorems. 

For convenience, we shall deal with the case of a relative homology mani-
fold in this section, even though we shall not prove the duality theorems in the 
relative case until §70. 

Convention. We shall often be dealing in this chapter with triangulable 
spaces. If X is a triangulable space with a specific triangulation, we shall fre-
quently abuse notation and make no notational distinction between the space 
and the complex triangulating it. For instance, we may refer to a point of (the 
space) X, or to a simplex of (the complex) X. The context will in each case make 
the meaning clear. 

Definition. A topological pair (X,A) is called a relative homology n-mani-
fold if for each point x of X not in A, the local homology group I-I i (X,X — x) 
vanishes if i * n and is infinite cyclic if i = n. In the case where A is empty, we 
refer to X simply as a homology n-manifold. 

If M is an n-manifold with boundary, then the pair (M, Bd M) is a relative 
homology n-manifold. (See §35.) More generally, if (X,A) is any pair such that 
X — A is an n-manifold, then (X,A) is a relative homology n-manifold. 

Now if (X,A) is a relative homology n-manifold that is triangulated, the 
local homology properties of X are reflected in the homology groups of the links 
of simplices of X. The connection is given by the following lemma. 

Lemma 63.1. Let s be a k-simplex of the complex K. Lets be its barycen-
ter. Then 

_ k - !(LA s) if Lk s * 0, Hi(1K1,1K1 — Ili(s, Bd s) 	if Lk s = 0. 

Proof If Lk s = 0 , then s is a face of no other simplex of K. Hence Int s 
is open in IK I. It follows that 

1-1;(1KLIK I — 	Hi(s,s — 3) = Hi(s, Bd s). 

The first isomorphism holds by excision; and the second holds because Bd s is a 
deformation retract of s — s. 

Now suppose Lk s 	0 . Since the barycenter of s lies in the open set St s, 
we may excise the complement of St s to obtain an isomorphism 

HAI/CUM — 	Fli(St s, St s — 
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From basic results about convex sets, we know that Is1 = Is* Bd si; from Lemma 
62.6 it follows that 

1St sI = Is * Lk sl = * Bd s * Lk si. 

(By our convention, these equations hold even if Bd s is empty.) 
It follows that 1St s1 is acyclic, being a cone with vertex .1. Now if we delete 

the vertex of a cone, what is left can be collapsed onto the base of the cone by a 
deformation retraction. (See Lemma 35.5.) In particular, IBd s * Lk .51 is a de-
formation retract of St s —s. We conclude that 

HAIKLIKI — 	Hi  (St s, St s — 
_ , 	s — 
_ I (Bd s * Lk s) 

k _ i(Lk s). 

The last isomorphism is an equality if Bd s = 0 , in which case k = 0; other-
wise, it holds by Theorem 62.5, since Bd s is topologically a k — 1 sphere. q 

Theorem 63.2. Let (X,A) be a triangulated relative homology n-manifold. 
Let s be a k-simplex of X not in A. If Lk s is empty, then k = n. If Lk s is non-
empty, it has the homology of an n — k — 1 sphere, where n — k — 1 > 0. In 
either case, k < n. 

Proof Since s is not in A, its barycenter 3 lies in X — A. Therefore, the 
local homology of X at :s is infinite cyclic in dimension n, and vanishes otherwise. 

If Lk s is empty, then by the preceding lemma, H„ (s, Bd s) = H„ (X, X — 
which is non-trivial. Hence dim s = n. If Lk s is non-empty, then its reduced 
homology is infinite cyclic in dimension n — k — 1 and vanishes otherwise. 
This implies in particular that n — k — 1 > 0, or that k < n. q 

Corollary 63.3. Let (X,A) be a triangulated relative homology n-manifold. 
(a) The closure of X — A equals a union of n-simplices. 
(b) Every n — 1 simplex s of X not in A is a face of precisely two n-

simplices of X. 
Proof (a) Let s be a k-simplex of X not in A. The preceding theorem 

shows that k < n. If k < n, then Lk s is a homology n — k — 1 sphere, so it 
contains an n — k — 1 simplex t. Then s is a face of the n-simplex s * t. 

(b) If s is an n — 1 simplex of X not in A, then Lk s is a homology 0-
sphere. Since St s has dimension n and St s = s * Lk s, the complex Lk s must 
have dimension 0. This means that Lk s consists of precisely two points; hence 
(b) holds. q 

This theorem shows that a triangulated relative homology n-manifold (X,A) 
satisfies the first two conditions in the definition of a relative pseudo manifold. 
(See the exercises of §43 for the definition.) If the space X — A is connected, 
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then (X,A) satisfies the third condition as well. A proof of this fact is outlined in 
the exercises; it can also be derived from the duality theorems, as we shall see. 

Example 1. Let X be the disjoint union of a torus T and a two-sphere S2; let S (X) 
be the suspension of X; let A = {wo,w,} consist of the suspension points. See Fig-
ure 63.1. Then (S (X),A) is a relative homology 3-manifold, since S(X) — A is 
homeomorphic to X X (— 1,1), which is a 3-manifold. The subspaces (S (T),A) and 
(S(S2),A) are also relative homology 3-manifolds, and they are relative pseudo 
3-manifolds as well. The space S(S2) is a homology 3-manifold, but the space S (T) 
is not, for the link of w„ in S (T) is not a homology 2-sphere but a torus. 

Figure 63.1 

Example 2. The pictures we usually draw of manifolds may lead you to conjecture 
the following: If M is a triangulated topological n-manifold, then the link of each 
k-simplex of M is a topological n — k — 1 sphere. 

Certainly this result is true for our usual triangulations of 2-manifolds, for in-
stance; the links of 1-simplices are 0-spheres and the links of vertices are 1-spheres. 
This conjecture is one of long standing, and has only recently been answered, in the 
negative. R. D. Edwards has found a counterexample in dimension 5. The details 
are complicated. 

Example 3. There do exist homology n-manifolds that are not topological mani-
folds. We outline the construction of one such, but the proof uses tools we have 
not studied. 

The basic fact one needs is that there is a compact triangulated 3-manifold M 
that is a homology 3-sphere, but whose fundamental group r,(M) does not vanish. 
The construction can be found in [S-7]; the fundamental group of M is the icosa-
hedral group. 

Now we form the suspension S (M) .--- M * {wo,w,}. This space is a homology 4-
manifold: Since S(M) — {w,„w,} is homeomorphic to the 4-manifold M x (— 1,1), 
the local homology conditions are satisfied at all points except possibly at the sus-
pension points. Since Lk w, = Lk w, = M, and M is a homology 3-sphere, the local 
homology conditions are also satisfied at w„ and Iv,. 

Then one needs a separate argument to show that in a triangulated topologi-
cal n-manifold, the link of each vertex, while it may not be topologically an n — 1 
sphere, it must have the homotopy type of an n — 1 sphere. Since ri (M) * 0, M 
cannot have the homotopy type of a 3-sphere, so S(M) cannot be a topological 
4-manifold. 
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EXERCISES 

Each of the following exercises depends on the preceding ones. 

1. Let (X,A) be a triangulated pair. Suppose that for each k-simplex s of X not in A 
we have: (i) k < n, (ii) H;  (Lk s) = Ili(S° ' 1 ) if k < n. Show that (X,A) is 
a relative homology n-manifold. 

2. Let (X,A) be a triangulated relative homology n-manifold. If s is a k-simplex of 
X not in A, with k < n, show that Lk s is a homology n — k — 1 manifold. 
[Hint: Consider Lk s as a subcomplex of X. Then if t a Lk s, show that 
Lk(t, Lk (s,X)) = Lk(t * s, X).] 

3. Theorem. Let (X,A) be a triangulated relative homology n-manifold, with 
X — A connected. Then (X,A) is a relative pseudo n-manifold. 

[Hint: The result is trivial if n = 1; suppose it true for dimensions less 
than n. Define a — a' if there is a sequence 

= col cis> • • • cr* = 

of n-simplices of X not in A such that a, fl a;  , is an n — 1 simplex not in A for 
each n. Let X, be the union of the elements of one equivalence class; let X2  be the 
union of the elements of the remaining equivalence classes. Let s be a simplex of 
the complex X such that s a A and s C X, fl X2. If k = dim s, then k < 
n — 1; show Lk s is a pseudo n — k — 1 manifold. Conclude that every two n-
simplices of St s are equivalent.] 

4. Corollary. Let (X,A) be a triangulated relative homology n-manifold. If s is a 
simplex of X not in A, then Lk s is a finite complex. [Hint: If X is a pseudo m-
manifold and H„,(X) * 0, then X must be finite.] 

§64. THE DUAL BLOCK COMPLEX 

For simplicity, we are going to restrict ourselves in the next few sections to the 
case of a homology n-manifold X. The techniques we use will reappear later when 
we consider the case of a relative homology manifold. 

There is associated with the triangulated homology manifold X, a certain 
partition of X into subsets that are open cells (almost), such that X becomes a 
regular cell complex (almost). The subsets are not actual topological cells, but 
only homological cells. Since we cannot call them "cells," we shall call them 
"blocks," for want of a better term. And we shall call the collection of these 
blocks the dual block decomposition of X. Just as there was with cell com-
plexes, there is a chain complex associated to this block complex that can be 
used to compute the homology and cohomology of X. We will call it the "dual 
chain complex"; it will be a crucial tool in proving our duality theorems. 

Definition. Let X be a locally finite simplicial complex, and let sd X de-
note its first barycentric subdivision. The simplices of sd X are of the form 



X 
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where 	} • • • >. 0-. We shall partially order the vertices of sd X by 
decreasing dimension of the simplices of X of which they are the barycenters; 
this ordering induces a linear ordering on the vertices of each simplex of sd X. 
Given a simplex a of X, the union of all open simplices of sd X of which & is the 
initial vertex is just Int a. We define D(a) to be the union of all open simplices 
of sd X of which & is the final vertex; this set is called the block dual to a. 

The blocks D (a) will play a role similar to that of the open cells of a CW 
complex. We call the closure .D(d) of D (a) the closed block dual to cr. It equals 
the union of all simplices of sd X of which & is the final vertex; it is the polytope 
of a subcomplex of sd X. We let D (cr) = D (cr) — D (cr). 

Example I. Let X be the 2-dimensional complex pictured in Figure 64.1. The 
complex sd Xis indicated by dotted lines. The block dual to any 2-simplex a consists 
of its barycenter & alone. The block D(ab) dual to the 1-simplex s = ab consists of 
its barycenters and the two open line segments joining to the barycenters of the 
two triangles having ab as a face. The block dual to the vertex e is the shaded region 
indicated; the corresponding closed block consists of this region plus its boundary. 
Note the interesting fact that D(e) is the union of the lower-dimensional blocks 
D(s i) as s ranges over all 1-simplices and 2-simplices having e as a face. This situa-
tion will hold in general, as we shall see. 

D(acd) c 

D(cd) 

Figure 64.1 

Example 2. Let X be the complex pictured in Figure 64.2. It is the join of the 
polygon cdefc with the line segment ab. You can picture mentally what the complex 
sd X looks like. The block dual to each 3-simplex of X is its barycenter. The closed 
block dual to the 2-simplex abc consists of the two line segments joining the bary-
center of abc with the barycenters of the two 3-simplices having abc as a face. The 
closed block D(ab) dual to the 1-simplex ab is the closed octagonal region pictured 
in Figure 64.3. The set D(ab) is its boundary; it is the union of the blocks dual to 
the 2-simplices and 3-simplices of X having ab as a face. 

Keep these examples in mind as we prove the following theorem: 

Theorem 64.1. Let X be a locally finite simplicial complex that consists 
entirely of n-simplices and their faces. Let a be a k-simplex of X. Then: 

(a) The dual blocks are disjoint and their union is IXI. 
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Figure 64.2 
Figure 64.3 

(b) (a) is the polytope of a subcomplex of sd X of dimension n — k. 
(c) D(a) is the union of all blocks D(r) for which r has a as a proper face; 

these blocks have dimensions less than n — k. 
(d) D(a) equals the conelD(a) * 
(e) If i (X,X — a) = Z for i = n and vanishes otherwise, then 

(D(a),D(a)) has the homology of an n — k cell modulo its boundary. 

Proof. (a) The open simplices of sd X are disjoint, and each one lies in 
precisely one block D (a)—namely, the one such that & is its final vertex. 

(b) Given a of dimension k, let a' be an n-simplex of X having a as a face. 
There is a sequence of simplices of X 

= 	>. an - } • • • >- a k = 

such that each simplex in the sequence has dimension one less than the preced-
ing simplex. Then the simplex Er n n — 1 • • • erk of sd X has dimension n — k and 
lies in D (a). Clearly, no simplex of sd X of larger dimension can have ak  as its 
final vertex, since X has no simplices of dimension greater than n. 

(c)—(d) Now D (a) is the union of all simplices of sd X whose final vertex is 
&; they are of the form 

The intersection of such a simplex with D(a) consists of the face of this simplex 
obtained by deleting &. Thus D(6-) consists of all simplices of the form 

for which 	} a. Now the interior of such a- simplex is contained in D(a,p); 
and conversely, any open simplex of sd X lying in D (a1 ) is of this form. It fol- 
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lows that D (a) is the union of the blocks D (a,,) for c } a. It also follows that 
iD(o-)i ---- ID (a) * 

(e) If dim a = n, then D(a) consists of the single point 	which is of 
course a 0-cell. Suppose that dim a = k < n. In the complex sd X, the closed 
star St (&, sd X) equals the union of all simplices of the form 

T 	. • • 17. 	ip  4. , • . .a..  

where a 	= a, and aii } aij+, for all j. The face of r spanned by the vertices to 
the left of & in this sequence is the typical simplex of D(a); the face spanned by 
a and the vertices to its right in this sequence is the typical simplex of sd a. We 
conclude that 

sd X) = b(cr) * sd 

= b(cr) * * sd (Bd a). 

St (6-, sd X) = & * Lk (6-, sd X). 
We conclude that 

Lk (8-, sd X) = b (a) * sd (Bd a). 

Since sd(Bd a) is topologically a k — 1 sphere (or is empty if k = 0), 

„ (Lk (ir, sd X)) = H;(D(a)). 

Because the local homology of X at & is infinite cyclic in dimension n and 
vanishes otherwise, Lk (&, sd X) is a homology n — 1 sphere, by Lemma 63.1. 
Therefore, D(a) is a homology n — k — 1 sphere. 

Since D(a) is acyclic (being a cone), the long exact homology sequence 
gives us an isomorphism 

Hraj(cr),b(0) = Hr  _ (15(0)- 

We conclude that (D(a),D(a)) has the homology of an n — k cell modulo its 
boundary. 0 

Definition. Let X be a locally finite complex that is a homology n-mani-
fold.t Then the preceding theorem applies to each simplex a of X. The collection 
of dual blocks D(a) will be called the dual block decomposition of X. The union 
of the blocks of dimension at most p will be denoted by X,,, and called the dual 
p-skeleton of X. The dual chain complex 2)(X) of X is defined by letting its 
chain group in dimension p be the group 

Dp(X) = Hp(Xp,X,, _ 1). 

Its boundary operator is the homomorphism 8„, in the exact sequence of the tri-
ple (Xr  _ 1,Xv  _ 2). 

tIn fact, every complex that is a homology n-manifold is locally finite. See the exercises 
of §63. 

Now it is also true that 
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Being the polytope of a subcomplex of sd X, the dual p-skeleton Xp  will 
sometimes be treated as a complex rather than as a space. In particular, we 
shall for convenience use simplicial homology in the definition of Dp(X). 

For all practical purposes, the dual chain complex will play the same role in 
computing homology and cohomology as the cellular chain complex did for a 
CW complex. Repeating the pattern of §39, we prove the following: 

Theorem 64.2. Let X be a locally finite complex that is a homology n-
manifold. Let Xp  be the dual p-skeleton of X. Let D(X) be the dual chain com-
plex of X. 

(a) The group H,(Xp,X,, _ 1 ) vanishes for i p and is a free abelian group 
for i = p. A basis when i = p is obtained by choosing generators for the groups 
Hp(D(a),D(cr)), as D(a) ranges over all p-blocks of X, and taking their im-
ages, under the homomorphisms induced by inclusion, in Hp(Xp,X, _ ,). 

(b) The dual chain complex D(X) can be used to compute the homology 
of X. Indeed, Dp(X) equals the subgroup of Cp  (sd X) consisting of those chains 
carried by Xp  whose boundaries are carried by Xp  _ ,. And the inclusion map 
Dp(X) Cp  (sd X) induces a homology isomorphism; therefore, it also induces 
homology and cohomology isomorphisms with arbitrary coefficients. 

Proof. The proof of (a) follows the pattern of Lemma 39.2, but is easier. 
Because D (a) is a cone with vertex its base D (a) is a deformation retract of 
D (o) — for each a. These deformation retractions induce a deformation re-
traction of Xp  — U pS• onto Xp  - ,, where Up& denotes the union of the barycen-
ters of all simplices a of X of dimension n — p. 

If M p(D (cr), D (cr)) denotes the topological sum of the p-blocks of X, we have 
the commutative diagram 

; 	(0.),i)(0)--0;co (a) :150  (a) — 6-) 4— ;(D (a), D (a) — a) 

1 	1 	1 = 
(X,„Xp _ i) 	(Xp,Xp  — Upit) 	U (D(a),D(a) — 1r) 

where the horizontal maps induce homology isomorphisms in singular homology 
and the vertical maps are inclusions. Statement (a) follows for singular theory, 
and hence for simplicial theory. 

Statement (b) is an immediate consequence of Theorem 39.5. 0 

Now we have the basic tools we need to prove the Poincare duality theorem. 

EXERCISES 

1. Consider the usual triangulation of the torus T. 
(a) Sketch the blocks of the dual block decomposition of T; note that they actu-

ally make T into a regular cell complex. 
(b) Let e(T) denote the simplicial chain complex of T, and let D(T) denote the 
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dual chain complex. Orient the 2-simplices a of T counterclockwise; orient 
the 1-simplices e arbitrarily. Define an isomorphism 

C2(T) — Do(T) 

by setting 

(cr*) = D (a) = 

for each oriented 2-simplex a. Define an isomorphism 

: 	(T) D t (T) 

by letting 4,(e*) equal a fundamental cycle for (D(e),b(e)) for each ori-
ented 1-simplex e. Show that may be so chosen that 

4(e) 4)(5e*). 
(c) Define 

: (T) D,(T) 

by letting 4)(v*) equal a fundamental cycle for (5(v),/i(v)). Show that if 
the 2-cell D (v) is oriented counterclockwise, then 

acb(v*) = 0(a0). 

(d) Conclude that If (T) = H2 • ,(T) for all p (which we knew already). 
This exercise indicates how Poincare duality is proved. 

2. Repeat Exercise 1 for the Klein bottle, using Z/2 coefficients for both homology 
and cohomology. Note that the proof is easier, since no signs are involved. 

§65. POINCARE DUALITY 

The Poincare duality theorem is one of the most striking results of topology. In 
its original form, it stated that for a compact orientable triangulated n-mani-
fold X, the betti numbers in dimensions k and n — k were equal and the torsion 
numbers in dimensions k and n — k — 1 were equal. Nowadays, it is stated in a 
different but equivalent formulation, as a theorem stating that the homology 
and cohomology groups of X in dimensions k and n — k are isomorphic. 

There are also versions of Poincare duality that hold when X is not orient-
able, or when X is not compact, which we shall discuss. 

We shall give two proofs of Poincare duality. The first, which we give in 
this section, is more straightforward and intuitive. But the second, which we 
give in §67, will provide valuable information on how the duality isomorphism 
behaves with respect to continuous maps, as well as information about cup 
products in manifolds. 

Definition. Let X be a compact triangulated homology n-manifold. We 
say that X is orientable if it is possible to orient all the n-simplices cri  of X 



§65. 	 Poincare Duality 383 

so their sum -y = o;  is a cycle. Such a cycle y will be called an orientation 
cycle for X. 

If X is not connected, then each component of X is itself a homology n-
manifold. In order that X be orientable, it is necessary and sufficient that each 
component of X be orientable; a sum of orientation cycles for each component 
of X is an orientation cycle for X. We will show shortly that orientability of X 
does not depend on the particular triangulation of X. (See Corollary 65.4.) 

Theorem 65.1 (Poincare duality—first version). Let X be a compact trian-
gulated homology n-manifold. If X is orientable, then for all p, there is an 
isomorphism 

HP (X; G) = H, _ p(X; G), 

where G is an arbitrary coefficient group. If X is non-orientable, there is for all 
p an isomorphism 

HP(X; Z/2) = H„ -,(X; Z/2). 

Proof We shall use the simplicial chain complex 6(X) of X to compute 
the cohomology of X, and the dual chain complex 2(X) of X to compute the 
homology of X. There is a 1-1 correspondence between the p-simplices of X and 
the dual n — p blocks of X that maps each simplex to its dual block. Hence the 
free abelian groups CP (X) and D„ _ p (X) are isomorphic, by an isomorphism 4) 
that carries the basis element a* for CP (X) (where a is an oriented p-simplex) 
to a generator of H„ _ p(D(a), D(o)). If X is orientable, we shall show that the 
sign of 4.(a*) may be so chosen that the following diagram commutes: 

CP ' 	D, _ p 1 (X) 

I 
	

l a  
cP (x) 	D, _ p (X) • 

This will prove the existence of the Poincare duality isomorphism in the case of 
integer coefficients. 

To define 4), we proceed as follows: First, orient the n-simplices of X so 
their sum y is a cycle. Orient the other simplices of X arbitrarily. 

We begin by defining 4)  in dimension n. The oriented n-simplices a of X 
form a basis for C„(X); their duals a* form a basis for C° (X). The dual block 
D(o) of the n-simplex a is the 0-cell Cr. We define (0) = a, noting that & is a 
generator of the group 14(&). Thus we have defined an isomorphism 

: C° (X) Do(X). 

We next define 4)  in dimension n — 1. Let s be an oriented n — 1 simplex of 
X. We wish to define 4)(s*) so that 

80(s*) = cp(os*). 
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Figure 65.1 

Now s is a face of exactly two n-simplices Cie and a, of X; since -y is a cycle, they 
are oriented so that acro  + aa, has coefficient zero on s. Suppose the indexing 
chosen so that acro  has coefficient —1 on s and ag, has coefficient 1 on s. Then 
as* = 	— a: , so that 

0(6s*)  
by definition. The 1-block b(s) is the union of the line segments from s to ao  
and 	we define 

c6(s*) = b3-0,11 + 

See Figure 65.1. Then (se) is a fundamental cycle for the 1-cell (D(s),b(s)), 
as desired; and 

ack(s*) = er, — = g5(os*). 
In general, suppose 4  defined in dimension p + 1 < n. We wish to define it 

in dimension p so that for each oriented p-simplex s, 
aq5(s*) 0(6s*). 

Given the oriented p-simplex s, we compute 

Os* = E eicr7, 

where the sum extends over all p + 1 simplices a;  of which s is a face, and 
Ei = ±1 is the coefficient of s in the expression for aai. Then 

cb(Os*) = E Eogan- 

We shall prove that 0(6e') is a fundamental cycle for D(s). 
The chain 0(4') is by hypothesis a fundamental cycle for the block D(cri) 

dual to a This block lies in D(s) since a;  s. Thus 0(a?) is carried by D(s) 
for each i. Then the chain (43s*) is carried by D (s) also. Furthermore, 4(6e) 
is a cycle, since ad)(os*) = 056s* by the induction hypothesis. Now D(s) is a 
homology n — p — 1 sphere, where n — p — 1 > 0. The cycle 0(6s*) is non-
trivial, and it is not a multiple of another cycle, because its restriction to the 
block D(a,) equals O(a*), which is a fundamental cycle for this block modulo 
D (a;). Hence (os*) represents a generator of 1-1. _ v _ , (D(s)), as asserted. 

Consider the exact sequence 

a o 	H. _ p (S), D (S)) H„ _ p I (13 CO) 0 • 
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For dimensional reasons, homology groups equal cycle groups. Define 4,(s*) to 
be the fundamental cycle for (D (s),D (s)) whose boundary equals the generator 
4)(.5s*). Then 4, is defined for dimension p, and ao(e) = cmas*), as desired. 

The theorem is thus proved for the case of integer coefficients. To prove it 
for arbitrary coefficients, one notes that the isomorphisms 

Hom(C,(X),G) = Hom (Cp  (X),Z) 0 G 
cbOic 

 D„ _,(X) 0 G 
commute with S and a. (The first of these isomorphisms was proved in Step 2 of 
Theorem 56.1.) 

Finally, we consider the non-orientable case. Roughly speaking, the same 
proof goes through. One defines an isomorphism 

Horn (q,(X),Z12) D„ _,(X) Z/2, 

by induction. If o is an n-simplex, we let a* denote the cochain whose value is 
[1] e Z/2 on a, and 0 on all other simplices. We then define 4,(o*) = &0 [1]. 
If s is an n — 1 simplex that is a face of the n-simplices ao  and a„ we define 
4)(s*) 	([431 + [.1,1r,]) 0 [1]; signs do not matter because the coefficient 
group is Z/2. The rest of the proof goes through without change, with the 
phrase "fundamental cycle" replaced by "unique non-trivial cycle with Z/2 
coefficients." 0 

Let us note that there was nothing special, in this proof, about using the 
simplicial chain complex to compute the cohomology of X and the dual chain 
complex to compute the homology of X. One could just as well have done it the 
other way. For since 4)  is an isomorphism, the dual of 4.  is an isomorphism 

Hom (Hom (Cp  (X),Z),Z) 4-- Horn (D„ _ p (X),Z) 

that carries the operator b in 1(X) to the dual of b in 6(X). Since there is a 
natural isomorphism 

Cp  (X) cr. Hom (Hom (Cp  (X),Z),Z) 

that carries a to the dual of 5 (see Step 4 of Theorem 56.1), the result is an 
isomorphism 

Cp(X)4— Hom (D„ _ p(X),Z) 

that commutes with S and a. 

Corollary 65.2. Let X be a compact triangulated homology n-manifold. If 
X is connected, then for any two n-simplices o, 0"  of X, there is a sequence 

a = ao, o,, . . • ,ak  = 

of n-simplices of X such that o;  n 	, is an n — 1 simplex of X, for each i. 

Proof. Let us define a — a' if there is such a sequence connecting them. 
This relation is clearly an equivalence relation. The sum I oi  of the n-simplices 
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in any one equivalence class is a cycle if its coefficient group is taken to be Z/2. 
For, given an n — 1 simplex s of X, the two n-simplices of which it is a face 
are equivalent, so either both of them appear in this sum, or neither does. In any 
case a a o;) has coefficient [0] e Z/2 on s. 

We conclude that there is only one equivalence class, since otherwise X 
would have more than one non-trivial n-cycle over Z/2, contradicting the 
fact that 

H„(X; Z/2) c H°(X; Z/2) = Z/2. 0 

Note that this corollary shows that a compact connected triangulated ho-
mology manifold is a pseudo manifold. (See Corollary 63.3 and the comment 
following.) 

Corollary 65.3. Let X be a compact triangulated homology n-manifold. If 
X is connected, then II„(X) = Z for X orientable and II„(X) = 0 for X non-
orientable. 

Proof If X is orientable, then H„(X) = H°(X) = Z. Conversely, we 
show that if H" (X) # 0, then X is orientable. Orient the n-simplices of X 
arbitrarily. Suppose z is a non-trivial n-cycle of X, with integer coefficients. 
Now if ai  and o, + , are n-simplices of X with an n — 1 face in common, and if z 
has coefficient m on cri, it must have coefficient ± m on ai  1. In view of the pre-
ceding corollary, z must have the same coefficient, up to sign, on each n-simplex 
of X. Suppose this coefficient has absolute value m. Then dividing z by m gives 
us an orientation cycle for X. 0 

Corollary 65.4. Let X be a compact triangulated homology n-mani-
fold. Then X is orientable if and only if for each component X, of X, we have 
H" (X;) = Z. 0 

It follows that orientability of X does not depend on the triangulation of X. 
The following corollary depends on the universal coefficient theorems proved 

in the last chapter. 

Corollary 65.5. Let X be a compact triangulated homology n-manifold; 
assume X is connected. 

(a) If X is orientable, then H„ _,(X) has no torsion, and for all G, 

HJX;G) = G I" In  (X; G). 

(b) If X is non-orientable, then the torsion subgroup of H„ - 1(X) has order 
2, and for all G, 

H" (X; G) = ker (G 2  G) 	and 
	IP (X; G) = G I2G. 

In particular, H„(X) = 0 and IP (X) = Z/2. 
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Proof (a) The computation when X is orientable is immediate, since 

lin 	G) = H°  (X; G) 	and 	H" (X; G) = H° (X; G) 

by Poincare duality; each of the 0-dimensional groups is isomorphic to G be-
cause X is connected. It follows that H„ _ , (X) has no torsion. For 

H" (X) = Hom (H„ (X ),Z) Ext (H„ _ (X ),Z). 

Since Ext (Hn  _ ,(X),Z) is isomorphic to the torsion subgroup of H„ _ , (X) (by 
Theorem 52.3), this torsion subgroup must vanish. 

(b) Now suppose X is non-orientable. We compute H„ (X; G). Let ai  be 
the sum of all the n-simplices of X, oriented arbitrarily. If g e G has order 2, 
then E gai  is clearly a cycle of X, since each n — 1 simplex is a face of exactly 
two n-simplices. Conversely, let z be a non-trivial n-cycle of X with G coeffi-
cients. If z has coefficient g on the oriented n-simplex a of X, then z must have 
coefficient ±g on each n-simplex having an n — 1 face in common with a; 
otherwise z would not be a cycle. Application of Corollary 65.2 shows that z has 
coefficient ±g on every n-simplex of X. Thus z 	eiai), where 	± 1 and 
the sum extends over all n-simplices of X. Now the chain M eiai  cannot be a 
cycle, since that would imply that X is orientable. Hence aa ticri) has a non-
zero coefficient on at least one n — 1 simplex s of X. This coefficient is ± 2, 
since s is a face of exactly two n-simplices of X. We conclude that az has coeffi-
cient ± 2g on s, which means (since z is a cycle) that g has order 2. In particu- 
lar, g = —g, so that z 	eicri) = gcri. 

Thus the n-cycles of X consist of all chains of the form M ga„ where g is 
zero or has order 2. Since the cycle group equals the homology group in dimen-
sion n, it follows that 

H„(X; G) = ker (G 2  G). 
We now show that the torsion subgroup T. _ 1(X) of H„ _ (X) is isomor-

phic to Z/2. Since H.(X) = 0, it follows from the universal coefficient theorem 
that 

H. _ ,(X) * G H„(X; G) ker (G 2 
 G). 

Hence 

T._,(X)*G z-zker(G—+2  G) 	Z/2 * G. 

In particular, 

_ ,(X) * Zhn 
{0 	if m is odd, 
Z/2 if m is even. 

It follows that T. _ , has no odd torsion coefficient 2p + 1 (set m = 2p + 1 in 
this expression to obtain a contradiction), that it has only one even torsion coef-
ficient (set m = 2), and that this torsion coefficient is not of the form 2k for 
k > I (set m = 2k). Hence T„ _ ,(X) = Z/2. 



388 	Duality in Manifolds 	 Chapter 8 

Finally, it follows from the universal coefficient theorem for cohomology 
that 

H" (X; G) = Ext (H„ _ ,(X),G) = G I 2G . 0 

EXERCISES 

1. Let M and N be compact, connected, triangulable n-manifolds. Let f : M —. N. 
Show that if M is orientable and N is non-orientable, then 

H„(M; Z/2) —• H„(N; Z/2) 

is trivial. 

2. Let X be a compact triangulable orientable manifold, with ith betti number 
$i  (X). Recall that 

x(X) = Z(-1)71i(X) 

is called the Euler number of X. (See §22.) 
(a) Show that if dim X is odd, then x (X) = 0. 
(b) If dim X equals 2k, express x (X) in terms of 0, for i < k. 
(c) Give applications to tangent vector fields. (See Exercise 4 of §22.) 

3. Let X be a homology n-manifold (not necessarily compact) that is triangulated 
by a locally finite complex. Derive the Poincare duality isomorphisms for non-
compact homology manifolds, as follows: 
(a) Show that 

Iff (X; Z/2) 17-,- 	_,(X; Z/2), 

where Iff denotes cohomology with compact support. Show that 

H'(X; Z/2) = 	,(X; Z/2), 

where 117,°_ denotes homology based on infinite chains. 
(b) Show that if X is connected, then X is a pseudo n-manifold. 
(c) We say X is orientable if it is possible to orient the n-simplexes a, of X so 

that the (possibly infinite) chain I cri  is a cycle. Show that in this case, 

Iff (X; G) 	_ p(X; G) 	and 	HP (X; G) 	,(X; G) 

for all G. Conclude that orientability of X depends only on the underlying 
topological space, not on the particular triangulation. 

§66. CAP PRODUCTS 

To give our second proof of Poincare duality, we must first treat a topic that is 
purely algebraic in nature; it properly belongs in the last chapter, or even in 
Chapter 5. It is a certain operation called the cap product of a cohomology class 
and a homology class. Its definition is formally similar to the definition of cup 
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product we gave in §48. Its usefulness, which lies in its connection with the 
duality theorems, will appear shortly. 

Throughout this section, let R be a commutative ring with unity element. 

Definition. Let X be a topological space. We define a map 

SP (X; R) ®Sp  + q (X; R) C:4  Sq(X; R) 

by the following equation: If T : 	q X is a singular simplex on X, and if 
a e R, then 

c° n (T ®a) = T o 1(€, ), 	,e,7 ) ®a • (cP,T 0 1(c„. ,Ep 4. 0). 

This chain is called the cap product of the cochain cP and the chain T ®a. 

Roughly speaking, cP n (T 0 a) equals the restriction of T to the front 
q-face of 	q, with coefficient the product of a and the value of c° on the back 
p-face of T. 

As with cup product, there are alternate versions of the cap product. 
Among these are maps 

SP (X; G) Sp  + q (X; Z) (2. Sq  (X; G), 

Si (X; F)e,sp ,q(X; F) Sq(X; F), 

where G is an abelian group and F is a field. They are all given by the preceding 
cap product formula. These additional versions of cap product will also be of 
use to us. 

Theorem 66.1. Cap product is bilinear, and is natural with respect to 
continuous maps. It satisfies the boundary formula 

a(e 	f) = (-1)q (se n c„) + e n dc„ 

and is related to cup product by the formula 

cP 	(dq n ep,q+ ,) = (cP dq) n ep+  

Proof. Bilinearity is easy to check. Naturality is harder to formulate than 
to prove. Given a continuous map f : X Y, consider the following diagram: 

S° (X) es,, (X) .11'  Sq (X) 

Tr 	 1f# 	

If# 

SP(Y) Sp+q(Y) -1=— Sq(Y). 

(We omit the coefficients for convenience.) Naturality states that if e e SP (Y) 
and dp ., q  E Sp ,. q (X), then 

f p(f# (cP) n dp 	 = e n fo (dp  q). 
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One checks this formula readily by direct computation. The proofs of the co-
boundary and cup product formulas are straightforward but reasonably messy. 
We leave the details to you. 0 

These formulas hold in fact for all three versions of cap product. In the case 
of the coefficient pairing G 0 Z —. G, one must add the proviso that the cup 
product formula makes sense. This will occur if two of cP,dq, and ep  + q + ,, have 
coefficients in Z and the other has coefficients in G. 

Theorem 66.2. Cap product induces a homomorphism 

HP (X; R) 0 Hp  + 4,(X; R) -r-\ Hq(X; R). 

It is natural, and satisfies the formula 

a°  n (3 n 7 p + q  + r) = (aP  L-1  i3q) n ltp+ q + r• 

The same result holds for the other versions of cap product. 

Proof First, we note that if d° is a cocycle and cp  ., q  is a cycle, then 
dP n cp ., q is a cycle: 

a(dP n c, + q) = ( OW° n cp+q  + d° n ac,+,= 0. 

Second, we show that n carries the kernel of the natural projection 

ZP (X; R) 0 Z, + q (X; R) —, HP (X; R) 0 H, + ,(X; R) 

into B,(X; R). This kernel is generated by the elements of the two groups 
BP 0 Z, + q and ZP 0 B, + q• The boundary formula shows that 

(cobdy) n (cycle) = ( — 1)q + 'adP - 1  n zp+, = a(dP -  ' n zp+  g), 

(cocycle) n (bdy) = 9 n ac,+  q + 1 = 8 (z' n c„ + q + 1), 

both of which are boundaries, as desired. Naturality, and the cup product for-
mula, are immediate. 0 

Relation to the Kronecker index 

Naturality of the cap product on the homology-cohomology level is ex-
pressed by a diagram of the following form (where we omit the coefficients for 
convenience): 

HP(X) 0 Hp  + ,(X) --, Hq (X) 

if* 	Ifs 	11* 
HP (Y) 0 H, + ,(Y) --, Hq(Y). 

The similarity of this diagram to the corresponding diagram for the Kronecker 
index makes one suspect there is some relation between the two. There is; we 
discuss it now. 
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Recall that the Kronecker index was defined in §45 as the homomorphism 

( 	, 	) : HP (X; G) 	p(X) G 

induced by evaluation of a cochain on a chain. 

Theorem 66.3. Let es : 14(X; G) G be the homomorphism induced by 
the augmentation map e, which is an isomorphism if X is path connected. Then 
the Kronecker index equals the composite 

HP (X; G) ®Hp(X) -C4  14(X; 	G. 

Proof The augmentation map e : C, Z gives rise to a homomorphism 
C. 	G --+ ZOG= G that carries boundaries to zero. Hence it induces a ho- 
mology homomorphism es. We compute directly as follows: If T : Op  X, then 

e (cP n T) = e [ T o 1(es) (CP,T 0 1 (e*, 	,e,))] 

(c", T). 

The theorem follows. 0 

It was convenient to define the Kronecker map 

K : HP (X; G) Hom(H,(X),G) 

as the map sending a to the homomorphism (a, ). Its naturality was easier to 
formulate than that of the Kronecker index. There is a similar version of the 
cap product. Its naturality is expressed by the commutative diagram 

	

11, ,(X; 	Hom(HP (X; R),Hq(X; R)), 

	

I f. 	IHom(f*,L) 
Hp 4. q (Y; R) 	Hom (I-11(Y; R),H f( Y; R)) 

where the horizontal maps carry the homology class 	q  to the homomor- 
phism " n yp  + q."  This is the formulation of naturality we often use in practice. 

Simplicial cap product 

Just as with cup products, one needs a formula that holds for simplicial 
theory if one wants to compute readily. By now it should be clear how to obtain 
such a formula. 

Definition. Given a complex K, choose a partial ordering of the vertices of 
K that linearly orders the vertices of each simplex. We define a homomorphism 

CP (K; R) ca, ,(K; 	Cq(K; R), 

called simplicial cap product, by the formula 

cP n ([v0, . 	g] a) = [v0, 	,vg] ®a • (cP,[vg, 	q] 
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Theorem 66.4. The simplicial cap product satisfies the boundary for-
mula and cup product formula of Theorem 66.1. It induces a homomorphism 
in simplicial theory 

HP (K; R) H p (K;R) H q (K; R) 

that corresponds to the singular cap product under the standard isomorphism 
between simplicial and singular theory. 

Proof. Let n : Cp(K)--. SAKI) be the chain map defined in §34 that 
induces an isomorphism of simplicial with singular theory. Since n is a mono-
morphism onto a direct summand, its dual fi is surjective. 

We first show that ,, commutes with n on the chain level. That is, given 
cP e CP(K; R), we choose dP e SP (WI; R) with /(d") = cP, and verify that for 

q e C„ q (K;R), we have 

n(cP 	cp+q) = d P 	n(c q). 

To prove this formula, we assume v. < • • • < 	f, and compute 

	

n (cP n  [v., ... ,vp  + 4] 0 a) = /(vo, 	AO 0 a • (cP,[vq, 	q]) 

= 1 (1) 0 • • • '1 q) 0 a • (dP,/(oq, 	q)) 

= d°  

This last equation uses the fact that 

	

/(vo, 	,vp ,. g) o  (E0 • • 	q) = 1 (V 0 • • • 4) • 

The boundary formula and cup product formula may be proved by direct 
computation, as in Theorem 66.1. Alternatively, they can be derived from the 
similar formulas for singular theory. For example, given cP, let fi(dP) = cP, as 
before. Then if we apply n to both sides of the desired equation 

(*) 	a (c" n 	q) = 	 1)C P 	+ cP n acp,q, 
we obtain the valid equation 

	

a (dP n n (c, 	1)q  adP 	(c,, 	+ d° n an (cp  q) • 

Since n is a monomorphism, (*) must hold. A similar argument applies to the 
cup product formula, using the fact that n  commutes with cup products. q 

Relative cap products 

Just as with the cup product, there is a relative version of the cap product..  

It will be useful in what follows. The most general relative cap product is a 
bilinear map 

HP (X,A) H p q(X,A U B) --+ H„,(X,B), 

which is defined when {A,/3} is an excisive couple. (Here we omit the coeffi- 
cients for convenience.) We shall in fact be interested only in the cases when; 
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either A or B is empty, or A = B. That is, we are concerned with the following 
operations: 

H" (X) 0 H + q (X,B)Q. Hq (X,B), 

HP (X,A) O Hp  + ,(X,A)Q,  H,(X), 

HP (X,A) O H, q Hg(X,A). 

The existence of these cap products is easy to demonstrate. Let c° e SP (X) and 
d, + q E Sp+ q(X). To obtain the first operation, we note simply that if dp  q is 
carried by B, then so is cP n d, + q, by its definition. To check the second, we 
note that if cP vanishes on all chains carried by A, and if di, q is carried by A, 
then cP n dp+q  = O. The third one equals the second one followed by projec-
tion Hq(X) Hq (X,A). 

The boundary formula and the cup product formula hold, as before. There-
fore, one has a natural bilinear map on the level of relative homology and coho-
mology. 

One has similar relative cap products in simplicial theory. One simply re-
peats the arguments already given for the absolute cap product. 

EXERCISES 

1. Verify the naturality formula of Theorem 66.1, by setting di, = T a and 
computing directly. 

2. Verify the boundary formula of Theorem 66.1 by setting 	T a and 
adding the expressions for (— Woe n cp , q and d° n aci,+, Most of the 
terms cancel; one has remaining the expression 

I(-1)iT 0 1(4,... 	0 a • (d°,T 0 1(e,„... + 0), 

where the qth term is left over from (— l)9od° 	q and the terms for which 
i < q are left over from d° n acp., q. 

3. Verify the cup product formula of Theorem 66.1 by setting 	q = TO a 
and computing directly. 

4. Let T denote the torus; let a and be the usual generators for H' (T); let r and 
A generate Ifs( T) and H2( T), respectively. (See Example 1 of §49.) 
(a) Compute a n r and n r; draw pictures. 
(b) Compute A n r. 
(c) Verify that a n 	n 	= (a t...) i3) n r. 

5. Let P2  be the projective plane; let r(2)  denote the non-zero element of 
H,(P2; Z/2). Compute the values of the homomorphism n ra, on the groups 
Hi(P2; Z/2) for i = 1, 2. 
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6. Let (X,A) be a triangulated pair; let a e H „(X,A). Then a.cy is an element of 
_ ,(A). Consider the following diagram: 

	

H P  (X,A) --o HP (X) 	H° (A) --o H" * 1  (X,A) 

I n a 	 I rl 
	 In 8,a 	 I n a 

H„ _ p(X) --0 H _ p(X,A) 	H _ _ i (A) --o H„ _ ,(X). 

Show that each of the squares commutes up to sign. What are the signs 
involved? 

§67. A SECOND PROOF OF POINCARE DUALITY 

We now give a second proof of the Poincare duality theorem. In this proof, the 
duality isomorphism will be constructed using cap products. There are several 
interesting consequences, including a naturality formula for the duality isomor-
phism and a proof of its independence of the triangulation involved. 

Definition. Let X be a compact triangulable homology n-manifold. (Note 
that no specific triangulation of X is assumed.) Let X, be a component of X. If 
X is orientable, then 1-/„(X;) is infinite cyclic; and a generator ro) of 1/„(Xi) is 
called an orientation class for X. The image of the classes I'I') under the isomor-
phism induced by inclusions, 

H„(X,) = 11„(X), 

is called an orientation class for X, and is denoted by F. Similarly, if X is 
not necessarily orientable, and if F is the unique non-trivial element of 
H„(X;; Z/2), then the image of these elements in H„(X; Z/2) is denoted r(2)  
and is called an orientation class for X over Z/2. 

If X is given a specific triangulation, then r(l)  is represented by the sum of 
all the n-simplices of the component X,, suitably oriented, and F is represented 
by the sum of y of all the n-simplices of X, suitably oriented. Similarly, F(2)  is 
represented by the sum of the n-simplices of X, each with coefficient [1] e Z/2.  

Theorem 67.1 (Poincare duality—second version). Let X be a compact tri-
angulable homology n-manifold. If X is orientable, and if r e 11„(X) is an 
orientation class for X, then 

HP (X; G) r--.1-1-0'  H„ ,,(X; G) 

is an isomorphism for arbitrary G. Whether X is orientable or not, 

H'(X; Z/2) 	- j,(X; Z/2) 

is an isomorphism. 
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Proof The idea of the proof is the same as before. We choose a triangula-
tion of X, partition X into its dual blocks, and construct an isomorphism 

: C''(X) 	p(X) 
that commutes with 3 and 8. The difference is that we are going to construct 
by use of the cap product formula. 

Step I. We first prove the following elementary fact: Let K be a com- 
plex; let g: sd 	K be a simplicial approximation to the identity. Then given 
a e K, there is exactly one simplex t of sd a that g maps onto a; the others are 
mapped onto proper faces of a. 

Recall that if a e K, then since a lies interior to a, the map g must carry Fr 
to one of the vertices of a. 

We proceed by induction on the dimension of a. If a is a vertex v, then 
g(v) = v, and our result holds. If a = vov„ then g(v.) = v, and g(v,) = v„ 
while g(&) equals either v, or v1. In either case, g collapses one of the simplices 
vo3 and v13- to a point, and maps the other onto vov,. 

In general, let s be a k-simplex v.. vk. By the induction hypothesis, each 
k — 1 face si  = v, ... . . . t.),, of a contains exactly one k — 1 simplex t, of 
sd K that is mapped by g onto si. Thus every k-simplex of sd a is collapsed by 
g except possibly for k-simplices of the form a * ti, for i = 0, . , k. Now g 
carries Fr to one of the vertices of a. Suppose g(a) = v1. Since 

g(t,) = s, = v.. . .6, . . v„, 
the map g carries a * t;  onto a, and for i j collapses each simplex Fr * ti  
onto si. 

Step 2. Here is another elementary fact: Let K be a complex; let 
sd : Cp(K)--. (sd K) be the barycentric subdivision chain map defined in 
§17. If a is an oriented p-simplex of K, then sd a is the sum of all the p-simplices 
of sd K lying in a, suitably oriented. 

We proceed by induction. The formula sd (v) = v shows the result true for 
dimension 0. In general, let a have dimension p. Now the chain 3a is the sum of 
the p — 1 faces of a, suitably oriented. Then sd (8a) is by the induction hypoth-
esis the sum of all the p — 1 simplices of sd K lying in Bd a, suitably oriented. It 
follows that 

sd a = [a, sd (8a)] 

is the sum of all the p-simplices of sd K lying in a, suitably oriented. 

Step 3. Now let X be the manifold of our theorem; choose a specific tri-
angulation of X. Let -y be the cycle representing r relative to this triangulation. 
In the complex sd X, we shall use the standard partial ordering of the vertices, 
and we orient the simplices of sd X by using this ordering. Orient the simplices 
of X arbitrarily. 

By Step 2, the chain sd -y is the sum of all the oriented n-simplices of sd X, 
with signs ± 1. Because it is a cycle, sd y is an orientation cycle for sd X. 
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Choose g : sd X X to be a simplicial approximation to the identity. Con-
sider the diagram 

C° (X) 	 D. _ p(X) 

g#  
CP  (sd X) sd -y C„ _ p (sd X) 

where j is inclusion of the dual chain complex of X into the simplicial chain 
complex of sd X. We shall prove that the composite of g# and n sd y carries 
CP (X) isomorphically onto the subgroup D. _ ,,(X) of C. _ p(sd X). It follows 
that there is a unique isomorphism 1,1i making this diagram commute. 

First, we prove the preliminary result that if a is an oriented p-simplex of X, 
then g# (a*) n sd y equals the sum of all n — p simplices of sd X lying in the 
block D(a), with coefficients ± 1. 

We prove this fact by direct computation. Given a, there is by Step 1 
exactly one p-simplex t of sd X that is mapped onto a by g. Then 

(a*) -±t*, 

the sign depending on the chosen orientations. Let us compute the cap product 
t* n sd y. 

Recall the formula for simplicial cap product. Given an ordering of the 
vertices of a complex K, and given a cochain c° of K and a p q simplex r of K, 
the chain cP n 7 equals the "front q-face" of r, multiplied by the value of cP on 
the "back p-face" of r. 

Now t is a p-simplex of sd X of the form 

t = [s°, • . • AI] 

where sp  = a and si  has dimension i for each i. Furthermore, sd 7 is the sum of 
all the n-simplices of sd X; each is of the form

?  
T = [a — 401 

where a;  has dimension i for each i. The chain t* n T vanishes unless t equals 
the back face of r; that is, unless 

t 	[4, • • • 730] = laps • • • Al 

In this case, t* n r equals [o„, 	,"cip]. It follows that t* n sd -y is the sum, 
with signs ± 1, of all simplices of sd X of the form 

[5„, • • • ,& °] 

for which ap  = sp  = a. These are precisely the n — p simplices of D(a). 
Now we prove our result. We show that g" (a*) n sd -y is in fact a funda- 

mental cycle for the block (D (a), D(cr)). 
We know that g" (a*) n sd -y is a non-trivial n — p chain carried by D(a), 

and that it is not a multiple of any other chain (since its coefficients are all 
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± 1). To show it is a fundamental cycle, it suffices to show that its boundary is 
carried by D (a). For this, we compute 

(*) 	a (g# (o-*) n sd 7) = ( — 1)" Pog# (cr*) n sd 7 + 0 

= (— 1)a Pg# (Sas) n sd -y. 

Now Se is a sum of terms of the form ± 	„ where a° , is a p 1 simplex 
of X having a as a face. By the result just proved, the chain g° (o * ,) n sd 
is carried by the block D(ap ,) dual to 0-1, ,. Since cr , } a, this block is 
contained in D (a). Thus g° (50) n sd -y is carried by D(a), as desired. 

Step 4. We have thus proved that the isomorphism 

: CP(X) 	_ p(X) 

exists, and that it carries the basis element a* to a fundamental cycle for the 
dual block to a. Therefore, IP resembles the isomorphism of Theorem 65.1. 
The only question remaining is whether it commutes with 5 and a. This it does, 
but only up to sign. Formula (*) preceding gives us the equation 

a~L(c°) = (-1)" - Ply (be). 

Now the sign ( — 1)n - does not affect the groups of cocycles and boundaries. It 
follows that 4/ induces an isomorphism of HP (X) with 1-1„ _ p(D (X)) just as 
did. (In fact, ¢ differs from 4) only by a sign. See Exercise 1.) 

Now since the inclusion 2) (X) @ (sd X) induces a homology isomor-
phism, it follows that the composite map 

HP (X) 	HP (sd X) 	
Isd 	

_ (sd X) 

is an isomorphism. Then if we identify the homology of sd X with that of X, by 
passing to the homology of the triangulable space X, for instance, or to singular 
homology and cohomology, we see that since g* is the identity map, this isomor-
phism can be expressed in the form 

H° (X)O—E H„ _ p(X). 

Step 5. To treat the case of arbitrary coefficients, one checks that the 
composite 

CP (X) 0 G CP (X; G)
g 

CP (sd X; G) sd D„ _ p(X) G 

equals the isomorphism CP (X) D,, _ p(X) of Step 4 tensored with the iden-
tity map of G. Hence it is an isomorphism. 

Step 6. In the case where X is not necessarily orientable, the preceding 
proof works if one reduces all the coefficients mod 2. Steps 1 and 2 proceed 
unchanged. The proof in Step 3 shows that g° (a*) n sd 	is the non-trivial 
n — p cycle (with Z/2 coefficients) of the block (D(a),D(a)). Step 4 is easier, 
since no signs are involved. 0 
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Our proof of this theorem used simplicial homology throughout. But the 
fact that simplicial and singular theory are isomorphic, by an isomorphism that 
preserves cap products, means that this theorem holds for singular theory as 
well. In particular, the isomorphism given by n 1' depends only on the homol-
ogy class r, not on any particular triangulation involved. 

The preceding theorem gives us information about how the Poincare dual-
ity isomorphism behaves with respect to continuous maps. Specifically, one has 
the following theorem, whose proof is an immediate consequence of the nat-
urality of cap product: 

Theorem 67.2. Let X and Y be compact, connected, triangulable, orienta-
ble homology n-manifolds; let Tx  and r, be orientation classes for X and Y, 
respectively. Given f : X Y, let d be the integer such that f„(Tx) = d • F1. 
Then the following diagram commutes: 

n r 

	

IP (X; G) 	
x 

H _ k(X; G) 

I f
* 

n dry 	11* Hk(Y; 

	

G) 	H„ _ ,,(Y; G). 

In particular, if d = -± 1, then f* is infective and f, is surjective. The same 
result holds for G = Z/2 without requiring X and Y to be orientable. 0 

Definition. The integer d appearing in the statement of this theorem is 
called the degree of f, relative to the orientation cycles TX  and F. Since TX  and 

are uniquely determined up to sign, so is d. If X = Y and if rX  = r1, then d 
is uniquely determined. 

The second version of Poincare duality, in which the isomorphism is ob-
tained by use of cap products, has consequences that go far beyond the nat-
urality diagram just proved. Note that everything in the statement of Theorem 
67.1 makes sense even if X is not triangulable, provided one knows what one 
means by an orientation class for X. This fact suggests that by using cap prod-
ucts in singular theory, one might obtain a proof of Poincare duality for an 
arbitrary compact topological manifold without assuming triangulability. This 
is in fact the case; the interested reader may consult [Do] (or alternatively, 
[G-H] or [V] or [S]). 

EXERCISES 

1. Given the orientation cycle 1/ for X, let 4'  be constructed as in the proof of 
Theorem 67.1. 
(a) Define 4, by the rule 

O(cP) = (-1)*(P),P(e), 
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where 

a(4k + n) 0, 	a(4k + n + 2) = 1, 

a(4k + n + 1) --= 0, 	a(4k + n + 3) = 1, 

for all k. Show that satisfies the condition OS = acb. 
(b) Show that if a is an n-simplex of X, oriented as it appears in the cycle 7, 

then 4/(a*) =- er. [Hint: E (e)) = E(gr(4)(a*))) = (a* n y)•] 
(c) Conclude that the homomorphism 4) of (a) is identical with that in the 

proof of Theorem 65.1. 

2. Let X and Y be compact connected triangulable homology n-manifolds. Let 

(a) Show that if X and Y are orientable and if f has non-zero degree, then 
/3i  (X) > 0,(Y), where 13, denotes the ith betti number. 

(b) If 	H„(X; Z/2) H„(Y; Z/2) is non-trivial, what can you say about 
H,(X; Z/2) and H,(Y; Z/2)? 

3. Let X„ denote the n-fold connected sum of tori; let X, = S2. Show that there is 
a map f : X, X„, of non-zero degree if and only if n m. 

4. Let X„ be as in Exercise 3; let Y. be the n-fold connected sum of projective 
planes, with n > 1. Given f, consider the condition: 

(*) 	f, is non-trivial as a map of H2  with Z/2 coefficients. 

(a) Show that there is a map f : 	Y„, satisfying (*) if and only if n > m. 
(b) Show that there is no map f : 	Y,,, satisfying (•). 

The case of maps f : 	X, will be considered in the exercises of the 
next section. 

*§68. APPLICATION: COHOMOLOGY 
RINGS OF MANIFOLDSt 

We now apply the Poincare duality theorem to the problem of computing the 
cohomology ring of a manifold. While we cannot compute the cohomology ring 
of every compact manifold, the theorem we shall prove is strong enough to 
enable us to compute the cohomology rings of the real and complex projective 
spaces. This computation leads, in turn, to proofs of such classical theorems 
of topology as the Borsuk-Ulam theorem and the so-called "Ham Sandwich 
Theorem." 

Definition. Let A and B be free abelian groups of the same rank. Let C be 
an infinite cyclic group. We say a homomorphism 

f:A0B---0C 

In this section, we assume familiarity with the projective spaces (pa). We also use the 
universal coefficient theorem for cohomology (§53). 
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is a dual pairing if there are bases a„ 	,a„, for A, and b„ . ,b,, for B, such 
that 

f (12,0 bi) = •54-y 

for all i, j = 1, 	,m, where y is a generator of C. 

Theorem 68.1. Let X be a compact, connected, triangulable, orientable 
homology n-manifold. Let ' (X) denote the torsion subgroup of IP (X). The 
cup product operation induces a homomorphism 

Hk (X)  H' (X) 	(x)  
Tk (X) Tn k (X) 

that is a dual pairing. 

Proof Let a e Hi  (X) and # e lin - 	If a is an element of finite 
order, so is a i 0; since H" (X) is infinite cyclic, this means that a L.) # = 0. 
A similar remark applies if # has finite order. Therefore (by Lemma 50.3), cup 
product induces a homomorphism 

Hk  (X)  Hn k  (X)  Hi, (X).  

Tk (X) T" -k(X) 

Choose a generator A of His (X). Then choose a generator r of H„(X) by 
choosing its sign so that the isomorphism 

(*) 	Hn(X) 1-2* 	Z, 

maps A to 1. Then is  (A n = 1. 
To prove the theorem, we shall find elements a„ 	,a„, of IP (X) and 

0„ 	,0„, of lin "(X) such that 

ai 	= oijA 

for i, j = 1, . . . ,m, and such that their cosets modulo torsion, denoted tail 
and {$J}, respectively, form bases for (X) 1 Tk  (X) and Hn k(X)/ 	1' (X), 
respectively. 

The idea of the proof is this. First, there is a geometric duality isomorphism 

r : Ha '(X) 11„(X), 

obtained from cap product with r. This isomorphism induces an isomorphism of 
Hn -k(X)ITa"(X) with 14(X)IT„(X). 

Second, there is an algebraic duality isomorphism 0' obtained from the 
Kronecker map K. It is obtained from the exact sequence 

0 	Horn (H„(X),Z) «K  HP(X) «— Ext (1/, _ ,(X),Z) 4-- 0, 
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as follows: The left-hand group is isomorphic to Horn (H„(X)1 T, (X),Z) and is 
thus free, while the right-hand group is a torsion group. Therefore, there exists 
an induced isomorphism 

H k (X) ,) K* Hk  (X) nom(
T k(X)

,z,  4— 
Tk  (X) 

It is related to the cap product by the formula 

= [K(a)i(19) = (a,13) = €.(« n  /3). 

Combining these two types of duality will give us our theorem. 
Consider the sequence of isomorphisms 

Ha k  n r T., 	Hk  ,) K* Hk 
 

P 	Tk 	 k 	 Tk  

(Here we delete X from the notation, for convenience.) Choose, arbitrarily, a 
basis {Oi}, 	,{f3j for H'IT" -k. Let {-yj, 	7{7,,,} be the corresponding 
basis for Ha rk, defined by the equation 	r = -y;  for all j. Let -4', . • • 
be the corresponding dual basis for Hom (Hk/ T,„Z), defined by the equation 
7f({7,}) = au. Finally, let 1.211, 	,{a,,} be the corresponding basis for HkIr, 
defined by the equation K*({a,}) = 7? for all i. 

To show that a, Li fl;  = ouA, it suffices (applying the isomorphism of 
H" (X) with Z given by (*)) to show that 

€*((ai  u 13;) n r) = bue.(A n r) 

We compute as follows: 

= "17(1-Yil) = ik*  Will 	n r) 
= (a1, 3j  n r) 
= €.(ai 	(13;  n r)) = E.((oti  u 13i) n r). 0 

A similar theorem holds if the coefficients form a field: 

Theorem 68.2. Let X be a compact, connected, triangulable homology 
n-manifold. Let F be a field; assume F equals Z/2 if X is non-orientable. Let A 
generate .11n (X; F). There are (vector space) bases a„ . ,a," for Hk  (X; F), 
and f3„ 	for H' (X; F), such that for i, j = 1, . ,m, 

ai 	13.;  = 

Proof In the orientable case, choose r so that the isomorphism 

Ha (X; F) 0-1,'  14(X; 	F, 

• 
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carries A to 1 e F. In the non-orientable case, r2)  is unique. Then proceed as 
before, using the diagram 

H' 	
r 

(X; F) 	H (X- F) = Hom (H (X- F) F) 	Hì  (X; F). 

Here r denotes either F or r,), depending on the case. 0 

Example 1. Let us consider the torus once again. By Theorem 68.1, there is a 
basis a1, a, for H'(T), and a basis )3„ 132  for H'(T) such that a, L...) 	SvA, where 
A is a generator of H=(T). The two "picket fence" cocycles w' and z' pictured 
in Figure 68.1 give us a basis for H'(T), and the indicated cocycle a* generates 
112(T). Recall that z' 	w' = a*. The conclusion of the theorem holds if we let a, 
and a2  be the cohomology classes of z' and w', respectively, and we let 0, and )3, be 
the cohomology classes of w' and —z', respectively, and we let A be the cohomology 
class of r. These computations were carried out in Example 1 of §49. 

The proof of the theorem tells us that this is the way it ought to work. If one 
begins with the cocycle w', the geometric (Poincare) duality map 4, carries it to the 
cycle c1  pictured in Figure 68.2. (We know that the cycle "dual" to w' is carried by 
the blocks dual to the simplices appearing in the carrier of w'. To check that 4, 
carries w' to c, rather than to —c, requires some care.) The cycle c1  is homologous 
to one represented by the cell B along the side edge of the rectangle. Under the 
algebraic duality ice, this cycle B in turn corresponds to a cocycle whose value is 1 
on B and 0 on the cycle A going around the torus the other way. The cocycle z' is 
such a cocycle. Thus w' is carried to z' under our combined geometric-algebraic 
duality isomorphism. This is just as expected, since fzi L..) 	= A, while z' 
z' = w' lJ w' = 0. 

Figure 68.1 

Now we apply these results to real projective space P. We know P" is 
triangulable (see Lemma 40.7), so Poincare duality applies. The cellular chain 
complex of P is infinite cyclic in each dimension k = 0, . . . ,n; and the bound-
ary operator is either 0 or multiplication by 2. Therefore, R.' (P; Z/2) is a 
vector space of dimension 1, for k = 0, . . . ,n. It remains to calculate cup prod-
ucts in the ring H* (Ph; Z/2). 
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WI 

N 
r C 1 

B 

Figure 68.2 

Theorem 68.3. If u is the non-zero element of H' (P'; Z/2), then uk  is the 
non-zero element of Hk  (P"; Z/2), for k = 2, . . . ,n. Thus H* (Pn; Z/2) is a 
truncated polynomial algebra over Z/2 with one generator u in dimension 1, 
truncated by setting un +' = 0. 

Proof We proceed by induction, beginning with n = 2. The vector space 
IP (I"; Z/2) has dimension 1. If u is its non-zero element, then by Theorem 
68.2, u2  = u Li u must be non-zero. 

Suppose the theorem is true for dimension n — 1. The inclusion map 
j : P" - 1  ---. r induces homology and cohomology isomorphisms (over Z/2) 
in dimensions less than n. Therefore, by the induction hypothesis, if u e 
H'(1"; Z/2) is non-zero, so are u2, . . . ,u" - 1. (Recall that j* is a ring homomor-
phism.) It remains to show u" * 0. 

By Theorem 68.2, there is a basis a, for 111(P"; Z/2) and a basis 0, for 
11" -  ' (P"; Z/2) such that a, Li 13, generates H"(P"; Z/2). Since u and u" -' 
are the unique non-zero elements of these groups, respectively, we must have 
a, = u and 131  = u" - 1. Thus u" = u Li u" -' * 0, as desired. q 

Corollary 68.4. H* (P'; Z/2) is a polynomial algebra over Z/2 with a 
single one-dimensional generator. 

Proof This corollary follows from the fact that inclusion j : Pa —4  Pc° in-
duces a cohomology isomorphism (over Z/2) in dimensions less than or equal to 
n, and the fact that j* preserves cup products. q 

We now apply this result to prove several classical theorems of topology. 
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Definition. A map f : S" Sm is said to be antipode-preserving if 
f (—x) = —f(x) for all x in SR . 

Theorem 68.5. If f : S' S" is continuous and antipode-preserving, then 
n < m. 

Proof Let a„ = (1,0, ... ,0) e SR; we call it the "base point" of S". Let F 
denote the field Z/2. 

Step 1. Let r„: S" P" be the usual quotient map. We prove that if 
a : I S' is any path from an  to its antipode —a", then 7„ o a represents the 
non-zero element of H, (P"; F). See Figure 68.3. 

This conclusion is easy to prove if a is the standard path 

/3(t) = (cos 7t, sin rt, 0, . ,0). 

For then $ is a homeomorphism of (I,Bd I) with (E1,.,S°), where E. is the 
upper half of S'. And gr, maps (El!,_,S°) onto (P',1"), collapsing S° to a point. By 
our basic results about CW complexes, the image under (7,), of a generator of 
H, (E+ ,5°) is a fundamental cycle for the 1-cell of I". The identity map, consid- 
ered as a singular simplex i 	I, generates H,(I,Bd I; F); therefore, the 
singular simplex ir, o o i 	o 13 generates 11,(13"; F). 

To show the same result for a general path a, we proceed as follows: Con-
sider the singular 1-chain a — 13, where is the standard path as before. It is a 
singular cycle of 5" since its boundary vanishes. In the case n > 1, H, (S") = 0, 
so that a — /3 must bound some 2-chain d. Then 

gr„ 0 a — 	0 13 = a(ir„ 0 d), 

so 7„ o a and gr„ o /3 are homologous. Hence they are also homologous as cycles 
with F coefficients. 

If n = 1, then we use the fact that the map ICI  : Si  r has degree 2. Since 
a — )3 is a singular cycle of S', the cycle 11-1  o a — ir, 0 13 represents an even mul-
tiple of the generator of H, (P'). In particular, it represents the zero element of 
H, (P'; F). Then 71  0  a and 7, o $ are homologous as cycles with F coefficients. 

in 

n 

Figure 68.3 
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Step 2. Let f : S" —. Sm be an antipode-preserving continuous map. 
Choose a rotation of Sm, say p : Sin --. Sm, that carries the point f(a„) to the base 
point an, of Sm. Then the map g= pof is continuous and antipode-
preserving, and carries a„ to am. Via the quotient maps r„ and r„„ the map g 
induces a continuous map h : Pm —. Pm: 

C g e 
‘.7 4 -----4 ,-,in  

Irn i 	1 7m  
P" ---, P. 

We show that h.: H, (P"; F) —. H, (Pm; F) is non-trivial. 
Let a be any path in S" from a„ to —a". Since g preserves antipodes, 

g(—a„) = —am, so g o a is a path in Sm from am  to —am. Now hi  carries the 
cycle r. o a to the cycle 7 . o g o a; therefore, by Step 1, the homomorphism 
h, carries the non-zero element of H, (P"; F) to the non-zero element of 
H,(Pm; F). 

Step 3. Now we prove the theorem. Using naturality of the isomorphism 

K*  
HOMAH i  (Pk; F), F) ,— H' (Pk; F) 

for k = m,n, it follows from Step 2 that the homomorphism h* of cohomology 

h* H'(1"; F) 4— H' (Pm; F) 

is non-trivial. Let u e H' (Pm; F) be non-trivial; then h* (u) 6 H' (Pm; F) is 
non-trivial. Because h* is a ring homomorphism, le (um) = (h* (u))"; by the 
preceding theorem, the latter element is non-trivial. Therefore, u" must be non-
trivial. It follows that m _?.._ n. 0 

Theorem 68.6 (The Borsuk-Ulam theorem). If h: Sm —. R" is a continuous 
map, then h(x) = h(— x) for at least one x e S. 

Proof If h(x) * h(— x) for all x e S", then the function f : Sm —. iS4  - I  

defined by 

f (x) —  h(x) — h(—x)  
il h (x) — h (— x)ii 

is continuous and antipode-preserving. Such a function does not exist. 0 

Theorem 68.7 (The baby ham sandwich theorem). Let A, and A2  be two 
bounded measurable subsets of R2. There is a line in R' that bisects both A, 
and A2. 

This result is not elementary. Try finding such a line even in the simple case 
where A, and A2  are triangular regions! 
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R 2  X 1 

Figure 68.4 

Proof Suppose A, and A2  lie in the plane R2  X 1 in R3. For each unit 
vector TA in R3, consider the plane P(u) through the origin perpendicular to u. 
Let f (ii) equal the measure of the part of A, that lies on the same side of P(14) 
as does the vector u. See Figure 68.4. Note that 

fi(fi) 	(-17) = measure A,. 

Now the function 

(14 ),.f; (u)) 

is a continuous map of S2  into R2. By the Borsuk-Ulam theorem, 

(fi (a),f2(a)) = 	—d),f2( — a)) 

for some a e S2. Then 

f, go =_- 1/2  (measure Ai). 

The line in which the plane P(a) intersects the plane R2  X 1 is thus the desired 
line that bisects each of A, and A2. 0 

The proof of this theorem generalizes to show that for n bounded measur-
able sets in R", there is an n — 1 plane in R" that bisects them all. If one thinks 
of a ham sandwich as consisting of two slices of bread and a slice of ham, this 
theorem in the case n = 3 says that one can bisect each slice of bread and the 
slice of ham with a single whack of the knife! 

EXERCISES 

1. Let T be as in Example 1. Let g : sd T T be a simplicial approximation to the 
identity. Check that if sd 7 is the sum of all the n-simplices of sd T, oriented 
counterclockwise, then gi(w') n sd 7 is the cycle c, pictured in Figure 68.2. 
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2. (a) If (t, R R' is a homomorphism of commutative rings with unity, show 
that the induced homomorphism 

H* (X; R) If* (X; R') 

is a ring homomorphism. 
(b) Use the coefficient homomorphism Z Z/2 to compute the cohomology 

rings of P2k  and P2k  and P. 

3. Show that at any given point in time, there are antipodal points on the surface 
of the earth at which the temperature and barometric pressure are equal. 

4. Compute the cohomology rings of the following: 
(a) S3  X Ps with Z and Z/2 coefficients. 
(b) P2  X P3  with Z/2 coefficients. 

5. Assume that Cl" can be triangulated. (It can.) 
(a) Compute the cohomology rings H* (Cl") and 11*(CP'). 
(b) Show that if f : CP" CP ", then the degree of f equals a. for some inte-

ger a. 
(c) Show that every map f : CP2" CP2" has a fixed point. 
(d) Show that there exists no map f : CP2" CP2" of degree —1. 
(e) If f : CP2" + 	CP" 3  has no fixed point, what is the degree of f ? 

*6. Suppose we form a manifold M by taking two copies of CP2, deleting a small 
open 4-ball from each, and pasting the two remaining spaces together along 
their boundary 3-spheres. Discuss the cohomology ring of M; compare with the 
cohomology ring of S2  X S2. 

7. Let X be a connected, triangulable homology 7-manifold. Suppose that 

H,(X) = Z 

H4(X) Z 

H,(X) = Z/2 

H4(X) z Z G Z/3 

Give all the information you can about the cohomology groups of X, and of the 
cohomology ring If* (X). 

8. Let X be a compact, orientable, triangulable homology manifold of dimension 
4n + 2. Show that it cannot be true that H2„ , (X) zr. Z. 

9. Let X, = S2; let X, be the n-fold connected sum of T with itself; let r, be the 
n-fold connected sum of P2  with itself. Given f, consider the condition: 

(*) 	f*  is a non-trivial homomorphism of H, with Z/2 coefficients. 

(a) Show there is no map f : Y,„ X„ satisfying (*). [Hint: If cfi : A --0 B 
is a homomorphism, where A and B are free and rank A > rank B, then 
ker cl) has positive rank and is a direct summand in A. Choose a basis 

,B,„ for Hs(X„) such that f * (3,) = 0. Pass to Z/2 coefficients. Ap-
ply the proof of Theorem 68.2.1 

(b) Show there is a map f : Y2, 	satisfying (*). [Hint: First show 
Y, 	T # P2.] 

(c) Show there is a map f : Y„, X, satisfying (*) if and only if in > 2n + 1. 
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*§69. APPLICATION: HOMOTOPY CLASSIFICATION 
OF LENS SPACESt 

Throughout this section, let X denote a compact, connected, triangulable 
n-manifold. If X is orientable, let r denote an orientation class for X, and let R 
denote an arbitrary commutative ring with unity. If X is not orientable, let r 
denote the class r(2), and let R = Z/2. 

Given the ring structure in cohomology, defined by cup product, the Poincare 
duality isomorphism 

H* (X; R)C-1I,  H*  (X; R) 

gives us an induced ring structure in homology, called the homology intersec-
tion ring. This ring was known well before cohomology was discovered; the in-
tersection product a • of two homology classes was defined, roughly speaking, 
as the geometric intersection of two cycles that represent a and /3. Defining the 
homology intersection ring in this way, and deriving its properties, involved a 
good deal of labor. Furthermore, although one proved that the multiplication 
operation was a topological invariant, one found that in general it was not pre-
served by continuous maps, even between manifolds of the same dimension. As 
a consequence, it seems hardly surprising that all efforts to extend the intersec-
tion product from manifolds to arbitrary polyhedra were unsuccessful. 

Nowadays we view the matter differently. We consider the cohomology 
ring as the natural object, and view the existence of the homology intersection 
ring for manifolds as a happy accident resulting from the Poincare duality iso-
morphism. 

We are not going to study the homology intersection ring in detail. We 
shall, however, prove one lemma interpreting the ring operation as a geometric 
intersection of cycles. This lemma will enable us to make computations in the 
cohomology rings of the lens spaces. 

Definition. We define the intersection product of two homology classes of 
X as follows: Given ap  E HP  (X; R) and 13q  e H. (X; R), choose aq P and 13" q 
so that 

a" 
- P  n = ap 	and 	On "nr = fige 

Then define 

ap  • gq  = (e P  l) On  ") r. 

Note that when X is orientable, the sign of the result depends on the orien-
tation class F. Note also that the product of ap  and $q  has dimension p q — n. 
This fact makes the connection with geometric intersection plausible, for this is 
just the dimension of the intersection in R"  of a general plane of dimension p 
and a general plane of dimension q. 

'In this section, we assume familiarity with lens spaces (§40). 
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Lemma 69.1. Let 01,, and i3q  be homology classes of X; let p q = n. Let 
X be triangulated; let ap  be represented by a cycle cp  of sd X that is carried by 
the dual p-skeleton of X; let flq  be represented by a cycle d9  of X. 

Suppose that the carriers of cp  and dq  meet in a single point, the barycenter 
of the q-simplex a of X. If d9  has coefficient ±a on the simplex a, and c p  has 
coefficient ±b on the dual cell D(a), then a p  • (3,7  is represented (up to sign) by 
the 0-chain ab & of sd X. 

Proof. Let aq and i3P be cohomology classes such that 

a9  n F = ap  and IV n 

Then by definition of the homology intersection ring, 

ap  • = (aq 	n = aq (OP 
= a9  rl (3q. 

Because the homomorphism E*  : H0(X; 	R induced by the augmentation 
map E is an isomorphism, to prove our result it suffices to show that 

±ab 	e.(a, • ;30 99(a9 	130 	(aq,0q). 

We evaluate this Kronecker index by finding a representative cocycle for 
a9. Orient the simplices of X. Let y be an n-cycle of X representing r. Let 

: Cg (X) Dp  (X) be the isomorphism defined by the diagram 

Cg(X) - 	Dp(X) 

g°  
Cq(sd X)nsd 
	(sd X), 

where g is a simplicial approximation to the identity. If ai  is an oriented 
q-simplex of X, and ar is the corresponding elementary cochain, then (an is a 
fundamental cycle for the p-block D(a,) dual to ai, which we denote by zi. 

Now the cycle representing ap  has the form 

= 	bizi  = bilP (61). 

We assert that aq is represented by the cocycle defined by the equation 

c9  = 1,4% 

The fact that any = ± 4A5 implies that cg is a cocycle; and the fact that 11/ induces 
the isomorphism n r means that cg represents a9. 

Now the cycle d9  has the form 

d9  = ajai. 

The dual cell D (as) carrying the chain zi  intersects the simplex a• only if i = j, 
in which case they intersect in the barycenter of a,. The carrier of ep  consists 
of those dual cells D(a;) for which k 0, while the carrier of d9  consists of 
those simplices a. for which 	0. Since these carriers intersect in only one 



410 	Duality in Manifolds 	 Chapter 8 

point 'a, it follows that the only index i for which both the coefficients b, and a;  
are non-zero is the index for which a, = o. Our lemma follows: 

(ag,i3q) (cq,dq ) = bia,(07,a,) = 2 bia, 	±ba. 0 

To apply this result to the cohomology of lens spaces, we need a certain 
operation called the Bockstein, which we introduced for homology in the exer- 
cises of §24. 

Definition. Let (P be a free chain complex. Given an exact sequence of 
abelian groups 

0 G G' G" 0, 

consider the associated short exact sequences 

O--0 CI, G C, G' Cp  0 G" 0, 

0 	Hom (Cp, G ) --0 Hom (Cp, G') Hom (Cp, 	—+ O. 

From the zig-zag lemma, we obtain homomorphisms 

13* : HP (e; G") --4 HP (e; G) 

that are natural with respect to homomorphisms induced by continuous maps. 
They are called the Boekstein homomorphisms associated with the coefficient 
sequence in question. 

Lemma 69.2. Let X be orientable. Then the Bockstein homomorphisms 
commute with the Poincare duality isomorphism, up to sign. 

	

Proof Let : C"(X) 	_,,(X) be the Poincare duality isomorphism of 
Theorem 65.1. Consider the commutative diagram 

0 	Ck (X) G 	Ck (X) 0 G' 	Ck  (X) e G" 	0 
1 	 1 

0 	D. _ k 	e G —4 D. _ ,(X) 0 G' 	_ k (eY) e G" O. 

where the vertical homomorphisms are induced by 4). Since 80 = 46, one has 
an induced homomorphism of the corresponding exact homology sequences. In 
particular, the diagram 

Hk  (X; G") 13*  Hk  (X; G) 

MIN 

0* 	
I 

H„ _ k G") 	H„ _ _ ,(X; G) 

commutes. Here we use the fact that one has a natural isomorphism 

C` (X) 0 G =  Horn (Ci(X),G) 

of cochain complexes, so that we may use either to compute the cohomology of 
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X. We also use the naturality of the zig-zag construction to conclude that the 
cochain complex {C' (X)0 G } can be used to computeB*, and {D;  (X)0 G } can 
be used to compute /3.. 

The isomorphism induced by 0 differs from that induced by n T only by a 
sign, so our lemma follows. 0 

Now we apply these results to lens spaces. Recall that if n and k are rela-
tively prime positive integers, then the lens space X = L (n, k) is a compact, 
connected, orientable, triangulable 3-manifold. Furthermore, X has the struc-
ture of CW complex. Its cellular chain complex D(X) is infinite cyclic in each 
dimension i = 0,1,2,3, and the boundary operator is either 0 or multiplication 
by n. It follows that 

Hi(X;ZIn) = Z/n :a Hi  (X;ZIn) 
for i = 1,2,3. 

TheoCem 69.3. Let X = L(n,k). Let A generate the infinite cyclic group 
113(X); let A.00  denote its image in H3(X; Z/n) under the coefficient homomor-
phism induced by Z Z/n. Let 

ft* : H' (X; Z I n) H2(X; Z/n) 

be the Bockstein homomorphism associated with the coefficient sequence 

0 --+ Z1n 21-0Z1n2 —.Z1n—. 0. 

Consider the ring H*(X; Z/n). There is a generator u for H'(X;ZIn) such that 

u L.) 9*(u) 	± [k] A(„), 

where 1 l[kl is the unique inverse to [k] in the ring Z/n. 

Proof Let 

* H2  (X; Z/n) —0 H,(X;Z/n) 
be the homology Bockstein associated with the given coefficient sequence. Since 
the Bockstein homomorphisms commute with Poincare duality up to sign, it 
suffices to show that in homology there exists a generator w for H2  (X; Z/n) 
such that 

w • 	*(w) = ± (11[1d) 114,) n T. 

We know that A(s)  n T is a generator of 14(X; Z I n); it equals the homology 
class of v. 0 [1], where vo  is a vertex of X and [1] e Z/n. 

First, we define w. Let v, e, and c denote fundamental cycles for the cells of 
X in dimensions 0,1,2, respectively, as indicated in Figure 69.1. As we showed 
in the proof of Theorem 40.9, ac = ne. When c is considered as a chain with 
Z/n coefficients, then c is a cycle. Let w be the homology class of c; it generates 
H2 (X; Z/n). 
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Figure 69.1 

We now compute 0.(w). We may use the cellular chain complex of X to 
compute /3,,. Applying the zig-zag lemma, we begin with c, which is a cycle with 
Z/n coefficients, then we "consider" it as a chain with Z/n2  coefficients. Next 
we take its boundary (which is still ne), and finally we divide by n. Thus 
0.(w) = {e}, where e is considered as a cycle with Z/n coefficients. 

Finally, we compute the intersection product w • is (w) ---- {c} . {e}. Unfor-
tunately, we are not in a position to compute this product directly, for the car-
rier of e intersects the carrier of c in much more than a single point. We shall 
replace c and e by homologous cycles in order to carry out the computation. 

Note first that c is homologous to the cycle d pictured in Figure 69.2. In-
deed, the boundary of the solid upper half of the figure, suitably oriented, equals 
the chain c — d. 

Second, let z be the cycle that runs from the top of the polyhedron B to the 
bottom, as pictured in Figure 69.3. We assert that when considered in X, it is 
homologous to the cycle —ke. For there are k copies of the 1-cell e lying be-
tween the vertex v and its image r9(v) under rotation through B = 2irk In. 
When computed in B, the boundary of the shaded 2-chain in the figure equals 
the chain ke + z + s, + s2, where s, and .s, are the two slanted 1-chains pic-
tured. These slanted 1-chains cancel each other after the identifications made in 
forming X. Thus the boundary of the shaded 2-chain equals ke + z, when com-
puted in L(n,k). 

re(v) 

Figure 69.3 
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Now the intersection product of {d} and {z} is easy to compute, because 
their carriers intersect in a single point. Actually, we must triangulate X and 
"push z off" onto the dual 1-skeleton in order for the preceding lemma to apply. 
But this is not hard to do in such a way that the resulting carrier still intersects 
d in only one point. It then follows from Lemma 69.1 that {d } • {z} equals ± 1 
times our specified generator of H.. Since Id } = w and {z} = { —ke} = 
—10* (w), our result is proved. 0 

Theorem 69.4. For X = L(n,k) and Y = L(n,l) to have the same homot-
opy type, it is necessary that 

k = ±a21 (mod n) 
for some a. 

Proof Let f : X Y be a homotopy equivalence. Let A generate H3  (X) 
and let A' generate H3( Y). Let u e H' (X; Z/n) and v e 111 (Y; Z/n) be chosen 
as in the preceding lemma, so that 

u u 0*  (u) = 	
1 A 	and 	v S* (v) ± 1 A' 

('') 	 {i] 	(n).  

Now f* (v) = au for some integer a. Then 

1  ± —f * (2100) - f* (v u (I* (v)) 
[1] 

= f*(v) u  13* (f* (v)) 
= (au) u 13* (au) 

- a2(u u 13*(u)) ± —a2  A 
{/c] 

Now f is a homotopy equivalence, whence f* maps A' to ±A, so it maps A('„)  to 
± Ao,). We conclude that 

11[1) 	±a21[1c], 
and the theorem is proved. 0 

The condition stated in this theorem is in fact both necessary and sufficient 
for L (n, k) and L(n,1) to have the same homotopy type; the sufficiency is a the-
orem of J. H. C. Whitehead. Thus the lens spaces are a rare class of spaces for 
which both the homeomorphism and the homotopy type classification problems 
have been solved. (See the exercises of §40.) 

At one time, there was a classical conjecture, due to Hurewicz, to the effect 
that two compact manifolds having the same homotopy type should be homeo-
morphic as well. This conjecture is certainly true for 2-manifolds. But the lens 
spaces L(7, k) provide a counterexample in dimension 3. The spaces L(7, 1) 
and L(7, 2) have the same homotopy type, since 2 = (3)2  • 1 (mod 7). But they 
are not homeomorphic, by the results discussed in §40, since 

2 	± 1 (mod 7) 	and 	2 • 1 ± 1 (mod 7). 
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EXERCISES 

1. Show that if f : L(n,k)—,  L(n,l) is a map of degree d, then 

kd = ±a2 1 (mod n) 

for some integer a. 

2. Using the results stated here and in the exercises of §40, classify up to homeo- 
morphism and up to homotopy type the manifolds L (7 , k) for k = 1, 	,6, and 
the manifolds L(10,k) for k relatively prime to 10. 

3. Let X = L(n,k). 
(a) Show that if ui  generates Hi  (X; Z/n) for i = 1,2, then u, u u2  generates 

H3(X; Z I n). [Hint: First show there exist generators u„ u2  such that 
u2  generates H3, by showing that 0* : H' — H2  is an isomorphism.] 

(b) Show that u, u u, is either zero or of order 2. 
This exercise shows that the cohomology ring H* (X; Z I n) is not by 

itself adequate to classify the lens spaces up to homotopy type. One needs 
also the Bockstein operation /3*. 

The Bockstein is a particular example of what is called a cohomology 
operation. In general, a cohomology operation 0 of type (p,q;G,G') is a 
set map 

: HP (X, A; G)—• Hq (X, A; G'), 

defined for all topological pairs (X,A), that is natural with respect to ho-
momorphisms induced by continuous maps. The existence of cohomology 
operations provides the cohomology of a space with a much richer structure 
than that of a ring. Frequently, as was the case with lens spaces, these oper-
ations give one valuable information about the spaces in question. 

§70. LEFSCHETZ DUALITY 

As one might expect, the Poincare duality theorem generalizes to relative ho-
mology manifolds. The generalization is due to Lefschetz. It takes a particu- 
larly nice form in the case of manifolds with boundary, as we shall see. 

First, we need a lemma. Recall that A is said to be a full subcomplex of the 
complex X if every simplex of X whose vertices are in A is itself in A. 

In general, a subcomplex A of X need not be full. But if we pass to the first 
barycentric subdivision, we can show easily that sd A is a full subcomplex of 
sd X: Let s = ai .. ak  be a simplex of sd X, where 0, y 0.2  y • 	ak; then 
s C a,. If each vertex of s belongs to sd A, then in particular e sd A, so that 
Int a, intersects IAI. It follows that a, e A, so that s C a., C IAI, as claimed. 

Lemma 70.1. Let A be a full subcomplex of the finite simplicial complex 
X. Let C consist of all simplices of X that are disjoint from IAI. Then IAI is a 
deformation retract of iXi — IC!, and ICI is a deformation retract of IXI — IAI. 
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Proof First, we note that each vertex of X belongs to either A or C. Sec-
ond, we note that C is a full subcomplex of X: If the vertices of a are in C, then 
the simplex a cannot intersect IAI, so it is in C. Third, we note that A consists of 
all simplices X disjoint from ICI: Every simplex of A is disjoint from ICI; and 
conversely, if a is disjoint from ICI, then each vertex of a is in A, whence a be-
longs to A. 

By symmetry, it suffices to show CAI is a deformation retract of IXI — ICI. 
Let a be a simplex of X that belongs to neither A nor C. Then a = s * t, where s 
is spanned by the vertices of a that belong to A, and t is spanned by the vertices 
that belong to C. Then s e A and t e C. Each point x of a — s — t lies on a 
unique line segment joining a point of s with a point of t; let us denote the end 
point of this line segment that lies in IAI by fa(x). We extend fa  to the simplex s 
by letting it equal the identity on s; then fa  is continuous on a — 1. (Indeed, if 
s = 	and t 	v„ and if x lies in a — t, then 

X = Iaivi implies f, (x)= 	vi, 
i = 0 	 i = 0 

where X = 	See the proof of Lemma 62.1.) 
It is immediate that any two of the functions f, agree on the common part 

of their domains. Therefore, we can define a continuous function 

I :IXI — ICI 	IAI 

that retracts IXI — ICI onto IAI, by the equations: 

f (x) = 
Ix 	if xe IAI, 

f. (x) if x e a — ICI and r e A. 

The function F (x,t) = (1 — t)x tf (x) is then the required deformation re-
traction. 0 

The preceding lemma holds without assuming Xis finite, but in this case it 
requires some care to show that F is continuous. The problem does not arise in 
the finite case. 

Definition. Let (X,A) be a compact triangulated relative homology n-
manifold. We say that (X,A) is orientable if it is possible to orient all the 
n-simplices fy, of X not in A so that their sum y = Z is a cycle of (X,A). Such 
a cycle -y will be called an orientation cycle for (X,A). 

Theorem 70.2 (Lefschetz duality). Let (X,A) be a compact triangulated 
relative homology n-manifold. If (X,A) is orientable, there are isomorphisms 

Hk (X,A; G) = HA  - k (IXI — 	G), 

Hk(X,A; G) 	(IXI — (AI; G), 

for all G. If (X,A) is not orientable, these isomorphisms exist for G = Z/2. 
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In the statement of this theorem, the homology and cohomology groups of 
IXI — IAI should be interpreted as singular groups, since IXI — IAI is not the 
polytope of a subcomplex of X. (It is triangulable, but that we have not proved.) 

Proof. Let X* denote the subcomplex of the first barycentric subdivision 
of X consisting of all simplices of sd X that are disjoint from IAI. Now 1A1 is the 
polytope of a full subcomplex of sd X. By the preceding lemma, IX*1 is a defor-
mation retract of IXI — IAI. Therefore, we may replace 1X1 — IAI by X* in the 
statement of the theorem. 

We consider, as in the proof of Poincare duality, the collection of blocks 
D(a) dual to the simplices of X. We shall prove the following: 

The space IX*I equals the union of all those blocks D(a) dual to simplices 
a of X that are not in A. 

	

To prove this fact, let s 	be a simplex of sd X, where a, } 
• • • } ak . Then s lies in the dual block D(crk ). If s is disjoint from 1A1, then 
the vertex &k  is in particular not in IAI; hence the simplex ak  does not belong to A. 
Conversely, if a, does not belong to A, then neither do the simplices 	• • • ,crk 
since they have a, as a face. Hence s does not intersect Al.I 	See Figure 70.1. 

Now for each block D(a) for which cr is not in A, the point a is in 1X1 — IAI, 
so that 1-1,(1X1,1X1 	ir) is infinite cyclic for i = n and vanishes otherwise. It 
follows that (D(a),D(cr)) is a homological cell of dimension n — dim a. Let 
D(X*) denote the dual chain complex of x*; the group D,,(X*) is generated by 
fundamental cycles for the homological cells (D(a),D(cr)) of dimension p. Just 
as before, inclusion D(X*) —4 0(X*) induces an isomorphism in cohomology 
and in homology. (See Theorem 64.2.) 

Now we consider the case where (X,A) is orientable. Recall that the rela- 
tive cohomology group Ck  (X,A) can be naturally considered as the subgroup of 
Ck  (X) consisting of all cochains of X that vanish on simplices of A. It is there- 
fore free abelian with a basis consisting of the cochains a*, as a ranges over all 
k-simplices of X not in A. The argument used in the first proof of Poincare 
duality goes through with no change, to give us an isomorphism 

	

Ck 	D„ _ k (X), 

Figure 70.1 
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having the property that 415 = 84). The existence of an isomorphism 

(X,A) cr. H„ _ k (X*) = 	_ k(IXI — IAI) 

follows at once. This is the first of our duality isomorphisms. 
To obtain the second duality isomorphism, we recall that the group 

Horn (Cr(X,A),Z) is naturally isomorphic to the group C k(X, A). (See Step 4 
of Theorem 56.1.) Since is an isomorphism, so is its dual 

Horn (Ck  (X, A),Z) Hom (D, _ k(X*), Z). 

Therefore, one has an isomorphism 

Hk (X,A) Hn k  (X*) = Hn k  (IXI IAI). 

The proof for arbitrary coefficients if (X,A) is orientable, or for Z/2 coeffi-
cients if (X,A) is not orientable, goes through without difficulty, just as in the 
proof of Poincare duality. 0 

Corollary 70.3. Let (X,A) be a compact triangulated relative homology 
n-manifold, with IXI — IAI connected. If a and a' are two n-simplices of X not 
in A, there is a sequence 

tro,cri, - • • ,crk 	cr'  

of n-simplices not in A, such that a; 	is an n — 1 simplex not in A, for 
each i. 

Proof We define two n-simplices of X not in A to be equivalent if there is 
such a sequence joining them. The sum of the members of any one equivalence 
class is a relative cycle of (X,A) with Z/2 coefficients. We conclude that there 
is only one equivalence class, since 

H „(X, A; Z/2) = H°(IXI — IAI; Z/2) = Z/2. 0 

Corollary 70.4. Let (X,A) be a compact triangulated relative homology 
n-manifold. Assume IXI — IAI is connected. Then H„(X,A) = Z if (X,A) is 
orientable and H„(X,A) = 0 if (X,A) is non-orientable. 

Proof. The proof follows the pattern of Corollary 65.3. 0 

Corollary 70.5. The compact triangulated relative homology n-manifold 
(X,A) is orientable if and only if for each component X, of IXI — IAI, one has 
11„(X„TY, n A) = Z. 0 

It follows that orientability of (X,A) does not depend on the triangulation 
of (X,A). 

Definition. Let (X,A) be a compact triangulable relative homology n-
manifold. Let X„ . . ,Xk  be the components of X — A; let Ai  = fl A. If 
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(X,A) is orientable, then 1-4(7Yi ,A; ) is infinite cyclic; a generator ro) of this 
group is called an orientation class for (X,,Ai ). The image of the classes r(i)  
under the isomorphism 

H.(X,A) 

induced by inclusion is called an orientation class for (X,A) and is denoted by 
r. Similarly, if (X,A) is not necessarily orientable, and if m is the unique non-
trivial element of1/„(X,Ai ; Z/2), the image of these classes in H. (X,A; Z/2) is 
denoted r(2)  and is called an orientation class for (X,A) over Z/2. 

If (X, A) is given a specific triangulation, then T is represented by the sum 
"y of all n-simplices of X not in A, suitably oriented. And I'm  is represented by 
the sum of all these n-simplices, each with coefficient [1] e Z/2. 

A natural question to ask at this point is whether the second version of the 
proof of Poincare duality, which involves cap products, generalizes to the rela-
tive case. The answer is that it does not. Let us examine where the difficulty lies. 

We begin as in the proof of Theorem 67.1. Choose a map 

g: (sd X,sd A) (X,A) 

which is a simplicial approximation to the identity. Let y be an orientation cy-
cle for (X,A). Consider the diagram 

Ck(X,A) - - 	_ „(X*) 

I e  	j  
C` (sd X, sd A) f--121--",  _ k  (sd X), 

where j is inclusion, as before. The proof of Theorem 67.1 goes through to show 
that the composite of g" and n sd 'y carries Ck (X,A) isomorphically onto the 
subgroup of C„ _ k (sd X) which is the image of D._ k (X*) under j. Up to sign, 
the resulting isomorphism 1,!, is a suitable candidate for our isomorphism 0, just 
as before. (Here we are of course using the relative cap product 

Ck  (sd X, sd A) 0 (sd X, sd A) C._ k (sd X) 

in defining the map n sd 
So far, no difficulties have appeared. The problem arises when one passes 

to the cohomology-homology level. On this level, we have a homomorphism 

(X,A)C2i,  - ,(X). 

The range of this map is not the group 11„ _ k (IXI — I Ai) that we wish it to be! 
Thus Lefschetz duality cannot in general be expressed by cap product with 

an orientation class for (X,A). All one can say is the following. 

Theorem 70.6. Let (X,A) be a compact triangulable relative homology n-
manifold. If (X,A) is orientable, let r denote an orientation class for (X,A); 
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then the following diagram commutes, up to a sign depending on k and n: 

(1)* Ilk  (X,A;G) -,_=, H„ _ k (X — A;G) 

n r 
I j*  

H. _ k (X;G). 

(Here 4  is the Lefschetz duality isomorphism and j is inclusion.) The same 
result holds if (X,A) is not orientable if one replaces T by r(2), and G by Z/2. 

Proof Choose a triangulation of (X,A). Then consider the diagram 

Ck(X,A)—,--,  D„ _ k (X*) ---* 71 	S. _ k(IX*1) 

g# 	
I 

S„ _ ,,(1X1 — 1,41) 

Ck (sd X,sd A) 02cLY* C. _ k(sd X) —1-1  , S. _ kl(IXI). 

Here , is the chain map carrying simplicial chains to singular chains; the un- 
labelled maps are induced by inclusion. The proof of Theorem 67.1 applies to 
show the first square commutes up to sign; the rest of the diagram commutes. 

0 

One situation in which the Lefschetz duality isomorphism is actually given 
by cap product is the case of a manifold with boundary. We consider that situ-
ation now. 

Definition. Let M be an n-manifold with boundary. We say Bd M has a 
product neighborhood in M if there is a homeomorphism 

h :Bd M x [0,1) --, U 
whose image is an open set in M, such that h (x,0) = x for each x e Bd M. 

It is in fact true that such a product neighborhood always exists, but the 
proof is decidedly non-trivial. (See [B2].) 

Theorem 70.7 (Poincare-Lefschetz duality). Let M be a compact triangu-
lable n-manifold with boundary, such that Bd M has a product neighborhood 
in M. 

If (M,Bd M) is orientable, let r e H„(M,Bd M) be an orientation class 
for (M, Bd M). Then there are isomorphisms 

IP (M,Bd M; G) r- - 1- 1: , H. _ k (M; G), 

Hi' (M; G) r-='1* H „ _ k (M,Bd M; G), 
for arbitrary G. If (M,Bd M) is not orientable, the same result holds if G is 
replaced by Z/2 and r is replaced by F(2). 
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Figure 70.2 

Proof We first prove that inclusion induces an isomorphism 

j. : II„ _ ,(M — Bd M;G)—. H„ _ k(M; G). 
Let h : Bd M X [0,1) —, M be a product neighborhood of the boundary. Let 

N = M — h(Bd M x [0,1/2)). 

See Figure 70.2. Now Bd M X [1/2,1) is a deformation retract of both Bd M X 
[0,1) and of Bd M X (0,1). Hence N is a deformation retract of both M and 
M — Bd M. Thus the left-hand inclusions in the diagram 

M— Bd M 
N 4 	lj ---................." m  

are homotopy equivalences. Then so is j. 
The first of the two isomorphisms stated in our theorem now follows from 

the naturality diagram of Theorem 70.6, setting A = Bd M. 
We now derive the other isomorphism. Let us triangulate (M, Bd M). The 

space Bd M is a union of simplices of M (by Theorem 35.3); being an n — 1 
manifold, it is the union of n — 1 simplices. Now we claim that each n — 1 sim-
plex s of Bd M is a face of exactly one n-simplex a of M. It must be a face of at 
least one, because M is a union of n-simplices. And it cannot be a face of more 
than one, since by Lemma 63.1, 

Ha(M,M — 3) :.-- ilo(Lk(s,M)), 
and the former group vanishes because I is a point of Bd M. 

Suppose y is an orientation cycle for (M,Bd M). Then y is a sum of all 
the n-simplices of M. Since each n — 1 simplex of Bd M is the face of exactly 
one n-simplex of M, the chain al,  has coefficient ± 1 on each n — 1 simplex of 
Bd M. Since 67 is a cycle, it must be an orientation cycle for Bd M. 
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Let r = {-y}. Then the class asr = {a-y} is an orientation class for Bd M. 
Consider the following diagram: 

(Bd M) Hk  + (M, Bd M) 

I asr lr,r 
Hn — k - 1 B( d M) H _ _ 1 (M) 

where all the groups are assumed to have G coefficients. It is easy to check that 
this diagram commutes up to sign. The first and fourth vertical maps are iso-
morphisms by Poincare duality, and the second and fifth are isomorphisms by 
Poincare-Lefschetz duality. Therefore, the third map is an isomorphism as well. 

The same argument applies if M is non-orientable provided one replaces G 
by Z/2, and r by r2). 0 

As an application of Poincare-Lefschetz duality, we consider the following 
question: Given a compact n-manifold, under what conditions is it the boundary 
of a compact n + 1 manifold M? There is an entire theory that deals with this 
question; it is called cobordism theory. Here we prove just one elementary 
result. 

Theorem 70.8. Let M be a compact triangulable manifold with boundary; 
suppose dim M = 2m + 1. Suppose Bd M is nonempty and has a product 
neighborhood in M. Then the vector space H. (Bd M; Z/2) has even dimension. 

Proof Step 1. Consider an exact sequence of vector spaces and linear 
transformations 

(kk - 1 	Ok 
• " • 	Ak - 	Ak 	Ak + 

where Ak  and (kk  are defined for all integers k, and dim Ak  = 0 for jkj suffi-
ciently large. We assert that 

rank ch = dim A, — dim Ak  _ 1  + dim Ak  _ 2  — • • • and 
rank 4,k _ = dim Ak  — dim Ak 4. 1  + dim Ak  2 — • • • 

The proof is straightforward. Exactness at A, tells us that 

dim Ai  = rank _ + rank 0:- 

Summation gives us the desired equations. 

Step 2. Using Z/2 coefficients (which we suppress from the notation), we 
have an exact sequence of vector spaces 

- • • --0Hk  (M) 	Hk (Bd M) 	Hk +'(M,Bd M) 	. 

Let 

dim IP (M), 

"ik = dim IP (Bd M), 

a„ , = dim H' '(M, Bd M). 

_ k  (Bd 

li a=r 
(Bd M) 

M) 	_ k (M) 

(M, Bd M) 

r 	l r,r 
--, 	_ ,(M,Bd 

(M) 

M) 
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We apply Step 1 to this sequence. Beginning at the term Hk  (Bd M) and sum-
ming first to the left and then to the right, we have 

rank v, = 	(-1) (if • k - i 	I3k - i 	- i), 
= 0 

co 
(**) rank ,uk  = 	— 1)i  (7k + — ak + i + 1 + fl1i + + 1)• 

= 0 

Now Lefschetz duality and algebraic duality give us isomorphisms 

I-P(M,Bd M) ar. _ j(111) z Hn (M), 

Hj (Bd M) H,, _ j  _ 3  (Bd M) = H" - (Bd M). 

Therefore, aj  = /3„ _ j  and y, = ̂ y„ j  _ 1 . Substituting these results in (**) and 
comparing with (*), we see that 

rank A*  = rank v„ _ k _ 

In particular, since n = 2m + 1, rank km = rank v„,. Then 

dim 11.„,(Bd M) = dim Hm (Bd M) 

= rank 1.L., + rank v„, = 2 (rank v„,), 

which is even. 0 

Corollary 70.9. The manifold Ps'" is not the boundary of a compact trian-
gulable 2m + 1 manifold. 0 

EXERCISES 

1. Let (X,A) be a compact triangulable relative homology n-manifold. Assume 
X — A is connected. Show that if X is orientable, 

H„(X,A; G) = G = H"(X,A; G), 

while if X is non-orientable, 

H,,(X,A; G) ker (G G) 

H"(X,A; G) = G I2G. 

2. Let M be a compact triangulable orientable n-manifold with boundary. Sup-
pose Bd M is the disjoint union of two n — 1 manifolds V, and V1, and Bd M 
has a product neighborhood in M. Let I' be an orientation cycle for (M,Bd M). 
Show that 

r H"(M,V0)--41. - k(A1,111) 

(*) 
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is an isomorphism. [Hint: Consider the exact sequence of the triple 
(M, Bd M, .] 

3. Using the fact that CP' can be triangulated, show that the manifold CP' does 
not bound. 

4. Which compact 2-manifolds bound? 

5. Let M be a compact triangulable orientable n-manifold with boundary. Show 
that cup product defines a dual pairing 

11*  (M,Bd M) H" *(M)  H" (M, Bd M), 
(M,Bd M) T" '(M) 

where r denotes the torsion subgroup of H'. 

6. Let M be the torus with two open discs removed. See Figure 70.3. 
(a) Compute H' (M) and 1-11 (M,Bd M); draw generating cocycles. 
(b) Verify the existence of the dual pairing of Exercise 5. 
(c) Show that cup product does not define a dual pairing 

H'(M,Bd M)  ® H'(M,Bd M)  H2  (M, Bd M). 
T' (M,Bd M) T'(M,Bd M) 

Figure 70.3 

7. Let X be a compact triangulable homology n-manifold. Let A and B be poly-
topes of subcomplexes of a triangulation of X, with B C A. Let G be arbitrary 
if X is orientable; let G = Z/2 otherwise. Show there are isomorphisms 

1-1*  (A,B; G) = H. _ ,,(X — B, X — A; G) 

Hk 	G) = H" ' (X — B, X — A; G). 

[Hint: Triangulate X so A and B are polytopes of full subcomplexes. If C is a 
full subcomplex of X, let X,. denote the collection of all simplices of sd X dis-
joint from C. Consider the following diagram and its dual: 

0 	C*(A,B) 4-- Ck (X,B) 	Ck (X,A) 4--"0 

0 
0 4--- D. _ k (XB,X4) 4-- _ 0 k(X2)  2) 4-- D„ 

1 
 „(X.) 4-- O.] 

*8. Generalize Lefschetz duality to the non-compact case. 

9. Let (X,A) be a triangulated relative homology n-manifold, not compact. Show 
that if IXI — IAI is connected, then (X,A) is a relative pseudo n-manifold. 
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§71. ALEXANDER DUALITY 

The Alexander duality theorem is almost as old as the PoincarO duality theo-
rem. It predates Lefschetz duality by some years. In its original form, it dealt 
with the relation between the betti numbers and torsion coefficients of a sub-
complex A of the n-sphere Sn, and the betti numbers and torsion coefficients of 
the complement Sn — A. Nowadays, the Alexander duality theorem is formu-
lated in terms of cohomology, and it is proved by using Lefschetz duality. 

Theorem 71.1 (Alexander duality). Let A be a proper, nonempty subset of 
S. Suppose (Sn,A) is triangulable. Then there is an isomorphism 

.i:11̀ (A) 	1-1„ k  _ i (S1  — A). 

Proof Assume n > 0 to avoid triviality. Triangulate the pair (S",A). 

Step I. We prove the theorem first in the case k 0 n, n — 1. Consider the 
exact sequence 

Hk + 1 (Se) Hk + I (Sss,A) :52! kk (A) 	(s").  

Because the end groups vanish, ö* is an isomorphism. Now since (Sa,A) is a 
relative n-manifold, we can apply Lefschetz duality to conclude that 

Hk + l (S",A) = H" _ k  _ ,(Sn — A) = -k- ,(Sa — A). 

Combining this isomorphism with that given by 6* gives us our desired iso-
morphism. 

Step 2. We show the theorem holds in the case k = n — 1. The preceding 
argument needs some modification. As before, one has the exact sequence 

.i* 	(3* - 
H"(Sn) 	Ha (Sn,A) 	H' 1 (A) 	0, 

where j : S" (S",A) is inclusion. We conclude that 

H" - 1(A) = ker j*. 

Let r be an orientation class for 5' and let k : (S" — A) SR be inclusion. We 
apply Poincare and Lefschetz duality to obtain the isomorphisms in the follow-
ing diagram: 

Hn (S", A) 	H" (St') 

0* 
	nisi- =1, r 

Ho(Sa — A)k* H.(S"). 
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Since this diagram commutes up to sign, it follows that 

ker j* :a ker ks. 

It now follows from exactness of the sequence 

k*  
0 —' i/.(Sn — A) —' Ho(Sa — A) ----. 1-10(S3 )---. 0, 

whose proof we leave as an exercise, that 

ker k*  .1-.•.: -14(Sa — A). 

Combining these isomorphisms gives us our desired isomorphism. 

Step 3. It remains to show that the theorem holds for k = n. We show 
first that inclusion i : A --. Sn induces the zero homomorphism 

i* H" (A) 4-- H° (S"). 

The group Ha On is infinite cyclic, and is generated by the cohomology class of 
a*, where a is any oriented simplex of P. Since A is a proper subcomplex of S., 
we can choose a to be outside A; then it' (0-*) is the zero cochain. 

Now consider the exact sequence 

5* 	i* 
0 = H3 +1(S3,A) 4."....  H° (A) 4— Ha (S3). 

Since i* is the zero homomorphism, it follows that 115(A) = 0. Therefore, the 
groups 

II3  (A) = H" (A) and k _,(s- ' - A) 

are isomorphic, because both vanish. 0 

Corollary 71.2 (The polyhedral Jordan curve theorem). Let n> 0. If A is 
a subset of .55  that is homeomorphic to S', and if (Sn,A) is triangulable, 
then S3  — A has precisely two path components, of which A is the common 
boundary. 

Proof. A is a proper subset of S. since S"'' is not homeomorphic to Sa. 
The fact that S° — A has exactly two path components follows from the fact 
that Ha -' (A) is infinite cyclic because A 1--:-.. S5  - 1, and the fact that 

ka - '(A):.-.: IMP — A). 

The fact that A is the common boundary of the two path components C, and C2  
follows, as in the proof of Theorem 36.3, from the fact that if s is an n — 1 
simplex in a (very fine) subdivision of A, then letting B = A — Int s, we have 

0 = TI-P -  '(B)::-.,..11„(S" — B). 

Thus one can connect a point of C, to a point of Cz  by a path that intersects A in 
points of Int s. 0 
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EXERCISES 

1. Let A be a nonempty subset of X. Show that if X is path connected, then 

0 —. /IAA) —, H.(A) --, H.(X)--,  0 

is exact. This fact completes the proof of Alexander duality. 

2. Suppose A is a proper nonempty subset of P and (S',A) is triangulable. Show 
that if A is acyclic, then P — A is acyclic. 

3. Let A be a homology n — 1 manifold. Show that if A is homeomorphic to a 
subset B of S" and (S',B) is triangulable, then A is orientable. 

4. Prove the following version of Alexander duality: Let A be a proper nonempty 
subset of P. If (S",A) is triangulable, then 

14(A) :re. IP -  k -  '(.sn — A). 

[Hint: Find a complex C that is a deformation retract of S" — A.] 

5. Prove Alexander duality for the n-ball: Let A be a proper nonempty subset of 
B. Let aA = A fl Bd Jr. If (134,A) is triangulable, show that 

Hk  (A,13/1) = II„ _ „_,(B" — A). 

[Hint: Consider the subset (A X 1) U (aA x 1) U On  X 0) of 
Bd(B" X I).] 

X72. "NATURAL" VERSIONS OF LEFSCHETZ AND 
ALEXANDER DUALITY 

The naturality property of the Lefschetz duality isomorphism 

1,* 
Hk  (X, A) —. H,,_ ,(X — A) 

stated in Theorem 70.6 is rather unsatisfactory in general. It is not clear as it 
stands, for instance, that the isomorphism 0,. is independent of the triangulation 
of (X,A), or even that it is invariant under subdivision of X! 

This lack of naturality carries over to Alexander duality; it is reflected in 
the fact that we were able in the last section to prove only the polyhedral ver-
sion of the Jordan curve theorem. 

In this section, we obtain more natural versions of the Lefschetz and Alex-
ander isomorphisms. These will enable us, after we have introduced another 
version of cohomology due to Cech, to construct the Alexander duality isomor-
phism in the situation where A is an arbitrary closed subset of P. 

First, a definition and a lemma: 

Definition. Let A be the polytope of a subcomplex of the finite complex X. 
Define St (A,X) to be the union of all the sets St (a,X), as o ranges over all 
simplices of X lying in A. It is called the star of A in X. 
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Figure 72.1 

If C is the collection of all simplices of X disjoint from A, then it is imme-
diate that 

St(A,X) = (XI — Cl.i 

If A is the polytope of a full subcomplex of X, it follows from Lemma 70.1 that 
A is a deformation retract of St (A,X). Note however that A need not be a 
deformation retract of the closed star St (A,X). See Figure 72.1. 

Lemma 72.1. Let X be a finite complex. Let A be the polytope of a full 
subcomplex of X; let C be the union of all simplices of X disjoint from A. Let 
sd X be the first barycentric subdivision of X. 

(a) The space !XI is the disjoint union of the three sets 

U, = St (A,sd X), 

tic  = St(C,sd X), 

B = li, — El 4 = ric — tic. 

(b) The following inclusions are homotopy equivalences: 

A ---, U4  U4  St(A,X), 

C ---. Uc•---.17c --, St(C,X). 

Proof The sets U4  and tic  are pictured in Figures 72.2 and 72.3. Let 

s = it, . . . ark  

denote the general simplex of sd X, where a,} • • • } a,. 

Figure 72.2 
• 

Figure 72.3 
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Step 1. We show that U4  is the union of the interiors of those simplices 
s = Fr, . a, for which a, C A. If a, C A, then a, e A, so that by definition 

Int s C St (Erk,sd X) C UA. 

Conversely, if Int s C U4, then some vertex Irj  of s is in A; it follows that as  lies 
in A and so does its face a,. 

It follows, by symmetry, that tic  is the union of the interiors of those sim-
plices s for which a, C C. Therefore, U4  and Uc  are disjoint open sets in IXI. 

Step 2. We show that if a, lies in neither A nor C, then s = . . . a, lies 
in U, — CIA  and in Uc  — U. Then (a) is proved. 

The simplex a, must have a vertex v in A and a vertex w in C. Then 

Fr 	and 	 iv 

are simplices of sd X whose interiors lie in U4  and Uc, respectively. Their com-
mon face s thus lies in U, — U4  and in tic  — Uc. 

Step 3. Let D = U4. By (a), D = X — Uc. We show that D is the poly-
tope of a full subcomplex of sd X, and that 

St (D,sd X) = St (A,X). 

First, we show that D is full. If the interior of s = 	ek  lies in Uc, then 
ak C C, so that &k (it D. It follows that if all the vertices of s lie in D, then s must 
lie in D. 

We show that the vertex a of sd X lies in D if and only if a intersects A. 
Now a vertex a of sd X lies in Uc  if and only if it lies in C, and this occurs if and 
only if a C C. Therefore,' lies in D if and only if a does not lie in C, that is, if 
and only if a intersects A. 

Now we prove that St (D, sd X) C St (A,X). Suppose s = a, . . . &k  has a 
vertex Fri  in D. Then as just proved, cri  must intersect A, so that cri  has a vertex v 
in A. Since ai  cri  } v, we must have 

Int s C Int a, C St(V,X) C St (A,X). 

To prove the reverse inclusion, let a be a simplex of X having a vertex v in 
A. Then & is in D. Now Int a is the union of the interiors of those simplices of 
sd X whose initial vertex is a. Thus 

Int a C St (a,sd X) C St (D,sd X). 

Step 4. We prove (b). Consider the inclusions 

A-4  UA 14 D k st(D,sd X). 

Since A and D are polytopes of full subcomplexes of sd X, the maps i and k are 
homotopy equivalences. Because St (D,sd X) = St (A,X) and A is a full sub-
complex of X, the map kojoi is a homotopy equivalence. It follows that j is a 
homotopy equivalence. 
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By symmetry, the inclusions 

C --. lic  --. Tic-. st(c,x) 
are also homotopy equivalences. 0 

Definition. Let (X, A) be a triangulable pair. If D C X, we say that D is a 
polyhedron in (X,A) if there is some triangulation of the pair (X,A) relative to 
which D is the polytope of a subcomplex. If A = 0 , we say simply that D is a 
polyhedron in X. 

Note that if C and D are polyhedra in X, it does not follow that there is a 
single triangulation of X relative to which both C and D are polytopes of sub-
complexes. For example, both the x-axis C and the set 

D = (0,0) U {(x,x sin(1/x) I x 0} 

are polyhedra in R2, but there is no triangulation of R2  relative to which both 
are polytopes of subcomplexes. 

Lemma 72.2. Let D be a polyhedron in the compact triangulable space X. 
Then there are arbitrarily small neighborhoods U of D such that: 

(1) U and X — U are polyhedra in X. 
(2) The following inclusions are homotopy equivalences: 

D —4 U —, 11 and (X— CI) —. (X— U) —, (X — D). 

In fact, if X is triangulated so that D is the polytope of a full subcomplex of 
X, then U = St (D, se X) satisfies these conditions for all N _. 1. 

Proof It suffices to show that if D is the polytope of a full subcomplex of 
X, then U = St (D,sd X) satisfies the requirements of the lemma. 

The preceding lemma shows that the inclusions D --. U --, U are homotopy 
equivalences. To consider the other inclusions, let A be the union of all sim-
plices of X disjoint from D. Then one has the following diagram: 

A —. St (A, sd X) --- K (A, sd X) --. St (A,X) 
II_II 	II 

(X — ) --. (X — U) —, (X — D) 
where the first two equalities follow from (a) of the preceding lemma, and the 
third by definition. By the preceding lemma, the inclusion maps of this diagram 
are homotopy equivalences. 0 

Theorem 72.3 (Lefschetz duality). Let (X,A) be a compact triangulable 
relative homology n-manifold. There is a function assigning to each polyhe-
dron D in (X,A) that contains A, an isomorphism 

XD : IP (X,D; G) --. H „ _ ,(X — D; G). 



430 	Duality in Manifolds 	 Chapter 8 

This assignment is natural with respect to inclusions of polyhedra. The group 
G is arbitrary if (X,A) is orientable, and G = Z/2 otherwise. 

Proof Let r be an orientation class for (X,A) in the orientable case; let it 
denote an orientation class over Z/2 otherwise. 

Step I. If U is any neighborhood of A such that U is a polyhedron in 
(X,A), let Xu  = X - U; then XL, is also a polyhedron in (X,A). Let ru  denote 
the image of r under the homomorphism 

H„(X,A) 1:-1-1* H „(X,U) -,-r-I ,k-1  H „(Xu, Bd U). 

(Here rn and k are inclusion maps, and Bd U = U - U.) We show that Tu  is an 
orientation class for the relative homology manifold (Xu, Bd U) in the orienta-
ble case, and an orientation class over Z/2 in the non-orientable case. 

The proof is easy. Triangulate (X,A) so that U is the polytope of a subcom-
plex. Then r is represented by the sum of all n-simplices of X not in A, suitably 
oriented. Its image under k;' 0 m#  is represented by the sum of those simplices 
not in U; it is automatically a cycle of (Xu, Bd U). 

We think of ru  as the "restriction" of r to X. 

Step 2. Let D be a polyhedron in (X,A) containing A. Let U be any 
neighborhood of D satisfying the conditions of the preceding lemma, such that 
A, D, and U are all polytopes of subcomplexes of a triangulation of X. See Fig-
ure 72.4. 

The following diagram commutes up to sign: 

Hk(Xu, Bd U)--_-, ,  0* H„ _ „(Xu  - Bd U) 

n ru 	
I js  
- k (X LI) • 

Figure 72.4 
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Here (1)*  is the Lefschetz duality isomorphism for the triangulated relative ho-
mology manifold (Xu, Bd U); we delete _G from the notation for simplicity. Now 
Xu  = X — U and Xu  — Bd U = X — U; therefore, the inclusion j is a homot-
opy equivalence. It follows that n Tu  is an isomorphism in simplicial theory; 
then it is also an isomorphism in singular theory. 

Consider the following diagram in singular theory: 

i* 	— k* 	 n ru 	1 
H" (X, D) .-- IP (X, U) --, Hi' (Xu, Bd U) ---. H„ _ k (Xu)  "" I' ' H„ _ , (X — D) 

where i, k, and I are inclusions. The homomorphism k* is an isomorphism be-
cause k is an excision map. The homomorphisms i* and I,, are isomorphisms 
because i : D —4 U and I : (X — U) —. (X — D) are homotopy equivalences. 

We denote the composite isomorphism for the present by 

XD,U : HP  (X, D) —, H„ _ ,(X — D). 

Note that it does not depend on the specific triangulation involved, as did the 
Lefschetz isomorphism 0*. 

Step 3. We check a version of naturality for the isomorphism AD.u. Sup-
pose that E is a polyhedron in (X,A) such that A CEC D, and suppose that V 
is a neighborhood of E chosen as in Step 2, such that V C U. (Such a neighbor-
hood of E always exists, by the preceding lemma.) See Figure 72.5. We show 
that X" and XE" commute with the homomorphisms induced by inclusion. 

To prove this fact, we consider the following formidable diagram: 

IP (X,D) (— Hk  (X, U) —, FP (Xu, Bd U) --,r1  ru  H„ _ ,(Xu) --. H. _ ,(X — D) 
1 ----------.„ 	1 

Hivc,,,T7— V) 
1 	

,, 

r,, 
IP (X, E) <— IP (X,T) —. IP (X,„ Bd V) --. H. _ k (X y) --' H„ _ ,(X — E). 

I I 

Figure 72.5 
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Here we must interpret these groups as singular groups, because the pair 
(Xv, U — V) is not necessarily triangulable. This arises from the fact that U 
and V may not be polytopes of subcomplexes of the same triangulation of X. 
The top row of maps in this diagram defines ADN, and the bottom row defines 
X5,,,. All unlabelled maps are induced by inclusion. The class r is the appropri-
ate "restriction" of r--that is, the image of r under 

H a (X, A) 	H„(X,U) =H„(Xv,T1 — V). 

All squares and triangles in the diagram commute, by naturality of cap prod-
uct. Our result follows. 

Step 4. We now show that Ai' is independent of the choice of U. We 
apply the preceding step to the case D = E. If U and U' are two neighborhoods 
of D satisfying the conditions of Lemma 72.2, we can choose V (also satisfying 
these conditions) so that DC VC CM U'. Then by Step 3, 

XD,L1 = XD,V 

We define AD = AD.v. Naturality of AD  with respect to inclusions E D 
now follows from Step 3. 0 

Corollary 72.4 (Alexander duality). Let n be fixed. There is a function 
assigning to each proper nonempty polyhedron A in Sn, an isomorphism 

aA ilk  (A) 	- k — l(Sn A). 

This assignment is natural with respect to inclusions. 
Proof. The case k < n — 1 follows by noting that aA  may be defined as 

the composite of the isomorphisms 

kk ('4) 	Hk + (S" ,A) 	H„ _ _ ,(S" — A), 

both of which are natural. The case k = n — 1 follows similarly from natural-
ity of the diagrams used in defining the Alexander isomorphism. The case k = 
n is trivial. 0 

EXERCISE 

1. Let D be a polyhedron in .9° that is the union of two disjoint sets A and B, with 

A Sk 	and 	B S. k  

where 0 < k < n — 1. Inclusion maps induce homomorphisms 

: /1„(A)-,  Hk (S" — B), 

: 	k 	k„ _ k _ 	— A). 



§73. 	 Cech Cohomology 433 

Alexander duality implies that these groups are all infinite cyclic. Show that up 
to sign, 4, and 4,  both equal multiplication by the same integer m. (See Exercise 
3 of §36.) This integer measures how many times A "links" B. [Hint: Trian-
gulate SS" so A and B are polytopes of full subcomplexes, and no simplex inter-
sects both A and B. Let C be the union of all simplices that are disjoint from A. 
Begin with the following diagram: 

E. - k - (c) ______4  ir - k - I (B)  

l ac 
	 I as  

ilk (S° — C) ---• lik (S" — B).] 

§73. dECH COHOMOLOGY 

Until now we have studied two homology and cohomology theories—namely, 
the simplicial theory and the singular theory. There are a number of others, 
most notably the Cech theory. This theory turns out to be particularly satisfac-
tory in the case of cohomology, which is what we consider now. 

We shall construct the Cech cohomology groups of a topological space and 
show that they agree with the simplicial groups when both are defined. We also 
construct a topological space for which the Cech and singular theories disagree. 
We shall use Cech cohomology in the next section to prove a generalized ver-
sion of Alexander duality. 

We begin with the concept of a directed set. 

Definition. A directed set J is a set with a relation < such that: 

(1) a < a for all a e J. 

(2) a < 13 and 13 < 'y implies a < -y. 

(3) Given a and 13, there exists 6 such that a < 6 and 0 < 6. 

The element 6 is called an upper bound for a and ti. 

Example 1. Any simply-ordered set is a directed set under the relation .c. 

Example 2. Consider the family whose elements are open coverings A of a topo-
logical space X. We make this family into a directed set by declaring A < S if 2 is 
a refinement of A. This means that for each element B of 2, there is at least one 
element A of A containing it. (1) and (2) are immediate; to check (3), we note that 
given open coverings A and 23 of X, the collection 

M ---- {A n BiAeA and Bet} 

is an open covering of X that refines both A and B. 
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Definition. A direct system of abelian groups and homomorphisms, corre-
sponding to the directed set J, is an indexed family {Ga}a E , of abelian groups, 
along with a family of homomorphisms 

L0  : 	G8 , 

defined for every pair of indices such that a < /3, such that: 

(1) Le.: Ga 	G. is the identity. 

(2) If a < < 7, then f0.„ G Le  = f„,; that is, the following diagram 
commutes: 

G. •IL' 

.1.4\ /f137 
GB  

Definition. Given a direct system of abelian groups and homomorphisms, 
we define a group called the direct limit of this system as follows: Take the 
disjoint union of the groups G., and introduce an equivalence relation by de-
claring ga  — go  (for ga  e G. and go  e Go ) if, for some upper bound 6 of a and 13, 
we have 

L4 (ga ) =_-. j05 (go) 

The direct limit is the set of equivalence classes; it is denoted 

lim„,, G. 

We make it into an abelian group by defining 

+ 1gs} = {La (ga) + .44(g0 )}, 

where 6 is some upper bound for a and #. 

It is easy to see that this operation is well-defined and makes the direct 
limit into an abelian group. We note the following elementary facts: 

(1) If all the maps L0  are isomorphisms, then lim G. is isomorphic to any 
one of the groups Ga. 

(2) If all the maps L0  are zero-homomorphisms, then lim G. is the trivial 
group. More generally, if for each a there is a such that a < # and 
L0  is the zero-homomorphism, then lim G. is the trivial group. 

Definition. Let J and K be two directed sets. Let {G,„, L0 } and {1-1,,g,,} be 
associated direct systems of abelian groups and homomorphisms. A map 4> of 
direct systems is first, a set map : J K that preserves the order relation, and 
second, for each a e J, a homomorphism 

: 	Hc.), 
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such that commutativity holds in the following diagram, where -y = 0(a) and 
= 40) and a < 13: 

G. "5=8,  Go  
0.1 	100  
H7 1-'24 H.. 

Such a map 4' induces a homomorphism, called the direct limit of the homomor-
phisms 4),‘: 

: lim 	lim „ K 

It maps the equivalence class of ga  e G. to the equivalence class of ckc,(L). 

Example 3. Let {G.,f„,91 be a direct system of abelian groups and homomorphisms; 
let H be an abelian group. If for each a, one has a homomorphism 0,„ : G„ —4 H, and 
if Os  u f„„ 0. whenever a < 0, one has an induced homomorphism 

$ : lim G.— H. 

It is a special case of the preceding construction, in which the second direct system 
consists of the single group H. 

Example 4. Suppose one has a sequence of abelian groups and homomorphisms 

G,—L.  G, 2—.24 	• - • . 

It becomes a direct system with index set J = Z,. if we define 

f.. = - 	- 2 °  • • • * 
whenever m < n. 

For example, if each group G1  equals the integers, and if each map 4, is multi- 
plication by 2, one has the direct system 

2 2 

Its direct limit is readily seen to be isomorphic to the group H of dyadic rationals 
(which is the additive group of all rationals of the form m/r, for m and n integers): 
Define 

cli„: 	H 

by the equation 4,„(m) = m/r. Then one checks that 0. 	_ = 45„ _ ,. It is easy 
to check that 4) is both injective and surjective. 

Definition. If J is a directed set, a subset J. of J is said to be cofinal in J if 
for each a e J, there exists ö e .4 with a < 5. 
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Lemma 73.1. Suppose one is given a direct system {Ga, fad of abelian 
groups and homomorphisms, indexed by the directed set J. If J. is cofinal in J, 
then 4, is a directed set, and inclusion induces an isomorphism 

lim a  . Jo  G zr. lira . Ga. 

Proof The axioms for a directed set are easy to check. Given a, /3 in J., 
they have an upper bound in J, and hence an upper bound in J,. Let 4): 	J 
be the inclusion map, and for each a e J, let 0. : Ga  Ge(e)  be the identity. 
Then one has an induced homomorphism 

(1) : lim eJ, 	lim a  . 1  Ga. 

It is surjective, since given ga, it is equivalent to some ga  for (3 e J. To show its 
kernel vanishes, suppose a e J. and ga  O for some 13 e J. Then there is some 
element ö of J such that 

fas(g.) =.613(08) = Os- 

Choose e e J. with 5 < e. Then 

f6,(05) = O„ 

so 	0„ where € e J,. 0 

Now we define the tech cohomology groups. 

Definition. Let A be a collection of subsets of the space X. We define 
an abstract simplicial complex called the nerve of A, denoted by N(A). Its 
vertices are the elements of A and its simplices are the finite subcollections 
{A„ 	,A.} of A such that 

Ai  n A2  n • • • 11 A. 	0. 

Now if S is a collection of sets refining A, we can define a map g : 	A 
by choosing g(B) to be an element of A that contains B. If {Bi, . . ,B,,} is a 
simplex of N(13), then {g(131), • • • ,g(B.)) is a simplex of N(A), because fl B. 
is nonempty and contained in fl g(B;). Thus the vertex map g induces a 
simplicial map 

g : N(23) N(A). 

There is some arbitrariness in the choice of g, but any other choice g' for g is 
contiguous to g, since 

fl 131  C n (g(13) n g' (Bi)). 

Thus we can make the following definition: 

Definition. If B is a refinement of A, we have uniquely defined homo-
morphisms 

g.:11,(N(53); G) I (N(A); 

e: 	(N (A); G) FP (N (53); G). 
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induced by the simplicial map g satisfying the condition g(B) D B for all 
B e 13. We call them the homomorphisms induced by refinement. 

Definition. Let J be the directed set consisting of all open coverings of the 
space X, directed by letting A < 13 if 2 is a refinement of A. Construct a 
direct system by assigning to the element A of J, the group 

Ir(N(A); G), 

and by assigning to the pair A < B, the homomorphism 

fA2  : IP (N(.>11); G) --, IP (N(2); G), 
induced by refinement. We define the Cech cohomology group of X in dimen-
sion k, with coefficients in G, by the equation 

lik (X; G) = lim AE,  ilk  (N (A); G). 

We define the reduced tech cohomology of X in a similar manner, as the 
direct limit of the reduced groups I - P (N (A); G). 

Since these groups depend only on the collection of open coverings of X, 
they are obviously topological invariants of X. 

In spite of the abstractness of this definition, it gives us nothing new in the 
case of a triangulable space, as we now show. 

Theorem 73.2. Let K be a simplicial complex. Then 
_ilk (IKI;G) :--- HI (K; G). 

The same is true for reduced cohomology. 

Proof For any complex K, let A (K) be the covering of IK I by the open 
stars of its vertices. The vertex correspondence fir  that assigns to the vertex v of 
K, the vertex St u of N(A (K)), defines an isomorphism between the complex 
K and the abstract complex N(A (K)). For vo  . .. u„ is a simplex of K if and 
only if 

St vo  n - • • n st vo  * 0; 
this is equivalent to the statement that {St v„, ... ,St v,,} is a simplex of 
N(A (K)). 

If K' is a subdivision of K, then there is a simplicial approximation to the 
identity h : K' --. K; it is induced by a vertex map h specified by the condition 

St (w,K') C St(h(w),K). 
The same vertex correspondence can be used to define a simplicial map 
g : N (A (K')) --, N(A (K)); it assigns to the vertex St (w,K') of N (.A(r)), 
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the vertex St (h (w),K) of N(A (K)). Then the following diagram commutes: 

K' fx 
 N (K')) 

l
h

lg 
K fx   N (.A (K)). 

All four of the induced maps in cohomology are isomorphisms. 
Now consider the family J. of open coverings of IKI of the form A (K'), as 

K' ranges over all subdivisions of K. The general simplicial approximation theo-
rem implies that this family is cofinal in the family J of all open coverings of 
IKI. (If K is finite, the finite simplicial approximation theorem will suffice.) 
Therefore, 

(IKI; G) = lim 	(K'; G), 

where the direct system on the right is indexed by the family of all subdivisions 
of K. Each of the maps h* in the latter direct system is an isomorphism, so the 
direct limit is isomorphic to IP (K; G), as desired. 0 

This theorem shows that tech cohomology agrees with simplicial coho-
mology when both are defined. But what does Cech cohomology look like for 
more general spaces? In order to make the required computations, we shall 
prove a basic "continuity property" of tech cohomology. First, we need a lemma. 

Lemma 73.3. Let Y be a compact subspace of the normal space X. Con-
sider the directed set L consisting of coverings A of Y by sets that are open in 
X (rather than in Y). Then 

(Y; G) = lim ,A e  c Hk  (N (A); G). 

The same is true in reduced cohomology. 

Proof Step I. Let U„ . ,U„ be an open covering of X. We show there 
exists an open covering K, 	, V. of X such that V1  C U;  for each i. 

The set X — (U3  U • - • U U.) is a closed subset of U1; by normality, 
we can choose an open set V, containing it so that V, C U,. Then V„U„ 
U,, covers X. Apply the same construction to choose Vs  containing X —
(V, U U3  U • • • U U,,) such that V3  C U2. Then V„V„U„ ,U„ covers X. 
Similarly continue. 

Step 2. Let 0 = {C„ 	,C„} and 2) = {D„ 	,D„} be two indexed fami- 
lies having the same index set. We say that their nerves are naturally isomorphic 
provided 

C,, 11 • • • 11 Cip  0 0 4=> 	11 • • • n Dip * 0. 

This means that the vertex map C1 -4 Di  induces a simplicial isomorphisrr 
N(D). 
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We prove the following: Let {C„ . . • C.} be a collection of closed sets in X, 
and let {U„ 	,U,,} be a collection of open sets in X, with C, C U, for all i. Then 
there exists a collection {W„ 	,W„} of open sets of X such that C, C 1171  and 
W C U, for all i, and the nerves of {C„ 	,C„} and {W„ 	, W} are naturally 
isomorphic. 

Consider the collection 6 of all subsets of X of the form 

Ci , n • ••n 

Let E be the union of all such sets that do not intersect C1. Then E is closed in X 
and disjoint from C1. Choose W, to be an open set of X containing C, whose 
closure is disjoint from E and lies in U.. We show that the nerves of 
{VI,C2, • • • , C„} and {C,,C2, • • • , C„} are naturally isomorphic. For this purpose, 
it suffices to show that 

n c„ n • • • n cip  * 	c, n 	n • • • n cip 	. 

The implication is trivial, since C, C W. We prove the other implication. If 
the right-hand set is empty, then the set Ci, 11 • • • 11 Cip  is disjoint from C,. 
Thus it is contained in E, by definition. Then it is disjoint from W„ by defini-
tion of W,. Hence the left-hand set is empty as well. 

Apply this construction a second time to choose W2  so that C2  C W2  and 
W2  C U2, and the nerves of 

{ WI W2 1C3, • • • 
	 and 	{IV„C„C„ . . . ,C„} 

are naturally isomorphic. Similarly continue. 

	

Step 3. A covering 11) = {W„ 	,W,,} of Y by sets open in X is said to be 
adapted to Y if the nerves of {W„ 	,W,,} and {W, n Y, 	Y} are 
naturally isomorphic. Let L be the family of all coverings of Yby sets open in X; 
let L. be the subfamily consisting of those coverings that are adapted to Y. We 
show L. is cofinal in L. 

Let A be a covering of Y by sets open in X. Pass to a finite subcollection 
{U„ . ,U„} covering Y. Consider the covering 

fu, n Y, ,U, n Y1 

of Y by sets open in Y. Applying Step 1 to the normal space Y, choose a 
collection {V„ 	,V„} of sets open in Y that cover Y, such that 11, C (Ui  n Y) 
for each i. Let C, = 	and apply Step 2 to find a collection of open sets 
{W„ 	,W„} of X such that C, C W, and W, C 	and such that the nerves of 
{C„ 	,C„} and {w„ 	,W„} are naturally isomorphic. 

Now 'IV refines A, and 11,  covers Y. The fact that `IV is adapted to Y fol- 
lows from the implications 

n 	• n cip 	n • • • n Wip  
4 	 ft 

w„n•••nw4 nYoo 	wii n • • • nwipo0. 
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Step 4. In general, if A = IA„ . ,A,j is a covering of Y by sets open in 
X, let A fl Y denote the covering IA, fl Y, . . ,A„ fl Y} of Y by sets open in Y. 
Consider the following four directed sets: 

L = IA I A is a covering of Y by sets open in XI, 
Lo  = 	e L and 'IV is adapted to Y}, 

J 	I 23 is a covering of Y by sets open in yl, 

n yl 11) E 

Note that every element 2 of J equals A fl Y for some A in L. 
We have shown that L. is cofinal in L. It follows at once that J. is cofinal in 

J: Given 23 e J, it equals A fl Y for some A e L. Then if '1V is an element of 
L. that refines A, it follows that II) fl Y refines A fl Y = B. 

The lemma follows. For 

(Y; G) = lim • .11*(N(B); G) 	by definition, 

• (NOV fl Y); G) 	since J. is cofinal in J, 
m 	FP (NM); G) 	since N(V) = NOV fl Y), 

lim 	(N(.,11); G) 	since L. is cofinal in L. 0 

Theorem 73.4. Let X be a compact triangulable space. Let D, D D, D 
• • • be a sequence of polyhedra in X whose intersection is Y Then 

kk  (Y.; G) = lira IP (D.; G). 

The same result holds in reduced cohomology. 
Proof We shall delete G from the notation, for simplicity. The direct 

limit in the conclusion of the theorem does not depend on the particular trian-
gulations of the spaces D. Let X. be a triangulation of X chosen so that D„ is 
the polytope of a full subcomplex of X„, so that the maximum diameter of a 
simplex of X„ is less than 1 /n, and so that the inclusion map IX„ + 	IX„I 
satisfies the star condition. Let us denote the subcomplex of X„ whose polytope 
is D. by K. Then the isomorphism 

lim H" (D„) = lim H`` (K„) 

holds trivially. 

Step I. Given n, consider the covering of D. by sets open in D. defined by 

= {St (v,K„) I v e 
Then, as we noted in the proof of Theorem 73.2, one has a simplicial isomor- 
phism f„ : 	N(A'.), defined by f„(v) = St(v,K.). The same argument as 
was used there can be applied to pass to an isomorphism of the cohomology 
direct limits, as we now show. 
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Let h : K 	K„ be a simplicial approximation to the inclusion map 
IIC,,,. 1 1 	IK„1; we then define g : 	, 	AL by the equation 

g(St 	,)) = St(h(w),K.). 

The map g induces a simplicial map g: N (AL 4. 	N (.1i;,) such that the fol- 
lowing diagram commutes: 

N +1) 

1 12 	i g  
N(AD. 

We conclude that 

lim Hk  (K.) = lim 	(N(A'„)), 

just as before. However, in this case we cannot identify the left-hand group with 
a particular simplicial cohomology group, since h* need not be an isomorphism. 

Step 2. Given n, consider the covering of D,, defined by 

= {St (v,X„) I v e IC,,}. 

This is a covering of D. by sets open in X, whereas the collection .A„ was a 
covering of D. by sets open in D. The collection .A. 4. is a refinement of A., 
because inclusion IX„ 11 	IX„I satisfies the star condition. 

We show that the nerves of A. and AL are naturally isomorphic, the ver-
tex map in question carrying St (v,K„) to St (v,X„) for each v e K. Since 
St (v,K„) C St (v,X,,), it is immediate that 

n St (v,,K„) * 0 	n st(vi,x„) # 0. 

We prove the reverse implication. If n St(v„X„) 0 , then the vertices v, 
span a simplex o of X,,. Because the v, are vertices of K„ and lc is full, a must 
belong to K. Then n St (v„K„) * 0 , as desired. 

It follows at once that 

(N(A.1)) = lim Hk  (N(A.„)). 

Step 3. We now show that the family of coverings 1.4„.Az, .1 of Y is co-
final in the family L of all coverings .73 of Y by sets open in X. 

First, we note the following: If D is a compact subset of the metric space X, 
and if B is a covering of D by sets open in X, then there is a (5 > 0 such that any 
set of diameter less than d that intersects D necessarily lies in an element of I. 
This is an extension of the "Lebesgue number lemma" of general topology; its 
proof is left as an exercise. 

Now let 53 be an arbitrary covering of Y by sets open in X. First, we show 
that .73 covers D„ = IK„I for some n, say n = N. For if not, we can choose for 
each n, a point x„ e D. such that x. is not in any element of .B. Some subse- 



442 	Duality in Manifolds 	 Chapter 8 

quence x„, converges, necessarily to a point of Y (since Y = 	D.). But 33 cov- 
ers a neighborhood of Y, so it must cover the point x„, for i sufficiently large. 

We now apply the extended Lebesgue number lemma. Choose 6 so that any 
set of diameter less than 6 that intersects D, necessarily lies in an element of S. 
Then choose m > N large enough so that 1/m < 6/2. It follows that A. re-
fines 2. For, given a vertex v of K., we have 

diam St (v,X„,) =5.. 2/m < 5. 

Since v e IK,„1 C IKNI, the set St (v,K„,) intersects IICNI, so that it lies in an ele-
ment of S. 

Step 4. We prove the theorem. We have 

lima  Hk  (D„) = lim Hk (K„) 

lim 1-1k(N(Aa) 

lim 1-1k (N(A„)) 

lim 	6 L Hk  (N( 23)) 

•••• 
INN= 

•••••• 
1•MI 

by Step 1, 

by Step 2, 

by Step 3. 

The latter group is isomorphic to i/k (Y), by the preceding lemma. 0 

We use this theorem to compute the tech cohomology of the following 
non-triangulable space. 

Corollary 73.5. Let X be the closed topologist's sine curve. Then 

1-P(X) = 0 

Z 

(singular cohomology), 

(tech cohomology). 

Proof For convenience, we express X as a union of line segments in the 
plane, as pictured in Figure 73.1. 

Step I. Let us first compute the singular homology and cohomology of X. 

1) 

(0,1) — 

••• 

p 

(0,0) 

Figure 73.1 
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Let U be the intersection of X with the set of all points (x,y) of R2  for which 
y > 1/4, and let V be the intersection of X with those (x,y) for which y < 3/8. 
Because U and V are open, we have a Mayer-Vietoris sequence in singular 
homology: 

H, (U) ED H,(V)--- Hi(X) 110(U n n 14(u) 14(v). 

Now V is homeomorphic to an open interval, so H,(V) = 110 (V) = 0. The 
space U has two path components U, and E4, one of which is homeomorphic to 
an open interval, and the other to a half-open interval. Therefore, 

H, (U) = H, (U,) ED Hi (U2) = 0. 

The group .11.(U) is infinite cylic and is generated by the 0-chain q — p, where 
p = (0,1/4) e U, and q = (1,14) e U2. The space U fl V consists of two disjoint 
open line segments, so 11.(U fl V) is also infinite cyclic and is generated by 
q — p. It follows that i,, is an isomorphism, so that H,(X) = 0. The universal 
coefficient theorem for cohomology now implies that H'(X) = 0. (Alterna-
tively, one can use a Mayer-Vietoris sequence in cohomology to prove this fact.) 

Step 2. Now let us compute the tech cohomology of X. We express X as 
an intersection of polyhedra, as follows: For each n, let C. be the closed rectan-
gular region pictured in Figure 73.2. Let A = X U C.; then D. is a polyhe-
dron. By the preceding theorem, 

H2 (X) 	H'(D„). 

Now D„ is a space having the homotopy type of a circle, so that H' (D„) = Z. 
Furthermore, 	is readily seen to be a deformation retract of A, so that 
inclusion i induces an isomorphism 

i* Hi(D.). 

It follows that 112(X) = Z. 0 

(0, 1) 

(0, 

Figure 73.2 
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We have only touched on the subject of tech cohomology. For a full-scale 
development, one needs to define the homomorphism induced by a continuous 
map (which is easy), extend the definition to the cohomology of a pair (X,A), 
and verify the Eilenberg-Steenrod axioms (which requires some work). The 
interested reader is referred to Chapters 9 and 10 of [E-S]. 

EXERCISES 

1. Check the details of Example 4. 

2. The direct limit of the system 

2 3 4 
• • 

is a familiar group. What is it? 

3. Check that the system of groups and homomorphisms used in defining tech 
cohomology is a direct system. 

4. Verify the extended Lebesgue number lemma quoted in the proof of Theo-
rem 73.4. 

5. Let X denote the solid torus B2  X 	and let f : X X be the imbedding 
pictured in Figure 73.3. Let X. = X, let X, = f (X.), and in general, let 
X„ 	, = f (X.). Let S = fl X.; the space S is often called a solenoid. 
(a) Describe the space X,. 
(b) Compute H' (S). 

Figure 73.3 

6. Given X, let e be the collection of compact subspaces of X, directed by let-
ting C < D if C C D. Show that e is a directed set. Define a direct system by 
the rules 

Gc  = Hi(C), 

fcx, = : 1,(C) 

where i is inclusion and 111  denotes singular homology. Show that 

111(X) 	IMC). 

(This is just another way of expressing the compact support property of singu-
lar homology.) 
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§74. ALEXANDER-PONTRYAGIN DUALITY 

Now we prove a generalized version of the Alexander duality theorem, which 
applies to an arbitrary closed subspace of S", not just to a polyhedron in P. As 
an application, we derive a version of the Jordan curve theorem more general 
than any we have seen up to now. 

Theorem 74.1 (Alexander-Pontryagin duality). Let A be a proper, non-
empty closed subset of Sh. Then 

Ilk  (A) a-- 'H _ _ ,(Sn — A). 

(Cech cohomology) (singular homology) 

Proof. Choose a triangulation X of P fine enough that not every simplex 
of X intersects A. Consider the sequence sd X, sd2  X, ... of successively finer 
subdivisions of X. 

Let A. denote the subcomplex of sd"' X consisting of those simplices that 
intersect A, along with their faces. Then IA_I is a proper nonempty polyhedron 
in X, and IA„, 	C IA„,) for all m. Furthermore, A is the intersection of the sets 
IAmI. 

The Alexander duality theorem gives us an isomorphism 

am  : flk  (A.; G) 	_ k  - ,(X — A.; G). 

Since this isomorphism is natural with respect to inclusions, it induces an iso-
morphism of the direct limits 

a : limn  Hk  (A.; G) 	lim 	- k - 1(X — A.; G). 

The left-hand group is isomorphic to the reduced Cech cohomology group 
11* (A; G), by Theorem 73.4. We show that the right-hand group is isomorphic 
to the singular homology group 1-1, _ k _ ,(X — A; G); then the theorem is 
proved. 

Consider the homomorphisms induced by inclusion, 

lY" - k - 1(X A ni) 	k - i(X A). 

They induce a homomorphism of the direct limit 

lim il„ _ _ , (X — A„)--+ _ k _ i(X —A). 

The fact that this homomorphism is an isomorphism follows from the compact 
support property of singular homology: Every singular simplex T : Op -4 X — A 
lies in a compact set and hence lies in one of the open sets X — Am. Thus every 
singular cycle of X — A is carried by X — A. for some m. Furthermore, any 
homology between two such singular cycles is carried by X — A.+  p for some p. 

0 
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Corollary 74.2. Let n> 1. Let M be a compact connected triangulable 
n — 1 manifold; suppose h: M S" is an imbedding. Then M is orientable, 
and Sn — h (M) has precisely two path components, of which h (M) is the 
common boundary. 

Proof By Alexander duality, we know that IP 1 (M) 
— h(M)). Since M is triangulable, its Cech and simplicial cohomology 

groups are isomorphic. If M were non-orientable, we would have Hn (M) 
Z/2, although the group Ho(Sn — h(M)) is free abelian. We conclude that M 
is orientable. Hence Hn (M) = Z, and S" — h (M) has precisely two path 
components U and V. 

The proof that h (M) is the common boundary of U and V proceeds just 
as in the proof of the Jordan curve theorem (§36). All one needs is the fact 
that if we delete the interior of a small open n — 1 simplex s from M, then 
h (M — Int s) does not separate S. . And that follows from the fact that (letting 
M. = h (M — Int s)) we have 

11. (S n — M.) lin - (1110) Hn (M0) = 0. 0 

EXERCISES 

1. Let X be the closed topologist's sine curve. If f : X S" is an imbedding, cal-
culate iii (Sa — f (X)). 

2. Show that Alexander-Pontryagin duality does not hold if tech cohomology is 
replaced by singular cohomology. 

3. Show that neither the Klein bottle nor the projective plane can be imbedded in 
R3, but they can be imbedded in R4. [Hint: If one removes an open disc from 
P2, what remains is a Mobius band.] 

4. Let A and B be closed sets in P. Show that if A B, then 

11,(S" — A) --a Hi (S" — B) 

for all i. [Note: It does not follow that Sn — A and S" — B are themselves 
homeomorphic. Figure 74.1 pictures an imbedding of S' in S' called an "over-
hand knot." Its complement C is not homeomorphic to the complement D of the 
standard imbedding of S' in S3; for although the homology groups of C and D 
are isomorphic, their fundamental groups are different. See [C-F], Chapter 6.] 

Q9 
Figure 74.1 
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Cohomology ring, 289 
Cohomology ring of 

complex projective 
space, 407 

homology manifold, 
400, 401 

Klein bottle, 295 
lens space, 411, 414 
product space, 363 
projective space, 403, 407 
P1  # P2, 296 
P= X P2, 364 
5" X 5", 364 
S' V S' V St, 297 
torus, 293, 364, 402 

Cokernel, 20 
cok f, 20 
Combinatorially regular, 128 
Compactly generated, 213 
Compact pair, 147 
Compact set 

in complex, 10 
in CW complex, 215 

Compact support axiom, 147 
Complex, abstract, 15 
Complex projective space, 233 

cohomology, 407  

homology, 234 
triangulability, 407 

Complex, simplicial. See 
Simplicial complex 

Composition of 
morphisms, 155 

Cone, 44, 116 
homology, 45 
ordered homology, 77 

Connected sum, 38, 366 
Contiguous, 67, 69 
Contractible, 108 
Contravariant functor, 158 
Convex, 5 
Coordinate patch, 198 
Covariant functor, 156 
Covering dimension, 88 

of complex, 95, 111 
C,,. See Chain group 
C. See Cochain group 
Cr, Cr'. See Complex 

projective space 
Cross product 

of cochains, 360 
in cohomology, 355 
vs. cup product, 362 
in homology, 346, 352 

Cup product 
Anticommutativity, 289, 363 
with coefficients, 290 
vs. cross product, 362 
relative, 290 
simplicial, 292 
singular, 288 

CW complex, 214 
cohomology, 281 
homology, 225, 311 
normality, 220 
triangulable, 218 

Cycle group, 30, 48 
Cylinder, 135 

a. See Boundary operator 
a.. See Boundary 

homomorphism 
6. See Coboundary operator 
6*. See Coboundary 

homomorphism 
Deformation retract, 108 
Deformation retraction, 108 
Degree 

for manifolds, 398 
for spaces, 278 
for spheres, 116 

Diagonal map, 362 
Diagram-chasing, 137 
Diameter of a simplex, 86 
Dimension. See also Covering 

dimension 
of abstract complex, 15 
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of CW complex, 219 
of manifold, 198 
of simplicial complex, 14 
topological invariance, 201 

Dimension axiom, 147 
Directed set, 433 
Direct limit 

of groups, 434 
of homomorphisms, 435 

Direct limit argument, 194 
Direct product, 23 
Direct sum, 22, 23 
Direct summand, 23 
Direct system, 434 
Divisible, 250 
Domain object, 156 
Ai,. See Standard simplex 
Dual block, 378 
Dual block decomposition, 380 
Dual chain complex, 380 
Dual homomorphism, 246 
Dual pairing, 400 
Dual skeleton, 380 
Dual vector space, 158, 326 
Dunce cap, 41 
D (X) 

cellular chain complex, 222 
dual chain complex, 380 

Dyadic rationals, 435 

Eilenberg-Steenrod axioms 
cohomology, 265 
homology, 146 
simplicial cohomology, 267 
simplicial homology, 151 
singular cohomology, 265 
singular homology, 168 

Eilenberg-Zilber chain 
equivalence, 352 

Eilenberg-Zilber theorem, 350 
E', 13 
Elementary chain, 27 
Elementary cochain, 252 
El., Et, 5 
Equivalence, in category, 156 
Euclidean space, 13 

half-space, 197 
Euler number, 124, 388 
Exact braid, 148 
Exact cohomology sequence, 

259, 264 
Exact homology sequence, 133 

of triple, 141, 148, 224 
Exactness axiom, 147 
Exact sequence, 130 

long, 133 
short, 130 

Excision axiom 
cohomology, 265 
homology, 147  

Excision in cohomology 
simplicial, 268 
singular, 267 

Excision in homology 
simplicial, 50, 153 
singular, 180 

Excisive couple, 149, 186 
Ext (A,B), 316 

rules for computing, 331 
External direct sum, 23 
Ext (7,5), 317 
Extraordinary homology, 147 

f. See Dual homomorphism 
f,. See Induced chain map 
f". See Induced cochain map 
f•. See Induced cohomology 

homomorphism 
f.. See Induced homology 

homomorphism 
Face 

of abstract simplex, 15 
proper, 5 
of simplex, 5 

JO g. See Tensor product 
of homomorphisms 

Field, 286 
Filtration, 225 
Finitely generated group, 21 
Five-lemma, 140 
Fixed-point theorem 

for acyclic space, 126 
for ball, 117 
Brouwer, 117 
for complex projective 

space, 407 
Lefschetz, 125 
for projective plane, 127 
for sphere, 119 

Free abelian group, 21 
Free chain complex, 71 
Free functor, 183 
Free resolution 

of abelian group, 270 
canonical, 316 
of module, 331 

Full subcomplex, 18, 414 
Functor 

acyclic, 183 
contravariant, 158 
covariant, 156 
forgetful, 157 
free, 183 
properties, 63, 101 

Fundamental cycle, 228 
Fundamental theorem 

of algebra, 121 
of finitely generated abelian 

groups, 24  

-y • E. See Torsion product 
of homomorphisms 

Generalized barycentric 
subdivision, 90 

Generalized euclidean 
space, 13 

Generalized homology, 147 
Generating groups, 22 
Generators, for group, 21 
Geometrically independent, 2 
Geometric realization, 16 
Groupoid, 159 

H•. See Cohomology ring 
Ham sandwich theorem, 

405, 406 
Hemisphere, 5 
Hom(A,B), 246 

rules for computing, 331 
Hom (a,11), 248 
Hom te,o, 354 
HomR(A,B), 251 
Homogeneous space, 202 
Homologous, 31 
Homology groups 

axioms, 146 
of chain complex, 58, 

71, 308 
on infinite chains, 33, 388 
ordered, 76 
reduced, 43, 71, 164 
simplicial, 30, 48, 51, 310 
singular, 164, 168, 309 
of triangulable pair, 150 
zero-dimensional, 41, 43, 

71, 164 
Homology intersection 

ring, 408 
Homology manifold, 374 

cohomology, 386 
cohomology ring, 400, 401 
duality theorem, 383, 394 
homology, 386 
vs. manifold, 376 
vs. pseudo manifold, 377, 

386, 388 
relative, 374 

Homology of 
annulus, 49, 134 
ball, 181 
complex projective 

space, 234 
cone, 45, 77 
CW complex, 225, 311 
cylinder, 135 
4-gon, 30 
homology manifold, 386 
Klein bottle, 37, 52, 230 
lens space, 240 
Mobius band, 135 
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product space, 346, 351 
projective plane, 38 
projective space, 237 
pseudo manifold, 262, 326 
P2  4t P, 39 
relative homology 

manifold, 422 
simplex, 46, 77, 167 
simplex boundary, 46 
S.  x S.", 346 
sphere, 181, 230 
square, 31, 32, 48 
star-convex set, 166 
suspension, 144, 188 
torus, 35, 52, 230 

Homology sequence. See Exact 
homology sequence 

Homomorphism. See also 
Induced homology 
homomorphism; Induced 
cohomology 
homomorphism 

of exact sequences, 131 
of modules, 287 

Homotopic, 103 
Homotopy, 83, 104 
Homotopy axiom, 147 
Homotopy equivalence, 

108, 174 
Homotopy inverse, 108, 174 
Homotopy type, 108 
Hopf trace theorem, 122 
14. See Homology groups 
H. See Homology groups, 
_ 	on infinite chains 
Hp. See Homology 

groups, reduced 
H'. See Cohomology groups 
H'. See Cohomology groups, 

reduced 
H. See Cohomology groups, 

compact support 
H'. See Cohomology groups, 

tech 

I, 16 
Identity map 

of category, 155 
of spaces, 108 

Identity morphism, 155 
Image, 20 
im f, 20 
Independent, 2 
Induced chain map 

ordered, 77 
simplicial, 62 
singular, 163, 169 

Induced cochain map 
simplicial, 258 
singular, 266 

Induced cohomology 
homomorphism 

from cochain map, 263 
simplicial theory, 259, 267 
singular theory, 266 

Induced homology 
homomorphism 

from chain map, 72 
simplicial theory, 62, 100 
singular theory, 164, 169 

Induced subdivision, 84 
Infinite chain, 33 
Injective resolution, 320 
Interior 

of manifold with 
boundary, 198 

of simplex, 5 
in topological space, 199 

Internal direct sum, 22 
Intersection product, 408 
Invariance of domain, 207 
Invariant factors, 25 
Inverse, in a category, 156 
Isomorphism 

of abstract complexes, 15 
of exact sequences, 131 
of simplicial complexes, 13 
of simplicial theory with 

(tech, 437 
of simplicial theory with 

singular, 194, 268, 311 
ix. See Identity map of spaces 

Join 
of complexes, 368 
of spaces, 373 

Jordan curve theorem, 205 
for .Af" -  1  in S', 446 
polyhedral, 425 

s. See Kronecker map 
14 See Polytope 
ker f, 20 
Kernel, 20 
K * L. See Join, of complexes 
Klein bottle, 18 

cellular chain complex, 230 
cohomology, 282, 284 
cohomology ring, 295 
homology, 37, 52, 230 

Ku,. See Skeleton, 
of complex 

Kronecker index, 276 
Kronecker map, 276 
Kiinneth theorem 

(cohomology) 
chain complexes, 357 
field coefficients, 359 
spaces, 358  

Kiinneth theorem (homology) 
chain complexes, 342 
field coefficients, 384 
pairs of spaces, 349, 353 
spaces, 351 
(Z,G) coefficients, 349 

Labelling of vertices, 18 
Lebesgue number, 89, 441 
Lefschetz duality, 415 

natural version, 429 
Lefschetz fixed-point 

theorem, 125 
Lefschetz number, 125 
Left inverse, 155 
Lens space, 238 

cellular chain complex, 240 
classification, 

homeomorphism, 243 
classification, homotopy 

type, 413 
cohomology ring, 411, 414 
homology, 240 
triangulation, 242 

lim G., 434 
Linear singular simplex, 162 
Linear transformation, 287 
Link 

of simplex, 371 
of vertex, 11 

Linking number, 432 
Lk s, 371 
Lk v, 11 
L(n,k). See Lens space 
Local homology groups, 196 

in ball, 196 
in complex, 199, 200, 201 
in half-space, 197 
in manifold, 198 

Locally finite complex, 11 
Long exact sequence, 133. 

See also Exact sequence 
Lower hemisphere, 5 
1(v,„. . . ,vp). See Linear 

singular simplex 

Manifold, 197. See also 
Homology manifold 

Manifold with boundary, 197 
duality theorem, 419 

Map of direct systems, 434 
Mapping cylinder, 275 

algebraic, 273 
Matrix, of homomorphism, 55 
Mayer-Vietoris sequence 

from axioms, 149 
relative, 145, 190 
simplicial, 142 
singular, 187 
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Minimal carrier, 170, 309 
M # N, 367 

Mobius band, 17 
cohomology, 261 
homology, 135 

Models, 183 
Module, 287 
Morphism, 155 
Multilinear, 304 

N (A). See Nerve 
Natural equivalence, 157 
Natural transformation, 157 
Nerve, 436 
Non-negative chain 

complex, 71 
Non-orientable. See Orientable 
Norm, 5 
Normality 

of adjunction space, 210 
of coherent topology, 212 
of CW complex, 220 
of polytope, 14 
of quotient space, 209 

Objects, of category, 155 
1 X. See Identity map, 

of category 
Open cell, 214 
Open map, 111 
Open simplex, 5 
Opposite face, 5, 7 
Ordered chain complex, 76 
Ordered homology, 76 

vs. simplicial, 77 
vs. singular, 191 

Order, of group, 22 
Orientable 

homology manifold, 
382, 388 

pseudo manifold, 262 
relative homology 

manifold, 415 
Orientation 

of cell, 228 
of simplex, 26 

Orientation class, 394 
relative, 418 

Orientation cycle, 383, 415 
Oriented cell, 228 
Oriented simplex, 26 

Pasting map, 18 
Plane, 3 

with two origins, 116 
Platonic solids, 125, 128 
.1", P", see Projective space 
Poincare duality, 

first version, 383 

non-compact case, 388 
second version, 394 

Poincar6-Lefschetz 
duality, 419 

Polyhedron, 8 
in (X,A), 429 

Polytope, 8 
Product, direct, 23 
Product neighborhood, 419 
Product space, 

cohomology, 358, 359 
cohomology ring, 363 
homology, 346, 351 
triangulation, 104, 216, 339 

Projective plane, 19 
cohomology, 284 
homology, 38 

Projective space, 231 
cellular chain complex, 237 
cohomology ring, 403, 407 
homology, 237 
triangulation, 237 

Projective space, complex. See 
Complex projective space 

Proper face, 5, 86 
Proper homotopy, 269 
Proper map, 269 
Pseudo manifold, 261 

cohomology, 262, 326 
homology, 262, 326 
vs. homology manifold, 377, 

386, 388 
P . See Projective plane 
P X P. Cohomology 

ring, 364 
.1"# .F", 38 

cohomology ring, 296 
homology, 39 

Q, 20 
Quotient map, 1 1 1 
Quotient space, 112 

normality, 209 

Range object, 156 
Rank, 21 
Ray, 5 
Reduced cohomology, 256, 263 
Reduced homology, 43, 71, 

164, 308 
Refinement, 433 
Refines, 88 
Reflection map, 118 

degree, 118, 181 
Regular cell complex, 216 
Relative cap product, 392 
Relative chains, 47, 168 
Relative cochains, 257 
Relative cohomology, 257, 266 
Relative cup product, 290 

Relative homology, 48, 168 
Relative homology 

manifold, 374 
cohomology, 422 
duality theorem, 415 
homology, 422 
vs. relative pseudo manifold, 

375, 377, 417, 423 
Relative Mayer-Vietoris 

sequence, 145, 190 
Relative pseudo manifold, 261 

cohomology, 262 
homology, 262 
vs. relative homology 

manifold, 375, 377, 
417, 423 

Retract, 108 
Retraction, 103 
Right inverse, 155 
Ir, 162 
Ring, 286 

with operators, 291 
le, 13 

CT 

elementary chain, 27 
oriented simplex, 26 
simplex, 3 
e, elementary cochain, 252 
S. 4 . See Singular chain complex 
tra  . See Singular chain 

complex, A-small 
Saturated, 111 
Saturation, 210 
Schoenflies theorem, 206 
sd K. See Barycentric 

subdivision 
sd(K 1 KJ. See Barycentric 

subdivision, holding 
subcomplex fixed 

sd cr. See Barycentric 
subdivision operator, 
simplicial 

sdx. See Barycentric 
subdivision operator, 
singular 

Separates, 202 
Serpent lemma, 141 
Short exact sequence, 130 

of chain complexes, 136 
Simplex, 3 

abstract, 15 
homology of, 46, 77, 167 
linear singular, 162 
ordered, 76 
oriented, 26 
singular, 162 

Simplex boundary, 5 
homology, 46 

Simplicial approximation, 80 
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Simplicial approximation theorem 
finite, 89 
general, 95 

Simplicial chain complex 
ordered, 76 
oriented, 72 

Simplicial cohomology, 251, 257 
vs. tech, 437 
vs. singular, 268 

Simplicial complex, 7 
abstract, 15 
compactness, 10 
Hausdorff condition, 10 
local compactness, 11 
metrizability, 14 
normality, 14 

Simplicial homeomorphism, 13 
Simplicial homology, 30, 48, 

51, 310. See also 
Homology groups 

vs. singular, 194, 311 
Simplicial map, 12 

of pairs, 69 
Singular chain complex, 163 

A-small, 179 
of a pair, 168 

Singular chain group, 162 
A-small, 179 
relative, 168 

Singular cohomology, 265. See 
also Cohomology groups 

vs. tech, 442 
vs. simplicial, 268 

Singular homology, 164, 
168, 309. See also 
Homology groups 

vs. simplicial, 194, 311 
Singular simplex, 162 
S(K). See Suspension of complex 
Skeleton 

dual, 380 
of complex, 8 
of CW complex, 217 

Small singular simplex, 176 
See Sphere 

5" X ..5" 
cohomology ring, 364 
homology, 346 

Solenoid, 444 
Solid torus, 202 
5' V S' V 5, 297 
Sr  See Singular chain group 
;A. See Singular chain group, 

A-small 
Sphere, 5 

as CW complex, 230 
as manifold, 198 
cohomology, 281 
homology, 46, 181, 230 
triangulation, 118, 237  

Split exact sequence, 131 
Square 

cohomology, 260 
homology, 31, 32, 48, 133 

s 	0, 86. See also Proper face 
s * t, 368 
Standard basis for free chain 

complex, 58 
Standard simplex, 162 
Star 

of simplex, 371 
of subcomplex, 426 
of vertex, 11 

Star condition, 80 
Star-convex set, 7, 165 

homology, 166 
Starring, subdivision 

method, 85 
Steenrod five-lemma, 140 
Straight-line homotopy, 83 
Subchain complex, 75 
Subcomplex 

of abstract complex, 15 
of CW complex, 217 
of simplicial complex, 8 

Subdivision, 83 
barycentric, 86 
generalized barycentric, 90 
induced, 84 
by starring, 85 

Subdivision operator, 96 
barycentric, 99 

ZG„. See Sum of groups 
IX,. See Topological sum 
Sum of groups, 22 
Suspension 

of complex, 46, 144 
of space, 188 

S(X). See Suspension of space 

Tangent vector field, 120, 127 
Tensor product 

of abelian groups, 300 
of chain complexes, 338 
of homomorphisms, 300 
of modules, 306 
rules for computing, 331 
curve, 109 

Topological invariance, of 
simplicial homology, 102 

Topological sum, 114 
Topologist's sine curve, 168 

closed, 189, 442 
Torsion coefficients, 24, 34 
Torsion-free group, 22 
Torsion product, 328 

rules for computing, 331 
Torsion subgroup, 22 
Torus, 17 

cellular chain complex, 230  

cohomology, 281, 283 
cohomology ring, 293, 

364, 402 
homology, 35, 52, 230 

Trace, 122 
Tree, 33 
Triangulable CW 

complex, 218 
Triangulable space, 150 
Triangulation, 118 

of complex projective 
space, 407 

of CW complex, 218 
of lens space, 242 
of manifold, 200 
of product space, 104, 

216, 339 
of projective space, 237 
of regular cell complex, 221 
of sphere, 118, 237 

Trivial ring, 293 

Unit ball, 5 
Unit sphere, 5 
Unity element, 286 
Universal coefficient theorem 

cohomology, 320, 337 
with field coefficients, 325 
homology, 332, 337, 347 

Upper bound, 433 
Upper hemisphere, 5 
Upper semicontinuous 

decomposition, 210 

Vector space, 287 
Vertex 

of abstract complex, 15 
of complex, 8 
of cone, 44 
of simplex, 5 

Vertex scheme, 15 
vo 	v,, 26 
(vo, 	, v,j, 26 
(v0, 	, vi), 76 

Weak boundaries, 58, 123 
Weak topology, 215 
Wedge, 36, 297 
w * K. See Cone 
W,. See Weak boundaries 

X. See Skeleton, of CW 
complex 

X = Y. See Join, of spaces 

Z, 20 
Zig-zag lemma, 136 
Z/n, 24 
Z,. See Cycle group 
Z°. See Cocycle group 
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