The following 2 pages cover the basic to	The following 2 pages cover the basic technique that you need to know. Once you know the technique, the rest is easy! They do not cover product rule, quotient rules and implicit.					
		6 Basic Type Type 1: Powers (year				
Example 1 $y = x^3 + 5x^2 + 4x - 9$		v = x(x+4)	2 (x + 2)		Example 3 $(x+4)(x-1)$	
$y = x^2 + 5x^2 + 4x - 9$ Step 1: bring the power down to the front		Simplify first to get into the correct form		6:	$y = \frac{(x+4)(x-1)}{3\sqrt{x}}$	
Step 2: subtract one from the power		$y = x(x^2 + 6)$		Simplify first to get into the correct form to differentiate		
$y = 3x^{3-1} + 5(2)x^{2-1} + 4x^{1-1}$		$y = x^3 + 6x^2$	$^{2} + 8x$		$y = \frac{x^2}{3x^2} + \frac{3x}{3x^2} + \frac{-4}{3x^2}$	
Simplify dy -		Now in the correct form to differentiate like in example 1			$y = \frac{1}{3}x^{\frac{3}{2}} + x^{\frac{1}{2}} - \frac{4}{3}x^{-\frac{1}{2}}$	
$\frac{dy}{dx} = 3x^2 + 10x + 4$				Now in the co	orrect form to differentiate like in example 1	
		$\frac{dy}{dx} = 3x^2 + 1$	$\frac{dy}{dx} = 3x^2 + 12x + 8$		$\frac{dy}{dx} = \frac{1}{2}x^{\frac{1}{2}} + \frac{1}{2}x^{-\frac{1}{2}} + \frac{2}{3}x^{-\frac{3}{2}}$	
Type 2: I	Powers with a	function inside (recognisable by a	function inside (recognisable by a function inside a bracket ra		TEX E E J	
Example 4 $y = (3x - 2)^5$		Example 5 $y = 3(5 + x^2)^{\frac{3}{2}}$		Example 6 $y = \frac{5}{\sqrt{2 - 4x}}$		
y = (3x = 2) Let's colour code to explain		$y = 3(5 + x^{2})^{2}$ Let's colour code to explain			$y = \frac{1}{\sqrt{2-4x}}$	
$y = (3x - 2)^5$		$y = 3(5 + x^2)^{\frac{3}{2}}$		Firstly, we can bring the power up using indices rules and then		
Step 1: bring the power down to the front		$y = 3(3 + x^2)^2$ Step 1: bring the power down to the front and multiply it with the		Firstly, we can bring the power up using indices rules and then it is just the harder powers type of differentiation shown in the		
Step 2: subtract one from the power, keep inside brac		number at the front (if a number exists		two examples on the left		
Step 3: multiply by the derivative of what is inside the	ргаскет	Step 2: subtract one from the power, keep inside bracket the same		$\frac{dy}{dx} = 5(2-4x)^{-\frac{1}{2}}$		
Apply these 3 steps	erivative of $3x - 2$	Step 3: multiply by the derivative of what is inside the bracket		dx Now we can differentiate using our 3 steps on the left		
$\frac{dy}{dx} = 5(3x - 2)^4(3)$		Apply there 2 -t	Derivative of $5 + x^2$		$\frac{dy}{dx} = 5\left(-\frac{1}{2}\right)(2-4x)^{-\frac{3}{2}}(-4)$	
$\frac{1}{dx} - 3(3x - 2) $ (3)		Apply these 3 steps dy (3)			ux (Z)	
_		$\frac{dy}{dx} = \left(\frac{3}{2}\right) \times 3 \left(5 + \frac{3}{2}\right)$	$-x^2$) $\frac{\pi}{2}$ (2x)		$=10(2-4x)^{-\frac{3}{2}}$	
$\frac{dy}{dx} = 5(3)(3x - 2)^4$		Re-order		Note: we don	't need quotient rule here since we just have a	
Simplify 15(2): 2)4		$\frac{dy}{dx} = 3\left(\frac{3}{2}\right)(2) (x$	$(5+x^2)^{\frac{1}{2}}$	constant in th		
$= 15(3x - 2)^4$		Simplify				
		=9x(5+x)	$(x^2)^{\frac{1}{2}}$			
Type 3: Exponentials (recognisable by a base number			Type 4: Natural log (recognised by $ln angle$		(recognised by $oldsymbol{l} n$)	
Example 8 Type a:		Example 11 Type b:	$y = \ln(3x + 2)$	Ехап	$y = 3 \ln (x^2 + 3x + 5)$	
Base e to an unknown power $y = 5e^{5x^2}$	Number	other than base e to unknown power $y = 2^{4x}$	Let's colour code to explain		Let's colour code to explain	
Let's colour code to explain	Let's colour co	ode to explain	$y = \ln(3x + 2)$		$y = 3 \ln (x^2 + 3x + 5)$	
$y = 5e^{5x^2}$		$y = 2^{4x}$ Step 1: This turn into a fraction			Step 1: This turns into a fraction	
Step 1: copy the entire exponential (e to some		he entire exponential (number to some			÷ ?	
unknown power)	unknown pov	the street and		•	The ${\it ln}$ completely disappears	
Step 2: multiply by the derivative of the power		ly by the derivative of the power Step 2: Fill in numerator and derivative of arguments of the base. Notice this extra			Step 2: Fill in numerator and denominator	
Note: don't worry about the 5 at the front, that is just hanging around at the front.	,	hen we have an exponential which derivative of arguments			derivative of argument copy of argument	
Derivative of	doesn't have	a base of e . Here we have a base of 2. Notice how the ln disa		pears	Notice how the ${\it ln}$ disappears	
Apply these 2 steps					Note: don't worry about the 3 at the front,	
$\frac{dy}{dx} = 5e^{5x}(10x)$	Apply these 2	steps Derivative of 4x	Apply these 2 steps D	erivative of $3x + 2$	that is just hanging around at the front.	
ax Re-order		day			Apply these 2 steps Derivative of $x^2 + 3x + 5$	
$\frac{dy}{dx} = 5(10x)e^{5x}$		$\frac{dy}{dx} = 2^{4x}(4) \ln 2$	dy _ 3		×	
$\frac{dx}{dx} = 3(10x)^{2}$ Simplify		Base is 2	$\frac{1}{dx} = \frac{1}{3x+2}$		$\frac{dy}{dx} = 3\left(\frac{2x+3}{x^2+3x+5}\right)$	
	Re-order	da			$\frac{dy}{dx} = \frac{6x+9}{x^2+3x+5}$	
$\frac{dy}{dx} = 50xe^{5x}$		$\frac{dy}{dx} = 4\ln 2(2^{4x})$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Type 5 : Trigonometry	1	Type 5 :	Trigonometry	Type 6:	Inverse Trig (Further Maths Only)	
Example 10 $y = \cos(3x)$		Example 11 $y = sec (2x^3)$			Example 12 $y = \cos^{-1}(4x)$	
$y = \cos(3x)$ Let's colour code to explain		Let's colour code to explain		$y = \cos^{-1}(4x)$ Let's colour code to explain		
y = cos(3x) Step 1: Change the trig function to what it is meant to become. Trig		$y = sec \ (2x^3)$ Step 1: Trig functions are a bit different. They change to different			$y = \sin^{-1}(4x)$	
functions are a bit different. They change to different functions.		functions. Change the trig function to what it is meant to become:		Step 1: These	e turn into a fraction, just like ln	
• $sin x ⇒ cos x$ Watch	out for	• $\sin x \Rightarrow \cos x$	Watch out for the		? ?	
• $tan x \Rightarrow sec^2 x$ the three		• $tan x \Rightarrow sec^2 x$ three functions		The inverse trig completely disappears		
 sec x ⇒ sec x tan x cosec x ⇒ -cosec x cot x functions that become negative 		 sec x ⇒ sec x tan x cosec x ⇒ -cosec x cot x that become negative 		Step 2 : Fill in numerator and denominator		
• $\cot x \Rightarrow -\csc^2 x$		• $cot x \Rightarrow -cosec^2 x$		Choose the first result since we have \sin^{-1} • $\sin^{-1} f(x) \Rightarrow \frac{derivative\ of\ angle}{\sqrt{1-(angle)^2}}$		
Notice how the angle stays the same Step 2: multiply by the derivative of the angle		Notice how the angle stays the same			$cos^{-1} f(x) \Rightarrow \frac{-\frac{derivative of angle}{\sqrt{1 - (angle)^2}}}{\sqrt{1 - (angle)^2}}$	
Apply those 2 staps		Step 2: multiply by the derivative of the angle			$tan^{-1} f(x) \Rightarrow \frac{\frac{derivative of angle}{1 + (angle)^2}}{1 + (angle)^2}$	
Here we have $\cos 3x \Rightarrow -\sin 3x$: $3x$		Apply these 2 steps $\frac{\text{Derivative of}}{2x^3}$			$f(x) \Rightarrow \frac{1}{1 + (angle)^2}$ Notice how the inverse trig disappears.	
dy		Here we have sec and $sec\ 2x^3 \Rightarrow -sec\ 2x^3\ tan\ 2x^3$;		'	Derivative of	
$\frac{dy}{dx} = -\sin 3x \ (3)$		$\frac{dy}{dx} = -\sec 2x^3 \tan 2x^3 \left(6x^2\right)^4$			dy 4 $4x$	
$=-3\sin 3x$		$= -6x^2 \sec 2x^3 \tan 2x^3$		i	 = 	

 $= -6x^2 \sec 2x^3 \tan 2x^3$

 $=-3\sin 3x$

	Combination of 2 types above	(a type within a type)			
Trig within a power	Exponential within a power	Exponential within a power	ln within a power		
Example 1	Example 2	Example 3	Example 4		
$y = (x + \sin 2x)^3$	Example 2 $y = (e^{4x} + 5)^6$	$y = \sqrt{e^{2x} + e^{-2x}}$	$y = (1 - \ln 2x)^3$		
Here we have a mix of 2 types (harder power and rigonometry)	Here we have a mix of 2 types (harder power and exponential)	Firstly, we need to write this as	Here we have a mix of 2 types (natural log and harder powers)		
ngonomea y)	We deal with the harder power since that is the main function,	$y = (e^{2x} + e^{-2x})^{\frac{1}{2}}$	powersy		
Ve deal with the harder power since that is the main	but when we differentiate inside the bracket which is part of the	Here we have a mix of 2 types (harder power and	We deal with the harder power since that is the main		
unction, but when we differentiate the angle which is part of	harder power differentiation rule, we have to use our	exponential)	function, but when we differentiate inside the bracket		
he trig differentiation rule, we have to use our trig	exponential differentiation rule to do this	We deal with the harder power since that is the main	which is part of the harder power differentiation rule, we		
lifferentiation rule to do this	do	function, but when we differentiate inside the	have to use our ln differentiation rule to do this		
dy	$\frac{dy}{dx} = 6(e^{4x} + 5)^5(4e^{4x})$	bracket which is part of the harder power	dy , , , , , (2)		
$\frac{dy}{dx} = 3(x + \sin 2x)^2 (1 + 2\sin 2x)$		differentiation rule, we have to use our exponential	$\frac{dy}{dx} = 3(1 - \ln 2x)^2 \left(\frac{2}{2x}\right)$		
		differentiation rule to do this	dv 3		
		$\frac{dy}{dx} = \frac{1}{2} (e^{2x} + e^{-2x})^{-\frac{1}{2}} (2e^{2x} + (-2)e^{-2x})$	$\frac{dy}{dx} = \frac{3}{x}(1 - \ln 2x)^2$		
		$\frac{dy}{dx} = (e^{2x} - e^{-2x})(e^{2x} + e^{-2x})^{-\frac{1}{2}}$			
		$\frac{dy}{dx} = \frac{e^{2x} - e^{-2x}}{\sqrt{e^{2x} + e^{-2x}}}$			
Trig within a power	Trie within an average tiel	1- 1-	Trip of la		
,	Trig within an exponential	Trig of power	Trig of In		
Example 5 $y = \sin^3 4x$	Example 6 $y = e^{\cos x}$	Example 7 $y = \sin(1 - 2x)^3$	Example 8 $y = \sin (\ln 2x)$		
^	·				
	Here we have a mix of 2 types (exponential and trig)	Careful, this does not mean the whole trig function is	Here we have a mix of 2 types (trig and harder power)		
<u> </u>	No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	squared, only the angle. $\sin^2 x = (\sin x)^2$			
Caution Trip hazard	We deal with the exponential first since that is the main function, but when we differentiate the power which is part of	However, $\sin^2 x \neq \sin x^2$	We deal with the trig since that is the main function, but when we differentiate the angle which is part of the trig		
This is one that students so often get wrong. We have to first	the exponential differentiation rule, we have to use our trig	Here we have a mix of 2 types (trig and harder power)	differentiation rule, we have to use our trig differentiation		
write the trig to a power in a more familiar way $y = \sin^3 4x = (\sin 4x)^3$	differentiation rule to do this	, , , , , ,	rule to do this		
y = 3iii 1x = (3iii 1x)		We deal with the trig since that is the main function,	$\frac{dy}{dx} = \frac{\frac{2}{2x}}{\ln 2x}$		
lere we have a mix of 2 types (harder power and trig)	$\frac{dy}{dx} = e^{\cos x}(-\sin x)$	but when we differentiate the angle which is part of	$\frac{1}{dx} = \frac{1}{\ln 2x}$		
We deal with the harder power since that is the main		the trig differentiation rule, we have to use our harder power differentiation rule to do this	dv ln 2x		
unction, but when we differentiate inside the bracket which	$\frac{dy}{dx} = (-\sin x)e^{\cos x}$	'	$\frac{dy}{dx} = \frac{\ln 2x}{x}$		
s part of the harder power differentiation rule, we have to	ax	$\frac{dy}{dx} = \cos(1 - 2x)^3 (3)(1 - 2x)^2 (-2)$			
use our trig differentiation rule to do this		dy			
$\frac{dy}{dx} = 3(\sin 4x)^2 (4\cos 4x)$		$\frac{dy}{dx} = -6(1 - 2x)^2 \cos(1 - 2x)^3$			
$\frac{dy}{dx} = 12\cos 4x (\sin 4x)^2$					
ln of trig	ln of a power	ln of an exponential	ln of a fraction		
-	·	·			
Example 9 $y = \ln(\sin x)$	Example 10 $y = \ln(1 - 2x)^3$	Example 11 $y = \ln(e^{2x} + 3x)$	Example 12 $y = \ln\left(\frac{2x - 4}{x + 5}\right)$		
,()	y(1 2x)	y(c + 5x)	$y = \ln\left(\frac{1}{x+5}\right)$		
Here we have a mix of 2 types (log and trig)	Here we have a mix of 2 types (natural log and harder powers)	Here we have a mix of 2 types (natural log and harder	This can be written as two constate leg terms		
		powers)	This can be written as two separate log terms $y = \ln(2x - 4) - \ln(x + 5)$		
We deal with the log first since that is the main function, but when we differentiate inside the argument part which is part	We deal with the log first since that is the main function, but when we differentiate inside the argument part which is part of	We deal with the leg first since that is the main			
of the log differentiation rule, we have to use our trig	the log differentiation rule, we have to use our harder power	We deal with the log first since that is the main function, but when we differentiate inside the	Now the derivative of each log is		
ifferentiation rules to do this	differentiation rules to do this	argument part which is part of the log differentiation	$\frac{\textit{derivative of argument}}{\textit{copy of argument}} and \frac{\textit{derivative of argument}}{\textit{copy of argument}}$		
$\frac{dy}{dx} = \frac{\cos x}{\sin x}$		rule, we have to use our harder power differentiation	$\frac{dy}{dx} = \frac{2}{2x - 4} - \frac{1}{x + 5}$		
$ax \sin x$	$\frac{dy}{dx} = \frac{3(1-2x)^2(-2)}{(1-2x)^3}$	rules to do this	Combining the fractions,		
Ne can simplify this using a trig identity	ux (1 – 2x)	$dy = 2a^{2X} \pm 3$	$\frac{dy}{dx} = \frac{2(x+5) - 1(2x-4)}{(2x-4)(x+5)}$		
	$\frac{dy}{dx} = \frac{-6(1-2x)^2}{(1-2x)^3}$	$\frac{dy}{dx} = \frac{2e^{2x} + 3}{e^{2x} + 3x}$	$dx \qquad (2x-4)(x+5)$ Simplifying the numerator		
$\frac{dy}{dx} = \cot x$	$dx \qquad (1-2x)^3$		$\frac{dy}{dx} = \frac{14}{(2x-4)(x+5)}$		
			$\frac{1}{dx} = \frac{1}{(2x-4)(x+5)}$		
Inverse Trig Of A Pow	rer (Further Maths only)	Inverse Trig Within A Power (Further maths only)			
	mple 13	Example 14			
y = 2ar	$c\sin\sqrt{1-2x}$	<i>y</i> =	$(arcsin x)^3$		
Ve can write this as		Here we have a mix of 2 types (harder power and invers	se trigon)		
$y = 2 \sin \theta$	$1^{-1}(1-2x)^{\frac{1}{2}}$				
We deal with the inverse trig since that is the main function, but	when we differentiate the angle which is part of the inverse trig	We deal with the harder power since that is the main function, but when we differentiate the angle which is part of the inverse trig differentiation rule, we have to use our inverse trig differentiation rule to do this			
	this				
differentiation rule, we have to use our harder power rule to do	uiis				
		dy	. 2(1)		
differentiation rule, we have to use our harder power rule to do $\frac{dy}{dx} = \frac{2\left(\frac{1}{2}\right)}{\sqrt{1}}$	$\frac{(1-2x)^{-\frac{1}{2}}(-2)}{-(\sqrt{1-2x)^2}}$	$\frac{dy}{dx} = 3(arc$	$(\sin x)^2 \left(\frac{1}{\sqrt{1-x^2}}\right)$		
$\frac{dy}{dx} = \frac{2\left(\frac{1}{2}\right)}{\sqrt{1}}$	$\frac{(1-2x)^{-\frac{1}{2}}(-2)}{-(\sqrt{1-2x})^{\frac{1}{2}}}$		WI-X		
$\frac{dy}{dx} = \frac{2\left(\frac{1}{2}\right)}{\sqrt{1}}$			$\frac{1}{(\sqrt{1-x^2})}$ $\frac{3}{-x^2}(arcsin x)^2$		

Product rule - Combination of 6 basic types above multiplied

The formula for this is:

$$y = uv \Rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

It is best to understand what the formula says in words:

Derivative = (copy 1st function)(differentiate 2nd function) + (differentiate 1st function)(copy 2nd function)

Way 1: Use the formula
$$y = uv \Rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$y = 2x(x^2 - 1)^5$$

Let's call the first pink function u and the second blue function v

$$u = 2x, v = (x^2 - 1)^5$$

$$\frac{du}{dx} = 2$$
, $\frac{dv}{dx} = 5(x^2 - 1)^4 (2x)$

Plug into the formula
$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$

$$\frac{dy}{dx} = 2x(5)(x^2 - 1)^4(2x) + (x^2 - 1)^5(2)$$

Way 2: Understand what formula is telling us

The formula basically says in English, differentiate one function at a time

(copy 1st function)(differentiate 2nd function)+(differentiate 1st function)(copy 2nd function)

$$\frac{dy}{dx} = 2x(5)(x^2 - 1)^4(2x) + 2(x^2 - 1)^5$$

$$\frac{dy}{dx} = 2x(5)(x^2 - 1)^4(2x) + (x^2 - 1)^5(2)$$

$$\frac{dy}{dx} = \frac{2x(5)(x^2 - 1)^4(2x) + (x^2 - 1)^5(2)}{x^2 + (x^2 - 1)^5(2)}$$

$$\frac{dy}{dx} = 20x^2(x^2 - 1)^4 + 2(x^2 - 1)^5$$

Simplify by multiplying constants and re-ordering.

$$\frac{dy}{dx} = (x+1)^4 (5)(2x-2)^4 (2) + (2x-2)^5 (4)(x+1)^3$$

$$\frac{dy}{dx} = 10(x+1)^4 (2x-2)^4 + 4(2x-2)^5 (x+1)^3$$

Example 2: Getting in a certain form

$$\frac{dy}{dx} = 10(x+1)^4(2x-2)^4 + 4(x+1)^3(2x-2)^5$$

Take out the HCF of the numbers
Take out the HCF of the pink terms (lowest power of each)
Take out the HCF of the blue terms (lowest power of each)

$$= 2(x+1)^3(2x-2)^4[5(x+1)+2(2x-2)]$$

power we have outside the bracket to end up with the power we want) Simplify what is inside the square bracket

$$=2(x+1)^3(2x-2)^4[5x+5+4x-4]$$

$$= 2(x+1)^3(2x-2)^4(9x+1)$$

$$= 2(9x+1)(x+1)^3(2x-2)^4$$

Combination Of Any Of The 6 Basic Types Divided (Quotient Rule)

Just like for product rule, you're given a formula

$$y = \frac{u}{v} \Rightarrow \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

In words:

$Derivative \ = \frac{copy \ denominator \ (differentiate \ numerator) - copy \ numerator \ (differentiate \ denominator)}{copy \ denominator^2}$

- Once you have applied quotient rule work on the numerator. Do not expand first if you can factorise. Try to factorise out what is common first or if fractions in the numerator get a common denominator
- We don't need quotient rule if the numerator is a constant. For example, $\frac{4}{(x-3)^2}$. Just bring the numerator up to give $4(x-3)^{-2}$.

 $y = \frac{5x^2 + 10x}{(x+1)^2}$. Show that $\frac{dy}{dx} = \frac{A}{(x+1)^n}$

where A and n are constants to be found

$y = \frac{x^2 - 4x + 12}{(x - 3)^2}.$
Show that $\frac{dy}{dx} = -\frac{2(x+6)}{(x-3)^3}$
$y = \frac{x^2 - 4x + 12}{(x - 3)^2}$
Apply quotient rule

$$\frac{dy}{dx} = \frac{(x-3)^2(2x-4) - (x^2 - 4x + 12)(2)(x-3)}{(x-3)^4}$$

$$\frac{dy}{dx} = \frac{(x-3)^2(2x-4) - 2(x-3)(x^2 - 4x + 12)}{(x-3)^4}$$

$$\frac{dy}{dx} = \frac{(x-3)^2(2x-4) - 2(x-3)(x^2 - 4x + 12)}{(x-3)^4}$$

$$\frac{dy}{dx} = \frac{(x-3)[(x-3)(2x-4) - 2(x^2 - 4x + 12)]}{(x-3)^4}$$

$$\frac{dy}{dx} = \frac{(x-3)[2x^2 - 10x + 12 - 2x^2 + 8x - 24]}{(x-3)^4}$$

$$\frac{dy}{dx} = \frac{(x-3)[-2x - 12]}{(x-3)^4}$$

$$\frac{dy}{dx} = \frac{-2x - 12}{(x-3)^3} = -\frac{2(x+6)}{(x-3)^3}$$

$$\frac{dy}{dx} = \frac{(x+1)^2(10x+10) - (5x^2 + 10x)(2)(x+1)}{(x+1)^4}$$

$$\frac{dy}{dx} = \frac{10(x+1)^3 - 2(x+1)(5x^2 + 10x)}{(x+1)^4}$$

factorise the numerator by taking out what is common

ake out the HCF of the constants which is (x + 1)

$$\frac{dy}{dx} = \frac{2(x+1)\left[5(x+1)^2 - (5x^2 + 10x)\right]}{(x+1)^4}$$

$$\frac{dy}{dx} = \frac{2(x+1)[5x^2 + 10x + 5 - 5x^2 - 10x]}{(x+1)^4}$$

$$\frac{dy}{dx} = \frac{10(x+1)}{(x+1)^4}$$

$$\frac{dy}{dx} = \frac{10}{(x+1)^3}$$

$$y = \frac{x-1}{\sqrt{x+1}}$$
Show that $\frac{dy}{dx} = \frac{x+c}{k\sqrt{(x+1)^p}}$, where $c, k, p \in \mathbb{N}$

$$y = \frac{x-1}{(x+1)^{\frac{1}{2}}}$$

$$y = \frac{x - 1}{(x + 1)^{\frac{1}{2}}}$$

$$\frac{dy}{dx} = \frac{(x+1)^{\frac{1}{2}}(1) - (x-1)\left(\frac{1}{2}\right)(x+1)^{-\frac{1}{2}}}{x+1}$$

$$\frac{dy}{dx} = \frac{(x+1)^{\frac{1}{2}} - \frac{1}{2}(x-1)(x+1)^{-\frac{1}{2}}}{x+1}$$

$$\frac{dy}{dx} = \frac{(x+1)^{-\frac{1}{2}} \left[(x+1) - \frac{1}{2} (x-1) \right]}{x+1}$$

$$\frac{dy}{dx} = \frac{(x+1)^{-\frac{1}{2}} \left[x + 1 - \frac{1}{2}x + \frac{1}{2} \right]}{x+1}$$

$$\frac{dy}{dx} = \frac{(x+1)^{\frac{1}{2}} \left[\frac{1}{2}x + \frac{3}{2}\right]}{x+1}$$

$$\frac{dy}{dx} = \frac{\frac{1}{2}x + \frac{3}{2}}{(x+1)(x+1)^{-\frac{1}{2}}}$$

$$\frac{dy}{dx} = \frac{\frac{1}{2}x + \frac{3}{2}}{(x+1)^{\frac{1}{2}+\frac{1}{2}}} = \frac{\frac{1}{2}x + \frac{3}{2}}{(x+1)^{\frac{3}{2}}} = \frac{x+3}{2\sqrt{(x+1)^3}}$$

$$\frac{dy}{dx} = \frac{(x+1)^{-\frac{1}{2}} \left[\frac{1}{2}x + \frac{3}{2} \right]}{x+1}$$

$$\frac{1}{x+\frac{3}{2}} = \frac{1}{2} \frac{1}{x+\frac{3}{2}} = \frac{1}{2} \frac{1}{x+\frac{3}{2}} = \frac{1}{2\sqrt{(x+1)^{\frac{3}{2}}}} = \frac{1}{2\sqrt{(x+1)^$$

$$y = \frac{x-4}{2+\sqrt{x}}, x > 0.$$
 Show that $\frac{dy}{dx} = \frac{1}{A\sqrt{x}}, x > 0$ where A is a constant to be found
$$\frac{x-4}{A} = \frac{1}{A\sqrt{x}} + \frac{1}{A\sqrt{$$

$$y = \frac{x - 4}{2x + \frac{x}{2}}$$

$$\frac{dy}{dx} = \frac{\left(2 + \sqrt{x}\right)(1) - (x - 4)\left(\frac{1}{2}x^{-\frac{1}{2}}\right)}{\left(2 + \sqrt{x}\right)^2}$$

$$=\frac{2+\sqrt{x}-\frac{1}{2}x^{\frac{2}{2}}+2x^{-\frac{2}{2}}}{\left(2+\sqrt{x}\right)^2}$$

Group the common terms $= \frac{2 + \frac{1}{2}x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}}{(2 + \sqrt{x})^2}$

Turn $x^{-\frac{1}{2}}$ into a fraction $=\frac{\frac{2}{1}+\frac{1}{2}x^{\frac{1}{2}}+\frac{2}{\sqrt{x}}}{(2+\sqrt{x})^2}$

$$(2 + \sqrt{x})^2$$
 et a **common denominator** in the numerator

$$\frac{dy}{dx} = \frac{\frac{4\sqrt{x}}{2\sqrt{x}} + \frac{x}{2\sqrt{x}} + \frac{4}{2\sqrt{x}}}{(2+\sqrt{x})^2}$$
$$\frac{2\sqrt{x}}{2\sqrt{x}} = \frac{\frac{4\sqrt{x} + x + 4}{2\sqrt{x}}}{(2+\sqrt{x})^2} = \frac{\frac{x + 4\sqrt{x} + 4}{2\sqrt{x}}}{(2+\sqrt{x})^2} = \frac{\frac{(\sqrt{x} + 2)^2}{2\sqrt{x}}}{(2+\sqrt{x})^2}$$

$$= \frac{\left(\sqrt{x} + 2\right)^{2}}{2\sqrt{x}} + \frac{\left(2 + \sqrt{x}\right)^{2}}{1}$$
$$= \frac{\left(\sqrt{x} + 2\right)^{2}}{2\sqrt{x}} \times \frac{1}{\left(2 + \sqrt{x}\right)^{2}} = \frac{1}{2\sqrt{x}}$$

www.mymatl	
Example 5	Example 6 – less obvious to use quotient rule
Given that $y = \frac{3 \sin x}{2 \sin x + 2 \cos x}$ show that $\frac{dy}{dx} = \frac{A}{1 + \sin 2x}$ where A is a rational constant to be found.	Use the quotient rule to show that
	i. The derivative of $tan x$ is $sec^2 x$
	ii. The derivative of $sec x$ is $sec x tan x$
pply quotient rule	i.
$\frac{dy}{dx} = \frac{(2\sin x + 2\cos x)(3\cos x) - 3\sin x(2\cos x - 2\sin x)}{(2\sin x + 2\cos x)^2}$	We can use a trig identity for $tan x$ to write it as a fraction in order to use quotient rule.
	$\sin x$
Ve can't factorise the numerator like we usually can. Let's expand the numerator instead since this is all we can do.	$y = \tan x = \frac{\sin x}{\cos x}$
$\frac{dy}{dx} = \frac{6\sin x \cos x + 6\cos^2 x - 6\sin x \cos x + 6\sin^2 x}{(2\sin x + 2\cos x)^2}$	Now that we have expression $y = \tan x$ as a fraction we can use the quotient rule.
$dx \qquad (2\sin x + 2\cos x)^2$	
Collect like terms in the numerator	$\frac{(copy\ denominator)(\textit{differentiate}\ numerator) - (copy\ numerator)(\textit{differentiate}\ denominator)}{(denominator)^2}$
$\frac{dy}{dx} = \frac{6\cos^2 x + 6\sin^2 x}{(2\sin x + 2\cos x)^2}$	$\frac{dy}{dx} = \frac{\cos x(\cos x) - \sin x(-\sin x)}{(\cos x)^2}$
	Simplifying the numerator
actorise the numerator	$\frac{dy}{dx} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$
$\frac{dy}{dx} = \frac{6\left(\cos^2 x + \sin^2 x\right)}{\left(2\sin x + 2\cos x\right)^2}$	
· · · · · · · · · · · · · · · · · · ·	$\frac{dy}{dx} = \frac{1}{\cos^2 x}$
se the identity $\sin^2 x + \cos^2 x = 1$	ax cos-x
	do
$\frac{dy}{dx} = \frac{6(1)}{(2\sin x + 2\cos x)^2}$	$\frac{dy}{dx} = \sec^2 x$
$dx (Z\sin x + Z\cos x)^2$	
Now we can see that out depositions still decre's have the right form on the second in	ii. The expression $\frac{d}{dx}(\sec x)$ means "the derivative of $\sec x$ with respect to x", so if
Now we can see that out denominator still doesn't have the right form, so we need to expand it	$y = \sec x = \frac{1}{\cos x}$
du 6	
$\frac{dy}{dx} = \frac{6}{4\sin^2 x + 8\sin x \cos x + 4\cos^2 x}$	Using quotient rule
Factorise the 4 out in the denominator	(copy denominator)(differentiate numerator) - (copy numerator)(differentiate denominator)
$\frac{dy}{dx} = \frac{6}{4\left(\sin^2 x + \cos^2 x\right) + 8\sin x \cos x}$	(denominator) ²
$\overline{dx} = \frac{1}{4(\sin^2 x + \cos^2 x) + 8\sin x \cos x}$	
	$\frac{dy}{dx} = \frac{\cos x(0) - 1(-\sin x)}{(\cos x)^2}$
Use the identity $\sin^2 x + \cos^2 x = 1$	Simplifying the numerator
$\frac{dy}{dx} = \frac{6}{4(1) + 4(2\sin x \cos x)}$	
$ax = 4(1) + 4(2 \sin x \cos x)$	$\frac{dy}{dx} = \frac{\sin x}{\cos^2 x}$
Use the identity $2\sin x \cos x = \sin 2x$	
	Rewriting as the product of two fractions
$\frac{dy}{dx} = \frac{6}{4 + 4\sin 2x}$	$\frac{dy}{dx} = \frac{\sin x}{\cos x} \left(\frac{1}{\cos x}\right)$
	$dx = \cos x \cdot \cos x$ Using trig identities
Factorise the 4 out in the denominator	
$\frac{dy}{dx} = \frac{6}{4(1+\sin 2x)}$	$\frac{dy}{dx} = \tan x \sec x$
$dx 4(1+\sin 2x)$	ux
$A = \frac{6}{4} = \frac{3}{2}$	
. <i>L</i>	
	•